minimization in int works with FGPROCS>1
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       call flush(iout)
31       if (nfgtasks.gt.1) then
32 #ifdef MPI
33         time00=MPI_Wtime()
34 #else
35         time00=tcpu()
36 #endif
37 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
38         if (fg_rank.eq.0) then
39           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
40 c          print *,"Processor",myrank," BROADCAST iorder"
41 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
42 C FG slaves as WEIGHTS array.
43           weights_(1)=wsc
44           weights_(2)=wscp
45           weights_(3)=welec
46           weights_(4)=wcorr
47           weights_(5)=wcorr5
48           weights_(6)=wcorr6
49           weights_(7)=wel_loc
50           weights_(8)=wturn3
51           weights_(9)=wturn4
52           weights_(10)=wturn6
53           weights_(11)=wang
54           weights_(12)=wscloc
55           weights_(13)=wtor
56           weights_(14)=wtor_d
57           weights_(15)=wstrain
58           weights_(16)=wvdwpp
59           weights_(17)=wbond
60           weights_(18)=scal14
61           weights_(21)=wsccor
62           weights_(22)=wsct
63 C FG Master broadcasts the WEIGHTS_ array
64           call MPI_Bcast(weights_(1),n_ene,
65      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
66         else
67 C FG slaves receive the WEIGHTS array
68           call MPI_Bcast(weights(1),n_ene,
69      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
70           wsc=weights(1)
71           wscp=weights(2)
72           welec=weights(3)
73           wcorr=weights(4)
74           wcorr5=weights(5)
75           wcorr6=weights(6)
76           wel_loc=weights(7)
77           wturn3=weights(8)
78           wturn4=weights(9)
79           wturn6=weights(10)
80           wang=weights(11)
81           wscloc=weights(12)
82           wtor=weights(13)
83           wtor_d=weights(14)
84           wstrain=weights(15)
85           wvdwpp=weights(16)
86           wbond=weights(17)
87           scal14=weights(18)
88           wsccor=weights(21)
89           wsct=weights(22)
90         endif
91         time_Bcast=time_Bcast+MPI_Wtime()-time00
92         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
93 c        call chainbuild_cart
94       endif
95 c      write(iout,*) 'Processor',myrank,' calling etotal ipot=',ipot
96 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
97 #else
98 c      if (modecalc.eq.12.or.modecalc.eq.14) then
99 c        call int_from_cart1(.false.)
100 c      endif
101 #endif     
102 #ifdef TIMING
103 #ifdef MPI
104       time00=MPI_Wtime()
105 #else
106       time00=tcpu()
107 #endif
108 #endif
109
110 C Compute the side-chain and electrostatic interaction energy
111 C
112       goto (101,102,103,104,105,106) ipot
113 C Lennard-Jones potential.
114   101 call elj(evdw,evdw_p,evdw_m)
115 cd    print '(a)','Exit ELJ'
116       goto 107
117 C Lennard-Jones-Kihara potential (shifted).
118   102 call eljk(evdw,evdw_p,evdw_m)
119       goto 107
120 C Berne-Pechukas potential (dilated LJ, angular dependence).
121   103 call ebp(evdw,evdw_p,evdw_m)
122       goto 107
123 C Gay-Berne potential (shifted LJ, angular dependence).
124   104 call egb(evdw,evdw_p,evdw_m)
125       goto 107
126 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
127   105 call egbv(evdw,evdw_p,evdw_m)
128       goto 107
129 C Soft-sphere potential
130   106 call e_softsphere(evdw)
131 C
132 C Calculate electrostatic (H-bonding) energy of the main chain.
133 C
134   107 continue
135 C     BARTEK for dfa test!
136       if (wdfa_dist.gt.0) then 
137         call edfad(edfadis)
138       else
139         edfadis=0
140       endif
141 c      print*, 'edfad is finished!', edfadis
142       if (wdfa_tor.gt.0) then
143         call edfat(edfator)
144       else
145         edfator=0
146       endif
147 c      print*, 'edfat is finished!', edfator
148       if (wdfa_nei.gt.0) then
149         call edfan(edfanei)
150       else
151         edfanei=0
152       endif    
153 c      print*, 'edfan is finished!', edfanei
154       if (wdfa_beta.gt.0) then 
155         call edfab(edfabet)
156       else
157         edfabet=0
158       endif
159 c      print*, 'edfab is finished!', edfabet
160 cmc
161 cmc Sep-06: egb takes care of dynamic ss bonds too
162 cmc
163 c      if (dyn_ss) call dyn_set_nss
164
165 c      print *,"Processor",myrank," computed USCSC"
166 #ifdef TIMING
167 #ifdef MPI
168       time01=MPI_Wtime() 
169 #else
170       time00=tcpu()
171 #endif
172 #endif
173       call vec_and_deriv
174 #ifdef TIMING
175 #ifdef MPI
176       time_vec=time_vec+MPI_Wtime()-time01
177 #else
178       time_vec=time_vec+tcpu()-time01
179 #endif
180 #endif
181 c      print *,"Processor",myrank," left VEC_AND_DERIV"
182       if (ipot.lt.6) then
183 #ifdef SPLITELE
184          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
185      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
186      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
187      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
188 #else
189          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
190      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
191      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
192      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
193 #endif
194             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
195          else
196             ees=0.0d0
197             evdw1=0.0d0
198             eel_loc=0.0d0
199             eello_turn3=0.0d0
200             eello_turn4=0.0d0
201          endif
202       else
203 c        write (iout,*) "Soft-spheer ELEC potential"
204         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
205      &   eello_turn4)
206       endif
207 c      print *,"Processor",myrank," computed UELEC"
208 C
209 C Calculate excluded-volume interaction energy between peptide groups
210 C and side chains.
211 C
212       if (ipot.lt.6) then
213        if(wscp.gt.0d0) then
214         call escp(evdw2,evdw2_14)
215        else
216         evdw2=0
217         evdw2_14=0
218        endif
219       else
220 c        write (iout,*) "Soft-sphere SCP potential"
221         call escp_soft_sphere(evdw2,evdw2_14)
222       endif
223 c
224 c Calculate the bond-stretching energy
225 c
226       call ebond(estr)
227
228 C Calculate the disulfide-bridge and other energy and the contributions
229 C from other distance constraints.
230 cd    print *,'Calling EHPB'
231       call edis(ehpb)
232 cd    print *,'EHPB exitted succesfully.'
233 C
234 C Calculate the virtual-bond-angle energy.
235 C
236       if (wang.gt.0d0) then
237         call ebend(ebe)
238       else
239         ebe=0
240       endif
241 c      print *,"Processor",myrank," computed UB"
242 C
243 C Calculate the SC local energy.
244 C
245       call esc(escloc)
246 c      print *,"Processor",myrank," computed USC"
247 C
248 C Calculate the virtual-bond torsional energy.
249 C
250 cd    print *,'nterm=',nterm
251       if (wtor.gt.0) then
252        call etor(etors,edihcnstr)
253       else
254        etors=0
255        edihcnstr=0
256       endif
257
258       if (constr_homology.ge.1) then
259         call e_modeller(ehomology_constr)
260 c        print *,'iset=',iset,'me=',me,ehomology_constr,
261 c     &  'Processor',fg_rank,' CG group',kolor,
262 c     &  ' absolute rank',MyRank
263       else
264         ehomology_constr=0.0d0
265       endif
266
267
268 c      write(iout,*) ehomology_constr
269 c      print *,"Processor",myrank," computed Utor"
270 C
271 C 6/23/01 Calculate double-torsional energy
272 C
273       if (wtor_d.gt.0) then
274        call etor_d(etors_d)
275       else
276        etors_d=0
277       endif
278 c      print *,"Processor",myrank," computed Utord"
279 C
280 C 21/5/07 Calculate local sicdechain correlation energy
281 C
282       if (wsccor.gt.0.0d0) then
283         call eback_sc_corr(esccor)
284       else
285         esccor=0.0d0
286       endif
287 c      print *,"Processor",myrank," computed Usccorr"
288
289 C 12/1/95 Multi-body terms
290 C
291       n_corr=0
292       n_corr1=0
293       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
294      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
295          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
296 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
297 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
298       else
299          ecorr=0.0d0
300          ecorr5=0.0d0
301          ecorr6=0.0d0
302          eturn6=0.0d0
303       endif
304       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
305          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
306 cd         write (iout,*) "multibody_hb ecorr",ecorr
307       endif
308 c      print *,"Processor",myrank," computed Ucorr"
309
310 C If performing constraint dynamics, call the constraint energy
311 C  after the equilibration time
312       if(usampl.and.totT.gt.eq_time) then
313 c         write (iout,*) "CALL TO ECONSTR_BACK"
314          call EconstrQ   
315          call Econstr_back
316       else
317          Uconst=0.0d0
318          Uconst_back=0.0d0
319       endif
320 #ifdef TIMING
321 #ifdef MPI
322       time_enecalc=time_enecalc+MPI_Wtime()-time00
323 #else
324       time_enecalc=time_enecalc+tcpu()-time00
325 #endif
326 #endif
327 c      print *,"Processor",myrank," computed Uconstr"
328 #ifdef TIMING
329 #ifdef MPI
330       time00=MPI_Wtime()
331 #else
332       time00=tcpu()
333 #endif
334 #endif
335 c
336 C Sum the energies
337 C
338       energia(1)=evdw
339 #ifdef SCP14
340       energia(2)=evdw2-evdw2_14
341       energia(18)=evdw2_14
342 #else
343       energia(2)=evdw2
344       energia(18)=0.0d0
345 #endif
346 #ifdef SPLITELE
347       energia(3)=ees
348       energia(16)=evdw1
349 #else
350       energia(3)=ees+evdw1
351       energia(16)=0.0d0
352 #endif
353       energia(4)=ecorr
354       energia(5)=ecorr5
355       energia(6)=ecorr6
356       energia(7)=eel_loc
357       energia(8)=eello_turn3
358       energia(9)=eello_turn4
359       energia(10)=eturn6
360       energia(11)=ebe
361       energia(12)=escloc
362       energia(13)=etors
363       energia(14)=etors_d
364       energia(15)=ehpb
365       energia(19)=edihcnstr
366       energia(17)=estr
367       energia(20)=Uconst+Uconst_back
368       energia(21)=esccor
369       energia(22)=evdw_p
370       energia(23)=evdw_m
371       energia(24)=ehomology_constr
372       energia(25)=edfadis
373       energia(26)=edfator
374       energia(27)=edfanei
375       energia(28)=edfabet
376 c      print *," Processor",myrank," calls SUM_ENERGY"
377       call sum_energy(energia,.true.)
378       if (dyn_ss) call dyn_set_nss
379 c      print *," Processor",myrank," left SUM_ENERGY"
380 #ifdef TIMING
381 #ifdef MPI
382       time_sumene=time_sumene+MPI_Wtime()-time00
383 #else
384       time_sumene=time_sumene+tcpu()-time00
385 #endif
386 #endif
387       return
388       end
389 c-------------------------------------------------------------------------------
390       subroutine sum_energy(energia,reduce)
391       implicit real*8 (a-h,o-z)
392       include 'DIMENSIONS'
393 #ifndef ISNAN
394       external proc_proc
395 #ifdef WINPGI
396 cMS$ATTRIBUTES C ::  proc_proc
397 #endif
398 #endif
399 #ifdef MPI
400       include "mpif.h"
401 #endif
402       include 'COMMON.SETUP'
403       include 'COMMON.IOUNITS'
404       double precision energia(0:n_ene),enebuff(0:n_ene+1)
405       include 'COMMON.FFIELD'
406       include 'COMMON.DERIV'
407       include 'COMMON.INTERACT'
408       include 'COMMON.SBRIDGE'
409       include 'COMMON.CHAIN'
410       include 'COMMON.VAR'
411       include 'COMMON.CONTROL'
412       include 'COMMON.TIME1'
413       logical reduce
414 #ifdef MPI
415       if (nfgtasks.gt.1 .and. reduce) then
416 #ifdef DEBUG
417         write (iout,*) "energies before REDUCE"
418         call enerprint(energia)
419         call flush(iout)
420 #endif
421         do i=0,n_ene
422           enebuff(i)=energia(i)
423         enddo
424         time00=MPI_Wtime()
425         call MPI_Barrier(FG_COMM,IERR)
426         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
427         time00=MPI_Wtime()
428         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
429      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
430 #ifdef DEBUG
431         write (iout,*) "energies after REDUCE"
432         call enerprint(energia)
433         call flush(iout)
434 #endif
435         time_Reduce=time_Reduce+MPI_Wtime()-time00
436       endif
437       if (fg_rank.eq.0) then
438 #endif
439 #ifdef TSCSC
440       evdw=energia(22)+wsct*energia(23)
441 #else
442       evdw=energia(1)
443 #endif
444 #ifdef SCP14
445       evdw2=energia(2)+energia(18)
446       evdw2_14=energia(18)
447 #else
448       evdw2=energia(2)
449 #endif
450 #ifdef SPLITELE
451       ees=energia(3)
452       evdw1=energia(16)
453 #else
454       ees=energia(3)
455       evdw1=0.0d0
456 #endif
457       ecorr=energia(4)
458       ecorr5=energia(5)
459       ecorr6=energia(6)
460       eel_loc=energia(7)
461       eello_turn3=energia(8)
462       eello_turn4=energia(9)
463       eturn6=energia(10)
464       ebe=energia(11)
465       escloc=energia(12)
466       etors=energia(13)
467       etors_d=energia(14)
468       ehpb=energia(15)
469       edihcnstr=energia(19)
470       estr=energia(17)
471       Uconst=energia(20)
472       esccor=energia(21)
473       ehomology_constr=energia(24)
474       edfadis=energia(25)
475       edfator=energia(26)
476       edfanei=energia(27)
477       edfabet=energia(28)
478 #ifdef SPLITELE
479       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
480      & +wang*ebe+wtor*etors+wscloc*escloc
481      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
482      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
483      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
484      & +wbond*estr+Uconst+wsccor*esccor+ehomology_constr
485      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
486      & +wdfa_beta*edfabet    
487 #else
488       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
489      & +wang*ebe+wtor*etors+wscloc*escloc
490      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
491      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
492      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
493      & +wbond*estr+Uconst+wsccor*esccor+ehomology_constr
494      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
495      & +wdfa_beta*edfabet    
496 #endif
497       energia(0)=etot
498 c detecting NaNQ
499 #ifdef ISNAN
500 #ifdef AIX
501       if (isnan(etot).ne.0) energia(0)=1.0d+99
502 #else
503       if (isnan(etot)) energia(0)=1.0d+99
504 #endif
505 #else
506       i=0
507 #ifdef WINPGI
508       idumm=proc_proc(etot,i)
509 #else
510       call proc_proc(etot,i)
511 #endif
512       if(i.eq.1)energia(0)=1.0d+99
513 #endif
514 #ifdef MPI
515       endif
516 #endif
517       return
518       end
519 c-------------------------------------------------------------------------------
520       subroutine sum_gradient
521       implicit real*8 (a-h,o-z)
522       include 'DIMENSIONS'
523 #ifndef ISNAN
524       external proc_proc
525 #ifdef WINPGI
526 cMS$ATTRIBUTES C ::  proc_proc
527 #endif
528 #endif
529 #ifdef MPI
530       include 'mpif.h'
531 #endif
532       double precision gradbufc(3,maxres),gradbufx(3,maxres),
533      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
534       include 'COMMON.SETUP'
535       include 'COMMON.IOUNITS'
536       include 'COMMON.FFIELD'
537       include 'COMMON.DERIV'
538       include 'COMMON.INTERACT'
539       include 'COMMON.SBRIDGE'
540       include 'COMMON.CHAIN'
541       include 'COMMON.VAR'
542       include 'COMMON.CONTROL'
543       include 'COMMON.TIME1'
544       include 'COMMON.MAXGRAD'
545       include 'COMMON.SCCOR'
546 #ifdef TIMING
547 #ifdef MPI
548       time01=MPI_Wtime()
549 #else
550       time01=tcpu()
551 #endif
552 #endif
553 #ifdef DEBUG
554       write (iout,*) "sum_gradient gvdwc, gvdwx"
555       do i=1,nres
556         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
557      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
558      &   (gvdwcT(j,i),j=1,3)
559       enddo
560       call flush(iout)
561 #endif
562 #ifdef MPI
563 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
564         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
565      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
566 #endif
567 C
568 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
569 C            in virtual-bond-vector coordinates
570 C
571 #ifdef DEBUG
572 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
573 c      do i=1,nres-1
574 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
575 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
576 c      enddo
577 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
578 c      do i=1,nres-1
579 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
580 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
581 c      enddo
582       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
583       do i=1,nres
584         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
585      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
586      &   g_corr5_loc(i)
587       enddo
588       call flush(iout)
589 #endif
590 #ifdef SPLITELE
591 #ifdef TSCSC
592       do i=1,nct
593         do j=1,3
594           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
595      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
596      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
597      &                wel_loc*gel_loc_long(j,i)+
598      &                wcorr*gradcorr_long(j,i)+
599      &                wcorr5*gradcorr5_long(j,i)+
600      &                wcorr6*gradcorr6_long(j,i)+
601      &                wturn6*gcorr6_turn_long(j,i)+
602      &                wstrain*ghpbc(j,i)+
603      &                wdfa_dist*gdfad(j,i)+
604      &                wdfa_tor*gdfat(j,i)+
605      &                wdfa_nei*gdfan(j,i)+
606      &                wdfa_beta*gdfab(j,i)
607         enddo
608       enddo 
609 #else
610       do i=1,nct
611         do j=1,3
612           gradbufc(j,i)=wsc*gvdwc(j,i)+
613      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
614      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
615      &                wel_loc*gel_loc_long(j,i)+
616      &                wcorr*gradcorr_long(j,i)+
617      &                wcorr5*gradcorr5_long(j,i)+
618      &                wcorr6*gradcorr6_long(j,i)+
619      &                wturn6*gcorr6_turn_long(j,i)+
620      &                wstrain*ghpbc(j,i)+
621      &                wdfa_dist*gdfad(j,i)+
622      &                wdfa_tor*gdfat(j,i)+
623      &                wdfa_nei*gdfan(j,i)+
624      &                wdfa_beta*gdfab(j,i)
625         enddo
626       enddo 
627 #endif
628 #else
629       do i=1,nct
630         do j=1,3
631           gradbufc(j,i)=wsc*gvdwc(j,i)+
632      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
633      &                welec*gelc_long(j,i)+
634      &                wbond*gradb(j,i)+
635      &                wel_loc*gel_loc_long(j,i)+
636      &                wcorr*gradcorr_long(j,i)+
637      &                wcorr5*gradcorr5_long(j,i)+
638      &                wcorr6*gradcorr6_long(j,i)+
639      &                wturn6*gcorr6_turn_long(j,i)+
640      &                wstrain*ghpbc(j,i)+
641      &                wdfa_dist*gdfad(j,i)+
642      &                wdfa_tor*gdfat(j,i)+
643      &                wdfa_nei*gdfan(j,i)+
644      &                wdfa_beta*gdfab(j,i)
645         enddo
646       enddo 
647 #endif
648 #ifdef MPI
649       if (nfgtasks.gt.1) then
650       time00=MPI_Wtime()
651 #ifdef DEBUG
652       write (iout,*) "gradbufc before allreduce"
653       do i=1,nres
654         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
655       enddo
656       call flush(iout)
657 #endif
658       do i=1,nres
659         do j=1,3
660           gradbufc_sum(j,i)=gradbufc(j,i)
661         enddo
662       enddo
663 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
664 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
665 c      time_reduce=time_reduce+MPI_Wtime()-time00
666 #ifdef DEBUG
667 c      write (iout,*) "gradbufc_sum after allreduce"
668 c      do i=1,nres
669 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
670 c      enddo
671 c      call flush(iout)
672 #endif
673 #ifdef TIMING
674 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
675 #endif
676       do i=nnt,nres
677         do k=1,3
678           gradbufc(k,i)=0.0d0
679         enddo
680       enddo
681 #ifdef DEBUG
682       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
683       write (iout,*) (i," jgrad_start",jgrad_start(i),
684      &                  " jgrad_end  ",jgrad_end(i),
685      &                  i=igrad_start,igrad_end)
686 #endif
687 c
688 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
689 c do not parallelize this part.
690 c
691 c      do i=igrad_start,igrad_end
692 c        do j=jgrad_start(i),jgrad_end(i)
693 c          do k=1,3
694 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
695 c          enddo
696 c        enddo
697 c      enddo
698       do j=1,3
699         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
700       enddo
701       do i=nres-2,nnt,-1
702         do j=1,3
703           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
704         enddo
705       enddo
706 #ifdef DEBUG
707       write (iout,*) "gradbufc after summing"
708       do i=1,nres
709         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
710       enddo
711       call flush(iout)
712 #endif
713       else
714 #endif
715 #ifdef DEBUG
716       write (iout,*) "gradbufc"
717       do i=1,nres
718         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
719       enddo
720       call flush(iout)
721 #endif
722       do i=1,nres
723         do j=1,3
724           gradbufc_sum(j,i)=gradbufc(j,i)
725           gradbufc(j,i)=0.0d0
726         enddo
727       enddo
728       do j=1,3
729         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
730       enddo
731       do i=nres-2,nnt,-1
732         do j=1,3
733           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
734         enddo
735       enddo
736 c      do i=nnt,nres-1
737 c        do k=1,3
738 c          gradbufc(k,i)=0.0d0
739 c        enddo
740 c        do j=i+1,nres
741 c          do k=1,3
742 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
743 c          enddo
744 c        enddo
745 c      enddo
746 #ifdef DEBUG
747       write (iout,*) "gradbufc after summing"
748       do i=1,nres
749         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
750       enddo
751       call flush(iout)
752 #endif
753 #ifdef MPI
754       endif
755 #endif
756       do k=1,3
757         gradbufc(k,nres)=0.0d0
758       enddo
759       do i=1,nct
760         do j=1,3
761 #ifdef SPLITELE
762           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
763      &                wel_loc*gel_loc(j,i)+
764      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
765      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
766      &                wel_loc*gel_loc_long(j,i)+
767      &                wcorr*gradcorr_long(j,i)+
768      &                wcorr5*gradcorr5_long(j,i)+
769      &                wcorr6*gradcorr6_long(j,i)+
770      &                wturn6*gcorr6_turn_long(j,i))+
771      &                wbond*gradb(j,i)+
772      &                wcorr*gradcorr(j,i)+
773      &                wturn3*gcorr3_turn(j,i)+
774      &                wturn4*gcorr4_turn(j,i)+
775      &                wcorr5*gradcorr5(j,i)+
776      &                wcorr6*gradcorr6(j,i)+
777      &                wturn6*gcorr6_turn(j,i)+
778      &                wsccor*gsccorc(j,i)
779      &               +wscloc*gscloc(j,i)
780 #else
781           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
782      &                wel_loc*gel_loc(j,i)+
783      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
784      &                welec*gelc_long(j,i)+
785      &                wel_loc*gel_loc_long(j,i)+
786      &                wcorr*gcorr_long(j,i)+
787      &                wcorr5*gradcorr5_long(j,i)+
788      &                wcorr6*gradcorr6_long(j,i)+
789      &                wturn6*gcorr6_turn_long(j,i))+
790      &                wbond*gradb(j,i)+
791      &                wcorr*gradcorr(j,i)+
792      &                wturn3*gcorr3_turn(j,i)+
793      &                wturn4*gcorr4_turn(j,i)+
794      &                wcorr5*gradcorr5(j,i)+
795      &                wcorr6*gradcorr6(j,i)+
796      &                wturn6*gcorr6_turn(j,i)+
797      &                wsccor*gsccorc(j,i)
798      &               +wscloc*gscloc(j,i)
799 #endif
800 #ifdef TSCSC
801           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
802      &                  wscp*gradx_scp(j,i)+
803      &                  wbond*gradbx(j,i)+
804      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
805      &                  wsccor*gsccorx(j,i)
806      &                 +wscloc*gsclocx(j,i)
807 #else
808           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
809      &                  wbond*gradbx(j,i)+
810      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
811      &                  wsccor*gsccorx(j,i)
812      &                 +wscloc*gsclocx(j,i)
813 #endif
814         enddo
815       enddo 
816 #ifdef DEBUG
817       write (iout,*) "gloc before adding corr"
818       do i=1,4*nres
819         write (iout,*) i,gloc(i,icg)
820       enddo
821 #endif
822       do i=1,nres-3
823         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
824      &   +wcorr5*g_corr5_loc(i)
825      &   +wcorr6*g_corr6_loc(i)
826      &   +wturn4*gel_loc_turn4(i)
827      &   +wturn3*gel_loc_turn3(i)
828      &   +wturn6*gel_loc_turn6(i)
829      &   +wel_loc*gel_loc_loc(i)
830       enddo
831 #ifdef DEBUG
832       write (iout,*) "gloc after adding corr"
833       do i=1,4*nres
834         write (iout,*) i,gloc(i,icg)
835       enddo
836 #endif
837 #ifdef MPI
838       if (nfgtasks.gt.1) then
839         do j=1,3
840           do i=1,nres
841             gradbufc(j,i)=gradc(j,i,icg)
842             gradbufx(j,i)=gradx(j,i,icg)
843           enddo
844         enddo
845         do i=1,4*nres
846           glocbuf(i)=gloc(i,icg)
847         enddo
848 #ifdef DEBUG
849       write (iout,*) "gloc_sc before reduce"
850       do i=1,nres
851        do j=1,3
852         write (iout,*) i,j,gloc_sc(j,i,icg)
853        enddo
854       enddo
855 #endif
856         do i=1,nres
857          do j=1,3
858           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
859          enddo
860         enddo
861         time00=MPI_Wtime()
862         call MPI_Barrier(FG_COMM,IERR)
863         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
864         time00=MPI_Wtime()
865         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
866      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
867         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
868      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
869         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
870      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
871         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
872      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
873         time_reduce=time_reduce+MPI_Wtime()-time00
874 #ifdef DEBUG
875       write (iout,*) "gloc_sc after reduce"
876       do i=1,nres
877        do j=1,3
878         write (iout,*) i,j,gloc_sc(j,i,icg)
879        enddo
880       enddo
881 #endif
882 #ifdef DEBUG
883       write (iout,*) "gloc after reduce"
884       do i=1,4*nres
885         write (iout,*) i,gloc(i,icg)
886       enddo
887 #endif
888       endif
889 #endif
890       if (gnorm_check) then
891 c
892 c Compute the maximum elements of the gradient
893 c
894       gvdwc_max=0.0d0
895       gvdwc_scp_max=0.0d0
896       gelc_max=0.0d0
897       gvdwpp_max=0.0d0
898       gradb_max=0.0d0
899       ghpbc_max=0.0d0
900       gradcorr_max=0.0d0
901       gel_loc_max=0.0d0
902       gcorr3_turn_max=0.0d0
903       gcorr4_turn_max=0.0d0
904       gradcorr5_max=0.0d0
905       gradcorr6_max=0.0d0
906       gcorr6_turn_max=0.0d0
907       gsccorc_max=0.0d0
908       gscloc_max=0.0d0
909       gvdwx_max=0.0d0
910       gradx_scp_max=0.0d0
911       ghpbx_max=0.0d0
912       gradxorr_max=0.0d0
913       gsccorx_max=0.0d0
914       gsclocx_max=0.0d0
915       do i=1,nct
916         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
917         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
918 #ifdef TSCSC
919         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
920         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
921 #endif
922         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
923         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
924      &   gvdwc_scp_max=gvdwc_scp_norm
925         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
926         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
927         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
928         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
929         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
930         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
931         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
932         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
933         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
934         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
935         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
936         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
937         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
938      &    gcorr3_turn(1,i)))
939         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
940      &    gcorr3_turn_max=gcorr3_turn_norm
941         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
942      &    gcorr4_turn(1,i)))
943         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
944      &    gcorr4_turn_max=gcorr4_turn_norm
945         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
946         if (gradcorr5_norm.gt.gradcorr5_max) 
947      &    gradcorr5_max=gradcorr5_norm
948         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
949         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
950         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
951      &    gcorr6_turn(1,i)))
952         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
953      &    gcorr6_turn_max=gcorr6_turn_norm
954         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
955         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
956         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
957         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
958         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
959         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
960 #ifdef TSCSC
961         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
962         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
963 #endif
964         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
965         if (gradx_scp_norm.gt.gradx_scp_max) 
966      &    gradx_scp_max=gradx_scp_norm
967         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
968         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
969         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
970         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
971         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
972         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
973         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
974         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
975       enddo 
976       if (gradout) then
977 #ifdef AIX
978         open(istat,file=statname,position="append")
979 #else
980         open(istat,file=statname,access="append")
981 #endif
982         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
983      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
984      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
985      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
986      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
987      &     gsccorx_max,gsclocx_max
988         close(istat)
989         if (gvdwc_max.gt.1.0d4) then
990           write (iout,*) "gvdwc gvdwx gradb gradbx"
991           do i=nnt,nct
992             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
993      &        gradb(j,i),gradbx(j,i),j=1,3)
994           enddo
995           call pdbout(0.0d0,'cipiszcze',iout)
996           call flush(iout)
997         endif
998       endif
999       endif
1000 #ifdef DEBUG
1001       write (iout,*) "gradc gradx gloc"
1002       do i=1,nres
1003         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
1004      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
1005       enddo 
1006 #endif
1007 #ifdef TIMING
1008 #ifdef MPI
1009       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
1010 #else
1011       time_sumgradient=time_sumgradient+tcpu()-time01
1012 #endif
1013 #endif
1014       return
1015       end
1016 c-------------------------------------------------------------------------------
1017       subroutine rescale_weights(t_bath)
1018       implicit real*8 (a-h,o-z)
1019       include 'DIMENSIONS'
1020       include 'COMMON.IOUNITS'
1021       include 'COMMON.FFIELD'
1022       include 'COMMON.SBRIDGE'
1023       double precision kfac /2.4d0/
1024       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
1025 c      facT=temp0/t_bath
1026 c      facT=2*temp0/(t_bath+temp0)
1027       if (rescale_mode.eq.0) then
1028         facT=1.0d0
1029         facT2=1.0d0
1030         facT3=1.0d0
1031         facT4=1.0d0
1032         facT5=1.0d0
1033       else if (rescale_mode.eq.1) then
1034         facT=kfac/(kfac-1.0d0+t_bath/temp0)
1035         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
1036         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
1037         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
1038         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
1039       else if (rescale_mode.eq.2) then
1040         x=t_bath/temp0
1041         x2=x*x
1042         x3=x2*x
1043         x4=x3*x
1044         x5=x4*x
1045         facT=licznik/dlog(dexp(x)+dexp(-x))
1046         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
1047         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
1048         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
1049         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
1050       else
1051         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
1052         write (*,*) "Wrong RESCALE_MODE",rescale_mode
1053 #ifdef MPI
1054        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
1055 #endif
1056        stop 555
1057       endif
1058       welec=weights(3)*fact
1059       wcorr=weights(4)*fact3
1060       wcorr5=weights(5)*fact4
1061       wcorr6=weights(6)*fact5
1062       wel_loc=weights(7)*fact2
1063       wturn3=weights(8)*fact2
1064       wturn4=weights(9)*fact3
1065       wturn6=weights(10)*fact5
1066       wtor=weights(13)*fact
1067       wtor_d=weights(14)*fact2
1068       wsccor=weights(21)*fact
1069 #ifdef TSCSC
1070 c      wsct=t_bath/temp0
1071       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1072 #endif
1073       return
1074       end
1075 C------------------------------------------------------------------------
1076       subroutine enerprint(energia)
1077       implicit real*8 (a-h,o-z)
1078       include 'DIMENSIONS'
1079       include 'COMMON.IOUNITS'
1080       include 'COMMON.FFIELD'
1081       include 'COMMON.SBRIDGE'
1082       include 'COMMON.MD'
1083       double precision energia(0:n_ene)
1084       etot=energia(0)
1085 #ifdef TSCSC
1086       evdw=energia(22)+wsct*energia(23)
1087 #else
1088       evdw=energia(1)
1089 #endif
1090       evdw2=energia(2)
1091 #ifdef SCP14
1092       evdw2=energia(2)+energia(18)
1093 #else
1094       evdw2=energia(2)
1095 #endif
1096       ees=energia(3)
1097 #ifdef SPLITELE
1098       evdw1=energia(16)
1099 #endif
1100       ecorr=energia(4)
1101       ecorr5=energia(5)
1102       ecorr6=energia(6)
1103       eel_loc=energia(7)
1104       eello_turn3=energia(8)
1105       eello_turn4=energia(9)
1106       eello_turn6=energia(10)
1107       ebe=energia(11)
1108       escloc=energia(12)
1109       etors=energia(13)
1110       etors_d=energia(14)
1111       ehpb=energia(15)
1112       edihcnstr=energia(19)
1113       estr=energia(17)
1114       Uconst=energia(20)
1115       esccor=energia(21)
1116       ehomology_constr=energia(24)
1117 C     Bartek
1118       edfadis = energia(25)
1119       edfator = energia(26)
1120       edfanei = energia(27)
1121       edfabet = energia(28)
1122
1123 #ifdef SPLITELE
1124       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1125      &  estr,wbond,ebe,wang,
1126      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1127      &  ecorr,wcorr,
1128      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1129      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1130      &  edihcnstr,ehomology_constr, ebr*nss,
1131      &  Uconst,edfadis,wdfa_dist,edfator,wdfa_tor,edfanei,wdfa_nei,
1132      &  edfabet,wdfa_beta,etot
1133    10 format (/'Virtual-chain energies:'//
1134      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1135      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1136      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1137      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1138      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1139      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1140      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1141      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1142      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1143      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1144      & ' (SS bridges & dist. cnstr.)'/
1145      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1146      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1147      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1148      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1149      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1150      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1151      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1152      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1153      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1154      & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/
1155      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1156      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1157      & 'EDFAD= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA distance energy)'/ 
1158      & 'EDFAT= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA torsion energy)'/ 
1159      & 'EDFAN= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA NCa energy)'/ 
1160      & 'EDFAB= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA Beta energy)'/ 
1161      & 'ETOT=  ',1pE16.6,' (total)')
1162 #else
1163       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1164      &  estr,wbond,ebe,wang,
1165      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1166      &  ecorr,wcorr,
1167      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1168      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1169      &  ehomology_constr,ebr*nss,Uconst,edfadis,wdfa_dist,edfator,
1170      &  wdfa_tor,edfanei,wdfa_nei,edfabet,wdfa_beta,
1171      &  etot
1172    10 format (/'Virtual-chain energies:'//
1173      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1174      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1175      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1176      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1177      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1178      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1179      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1180      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1181      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1182      & ' (SS bridges & dist. cnstr.)'/
1183      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1184      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1185      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1186      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1187      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1188      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1189      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1190      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1191      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1192      & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/
1193      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1194      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1195      & 'EDFAD= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA distance energy)'/ 
1196      & 'EDFAT= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA torsion energy)'/ 
1197      & 'EDFAN= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA NCa energy)'/ 
1198      & 'EDFAB= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA Beta energy)'/ 
1199      & 'ETOT=  ',1pE16.6,' (total)')
1200 #endif
1201       return
1202       end
1203 C-----------------------------------------------------------------------
1204       subroutine elj(evdw,evdw_p,evdw_m)
1205 C
1206 C This subroutine calculates the interaction energy of nonbonded side chains
1207 C assuming the LJ potential of interaction.
1208 C
1209       implicit real*8 (a-h,o-z)
1210       include 'DIMENSIONS'
1211       parameter (accur=1.0d-10)
1212       include 'COMMON.GEO'
1213       include 'COMMON.VAR'
1214       include 'COMMON.LOCAL'
1215       include 'COMMON.CHAIN'
1216       include 'COMMON.DERIV'
1217       include 'COMMON.INTERACT'
1218       include 'COMMON.TORSION'
1219       include 'COMMON.SBRIDGE'
1220       include 'COMMON.NAMES'
1221       include 'COMMON.IOUNITS'
1222       include 'COMMON.CONTACTS'
1223       dimension gg(3)
1224 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1225       evdw=0.0D0
1226       do i=iatsc_s,iatsc_e
1227         itypi=itype(i)
1228         itypi1=itype(i+1)
1229         xi=c(1,nres+i)
1230         yi=c(2,nres+i)
1231         zi=c(3,nres+i)
1232 C Change 12/1/95
1233         num_conti=0
1234 C
1235 C Calculate SC interaction energy.
1236 C
1237         do iint=1,nint_gr(i)
1238 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1239 cd   &                  'iend=',iend(i,iint)
1240           do j=istart(i,iint),iend(i,iint)
1241             itypj=itype(j)
1242             xj=c(1,nres+j)-xi
1243             yj=c(2,nres+j)-yi
1244             zj=c(3,nres+j)-zi
1245 C Change 12/1/95 to calculate four-body interactions
1246             rij=xj*xj+yj*yj+zj*zj
1247             rrij=1.0D0/rij
1248 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1249             eps0ij=eps(itypi,itypj)
1250             fac=rrij**expon2
1251             e1=fac*fac*aa(itypi,itypj)
1252             e2=fac*bb(itypi,itypj)
1253             evdwij=e1+e2
1254 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1255 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1256 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1257 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1258 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1259 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1260 #ifdef TSCSC
1261             if (bb(itypi,itypj).gt.0) then
1262                evdw_p=evdw_p+evdwij
1263             else
1264                evdw_m=evdw_m+evdwij
1265             endif
1266 #else
1267             evdw=evdw+evdwij
1268 #endif
1269
1270 C Calculate the components of the gradient in DC and X
1271 C
1272             fac=-rrij*(e1+evdwij)
1273             gg(1)=xj*fac
1274             gg(2)=yj*fac
1275             gg(3)=zj*fac
1276 #ifdef TSCSC
1277             if (bb(itypi,itypj).gt.0.0d0) then
1278               do k=1,3
1279                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1280                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1281                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1282                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1283               enddo
1284             else
1285               do k=1,3
1286                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1287                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1288                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1289                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1290               enddo
1291             endif
1292 #else
1293             do k=1,3
1294               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1295               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1296               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1297               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1298             enddo
1299 #endif
1300 cgrad            do k=i,j-1
1301 cgrad              do l=1,3
1302 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1303 cgrad              enddo
1304 cgrad            enddo
1305 C
1306 C 12/1/95, revised on 5/20/97
1307 C
1308 C Calculate the contact function. The ith column of the array JCONT will 
1309 C contain the numbers of atoms that make contacts with the atom I (of numbers
1310 C greater than I). The arrays FACONT and GACONT will contain the values of
1311 C the contact function and its derivative.
1312 C
1313 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1314 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1315 C Uncomment next line, if the correlation interactions are contact function only
1316             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1317               rij=dsqrt(rij)
1318               sigij=sigma(itypi,itypj)
1319               r0ij=rs0(itypi,itypj)
1320 C
1321 C Check whether the SC's are not too far to make a contact.
1322 C
1323               rcut=1.5d0*r0ij
1324               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1325 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1326 C
1327               if (fcont.gt.0.0D0) then
1328 C If the SC-SC distance if close to sigma, apply spline.
1329 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1330 cAdam &             fcont1,fprimcont1)
1331 cAdam           fcont1=1.0d0-fcont1
1332 cAdam           if (fcont1.gt.0.0d0) then
1333 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1334 cAdam             fcont=fcont*fcont1
1335 cAdam           endif
1336 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1337 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1338 cga             do k=1,3
1339 cga               gg(k)=gg(k)*eps0ij
1340 cga             enddo
1341 cga             eps0ij=-evdwij*eps0ij
1342 C Uncomment for AL's type of SC correlation interactions.
1343 cadam           eps0ij=-evdwij
1344                 num_conti=num_conti+1
1345                 jcont(num_conti,i)=j
1346                 facont(num_conti,i)=fcont*eps0ij
1347                 fprimcont=eps0ij*fprimcont/rij
1348                 fcont=expon*fcont
1349 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1350 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1351 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1352 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1353                 gacont(1,num_conti,i)=-fprimcont*xj
1354                 gacont(2,num_conti,i)=-fprimcont*yj
1355                 gacont(3,num_conti,i)=-fprimcont*zj
1356 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1357 cd              write (iout,'(2i3,3f10.5)') 
1358 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1359               endif
1360             endif
1361           enddo      ! j
1362         enddo        ! iint
1363 C Change 12/1/95
1364         num_cont(i)=num_conti
1365       enddo          ! i
1366       do i=1,nct
1367         do j=1,3
1368           gvdwc(j,i)=expon*gvdwc(j,i)
1369           gvdwx(j,i)=expon*gvdwx(j,i)
1370         enddo
1371       enddo
1372 C******************************************************************************
1373 C
1374 C                              N O T E !!!
1375 C
1376 C To save time, the factor of EXPON has been extracted from ALL components
1377 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1378 C use!
1379 C
1380 C******************************************************************************
1381       return
1382       end
1383 C-----------------------------------------------------------------------------
1384       subroutine eljk(evdw,evdw_p,evdw_m)
1385 C
1386 C This subroutine calculates the interaction energy of nonbonded side chains
1387 C assuming the LJK potential of interaction.
1388 C
1389       implicit real*8 (a-h,o-z)
1390       include 'DIMENSIONS'
1391       include 'COMMON.GEO'
1392       include 'COMMON.VAR'
1393       include 'COMMON.LOCAL'
1394       include 'COMMON.CHAIN'
1395       include 'COMMON.DERIV'
1396       include 'COMMON.INTERACT'
1397       include 'COMMON.IOUNITS'
1398       include 'COMMON.NAMES'
1399       dimension gg(3)
1400       logical scheck
1401 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1402       evdw=0.0D0
1403       do i=iatsc_s,iatsc_e
1404         itypi=itype(i)
1405         itypi1=itype(i+1)
1406         xi=c(1,nres+i)
1407         yi=c(2,nres+i)
1408         zi=c(3,nres+i)
1409 C
1410 C Calculate SC interaction energy.
1411 C
1412         do iint=1,nint_gr(i)
1413           do j=istart(i,iint),iend(i,iint)
1414             itypj=itype(j)
1415             xj=c(1,nres+j)-xi
1416             yj=c(2,nres+j)-yi
1417             zj=c(3,nres+j)-zi
1418             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1419             fac_augm=rrij**expon
1420             e_augm=augm(itypi,itypj)*fac_augm
1421             r_inv_ij=dsqrt(rrij)
1422             rij=1.0D0/r_inv_ij 
1423             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1424             fac=r_shift_inv**expon
1425             e1=fac*fac*aa(itypi,itypj)
1426             e2=fac*bb(itypi,itypj)
1427             evdwij=e_augm+e1+e2
1428 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1429 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1430 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1431 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1432 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1433 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1434 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1435 #ifdef TSCSC
1436             if (bb(itypi,itypj).gt.0) then
1437                evdw_p=evdw_p+evdwij
1438             else
1439                evdw_m=evdw_m+evdwij
1440             endif
1441 #else
1442             evdw=evdw+evdwij
1443 #endif
1444
1445 C Calculate the components of the gradient in DC and X
1446 C
1447             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1448             gg(1)=xj*fac
1449             gg(2)=yj*fac
1450             gg(3)=zj*fac
1451 #ifdef TSCSC
1452             if (bb(itypi,itypj).gt.0.0d0) then
1453               do k=1,3
1454                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1455                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1456                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1457                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1458               enddo
1459             else
1460               do k=1,3
1461                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1462                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1463                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1464                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1465               enddo
1466             endif
1467 #else
1468             do k=1,3
1469               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1470               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1471               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1472               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1473             enddo
1474 #endif
1475 cgrad            do k=i,j-1
1476 cgrad              do l=1,3
1477 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1478 cgrad              enddo
1479 cgrad            enddo
1480           enddo      ! j
1481         enddo        ! iint
1482       enddo          ! i
1483       do i=1,nct
1484         do j=1,3
1485           gvdwc(j,i)=expon*gvdwc(j,i)
1486           gvdwx(j,i)=expon*gvdwx(j,i)
1487         enddo
1488       enddo
1489       return
1490       end
1491 C-----------------------------------------------------------------------------
1492       subroutine ebp(evdw,evdw_p,evdw_m)
1493 C
1494 C This subroutine calculates the interaction energy of nonbonded side chains
1495 C assuming the Berne-Pechukas potential of interaction.
1496 C
1497       implicit real*8 (a-h,o-z)
1498       include 'DIMENSIONS'
1499       include 'COMMON.GEO'
1500       include 'COMMON.VAR'
1501       include 'COMMON.LOCAL'
1502       include 'COMMON.CHAIN'
1503       include 'COMMON.DERIV'
1504       include 'COMMON.NAMES'
1505       include 'COMMON.INTERACT'
1506       include 'COMMON.IOUNITS'
1507       include 'COMMON.CALC'
1508       common /srutu/ icall
1509 c     double precision rrsave(maxdim)
1510       logical lprn
1511       evdw=0.0D0
1512 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1513       evdw=0.0D0
1514 c     if (icall.eq.0) then
1515 c       lprn=.true.
1516 c     else
1517         lprn=.false.
1518 c     endif
1519       ind=0
1520       do i=iatsc_s,iatsc_e
1521         itypi=itype(i)
1522         itypi1=itype(i+1)
1523         xi=c(1,nres+i)
1524         yi=c(2,nres+i)
1525         zi=c(3,nres+i)
1526         dxi=dc_norm(1,nres+i)
1527         dyi=dc_norm(2,nres+i)
1528         dzi=dc_norm(3,nres+i)
1529 c        dsci_inv=dsc_inv(itypi)
1530         dsci_inv=vbld_inv(i+nres)
1531 C
1532 C Calculate SC interaction energy.
1533 C
1534         do iint=1,nint_gr(i)
1535           do j=istart(i,iint),iend(i,iint)
1536             ind=ind+1
1537             itypj=itype(j)
1538 c            dscj_inv=dsc_inv(itypj)
1539             dscj_inv=vbld_inv(j+nres)
1540             chi1=chi(itypi,itypj)
1541             chi2=chi(itypj,itypi)
1542             chi12=chi1*chi2
1543             chip1=chip(itypi)
1544             chip2=chip(itypj)
1545             chip12=chip1*chip2
1546             alf1=alp(itypi)
1547             alf2=alp(itypj)
1548             alf12=0.5D0*(alf1+alf2)
1549 C For diagnostics only!!!
1550 c           chi1=0.0D0
1551 c           chi2=0.0D0
1552 c           chi12=0.0D0
1553 c           chip1=0.0D0
1554 c           chip2=0.0D0
1555 c           chip12=0.0D0
1556 c           alf1=0.0D0
1557 c           alf2=0.0D0
1558 c           alf12=0.0D0
1559             xj=c(1,nres+j)-xi
1560             yj=c(2,nres+j)-yi
1561             zj=c(3,nres+j)-zi
1562             dxj=dc_norm(1,nres+j)
1563             dyj=dc_norm(2,nres+j)
1564             dzj=dc_norm(3,nres+j)
1565             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1566 cd          if (icall.eq.0) then
1567 cd            rrsave(ind)=rrij
1568 cd          else
1569 cd            rrij=rrsave(ind)
1570 cd          endif
1571             rij=dsqrt(rrij)
1572 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1573             call sc_angular
1574 C Calculate whole angle-dependent part of epsilon and contributions
1575 C to its derivatives
1576             fac=(rrij*sigsq)**expon2
1577             e1=fac*fac*aa(itypi,itypj)
1578             e2=fac*bb(itypi,itypj)
1579             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1580             eps2der=evdwij*eps3rt
1581             eps3der=evdwij*eps2rt
1582             evdwij=evdwij*eps2rt*eps3rt
1583 #ifdef TSCSC
1584             if (bb(itypi,itypj).gt.0) then
1585                evdw_p=evdw_p+evdwij
1586             else
1587                evdw_m=evdw_m+evdwij
1588             endif
1589 #else
1590             evdw=evdw+evdwij
1591 #endif
1592             if (lprn) then
1593             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1594             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1595 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1596 cd     &        restyp(itypi),i,restyp(itypj),j,
1597 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1598 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1599 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1600 cd     &        evdwij
1601             endif
1602 C Calculate gradient components.
1603             e1=e1*eps1*eps2rt**2*eps3rt**2
1604             fac=-expon*(e1+evdwij)
1605             sigder=fac/sigsq
1606             fac=rrij*fac
1607 C Calculate radial part of the gradient
1608             gg(1)=xj*fac
1609             gg(2)=yj*fac
1610             gg(3)=zj*fac
1611 C Calculate the angular part of the gradient and sum add the contributions
1612 C to the appropriate components of the Cartesian gradient.
1613 #ifdef TSCSC
1614             if (bb(itypi,itypj).gt.0) then
1615                call sc_grad
1616             else
1617                call sc_grad_T
1618             endif
1619 #else
1620             call sc_grad
1621 #endif
1622           enddo      ! j
1623         enddo        ! iint
1624       enddo          ! i
1625 c     stop
1626       return
1627       end
1628 C-----------------------------------------------------------------------------
1629       subroutine egb(evdw,evdw_p,evdw_m)
1630 C
1631 C This subroutine calculates the interaction energy of nonbonded side chains
1632 C assuming the Gay-Berne potential of interaction.
1633 C
1634       implicit real*8 (a-h,o-z)
1635       include 'DIMENSIONS'
1636       include 'COMMON.GEO'
1637       include 'COMMON.VAR'
1638       include 'COMMON.LOCAL'
1639       include 'COMMON.CHAIN'
1640       include 'COMMON.DERIV'
1641       include 'COMMON.NAMES'
1642       include 'COMMON.INTERACT'
1643       include 'COMMON.IOUNITS'
1644       include 'COMMON.CALC'
1645       include 'COMMON.CONTROL'
1646       include 'COMMON.SBRIDGE'
1647       logical lprn
1648       evdw=0.0D0
1649 ccccc      energy_dec=.false.
1650 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1651       evdw=0.0D0
1652       evdw_p=0.0D0
1653       evdw_m=0.0D0
1654       lprn=.false.
1655 c     if (icall.eq.0) lprn=.false.
1656       ind=0
1657       do i=iatsc_s,iatsc_e
1658         itypi=itype(i)
1659         itypi1=itype(i+1)
1660         xi=c(1,nres+i)
1661         yi=c(2,nres+i)
1662         zi=c(3,nres+i)
1663         dxi=dc_norm(1,nres+i)
1664         dyi=dc_norm(2,nres+i)
1665         dzi=dc_norm(3,nres+i)
1666 c        dsci_inv=dsc_inv(itypi)
1667         dsci_inv=vbld_inv(i+nres)
1668 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1669 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1670 C
1671 C Calculate SC interaction energy.
1672 C
1673         do iint=1,nint_gr(i)
1674           do j=istart(i,iint),iend(i,iint)
1675             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1676               call dyn_ssbond_ene(i,j,evdwij)
1677               evdw=evdw+evdwij
1678               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1679      &                        'evdw',i,j,evdwij,' ss'
1680             ELSE
1681             ind=ind+1
1682             itypj=itype(j)
1683 c            dscj_inv=dsc_inv(itypj)
1684             dscj_inv=vbld_inv(j+nres)
1685 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1686 c     &       1.0d0/vbld(j+nres)
1687 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1688             sig0ij=sigma(itypi,itypj)
1689             chi1=chi(itypi,itypj)
1690             chi2=chi(itypj,itypi)
1691             chi12=chi1*chi2
1692             chip1=chip(itypi)
1693             chip2=chip(itypj)
1694             chip12=chip1*chip2
1695             alf1=alp(itypi)
1696             alf2=alp(itypj)
1697             alf12=0.5D0*(alf1+alf2)
1698 C For diagnostics only!!!
1699 c           chi1=0.0D0
1700 c           chi2=0.0D0
1701 c           chi12=0.0D0
1702 c           chip1=0.0D0
1703 c           chip2=0.0D0
1704 c           chip12=0.0D0
1705 c           alf1=0.0D0
1706 c           alf2=0.0D0
1707 c           alf12=0.0D0
1708             xj=c(1,nres+j)-xi
1709             yj=c(2,nres+j)-yi
1710             zj=c(3,nres+j)-zi
1711             dxj=dc_norm(1,nres+j)
1712             dyj=dc_norm(2,nres+j)
1713             dzj=dc_norm(3,nres+j)
1714 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1715 c            write (iout,*) "j",j," dc_norm",
1716 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1717             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1718             rij=dsqrt(rrij)
1719 C Calculate angle-dependent terms of energy and contributions to their
1720 C derivatives.
1721             call sc_angular
1722             sigsq=1.0D0/sigsq
1723             sig=sig0ij*dsqrt(sigsq)
1724             rij_shift=1.0D0/rij-sig+sig0ij
1725 c for diagnostics; uncomment
1726 c            rij_shift=1.2*sig0ij
1727 C I hate to put IF's in the loops, but here don't have another choice!!!!
1728             if (rij_shift.le.0.0D0) then
1729               evdw=1.0D20
1730 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1731 cd     &        restyp(itypi),i,restyp(itypj),j,
1732 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1733               return
1734             endif
1735             sigder=-sig*sigsq
1736 c---------------------------------------------------------------
1737             rij_shift=1.0D0/rij_shift 
1738             fac=rij_shift**expon
1739             e1=fac*fac*aa(itypi,itypj)
1740             e2=fac*bb(itypi,itypj)
1741             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1742             eps2der=evdwij*eps3rt
1743             eps3der=evdwij*eps2rt
1744 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1745 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1746             evdwij=evdwij*eps2rt*eps3rt
1747 #ifdef TSCSC
1748             if (bb(itypi,itypj).gt.0) then
1749                evdw_p=evdw_p+evdwij
1750             else
1751                evdw_m=evdw_m+evdwij
1752             endif
1753 #else
1754             evdw=evdw+evdwij
1755 #endif
1756             if (lprn) then
1757             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1758             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1759             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1760      &        restyp(itypi),i,restyp(itypj),j,
1761      &        epsi,sigm,chi1,chi2,chip1,chip2,
1762      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1763      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1764      &        evdwij
1765             endif
1766
1767             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1768      &                        'evdw',i,j,evdwij
1769
1770 C Calculate gradient components.
1771             e1=e1*eps1*eps2rt**2*eps3rt**2
1772             fac=-expon*(e1+evdwij)*rij_shift
1773             sigder=fac*sigder
1774             fac=rij*fac
1775 c            fac=0.0d0
1776 C Calculate the radial part of the gradient
1777             gg(1)=xj*fac
1778             gg(2)=yj*fac
1779             gg(3)=zj*fac
1780 C Calculate angular part of the gradient.
1781 #ifdef TSCSC
1782             if (bb(itypi,itypj).gt.0) then
1783                call sc_grad
1784             else
1785                call sc_grad_T
1786             endif
1787 #else
1788             call sc_grad
1789 #endif
1790             ENDIF    ! dyn_ss            
1791           enddo      ! j
1792         enddo        ! iint
1793       enddo          ! i
1794 c      write (iout,*) "Number of loop steps in EGB:",ind
1795 cccc      energy_dec=.false.
1796       return
1797       end
1798 C-----------------------------------------------------------------------------
1799       subroutine egbv(evdw,evdw_p,evdw_m)
1800 C
1801 C This subroutine calculates the interaction energy of nonbonded side chains
1802 C assuming the Gay-Berne-Vorobjev potential of interaction.
1803 C
1804       implicit real*8 (a-h,o-z)
1805       include 'DIMENSIONS'
1806       include 'COMMON.GEO'
1807       include 'COMMON.VAR'
1808       include 'COMMON.LOCAL'
1809       include 'COMMON.CHAIN'
1810       include 'COMMON.DERIV'
1811       include 'COMMON.NAMES'
1812       include 'COMMON.INTERACT'
1813       include 'COMMON.IOUNITS'
1814       include 'COMMON.CALC'
1815       common /srutu/ icall
1816       logical lprn
1817       evdw=0.0D0
1818 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1819       evdw=0.0D0
1820       lprn=.false.
1821 c     if (icall.eq.0) lprn=.true.
1822       ind=0
1823       do i=iatsc_s,iatsc_e
1824         itypi=itype(i)
1825         itypi1=itype(i+1)
1826         xi=c(1,nres+i)
1827         yi=c(2,nres+i)
1828         zi=c(3,nres+i)
1829         dxi=dc_norm(1,nres+i)
1830         dyi=dc_norm(2,nres+i)
1831         dzi=dc_norm(3,nres+i)
1832 c        dsci_inv=dsc_inv(itypi)
1833         dsci_inv=vbld_inv(i+nres)
1834 C
1835 C Calculate SC interaction energy.
1836 C
1837         do iint=1,nint_gr(i)
1838           do j=istart(i,iint),iend(i,iint)
1839             ind=ind+1
1840             itypj=itype(j)
1841 c            dscj_inv=dsc_inv(itypj)
1842             dscj_inv=vbld_inv(j+nres)
1843             sig0ij=sigma(itypi,itypj)
1844             r0ij=r0(itypi,itypj)
1845             chi1=chi(itypi,itypj)
1846             chi2=chi(itypj,itypi)
1847             chi12=chi1*chi2
1848             chip1=chip(itypi)
1849             chip2=chip(itypj)
1850             chip12=chip1*chip2
1851             alf1=alp(itypi)
1852             alf2=alp(itypj)
1853             alf12=0.5D0*(alf1+alf2)
1854 C For diagnostics only!!!
1855 c           chi1=0.0D0
1856 c           chi2=0.0D0
1857 c           chi12=0.0D0
1858 c           chip1=0.0D0
1859 c           chip2=0.0D0
1860 c           chip12=0.0D0
1861 c           alf1=0.0D0
1862 c           alf2=0.0D0
1863 c           alf12=0.0D0
1864             xj=c(1,nres+j)-xi
1865             yj=c(2,nres+j)-yi
1866             zj=c(3,nres+j)-zi
1867             dxj=dc_norm(1,nres+j)
1868             dyj=dc_norm(2,nres+j)
1869             dzj=dc_norm(3,nres+j)
1870             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1871             rij=dsqrt(rrij)
1872 C Calculate angle-dependent terms of energy and contributions to their
1873 C derivatives.
1874             call sc_angular
1875             sigsq=1.0D0/sigsq
1876             sig=sig0ij*dsqrt(sigsq)
1877             rij_shift=1.0D0/rij-sig+r0ij
1878 C I hate to put IF's in the loops, but here don't have another choice!!!!
1879             if (rij_shift.le.0.0D0) then
1880               evdw=1.0D20
1881               return
1882             endif
1883             sigder=-sig*sigsq
1884 c---------------------------------------------------------------
1885             rij_shift=1.0D0/rij_shift 
1886             fac=rij_shift**expon
1887             e1=fac*fac*aa(itypi,itypj)
1888             e2=fac*bb(itypi,itypj)
1889             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1890             eps2der=evdwij*eps3rt
1891             eps3der=evdwij*eps2rt
1892             fac_augm=rrij**expon
1893             e_augm=augm(itypi,itypj)*fac_augm
1894             evdwij=evdwij*eps2rt*eps3rt
1895 #ifdef TSCSC
1896             if (bb(itypi,itypj).gt.0) then
1897                evdw_p=evdw_p+evdwij+e_augm
1898             else
1899                evdw_m=evdw_m+evdwij+e_augm
1900             endif
1901 #else
1902             evdw=evdw+evdwij+e_augm
1903 #endif
1904             if (lprn) then
1905             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1906             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1907             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1908      &        restyp(itypi),i,restyp(itypj),j,
1909      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1910      &        chi1,chi2,chip1,chip2,
1911      &        eps1,eps2rt**2,eps3rt**2,
1912      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1913      &        evdwij+e_augm
1914             endif
1915 C Calculate gradient components.
1916             e1=e1*eps1*eps2rt**2*eps3rt**2
1917             fac=-expon*(e1+evdwij)*rij_shift
1918             sigder=fac*sigder
1919             fac=rij*fac-2*expon*rrij*e_augm
1920 C Calculate the radial part of the gradient
1921             gg(1)=xj*fac
1922             gg(2)=yj*fac
1923             gg(3)=zj*fac
1924 C Calculate angular part of the gradient.
1925 #ifdef TSCSC
1926             if (bb(itypi,itypj).gt.0) then
1927                call sc_grad
1928             else
1929                call sc_grad_T
1930             endif
1931 #else
1932             call sc_grad
1933 #endif
1934           enddo      ! j
1935         enddo        ! iint
1936       enddo          ! i
1937       end
1938 C-----------------------------------------------------------------------------
1939       subroutine sc_angular
1940 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1941 C om12. Called by ebp, egb, and egbv.
1942       implicit none
1943       include 'COMMON.CALC'
1944       include 'COMMON.IOUNITS'
1945       erij(1)=xj*rij
1946       erij(2)=yj*rij
1947       erij(3)=zj*rij
1948       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1949       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1950       om12=dxi*dxj+dyi*dyj+dzi*dzj
1951       chiom12=chi12*om12
1952 C Calculate eps1(om12) and its derivative in om12
1953       faceps1=1.0D0-om12*chiom12
1954       faceps1_inv=1.0D0/faceps1
1955       eps1=dsqrt(faceps1_inv)
1956 C Following variable is eps1*deps1/dom12
1957       eps1_om12=faceps1_inv*chiom12
1958 c diagnostics only
1959 c      faceps1_inv=om12
1960 c      eps1=om12
1961 c      eps1_om12=1.0d0
1962 c      write (iout,*) "om12",om12," eps1",eps1
1963 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1964 C and om12.
1965       om1om2=om1*om2
1966       chiom1=chi1*om1
1967       chiom2=chi2*om2
1968       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1969       sigsq=1.0D0-facsig*faceps1_inv
1970       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1971       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1972       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1973 c diagnostics only
1974 c      sigsq=1.0d0
1975 c      sigsq_om1=0.0d0
1976 c      sigsq_om2=0.0d0
1977 c      sigsq_om12=0.0d0
1978 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1979 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1980 c     &    " eps1",eps1
1981 C Calculate eps2 and its derivatives in om1, om2, and om12.
1982       chipom1=chip1*om1
1983       chipom2=chip2*om2
1984       chipom12=chip12*om12
1985       facp=1.0D0-om12*chipom12
1986       facp_inv=1.0D0/facp
1987       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1988 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1989 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1990 C Following variable is the square root of eps2
1991       eps2rt=1.0D0-facp1*facp_inv
1992 C Following three variables are the derivatives of the square root of eps
1993 C in om1, om2, and om12.
1994       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1995       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1996       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1997 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1998       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1999 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
2000 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
2001 c     &  " eps2rt_om12",eps2rt_om12
2002 C Calculate whole angle-dependent part of epsilon and contributions
2003 C to its derivatives
2004       return
2005       end
2006
2007 C----------------------------------------------------------------------------
2008       subroutine sc_grad_T
2009       implicit real*8 (a-h,o-z)
2010       include 'DIMENSIONS'
2011       include 'COMMON.CHAIN'
2012       include 'COMMON.DERIV'
2013       include 'COMMON.CALC'
2014       include 'COMMON.IOUNITS'
2015       double precision dcosom1(3),dcosom2(3)
2016       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
2017       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
2018       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
2019      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
2020 c diagnostics only
2021 c      eom1=0.0d0
2022 c      eom2=0.0d0
2023 c      eom12=evdwij*eps1_om12
2024 c end diagnostics
2025 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
2026 c     &  " sigder",sigder
2027 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2028 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2029       do k=1,3
2030         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2031         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2032       enddo
2033       do k=1,3
2034         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2035       enddo 
2036 c      write (iout,*) "gg",(gg(k),k=1,3)
2037       do k=1,3
2038         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
2039      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2040      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2041         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
2042      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2043      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2044 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2045 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2046 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2047 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2048       enddo
2049
2050 C Calculate the components of the gradient in DC and X
2051 C
2052 cgrad      do k=i,j-1
2053 cgrad        do l=1,3
2054 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2055 cgrad        enddo
2056 cgrad      enddo
2057       do l=1,3
2058         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
2059         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
2060       enddo
2061       return
2062       end
2063
2064 C----------------------------------------------------------------------------
2065       subroutine sc_grad
2066       implicit real*8 (a-h,o-z)
2067       include 'DIMENSIONS'
2068       include 'COMMON.CHAIN'
2069       include 'COMMON.DERIV'
2070       include 'COMMON.CALC'
2071       include 'COMMON.IOUNITS'
2072       double precision dcosom1(3),dcosom2(3)
2073       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
2074       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
2075       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
2076      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
2077 c diagnostics only
2078 c      eom1=0.0d0
2079 c      eom2=0.0d0
2080 c      eom12=evdwij*eps1_om12
2081 c end diagnostics
2082 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
2083 c     &  " sigder",sigder
2084 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2085 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2086       do k=1,3
2087         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2088         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2089       enddo
2090       do k=1,3
2091         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2092       enddo 
2093 c      write (iout,*) "gg",(gg(k),k=1,3)
2094       do k=1,3
2095         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2096      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2097      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2098         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2099      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2100      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2101 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2102 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2103 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2104 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2105       enddo
2106
2107 C Calculate the components of the gradient in DC and X
2108 C
2109 cgrad      do k=i,j-1
2110 cgrad        do l=1,3
2111 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2112 cgrad        enddo
2113 cgrad      enddo
2114       do l=1,3
2115         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2116         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2117       enddo
2118       return
2119       end
2120 C-----------------------------------------------------------------------
2121       subroutine e_softsphere(evdw)
2122 C
2123 C This subroutine calculates the interaction energy of nonbonded side chains
2124 C assuming the LJ potential of interaction.
2125 C
2126       implicit real*8 (a-h,o-z)
2127       include 'DIMENSIONS'
2128       parameter (accur=1.0d-10)
2129       include 'COMMON.GEO'
2130       include 'COMMON.VAR'
2131       include 'COMMON.LOCAL'
2132       include 'COMMON.CHAIN'
2133       include 'COMMON.DERIV'
2134       include 'COMMON.INTERACT'
2135       include 'COMMON.TORSION'
2136       include 'COMMON.SBRIDGE'
2137       include 'COMMON.NAMES'
2138       include 'COMMON.IOUNITS'
2139       include 'COMMON.CONTACTS'
2140       dimension gg(3)
2141 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2142       evdw=0.0D0
2143       do i=iatsc_s,iatsc_e
2144         itypi=itype(i)
2145         itypi1=itype(i+1)
2146         xi=c(1,nres+i)
2147         yi=c(2,nres+i)
2148         zi=c(3,nres+i)
2149 C
2150 C Calculate SC interaction energy.
2151 C
2152         do iint=1,nint_gr(i)
2153 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2154 cd   &                  'iend=',iend(i,iint)
2155           do j=istart(i,iint),iend(i,iint)
2156             itypj=itype(j)
2157             xj=c(1,nres+j)-xi
2158             yj=c(2,nres+j)-yi
2159             zj=c(3,nres+j)-zi
2160             rij=xj*xj+yj*yj+zj*zj
2161 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2162             r0ij=r0(itypi,itypj)
2163             r0ijsq=r0ij*r0ij
2164 c            print *,i,j,r0ij,dsqrt(rij)
2165             if (rij.lt.r0ijsq) then
2166               evdwij=0.25d0*(rij-r0ijsq)**2
2167               fac=rij-r0ijsq
2168             else
2169               evdwij=0.0d0
2170               fac=0.0d0
2171             endif
2172             evdw=evdw+evdwij
2173
2174 C Calculate the components of the gradient in DC and X
2175 C
2176             gg(1)=xj*fac
2177             gg(2)=yj*fac
2178             gg(3)=zj*fac
2179             do k=1,3
2180               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2181               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2182               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2183               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2184             enddo
2185 cgrad            do k=i,j-1
2186 cgrad              do l=1,3
2187 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2188 cgrad              enddo
2189 cgrad            enddo
2190           enddo ! j
2191         enddo ! iint
2192       enddo ! i
2193       return
2194       end
2195 C--------------------------------------------------------------------------
2196       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2197      &              eello_turn4)
2198 C
2199 C Soft-sphere potential of p-p interaction
2200
2201       implicit real*8 (a-h,o-z)
2202       include 'DIMENSIONS'
2203       include 'COMMON.CONTROL'
2204       include 'COMMON.IOUNITS'
2205       include 'COMMON.GEO'
2206       include 'COMMON.VAR'
2207       include 'COMMON.LOCAL'
2208       include 'COMMON.CHAIN'
2209       include 'COMMON.DERIV'
2210       include 'COMMON.INTERACT'
2211       include 'COMMON.CONTACTS'
2212       include 'COMMON.TORSION'
2213       include 'COMMON.VECTORS'
2214       include 'COMMON.FFIELD'
2215       dimension ggg(3)
2216 cd      write(iout,*) 'In EELEC_soft_sphere'
2217       ees=0.0D0
2218       evdw1=0.0D0
2219       eel_loc=0.0d0 
2220       eello_turn3=0.0d0
2221       eello_turn4=0.0d0
2222       ind=0
2223       do i=iatel_s,iatel_e
2224         dxi=dc(1,i)
2225         dyi=dc(2,i)
2226         dzi=dc(3,i)
2227         xmedi=c(1,i)+0.5d0*dxi
2228         ymedi=c(2,i)+0.5d0*dyi
2229         zmedi=c(3,i)+0.5d0*dzi
2230         num_conti=0
2231 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2232         do j=ielstart(i),ielend(i)
2233           ind=ind+1
2234           iteli=itel(i)
2235           itelj=itel(j)
2236           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2237           r0ij=rpp(iteli,itelj)
2238           r0ijsq=r0ij*r0ij 
2239           dxj=dc(1,j)
2240           dyj=dc(2,j)
2241           dzj=dc(3,j)
2242           xj=c(1,j)+0.5D0*dxj-xmedi
2243           yj=c(2,j)+0.5D0*dyj-ymedi
2244           zj=c(3,j)+0.5D0*dzj-zmedi
2245           rij=xj*xj+yj*yj+zj*zj
2246           if (rij.lt.r0ijsq) then
2247             evdw1ij=0.25d0*(rij-r0ijsq)**2
2248             fac=rij-r0ijsq
2249           else
2250             evdw1ij=0.0d0
2251             fac=0.0d0
2252           endif
2253           evdw1=evdw1+evdw1ij
2254 C
2255 C Calculate contributions to the Cartesian gradient.
2256 C
2257           ggg(1)=fac*xj
2258           ggg(2)=fac*yj
2259           ggg(3)=fac*zj
2260           do k=1,3
2261             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2262             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2263           enddo
2264 *
2265 * Loop over residues i+1 thru j-1.
2266 *
2267 cgrad          do k=i+1,j-1
2268 cgrad            do l=1,3
2269 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2270 cgrad            enddo
2271 cgrad          enddo
2272         enddo ! j
2273       enddo   ! i
2274 cgrad      do i=nnt,nct-1
2275 cgrad        do k=1,3
2276 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2277 cgrad        enddo
2278 cgrad        do j=i+1,nct-1
2279 cgrad          do k=1,3
2280 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2281 cgrad          enddo
2282 cgrad        enddo
2283 cgrad      enddo
2284       return
2285       end
2286 c------------------------------------------------------------------------------
2287       subroutine vec_and_deriv
2288       implicit real*8 (a-h,o-z)
2289       include 'DIMENSIONS'
2290 #ifdef MPI
2291       include 'mpif.h'
2292 #endif
2293       include 'COMMON.IOUNITS'
2294       include 'COMMON.GEO'
2295       include 'COMMON.VAR'
2296       include 'COMMON.LOCAL'
2297       include 'COMMON.CHAIN'
2298       include 'COMMON.VECTORS'
2299       include 'COMMON.SETUP'
2300       include 'COMMON.TIME1'
2301       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2302 C Compute the local reference systems. For reference system (i), the
2303 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2304 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2305 #ifdef PARVEC
2306       do i=ivec_start,ivec_end
2307 #else
2308       do i=1,nres-1
2309 #endif
2310           if (i.eq.nres-1) then
2311 C Case of the last full residue
2312 C Compute the Z-axis
2313             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2314             costh=dcos(pi-theta(nres))
2315             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2316             do k=1,3
2317               uz(k,i)=fac*uz(k,i)
2318             enddo
2319 C Compute the derivatives of uz
2320             uzder(1,1,1)= 0.0d0
2321             uzder(2,1,1)=-dc_norm(3,i-1)
2322             uzder(3,1,1)= dc_norm(2,i-1) 
2323             uzder(1,2,1)= dc_norm(3,i-1)
2324             uzder(2,2,1)= 0.0d0
2325             uzder(3,2,1)=-dc_norm(1,i-1)
2326             uzder(1,3,1)=-dc_norm(2,i-1)
2327             uzder(2,3,1)= dc_norm(1,i-1)
2328             uzder(3,3,1)= 0.0d0
2329             uzder(1,1,2)= 0.0d0
2330             uzder(2,1,2)= dc_norm(3,i)
2331             uzder(3,1,2)=-dc_norm(2,i) 
2332             uzder(1,2,2)=-dc_norm(3,i)
2333             uzder(2,2,2)= 0.0d0
2334             uzder(3,2,2)= dc_norm(1,i)
2335             uzder(1,3,2)= dc_norm(2,i)
2336             uzder(2,3,2)=-dc_norm(1,i)
2337             uzder(3,3,2)= 0.0d0
2338 C Compute the Y-axis
2339             facy=fac
2340             do k=1,3
2341               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2342             enddo
2343 C Compute the derivatives of uy
2344             do j=1,3
2345               do k=1,3
2346                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2347      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2348                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2349               enddo
2350               uyder(j,j,1)=uyder(j,j,1)-costh
2351               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2352             enddo
2353             do j=1,2
2354               do k=1,3
2355                 do l=1,3
2356                   uygrad(l,k,j,i)=uyder(l,k,j)
2357                   uzgrad(l,k,j,i)=uzder(l,k,j)
2358                 enddo
2359               enddo
2360             enddo 
2361             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2362             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2363             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2364             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2365           else
2366 C Other residues
2367 C Compute the Z-axis
2368             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2369             costh=dcos(pi-theta(i+2))
2370             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2371             do k=1,3
2372               uz(k,i)=fac*uz(k,i)
2373             enddo
2374 C Compute the derivatives of uz
2375             uzder(1,1,1)= 0.0d0
2376             uzder(2,1,1)=-dc_norm(3,i+1)
2377             uzder(3,1,1)= dc_norm(2,i+1) 
2378             uzder(1,2,1)= dc_norm(3,i+1)
2379             uzder(2,2,1)= 0.0d0
2380             uzder(3,2,1)=-dc_norm(1,i+1)
2381             uzder(1,3,1)=-dc_norm(2,i+1)
2382             uzder(2,3,1)= dc_norm(1,i+1)
2383             uzder(3,3,1)= 0.0d0
2384             uzder(1,1,2)= 0.0d0
2385             uzder(2,1,2)= dc_norm(3,i)
2386             uzder(3,1,2)=-dc_norm(2,i) 
2387             uzder(1,2,2)=-dc_norm(3,i)
2388             uzder(2,2,2)= 0.0d0
2389             uzder(3,2,2)= dc_norm(1,i)
2390             uzder(1,3,2)= dc_norm(2,i)
2391             uzder(2,3,2)=-dc_norm(1,i)
2392             uzder(3,3,2)= 0.0d0
2393 C Compute the Y-axis
2394             facy=fac
2395             do k=1,3
2396               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2397             enddo
2398 C Compute the derivatives of uy
2399             do j=1,3
2400               do k=1,3
2401                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2402      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2403                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2404               enddo
2405               uyder(j,j,1)=uyder(j,j,1)-costh
2406               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2407             enddo
2408             do j=1,2
2409               do k=1,3
2410                 do l=1,3
2411                   uygrad(l,k,j,i)=uyder(l,k,j)
2412                   uzgrad(l,k,j,i)=uzder(l,k,j)
2413                 enddo
2414               enddo
2415             enddo 
2416             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2417             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2418             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2419             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2420           endif
2421       enddo
2422       do i=1,nres-1
2423         vbld_inv_temp(1)=vbld_inv(i+1)
2424         if (i.lt.nres-1) then
2425           vbld_inv_temp(2)=vbld_inv(i+2)
2426           else
2427           vbld_inv_temp(2)=vbld_inv(i)
2428           endif
2429         do j=1,2
2430           do k=1,3
2431             do l=1,3
2432               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2433               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2434             enddo
2435           enddo
2436         enddo
2437       enddo
2438 #if defined(PARVEC) && defined(MPI)
2439       if (nfgtasks1.gt.1) then
2440         time00=MPI_Wtime()
2441 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2442 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2443 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2444         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2445      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2446      &   FG_COMM1,IERR)
2447         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2448      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2449      &   FG_COMM1,IERR)
2450         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2451      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2452      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2453         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2454      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2455      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2456         time_gather=time_gather+MPI_Wtime()-time00
2457       endif
2458 c      if (fg_rank.eq.0) then
2459 c        write (iout,*) "Arrays UY and UZ"
2460 c        do i=1,nres-1
2461 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2462 c     &     (uz(k,i),k=1,3)
2463 c        enddo
2464 c      endif
2465 #endif
2466       return
2467       end
2468 C-----------------------------------------------------------------------------
2469       subroutine check_vecgrad
2470       implicit real*8 (a-h,o-z)
2471       include 'DIMENSIONS'
2472       include 'COMMON.IOUNITS'
2473       include 'COMMON.GEO'
2474       include 'COMMON.VAR'
2475       include 'COMMON.LOCAL'
2476       include 'COMMON.CHAIN'
2477       include 'COMMON.VECTORS'
2478       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2479       dimension uyt(3,maxres),uzt(3,maxres)
2480       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2481       double precision delta /1.0d-7/
2482       call vec_and_deriv
2483 cd      do i=1,nres
2484 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2485 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2486 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2487 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2488 cd     &     (dc_norm(if90,i),if90=1,3)
2489 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2490 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2491 cd          write(iout,'(a)')
2492 cd      enddo
2493       do i=1,nres
2494         do j=1,2
2495           do k=1,3
2496             do l=1,3
2497               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2498               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2499             enddo
2500           enddo
2501         enddo
2502       enddo
2503       call vec_and_deriv
2504       do i=1,nres
2505         do j=1,3
2506           uyt(j,i)=uy(j,i)
2507           uzt(j,i)=uz(j,i)
2508         enddo
2509       enddo
2510       do i=1,nres
2511 cd        write (iout,*) 'i=',i
2512         do k=1,3
2513           erij(k)=dc_norm(k,i)
2514         enddo
2515         do j=1,3
2516           do k=1,3
2517             dc_norm(k,i)=erij(k)
2518           enddo
2519           dc_norm(j,i)=dc_norm(j,i)+delta
2520 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2521 c          do k=1,3
2522 c            dc_norm(k,i)=dc_norm(k,i)/fac
2523 c          enddo
2524 c          write (iout,*) (dc_norm(k,i),k=1,3)
2525 c          write (iout,*) (erij(k),k=1,3)
2526           call vec_and_deriv
2527           do k=1,3
2528             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2529             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2530             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2531             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2532           enddo 
2533 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2534 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2535 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2536         enddo
2537         do k=1,3
2538           dc_norm(k,i)=erij(k)
2539         enddo
2540 cd        do k=1,3
2541 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2542 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2543 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2544 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2545 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2546 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2547 cd          write (iout,'(a)')
2548 cd        enddo
2549       enddo
2550       return
2551       end
2552 C--------------------------------------------------------------------------
2553       subroutine set_matrices
2554       implicit real*8 (a-h,o-z)
2555       include 'DIMENSIONS'
2556 #ifdef MPI
2557       include "mpif.h"
2558       include "COMMON.SETUP"
2559       integer IERR
2560       integer status(MPI_STATUS_SIZE)
2561 #endif
2562       include 'COMMON.IOUNITS'
2563       include 'COMMON.GEO'
2564       include 'COMMON.VAR'
2565       include 'COMMON.LOCAL'
2566       include 'COMMON.CHAIN'
2567       include 'COMMON.DERIV'
2568       include 'COMMON.INTERACT'
2569       include 'COMMON.CONTACTS'
2570       include 'COMMON.TORSION'
2571       include 'COMMON.VECTORS'
2572       include 'COMMON.FFIELD'
2573       double precision auxvec(2),auxmat(2,2)
2574 C
2575 C Compute the virtual-bond-torsional-angle dependent quantities needed
2576 C to calculate the el-loc multibody terms of various order.
2577 C
2578 #ifdef PARMAT
2579       do i=ivec_start+2,ivec_end+2
2580 #else
2581       do i=3,nres+1
2582 #endif
2583         if (i .lt. nres+1) then
2584           sin1=dsin(phi(i))
2585           cos1=dcos(phi(i))
2586           sintab(i-2)=sin1
2587           costab(i-2)=cos1
2588           obrot(1,i-2)=cos1
2589           obrot(2,i-2)=sin1
2590           sin2=dsin(2*phi(i))
2591           cos2=dcos(2*phi(i))
2592           sintab2(i-2)=sin2
2593           costab2(i-2)=cos2
2594           obrot2(1,i-2)=cos2
2595           obrot2(2,i-2)=sin2
2596           Ug(1,1,i-2)=-cos1
2597           Ug(1,2,i-2)=-sin1
2598           Ug(2,1,i-2)=-sin1
2599           Ug(2,2,i-2)= cos1
2600           Ug2(1,1,i-2)=-cos2
2601           Ug2(1,2,i-2)=-sin2
2602           Ug2(2,1,i-2)=-sin2
2603           Ug2(2,2,i-2)= cos2
2604         else
2605           costab(i-2)=1.0d0
2606           sintab(i-2)=0.0d0
2607           obrot(1,i-2)=1.0d0
2608           obrot(2,i-2)=0.0d0
2609           obrot2(1,i-2)=0.0d0
2610           obrot2(2,i-2)=0.0d0
2611           Ug(1,1,i-2)=1.0d0
2612           Ug(1,2,i-2)=0.0d0
2613           Ug(2,1,i-2)=0.0d0
2614           Ug(2,2,i-2)=1.0d0
2615           Ug2(1,1,i-2)=0.0d0
2616           Ug2(1,2,i-2)=0.0d0
2617           Ug2(2,1,i-2)=0.0d0
2618           Ug2(2,2,i-2)=0.0d0
2619         endif
2620         if (i .gt. 3 .and. i .lt. nres+1) then
2621           obrot_der(1,i-2)=-sin1
2622           obrot_der(2,i-2)= cos1
2623           Ugder(1,1,i-2)= sin1
2624           Ugder(1,2,i-2)=-cos1
2625           Ugder(2,1,i-2)=-cos1
2626           Ugder(2,2,i-2)=-sin1
2627           dwacos2=cos2+cos2
2628           dwasin2=sin2+sin2
2629           obrot2_der(1,i-2)=-dwasin2
2630           obrot2_der(2,i-2)= dwacos2
2631           Ug2der(1,1,i-2)= dwasin2
2632           Ug2der(1,2,i-2)=-dwacos2
2633           Ug2der(2,1,i-2)=-dwacos2
2634           Ug2der(2,2,i-2)=-dwasin2
2635         else
2636           obrot_der(1,i-2)=0.0d0
2637           obrot_der(2,i-2)=0.0d0
2638           Ugder(1,1,i-2)=0.0d0
2639           Ugder(1,2,i-2)=0.0d0
2640           Ugder(2,1,i-2)=0.0d0
2641           Ugder(2,2,i-2)=0.0d0
2642           obrot2_der(1,i-2)=0.0d0
2643           obrot2_der(2,i-2)=0.0d0
2644           Ug2der(1,1,i-2)=0.0d0
2645           Ug2der(1,2,i-2)=0.0d0
2646           Ug2der(2,1,i-2)=0.0d0
2647           Ug2der(2,2,i-2)=0.0d0
2648         endif
2649 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2650         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2651           iti = itortyp(itype(i-2))
2652         else
2653           iti=ntortyp+1
2654         endif
2655 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2656         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2657           iti1 = itortyp(itype(i-1))
2658         else
2659           iti1=ntortyp+1
2660         endif
2661 cd        write (iout,*) '*******i',i,' iti1',iti
2662 cd        write (iout,*) 'b1',b1(:,iti)
2663 cd        write (iout,*) 'b2',b2(:,iti)
2664 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2665 c        if (i .gt. iatel_s+2) then
2666         if (i .gt. nnt+2) then
2667           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2668           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2669           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2670      &    then
2671           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2672           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2673           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2674           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2675           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2676           endif
2677         else
2678           do k=1,2
2679             Ub2(k,i-2)=0.0d0
2680             Ctobr(k,i-2)=0.0d0 
2681             Dtobr2(k,i-2)=0.0d0
2682             do l=1,2
2683               EUg(l,k,i-2)=0.0d0
2684               CUg(l,k,i-2)=0.0d0
2685               DUg(l,k,i-2)=0.0d0
2686               DtUg2(l,k,i-2)=0.0d0
2687             enddo
2688           enddo
2689         endif
2690         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2691         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2692         do k=1,2
2693           muder(k,i-2)=Ub2der(k,i-2)
2694         enddo
2695 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2696         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2697           iti1 = itortyp(itype(i-1))
2698         else
2699           iti1=ntortyp+1
2700         endif
2701         do k=1,2
2702           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2703         enddo
2704 cd        write (iout,*) 'mu ',mu(:,i-2)
2705 cd        write (iout,*) 'mu1',mu1(:,i-2)
2706 cd        write (iout,*) 'mu2',mu2(:,i-2)
2707         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2708      &  then  
2709         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2710         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2711         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2712         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2713         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2714 C Vectors and matrices dependent on a single virtual-bond dihedral.
2715         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2716         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2717         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2718         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2719         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2720         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2721         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2722         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2723         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2724         endif
2725       enddo
2726 C Matrices dependent on two consecutive virtual-bond dihedrals.
2727 C The order of matrices is from left to right.
2728       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2729      &then
2730 c      do i=max0(ivec_start,2),ivec_end
2731       do i=2,nres-1
2732         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2733         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2734         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2735         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2736         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2737         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2738         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2739         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2740       enddo
2741       endif
2742 #if defined(MPI) && defined(PARMAT)
2743 #ifdef DEBUG
2744 c      if (fg_rank.eq.0) then
2745         write (iout,*) "Arrays UG and UGDER before GATHER"
2746         do i=1,nres-1
2747           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2748      &     ((ug(l,k,i),l=1,2),k=1,2),
2749      &     ((ugder(l,k,i),l=1,2),k=1,2)
2750         enddo
2751         write (iout,*) "Arrays UG2 and UG2DER"
2752         do i=1,nres-1
2753           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2754      &     ((ug2(l,k,i),l=1,2),k=1,2),
2755      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2756         enddo
2757         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2758         do i=1,nres-1
2759           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2760      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2761      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2762         enddo
2763         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2764         do i=1,nres-1
2765           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2766      &     costab(i),sintab(i),costab2(i),sintab2(i)
2767         enddo
2768         write (iout,*) "Array MUDER"
2769         do i=1,nres-1
2770           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2771         enddo
2772 c      endif
2773 #endif
2774       if (nfgtasks.gt.1) then
2775         time00=MPI_Wtime()
2776 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2777 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2778 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2779 #ifdef MATGATHER
2780         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2781      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2782      &   FG_COMM1,IERR)
2783         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2784      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2785      &   FG_COMM1,IERR)
2786         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2787      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2788      &   FG_COMM1,IERR)
2789         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2790      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2791      &   FG_COMM1,IERR)
2792         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2793      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2794      &   FG_COMM1,IERR)
2795         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2796      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2797      &   FG_COMM1,IERR)
2798         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2799      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2800      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2801         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2802      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2803      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2804         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2805      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2806      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2807         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2808      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2809      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2810         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2811      &  then
2812         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2813      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2814      &   FG_COMM1,IERR)
2815         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2816      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2817      &   FG_COMM1,IERR)
2818         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2819      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2820      &   FG_COMM1,IERR)
2821        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2822      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2823      &   FG_COMM1,IERR)
2824         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2825      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2826      &   FG_COMM1,IERR)
2827         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2828      &   ivec_count(fg_rank1),
2829      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2830      &   FG_COMM1,IERR)
2831         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2832      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2833      &   FG_COMM1,IERR)
2834         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2835      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2836      &   FG_COMM1,IERR)
2837         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2838      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2839      &   FG_COMM1,IERR)
2840         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2841      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2842      &   FG_COMM1,IERR)
2843         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2844      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2845      &   FG_COMM1,IERR)
2846         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2847      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2848      &   FG_COMM1,IERR)
2849         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2850      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2851      &   FG_COMM1,IERR)
2852         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2853      &   ivec_count(fg_rank1),
2854      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2855      &   FG_COMM1,IERR)
2856         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2857      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2858      &   FG_COMM1,IERR)
2859        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2860      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2861      &   FG_COMM1,IERR)
2862         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2863      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2864      &   FG_COMM1,IERR)
2865        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2866      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2867      &   FG_COMM1,IERR)
2868         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2869      &   ivec_count(fg_rank1),
2870      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2871      &   FG_COMM1,IERR)
2872         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2873      &   ivec_count(fg_rank1),
2874      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2875      &   FG_COMM1,IERR)
2876         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2877      &   ivec_count(fg_rank1),
2878      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2879      &   MPI_MAT2,FG_COMM1,IERR)
2880         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2881      &   ivec_count(fg_rank1),
2882      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2883      &   MPI_MAT2,FG_COMM1,IERR)
2884         endif
2885 #else
2886 c Passes matrix info through the ring
2887       isend=fg_rank1
2888       irecv=fg_rank1-1
2889       if (irecv.lt.0) irecv=nfgtasks1-1 
2890       iprev=irecv
2891       inext=fg_rank1+1
2892       if (inext.ge.nfgtasks1) inext=0
2893       do i=1,nfgtasks1-1
2894 c        write (iout,*) "isend",isend," irecv",irecv
2895 c        call flush(iout)
2896         lensend=lentyp(isend)
2897         lenrecv=lentyp(irecv)
2898 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2899 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2900 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2901 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2902 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2903 c        write (iout,*) "Gather ROTAT1"
2904 c        call flush(iout)
2905 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2906 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2907 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2908 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2909 c        write (iout,*) "Gather ROTAT2"
2910 c        call flush(iout)
2911         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2912      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2913      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2914      &   iprev,4400+irecv,FG_COMM,status,IERR)
2915 c        write (iout,*) "Gather ROTAT_OLD"
2916 c        call flush(iout)
2917         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2918      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2919      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2920      &   iprev,5500+irecv,FG_COMM,status,IERR)
2921 c        write (iout,*) "Gather PRECOMP11"
2922 c        call flush(iout)
2923         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2924      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2925      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2926      &   iprev,6600+irecv,FG_COMM,status,IERR)
2927 c        write (iout,*) "Gather PRECOMP12"
2928 c        call flush(iout)
2929         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2930      &  then
2931         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2932      &   MPI_ROTAT2(lensend),inext,7700+isend,
2933      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2934      &   iprev,7700+irecv,FG_COMM,status,IERR)
2935 c        write (iout,*) "Gather PRECOMP21"
2936 c        call flush(iout)
2937         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2938      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2939      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2940      &   iprev,8800+irecv,FG_COMM,status,IERR)
2941 c        write (iout,*) "Gather PRECOMP22"
2942 c        call flush(iout)
2943         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2944      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2945      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2946      &   MPI_PRECOMP23(lenrecv),
2947      &   iprev,9900+irecv,FG_COMM,status,IERR)
2948 c        write (iout,*) "Gather PRECOMP23"
2949 c        call flush(iout)
2950         endif
2951         isend=irecv
2952         irecv=irecv-1
2953         if (irecv.lt.0) irecv=nfgtasks1-1
2954       enddo
2955 #endif
2956         time_gather=time_gather+MPI_Wtime()-time00
2957       endif
2958 #ifdef DEBUG
2959 c      if (fg_rank.eq.0) then
2960         write (iout,*) "Arrays UG and UGDER"
2961         do i=1,nres-1
2962           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2963      &     ((ug(l,k,i),l=1,2),k=1,2),
2964      &     ((ugder(l,k,i),l=1,2),k=1,2)
2965         enddo
2966         write (iout,*) "Arrays UG2 and UG2DER"
2967         do i=1,nres-1
2968           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2969      &     ((ug2(l,k,i),l=1,2),k=1,2),
2970      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2971         enddo
2972         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2973         do i=1,nres-1
2974           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2975      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2976      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2977         enddo
2978         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2979         do i=1,nres-1
2980           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2981      &     costab(i),sintab(i),costab2(i),sintab2(i)
2982         enddo
2983         write (iout,*) "Array MUDER"
2984         do i=1,nres-1
2985           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2986         enddo
2987 c      endif
2988 #endif
2989 #endif
2990 cd      do i=1,nres
2991 cd        iti = itortyp(itype(i))
2992 cd        write (iout,*) i
2993 cd        do j=1,2
2994 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2995 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2996 cd        enddo
2997 cd      enddo
2998       return
2999       end
3000 C--------------------------------------------------------------------------
3001       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
3002 C
3003 C This subroutine calculates the average interaction energy and its gradient
3004 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
3005 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
3006 C The potential depends both on the distance of peptide-group centers and on 
3007 C the orientation of the CA-CA virtual bonds.
3008
3009       implicit real*8 (a-h,o-z)
3010 #ifdef MPI
3011       include 'mpif.h'
3012 #endif
3013       include 'DIMENSIONS'
3014       include 'COMMON.CONTROL'
3015       include 'COMMON.SETUP'
3016       include 'COMMON.IOUNITS'
3017       include 'COMMON.GEO'
3018       include 'COMMON.VAR'
3019       include 'COMMON.LOCAL'
3020       include 'COMMON.CHAIN'
3021       include 'COMMON.DERIV'
3022       include 'COMMON.INTERACT'
3023       include 'COMMON.CONTACTS'
3024       include 'COMMON.TORSION'
3025       include 'COMMON.VECTORS'
3026       include 'COMMON.FFIELD'
3027       include 'COMMON.TIME1'
3028       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3029      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3030       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3031      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3032       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3033      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3034      &    num_conti,j1,j2
3035 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3036 #ifdef MOMENT
3037       double precision scal_el /1.0d0/
3038 #else
3039       double precision scal_el /0.5d0/
3040 #endif
3041 C 12/13/98 
3042 C 13-go grudnia roku pamietnego... 
3043       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3044      &                   0.0d0,1.0d0,0.0d0,
3045      &                   0.0d0,0.0d0,1.0d0/
3046 cd      write(iout,*) 'In EELEC'
3047 cd      do i=1,nloctyp
3048 cd        write(iout,*) 'Type',i
3049 cd        write(iout,*) 'B1',B1(:,i)
3050 cd        write(iout,*) 'B2',B2(:,i)
3051 cd        write(iout,*) 'CC',CC(:,:,i)
3052 cd        write(iout,*) 'DD',DD(:,:,i)
3053 cd        write(iout,*) 'EE',EE(:,:,i)
3054 cd      enddo
3055 cd      call check_vecgrad
3056 cd      stop
3057       if (icheckgrad.eq.1) then
3058         do i=1,nres-1
3059           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
3060           do k=1,3
3061             dc_norm(k,i)=dc(k,i)*fac
3062           enddo
3063 c          write (iout,*) 'i',i,' fac',fac
3064         enddo
3065       endif
3066       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
3067      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
3068      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
3069 c        call vec_and_deriv
3070 #ifdef TIMING
3071         time01=MPI_Wtime()
3072 #endif
3073         call set_matrices
3074 #ifdef TIMING
3075         time_mat=time_mat+MPI_Wtime()-time01
3076 #endif
3077       endif
3078 cd      do i=1,nres-1
3079 cd        write (iout,*) 'i=',i
3080 cd        do k=1,3
3081 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
3082 cd        enddo
3083 cd        do k=1,3
3084 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3085 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3086 cd        enddo
3087 cd      enddo
3088       t_eelecij=0.0d0
3089       ees=0.0D0
3090       evdw1=0.0D0
3091       eel_loc=0.0d0 
3092       eello_turn3=0.0d0
3093       eello_turn4=0.0d0
3094       ind=0
3095       do i=1,nres
3096         num_cont_hb(i)=0
3097       enddo
3098 cd      print '(a)','Enter EELEC'
3099 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3100       do i=1,nres
3101         gel_loc_loc(i)=0.0d0
3102         gcorr_loc(i)=0.0d0
3103       enddo
3104 c
3105 c
3106 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3107 C
3108 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3109 C
3110       do i=iturn3_start,iturn3_end
3111         dxi=dc(1,i)
3112         dyi=dc(2,i)
3113         dzi=dc(3,i)
3114         dx_normi=dc_norm(1,i)
3115         dy_normi=dc_norm(2,i)
3116         dz_normi=dc_norm(3,i)
3117         xmedi=c(1,i)+0.5d0*dxi
3118         ymedi=c(2,i)+0.5d0*dyi
3119         zmedi=c(3,i)+0.5d0*dzi
3120         num_conti=0
3121         call eelecij(i,i+2,ees,evdw1,eel_loc)
3122         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3123         num_cont_hb(i)=num_conti
3124       enddo
3125       do i=iturn4_start,iturn4_end
3126         dxi=dc(1,i)
3127         dyi=dc(2,i)
3128         dzi=dc(3,i)
3129         dx_normi=dc_norm(1,i)
3130         dy_normi=dc_norm(2,i)
3131         dz_normi=dc_norm(3,i)
3132         xmedi=c(1,i)+0.5d0*dxi
3133         ymedi=c(2,i)+0.5d0*dyi
3134         zmedi=c(3,i)+0.5d0*dzi
3135         num_conti=num_cont_hb(i)
3136         call eelecij(i,i+3,ees,evdw1,eel_loc)
3137         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3138         num_cont_hb(i)=num_conti
3139       enddo   ! i
3140 c
3141 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3142 c
3143       do i=iatel_s,iatel_e
3144         dxi=dc(1,i)
3145         dyi=dc(2,i)
3146         dzi=dc(3,i)
3147         dx_normi=dc_norm(1,i)
3148         dy_normi=dc_norm(2,i)
3149         dz_normi=dc_norm(3,i)
3150         xmedi=c(1,i)+0.5d0*dxi
3151         ymedi=c(2,i)+0.5d0*dyi
3152         zmedi=c(3,i)+0.5d0*dzi
3153 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3154         num_conti=num_cont_hb(i)
3155         do j=ielstart(i),ielend(i)
3156           call eelecij(i,j,ees,evdw1,eel_loc)
3157         enddo ! j
3158         num_cont_hb(i)=num_conti
3159       enddo   ! i
3160 c      write (iout,*) "Number of loop steps in EELEC:",ind
3161 cd      do i=1,nres
3162 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3163 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3164 cd      enddo
3165 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3166 ccc      eel_loc=eel_loc+eello_turn3
3167 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3168       return
3169       end
3170 C-------------------------------------------------------------------------------
3171       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3172       implicit real*8 (a-h,o-z)
3173       include 'DIMENSIONS'
3174 #ifdef MPI
3175       include "mpif.h"
3176 #endif
3177       include 'COMMON.CONTROL'
3178       include 'COMMON.IOUNITS'
3179       include 'COMMON.GEO'
3180       include 'COMMON.VAR'
3181       include 'COMMON.LOCAL'
3182       include 'COMMON.CHAIN'
3183       include 'COMMON.DERIV'
3184       include 'COMMON.INTERACT'
3185       include 'COMMON.CONTACTS'
3186       include 'COMMON.TORSION'
3187       include 'COMMON.VECTORS'
3188       include 'COMMON.FFIELD'
3189       include 'COMMON.TIME1'
3190       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3191      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3192       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3193      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3194       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3195      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3196      &    num_conti,j1,j2
3197 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3198 #ifdef MOMENT
3199       double precision scal_el /1.0d0/
3200 #else
3201       double precision scal_el /0.5d0/
3202 #endif
3203 C 12/13/98 
3204 C 13-go grudnia roku pamietnego... 
3205       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3206      &                   0.0d0,1.0d0,0.0d0,
3207      &                   0.0d0,0.0d0,1.0d0/
3208 c          time00=MPI_Wtime()
3209 cd      write (iout,*) "eelecij",i,j
3210 c          ind=ind+1
3211           iteli=itel(i)
3212           itelj=itel(j)
3213           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3214           aaa=app(iteli,itelj)
3215           bbb=bpp(iteli,itelj)
3216           ael6i=ael6(iteli,itelj)
3217           ael3i=ael3(iteli,itelj) 
3218           dxj=dc(1,j)
3219           dyj=dc(2,j)
3220           dzj=dc(3,j)
3221           dx_normj=dc_norm(1,j)
3222           dy_normj=dc_norm(2,j)
3223           dz_normj=dc_norm(3,j)
3224           xj=c(1,j)+0.5D0*dxj-xmedi
3225           yj=c(2,j)+0.5D0*dyj-ymedi
3226           zj=c(3,j)+0.5D0*dzj-zmedi
3227           rij=xj*xj+yj*yj+zj*zj
3228           rrmij=1.0D0/rij
3229           rij=dsqrt(rij)
3230           rmij=1.0D0/rij
3231           r3ij=rrmij*rmij
3232           r6ij=r3ij*r3ij  
3233           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3234           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3235           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3236           fac=cosa-3.0D0*cosb*cosg
3237           ev1=aaa*r6ij*r6ij
3238 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3239           if (j.eq.i+2) ev1=scal_el*ev1
3240           ev2=bbb*r6ij
3241           fac3=ael6i*r6ij
3242           fac4=ael3i*r3ij
3243           evdwij=ev1+ev2
3244           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3245           el2=fac4*fac       
3246           eesij=el1+el2
3247 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3248           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3249           ees=ees+eesij
3250           evdw1=evdw1+evdwij
3251 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3252 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3253 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3254 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3255
3256           if (energy_dec) then 
3257               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3258               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3259           endif
3260
3261 C
3262 C Calculate contributions to the Cartesian gradient.
3263 C
3264 #ifdef SPLITELE
3265           facvdw=-6*rrmij*(ev1+evdwij)
3266           facel=-3*rrmij*(el1+eesij)
3267           fac1=fac
3268           erij(1)=xj*rmij
3269           erij(2)=yj*rmij
3270           erij(3)=zj*rmij
3271 *
3272 * Radial derivatives. First process both termini of the fragment (i,j)
3273 *
3274           ggg(1)=facel*xj
3275           ggg(2)=facel*yj
3276           ggg(3)=facel*zj
3277 c          do k=1,3
3278 c            ghalf=0.5D0*ggg(k)
3279 c            gelc(k,i)=gelc(k,i)+ghalf
3280 c            gelc(k,j)=gelc(k,j)+ghalf
3281 c          enddo
3282 c 9/28/08 AL Gradient compotents will be summed only at the end
3283           do k=1,3
3284             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3285             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3286           enddo
3287 *
3288 * Loop over residues i+1 thru j-1.
3289 *
3290 cgrad          do k=i+1,j-1
3291 cgrad            do l=1,3
3292 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3293 cgrad            enddo
3294 cgrad          enddo
3295           ggg(1)=facvdw*xj
3296           ggg(2)=facvdw*yj
3297           ggg(3)=facvdw*zj
3298 c          do k=1,3
3299 c            ghalf=0.5D0*ggg(k)
3300 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3301 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3302 c          enddo
3303 c 9/28/08 AL Gradient compotents will be summed only at the end
3304           do k=1,3
3305             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3306             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3307           enddo
3308 *
3309 * Loop over residues i+1 thru j-1.
3310 *
3311 cgrad          do k=i+1,j-1
3312 cgrad            do l=1,3
3313 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3314 cgrad            enddo
3315 cgrad          enddo
3316 #else
3317           facvdw=ev1+evdwij 
3318           facel=el1+eesij  
3319           fac1=fac
3320           fac=-3*rrmij*(facvdw+facvdw+facel)
3321           erij(1)=xj*rmij
3322           erij(2)=yj*rmij
3323           erij(3)=zj*rmij
3324 *
3325 * Radial derivatives. First process both termini of the fragment (i,j)
3326
3327           ggg(1)=fac*xj
3328           ggg(2)=fac*yj
3329           ggg(3)=fac*zj
3330 c          do k=1,3
3331 c            ghalf=0.5D0*ggg(k)
3332 c            gelc(k,i)=gelc(k,i)+ghalf
3333 c            gelc(k,j)=gelc(k,j)+ghalf
3334 c          enddo
3335 c 9/28/08 AL Gradient compotents will be summed only at the end
3336           do k=1,3
3337             gelc_long(k,j)=gelc(k,j)+ggg(k)
3338             gelc_long(k,i)=gelc(k,i)-ggg(k)
3339           enddo
3340 *
3341 * Loop over residues i+1 thru j-1.
3342 *
3343 cgrad          do k=i+1,j-1
3344 cgrad            do l=1,3
3345 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3346 cgrad            enddo
3347 cgrad          enddo
3348 c 9/28/08 AL Gradient compotents will be summed only at the end
3349           ggg(1)=facvdw*xj
3350           ggg(2)=facvdw*yj
3351           ggg(3)=facvdw*zj
3352           do k=1,3
3353             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3354             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3355           enddo
3356 #endif
3357 *
3358 * Angular part
3359 *          
3360           ecosa=2.0D0*fac3*fac1+fac4
3361           fac4=-3.0D0*fac4
3362           fac3=-6.0D0*fac3
3363           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3364           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3365           do k=1,3
3366             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3367             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3368           enddo
3369 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3370 cd   &          (dcosg(k),k=1,3)
3371           do k=1,3
3372             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3373           enddo
3374 c          do k=1,3
3375 c            ghalf=0.5D0*ggg(k)
3376 c            gelc(k,i)=gelc(k,i)+ghalf
3377 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3378 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3379 c            gelc(k,j)=gelc(k,j)+ghalf
3380 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3381 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3382 c          enddo
3383 cgrad          do k=i+1,j-1
3384 cgrad            do l=1,3
3385 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3386 cgrad            enddo
3387 cgrad          enddo
3388           do k=1,3
3389             gelc(k,i)=gelc(k,i)
3390      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3391      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3392             gelc(k,j)=gelc(k,j)
3393      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3394      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3395             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3396             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3397           enddo
3398           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3399      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3400      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3401 C
3402 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3403 C   energy of a peptide unit is assumed in the form of a second-order 
3404 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3405 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3406 C   are computed for EVERY pair of non-contiguous peptide groups.
3407 C
3408           if (j.lt.nres-1) then
3409             j1=j+1
3410             j2=j-1
3411           else
3412             j1=j-1
3413             j2=j-2
3414           endif
3415           kkk=0
3416           do k=1,2
3417             do l=1,2
3418               kkk=kkk+1
3419               muij(kkk)=mu(k,i)*mu(l,j)
3420             enddo
3421           enddo  
3422 cd         write (iout,*) 'EELEC: i',i,' j',j
3423 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3424 cd          write(iout,*) 'muij',muij
3425           ury=scalar(uy(1,i),erij)
3426           urz=scalar(uz(1,i),erij)
3427           vry=scalar(uy(1,j),erij)
3428           vrz=scalar(uz(1,j),erij)
3429           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3430           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3431           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3432           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3433           fac=dsqrt(-ael6i)*r3ij
3434           a22=a22*fac
3435           a23=a23*fac
3436           a32=a32*fac
3437           a33=a33*fac
3438 cd          write (iout,'(4i5,4f10.5)')
3439 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3440 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3441 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3442 cd     &      uy(:,j),uz(:,j)
3443 cd          write (iout,'(4f10.5)') 
3444 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3445 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3446 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3447 cd           write (iout,'(9f10.5/)') 
3448 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3449 C Derivatives of the elements of A in virtual-bond vectors
3450           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3451           do k=1,3
3452             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3453             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3454             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3455             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3456             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3457             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3458             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3459             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3460             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3461             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3462             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3463             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3464           enddo
3465 C Compute radial contributions to the gradient
3466           facr=-3.0d0*rrmij
3467           a22der=a22*facr
3468           a23der=a23*facr
3469           a32der=a32*facr
3470           a33der=a33*facr
3471           agg(1,1)=a22der*xj
3472           agg(2,1)=a22der*yj
3473           agg(3,1)=a22der*zj
3474           agg(1,2)=a23der*xj
3475           agg(2,2)=a23der*yj
3476           agg(3,2)=a23der*zj
3477           agg(1,3)=a32der*xj
3478           agg(2,3)=a32der*yj
3479           agg(3,3)=a32der*zj
3480           agg(1,4)=a33der*xj
3481           agg(2,4)=a33der*yj
3482           agg(3,4)=a33der*zj
3483 C Add the contributions coming from er
3484           fac3=-3.0d0*fac
3485           do k=1,3
3486             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3487             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3488             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3489             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3490           enddo
3491           do k=1,3
3492 C Derivatives in DC(i) 
3493 cgrad            ghalf1=0.5d0*agg(k,1)
3494 cgrad            ghalf2=0.5d0*agg(k,2)
3495 cgrad            ghalf3=0.5d0*agg(k,3)
3496 cgrad            ghalf4=0.5d0*agg(k,4)
3497             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3498      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3499             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3500      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3501             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3502      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3503             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3504      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3505 C Derivatives in DC(i+1)
3506             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3507      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3508             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3509      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3510             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3511      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3512             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3513      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3514 C Derivatives in DC(j)
3515             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3516      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3517             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3518      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3519             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3520      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3521             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3522      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3523 C Derivatives in DC(j+1) or DC(nres-1)
3524             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3525      &      -3.0d0*vryg(k,3)*ury)
3526             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3527      &      -3.0d0*vrzg(k,3)*ury)
3528             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3529      &      -3.0d0*vryg(k,3)*urz)
3530             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3531      &      -3.0d0*vrzg(k,3)*urz)
3532 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3533 cgrad              do l=1,4
3534 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3535 cgrad              enddo
3536 cgrad            endif
3537           enddo
3538           acipa(1,1)=a22
3539           acipa(1,2)=a23
3540           acipa(2,1)=a32
3541           acipa(2,2)=a33
3542           a22=-a22
3543           a23=-a23
3544           do l=1,2
3545             do k=1,3
3546               agg(k,l)=-agg(k,l)
3547               aggi(k,l)=-aggi(k,l)
3548               aggi1(k,l)=-aggi1(k,l)
3549               aggj(k,l)=-aggj(k,l)
3550               aggj1(k,l)=-aggj1(k,l)
3551             enddo
3552           enddo
3553           if (j.lt.nres-1) then
3554             a22=-a22
3555             a32=-a32
3556             do l=1,3,2
3557               do k=1,3
3558                 agg(k,l)=-agg(k,l)
3559                 aggi(k,l)=-aggi(k,l)
3560                 aggi1(k,l)=-aggi1(k,l)
3561                 aggj(k,l)=-aggj(k,l)
3562                 aggj1(k,l)=-aggj1(k,l)
3563               enddo
3564             enddo
3565           else
3566             a22=-a22
3567             a23=-a23
3568             a32=-a32
3569             a33=-a33
3570             do l=1,4
3571               do k=1,3
3572                 agg(k,l)=-agg(k,l)
3573                 aggi(k,l)=-aggi(k,l)
3574                 aggi1(k,l)=-aggi1(k,l)
3575                 aggj(k,l)=-aggj(k,l)
3576                 aggj1(k,l)=-aggj1(k,l)
3577               enddo
3578             enddo 
3579           endif    
3580           ENDIF ! WCORR
3581           IF (wel_loc.gt.0.0d0) THEN
3582 C Contribution to the local-electrostatic energy coming from the i-j pair
3583           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3584      &     +a33*muij(4)
3585 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3586
3587           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3588      &            'eelloc',i,j,eel_loc_ij
3589
3590           eel_loc=eel_loc+eel_loc_ij
3591 C Partial derivatives in virtual-bond dihedral angles gamma
3592           if (i.gt.1)
3593      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3594      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3595      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3596           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3597      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3598      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3599 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3600           do l=1,3
3601             ggg(l)=agg(l,1)*muij(1)+
3602      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3603             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3604             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3605 cgrad            ghalf=0.5d0*ggg(l)
3606 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3607 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3608           enddo
3609 cgrad          do k=i+1,j2
3610 cgrad            do l=1,3
3611 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3612 cgrad            enddo
3613 cgrad          enddo
3614 C Remaining derivatives of eello
3615           do l=1,3
3616             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3617      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3618             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3619      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3620             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3621      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3622             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3623      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3624           enddo
3625           ENDIF
3626 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3627 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3628           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3629      &       .and. num_conti.le.maxconts) then
3630 c            write (iout,*) i,j," entered corr"
3631 C
3632 C Calculate the contact function. The ith column of the array JCONT will 
3633 C contain the numbers of atoms that make contacts with the atom I (of numbers
3634 C greater than I). The arrays FACONT and GACONT will contain the values of
3635 C the contact function and its derivative.
3636 c           r0ij=1.02D0*rpp(iteli,itelj)
3637 c           r0ij=1.11D0*rpp(iteli,itelj)
3638             r0ij=2.20D0*rpp(iteli,itelj)
3639 c           r0ij=1.55D0*rpp(iteli,itelj)
3640             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3641             if (fcont.gt.0.0D0) then
3642               num_conti=num_conti+1
3643               if (num_conti.gt.maxconts) then
3644                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3645      &                         ' will skip next contacts for this conf.'
3646               else
3647                 jcont_hb(num_conti,i)=j
3648 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3649 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3650                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3651      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3652 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3653 C  terms.
3654                 d_cont(num_conti,i)=rij
3655 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3656 C     --- Electrostatic-interaction matrix --- 
3657                 a_chuj(1,1,num_conti,i)=a22
3658                 a_chuj(1,2,num_conti,i)=a23
3659                 a_chuj(2,1,num_conti,i)=a32
3660                 a_chuj(2,2,num_conti,i)=a33
3661 C     --- Gradient of rij
3662                 do kkk=1,3
3663                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3664                 enddo
3665                 kkll=0
3666                 do k=1,2
3667                   do l=1,2
3668                     kkll=kkll+1
3669                     do m=1,3
3670                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3671                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3672                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3673                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3674                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3675                     enddo
3676                   enddo
3677                 enddo
3678                 ENDIF
3679                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3680 C Calculate contact energies
3681                 cosa4=4.0D0*cosa
3682                 wij=cosa-3.0D0*cosb*cosg
3683                 cosbg1=cosb+cosg
3684                 cosbg2=cosb-cosg
3685 c               fac3=dsqrt(-ael6i)/r0ij**3     
3686                 fac3=dsqrt(-ael6i)*r3ij
3687 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3688                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3689                 if (ees0tmp.gt.0) then
3690                   ees0pij=dsqrt(ees0tmp)
3691                 else
3692                   ees0pij=0
3693                 endif
3694 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3695                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3696                 if (ees0tmp.gt.0) then
3697                   ees0mij=dsqrt(ees0tmp)
3698                 else
3699                   ees0mij=0
3700                 endif
3701 c               ees0mij=0.0D0
3702                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3703                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3704 C Diagnostics. Comment out or remove after debugging!
3705 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3706 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3707 c               ees0m(num_conti,i)=0.0D0
3708 C End diagnostics.
3709 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3710 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3711 C Angular derivatives of the contact function
3712                 ees0pij1=fac3/ees0pij 
3713                 ees0mij1=fac3/ees0mij
3714                 fac3p=-3.0D0*fac3*rrmij
3715                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3716                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3717 c               ees0mij1=0.0D0
3718                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3719                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3720                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3721                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3722                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3723                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3724                 ecosap=ecosa1+ecosa2
3725                 ecosbp=ecosb1+ecosb2
3726                 ecosgp=ecosg1+ecosg2
3727                 ecosam=ecosa1-ecosa2
3728                 ecosbm=ecosb1-ecosb2
3729                 ecosgm=ecosg1-ecosg2
3730 C Diagnostics
3731 c               ecosap=ecosa1
3732 c               ecosbp=ecosb1
3733 c               ecosgp=ecosg1
3734 c               ecosam=0.0D0
3735 c               ecosbm=0.0D0
3736 c               ecosgm=0.0D0
3737 C End diagnostics
3738                 facont_hb(num_conti,i)=fcont
3739                 fprimcont=fprimcont/rij
3740 cd              facont_hb(num_conti,i)=1.0D0
3741 C Following line is for diagnostics.
3742 cd              fprimcont=0.0D0
3743                 do k=1,3
3744                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3745                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3746                 enddo
3747                 do k=1,3
3748                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3749                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3750                 enddo
3751                 gggp(1)=gggp(1)+ees0pijp*xj
3752                 gggp(2)=gggp(2)+ees0pijp*yj
3753                 gggp(3)=gggp(3)+ees0pijp*zj
3754                 gggm(1)=gggm(1)+ees0mijp*xj
3755                 gggm(2)=gggm(2)+ees0mijp*yj
3756                 gggm(3)=gggm(3)+ees0mijp*zj
3757 C Derivatives due to the contact function
3758                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3759                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3760                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3761                 do k=1,3
3762 c
3763 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3764 c          following the change of gradient-summation algorithm.
3765 c
3766 cgrad                  ghalfp=0.5D0*gggp(k)
3767 cgrad                  ghalfm=0.5D0*gggm(k)
3768                   gacontp_hb1(k,num_conti,i)=!ghalfp
3769      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3770      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3771                   gacontp_hb2(k,num_conti,i)=!ghalfp
3772      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3773      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3774                   gacontp_hb3(k,num_conti,i)=gggp(k)
3775                   gacontm_hb1(k,num_conti,i)=!ghalfm
3776      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3777      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3778                   gacontm_hb2(k,num_conti,i)=!ghalfm
3779      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3780      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3781                   gacontm_hb3(k,num_conti,i)=gggm(k)
3782                 enddo
3783 C Diagnostics. Comment out or remove after debugging!
3784 cdiag           do k=1,3
3785 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3786 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3787 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3788 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3789 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3790 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3791 cdiag           enddo
3792               ENDIF ! wcorr
3793               endif  ! num_conti.le.maxconts
3794             endif  ! fcont.gt.0
3795           endif    ! j.gt.i+1
3796           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3797             do k=1,4
3798               do l=1,3
3799                 ghalf=0.5d0*agg(l,k)
3800                 aggi(l,k)=aggi(l,k)+ghalf
3801                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3802                 aggj(l,k)=aggj(l,k)+ghalf
3803               enddo
3804             enddo
3805             if (j.eq.nres-1 .and. i.lt.j-2) then
3806               do k=1,4
3807                 do l=1,3
3808                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3809                 enddo
3810               enddo
3811             endif
3812           endif
3813 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3814       return
3815       end
3816 C-----------------------------------------------------------------------------
3817       subroutine eturn3(i,eello_turn3)
3818 C Third- and fourth-order contributions from turns
3819       implicit real*8 (a-h,o-z)
3820       include 'DIMENSIONS'
3821       include 'COMMON.IOUNITS'
3822       include 'COMMON.GEO'
3823       include 'COMMON.VAR'
3824       include 'COMMON.LOCAL'
3825       include 'COMMON.CHAIN'
3826       include 'COMMON.DERIV'
3827       include 'COMMON.INTERACT'
3828       include 'COMMON.CONTACTS'
3829       include 'COMMON.TORSION'
3830       include 'COMMON.VECTORS'
3831       include 'COMMON.FFIELD'
3832       include 'COMMON.CONTROL'
3833       dimension ggg(3)
3834       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3835      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3836      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3837       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3838      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3839       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3840      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3841      &    num_conti,j1,j2
3842       j=i+2
3843 c      write (iout,*) "eturn3",i,j,j1,j2
3844       a_temp(1,1)=a22
3845       a_temp(1,2)=a23
3846       a_temp(2,1)=a32
3847       a_temp(2,2)=a33
3848 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3849 C
3850 C               Third-order contributions
3851 C        
3852 C                 (i+2)o----(i+3)
3853 C                      | |
3854 C                      | |
3855 C                 (i+1)o----i
3856 C
3857 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3858 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3859         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3860         call transpose2(auxmat(1,1),auxmat1(1,1))
3861         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3862         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3863         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3864      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3865 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3866 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3867 cd     &    ' eello_turn3_num',4*eello_turn3_num
3868 C Derivatives in gamma(i)
3869         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3870         call transpose2(auxmat2(1,1),auxmat3(1,1))
3871         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3872         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3873 C Derivatives in gamma(i+1)
3874         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3875         call transpose2(auxmat2(1,1),auxmat3(1,1))
3876         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3877         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3878      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3879 C Cartesian derivatives
3880         do l=1,3
3881 c            ghalf1=0.5d0*agg(l,1)
3882 c            ghalf2=0.5d0*agg(l,2)
3883 c            ghalf3=0.5d0*agg(l,3)
3884 c            ghalf4=0.5d0*agg(l,4)
3885           a_temp(1,1)=aggi(l,1)!+ghalf1
3886           a_temp(1,2)=aggi(l,2)!+ghalf2
3887           a_temp(2,1)=aggi(l,3)!+ghalf3
3888           a_temp(2,2)=aggi(l,4)!+ghalf4
3889           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3890           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3891      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3892           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3893           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3894           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3895           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3896           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3897           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3898      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3899           a_temp(1,1)=aggj(l,1)!+ghalf1
3900           a_temp(1,2)=aggj(l,2)!+ghalf2
3901           a_temp(2,1)=aggj(l,3)!+ghalf3
3902           a_temp(2,2)=aggj(l,4)!+ghalf4
3903           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3904           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3905      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3906           a_temp(1,1)=aggj1(l,1)
3907           a_temp(1,2)=aggj1(l,2)
3908           a_temp(2,1)=aggj1(l,3)
3909           a_temp(2,2)=aggj1(l,4)
3910           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3911           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3912      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3913         enddo
3914       return
3915       end
3916 C-------------------------------------------------------------------------------
3917       subroutine eturn4(i,eello_turn4)
3918 C Third- and fourth-order contributions from turns
3919       implicit real*8 (a-h,o-z)
3920       include 'DIMENSIONS'
3921       include 'COMMON.IOUNITS'
3922       include 'COMMON.GEO'
3923       include 'COMMON.VAR'
3924       include 'COMMON.LOCAL'
3925       include 'COMMON.CHAIN'
3926       include 'COMMON.DERIV'
3927       include 'COMMON.INTERACT'
3928       include 'COMMON.CONTACTS'
3929       include 'COMMON.TORSION'
3930       include 'COMMON.VECTORS'
3931       include 'COMMON.FFIELD'
3932       include 'COMMON.CONTROL'
3933       dimension ggg(3)
3934       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3935      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3936      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3937       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3938      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3939       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3940      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3941      &    num_conti,j1,j2
3942       j=i+3
3943 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3944 C
3945 C               Fourth-order contributions
3946 C        
3947 C                 (i+3)o----(i+4)
3948 C                     /  |
3949 C               (i+2)o   |
3950 C                     \  |
3951 C                 (i+1)o----i
3952 C
3953 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3954 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3955 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3956         a_temp(1,1)=a22
3957         a_temp(1,2)=a23
3958         a_temp(2,1)=a32
3959         a_temp(2,2)=a33
3960         iti1=itortyp(itype(i+1))
3961         iti2=itortyp(itype(i+2))
3962         iti3=itortyp(itype(i+3))
3963 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3964         call transpose2(EUg(1,1,i+1),e1t(1,1))
3965         call transpose2(Eug(1,1,i+2),e2t(1,1))
3966         call transpose2(Eug(1,1,i+3),e3t(1,1))
3967         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3968         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3969         s1=scalar2(b1(1,iti2),auxvec(1))
3970         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3971         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3972         s2=scalar2(b1(1,iti1),auxvec(1))
3973         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3974         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3975         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3976         eello_turn4=eello_turn4-(s1+s2+s3)
3977         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3978      &      'eturn4',i,j,-(s1+s2+s3)
3979 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3980 cd     &    ' eello_turn4_num',8*eello_turn4_num
3981 C Derivatives in gamma(i)
3982         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3983         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3984         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3985         s1=scalar2(b1(1,iti2),auxvec(1))
3986         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3987         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3988         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3989 C Derivatives in gamma(i+1)
3990         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3991         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3992         s2=scalar2(b1(1,iti1),auxvec(1))
3993         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3994         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3995         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3996         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3997 C Derivatives in gamma(i+2)
3998         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3999         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
4000         s1=scalar2(b1(1,iti2),auxvec(1))
4001         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
4002         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
4003         s2=scalar2(b1(1,iti1),auxvec(1))
4004         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
4005         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
4006         s3=0.5d0*(pizda(1,1)+pizda(2,2))
4007         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
4008 C Cartesian derivatives
4009 C Derivatives of this turn contributions in DC(i+2)
4010         if (j.lt.nres-1) then
4011           do l=1,3
4012             a_temp(1,1)=agg(l,1)
4013             a_temp(1,2)=agg(l,2)
4014             a_temp(2,1)=agg(l,3)
4015             a_temp(2,2)=agg(l,4)
4016             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4017             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4018             s1=scalar2(b1(1,iti2),auxvec(1))
4019             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4020             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4021             s2=scalar2(b1(1,iti1),auxvec(1))
4022             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4023             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4024             s3=0.5d0*(pizda(1,1)+pizda(2,2))
4025             ggg(l)=-(s1+s2+s3)
4026             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
4027           enddo
4028         endif
4029 C Remaining derivatives of this turn contribution
4030         do l=1,3
4031           a_temp(1,1)=aggi(l,1)
4032           a_temp(1,2)=aggi(l,2)
4033           a_temp(2,1)=aggi(l,3)
4034           a_temp(2,2)=aggi(l,4)
4035           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4036           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4037           s1=scalar2(b1(1,iti2),auxvec(1))
4038           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4039           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4040           s2=scalar2(b1(1,iti1),auxvec(1))
4041           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4042           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4043           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4044           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
4045           a_temp(1,1)=aggi1(l,1)
4046           a_temp(1,2)=aggi1(l,2)
4047           a_temp(2,1)=aggi1(l,3)
4048           a_temp(2,2)=aggi1(l,4)
4049           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4050           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4051           s1=scalar2(b1(1,iti2),auxvec(1))
4052           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4053           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4054           s2=scalar2(b1(1,iti1),auxvec(1))
4055           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4056           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4057           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4058           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
4059           a_temp(1,1)=aggj(l,1)
4060           a_temp(1,2)=aggj(l,2)
4061           a_temp(2,1)=aggj(l,3)
4062           a_temp(2,2)=aggj(l,4)
4063           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4064           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4065           s1=scalar2(b1(1,iti2),auxvec(1))
4066           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4067           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4068           s2=scalar2(b1(1,iti1),auxvec(1))
4069           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4070           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4071           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4072           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
4073           a_temp(1,1)=aggj1(l,1)
4074           a_temp(1,2)=aggj1(l,2)
4075           a_temp(2,1)=aggj1(l,3)
4076           a_temp(2,2)=aggj1(l,4)
4077           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4078           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4079           s1=scalar2(b1(1,iti2),auxvec(1))
4080           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4081           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4082           s2=scalar2(b1(1,iti1),auxvec(1))
4083           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4084           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4085           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4086 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4087           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4088         enddo
4089       return
4090       end
4091 C-----------------------------------------------------------------------------
4092       subroutine vecpr(u,v,w)
4093       implicit real*8(a-h,o-z)
4094       dimension u(3),v(3),w(3)
4095       w(1)=u(2)*v(3)-u(3)*v(2)
4096       w(2)=-u(1)*v(3)+u(3)*v(1)
4097       w(3)=u(1)*v(2)-u(2)*v(1)
4098       return
4099       end
4100 C-----------------------------------------------------------------------------
4101       subroutine unormderiv(u,ugrad,unorm,ungrad)
4102 C This subroutine computes the derivatives of a normalized vector u, given
4103 C the derivatives computed without normalization conditions, ugrad. Returns
4104 C ungrad.
4105       implicit none
4106       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4107       double precision vec(3)
4108       double precision scalar
4109       integer i,j
4110 c      write (2,*) 'ugrad',ugrad
4111 c      write (2,*) 'u',u
4112       do i=1,3
4113         vec(i)=scalar(ugrad(1,i),u(1))
4114       enddo
4115 c      write (2,*) 'vec',vec
4116       do i=1,3
4117         do j=1,3
4118           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4119         enddo
4120       enddo
4121 c      write (2,*) 'ungrad',ungrad
4122       return
4123       end
4124 C-----------------------------------------------------------------------------
4125       subroutine escp_soft_sphere(evdw2,evdw2_14)
4126 C
4127 C This subroutine calculates the excluded-volume interaction energy between
4128 C peptide-group centers and side chains and its gradient in virtual-bond and
4129 C side-chain vectors.
4130 C
4131       implicit real*8 (a-h,o-z)
4132       include 'DIMENSIONS'
4133       include 'COMMON.GEO'
4134       include 'COMMON.VAR'
4135       include 'COMMON.LOCAL'
4136       include 'COMMON.CHAIN'
4137       include 'COMMON.DERIV'
4138       include 'COMMON.INTERACT'
4139       include 'COMMON.FFIELD'
4140       include 'COMMON.IOUNITS'
4141       include 'COMMON.CONTROL'
4142       dimension ggg(3)
4143       evdw2=0.0D0
4144       evdw2_14=0.0d0
4145       r0_scp=4.5d0
4146 cd    print '(a)','Enter ESCP'
4147 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4148       do i=iatscp_s,iatscp_e
4149         iteli=itel(i)
4150         xi=0.5D0*(c(1,i)+c(1,i+1))
4151         yi=0.5D0*(c(2,i)+c(2,i+1))
4152         zi=0.5D0*(c(3,i)+c(3,i+1))
4153
4154         do iint=1,nscp_gr(i)
4155
4156         do j=iscpstart(i,iint),iscpend(i,iint)
4157           itypj=itype(j)
4158 C Uncomment following three lines for SC-p interactions
4159 c         xj=c(1,nres+j)-xi
4160 c         yj=c(2,nres+j)-yi
4161 c         zj=c(3,nres+j)-zi
4162 C Uncomment following three lines for Ca-p interactions
4163           xj=c(1,j)-xi
4164           yj=c(2,j)-yi
4165           zj=c(3,j)-zi
4166           rij=xj*xj+yj*yj+zj*zj
4167           r0ij=r0_scp
4168           r0ijsq=r0ij*r0ij
4169           if (rij.lt.r0ijsq) then
4170             evdwij=0.25d0*(rij-r0ijsq)**2
4171             fac=rij-r0ijsq
4172           else
4173             evdwij=0.0d0
4174             fac=0.0d0
4175           endif 
4176           evdw2=evdw2+evdwij
4177 C
4178 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4179 C
4180           ggg(1)=xj*fac
4181           ggg(2)=yj*fac
4182           ggg(3)=zj*fac
4183 cgrad          if (j.lt.i) then
4184 cd          write (iout,*) 'j<i'
4185 C Uncomment following three lines for SC-p interactions
4186 c           do k=1,3
4187 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4188 c           enddo
4189 cgrad          else
4190 cd          write (iout,*) 'j>i'
4191 cgrad            do k=1,3
4192 cgrad              ggg(k)=-ggg(k)
4193 C Uncomment following line for SC-p interactions
4194 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4195 cgrad            enddo
4196 cgrad          endif
4197 cgrad          do k=1,3
4198 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4199 cgrad          enddo
4200 cgrad          kstart=min0(i+1,j)
4201 cgrad          kend=max0(i-1,j-1)
4202 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4203 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4204 cgrad          do k=kstart,kend
4205 cgrad            do l=1,3
4206 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4207 cgrad            enddo
4208 cgrad          enddo
4209           do k=1,3
4210             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4211             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4212           enddo
4213         enddo
4214
4215         enddo ! iint
4216       enddo ! i
4217       return
4218       end
4219 C-----------------------------------------------------------------------------
4220       subroutine escp(evdw2,evdw2_14)
4221 C
4222 C This subroutine calculates the excluded-volume interaction energy between
4223 C peptide-group centers and side chains and its gradient in virtual-bond and
4224 C side-chain vectors.
4225 C
4226       implicit real*8 (a-h,o-z)
4227       include 'DIMENSIONS'
4228       include 'COMMON.GEO'
4229       include 'COMMON.VAR'
4230       include 'COMMON.LOCAL'
4231       include 'COMMON.CHAIN'
4232       include 'COMMON.DERIV'
4233       include 'COMMON.INTERACT'
4234       include 'COMMON.FFIELD'
4235       include 'COMMON.IOUNITS'
4236       include 'COMMON.CONTROL'
4237       dimension ggg(3)
4238       evdw2=0.0D0
4239       evdw2_14=0.0d0
4240 cd    print '(a)','Enter ESCP'
4241 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4242       do i=iatscp_s,iatscp_e
4243         iteli=itel(i)
4244         xi=0.5D0*(c(1,i)+c(1,i+1))
4245         yi=0.5D0*(c(2,i)+c(2,i+1))
4246         zi=0.5D0*(c(3,i)+c(3,i+1))
4247
4248         do iint=1,nscp_gr(i)
4249
4250         do j=iscpstart(i,iint),iscpend(i,iint)
4251           itypj=itype(j)
4252 C Uncomment following three lines for SC-p interactions
4253 c         xj=c(1,nres+j)-xi
4254 c         yj=c(2,nres+j)-yi
4255 c         zj=c(3,nres+j)-zi
4256 C Uncomment following three lines for Ca-p interactions
4257           xj=c(1,j)-xi
4258           yj=c(2,j)-yi
4259           zj=c(3,j)-zi
4260           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4261           fac=rrij**expon2
4262           e1=fac*fac*aad(itypj,iteli)
4263           e2=fac*bad(itypj,iteli)
4264           if (iabs(j-i) .le. 2) then
4265             e1=scal14*e1
4266             e2=scal14*e2
4267             evdw2_14=evdw2_14+e1+e2
4268           endif
4269           evdwij=e1+e2
4270           evdw2=evdw2+evdwij
4271           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4272      &        'evdw2',i,j,evdwij
4273 C
4274 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4275 C
4276           fac=-(evdwij+e1)*rrij
4277           ggg(1)=xj*fac
4278           ggg(2)=yj*fac
4279           ggg(3)=zj*fac
4280 cgrad          if (j.lt.i) then
4281 cd          write (iout,*) 'j<i'
4282 C Uncomment following three lines for SC-p interactions
4283 c           do k=1,3
4284 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4285 c           enddo
4286 cgrad          else
4287 cd          write (iout,*) 'j>i'
4288 cgrad            do k=1,3
4289 cgrad              ggg(k)=-ggg(k)
4290 C Uncomment following line for SC-p interactions
4291 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4292 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4293 cgrad            enddo
4294 cgrad          endif
4295 cgrad          do k=1,3
4296 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4297 cgrad          enddo
4298 cgrad          kstart=min0(i+1,j)
4299 cgrad          kend=max0(i-1,j-1)
4300 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4301 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4302 cgrad          do k=kstart,kend
4303 cgrad            do l=1,3
4304 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4305 cgrad            enddo
4306 cgrad          enddo
4307           do k=1,3
4308             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4309             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4310           enddo
4311         enddo
4312
4313         enddo ! iint
4314       enddo ! i
4315       do i=1,nct
4316         do j=1,3
4317           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4318           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4319           gradx_scp(j,i)=expon*gradx_scp(j,i)
4320         enddo
4321       enddo
4322 C******************************************************************************
4323 C
4324 C                              N O T E !!!
4325 C
4326 C To save time the factor EXPON has been extracted from ALL components
4327 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4328 C use!
4329 C
4330 C******************************************************************************
4331       return
4332       end
4333 C--------------------------------------------------------------------------
4334       subroutine edis(ehpb)
4335
4336 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4337 C
4338       implicit real*8 (a-h,o-z)
4339       include 'DIMENSIONS'
4340       include 'COMMON.SBRIDGE'
4341       include 'COMMON.CHAIN'
4342       include 'COMMON.DERIV'
4343       include 'COMMON.VAR'
4344       include 'COMMON.INTERACT'
4345       include 'COMMON.IOUNITS'
4346       dimension ggg(3)
4347       ehpb=0.0D0
4348 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4349 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4350       if (link_end.eq.0) return
4351       do i=link_start,link_end
4352 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4353 C CA-CA distance used in regularization of structure.
4354         ii=ihpb(i)
4355         jj=jhpb(i)
4356 C iii and jjj point to the residues for which the distance is assigned.
4357         if (ii.gt.nres) then
4358           iii=ii-nres
4359           jjj=jj-nres 
4360         else
4361           iii=ii
4362           jjj=jj
4363         endif
4364 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4365 c     &    dhpb(i),dhpb1(i),forcon(i)
4366 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4367 C    distance and angle dependent SS bond potential.
4368 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4369 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4370         if (.not.dyn_ss .and. i.le.nss) then
4371 C 15/02/13 CC dynamic SSbond - additional check
4372          if (ii.gt.nres 
4373      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4374           call ssbond_ene(iii,jjj,eij)
4375           ehpb=ehpb+2*eij
4376          endif
4377 cd          write (iout,*) "eij",eij
4378         else if (ii.gt.nres .and. jj.gt.nres) then
4379 c Restraints from contact prediction
4380           dd=dist(ii,jj)
4381           if (dhpb1(i).gt.0.0d0) then
4382             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4383             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4384 c            write (iout,*) "beta nmr",
4385 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4386           else
4387             dd=dist(ii,jj)
4388             rdis=dd-dhpb(i)
4389 C Get the force constant corresponding to this distance.
4390             waga=forcon(i)
4391 C Calculate the contribution to energy.
4392             ehpb=ehpb+waga*rdis*rdis
4393 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4394 C
4395 C Evaluate gradient.
4396 C
4397             fac=waga*rdis/dd
4398           endif  
4399           do j=1,3
4400             ggg(j)=fac*(c(j,jj)-c(j,ii))
4401           enddo
4402           do j=1,3
4403             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4404             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4405           enddo
4406           do k=1,3
4407             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4408             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4409           enddo
4410         else
4411 C Calculate the distance between the two points and its difference from the
4412 C target distance.
4413           dd=dist(ii,jj)
4414           if (dhpb1(i).gt.0.0d0) then
4415             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4416             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4417 c            write (iout,*) "alph nmr",
4418 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4419           else
4420             rdis=dd-dhpb(i)
4421 C Get the force constant corresponding to this distance.
4422             waga=forcon(i)
4423 C Calculate the contribution to energy.
4424             ehpb=ehpb+waga*rdis*rdis
4425 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4426 C
4427 C Evaluate gradient.
4428 C
4429             fac=waga*rdis/dd
4430           endif
4431 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4432 cd   &   ' waga=',waga,' fac=',fac
4433             do j=1,3
4434               ggg(j)=fac*(c(j,jj)-c(j,ii))
4435             enddo
4436 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4437 C If this is a SC-SC distance, we need to calculate the contributions to the
4438 C Cartesian gradient in the SC vectors (ghpbx).
4439           if (iii.lt.ii) then
4440           do j=1,3
4441             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4442             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4443           enddo
4444           endif
4445 cgrad        do j=iii,jjj-1
4446 cgrad          do k=1,3
4447 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4448 cgrad          enddo
4449 cgrad        enddo
4450           do k=1,3
4451             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4452             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4453           enddo
4454         endif
4455       enddo
4456       ehpb=0.5D0*ehpb
4457       return
4458       end
4459 C--------------------------------------------------------------------------
4460       subroutine ssbond_ene(i,j,eij)
4461
4462 C Calculate the distance and angle dependent SS-bond potential energy
4463 C using a free-energy function derived based on RHF/6-31G** ab initio
4464 C calculations of diethyl disulfide.
4465 C
4466 C A. Liwo and U. Kozlowska, 11/24/03
4467 C
4468       implicit real*8 (a-h,o-z)
4469       include 'DIMENSIONS'
4470       include 'COMMON.SBRIDGE'
4471       include 'COMMON.CHAIN'
4472       include 'COMMON.DERIV'
4473       include 'COMMON.LOCAL'
4474       include 'COMMON.INTERACT'
4475       include 'COMMON.VAR'
4476       include 'COMMON.IOUNITS'
4477       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4478       itypi=itype(i)
4479       xi=c(1,nres+i)
4480       yi=c(2,nres+i)
4481       zi=c(3,nres+i)
4482       dxi=dc_norm(1,nres+i)
4483       dyi=dc_norm(2,nres+i)
4484       dzi=dc_norm(3,nres+i)
4485 c      dsci_inv=dsc_inv(itypi)
4486       dsci_inv=vbld_inv(nres+i)
4487       itypj=itype(j)
4488 c      dscj_inv=dsc_inv(itypj)
4489       dscj_inv=vbld_inv(nres+j)
4490       xj=c(1,nres+j)-xi
4491       yj=c(2,nres+j)-yi
4492       zj=c(3,nres+j)-zi
4493       dxj=dc_norm(1,nres+j)
4494       dyj=dc_norm(2,nres+j)
4495       dzj=dc_norm(3,nres+j)
4496       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4497       rij=dsqrt(rrij)
4498       erij(1)=xj*rij
4499       erij(2)=yj*rij
4500       erij(3)=zj*rij
4501       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4502       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4503       om12=dxi*dxj+dyi*dyj+dzi*dzj
4504       do k=1,3
4505         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4506         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4507       enddo
4508       rij=1.0d0/rij
4509       deltad=rij-d0cm
4510       deltat1=1.0d0-om1
4511       deltat2=1.0d0+om2
4512       deltat12=om2-om1+2.0d0
4513       cosphi=om12-om1*om2
4514       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4515      &  +akct*deltad*deltat12+ebr
4516      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4517 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4518 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4519 c     &  " deltat12",deltat12," eij",eij 
4520       ed=2*akcm*deltad+akct*deltat12
4521       pom1=akct*deltad
4522       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4523       eom1=-2*akth*deltat1-pom1-om2*pom2
4524       eom2= 2*akth*deltat2+pom1-om1*pom2
4525       eom12=pom2
4526       do k=1,3
4527         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4528         ghpbx(k,i)=ghpbx(k,i)-ggk
4529      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4530      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4531         ghpbx(k,j)=ghpbx(k,j)+ggk
4532      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4533      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4534         ghpbc(k,i)=ghpbc(k,i)-ggk
4535         ghpbc(k,j)=ghpbc(k,j)+ggk
4536       enddo
4537 C
4538 C Calculate the components of the gradient in DC and X
4539 C
4540 cgrad      do k=i,j-1
4541 cgrad        do l=1,3
4542 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4543 cgrad        enddo
4544 cgrad      enddo
4545       return
4546       end
4547 C--------------------------------------------------------------------------
4548       subroutine ebond(estr)
4549 c
4550 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4551 c
4552       implicit real*8 (a-h,o-z)
4553       include 'DIMENSIONS'
4554       include 'COMMON.LOCAL'
4555       include 'COMMON.GEO'
4556       include 'COMMON.INTERACT'
4557       include 'COMMON.DERIV'
4558       include 'COMMON.VAR'
4559       include 'COMMON.CHAIN'
4560       include 'COMMON.IOUNITS'
4561       include 'COMMON.NAMES'
4562       include 'COMMON.FFIELD'
4563       include 'COMMON.CONTROL'
4564       include 'COMMON.SETUP'
4565       double precision u(3),ud(3)
4566       estr=0.0d0
4567       do i=ibondp_start,ibondp_end
4568         diff = vbld(i)-vbldp0
4569 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4570         estr=estr+diff*diff
4571         do j=1,3
4572           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4573         enddo
4574 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4575       enddo
4576       estr=0.5d0*AKP*estr
4577 c
4578 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4579 c
4580       do i=ibond_start,ibond_end
4581         iti=itype(i)
4582         if (iti.ne.10) then
4583           nbi=nbondterm(iti)
4584           if (nbi.eq.1) then
4585             diff=vbld(i+nres)-vbldsc0(1,iti)
4586 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4587 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4588             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4589             do j=1,3
4590               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4591             enddo
4592           else
4593             do j=1,nbi
4594               diff=vbld(i+nres)-vbldsc0(j,iti) 
4595               ud(j)=aksc(j,iti)*diff
4596               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4597             enddo
4598             uprod=u(1)
4599             do j=2,nbi
4600               uprod=uprod*u(j)
4601             enddo
4602             usum=0.0d0
4603             usumsqder=0.0d0
4604             do j=1,nbi
4605               uprod1=1.0d0
4606               uprod2=1.0d0
4607               do k=1,nbi
4608                 if (k.ne.j) then
4609                   uprod1=uprod1*u(k)
4610                   uprod2=uprod2*u(k)*u(k)
4611                 endif
4612               enddo
4613               usum=usum+uprod1
4614               usumsqder=usumsqder+ud(j)*uprod2   
4615             enddo
4616             estr=estr+uprod/usum
4617             do j=1,3
4618              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4619             enddo
4620           endif
4621         endif
4622       enddo
4623       return
4624       end 
4625 #ifdef CRYST_THETA
4626 C--------------------------------------------------------------------------
4627       subroutine ebend(etheta)
4628 C
4629 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4630 C angles gamma and its derivatives in consecutive thetas and gammas.
4631 C
4632       implicit real*8 (a-h,o-z)
4633       include 'DIMENSIONS'
4634       include 'COMMON.LOCAL'
4635       include 'COMMON.GEO'
4636       include 'COMMON.INTERACT'
4637       include 'COMMON.DERIV'
4638       include 'COMMON.VAR'
4639       include 'COMMON.CHAIN'
4640       include 'COMMON.IOUNITS'
4641       include 'COMMON.NAMES'
4642       include 'COMMON.FFIELD'
4643       include 'COMMON.CONTROL'
4644       common /calcthet/ term1,term2,termm,diffak,ratak,
4645      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4646      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4647       double precision y(2),z(2)
4648       delta=0.02d0*pi
4649 c      time11=dexp(-2*time)
4650 c      time12=1.0d0
4651       etheta=0.0D0
4652 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4653       do i=ithet_start,ithet_end
4654 C Zero the energy function and its derivative at 0 or pi.
4655         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4656         it=itype(i-1)
4657         if (i.gt.3) then
4658 #ifdef OSF
4659           phii=phi(i)
4660           if (phii.ne.phii) phii=150.0
4661 #else
4662           phii=phi(i)
4663 #endif
4664           y(1)=dcos(phii)
4665           y(2)=dsin(phii)
4666         else 
4667           y(1)=0.0D0
4668           y(2)=0.0D0
4669         endif
4670         if (i.lt.nres) then
4671 #ifdef OSF
4672           phii1=phi(i+1)
4673           if (phii1.ne.phii1) phii1=150.0
4674           phii1=pinorm(phii1)
4675           z(1)=cos(phii1)
4676 #else
4677           phii1=phi(i+1)
4678           z(1)=dcos(phii1)
4679 #endif
4680           z(2)=dsin(phii1)
4681         else
4682           z(1)=0.0D0
4683           z(2)=0.0D0
4684         endif  
4685 C Calculate the "mean" value of theta from the part of the distribution
4686 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4687 C In following comments this theta will be referred to as t_c.
4688         thet_pred_mean=0.0d0
4689         do k=1,2
4690           athetk=athet(k,it)
4691           bthetk=bthet(k,it)
4692           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4693         enddo
4694         dthett=thet_pred_mean*ssd
4695         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4696 C Derivatives of the "mean" values in gamma1 and gamma2.
4697         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4698         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4699         if (theta(i).gt.pi-delta) then
4700           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4701      &         E_tc0)
4702           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4703           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4704           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4705      &        E_theta)
4706           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4707      &        E_tc)
4708         else if (theta(i).lt.delta) then
4709           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4710           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4711           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4712      &        E_theta)
4713           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4714           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4715      &        E_tc)
4716         else
4717           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4718      &        E_theta,E_tc)
4719         endif
4720         etheta=etheta+ethetai
4721         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4722      &      'ebend',i,ethetai
4723         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4724         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4725         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)+gloc(nphi+i-2,icg)
4726       enddo
4727 C Ufff.... We've done all this!!! 
4728       return
4729       end
4730 C---------------------------------------------------------------------------
4731       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4732      &     E_tc)
4733       implicit real*8 (a-h,o-z)
4734       include 'DIMENSIONS'
4735       include 'COMMON.LOCAL'
4736       include 'COMMON.IOUNITS'
4737       common /calcthet/ term1,term2,termm,diffak,ratak,
4738      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4739      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4740 C Calculate the contributions to both Gaussian lobes.
4741 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4742 C The "polynomial part" of the "standard deviation" of this part of 
4743 C the distribution.
4744         sig=polthet(3,it)
4745         do j=2,0,-1
4746           sig=sig*thet_pred_mean+polthet(j,it)
4747         enddo
4748 C Derivative of the "interior part" of the "standard deviation of the" 
4749 C gamma-dependent Gaussian lobe in t_c.
4750         sigtc=3*polthet(3,it)
4751         do j=2,1,-1
4752           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4753         enddo
4754         sigtc=sig*sigtc
4755 C Set the parameters of both Gaussian lobes of the distribution.
4756 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4757         fac=sig*sig+sigc0(it)
4758         sigcsq=fac+fac
4759         sigc=1.0D0/sigcsq
4760 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4761         sigsqtc=-4.0D0*sigcsq*sigtc
4762 c       print *,i,sig,sigtc,sigsqtc
4763 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4764         sigtc=-sigtc/(fac*fac)
4765 C Following variable is sigma(t_c)**(-2)
4766         sigcsq=sigcsq*sigcsq
4767         sig0i=sig0(it)
4768         sig0inv=1.0D0/sig0i**2
4769         delthec=thetai-thet_pred_mean
4770         delthe0=thetai-theta0i
4771         term1=-0.5D0*sigcsq*delthec*delthec
4772         term2=-0.5D0*sig0inv*delthe0*delthe0
4773 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4774 C NaNs in taking the logarithm. We extract the largest exponent which is added
4775 C to the energy (this being the log of the distribution) at the end of energy
4776 C term evaluation for this virtual-bond angle.
4777         if (term1.gt.term2) then
4778           termm=term1
4779           term2=dexp(term2-termm)
4780           term1=1.0d0
4781         else
4782           termm=term2
4783           term1=dexp(term1-termm)
4784           term2=1.0d0
4785         endif
4786 C The ratio between the gamma-independent and gamma-dependent lobes of
4787 C the distribution is a Gaussian function of thet_pred_mean too.
4788         diffak=gthet(2,it)-thet_pred_mean
4789         ratak=diffak/gthet(3,it)**2
4790         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4791 C Let's differentiate it in thet_pred_mean NOW.
4792         aktc=ak*ratak
4793 C Now put together the distribution terms to make complete distribution.
4794         termexp=term1+ak*term2
4795         termpre=sigc+ak*sig0i
4796 C Contribution of the bending energy from this theta is just the -log of
4797 C the sum of the contributions from the two lobes and the pre-exponential
4798 C factor. Simple enough, isn't it?
4799         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4800 C NOW the derivatives!!!
4801 C 6/6/97 Take into account the deformation.
4802         E_theta=(delthec*sigcsq*term1
4803      &       +ak*delthe0*sig0inv*term2)/termexp
4804         E_tc=((sigtc+aktc*sig0i)/termpre
4805      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4806      &       aktc*term2)/termexp)
4807       return
4808       end
4809 c-----------------------------------------------------------------------------
4810       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4811       implicit real*8 (a-h,o-z)
4812       include 'DIMENSIONS'
4813       include 'COMMON.LOCAL'
4814       include 'COMMON.IOUNITS'
4815       common /calcthet/ term1,term2,termm,diffak,ratak,
4816      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4817      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4818       delthec=thetai-thet_pred_mean
4819       delthe0=thetai-theta0i
4820 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4821       t3 = thetai-thet_pred_mean
4822       t6 = t3**2
4823       t9 = term1
4824       t12 = t3*sigcsq
4825       t14 = t12+t6*sigsqtc
4826       t16 = 1.0d0
4827       t21 = thetai-theta0i
4828       t23 = t21**2
4829       t26 = term2
4830       t27 = t21*t26
4831       t32 = termexp
4832       t40 = t32**2
4833       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4834      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4835      & *(-t12*t9-ak*sig0inv*t27)
4836       return
4837       end
4838 #else
4839 C--------------------------------------------------------------------------
4840       subroutine ebend(etheta)
4841 C
4842 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4843 C angles gamma and its derivatives in consecutive thetas and gammas.
4844 C ab initio-derived potentials from 
4845 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4846 C
4847       implicit real*8 (a-h,o-z)
4848       include 'DIMENSIONS'
4849       include 'COMMON.LOCAL'
4850       include 'COMMON.GEO'
4851       include 'COMMON.INTERACT'
4852       include 'COMMON.DERIV'
4853       include 'COMMON.VAR'
4854       include 'COMMON.CHAIN'
4855       include 'COMMON.IOUNITS'
4856       include 'COMMON.NAMES'
4857       include 'COMMON.FFIELD'
4858       include 'COMMON.CONTROL'
4859       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4860      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4861      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4862      & sinph1ph2(maxdouble,maxdouble)
4863       logical lprn /.false./, lprn1 /.false./
4864       etheta=0.0D0
4865 c      write (iout,*) "EBEND ithet_start",ithet_start,
4866 c     &     " ithet_end",ithet_end
4867       do i=ithet_start,ithet_end
4868         if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
4869      &(itype(i).eq.ntyp1)) cycle
4870         dethetai=0.0d0
4871         dephii=0.0d0
4872         dephii1=0.0d0
4873         theti2=0.5d0*theta(i)
4874         ityp2=ithetyp(itype(i-1))
4875         do k=1,nntheterm
4876           coskt(k)=dcos(k*theti2)
4877           sinkt(k)=dsin(k*theti2)
4878         enddo
4879 C        if (i.gt.3) then
4880          if (i.gt.3 .and. itype(i-3).ne.ntyp1) then
4881 #ifdef OSF
4882           phii=phi(i)
4883           if (phii.ne.phii) phii=150.0
4884 #else
4885           phii=phi(i)
4886 #endif
4887           ityp1=ithetyp(itype(i-2))
4888           do k=1,nsingle
4889             cosph1(k)=dcos(k*phii)
4890             sinph1(k)=dsin(k*phii)
4891           enddo
4892         else
4893           phii=0.0d0
4894           ityp1=ithetyp(itype(i-2))
4895           do k=1,nsingle
4896             cosph1(k)=0.0d0
4897             sinph1(k)=0.0d0
4898           enddo 
4899         endif
4900         if ((i.lt.nres).and. itype(i+1).ne.ntyp1) then
4901 #ifdef OSF
4902           phii1=phi(i+1)
4903           if (phii1.ne.phii1) phii1=150.0
4904           phii1=pinorm(phii1)
4905 #else
4906           phii1=phi(i+1)
4907 #endif
4908           ityp3=ithetyp(itype(i))
4909           do k=1,nsingle
4910             cosph2(k)=dcos(k*phii1)
4911             sinph2(k)=dsin(k*phii1)
4912           enddo
4913         else
4914           phii1=0.0d0
4915           ityp3=ithetyp(itype(i))
4916           do k=1,nsingle
4917             cosph2(k)=0.0d0
4918             sinph2(k)=0.0d0
4919           enddo
4920         endif  
4921         ethetai=aa0thet(ityp1,ityp2,ityp3)
4922         do k=1,ndouble
4923           do l=1,k-1
4924             ccl=cosph1(l)*cosph2(k-l)
4925             ssl=sinph1(l)*sinph2(k-l)
4926             scl=sinph1(l)*cosph2(k-l)
4927             csl=cosph1(l)*sinph2(k-l)
4928             cosph1ph2(l,k)=ccl-ssl
4929             cosph1ph2(k,l)=ccl+ssl
4930             sinph1ph2(l,k)=scl+csl
4931             sinph1ph2(k,l)=scl-csl
4932           enddo
4933         enddo
4934         if (lprn) then
4935         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4936      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4937         write (iout,*) "coskt and sinkt"
4938         do k=1,nntheterm
4939           write (iout,*) k,coskt(k),sinkt(k)
4940         enddo
4941         endif
4942         do k=1,ntheterm
4943           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4944           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4945      &      *coskt(k)
4946           if (lprn)
4947      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4948      &     " ethetai",ethetai
4949         enddo
4950         if (lprn) then
4951         write (iout,*) "cosph and sinph"
4952         do k=1,nsingle
4953           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4954         enddo
4955         write (iout,*) "cosph1ph2 and sinph2ph2"
4956         do k=2,ndouble
4957           do l=1,k-1
4958             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4959      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4960           enddo
4961         enddo
4962         write(iout,*) "ethetai",ethetai
4963         endif
4964         do m=1,ntheterm2
4965           do k=1,nsingle
4966             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4967      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4968      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4969      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4970             ethetai=ethetai+sinkt(m)*aux
4971             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4972             dephii=dephii+k*sinkt(m)*(
4973      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4974      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4975             dephii1=dephii1+k*sinkt(m)*(
4976      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4977      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4978             if (lprn)
4979      &      write (iout,*) "m",m," k",k," bbthet",
4980      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4981      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4982      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4983      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4984           enddo
4985         enddo
4986         if (lprn)
4987      &  write(iout,*) "ethetai",ethetai
4988         do m=1,ntheterm3
4989           do k=2,ndouble
4990             do l=1,k-1
4991               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4992      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4993      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4994      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4995               ethetai=ethetai+sinkt(m)*aux
4996               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4997               dephii=dephii+l*sinkt(m)*(
4998      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4999      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
5000      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
5001      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
5002               dephii1=dephii1+(k-l)*sinkt(m)*(
5003      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
5004      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
5005      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
5006      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
5007               if (lprn) then
5008               write (iout,*) "m",m," k",k," l",l," ffthet",
5009      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
5010      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
5011      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
5012      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
5013               write (iout,*) cosph1ph2(l,k)*sinkt(m),
5014      &            cosph1ph2(k,l)*sinkt(m),
5015      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
5016               endif
5017             enddo
5018           enddo
5019         enddo
5020 10      continue
5021 c        lprn1=.true.
5022         if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)') 
5023      &  'ebe', i,theta(i)*rad2deg,phii*rad2deg,
5024      &   phii1*rad2deg,ethetai
5025 c        lprn1=.false.
5026         etheta=etheta+ethetai
5027         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
5028         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
5029         gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)+wang*dethetai
5030       enddo
5031       return
5032       end
5033 #endif
5034 #ifdef CRYST_SC
5035 c-----------------------------------------------------------------------------
5036       subroutine esc(escloc)
5037 C Calculate the local energy of a side chain and its derivatives in the
5038 C corresponding virtual-bond valence angles THETA and the spherical angles 
5039 C ALPHA and OMEGA.
5040       implicit real*8 (a-h,o-z)
5041       include 'DIMENSIONS'
5042       include 'COMMON.GEO'
5043       include 'COMMON.LOCAL'
5044       include 'COMMON.VAR'
5045       include 'COMMON.INTERACT'
5046       include 'COMMON.DERIV'
5047       include 'COMMON.CHAIN'
5048       include 'COMMON.IOUNITS'
5049       include 'COMMON.NAMES'
5050       include 'COMMON.FFIELD'
5051       include 'COMMON.CONTROL'
5052       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
5053      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
5054       common /sccalc/ time11,time12,time112,theti,it,nlobit
5055       delta=0.02d0*pi
5056       escloc=0.0D0
5057 c     write (iout,'(a)') 'ESC'
5058       do i=loc_start,loc_end
5059         it=itype(i)
5060         if (it.eq.10) goto 1
5061         nlobit=nlob(it)
5062 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
5063 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
5064         theti=theta(i+1)-pipol
5065         x(1)=dtan(theti)
5066         x(2)=alph(i)
5067         x(3)=omeg(i)
5068
5069         if (x(2).gt.pi-delta) then
5070           xtemp(1)=x(1)
5071           xtemp(2)=pi-delta
5072           xtemp(3)=x(3)
5073           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5074           xtemp(2)=pi
5075           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5076           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
5077      &        escloci,dersc(2))
5078           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5079      &        ddersc0(1),dersc(1))
5080           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
5081      &        ddersc0(3),dersc(3))
5082           xtemp(2)=pi-delta
5083           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5084           xtemp(2)=pi
5085           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5086           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
5087      &            dersc0(2),esclocbi,dersc02)
5088           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5089      &            dersc12,dersc01)
5090           call splinthet(x(2),0.5d0*delta,ss,ssd)
5091           dersc0(1)=dersc01
5092           dersc0(2)=dersc02
5093           dersc0(3)=0.0d0
5094           do k=1,3
5095             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5096           enddo
5097           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5098 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5099 c    &             esclocbi,ss,ssd
5100           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5101 c         escloci=esclocbi
5102 c         write (iout,*) escloci
5103         else if (x(2).lt.delta) then
5104           xtemp(1)=x(1)
5105           xtemp(2)=delta
5106           xtemp(3)=x(3)
5107           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5108           xtemp(2)=0.0d0
5109           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5110           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5111      &        escloci,dersc(2))
5112           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5113      &        ddersc0(1),dersc(1))
5114           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5115      &        ddersc0(3),dersc(3))
5116           xtemp(2)=delta
5117           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5118           xtemp(2)=0.0d0
5119           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5120           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5121      &            dersc0(2),esclocbi,dersc02)
5122           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5123      &            dersc12,dersc01)
5124           dersc0(1)=dersc01
5125           dersc0(2)=dersc02
5126           dersc0(3)=0.0d0
5127           call splinthet(x(2),0.5d0*delta,ss,ssd)
5128           do k=1,3
5129             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5130           enddo
5131           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5132 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5133 c    &             esclocbi,ss,ssd
5134           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5135 c         write (iout,*) escloci
5136         else
5137           call enesc(x,escloci,dersc,ddummy,.false.)
5138         endif
5139
5140         escloc=escloc+escloci
5141         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5142      &     'escloc',i,escloci
5143 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5144
5145         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5146      &   wscloc*dersc(1)
5147         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5148         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5149     1   continue
5150       enddo
5151       return
5152       end
5153 C---------------------------------------------------------------------------
5154       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5155       implicit real*8 (a-h,o-z)
5156       include 'DIMENSIONS'
5157       include 'COMMON.GEO'
5158       include 'COMMON.LOCAL'
5159       include 'COMMON.IOUNITS'
5160       common /sccalc/ time11,time12,time112,theti,it,nlobit
5161       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5162       double precision contr(maxlob,-1:1)
5163       logical mixed
5164 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5165         escloc_i=0.0D0
5166         do j=1,3
5167           dersc(j)=0.0D0
5168           if (mixed) ddersc(j)=0.0d0
5169         enddo
5170         x3=x(3)
5171
5172 C Because of periodicity of the dependence of the SC energy in omega we have
5173 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5174 C To avoid underflows, first compute & store the exponents.
5175
5176         do iii=-1,1
5177
5178           x(3)=x3+iii*dwapi
5179  
5180           do j=1,nlobit
5181             do k=1,3
5182               z(k)=x(k)-censc(k,j,it)
5183             enddo
5184             do k=1,3
5185               Axk=0.0D0
5186               do l=1,3
5187                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5188               enddo
5189               Ax(k,j,iii)=Axk
5190             enddo 
5191             expfac=0.0D0 
5192             do k=1,3
5193               expfac=expfac+Ax(k,j,iii)*z(k)
5194             enddo
5195             contr(j,iii)=expfac
5196           enddo ! j
5197
5198         enddo ! iii
5199
5200         x(3)=x3
5201 C As in the case of ebend, we want to avoid underflows in exponentiation and
5202 C subsequent NaNs and INFs in energy calculation.
5203 C Find the largest exponent
5204         emin=contr(1,-1)
5205         do iii=-1,1
5206           do j=1,nlobit
5207             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5208           enddo 
5209         enddo
5210         emin=0.5D0*emin
5211 cd      print *,'it=',it,' emin=',emin
5212
5213 C Compute the contribution to SC energy and derivatives
5214         do iii=-1,1
5215
5216           do j=1,nlobit
5217 #ifdef OSF
5218             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5219             if(adexp.ne.adexp) adexp=1.0
5220             expfac=dexp(adexp)
5221 #else
5222             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5223 #endif
5224 cd          print *,'j=',j,' expfac=',expfac
5225             escloc_i=escloc_i+expfac
5226             do k=1,3
5227               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5228             enddo
5229             if (mixed) then
5230               do k=1,3,2
5231                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5232      &            +gaussc(k,2,j,it))*expfac
5233               enddo
5234             endif
5235           enddo
5236
5237         enddo ! iii
5238
5239         dersc(1)=dersc(1)/cos(theti)**2
5240         ddersc(1)=ddersc(1)/cos(theti)**2
5241         ddersc(3)=ddersc(3)
5242
5243         escloci=-(dlog(escloc_i)-emin)
5244         do j=1,3
5245           dersc(j)=dersc(j)/escloc_i
5246         enddo
5247         if (mixed) then
5248           do j=1,3,2
5249             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5250           enddo
5251         endif
5252       return
5253       end
5254 C------------------------------------------------------------------------------
5255       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5256       implicit real*8 (a-h,o-z)
5257       include 'DIMENSIONS'
5258       include 'COMMON.GEO'
5259       include 'COMMON.LOCAL'
5260       include 'COMMON.IOUNITS'
5261       common /sccalc/ time11,time12,time112,theti,it,nlobit
5262       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5263       double precision contr(maxlob)
5264       logical mixed
5265
5266       escloc_i=0.0D0
5267
5268       do j=1,3
5269         dersc(j)=0.0D0
5270       enddo
5271
5272       do j=1,nlobit
5273         do k=1,2
5274           z(k)=x(k)-censc(k,j,it)
5275         enddo
5276         z(3)=dwapi
5277         do k=1,3
5278           Axk=0.0D0
5279           do l=1,3
5280             Axk=Axk+gaussc(l,k,j,it)*z(l)
5281           enddo
5282           Ax(k,j)=Axk
5283         enddo 
5284         expfac=0.0D0 
5285         do k=1,3
5286           expfac=expfac+Ax(k,j)*z(k)
5287         enddo
5288         contr(j)=expfac
5289       enddo ! j
5290
5291 C As in the case of ebend, we want to avoid underflows in exponentiation and
5292 C subsequent NaNs and INFs in energy calculation.
5293 C Find the largest exponent
5294       emin=contr(1)
5295       do j=1,nlobit
5296         if (emin.gt.contr(j)) emin=contr(j)
5297       enddo 
5298       emin=0.5D0*emin
5299  
5300 C Compute the contribution to SC energy and derivatives
5301
5302       dersc12=0.0d0
5303       do j=1,nlobit
5304         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5305         escloc_i=escloc_i+expfac
5306         do k=1,2
5307           dersc(k)=dersc(k)+Ax(k,j)*expfac
5308         enddo
5309         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5310      &            +gaussc(1,2,j,it))*expfac
5311         dersc(3)=0.0d0
5312       enddo
5313
5314       dersc(1)=dersc(1)/cos(theti)**2
5315       dersc12=dersc12/cos(theti)**2
5316       escloci=-(dlog(escloc_i)-emin)
5317       do j=1,2
5318         dersc(j)=dersc(j)/escloc_i
5319       enddo
5320       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5321       return
5322       end
5323 #else
5324 c----------------------------------------------------------------------------------
5325       subroutine esc(escloc)
5326 C Calculate the local energy of a side chain and its derivatives in the
5327 C corresponding virtual-bond valence angles THETA and the spherical angles 
5328 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5329 C added by Urszula Kozlowska. 07/11/2007
5330 C
5331       implicit real*8 (a-h,o-z)
5332       include 'DIMENSIONS'
5333       include 'COMMON.GEO'
5334       include 'COMMON.LOCAL'
5335       include 'COMMON.VAR'
5336       include 'COMMON.SCROT'
5337       include 'COMMON.INTERACT'
5338       include 'COMMON.DERIV'
5339       include 'COMMON.CHAIN'
5340       include 'COMMON.IOUNITS'
5341       include 'COMMON.NAMES'
5342       include 'COMMON.FFIELD'
5343       include 'COMMON.CONTROL'
5344       include 'COMMON.VECTORS'
5345       double precision x_prime(3),y_prime(3),z_prime(3)
5346      &    , sumene,dsc_i,dp2_i,x(65),
5347      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5348      &    de_dxx,de_dyy,de_dzz,de_dt
5349       double precision s1_t,s1_6_t,s2_t,s2_6_t
5350       double precision 
5351      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5352      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5353      & dt_dCi(3),dt_dCi1(3)
5354       common /sccalc/ time11,time12,time112,theti,it,nlobit
5355       delta=0.02d0*pi
5356       escloc=0.0D0
5357 c      write(iout,*) "ESC: loc_start",loc_start," loc_end",loc_end
5358       do i=loc_start,loc_end
5359         costtab(i+1) =dcos(theta(i+1))
5360         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5361         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5362         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5363         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5364         cosfac=dsqrt(cosfac2)
5365         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5366         sinfac=dsqrt(sinfac2)
5367         it=itype(i)
5368         if (it.eq.10) goto 1
5369 c
5370 C  Compute the axes of tghe local cartesian coordinates system; store in
5371 c   x_prime, y_prime and z_prime 
5372 c
5373         do j=1,3
5374           x_prime(j) = 0.00
5375           y_prime(j) = 0.00
5376           z_prime(j) = 0.00
5377         enddo
5378 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5379 C     &   dc_norm(3,i+nres)
5380         do j = 1,3
5381           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5382           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5383         enddo
5384         do j = 1,3
5385           z_prime(j) = -uz(j,i-1)
5386         enddo     
5387 c       write (2,*) "i",i
5388 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5389 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5390 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5391 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5392 c      & " xy",scalar(x_prime(1),y_prime(1)),
5393 c      & " xz",scalar(x_prime(1),z_prime(1)),
5394 c      & " yy",scalar(y_prime(1),y_prime(1)),
5395 c      & " yz",scalar(y_prime(1),z_prime(1)),
5396 c      & " zz",scalar(z_prime(1),z_prime(1))
5397 c
5398 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5399 C to local coordinate system. Store in xx, yy, zz.
5400 c
5401         xx=0.0d0
5402         yy=0.0d0
5403         zz=0.0d0
5404         do j = 1,3
5405           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5406           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5407           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5408         enddo
5409
5410         xxtab(i)=xx
5411         yytab(i)=yy
5412         zztab(i)=zz
5413 C
5414 C Compute the energy of the ith side cbain
5415 C
5416 c        write (2,*) "xx",xx," yy",yy," zz",zz
5417         it=itype(i)
5418         do j = 1,65
5419           x(j) = sc_parmin(j,it) 
5420         enddo
5421 #ifdef CHECK_COORD
5422 Cc diagnostics - remove later
5423         xx1 = dcos(alph(2))
5424         yy1 = dsin(alph(2))*dcos(omeg(2))
5425         zz1 = -dsin(alph(2))*dsin(omeg(2))
5426         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5427      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5428      &    xx1,yy1,zz1
5429 C,"  --- ", xx_w,yy_w,zz_w
5430 c end diagnostics
5431 #endif
5432         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5433      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5434      &   + x(10)*yy*zz
5435         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5436      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5437      & + x(20)*yy*zz
5438         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5439      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5440      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5441      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5442      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5443      &  +x(40)*xx*yy*zz
5444         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5445      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5446      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5447      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5448      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5449      &  +x(60)*xx*yy*zz
5450         dsc_i   = 0.743d0+x(61)
5451         dp2_i   = 1.9d0+x(62)
5452         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5453      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5454         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5455      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5456         s1=(1+x(63))/(0.1d0 + dscp1)
5457         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5458         s2=(1+x(65))/(0.1d0 + dscp2)
5459         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5460         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5461      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5462 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5463 c     &   sumene4,
5464 c     &   dscp1,dscp2,sumene
5465 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5466         escloc = escloc + sumene
5467 c        write (2,*) "i",i," escloc",sumene,escloc
5468 #ifdef DEBUG
5469 C
5470 C This section to check the numerical derivatives of the energy of ith side
5471 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5472 C #define DEBUG in the code to turn it on.
5473 C
5474         write (2,*) "sumene               =",sumene
5475         aincr=1.0d-7
5476         xxsave=xx
5477         xx=xx+aincr
5478         write (2,*) xx,yy,zz
5479         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5480         de_dxx_num=(sumenep-sumene)/aincr
5481         xx=xxsave
5482         write (2,*) "xx+ sumene from enesc=",sumenep
5483         yysave=yy
5484         yy=yy+aincr
5485         write (2,*) xx,yy,zz
5486         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5487         de_dyy_num=(sumenep-sumene)/aincr
5488         yy=yysave
5489         write (2,*) "yy+ sumene from enesc=",sumenep
5490         zzsave=zz
5491         zz=zz+aincr
5492         write (2,*) xx,yy,zz
5493         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5494         de_dzz_num=(sumenep-sumene)/aincr
5495         zz=zzsave
5496         write (2,*) "zz+ sumene from enesc=",sumenep
5497         costsave=cost2tab(i+1)
5498         sintsave=sint2tab(i+1)
5499         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5500         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5501         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5502         de_dt_num=(sumenep-sumene)/aincr
5503         write (2,*) " t+ sumene from enesc=",sumenep
5504         cost2tab(i+1)=costsave
5505         sint2tab(i+1)=sintsave
5506 C End of diagnostics section.
5507 #endif
5508 C        
5509 C Compute the gradient of esc
5510 C
5511         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5512         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5513         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5514         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5515         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5516         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5517         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5518         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5519         pom1=(sumene3*sint2tab(i+1)+sumene1)
5520      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5521         pom2=(sumene4*cost2tab(i+1)+sumene2)
5522      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5523         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5524         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5525      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5526      &  +x(40)*yy*zz
5527         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5528         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5529      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5530      &  +x(60)*yy*zz
5531         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5532      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5533      &        +(pom1+pom2)*pom_dx
5534 #ifdef DEBUG
5535         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5536 #endif
5537 C
5538         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5539         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5540      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5541      &  +x(40)*xx*zz
5542         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5543         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5544      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5545      &  +x(59)*zz**2 +x(60)*xx*zz
5546         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5547      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5548      &        +(pom1-pom2)*pom_dy
5549 #ifdef DEBUG
5550         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5551 #endif
5552 C
5553         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5554      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5555      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5556      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5557      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5558      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5559      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5560      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5561 #ifdef DEBUG
5562         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5563 #endif
5564 C
5565         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5566      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5567      &  +pom1*pom_dt1+pom2*pom_dt2
5568 #ifdef DEBUG
5569         write(2,*), "de_dt = ", de_dt,de_dt_num
5570 #endif
5571
5572 C
5573        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5574        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5575        cosfac2xx=cosfac2*xx
5576        sinfac2yy=sinfac2*yy
5577        do k = 1,3
5578          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5579      &      vbld_inv(i+1)
5580          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5581      &      vbld_inv(i)
5582          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5583          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5584 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5585 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5586 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5587 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5588          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5589          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5590          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5591          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5592          dZZ_Ci1(k)=0.0d0
5593          dZZ_Ci(k)=0.0d0
5594          do j=1,3
5595            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5596            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5597          enddo
5598           
5599          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5600          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5601          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5602 c
5603          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5604          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5605        enddo
5606
5607        do k=1,3
5608          dXX_Ctab(k,i)=dXX_Ci(k)
5609          dXX_C1tab(k,i)=dXX_Ci1(k)
5610          dYY_Ctab(k,i)=dYY_Ci(k)
5611          dYY_C1tab(k,i)=dYY_Ci1(k)
5612          dZZ_Ctab(k,i)=dZZ_Ci(k)
5613          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5614          dXX_XYZtab(k,i)=dXX_XYZ(k)
5615          dYY_XYZtab(k,i)=dYY_XYZ(k)
5616          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5617        enddo
5618
5619        do k = 1,3
5620 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5621 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5622 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5623 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5624 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5625 c     &    dt_dci(k)
5626 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5627 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5628          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5629      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5630          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5631      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5632          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5633      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5634        enddo
5635 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5636 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5637
5638 C to check gradient call subroutine check_grad
5639
5640     1 continue
5641       enddo
5642       return
5643       end
5644 c------------------------------------------------------------------------------
5645       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5646       implicit none
5647       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5648      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5649       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5650      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5651      &   + x(10)*yy*zz
5652       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5653      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5654      & + x(20)*yy*zz
5655       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5656      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5657      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5658      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5659      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5660      &  +x(40)*xx*yy*zz
5661       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5662      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5663      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5664      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5665      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5666      &  +x(60)*xx*yy*zz
5667       dsc_i   = 0.743d0+x(61)
5668       dp2_i   = 1.9d0+x(62)
5669       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5670      &          *(xx*cost2+yy*sint2))
5671       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5672      &          *(xx*cost2-yy*sint2))
5673       s1=(1+x(63))/(0.1d0 + dscp1)
5674       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5675       s2=(1+x(65))/(0.1d0 + dscp2)
5676       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5677       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5678      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5679       enesc=sumene
5680       return
5681       end
5682 #endif
5683 c------------------------------------------------------------------------------
5684       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5685 C
5686 C This procedure calculates two-body contact function g(rij) and its derivative:
5687 C
5688 C           eps0ij                                     !       x < -1
5689 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5690 C            0                                         !       x > 1
5691 C
5692 C where x=(rij-r0ij)/delta
5693 C
5694 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5695 C
5696       implicit none
5697       double precision rij,r0ij,eps0ij,fcont,fprimcont
5698       double precision x,x2,x4,delta
5699 c     delta=0.02D0*r0ij
5700 c      delta=0.2D0*r0ij
5701       x=(rij-r0ij)/delta
5702       if (x.lt.-1.0D0) then
5703         fcont=eps0ij
5704         fprimcont=0.0D0
5705       else if (x.le.1.0D0) then  
5706         x2=x*x
5707         x4=x2*x2
5708         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5709         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5710       else
5711         fcont=0.0D0
5712         fprimcont=0.0D0
5713       endif
5714       return
5715       end
5716 c------------------------------------------------------------------------------
5717       subroutine splinthet(theti,delta,ss,ssder)
5718       implicit real*8 (a-h,o-z)
5719       include 'DIMENSIONS'
5720       include 'COMMON.VAR'
5721       include 'COMMON.GEO'
5722       thetup=pi-delta
5723       thetlow=delta
5724       if (theti.gt.pipol) then
5725         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5726       else
5727         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5728         ssder=-ssder
5729       endif
5730       return
5731       end
5732 c------------------------------------------------------------------------------
5733       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5734       implicit none
5735       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5736       double precision ksi,ksi2,ksi3,a1,a2,a3
5737       a1=fprim0*delta/(f1-f0)
5738       a2=3.0d0-2.0d0*a1
5739       a3=a1-2.0d0
5740       ksi=(x-x0)/delta
5741       ksi2=ksi*ksi
5742       ksi3=ksi2*ksi  
5743       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5744       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5745       return
5746       end
5747 c------------------------------------------------------------------------------
5748       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5749       implicit none
5750       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5751       double precision ksi,ksi2,ksi3,a1,a2,a3
5752       ksi=(x-x0)/delta  
5753       ksi2=ksi*ksi
5754       ksi3=ksi2*ksi
5755       a1=fprim0x*delta
5756       a2=3*(f1x-f0x)-2*fprim0x*delta
5757       a3=fprim0x*delta-2*(f1x-f0x)
5758       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5759       return
5760       end
5761 C-----------------------------------------------------------------------------
5762 #ifdef CRYST_TOR
5763 C-----------------------------------------------------------------------------
5764       subroutine etor(etors,edihcnstr)
5765       implicit real*8 (a-h,o-z)
5766       include 'DIMENSIONS'
5767       include 'COMMON.VAR'
5768       include 'COMMON.GEO'
5769       include 'COMMON.LOCAL'
5770       include 'COMMON.TORSION'
5771       include 'COMMON.INTERACT'
5772       include 'COMMON.DERIV'
5773       include 'COMMON.CHAIN'
5774       include 'COMMON.NAMES'
5775       include 'COMMON.IOUNITS'
5776       include 'COMMON.FFIELD'
5777       include 'COMMON.TORCNSTR'
5778       include 'COMMON.CONTROL'
5779       logical lprn
5780 C Set lprn=.true. for debugging
5781       lprn=.false.
5782 c      lprn=.true.
5783       etors=0.0D0
5784       do i=iphi_start,iphi_end
5785       etors_ii=0.0D0
5786         itori=itortyp(itype(i-2))
5787         itori1=itortyp(itype(i-1))
5788         phii=phi(i)
5789         gloci=0.0D0
5790 C Proline-Proline pair is a special case...
5791         if (itori.eq.3 .and. itori1.eq.3) then
5792           if (phii.gt.-dwapi3) then
5793             cosphi=dcos(3*phii)
5794             fac=1.0D0/(1.0D0-cosphi)
5795             etorsi=v1(1,3,3)*fac
5796             etorsi=etorsi+etorsi
5797             etors=etors+etorsi-v1(1,3,3)
5798             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5799             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5800           endif
5801           do j=1,3
5802             v1ij=v1(j+1,itori,itori1)
5803             v2ij=v2(j+1,itori,itori1)
5804             cosphi=dcos(j*phii)
5805             sinphi=dsin(j*phii)
5806             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5807             if (energy_dec) etors_ii=etors_ii+
5808      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5809             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5810           enddo
5811         else 
5812           do j=1,nterm_old
5813             v1ij=v1(j,itori,itori1)
5814             v2ij=v2(j,itori,itori1)
5815             cosphi=dcos(j*phii)
5816             sinphi=dsin(j*phii)
5817             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5818             if (energy_dec) etors_ii=etors_ii+
5819      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5820             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5821           enddo
5822         endif
5823         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5824      &        'etor',i,etors_ii
5825         if (lprn)
5826      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5827      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5828      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5829         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5830         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5831       enddo
5832 ! 6/20/98 - dihedral angle constraints
5833       edihcnstr=0.0d0
5834       do i=1,ndih_constr
5835         itori=idih_constr(i)
5836         phii=phi(itori)
5837         difi=phii-phi0(i)
5838         if (difi.gt.drange(i)) then
5839           difi=difi-drange(i)
5840           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5841           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5842         else if (difi.lt.-drange(i)) then
5843           difi=difi+drange(i)
5844           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5845           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5846         endif
5847 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5848 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5849       enddo
5850 !      write (iout,*) 'edihcnstr',edihcnstr
5851       return
5852       end
5853 c------------------------------------------------------------------------------
5854 c LICZENIE WIEZOW Z ROWNANIA ENERGII MODELLERA
5855       subroutine e_modeller(ehomology_constr)
5856       ehomology_constr=0.0d0
5857       write (iout,*) "!!!!!UWAGA, JESTEM W DZIWNEJ PETLI, TEST!!!!!"
5858       return
5859       end
5860 C !!!!!!!! NIE CZYTANE !!!!!!!!!!!
5861
5862 c------------------------------------------------------------------------------
5863       subroutine etor_d(etors_d)
5864       etors_d=0.0d0
5865       return
5866       end
5867 c----------------------------------------------------------------------------
5868 #else
5869       subroutine etor(etors,edihcnstr)
5870       implicit real*8 (a-h,o-z)
5871       include 'DIMENSIONS'
5872       include 'COMMON.VAR'
5873       include 'COMMON.GEO'
5874       include 'COMMON.LOCAL'
5875       include 'COMMON.TORSION'
5876       include 'COMMON.INTERACT'
5877       include 'COMMON.DERIV'
5878       include 'COMMON.CHAIN'
5879       include 'COMMON.NAMES'
5880       include 'COMMON.IOUNITS'
5881       include 'COMMON.FFIELD'
5882       include 'COMMON.TORCNSTR'
5883       include 'COMMON.CONTROL'
5884       logical lprn
5885 C Set lprn=.true. for debugging
5886       lprn=.false.
5887 c     lprn=.true.
5888       etors=0.0D0
5889       do i=iphi_start,iphi_end
5890       etors_ii=0.0D0
5891         itori=itortyp(itype(i-2))
5892         itori1=itortyp(itype(i-1))
5893         phii=phi(i)
5894         gloci=0.0D0
5895 C Regular cosine and sine terms
5896         do j=1,nterm(itori,itori1)
5897           v1ij=v1(j,itori,itori1)
5898           v2ij=v2(j,itori,itori1)
5899           cosphi=dcos(j*phii)
5900           sinphi=dsin(j*phii)
5901           etors=etors+v1ij*cosphi+v2ij*sinphi
5902           if (energy_dec) etors_ii=etors_ii+
5903      &                v1ij*cosphi+v2ij*sinphi
5904           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5905         enddo
5906 C Lorentz terms
5907 C                         v1
5908 C  E = SUM ----------------------------------- - v1
5909 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5910 C
5911         cosphi=dcos(0.5d0*phii)
5912         sinphi=dsin(0.5d0*phii)
5913         do j=1,nlor(itori,itori1)
5914           vl1ij=vlor1(j,itori,itori1)
5915           vl2ij=vlor2(j,itori,itori1)
5916           vl3ij=vlor3(j,itori,itori1)
5917           pom=vl2ij*cosphi+vl3ij*sinphi
5918           pom1=1.0d0/(pom*pom+1.0d0)
5919           etors=etors+vl1ij*pom1
5920           if (energy_dec) etors_ii=etors_ii+
5921      &                vl1ij*pom1
5922           pom=-pom*pom1*pom1
5923           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5924         enddo
5925 C Subtract the constant term
5926         etors=etors-v0(itori,itori1)
5927           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5928      &         'etor',i,etors_ii-v0(itori,itori1)
5929         if (lprn)
5930      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5931      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5932      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5933         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5934 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5935       enddo
5936 ! 6/20/98 - dihedral angle constraints
5937       edihcnstr=0.0d0
5938 c      do i=1,ndih_constr
5939       do i=idihconstr_start,idihconstr_end
5940         itori=idih_constr(i)
5941         phii=phi(itori)
5942         difi=pinorm(phii-phi0(i))
5943         if (difi.gt.drange(i)) then
5944           difi=difi-drange(i)
5945           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5946           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5947         else if (difi.lt.-drange(i)) then
5948           difi=difi+drange(i)
5949           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5950           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5951         else
5952           difi=0.0
5953         endif
5954 c        write (iout,*) "gloci", gloc(i-3,icg)
5955 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5956 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5957 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5958       enddo
5959 cd       write (iout,*) 'edihcnstr',edihcnstr
5960       return
5961       end
5962 c----------------------------------------------------------------------------
5963 c MODELLER restraint function
5964       subroutine e_modeller(ehomology_constr)
5965       implicit real*8 (a-h,o-z)
5966       include 'DIMENSIONS'
5967
5968       integer nnn, i, j, k, ki, irec, l
5969       integer katy, odleglosci, test7
5970       real*8 odleg, odleg2, odleg3, kat, kat2, kat3, gdih(max_template)
5971       real*8 Eval,Erot
5972       real*8 distance(max_template),distancek(max_template),
5973      &    min_odl,godl(max_template),dih_diff(max_template)
5974
5975 c
5976 c     FP - 30/10/2014 Temporary specifications for homology restraints
5977 c
5978       double precision utheta_i,gutheta_i,sum_gtheta,sum_sgtheta,
5979      &                 sgtheta      
5980       double precision, dimension (maxres) :: guscdiff,usc_diff
5981       double precision, dimension (max_template) ::  
5982      &           gtheta,dscdiff,uscdiffk,guscdiff2,guscdiff3,
5983      &           theta_diff
5984 c
5985
5986       include 'COMMON.SBRIDGE'
5987       include 'COMMON.CHAIN'
5988       include 'COMMON.GEO'
5989       include 'COMMON.DERIV'
5990       include 'COMMON.LOCAL'
5991       include 'COMMON.INTERACT'
5992       include 'COMMON.VAR'
5993       include 'COMMON.IOUNITS'
5994       include 'COMMON.MD'
5995       include 'COMMON.CONTROL'
5996 c
5997 c     From subroutine Econstr_back
5998 c
5999       include 'COMMON.NAMES'
6000       include 'COMMON.TIME1'
6001 c
6002
6003
6004       do i=1,19
6005         distancek(i)=9999999.9
6006       enddo
6007
6008
6009       odleg=0.0d0
6010
6011 c Pseudo-energy and gradient from homology restraints (MODELLER-like
6012 c function)
6013 C AL 5/2/14 - Introduce list of restraints
6014 c     write(iout,*) "waga_theta",waga_theta,"waga_d",waga_d
6015 #ifdef DEBUG
6016       write(iout,*) "------- dist restrs start -------"
6017 #endif
6018       do ii = link_start_homo,link_end_homo
6019          i = ires_homo(ii)
6020          j = jres_homo(ii)
6021          dij=dist(i,j)
6022 c        write (iout,*) "dij(",i,j,") =",dij
6023          do k=1,constr_homology
6024            distance(k)=odl(k,ii)-dij
6025 c          write (iout,*) "distance(",k,") =",distance(k)
6026 c
6027 c          For Gaussian-type Urestr
6028 c
6029            distancek(k)=0.5d0*distance(k)**2*sigma_odl(k,ii) ! waga_dist rmvd from Gaussian argument
6030 c          write (iout,*) "sigma_odl(",k,ii,") =",sigma_odl(k,ii)
6031 c          write (iout,*) "distancek(",k,") =",distancek(k)
6032 c          distancek(k)=0.5d0*waga_dist*distance(k)**2*sigma_odl(k,ii)
6033 c
6034 c          For Lorentzian-type Urestr
6035 c
6036            if (waga_dist.lt.0.0d0) then
6037               sigma_odlir(k,ii)=dsqrt(1/sigma_odl(k,ii))
6038               distancek(k)=distance(k)**2/(sigma_odlir(k,ii)*
6039      &                     (distance(k)**2+sigma_odlir(k,ii)**2))
6040            endif
6041          enddo
6042          
6043          min_odl=minval(distancek)
6044 c        write (iout,* )"min_odl",min_odl
6045 #ifdef DEBUG
6046          write (iout,*) "ij dij",i,j,dij
6047          write (iout,*) "distance",(distance(k),k=1,constr_homology)
6048          write (iout,*) "distancek",(distancek(k),k=1,constr_homology)
6049          write (iout,* )"min_odl",min_odl
6050 #endif
6051          odleg2=0.0d0
6052          do k=1,constr_homology
6053 c Nie wiem po co to liczycie jeszcze raz!
6054 c            odleg3=-waga_dist(iset)*((distance(i,j,k)**2)/ 
6055 c     &              (2*(sigma_odl(i,j,k))**2))
6056            if (waga_dist.ge.0.0d0) then
6057 c
6058 c          For Gaussian-type Urestr
6059 c
6060             godl(k)=dexp(-distancek(k)+min_odl)
6061             odleg2=odleg2+godl(k)
6062 c
6063 c          For Lorentzian-type Urestr
6064 c
6065            else
6066             odleg2=odleg2+distancek(k)
6067            endif
6068
6069 ccc       write(iout,779) i,j,k, "odleg2=",odleg2, "odleg3=", odleg3,
6070 ccc     & "dEXP(odleg3)=", dEXP(odleg3),"distance(i,j,k)^2=",
6071 ccc     & distance(i,j,k)**2, "dist(i+1,j+1)=", dist(i+1,j+1),
6072 ccc     & "sigma_odl(i,j,k)=", sigma_odl(i,j,k)
6073
6074          enddo
6075 c        write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents
6076 c        write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps
6077 #ifdef DEBUG
6078          write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents
6079          write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps
6080 #endif
6081            if (waga_dist.ge.0.0d0) then
6082 c
6083 c          For Gaussian-type Urestr
6084 c
6085               odleg=odleg-dLOG(odleg2/constr_homology)+min_odl
6086 c
6087 c          For Lorentzian-type Urestr
6088 c
6089            else
6090               odleg=odleg+odleg2/constr_homology
6091            endif
6092 c
6093 c        write (iout,*) "odleg",odleg ! sum of -ln-s
6094 c Gradient
6095 c
6096 c          For Gaussian-type Urestr
6097 c
6098          if (waga_dist.ge.0.0d0) sum_godl=odleg2
6099          sum_sgodl=0.0d0
6100          do k=1,constr_homology
6101 c            godl=dexp(((-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2))
6102 c     &           *waga_dist)+min_odl
6103 c          sgodl=-godl(k)*distance(k)*sigma_odl(k,ii)*waga_dist
6104 c
6105          if (waga_dist.ge.0.0d0) then
6106 c          For Gaussian-type Urestr
6107 c
6108            sgodl=-godl(k)*distance(k)*sigma_odl(k,ii) ! waga_dist rmvd
6109 c
6110 c          For Lorentzian-type Urestr
6111 c
6112          else
6113            sgodl=-2*sigma_odlir(k,ii)*(distance(k)/(distance(k)**2+
6114      &           sigma_odlir(k,ii)**2)**2)
6115          endif
6116            sum_sgodl=sum_sgodl+sgodl
6117
6118 c            sgodl2=sgodl2+sgodl
6119 c      write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE1"
6120 c      write(iout,*) "constr_homology=",constr_homology
6121 c      write(iout,*) i, j, k, "TEST K"
6122          enddo
6123          if (waga_dist.ge.0.0d0) then
6124 c
6125 c          For Gaussian-type Urestr
6126 c
6127             grad_odl3=waga_homology(iset)*waga_dist
6128      &                *sum_sgodl/(sum_godl*dij)
6129 c
6130 c          For Lorentzian-type Urestr
6131 c
6132          else
6133 c Original grad expr modified by analogy w Gaussian-type Urestr grad
6134 c           grad_odl3=-waga_homology(iset)*waga_dist*sum_sgodl
6135             grad_odl3=-waga_homology(iset)*waga_dist*
6136      &                sum_sgodl/(constr_homology*dij)
6137          endif
6138 c
6139 c        grad_odl3=sum_sgodl/(sum_godl*dij)
6140
6141
6142 c      write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE2"
6143 c      write(iout,*) (distance(i,j,k)**2), (2*(sigma_odl(i,j,k))**2),
6144 c     &              (-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2))
6145
6146 ccc      write(iout,*) godl, sgodl, grad_odl3
6147
6148 c          grad_odl=grad_odl+grad_odl3
6149
6150          do jik=1,3
6151             ggodl=grad_odl3*(c(jik,i)-c(jik,j))
6152 ccc      write(iout,*) c(jik,i+1), c(jik,j+1), (c(jik,i+1)-c(jik,j+1))
6153 ccc      write(iout,746) "GRAD_ODL_1", i, j, jik, ggodl, 
6154 ccc     &              ghpbc(jik,i+1), ghpbc(jik,j+1)
6155             ghpbc(jik,i)=ghpbc(jik,i)+ggodl
6156             ghpbc(jik,j)=ghpbc(jik,j)-ggodl
6157 ccc      write(iout,746) "GRAD_ODL_2", i, j, jik, ggodl,
6158 ccc     &              ghpbc(jik,i+1), ghpbc(jik,j+1)
6159 c         if (i.eq.25.and.j.eq.27) then
6160 c         write(iout,*) "jik",jik,"i",i,"j",j
6161 c         write(iout,*) "sum_sgodl",sum_sgodl,"sgodl",sgodl
6162 c         write(iout,*) "grad_odl3",grad_odl3
6163 c         write(iout,*) "c(",jik,i,")",c(jik,i),"c(",jik,j,")",c(jik,j)
6164 c         write(iout,*) "ggodl",ggodl
6165 c         write(iout,*) "ghpbc(",jik,i,")",
6166 c     &                 ghpbc(jik,i),"ghpbc(",jik,j,")",
6167 c     &                 ghpbc(jik,j)   
6168 c         endif
6169          enddo
6170 ccc       write(iout,778)"TEST: odleg2=", odleg2, "DLOG(odleg2)=", 
6171 ccc     & dLOG(odleg2),"-odleg=", -odleg
6172
6173       enddo ! ii-loop for dist
6174 #ifdef DEBUG
6175       write(iout,*) "------- dist restrs end -------"
6176 c     if (waga_angle.eq.1.0d0 .or. waga_theta.eq.1.0d0 .or. 
6177 c    &     waga_d.eq.1.0d0) call sum_gradient
6178 #endif
6179 c Pseudo-energy and gradient from dihedral-angle restraints from
6180 c homology templates
6181 c      write (iout,*) "End of distance loop"
6182 c      call flush(iout)
6183       kat=0.0d0
6184 c      write (iout,*) idihconstr_start_homo,idihconstr_end_homo
6185 #ifdef DEBUG
6186       write(iout,*) "------- dih restrs start -------"
6187       do i=idihconstr_start_homo,idihconstr_end_homo
6188         write (iout,*) "gloc_init(",i,icg,")",gloc(i,icg)
6189       enddo
6190 #endif
6191       do i=idihconstr_start_homo,idihconstr_end_homo
6192         kat2=0.0d0
6193 c        betai=beta(i,i+1,i+2,i+3)
6194         betai = phi(i+3)
6195 c       write (iout,*) "betai =",betai
6196         do k=1,constr_homology
6197           dih_diff(k)=pinorm(dih(k,i)-betai)
6198 c         write (iout,*) "dih_diff(",k,") =",dih_diff(k)
6199 c          if (dih_diff(i,k).gt.3.14159) dih_diff(i,k)=
6200 c     &                                   -(6.28318-dih_diff(i,k))
6201 c          if (dih_diff(i,k).lt.-3.14159) dih_diff(i,k)=
6202 c     &                                   6.28318+dih_diff(i,k)
6203
6204           kat3=-0.5d0*dih_diff(k)**2*sigma_dih(k,i) ! waga_angle rmvd from Gaussian argument
6205 c         kat3=-0.5d0*waga_angle*dih_diff(k)**2*sigma_dih(k,i)
6206           gdih(k)=dexp(kat3)
6207           kat2=kat2+gdih(k)
6208 c          write(iout,*) "kat2=", kat2, "exp(kat3)=", exp(kat3)
6209 c          write(*,*)""
6210         enddo
6211 c       write (iout,*) "gdih",(gdih(k),k=1,constr_homology) ! exps
6212 c       write (iout,*) "i",i," betai",betai," kat2",kat2 ! sum of exps
6213 #ifdef DEBUG
6214         write (iout,*) "i",i," betai",betai," kat2",kat2
6215         write (iout,*) "gdih",(gdih(k),k=1,constr_homology)
6216 #endif
6217         if (kat2.le.1.0d-14) cycle
6218         kat=kat-dLOG(kat2/constr_homology)
6219 c       write (iout,*) "kat",kat ! sum of -ln-s
6220
6221 ccc       write(iout,778)"TEST: kat2=", kat2, "DLOG(kat2)=",
6222 ccc     & dLOG(kat2), "-kat=", -kat
6223
6224 c ----------------------------------------------------------------------
6225 c Gradient
6226 c ----------------------------------------------------------------------
6227
6228         sum_gdih=kat2
6229         sum_sgdih=0.0d0
6230         do k=1,constr_homology
6231           sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)  ! waga_angle rmvd
6232 c         sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)*waga_angle
6233           sum_sgdih=sum_sgdih+sgdih
6234         enddo
6235 c       grad_dih3=sum_sgdih/sum_gdih
6236         grad_dih3=waga_homology(iset)*waga_angle*sum_sgdih/sum_gdih
6237
6238 c      write(iout,*)i,k,gdih,sgdih,beta(i+1,i+2,i+3,i+4),grad_dih3
6239 ccc      write(iout,747) "GRAD_KAT_1", i, nphi, icg, grad_dih3,
6240 ccc     & gloc(nphi+i-3,icg)
6241         gloc(i,icg)=gloc(i,icg)+grad_dih3
6242 c        if (i.eq.25) then
6243 c        write(iout,*) "i",i,"icg",icg,"gloc(",i,icg,")",gloc(i,icg)
6244 c        endif
6245 ccc      write(iout,747) "GRAD_KAT_2", i, nphi, icg, grad_dih3,
6246 ccc     & gloc(nphi+i-3,icg)
6247
6248       enddo ! i-loop for dih
6249 #ifdef DEBUG
6250       write(iout,*) "------- dih restrs end -------"
6251 #endif
6252
6253 c Pseudo-energy and gradient for theta angle restraints from
6254 c homology templates
6255 c FP 01/15 - inserted from econstr_local_test.F, loop structure
6256 c adapted
6257
6258 c
6259 c     For constr_homology reference structures (FP)
6260 c     
6261 c     Uconst_back_tot=0.0d0
6262       Eval=0.0d0
6263       Erot=0.0d0
6264 c     Econstr_back legacy
6265       do i=1,nres
6266 c     do i=ithet_start,ithet_end
6267        dutheta(i)=0.0d0
6268 c     enddo
6269 c     do i=loc_start,loc_end
6270         do j=1,3
6271           duscdiff(j,i)=0.0d0
6272           duscdiffx(j,i)=0.0d0
6273         enddo
6274       enddo
6275 c
6276 c     do iref=1,nref
6277 c     write (iout,*) "ithet_start =",ithet_start,"ithet_end =",ithet_end
6278 c     write (iout,*) "waga_theta",waga_theta
6279       if (waga_theta.gt.0.0d0) then
6280 #ifdef DEBUG
6281       write (iout,*) "usampl",usampl
6282       write(iout,*) "------- theta restrs start -------"
6283 c     do i=ithet_start,ithet_end
6284 c       write (iout,*) "gloc_init(",nphi+i,icg,")",gloc(nphi+i,icg)
6285 c     enddo
6286 #endif
6287 c     write (iout,*) "maxres",maxres,"nres",nres
6288
6289       do i=ithet_start,ithet_end
6290 c
6291 c     do i=1,nfrag_back
6292 c       ii = ifrag_back(2,i,iset)-ifrag_back(1,i,iset)
6293 c
6294 c Deviation of theta angles wrt constr_homology ref structures
6295 c
6296         utheta_i=0.0d0 ! argument of Gaussian for single k
6297         gutheta_i=0.0d0 ! Sum of Gaussians over constr_homology ref structures
6298 c       do j=ifrag_back(1,i,iset)+2,ifrag_back(2,i,iset) ! original loop
6299 c       over residues in a fragment
6300 c       write (iout,*) "theta(",i,")=",theta(i)
6301         do k=1,constr_homology
6302 c
6303 c         dtheta_i=theta(j)-thetaref(j,iref)
6304 c         dtheta_i=thetaref(k,i)-theta(i) ! original form without indexing
6305           theta_diff(k)=thetatpl(k,i)-theta(i)
6306 c
6307           utheta_i=-0.5d0*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta rmvd from Gaussian argument
6308 c         utheta_i=-0.5d0*waga_theta*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta?
6309           gtheta(k)=dexp(utheta_i) ! + min_utheta_i?
6310           gutheta_i=gutheta_i+dexp(utheta_i)   ! Sum of Gaussians (pk)
6311 c         Gradient for single Gaussian restraint in subr Econstr_back
6312 c         dutheta(j-2)=dutheta(j-2)+wfrag_back(1,i,iset)*dtheta_i/(ii-1)
6313 c
6314         enddo
6315 c       write (iout,*) "gtheta",(gtheta(k),k=1,constr_homology) ! exps
6316 c       write (iout,*) "i",i," gutheta_i",gutheta_i ! sum of exps
6317
6318 c
6319 c         Gradient for multiple Gaussian restraint
6320         sum_gtheta=gutheta_i
6321         sum_sgtheta=0.0d0
6322         do k=1,constr_homology
6323 c        New generalized expr for multiple Gaussian from Econstr_back
6324          sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i) ! waga_theta rmvd
6325 c
6326 c        sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i)*waga_theta ! right functional form?
6327           sum_sgtheta=sum_sgtheta+sgtheta ! cum variable
6328         enddo
6329 c       grad_theta3=sum_sgtheta/sum_gtheta 1/*theta(i)? s. line below
6330 c       grad_theta3=sum_sgtheta/sum_gtheta
6331 c
6332 c       Final value of gradient using same var as in Econstr_back
6333         dutheta(i-2)=sum_sgtheta/sum_gtheta*waga_theta
6334      &               *waga_homology(iset)
6335 c       dutheta(i)=sum_sgtheta/sum_gtheta
6336 c
6337 c       Uconst_back=Uconst_back+waga_theta*utheta(i) ! waga_theta added as weight
6338         Eval=Eval-dLOG(gutheta_i/constr_homology)
6339 c       write (iout,*) "utheta(",i,")=",utheta(i) ! -ln of sum of exps
6340 c       write (iout,*) "Uconst_back",Uconst_back ! sum of -ln-s
6341 c       Uconst_back=Uconst_back+utheta(i)
6342       enddo ! (i-loop for theta)
6343 #ifdef DEBUG
6344       write(iout,*) "------- theta restrs end -------"
6345 #endif
6346       endif
6347 c
6348 c Deviation of local SC geometry
6349 c
6350 c Separation of two i-loops (instructed by AL - 11/3/2014)
6351 c
6352 c     write (iout,*) "loc_start =",loc_start,"loc_end =",loc_end
6353 c     write (iout,*) "waga_d",waga_d
6354
6355 #ifdef DEBUG
6356       write(iout,*) "------- SC restrs start -------"
6357       write (iout,*) "Initial duscdiff,duscdiffx"
6358       do i=loc_start,loc_end
6359         write (iout,*) i,(duscdiff(jik,i),jik=1,3),
6360      &                 (duscdiffx(jik,i),jik=1,3)
6361       enddo
6362 #endif
6363       do i=loc_start,loc_end
6364         usc_diff_i=0.0d0 ! argument of Gaussian for single k
6365         guscdiff(i)=0.0d0 ! Sum of Gaussians over constr_homology ref structures
6366 c       do j=ifrag_back(1,i,iset)+1,ifrag_back(2,i,iset)-1 ! Econstr_back legacy
6367 c       write(iout,*) "xxtab, yytab, zztab"
6368 c       write(iout,'(i5,3f8.2)') i,xxtab(i),yytab(i),zztab(i)
6369         do k=1,constr_homology
6370 c
6371           dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str?
6372 c                                    Original sign inverted for calc of gradients (s. Econstr_back)
6373           dyy=-yytpl(k,i)+yytab(i) ! ibid y
6374           dzz=-zztpl(k,i)+zztab(i) ! ibid z
6375 c         write(iout,*) "dxx, dyy, dzz"
6376 c         write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz
6377 c
6378           usc_diff_i=-0.5d0*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i)  ! waga_d rmvd from Gaussian argument
6379 c         usc_diff(i)=-0.5d0*waga_d*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i) ! waga_d?
6380 c         uscdiffk(k)=usc_diff(i)
6381           guscdiff2(k)=dexp(usc_diff_i) ! without min_scdiff
6382           guscdiff(i)=guscdiff(i)+dexp(usc_diff_i)   !Sum of Gaussians (pk)
6383 c          write (iout,'(i5,6f10.5)') j,xxtab(j),yytab(j),zztab(j),
6384 c     &      xxref(j),yyref(j),zzref(j)
6385         enddo
6386 c
6387 c       Gradient 
6388 c
6389 c       Generalized expression for multiple Gaussian acc to that for a single 
6390 c       Gaussian in Econstr_back as instructed by AL (FP - 03/11/2014)
6391 c
6392 c       Original implementation
6393 c       sum_guscdiff=guscdiff(i)
6394 c
6395 c       sum_sguscdiff=0.0d0
6396 c       do k=1,constr_homology
6397 c          sguscdiff=-guscdiff2(k)*dscdiff(k)*sigma_d(k,i)*waga_d !waga_d? 
6398 c          sguscdiff=-guscdiff3(k)*dscdiff(k)*sigma_d(k,i)*waga_d ! w min_uscdiff
6399 c          sum_sguscdiff=sum_sguscdiff+sguscdiff
6400 c       enddo
6401 c
6402 c       Implementation of new expressions for gradient (Jan. 2015)
6403 c
6404 c       grad_uscdiff=sum_sguscdiff/(sum_guscdiff*dtab) !?
6405         do k=1,constr_homology 
6406 c
6407 c       New calculation of dxx, dyy, and dzz corrected by AL (07/11), was missing and wrong
6408 c       before. Now the drivatives should be correct
6409 c
6410           dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str?
6411 c                                  Original sign inverted for calc of gradients (s. Econstr_back)
6412           dyy=-yytpl(k,i)+yytab(i) ! ibid y
6413           dzz=-zztpl(k,i)+zztab(i) ! ibid z
6414 c
6415 c         New implementation
6416 c
6417           sum_guscdiff=guscdiff2(k)*!(dsqrt(dxx*dxx+dyy*dyy+dzz*dzz))* -> wrong!
6418      &                 sigma_d(k,i) ! for the grad wrt r' 
6419 c         sum_sguscdiff=sum_sguscdiff+sum_guscdiff
6420 c
6421 c
6422 c        New implementation
6423          sum_guscdiff = waga_homology(iset)*waga_d*sum_guscdiff
6424          do jik=1,3
6425             duscdiff(jik,i-1)=duscdiff(jik,i-1)+
6426      &      sum_guscdiff*(dXX_C1tab(jik,i)*dxx+
6427      &      dYY_C1tab(jik,i)*dyy+dZZ_C1tab(jik,i)*dzz)/guscdiff(i)
6428             duscdiff(jik,i)=duscdiff(jik,i)+
6429      &      sum_guscdiff*(dXX_Ctab(jik,i)*dxx+
6430      &      dYY_Ctab(jik,i)*dyy+dZZ_Ctab(jik,i)*dzz)/guscdiff(i)
6431             duscdiffx(jik,i)=duscdiffx(jik,i)+
6432      &      sum_guscdiff*(dXX_XYZtab(jik,i)*dxx+
6433      &      dYY_XYZtab(jik,i)*dyy+dZZ_XYZtab(jik,i)*dzz)/guscdiff(i)
6434 c
6435 #ifdef DEBUG
6436              write(iout,*) "jik",jik,"i",i
6437              write(iout,*) "dxx, dyy, dzz"
6438              write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz
6439              write(iout,*) "guscdiff2(",k,")",guscdiff2(k)
6440 c            write(iout,*) "sum_sguscdiff",sum_sguscdiff
6441 cc           write(iout,*) "dXX_Ctab(",jik,i,")",dXX_Ctab(jik,i)
6442 c            write(iout,*) "dYY_Ctab(",jik,i,")",dYY_Ctab(jik,i)
6443 c            write(iout,*) "dZZ_Ctab(",jik,i,")",dZZ_Ctab(jik,i)
6444 c            write(iout,*) "dXX_C1tab(",jik,i,")",dXX_C1tab(jik,i)
6445 c            write(iout,*) "dYY_C1tab(",jik,i,")",dYY_C1tab(jik,i)
6446 c            write(iout,*) "dZZ_C1tab(",jik,i,")",dZZ_C1tab(jik,i)
6447 c            write(iout,*) "dXX_XYZtab(",jik,i,")",dXX_XYZtab(jik,i)
6448 c            write(iout,*) "dYY_XYZtab(",jik,i,")",dYY_XYZtab(jik,i)
6449 c            write(iout,*) "dZZ_XYZtab(",jik,i,")",dZZ_XYZtab(jik,i)
6450 c            write(iout,*) "duscdiff(",jik,i-1,")",duscdiff(jik,i-1)
6451 c            write(iout,*) "duscdiff(",jik,i,")",duscdiff(jik,i)
6452 c            write(iout,*) "duscdiffx(",jik,i,")",duscdiffx(jik,i)
6453 c            endif
6454 #endif
6455          enddo
6456         enddo
6457 c
6458 c       uscdiff(i)=-dLOG(guscdiff(i)/(ii-1))      ! Weighting by (ii-1) required?
6459 c        usc_diff(i)=-dLOG(guscdiff(i)/constr_homology) ! + min_uscdiff ?
6460 c
6461 c        write (iout,*) i," uscdiff",uscdiff(i)
6462 c
6463 c Put together deviations from local geometry
6464
6465 c       Uconst_back=Uconst_back+wfrag_back(1,i,iset)*utheta(i)+
6466 c      &            wfrag_back(3,i,iset)*uscdiff(i)
6467         Erot=Erot-dLOG(guscdiff(i)/constr_homology)
6468 c       write (iout,*) "usc_diff(",i,")=",usc_diff(i) ! -ln of sum of exps
6469 c       write (iout,*) "Uconst_back",Uconst_back ! cum sum of -ln-s
6470 c       Uconst_back=Uconst_back+usc_diff(i)
6471 c
6472 c     Gradient of multiple Gaussian restraint (FP - 04/11/2014 - right?)
6473 c
6474 c     New implment: multiplied by sum_sguscdiff
6475 c
6476
6477       enddo ! (i-loop for dscdiff)
6478
6479 c      endif
6480
6481 #ifdef DEBUG
6482       write(iout,*) "------- SC restrs end -------"
6483         write (iout,*) "------ After SC loop in e_modeller ------"
6484         do i=loc_start,loc_end
6485          write (iout,*) "i",i," gradc",(gradc(j,i,icg),j=1,3)
6486          write (iout,*) "i",i," gradx",(gradx(j,i,icg),j=1,3)
6487         enddo
6488       if (waga_theta.eq.1.0d0) then
6489       write (iout,*) "in e_modeller after SC restr end: dutheta"
6490       do i=ithet_start,ithet_end
6491         write (iout,*) i,dutheta(i)
6492       enddo
6493       endif
6494       if (waga_d.eq.1.0d0) then
6495       write (iout,*) "e_modeller after SC loop: duscdiff/x"
6496       do i=1,nres
6497         write (iout,*) i,(duscdiff(j,i),j=1,3)
6498         write (iout,*) i,(duscdiffx(j,i),j=1,3)
6499       enddo
6500       endif
6501 #endif
6502
6503 c Total energy from homology restraints
6504 #ifdef DEBUG
6505       write (iout,*) "odleg",odleg," kat",kat
6506 #endif
6507 c
6508 c Addition of energy of theta angle and SC local geom over constr_homologs ref strs
6509 c
6510 c     ehomology_constr=odleg+kat
6511 c
6512 c     For Lorentzian-type Urestr
6513 c
6514
6515       if (waga_dist.ge.0.0d0) then
6516 c
6517 c          For Gaussian-type Urestr
6518 c
6519         ehomology_constr=(waga_dist*odleg+waga_angle*kat+
6520      &              waga_theta*Eval+waga_d*Erot)*waga_homology(iset)
6521 c     write (iout,*) "ehomology_constr=",ehomology_constr
6522       else
6523 c
6524 c          For Lorentzian-type Urestr
6525 c  
6526         ehomology_constr=(-waga_dist*odleg+waga_angle*kat+
6527      &              waga_theta*Eval+waga_d*Erot)*waga_homology(iset)
6528 c     write (iout,*) "ehomology_constr=",ehomology_constr
6529       endif
6530 c     write (iout,*) "odleg",odleg," kat",kat," Uconst_back",Uconst_back
6531 c     write (iout,*) "ehomology_constr",ehomology_constr
6532 c     ehomology_constr=odleg+kat+Uconst_back
6533       return
6534 c
6535 c FP 01/15 end
6536 c
6537   748 format(a8,f12.3,a6,f12.3,a7,f12.3)
6538   747 format(a12,i4,i4,i4,f8.3,f8.3)
6539   746 format(a12,i4,i4,i4,f8.3,f8.3,f8.3)
6540   778 format(a7,1X,f10.3,1X,a4,1X,f10.3,1X,a5,1X,f10.3)
6541   779 format(i3,1X,i3,1X,i2,1X,a7,1X,f7.3,1X,a7,1X,f7.3,1X,a13,1X,
6542      &       f7.3,1X,a17,1X,f9.3,1X,a10,1X,f8.3,1X,a10,1X,f8.3)
6543       end
6544
6545 c------------------------------------------------------------------------------
6546       subroutine etor_d(etors_d)
6547 C 6/23/01 Compute double torsional energy
6548       implicit real*8 (a-h,o-z)
6549       include 'DIMENSIONS'
6550       include 'COMMON.VAR'
6551       include 'COMMON.GEO'
6552       include 'COMMON.LOCAL'
6553       include 'COMMON.TORSION'
6554       include 'COMMON.INTERACT'
6555       include 'COMMON.DERIV'
6556       include 'COMMON.CHAIN'
6557       include 'COMMON.NAMES'
6558       include 'COMMON.IOUNITS'
6559       include 'COMMON.FFIELD'
6560       include 'COMMON.TORCNSTR'
6561       logical lprn
6562 C Set lprn=.true. for debugging
6563       lprn=.false.
6564 c     lprn=.true.
6565       etors_d=0.0D0
6566       do i=iphid_start,iphid_end
6567         itori=itortyp(itype(i-2))
6568         itori1=itortyp(itype(i-1))
6569         itori2=itortyp(itype(i))
6570         phii=phi(i)
6571         phii1=phi(i+1)
6572         gloci1=0.0D0
6573         gloci2=0.0D0
6574         do j=1,ntermd_1(itori,itori1,itori2)
6575           v1cij=v1c(1,j,itori,itori1,itori2)
6576           v1sij=v1s(1,j,itori,itori1,itori2)
6577           v2cij=v1c(2,j,itori,itori1,itori2)
6578           v2sij=v1s(2,j,itori,itori1,itori2)
6579           cosphi1=dcos(j*phii)
6580           sinphi1=dsin(j*phii)
6581           cosphi2=dcos(j*phii1)
6582           sinphi2=dsin(j*phii1)
6583           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
6584      &     v2cij*cosphi2+v2sij*sinphi2
6585           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
6586           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
6587         enddo
6588         do k=2,ntermd_2(itori,itori1,itori2)
6589           do l=1,k-1
6590             v1cdij = v2c(k,l,itori,itori1,itori2)
6591             v2cdij = v2c(l,k,itori,itori1,itori2)
6592             v1sdij = v2s(k,l,itori,itori1,itori2)
6593             v2sdij = v2s(l,k,itori,itori1,itori2)
6594             cosphi1p2=dcos(l*phii+(k-l)*phii1)
6595             cosphi1m2=dcos(l*phii-(k-l)*phii1)
6596             sinphi1p2=dsin(l*phii+(k-l)*phii1)
6597             sinphi1m2=dsin(l*phii-(k-l)*phii1)
6598             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
6599      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
6600             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
6601      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
6602             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
6603      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
6604           enddo
6605         enddo
6606         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
6607         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
6608 c        write (iout,*) "gloci", gloc(i-3,icg)
6609       enddo
6610       return
6611       end
6612 #endif
6613 c------------------------------------------------------------------------------
6614       subroutine eback_sc_corr(esccor)
6615 c 7/21/2007 Correlations between the backbone-local and side-chain-local
6616 c        conformational states; temporarily implemented as differences
6617 c        between UNRES torsional potentials (dependent on three types of
6618 c        residues) and the torsional potentials dependent on all 20 types
6619 c        of residues computed from AM1  energy surfaces of terminally-blocked
6620 c        amino-acid residues.
6621       implicit real*8 (a-h,o-z)
6622       include 'DIMENSIONS'
6623       include 'COMMON.VAR'
6624       include 'COMMON.GEO'
6625       include 'COMMON.LOCAL'
6626       include 'COMMON.TORSION'
6627       include 'COMMON.SCCOR'
6628       include 'COMMON.INTERACT'
6629       include 'COMMON.DERIV'
6630       include 'COMMON.CHAIN'
6631       include 'COMMON.NAMES'
6632       include 'COMMON.IOUNITS'
6633       include 'COMMON.FFIELD'
6634       include 'COMMON.CONTROL'
6635       logical lprn
6636 C Set lprn=.true. for debugging
6637       lprn=.false.
6638 c      lprn=.true.
6639 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
6640       esccor=0.0D0
6641       do i=itau_start,itau_end
6642         esccor_ii=0.0D0
6643         if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
6644         isccori=isccortyp(itype(i-2))
6645         isccori1=isccortyp(itype(i-1))
6646         phii=phi(i)
6647 cccc  Added 9 May 2012
6648 cc Tauangle is torsional engle depending on the value of first digit 
6649 c(see comment below)
6650 cc Omicron is flat angle depending on the value of first digit 
6651 c(see comment below)
6652
6653         
6654         do intertyp=1,3 !intertyp
6655 cc Added 09 May 2012 (Adasko)
6656 cc  Intertyp means interaction type of backbone mainchain correlation: 
6657 c   1 = SC...Ca...Ca...Ca
6658 c   2 = Ca...Ca...Ca...SC
6659 c   3 = SC...Ca...Ca...SCi
6660         gloci=0.0D0
6661         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
6662      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
6663      &      (itype(i-1).eq.21)))
6664      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
6665      &     .or.(itype(i-2).eq.21)))
6666      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
6667      &      (itype(i-1).eq.21)))) cycle  
6668         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
6669         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
6670      & cycle
6671         do j=1,nterm_sccor(isccori,isccori1)
6672           v1ij=v1sccor(j,intertyp,isccori,isccori1)
6673           v2ij=v2sccor(j,intertyp,isccori,isccori1)
6674           cosphi=dcos(j*tauangle(intertyp,i))
6675           sinphi=dsin(j*tauangle(intertyp,i))
6676           esccor=esccor+v1ij*cosphi+v2ij*sinphi
6677           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
6678         enddo
6679         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
6680 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
6681 c     &gloc_sc(intertyp,i-3,icg)
6682         if (lprn)
6683      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
6684      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
6685      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
6686      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
6687         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6688        enddo !intertyp
6689       enddo
6690 c        do i=1,nres
6691 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc(i,icg)
6692 c        enddo
6693       return
6694       end
6695 c----------------------------------------------------------------------------
6696       subroutine multibody(ecorr)
6697 C This subroutine calculates multi-body contributions to energy following
6698 C the idea of Skolnick et al. If side chains I and J make a contact and
6699 C at the same time side chains I+1 and J+1 make a contact, an extra 
6700 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6701       implicit real*8 (a-h,o-z)
6702       include 'DIMENSIONS'
6703       include 'COMMON.IOUNITS'
6704       include 'COMMON.DERIV'
6705       include 'COMMON.INTERACT'
6706       include 'COMMON.CONTACTS'
6707       double precision gx(3),gx1(3)
6708       logical lprn
6709
6710 C Set lprn=.true. for debugging
6711       lprn=.false.
6712
6713       if (lprn) then
6714         write (iout,'(a)') 'Contact function values:'
6715         do i=nnt,nct-2
6716           write (iout,'(i2,20(1x,i2,f10.5))') 
6717      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6718         enddo
6719       endif
6720       ecorr=0.0D0
6721       do i=nnt,nct
6722         do j=1,3
6723           gradcorr(j,i)=0.0D0
6724           gradxorr(j,i)=0.0D0
6725         enddo
6726       enddo
6727       do i=nnt,nct-2
6728
6729         DO ISHIFT = 3,4
6730
6731         i1=i+ishift
6732         num_conti=num_cont(i)
6733         num_conti1=num_cont(i1)
6734         do jj=1,num_conti
6735           j=jcont(jj,i)
6736           do kk=1,num_conti1
6737             j1=jcont(kk,i1)
6738             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6739 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6740 cd   &                   ' ishift=',ishift
6741 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6742 C The system gains extra energy.
6743               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6744             endif   ! j1==j+-ishift
6745           enddo     ! kk  
6746         enddo       ! jj
6747
6748         ENDDO ! ISHIFT
6749
6750       enddo         ! i
6751       return
6752       end
6753 c------------------------------------------------------------------------------
6754       double precision function esccorr(i,j,k,l,jj,kk)
6755       implicit real*8 (a-h,o-z)
6756       include 'DIMENSIONS'
6757       include 'COMMON.IOUNITS'
6758       include 'COMMON.DERIV'
6759       include 'COMMON.INTERACT'
6760       include 'COMMON.CONTACTS'
6761       double precision gx(3),gx1(3)
6762       logical lprn
6763       lprn=.false.
6764       eij=facont(jj,i)
6765       ekl=facont(kk,k)
6766 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6767 C Calculate the multi-body contribution to energy.
6768 C Calculate multi-body contributions to the gradient.
6769 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6770 cd   & k,l,(gacont(m,kk,k),m=1,3)
6771       do m=1,3
6772         gx(m) =ekl*gacont(m,jj,i)
6773         gx1(m)=eij*gacont(m,kk,k)
6774         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6775         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6776         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6777         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6778       enddo
6779       do m=i,j-1
6780         do ll=1,3
6781           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6782         enddo
6783       enddo
6784       do m=k,l-1
6785         do ll=1,3
6786           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6787         enddo
6788       enddo 
6789       esccorr=-eij*ekl
6790       return
6791       end
6792 c------------------------------------------------------------------------------
6793       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6794 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6795       implicit real*8 (a-h,o-z)
6796       include 'DIMENSIONS'
6797       include 'COMMON.IOUNITS'
6798 #ifdef MPI
6799       include "mpif.h"
6800       parameter (max_cont=maxconts)
6801       parameter (max_dim=26)
6802       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6803       double precision zapas(max_dim,maxconts,max_fg_procs),
6804      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6805       common /przechowalnia/ zapas
6806       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6807      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6808 #endif
6809       include 'COMMON.SETUP'
6810       include 'COMMON.FFIELD'
6811       include 'COMMON.DERIV'
6812       include 'COMMON.INTERACT'
6813       include 'COMMON.CONTACTS'
6814       include 'COMMON.CONTROL'
6815       include 'COMMON.LOCAL'
6816       double precision gx(3),gx1(3),time00
6817       logical lprn,ldone
6818
6819 C Set lprn=.true. for debugging
6820       lprn=.false.
6821 #ifdef MPI
6822       n_corr=0
6823       n_corr1=0
6824       if (nfgtasks.le.1) goto 30
6825       if (lprn) then
6826         write (iout,'(a)') 'Contact function values before RECEIVE:'
6827         do i=nnt,nct-2
6828           write (iout,'(2i3,50(1x,i2,f5.2))') 
6829      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6830      &    j=1,num_cont_hb(i))
6831         enddo
6832       endif
6833       call flush(iout)
6834       do i=1,ntask_cont_from
6835         ncont_recv(i)=0
6836       enddo
6837       do i=1,ntask_cont_to
6838         ncont_sent(i)=0
6839       enddo
6840 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6841 c     & ntask_cont_to
6842 C Make the list of contacts to send to send to other procesors
6843 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6844 c      call flush(iout)
6845       do i=iturn3_start,iturn3_end
6846 c        write (iout,*) "make contact list turn3",i," num_cont",
6847 c     &    num_cont_hb(i)
6848         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6849       enddo
6850       do i=iturn4_start,iturn4_end
6851 c        write (iout,*) "make contact list turn4",i," num_cont",
6852 c     &   num_cont_hb(i)
6853         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6854       enddo
6855       do ii=1,nat_sent
6856         i=iat_sent(ii)
6857 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6858 c     &    num_cont_hb(i)
6859         do j=1,num_cont_hb(i)
6860         do k=1,4
6861           jjc=jcont_hb(j,i)
6862           iproc=iint_sent_local(k,jjc,ii)
6863 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6864           if (iproc.gt.0) then
6865             ncont_sent(iproc)=ncont_sent(iproc)+1
6866             nn=ncont_sent(iproc)
6867             zapas(1,nn,iproc)=i
6868             zapas(2,nn,iproc)=jjc
6869             zapas(3,nn,iproc)=facont_hb(j,i)
6870             zapas(4,nn,iproc)=ees0p(j,i)
6871             zapas(5,nn,iproc)=ees0m(j,i)
6872             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6873             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6874             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6875             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6876             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6877             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6878             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6879             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6880             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6881             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6882             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6883             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6884             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6885             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6886             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6887             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6888             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6889             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6890             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6891             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6892             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6893           endif
6894         enddo
6895         enddo
6896       enddo
6897       if (lprn) then
6898       write (iout,*) 
6899      &  "Numbers of contacts to be sent to other processors",
6900      &  (ncont_sent(i),i=1,ntask_cont_to)
6901       write (iout,*) "Contacts sent"
6902       do ii=1,ntask_cont_to
6903         nn=ncont_sent(ii)
6904         iproc=itask_cont_to(ii)
6905         write (iout,*) nn," contacts to processor",iproc,
6906      &   " of CONT_TO_COMM group"
6907         do i=1,nn
6908           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6909         enddo
6910       enddo
6911       call flush(iout)
6912       endif
6913       CorrelType=477
6914       CorrelID=fg_rank+1
6915       CorrelType1=478
6916       CorrelID1=nfgtasks+fg_rank+1
6917       ireq=0
6918 C Receive the numbers of needed contacts from other processors 
6919       do ii=1,ntask_cont_from
6920         iproc=itask_cont_from(ii)
6921         ireq=ireq+1
6922         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6923      &    FG_COMM,req(ireq),IERR)
6924       enddo
6925 c      write (iout,*) "IRECV ended"
6926 c      call flush(iout)
6927 C Send the number of contacts needed by other processors
6928       do ii=1,ntask_cont_to
6929         iproc=itask_cont_to(ii)
6930         ireq=ireq+1
6931         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6932      &    FG_COMM,req(ireq),IERR)
6933       enddo
6934 c      write (iout,*) "ISEND ended"
6935 c      write (iout,*) "number of requests (nn)",ireq
6936       call flush(iout)
6937       if (ireq.gt.0) 
6938      &  call MPI_Waitall(ireq,req,status_array,ierr)
6939 c      write (iout,*) 
6940 c     &  "Numbers of contacts to be received from other processors",
6941 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6942 c      call flush(iout)
6943 C Receive contacts
6944       ireq=0
6945       do ii=1,ntask_cont_from
6946         iproc=itask_cont_from(ii)
6947         nn=ncont_recv(ii)
6948 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6949 c     &   " of CONT_TO_COMM group"
6950         call flush(iout)
6951         if (nn.gt.0) then
6952           ireq=ireq+1
6953           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6954      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6955 c          write (iout,*) "ireq,req",ireq,req(ireq)
6956         endif
6957       enddo
6958 C Send the contacts to processors that need them
6959       do ii=1,ntask_cont_to
6960         iproc=itask_cont_to(ii)
6961         nn=ncont_sent(ii)
6962 c        write (iout,*) nn," contacts to processor",iproc,
6963 c     &   " of CONT_TO_COMM group"
6964         if (nn.gt.0) then
6965           ireq=ireq+1 
6966           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6967      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6968 c          write (iout,*) "ireq,req",ireq,req(ireq)
6969 c          do i=1,nn
6970 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6971 c          enddo
6972         endif  
6973       enddo
6974 c      write (iout,*) "number of requests (contacts)",ireq
6975 c      write (iout,*) "req",(req(i),i=1,4)
6976 c      call flush(iout)
6977       if (ireq.gt.0) 
6978      & call MPI_Waitall(ireq,req,status_array,ierr)
6979       do iii=1,ntask_cont_from
6980         iproc=itask_cont_from(iii)
6981         nn=ncont_recv(iii)
6982         if (lprn) then
6983         write (iout,*) "Received",nn," contacts from processor",iproc,
6984      &   " of CONT_FROM_COMM group"
6985         call flush(iout)
6986         do i=1,nn
6987           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6988         enddo
6989         call flush(iout)
6990         endif
6991         do i=1,nn
6992           ii=zapas_recv(1,i,iii)
6993 c Flag the received contacts to prevent double-counting
6994           jj=-zapas_recv(2,i,iii)
6995 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6996 c          call flush(iout)
6997           nnn=num_cont_hb(ii)+1
6998           num_cont_hb(ii)=nnn
6999           jcont_hb(nnn,ii)=jj
7000           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
7001           ees0p(nnn,ii)=zapas_recv(4,i,iii)
7002           ees0m(nnn,ii)=zapas_recv(5,i,iii)
7003           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
7004           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
7005           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
7006           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
7007           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
7008           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
7009           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
7010           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
7011           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
7012           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
7013           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
7014           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
7015           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
7016           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
7017           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
7018           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
7019           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
7020           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
7021           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
7022           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
7023           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
7024         enddo
7025       enddo
7026       call flush(iout)
7027       if (lprn) then
7028         write (iout,'(a)') 'Contact function values after receive:'
7029         do i=nnt,nct-2
7030           write (iout,'(2i3,50(1x,i3,f5.2))') 
7031      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
7032      &    j=1,num_cont_hb(i))
7033         enddo
7034         call flush(iout)
7035       endif
7036    30 continue
7037 #endif
7038       if (lprn) then
7039         write (iout,'(a)') 'Contact function values:'
7040         do i=nnt,nct-2
7041           write (iout,'(2i3,50(1x,i3,f5.2))') 
7042      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
7043      &    j=1,num_cont_hb(i))
7044         enddo
7045       endif
7046       ecorr=0.0D0
7047 C Remove the loop below after debugging !!!
7048       do i=nnt,nct
7049         do j=1,3
7050           gradcorr(j,i)=0.0D0
7051           gradxorr(j,i)=0.0D0
7052         enddo
7053       enddo
7054 C Calculate the local-electrostatic correlation terms
7055       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
7056         i1=i+1
7057         num_conti=num_cont_hb(i)
7058         num_conti1=num_cont_hb(i+1)
7059         do jj=1,num_conti
7060           j=jcont_hb(jj,i)
7061           jp=iabs(j)
7062           do kk=1,num_conti1
7063             j1=jcont_hb(kk,i1)
7064             jp1=iabs(j1)
7065 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
7066 c     &         ' jj=',jj,' kk=',kk
7067             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
7068      &          .or. j.lt.0 .and. j1.gt.0) .and.
7069      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
7070 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
7071 C The system gains extra energy.
7072               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
7073               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
7074      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
7075               n_corr=n_corr+1
7076             else if (j1.eq.j) then
7077 C Contacts I-J and I-(J+1) occur simultaneously. 
7078 C The system loses extra energy.
7079 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
7080             endif
7081           enddo ! kk
7082           do kk=1,num_conti
7083             j1=jcont_hb(kk,i)
7084 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
7085 c    &         ' jj=',jj,' kk=',kk
7086             if (j1.eq.j+1) then
7087 C Contacts I-J and (I+1)-J occur simultaneously. 
7088 C The system loses extra energy.
7089 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
7090             endif ! j1==j+1
7091           enddo ! kk
7092         enddo ! jj
7093       enddo ! i
7094       return
7095       end
7096 c------------------------------------------------------------------------------
7097       subroutine add_hb_contact(ii,jj,itask)
7098       implicit real*8 (a-h,o-z)
7099       include "DIMENSIONS"
7100       include "COMMON.IOUNITS"
7101       integer max_cont
7102       integer max_dim
7103       parameter (max_cont=maxconts)
7104       parameter (max_dim=26)
7105       include "COMMON.CONTACTS"
7106       double precision zapas(max_dim,maxconts,max_fg_procs),
7107      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7108       common /przechowalnia/ zapas
7109       integer i,j,ii,jj,iproc,itask(4),nn
7110 c      write (iout,*) "itask",itask
7111       do i=1,2
7112         iproc=itask(i)
7113         if (iproc.gt.0) then
7114           do j=1,num_cont_hb(ii)
7115             jjc=jcont_hb(j,ii)
7116 c            write (iout,*) "i",ii," j",jj," jjc",jjc
7117             if (jjc.eq.jj) then
7118               ncont_sent(iproc)=ncont_sent(iproc)+1
7119               nn=ncont_sent(iproc)
7120               zapas(1,nn,iproc)=ii
7121               zapas(2,nn,iproc)=jjc
7122               zapas(3,nn,iproc)=facont_hb(j,ii)
7123               zapas(4,nn,iproc)=ees0p(j,ii)
7124               zapas(5,nn,iproc)=ees0m(j,ii)
7125               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
7126               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
7127               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
7128               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
7129               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
7130               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
7131               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
7132               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
7133               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
7134               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
7135               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
7136               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
7137               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
7138               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
7139               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
7140               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
7141               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
7142               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
7143               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
7144               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
7145               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
7146               exit
7147             endif
7148           enddo
7149         endif
7150       enddo
7151       return
7152       end
7153 c------------------------------------------------------------------------------
7154       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
7155      &  n_corr1)
7156 C This subroutine calculates multi-body contributions to hydrogen-bonding 
7157       implicit real*8 (a-h,o-z)
7158       include 'DIMENSIONS'
7159       include 'COMMON.IOUNITS'
7160 #ifdef MPI
7161       include "mpif.h"
7162       parameter (max_cont=maxconts)
7163       parameter (max_dim=70)
7164       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
7165       double precision zapas(max_dim,maxconts,max_fg_procs),
7166      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7167       common /przechowalnia/ zapas
7168       integer status(MPI_STATUS_SIZE),req(maxconts*2),
7169      &  status_array(MPI_STATUS_SIZE,maxconts*2)
7170 #endif
7171       include 'COMMON.SETUP'
7172       include 'COMMON.FFIELD'
7173       include 'COMMON.DERIV'
7174       include 'COMMON.LOCAL'
7175       include 'COMMON.INTERACT'
7176       include 'COMMON.CONTACTS'
7177       include 'COMMON.CHAIN'
7178       include 'COMMON.CONTROL'
7179       double precision gx(3),gx1(3)
7180       integer num_cont_hb_old(maxres)
7181       logical lprn,ldone
7182       double precision eello4,eello5,eelo6,eello_turn6
7183       external eello4,eello5,eello6,eello_turn6
7184 C Set lprn=.true. for debugging
7185       lprn=.false.
7186       eturn6=0.0d0
7187 #ifdef MPI
7188       do i=1,nres
7189         num_cont_hb_old(i)=num_cont_hb(i)
7190       enddo
7191       n_corr=0
7192       n_corr1=0
7193       if (nfgtasks.le.1) goto 30
7194       if (lprn) then
7195         write (iout,'(a)') 'Contact function values before RECEIVE:'
7196         do i=nnt,nct-2
7197           write (iout,'(2i3,50(1x,i2,f5.2))') 
7198      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
7199      &    j=1,num_cont_hb(i))
7200         enddo
7201       endif
7202       call flush(iout)
7203       do i=1,ntask_cont_from
7204         ncont_recv(i)=0
7205       enddo
7206       do i=1,ntask_cont_to
7207         ncont_sent(i)=0
7208       enddo
7209 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
7210 c     & ntask_cont_to
7211 C Make the list of contacts to send to send to other procesors
7212       do i=iturn3_start,iturn3_end
7213 c        write (iout,*) "make contact list turn3",i," num_cont",
7214 c     &    num_cont_hb(i)
7215         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
7216       enddo
7217       do i=iturn4_start,iturn4_end
7218 c        write (iout,*) "make contact list turn4",i," num_cont",
7219 c     &   num_cont_hb(i)
7220         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
7221       enddo
7222       do ii=1,nat_sent
7223         i=iat_sent(ii)
7224 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
7225 c     &    num_cont_hb(i)
7226         do j=1,num_cont_hb(i)
7227         do k=1,4
7228           jjc=jcont_hb(j,i)
7229           iproc=iint_sent_local(k,jjc,ii)
7230 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
7231           if (iproc.ne.0) then
7232             ncont_sent(iproc)=ncont_sent(iproc)+1
7233             nn=ncont_sent(iproc)
7234             zapas(1,nn,iproc)=i
7235             zapas(2,nn,iproc)=jjc
7236             zapas(3,nn,iproc)=d_cont(j,i)
7237             ind=3
7238             do kk=1,3
7239               ind=ind+1
7240               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
7241             enddo
7242             do kk=1,2
7243               do ll=1,2
7244                 ind=ind+1
7245                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
7246               enddo
7247             enddo
7248             do jj=1,5
7249               do kk=1,3
7250                 do ll=1,2
7251                   do mm=1,2
7252                     ind=ind+1
7253                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
7254                   enddo
7255                 enddo
7256               enddo
7257             enddo
7258           endif
7259         enddo
7260         enddo
7261       enddo
7262       if (lprn) then
7263       write (iout,*) 
7264      &  "Numbers of contacts to be sent to other processors",
7265      &  (ncont_sent(i),i=1,ntask_cont_to)
7266       write (iout,*) "Contacts sent"
7267       do ii=1,ntask_cont_to
7268         nn=ncont_sent(ii)
7269         iproc=itask_cont_to(ii)
7270         write (iout,*) nn," contacts to processor",iproc,
7271      &   " of CONT_TO_COMM group"
7272         do i=1,nn
7273           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
7274         enddo
7275       enddo
7276       call flush(iout)
7277       endif
7278       CorrelType=477
7279       CorrelID=fg_rank+1
7280       CorrelType1=478
7281       CorrelID1=nfgtasks+fg_rank+1
7282       ireq=0
7283 C Receive the numbers of needed contacts from other processors 
7284       do ii=1,ntask_cont_from
7285         iproc=itask_cont_from(ii)
7286         ireq=ireq+1
7287         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
7288      &    FG_COMM,req(ireq),IERR)
7289       enddo
7290 c      write (iout,*) "IRECV ended"
7291 c      call flush(iout)
7292 C Send the number of contacts needed by other processors
7293       do ii=1,ntask_cont_to
7294         iproc=itask_cont_to(ii)
7295         ireq=ireq+1
7296         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
7297      &    FG_COMM,req(ireq),IERR)
7298       enddo
7299 c      write (iout,*) "ISEND ended"
7300 c      write (iout,*) "number of requests (nn)",ireq
7301       call flush(iout)
7302       if (ireq.gt.0) 
7303      &  call MPI_Waitall(ireq,req,status_array,ierr)
7304 c      write (iout,*) 
7305 c     &  "Numbers of contacts to be received from other processors",
7306 c     &  (ncont_recv(i),i=1,ntask_cont_from)
7307 c      call flush(iout)
7308 C Receive contacts
7309       ireq=0
7310       do ii=1,ntask_cont_from
7311         iproc=itask_cont_from(ii)
7312         nn=ncont_recv(ii)
7313 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
7314 c     &   " of CONT_TO_COMM group"
7315         call flush(iout)
7316         if (nn.gt.0) then
7317           ireq=ireq+1
7318           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
7319      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
7320 c          write (iout,*) "ireq,req",ireq,req(ireq)
7321         endif
7322       enddo
7323 C Send the contacts to processors that need them
7324       do ii=1,ntask_cont_to
7325         iproc=itask_cont_to(ii)
7326         nn=ncont_sent(ii)
7327 c        write (iout,*) nn," contacts to processor",iproc,
7328 c     &   " of CONT_TO_COMM group"
7329         if (nn.gt.0) then
7330           ireq=ireq+1 
7331           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
7332      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
7333 c          write (iout,*) "ireq,req",ireq,req(ireq)
7334 c          do i=1,nn
7335 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
7336 c          enddo
7337         endif  
7338       enddo
7339 c      write (iout,*) "number of requests (contacts)",ireq
7340 c      write (iout,*) "req",(req(i),i=1,4)
7341 c      call flush(iout)
7342       if (ireq.gt.0) 
7343      & call MPI_Waitall(ireq,req,status_array,ierr)
7344       do iii=1,ntask_cont_from
7345         iproc=itask_cont_from(iii)
7346         nn=ncont_recv(iii)
7347         if (lprn) then
7348         write (iout,*) "Received",nn," contacts from processor",iproc,
7349      &   " of CONT_FROM_COMM group"
7350         call flush(iout)
7351         do i=1,nn
7352           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
7353         enddo
7354         call flush(iout)
7355         endif
7356         do i=1,nn
7357           ii=zapas_recv(1,i,iii)
7358 c Flag the received contacts to prevent double-counting
7359           jj=-zapas_recv(2,i,iii)
7360 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
7361 c          call flush(iout)
7362           nnn=num_cont_hb(ii)+1
7363           num_cont_hb(ii)=nnn
7364           jcont_hb(nnn,ii)=jj
7365           d_cont(nnn,ii)=zapas_recv(3,i,iii)
7366           ind=3
7367           do kk=1,3
7368             ind=ind+1
7369             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
7370           enddo
7371           do kk=1,2
7372             do ll=1,2
7373               ind=ind+1
7374               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
7375             enddo
7376           enddo
7377           do jj=1,5
7378             do kk=1,3
7379               do ll=1,2
7380                 do mm=1,2
7381                   ind=ind+1
7382                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
7383                 enddo
7384               enddo
7385             enddo
7386           enddo
7387         enddo
7388       enddo
7389       call flush(iout)
7390       if (lprn) then
7391         write (iout,'(a)') 'Contact function values after receive:'
7392         do i=nnt,nct-2
7393           write (iout,'(2i3,50(1x,i3,5f6.3))') 
7394      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
7395      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
7396         enddo
7397         call flush(iout)
7398       endif
7399    30 continue
7400 #endif
7401       if (lprn) then
7402         write (iout,'(a)') 'Contact function values:'
7403         do i=nnt,nct-2
7404           write (iout,'(2i3,50(1x,i2,5f6.3))') 
7405      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
7406      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
7407         enddo
7408       endif
7409       ecorr=0.0D0
7410       ecorr5=0.0d0
7411       ecorr6=0.0d0
7412 C Remove the loop below after debugging !!!
7413       do i=nnt,nct
7414         do j=1,3
7415           gradcorr(j,i)=0.0D0
7416           gradxorr(j,i)=0.0D0
7417         enddo
7418       enddo
7419 C Calculate the dipole-dipole interaction energies
7420       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
7421       do i=iatel_s,iatel_e+1
7422         num_conti=num_cont_hb(i)
7423         do jj=1,num_conti
7424           j=jcont_hb(jj,i)
7425 #ifdef MOMENT
7426           call dipole(i,j,jj)
7427 #endif
7428         enddo
7429       enddo
7430       endif
7431 C Calculate the local-electrostatic correlation terms
7432 c                write (iout,*) "gradcorr5 in eello5 before loop"
7433 c                do iii=1,nres
7434 c                  write (iout,'(i5,3f10.5)') 
7435 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7436 c                enddo
7437       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
7438 c        write (iout,*) "corr loop i",i
7439         i1=i+1
7440         num_conti=num_cont_hb(i)
7441         num_conti1=num_cont_hb(i+1)
7442         do jj=1,num_conti
7443           j=jcont_hb(jj,i)
7444           jp=iabs(j)
7445           do kk=1,num_conti1
7446             j1=jcont_hb(kk,i1)
7447             jp1=iabs(j1)
7448 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
7449 c     &         ' jj=',jj,' kk=',kk
7450 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
7451             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
7452      &          .or. j.lt.0 .and. j1.gt.0) .and.
7453      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
7454 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
7455 C The system gains extra energy.
7456               n_corr=n_corr+1
7457               sqd1=dsqrt(d_cont(jj,i))
7458               sqd2=dsqrt(d_cont(kk,i1))
7459               sred_geom = sqd1*sqd2
7460               IF (sred_geom.lt.cutoff_corr) THEN
7461                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
7462      &            ekont,fprimcont)
7463 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
7464 cd     &         ' jj=',jj,' kk=',kk
7465                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
7466                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
7467                 do l=1,3
7468                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
7469                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
7470                 enddo
7471                 n_corr1=n_corr1+1
7472 cd               write (iout,*) 'sred_geom=',sred_geom,
7473 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
7474 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
7475 cd               write (iout,*) "g_contij",g_contij
7476 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
7477 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
7478                 call calc_eello(i,jp,i+1,jp1,jj,kk)
7479                 if (wcorr4.gt.0.0d0) 
7480      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
7481                   if (energy_dec.and.wcorr4.gt.0.0d0) 
7482      1                 write (iout,'(a6,4i5,0pf7.3)')
7483      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
7484 c                write (iout,*) "gradcorr5 before eello5"
7485 c                do iii=1,nres
7486 c                  write (iout,'(i5,3f10.5)') 
7487 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7488 c                enddo
7489                 if (wcorr5.gt.0.0d0)
7490      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
7491 c                write (iout,*) "gradcorr5 after eello5"
7492 c                do iii=1,nres
7493 c                  write (iout,'(i5,3f10.5)') 
7494 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7495 c                enddo
7496                   if (energy_dec.and.wcorr5.gt.0.0d0) 
7497      1                 write (iout,'(a6,4i5,0pf7.3)')
7498      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
7499 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
7500 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
7501                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
7502      &               .or. wturn6.eq.0.0d0))then
7503 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
7504                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
7505                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
7506      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
7507 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
7508 cd     &            'ecorr6=',ecorr6
7509 cd                write (iout,'(4e15.5)') sred_geom,
7510 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
7511 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
7512 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
7513                 else if (wturn6.gt.0.0d0
7514      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
7515 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
7516                   eturn6=eturn6+eello_turn6(i,jj,kk)
7517                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
7518      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
7519 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
7520                 endif
7521               ENDIF
7522 1111          continue
7523             endif
7524           enddo ! kk
7525         enddo ! jj
7526       enddo ! i
7527       do i=1,nres
7528         num_cont_hb(i)=num_cont_hb_old(i)
7529       enddo
7530 c                write (iout,*) "gradcorr5 in eello5"
7531 c                do iii=1,nres
7532 c                  write (iout,'(i5,3f10.5)') 
7533 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7534 c                enddo
7535       return
7536       end
7537 c------------------------------------------------------------------------------
7538       subroutine add_hb_contact_eello(ii,jj,itask)
7539       implicit real*8 (a-h,o-z)
7540       include "DIMENSIONS"
7541       include "COMMON.IOUNITS"
7542       integer max_cont
7543       integer max_dim
7544       parameter (max_cont=maxconts)
7545       parameter (max_dim=70)
7546       include "COMMON.CONTACTS"
7547       double precision zapas(max_dim,maxconts,max_fg_procs),
7548      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7549       common /przechowalnia/ zapas
7550       integer i,j,ii,jj,iproc,itask(4),nn
7551 c      write (iout,*) "itask",itask
7552       do i=1,2
7553         iproc=itask(i)
7554         if (iproc.gt.0) then
7555           do j=1,num_cont_hb(ii)
7556             jjc=jcont_hb(j,ii)
7557 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
7558             if (jjc.eq.jj) then
7559               ncont_sent(iproc)=ncont_sent(iproc)+1
7560               nn=ncont_sent(iproc)
7561               zapas(1,nn,iproc)=ii
7562               zapas(2,nn,iproc)=jjc
7563               zapas(3,nn,iproc)=d_cont(j,ii)
7564               ind=3
7565               do kk=1,3
7566                 ind=ind+1
7567                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
7568               enddo
7569               do kk=1,2
7570                 do ll=1,2
7571                   ind=ind+1
7572                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
7573                 enddo
7574               enddo
7575               do jj=1,5
7576                 do kk=1,3
7577                   do ll=1,2
7578                     do mm=1,2
7579                       ind=ind+1
7580                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
7581                     enddo
7582                   enddo
7583                 enddo
7584               enddo
7585               exit
7586             endif
7587           enddo
7588         endif
7589       enddo
7590       return
7591       end
7592 c------------------------------------------------------------------------------
7593       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
7594       implicit real*8 (a-h,o-z)
7595       include 'DIMENSIONS'
7596       include 'COMMON.IOUNITS'
7597       include 'COMMON.DERIV'
7598       include 'COMMON.INTERACT'
7599       include 'COMMON.CONTACTS'
7600       double precision gx(3),gx1(3)
7601       logical lprn
7602       lprn=.false.
7603       eij=facont_hb(jj,i)
7604       ekl=facont_hb(kk,k)
7605       ees0pij=ees0p(jj,i)
7606       ees0pkl=ees0p(kk,k)
7607       ees0mij=ees0m(jj,i)
7608       ees0mkl=ees0m(kk,k)
7609       ekont=eij*ekl
7610       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
7611 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
7612 C Following 4 lines for diagnostics.
7613 cd    ees0pkl=0.0D0
7614 cd    ees0pij=1.0D0
7615 cd    ees0mkl=0.0D0
7616 cd    ees0mij=1.0D0
7617 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
7618 c     & 'Contacts ',i,j,
7619 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
7620 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
7621 c     & 'gradcorr_long'
7622 C Calculate the multi-body contribution to energy.
7623 c      ecorr=ecorr+ekont*ees
7624 C Calculate multi-body contributions to the gradient.
7625       coeffpees0pij=coeffp*ees0pij
7626       coeffmees0mij=coeffm*ees0mij
7627       coeffpees0pkl=coeffp*ees0pkl
7628       coeffmees0mkl=coeffm*ees0mkl
7629       do ll=1,3
7630 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
7631         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
7632      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
7633      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
7634         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
7635      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
7636      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
7637 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
7638         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
7639      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
7640      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
7641         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
7642      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
7643      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
7644         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
7645      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
7646      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
7647         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
7648         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
7649         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
7650      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
7651      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
7652         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
7653         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
7654 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
7655       enddo
7656 c      write (iout,*)
7657 cgrad      do m=i+1,j-1
7658 cgrad        do ll=1,3
7659 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7660 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
7661 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
7662 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
7663 cgrad        enddo
7664 cgrad      enddo
7665 cgrad      do m=k+1,l-1
7666 cgrad        do ll=1,3
7667 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7668 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
7669 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
7670 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
7671 cgrad        enddo
7672 cgrad      enddo 
7673 c      write (iout,*) "ehbcorr",ekont*ees
7674       ehbcorr=ekont*ees
7675       return
7676       end
7677 #ifdef MOMENT
7678 C---------------------------------------------------------------------------
7679       subroutine dipole(i,j,jj)
7680       implicit real*8 (a-h,o-z)
7681       include 'DIMENSIONS'
7682       include 'COMMON.IOUNITS'
7683       include 'COMMON.CHAIN'
7684       include 'COMMON.FFIELD'
7685       include 'COMMON.DERIV'
7686       include 'COMMON.INTERACT'
7687       include 'COMMON.CONTACTS'
7688       include 'COMMON.TORSION'
7689       include 'COMMON.VAR'
7690       include 'COMMON.GEO'
7691       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7692      &  auxmat(2,2)
7693       iti1 = itortyp(itype(i+1))
7694       if (j.lt.nres-1) then
7695         itj1 = itortyp(itype(j+1))
7696       else
7697         itj1=ntortyp+1
7698       endif
7699       do iii=1,2
7700         dipi(iii,1)=Ub2(iii,i)
7701         dipderi(iii)=Ub2der(iii,i)
7702         dipi(iii,2)=b1(iii,iti1)
7703         dipj(iii,1)=Ub2(iii,j)
7704         dipderj(iii)=Ub2der(iii,j)
7705         dipj(iii,2)=b1(iii,itj1)
7706       enddo
7707       kkk=0
7708       do iii=1,2
7709         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7710         do jjj=1,2
7711           kkk=kkk+1
7712           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7713         enddo
7714       enddo
7715       do kkk=1,5
7716         do lll=1,3
7717           mmm=0
7718           do iii=1,2
7719             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7720      &        auxvec(1))
7721             do jjj=1,2
7722               mmm=mmm+1
7723               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7724             enddo
7725           enddo
7726         enddo
7727       enddo
7728       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7729       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7730       do iii=1,2
7731         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7732       enddo
7733       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7734       do iii=1,2
7735         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7736       enddo
7737       return
7738       end
7739 #endif
7740 C---------------------------------------------------------------------------
7741       subroutine calc_eello(i,j,k,l,jj,kk)
7742
7743 C This subroutine computes matrices and vectors needed to calculate 
7744 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7745 C
7746       implicit real*8 (a-h,o-z)
7747       include 'DIMENSIONS'
7748       include 'COMMON.IOUNITS'
7749       include 'COMMON.CHAIN'
7750       include 'COMMON.DERIV'
7751       include 'COMMON.INTERACT'
7752       include 'COMMON.CONTACTS'
7753       include 'COMMON.TORSION'
7754       include 'COMMON.VAR'
7755       include 'COMMON.GEO'
7756       include 'COMMON.FFIELD'
7757       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7758      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7759       logical lprn
7760       common /kutas/ lprn
7761 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7762 cd     & ' jj=',jj,' kk=',kk
7763 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7764 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7765 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7766       do iii=1,2
7767         do jjj=1,2
7768           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7769           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7770         enddo
7771       enddo
7772       call transpose2(aa1(1,1),aa1t(1,1))
7773       call transpose2(aa2(1,1),aa2t(1,1))
7774       do kkk=1,5
7775         do lll=1,3
7776           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7777      &      aa1tder(1,1,lll,kkk))
7778           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7779      &      aa2tder(1,1,lll,kkk))
7780         enddo
7781       enddo 
7782       if (l.eq.j+1) then
7783 C parallel orientation of the two CA-CA-CA frames.
7784         if (i.gt.1) then
7785           iti=itortyp(itype(i))
7786         else
7787           iti=ntortyp+1
7788         endif
7789         itk1=itortyp(itype(k+1))
7790         itj=itortyp(itype(j))
7791         if (l.lt.nres-1) then
7792           itl1=itortyp(itype(l+1))
7793         else
7794           itl1=ntortyp+1
7795         endif
7796 C A1 kernel(j+1) A2T
7797 cd        do iii=1,2
7798 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7799 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7800 cd        enddo
7801         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7802      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7803      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7804 C Following matrices are needed only for 6-th order cumulants
7805         IF (wcorr6.gt.0.0d0) THEN
7806         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7807      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7808      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7809         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7810      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7811      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7812      &   ADtEAderx(1,1,1,1,1,1))
7813         lprn=.false.
7814         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7815      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7816      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7817      &   ADtEA1derx(1,1,1,1,1,1))
7818         ENDIF
7819 C End 6-th order cumulants
7820 cd        lprn=.false.
7821 cd        if (lprn) then
7822 cd        write (2,*) 'In calc_eello6'
7823 cd        do iii=1,2
7824 cd          write (2,*) 'iii=',iii
7825 cd          do kkk=1,5
7826 cd            write (2,*) 'kkk=',kkk
7827 cd            do jjj=1,2
7828 cd              write (2,'(3(2f10.5),5x)') 
7829 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7830 cd            enddo
7831 cd          enddo
7832 cd        enddo
7833 cd        endif
7834         call transpose2(EUgder(1,1,k),auxmat(1,1))
7835         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7836         call transpose2(EUg(1,1,k),auxmat(1,1))
7837         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7838         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7839         do iii=1,2
7840           do kkk=1,5
7841             do lll=1,3
7842               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7843      &          EAEAderx(1,1,lll,kkk,iii,1))
7844             enddo
7845           enddo
7846         enddo
7847 C A1T kernel(i+1) A2
7848         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7849      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7850      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7851 C Following matrices are needed only for 6-th order cumulants
7852         IF (wcorr6.gt.0.0d0) THEN
7853         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7854      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7855      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7856         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7857      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7858      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7859      &   ADtEAderx(1,1,1,1,1,2))
7860         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7861      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7862      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7863      &   ADtEA1derx(1,1,1,1,1,2))
7864         ENDIF
7865 C End 6-th order cumulants
7866         call transpose2(EUgder(1,1,l),auxmat(1,1))
7867         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7868         call transpose2(EUg(1,1,l),auxmat(1,1))
7869         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7870         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7871         do iii=1,2
7872           do kkk=1,5
7873             do lll=1,3
7874               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7875      &          EAEAderx(1,1,lll,kkk,iii,2))
7876             enddo
7877           enddo
7878         enddo
7879 C AEAb1 and AEAb2
7880 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7881 C They are needed only when the fifth- or the sixth-order cumulants are
7882 C indluded.
7883         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7884         call transpose2(AEA(1,1,1),auxmat(1,1))
7885         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7886         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7887         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7888         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7889         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7890         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7891         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7892         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7893         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7894         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7895         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7896         call transpose2(AEA(1,1,2),auxmat(1,1))
7897         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7898         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7899         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7900         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7901         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7902         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7903         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7904         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7905         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7906         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7907         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7908 C Calculate the Cartesian derivatives of the vectors.
7909         do iii=1,2
7910           do kkk=1,5
7911             do lll=1,3
7912               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7913               call matvec2(auxmat(1,1),b1(1,iti),
7914      &          AEAb1derx(1,lll,kkk,iii,1,1))
7915               call matvec2(auxmat(1,1),Ub2(1,i),
7916      &          AEAb2derx(1,lll,kkk,iii,1,1))
7917               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7918      &          AEAb1derx(1,lll,kkk,iii,2,1))
7919               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7920      &          AEAb2derx(1,lll,kkk,iii,2,1))
7921               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7922               call matvec2(auxmat(1,1),b1(1,itj),
7923      &          AEAb1derx(1,lll,kkk,iii,1,2))
7924               call matvec2(auxmat(1,1),Ub2(1,j),
7925      &          AEAb2derx(1,lll,kkk,iii,1,2))
7926               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7927      &          AEAb1derx(1,lll,kkk,iii,2,2))
7928               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7929      &          AEAb2derx(1,lll,kkk,iii,2,2))
7930             enddo
7931           enddo
7932         enddo
7933         ENDIF
7934 C End vectors
7935       else
7936 C Antiparallel orientation of the two CA-CA-CA frames.
7937         if (i.gt.1) then
7938           iti=itortyp(itype(i))
7939         else
7940           iti=ntortyp+1
7941         endif
7942         itk1=itortyp(itype(k+1))
7943         itl=itortyp(itype(l))
7944         itj=itortyp(itype(j))
7945         if (j.lt.nres-1) then
7946           itj1=itortyp(itype(j+1))
7947         else 
7948           itj1=ntortyp+1
7949         endif
7950 C A2 kernel(j-1)T A1T
7951         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7952      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7953      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7954 C Following matrices are needed only for 6-th order cumulants
7955         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7956      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7957         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7958      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7959      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7960         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7961      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7962      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7963      &   ADtEAderx(1,1,1,1,1,1))
7964         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7965      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7966      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7967      &   ADtEA1derx(1,1,1,1,1,1))
7968         ENDIF
7969 C End 6-th order cumulants
7970         call transpose2(EUgder(1,1,k),auxmat(1,1))
7971         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7972         call transpose2(EUg(1,1,k),auxmat(1,1))
7973         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7974         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7975         do iii=1,2
7976           do kkk=1,5
7977             do lll=1,3
7978               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7979      &          EAEAderx(1,1,lll,kkk,iii,1))
7980             enddo
7981           enddo
7982         enddo
7983 C A2T kernel(i+1)T A1
7984         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7985      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7986      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7987 C Following matrices are needed only for 6-th order cumulants
7988         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7989      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7990         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7991      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7992      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7993         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7994      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7995      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7996      &   ADtEAderx(1,1,1,1,1,2))
7997         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7998      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7999      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
8000      &   ADtEA1derx(1,1,1,1,1,2))
8001         ENDIF
8002 C End 6-th order cumulants
8003         call transpose2(EUgder(1,1,j),auxmat(1,1))
8004         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
8005         call transpose2(EUg(1,1,j),auxmat(1,1))
8006         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
8007         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
8008         do iii=1,2
8009           do kkk=1,5
8010             do lll=1,3
8011               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
8012      &          EAEAderx(1,1,lll,kkk,iii,2))
8013             enddo
8014           enddo
8015         enddo
8016 C AEAb1 and AEAb2
8017 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
8018 C They are needed only when the fifth- or the sixth-order cumulants are
8019 C indluded.
8020         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
8021      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
8022         call transpose2(AEA(1,1,1),auxmat(1,1))
8023         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
8024         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
8025         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
8026         call transpose2(AEAderg(1,1,1),auxmat(1,1))
8027         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
8028         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
8029         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
8030         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
8031         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
8032         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
8033         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
8034         call transpose2(AEA(1,1,2),auxmat(1,1))
8035         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
8036         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
8037         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
8038         call transpose2(AEAderg(1,1,2),auxmat(1,1))
8039         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
8040         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
8041         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
8042         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
8043         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
8044         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
8045         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
8046 C Calculate the Cartesian derivatives of the vectors.
8047         do iii=1,2
8048           do kkk=1,5
8049             do lll=1,3
8050               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
8051               call matvec2(auxmat(1,1),b1(1,iti),
8052      &          AEAb1derx(1,lll,kkk,iii,1,1))
8053               call matvec2(auxmat(1,1),Ub2(1,i),
8054      &          AEAb2derx(1,lll,kkk,iii,1,1))
8055               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8056      &          AEAb1derx(1,lll,kkk,iii,2,1))
8057               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
8058      &          AEAb2derx(1,lll,kkk,iii,2,1))
8059               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
8060               call matvec2(auxmat(1,1),b1(1,itl),
8061      &          AEAb1derx(1,lll,kkk,iii,1,2))
8062               call matvec2(auxmat(1,1),Ub2(1,l),
8063      &          AEAb2derx(1,lll,kkk,iii,1,2))
8064               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
8065      &          AEAb1derx(1,lll,kkk,iii,2,2))
8066               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
8067      &          AEAb2derx(1,lll,kkk,iii,2,2))
8068             enddo
8069           enddo
8070         enddo
8071         ENDIF
8072 C End vectors
8073       endif
8074       return
8075       end
8076 C---------------------------------------------------------------------------
8077       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
8078      &  KK,KKderg,AKA,AKAderg,AKAderx)
8079       implicit none
8080       integer nderg
8081       logical transp
8082       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
8083      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
8084      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
8085       integer iii,kkk,lll
8086       integer jjj,mmm
8087       logical lprn
8088       common /kutas/ lprn
8089       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
8090       do iii=1,nderg 
8091         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
8092      &    AKAderg(1,1,iii))
8093       enddo
8094 cd      if (lprn) write (2,*) 'In kernel'
8095       do kkk=1,5
8096 cd        if (lprn) write (2,*) 'kkk=',kkk
8097         do lll=1,3
8098           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
8099      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
8100 cd          if (lprn) then
8101 cd            write (2,*) 'lll=',lll
8102 cd            write (2,*) 'iii=1'
8103 cd            do jjj=1,2
8104 cd              write (2,'(3(2f10.5),5x)') 
8105 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
8106 cd            enddo
8107 cd          endif
8108           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
8109      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
8110 cd          if (lprn) then
8111 cd            write (2,*) 'lll=',lll
8112 cd            write (2,*) 'iii=2'
8113 cd            do jjj=1,2
8114 cd              write (2,'(3(2f10.5),5x)') 
8115 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
8116 cd            enddo
8117 cd          endif
8118         enddo
8119       enddo
8120       return
8121       end
8122 C---------------------------------------------------------------------------
8123       double precision function eello4(i,j,k,l,jj,kk)
8124       implicit real*8 (a-h,o-z)
8125       include 'DIMENSIONS'
8126       include 'COMMON.IOUNITS'
8127       include 'COMMON.CHAIN'
8128       include 'COMMON.DERIV'
8129       include 'COMMON.INTERACT'
8130       include 'COMMON.CONTACTS'
8131       include 'COMMON.TORSION'
8132       include 'COMMON.VAR'
8133       include 'COMMON.GEO'
8134       double precision pizda(2,2),ggg1(3),ggg2(3)
8135 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
8136 cd        eello4=0.0d0
8137 cd        return
8138 cd      endif
8139 cd      print *,'eello4:',i,j,k,l,jj,kk
8140 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
8141 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
8142 cold      eij=facont_hb(jj,i)
8143 cold      ekl=facont_hb(kk,k)
8144 cold      ekont=eij*ekl
8145       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
8146 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
8147       gcorr_loc(k-1)=gcorr_loc(k-1)
8148      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
8149       if (l.eq.j+1) then
8150         gcorr_loc(l-1)=gcorr_loc(l-1)
8151      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
8152       else
8153         gcorr_loc(j-1)=gcorr_loc(j-1)
8154      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
8155       endif
8156       do iii=1,2
8157         do kkk=1,5
8158           do lll=1,3
8159             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
8160      &                        -EAEAderx(2,2,lll,kkk,iii,1)
8161 cd            derx(lll,kkk,iii)=0.0d0
8162           enddo
8163         enddo
8164       enddo
8165 cd      gcorr_loc(l-1)=0.0d0
8166 cd      gcorr_loc(j-1)=0.0d0
8167 cd      gcorr_loc(k-1)=0.0d0
8168 cd      eel4=1.0d0
8169 cd      write (iout,*)'Contacts have occurred for peptide groups',
8170 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
8171 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
8172       if (j.lt.nres-1) then
8173         j1=j+1
8174         j2=j-1
8175       else
8176         j1=j-1
8177         j2=j-2
8178       endif
8179       if (l.lt.nres-1) then
8180         l1=l+1
8181         l2=l-1
8182       else
8183         l1=l-1
8184         l2=l-2
8185       endif
8186       do ll=1,3
8187 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
8188 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
8189         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
8190         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
8191 cgrad        ghalf=0.5d0*ggg1(ll)
8192         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
8193         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
8194         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
8195         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
8196         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
8197         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
8198 cgrad        ghalf=0.5d0*ggg2(ll)
8199         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
8200         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
8201         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
8202         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
8203         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
8204         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
8205       enddo
8206 cgrad      do m=i+1,j-1
8207 cgrad        do ll=1,3
8208 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
8209 cgrad        enddo
8210 cgrad      enddo
8211 cgrad      do m=k+1,l-1
8212 cgrad        do ll=1,3
8213 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
8214 cgrad        enddo
8215 cgrad      enddo
8216 cgrad      do m=i+2,j2
8217 cgrad        do ll=1,3
8218 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
8219 cgrad        enddo
8220 cgrad      enddo
8221 cgrad      do m=k+2,l2
8222 cgrad        do ll=1,3
8223 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
8224 cgrad        enddo
8225 cgrad      enddo 
8226 cd      do iii=1,nres-3
8227 cd        write (2,*) iii,gcorr_loc(iii)
8228 cd      enddo
8229       eello4=ekont*eel4
8230 cd      write (2,*) 'ekont',ekont
8231 cd      write (iout,*) 'eello4',ekont*eel4
8232       return
8233       end
8234 C---------------------------------------------------------------------------
8235       double precision function eello5(i,j,k,l,jj,kk)
8236       implicit real*8 (a-h,o-z)
8237       include 'DIMENSIONS'
8238       include 'COMMON.IOUNITS'
8239       include 'COMMON.CHAIN'
8240       include 'COMMON.DERIV'
8241       include 'COMMON.INTERACT'
8242       include 'COMMON.CONTACTS'
8243       include 'COMMON.TORSION'
8244       include 'COMMON.VAR'
8245       include 'COMMON.GEO'
8246       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
8247       double precision ggg1(3),ggg2(3)
8248 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8249 C                                                                              C
8250 C                            Parallel chains                                   C
8251 C                                                                              C
8252 C          o             o                   o             o                   C
8253 C         /l\           / \             \   / \           / \   /              C
8254 C        /   \         /   \             \ /   \         /   \ /               C
8255 C       j| o |l1       | o |              o| o |         | o |o                C
8256 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
8257 C      \i/   \         /   \ /             /   \         /   \                 C
8258 C       o    k1             o                                                  C
8259 C         (I)          (II)                (III)          (IV)                 C
8260 C                                                                              C
8261 C      eello5_1        eello5_2            eello5_3       eello5_4             C
8262 C                                                                              C
8263 C                            Antiparallel chains                               C
8264 C                                                                              C
8265 C          o             o                   o             o                   C
8266 C         /j\           / \             \   / \           / \   /              C
8267 C        /   \         /   \             \ /   \         /   \ /               C
8268 C      j1| o |l        | o |              o| o |         | o |o                C
8269 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
8270 C      \i/   \         /   \ /             /   \         /   \                 C
8271 C       o     k1            o                                                  C
8272 C         (I)          (II)                (III)          (IV)                 C
8273 C                                                                              C
8274 C      eello5_1        eello5_2            eello5_3       eello5_4             C
8275 C                                                                              C
8276 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
8277 C                                                                              C
8278 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8279 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
8280 cd        eello5=0.0d0
8281 cd        return
8282 cd      endif
8283 cd      write (iout,*)
8284 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
8285 cd     &   ' and',k,l
8286       itk=itortyp(itype(k))
8287       itl=itortyp(itype(l))
8288       itj=itortyp(itype(j))
8289       eello5_1=0.0d0
8290       eello5_2=0.0d0
8291       eello5_3=0.0d0
8292       eello5_4=0.0d0
8293 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
8294 cd     &   eel5_3_num,eel5_4_num)
8295       do iii=1,2
8296         do kkk=1,5
8297           do lll=1,3
8298             derx(lll,kkk,iii)=0.0d0
8299           enddo
8300         enddo
8301       enddo
8302 cd      eij=facont_hb(jj,i)
8303 cd      ekl=facont_hb(kk,k)
8304 cd      ekont=eij*ekl
8305 cd      write (iout,*)'Contacts have occurred for peptide groups',
8306 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
8307 cd      goto 1111
8308 C Contribution from the graph I.
8309 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
8310 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
8311       call transpose2(EUg(1,1,k),auxmat(1,1))
8312       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
8313       vv(1)=pizda(1,1)-pizda(2,2)
8314       vv(2)=pizda(1,2)+pizda(2,1)
8315       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
8316      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
8317 C Explicit gradient in virtual-dihedral angles.
8318       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
8319      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
8320      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
8321       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8322       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
8323       vv(1)=pizda(1,1)-pizda(2,2)
8324       vv(2)=pizda(1,2)+pizda(2,1)
8325       g_corr5_loc(k-1)=g_corr5_loc(k-1)
8326      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
8327      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8328       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
8329       vv(1)=pizda(1,1)-pizda(2,2)
8330       vv(2)=pizda(1,2)+pizda(2,1)
8331       if (l.eq.j+1) then
8332         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
8333      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
8334      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8335       else
8336         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
8337      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
8338      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8339       endif 
8340 C Cartesian gradient
8341       do iii=1,2
8342         do kkk=1,5
8343           do lll=1,3
8344             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
8345      &        pizda(1,1))
8346             vv(1)=pizda(1,1)-pizda(2,2)
8347             vv(2)=pizda(1,2)+pizda(2,1)
8348             derx(lll,kkk,iii)=derx(lll,kkk,iii)
8349      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
8350      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
8351           enddo
8352         enddo
8353       enddo
8354 c      goto 1112
8355 c1111  continue
8356 C Contribution from graph II 
8357       call transpose2(EE(1,1,itk),auxmat(1,1))
8358       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
8359       vv(1)=pizda(1,1)+pizda(2,2)
8360       vv(2)=pizda(2,1)-pizda(1,2)
8361       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
8362      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
8363 C Explicit gradient in virtual-dihedral angles.
8364       g_corr5_loc(k-1)=g_corr5_loc(k-1)
8365      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
8366       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
8367       vv(1)=pizda(1,1)+pizda(2,2)
8368       vv(2)=pizda(2,1)-pizda(1,2)
8369       if (l.eq.j+1) then
8370         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8371      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
8372      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
8373       else
8374         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8375      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
8376      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
8377       endif
8378 C Cartesian gradient
8379       do iii=1,2
8380         do kkk=1,5
8381           do lll=1,3
8382             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
8383      &        pizda(1,1))
8384             vv(1)=pizda(1,1)+pizda(2,2)
8385             vv(2)=pizda(2,1)-pizda(1,2)
8386             derx(lll,kkk,iii)=derx(lll,kkk,iii)
8387      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
8388      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
8389           enddo
8390         enddo
8391       enddo
8392 cd      goto 1112
8393 cd1111  continue
8394       if (l.eq.j+1) then
8395 cd        goto 1110
8396 C Parallel orientation
8397 C Contribution from graph III
8398         call transpose2(EUg(1,1,l),auxmat(1,1))
8399         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
8400         vv(1)=pizda(1,1)-pizda(2,2)
8401         vv(2)=pizda(1,2)+pizda(2,1)
8402         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
8403      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
8404 C Explicit gradient in virtual-dihedral angles.
8405         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8406      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
8407      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
8408         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
8409         vv(1)=pizda(1,1)-pizda(2,2)
8410         vv(2)=pizda(1,2)+pizda(2,1)
8411         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8412      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
8413      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
8414         call transpose2(EUgder(1,1,l),auxmat1(1,1))
8415         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
8416         vv(1)=pizda(1,1)-pizda(2,2)
8417         vv(2)=pizda(1,2)+pizda(2,1)
8418         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8419      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
8420      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
8421 C Cartesian gradient
8422         do iii=1,2
8423           do kkk=1,5
8424             do lll=1,3
8425               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
8426      &          pizda(1,1))
8427               vv(1)=pizda(1,1)-pizda(2,2)
8428               vv(2)=pizda(1,2)+pizda(2,1)
8429               derx(lll,kkk,iii)=derx(lll,kkk,iii)
8430      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
8431      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
8432             enddo
8433           enddo
8434         enddo
8435 cd        goto 1112
8436 C Contribution from graph IV
8437 cd1110    continue
8438         call transpose2(EE(1,1,itl),auxmat(1,1))
8439         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
8440         vv(1)=pizda(1,1)+pizda(2,2)
8441         vv(2)=pizda(2,1)-pizda(1,2)
8442         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
8443      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
8444 C Explicit gradient in virtual-dihedral angles.
8445         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8446      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
8447         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
8448         vv(1)=pizda(1,1)+pizda(2,2)
8449         vv(2)=pizda(2,1)-pizda(1,2)
8450         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8451      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
8452      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
8453 C Cartesian gradient
8454         do iii=1,2
8455           do kkk=1,5
8456             do lll=1,3
8457               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
8458      &          pizda(1,1))
8459               vv(1)=pizda(1,1)+pizda(2,2)
8460               vv(2)=pizda(2,1)-pizda(1,2)
8461               derx(lll,kkk,iii)=derx(lll,kkk,iii)
8462      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
8463      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
8464             enddo
8465           enddo
8466         enddo
8467       else
8468 C Antiparallel orientation
8469 C Contribution from graph III
8470 c        goto 1110
8471         call transpose2(EUg(1,1,j),auxmat(1,1))
8472         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
8473         vv(1)=pizda(1,1)-pizda(2,2)
8474         vv(2)=pizda(1,2)+pizda(2,1)
8475         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
8476      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
8477 C Explicit gradient in virtual-dihedral angles.
8478         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8479      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
8480      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
8481         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
8482         vv(1)=pizda(1,1)-pizda(2,2)
8483         vv(2)=pizda(1,2)+pizda(2,1)
8484         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8485      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
8486      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
8487         call transpose2(EUgder(1,1,j),auxmat1(1,1))
8488         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
8489         vv(1)=pizda(1,1)-pizda(2,2)
8490         vv(2)=pizda(1,2)+pizda(2,1)
8491         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8492      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
8493      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
8494 C Cartesian gradient
8495         do iii=1,2
8496           do kkk=1,5
8497             do lll=1,3
8498               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
8499      &          pizda(1,1))
8500               vv(1)=pizda(1,1)-pizda(2,2)
8501               vv(2)=pizda(1,2)+pizda(2,1)
8502               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
8503      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
8504      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
8505             enddo
8506           enddo
8507         enddo
8508 cd        goto 1112
8509 C Contribution from graph IV
8510 1110    continue
8511         call transpose2(EE(1,1,itj),auxmat(1,1))
8512         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
8513         vv(1)=pizda(1,1)+pizda(2,2)
8514         vv(2)=pizda(2,1)-pizda(1,2)
8515         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
8516      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
8517 C Explicit gradient in virtual-dihedral angles.
8518         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8519      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
8520         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
8521         vv(1)=pizda(1,1)+pizda(2,2)
8522         vv(2)=pizda(2,1)-pizda(1,2)
8523         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8524      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
8525      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
8526 C Cartesian gradient
8527         do iii=1,2
8528           do kkk=1,5
8529             do lll=1,3
8530               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
8531      &          pizda(1,1))
8532               vv(1)=pizda(1,1)+pizda(2,2)
8533               vv(2)=pizda(2,1)-pizda(1,2)
8534               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
8535      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
8536      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
8537             enddo
8538           enddo
8539         enddo
8540       endif
8541 1112  continue
8542       eel5=eello5_1+eello5_2+eello5_3+eello5_4
8543 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
8544 cd        write (2,*) 'ijkl',i,j,k,l
8545 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
8546 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
8547 cd      endif
8548 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
8549 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
8550 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
8551 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
8552       if (j.lt.nres-1) then
8553         j1=j+1
8554         j2=j-1
8555       else
8556         j1=j-1
8557         j2=j-2
8558       endif
8559       if (l.lt.nres-1) then
8560         l1=l+1
8561         l2=l-1
8562       else
8563         l1=l-1
8564         l2=l-2
8565       endif
8566 cd      eij=1.0d0
8567 cd      ekl=1.0d0
8568 cd      ekont=1.0d0
8569 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
8570 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
8571 C        summed up outside the subrouine as for the other subroutines 
8572 C        handling long-range interactions. The old code is commented out
8573 C        with "cgrad" to keep track of changes.
8574       do ll=1,3
8575 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
8576 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
8577         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
8578         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
8579 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
8580 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
8581 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
8582 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
8583 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
8584 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
8585 c     &   gradcorr5ij,
8586 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
8587 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
8588 cgrad        ghalf=0.5d0*ggg1(ll)
8589 cd        ghalf=0.0d0
8590         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
8591         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
8592         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
8593         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
8594         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
8595         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
8596 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
8597 cgrad        ghalf=0.5d0*ggg2(ll)
8598 cd        ghalf=0.0d0
8599         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
8600         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
8601         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
8602         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
8603         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
8604         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
8605       enddo
8606 cd      goto 1112
8607 cgrad      do m=i+1,j-1
8608 cgrad        do ll=1,3
8609 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
8610 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
8611 cgrad        enddo
8612 cgrad      enddo
8613 cgrad      do m=k+1,l-1
8614 cgrad        do ll=1,3
8615 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
8616 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
8617 cgrad        enddo
8618 cgrad      enddo
8619 c1112  continue
8620 cgrad      do m=i+2,j2
8621 cgrad        do ll=1,3
8622 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
8623 cgrad        enddo
8624 cgrad      enddo
8625 cgrad      do m=k+2,l2
8626 cgrad        do ll=1,3
8627 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
8628 cgrad        enddo
8629 cgrad      enddo 
8630 cd      do iii=1,nres-3
8631 cd        write (2,*) iii,g_corr5_loc(iii)
8632 cd      enddo
8633       eello5=ekont*eel5
8634 cd      write (2,*) 'ekont',ekont
8635 cd      write (iout,*) 'eello5',ekont*eel5
8636       return
8637       end
8638 c--------------------------------------------------------------------------
8639       double precision function eello6(i,j,k,l,jj,kk)
8640       implicit real*8 (a-h,o-z)
8641       include 'DIMENSIONS'
8642       include 'COMMON.IOUNITS'
8643       include 'COMMON.CHAIN'
8644       include 'COMMON.DERIV'
8645       include 'COMMON.INTERACT'
8646       include 'COMMON.CONTACTS'
8647       include 'COMMON.TORSION'
8648       include 'COMMON.VAR'
8649       include 'COMMON.GEO'
8650       include 'COMMON.FFIELD'
8651       double precision ggg1(3),ggg2(3)
8652 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8653 cd        eello6=0.0d0
8654 cd        return
8655 cd      endif
8656 cd      write (iout,*)
8657 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8658 cd     &   ' and',k,l
8659       eello6_1=0.0d0
8660       eello6_2=0.0d0
8661       eello6_3=0.0d0
8662       eello6_4=0.0d0
8663       eello6_5=0.0d0
8664       eello6_6=0.0d0
8665 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
8666 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
8667       do iii=1,2
8668         do kkk=1,5
8669           do lll=1,3
8670             derx(lll,kkk,iii)=0.0d0
8671           enddo
8672         enddo
8673       enddo
8674 cd      eij=facont_hb(jj,i)
8675 cd      ekl=facont_hb(kk,k)
8676 cd      ekont=eij*ekl
8677 cd      eij=1.0d0
8678 cd      ekl=1.0d0
8679 cd      ekont=1.0d0
8680       if (l.eq.j+1) then
8681         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8682         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
8683         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
8684         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8685         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8686         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8687       else
8688         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8689         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8690         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8691         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8692         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8693           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8694         else
8695           eello6_5=0.0d0
8696         endif
8697         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8698       endif
8699 C If turn contributions are considered, they will be handled separately.
8700       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8701 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8702 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8703 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8704 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8705 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8706 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8707 cd      goto 1112
8708       if (j.lt.nres-1) then
8709         j1=j+1
8710         j2=j-1
8711       else
8712         j1=j-1
8713         j2=j-2
8714       endif
8715       if (l.lt.nres-1) then
8716         l1=l+1
8717         l2=l-1
8718       else
8719         l1=l-1
8720         l2=l-2
8721       endif
8722       do ll=1,3
8723 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8724 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8725 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8726 cgrad        ghalf=0.5d0*ggg1(ll)
8727 cd        ghalf=0.0d0
8728         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8729         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8730         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8731         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8732         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8733         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8734         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8735         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8736 cgrad        ghalf=0.5d0*ggg2(ll)
8737 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8738 cd        ghalf=0.0d0
8739         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8740         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8741         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8742         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8743         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8744         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8745       enddo
8746 cd      goto 1112
8747 cgrad      do m=i+1,j-1
8748 cgrad        do ll=1,3
8749 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8750 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8751 cgrad        enddo
8752 cgrad      enddo
8753 cgrad      do m=k+1,l-1
8754 cgrad        do ll=1,3
8755 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8756 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8757 cgrad        enddo
8758 cgrad      enddo
8759 cgrad1112  continue
8760 cgrad      do m=i+2,j2
8761 cgrad        do ll=1,3
8762 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8763 cgrad        enddo
8764 cgrad      enddo
8765 cgrad      do m=k+2,l2
8766 cgrad        do ll=1,3
8767 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8768 cgrad        enddo
8769 cgrad      enddo 
8770 cd      do iii=1,nres-3
8771 cd        write (2,*) iii,g_corr6_loc(iii)
8772 cd      enddo
8773       eello6=ekont*eel6
8774 cd      write (2,*) 'ekont',ekont
8775 cd      write (iout,*) 'eello6',ekont*eel6
8776       return
8777       end
8778 c--------------------------------------------------------------------------
8779       double precision function eello6_graph1(i,j,k,l,imat,swap)
8780       implicit real*8 (a-h,o-z)
8781       include 'DIMENSIONS'
8782       include 'COMMON.IOUNITS'
8783       include 'COMMON.CHAIN'
8784       include 'COMMON.DERIV'
8785       include 'COMMON.INTERACT'
8786       include 'COMMON.CONTACTS'
8787       include 'COMMON.TORSION'
8788       include 'COMMON.VAR'
8789       include 'COMMON.GEO'
8790       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8791       logical swap
8792       logical lprn
8793       common /kutas/ lprn
8794 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8795 C                                              
8796 C      Parallel       Antiparallel
8797 C                                             
8798 C          o             o         
8799 C         /l\           /j\
8800 C        /   \         /   \
8801 C       /| o |         | o |\
8802 C     \ j|/k\|  /   \  |/k\|l /   
8803 C      \ /   \ /     \ /   \ /    
8804 C       o     o       o     o                
8805 C       i             i                     
8806 C
8807 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8808       itk=itortyp(itype(k))
8809       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8810       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8811       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8812       call transpose2(EUgC(1,1,k),auxmat(1,1))
8813       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8814       vv1(1)=pizda1(1,1)-pizda1(2,2)
8815       vv1(2)=pizda1(1,2)+pizda1(2,1)
8816       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8817       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8818       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8819       s5=scalar2(vv(1),Dtobr2(1,i))
8820 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8821       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8822       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8823      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8824      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8825      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8826      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8827      & +scalar2(vv(1),Dtobr2der(1,i)))
8828       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8829       vv1(1)=pizda1(1,1)-pizda1(2,2)
8830       vv1(2)=pizda1(1,2)+pizda1(2,1)
8831       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8832       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8833       if (l.eq.j+1) then
8834         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8835      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8836      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8837      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8838      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8839       else
8840         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8841      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8842      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8843      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8844      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8845       endif
8846       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8847       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8848       vv1(1)=pizda1(1,1)-pizda1(2,2)
8849       vv1(2)=pizda1(1,2)+pizda1(2,1)
8850       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8851      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8852      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8853      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8854       do iii=1,2
8855         if (swap) then
8856           ind=3-iii
8857         else
8858           ind=iii
8859         endif
8860         do kkk=1,5
8861           do lll=1,3
8862             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8863             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8864             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8865             call transpose2(EUgC(1,1,k),auxmat(1,1))
8866             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8867      &        pizda1(1,1))
8868             vv1(1)=pizda1(1,1)-pizda1(2,2)
8869             vv1(2)=pizda1(1,2)+pizda1(2,1)
8870             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8871             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8872      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8873             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8874      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8875             s5=scalar2(vv(1),Dtobr2(1,i))
8876             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8877           enddo
8878         enddo
8879       enddo
8880       return
8881       end
8882 c----------------------------------------------------------------------------
8883       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8884       implicit real*8 (a-h,o-z)
8885       include 'DIMENSIONS'
8886       include 'COMMON.IOUNITS'
8887       include 'COMMON.CHAIN'
8888       include 'COMMON.DERIV'
8889       include 'COMMON.INTERACT'
8890       include 'COMMON.CONTACTS'
8891       include 'COMMON.TORSION'
8892       include 'COMMON.VAR'
8893       include 'COMMON.GEO'
8894       logical swap
8895       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8896      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8897       logical lprn
8898       common /kutas/ lprn
8899 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8900 C                                                                              C
8901 C      Parallel       Antiparallel                                             C
8902 C                                                                              C
8903 C          o             o                                                     C
8904 C     \   /l\           /j\   /                                                C
8905 C      \ /   \         /   \ /                                                 C
8906 C       o| o |         | o |o                                                  C                
8907 C     \ j|/k\|      \  |/k\|l                                                  C
8908 C      \ /   \       \ /   \                                                   C
8909 C       o             o                                                        C
8910 C       i             i                                                        C 
8911 C                                                                              C           
8912 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8913 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8914 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8915 C           but not in a cluster cumulant
8916 #ifdef MOMENT
8917       s1=dip(1,jj,i)*dip(1,kk,k)
8918 #endif
8919       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8920       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8921       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8922       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8923       call transpose2(EUg(1,1,k),auxmat(1,1))
8924       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8925       vv(1)=pizda(1,1)-pizda(2,2)
8926       vv(2)=pizda(1,2)+pizda(2,1)
8927       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8928 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8929 #ifdef MOMENT
8930       eello6_graph2=-(s1+s2+s3+s4)
8931 #else
8932       eello6_graph2=-(s2+s3+s4)
8933 #endif
8934 c      eello6_graph2=-s3
8935 C Derivatives in gamma(i-1)
8936       if (i.gt.1) then
8937 #ifdef MOMENT
8938         s1=dipderg(1,jj,i)*dip(1,kk,k)
8939 #endif
8940         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8941         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8942         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8943         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8944 #ifdef MOMENT
8945         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8946 #else
8947         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8948 #endif
8949 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8950       endif
8951 C Derivatives in gamma(k-1)
8952 #ifdef MOMENT
8953       s1=dip(1,jj,i)*dipderg(1,kk,k)
8954 #endif
8955       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8956       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8957       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8958       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8959       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8960       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8961       vv(1)=pizda(1,1)-pizda(2,2)
8962       vv(2)=pizda(1,2)+pizda(2,1)
8963       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8964 #ifdef MOMENT
8965       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8966 #else
8967       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8968 #endif
8969 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8970 C Derivatives in gamma(j-1) or gamma(l-1)
8971       if (j.gt.1) then
8972 #ifdef MOMENT
8973         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8974 #endif
8975         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8976         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8977         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8978         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8979         vv(1)=pizda(1,1)-pizda(2,2)
8980         vv(2)=pizda(1,2)+pizda(2,1)
8981         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8982 #ifdef MOMENT
8983         if (swap) then
8984           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8985         else
8986           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8987         endif
8988 #endif
8989         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8990 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8991       endif
8992 C Derivatives in gamma(l-1) or gamma(j-1)
8993       if (l.gt.1) then 
8994 #ifdef MOMENT
8995         s1=dip(1,jj,i)*dipderg(3,kk,k)
8996 #endif
8997         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8998         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8999         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
9000         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
9001         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
9002         vv(1)=pizda(1,1)-pizda(2,2)
9003         vv(2)=pizda(1,2)+pizda(2,1)
9004         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
9005 #ifdef MOMENT
9006         if (swap) then
9007           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
9008         else
9009           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
9010         endif
9011 #endif
9012         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
9013 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
9014       endif
9015 C Cartesian derivatives.
9016       if (lprn) then
9017         write (2,*) 'In eello6_graph2'
9018         do iii=1,2
9019           write (2,*) 'iii=',iii
9020           do kkk=1,5
9021             write (2,*) 'kkk=',kkk
9022             do jjj=1,2
9023               write (2,'(3(2f10.5),5x)') 
9024      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
9025             enddo
9026           enddo
9027         enddo
9028       endif
9029       do iii=1,2
9030         do kkk=1,5
9031           do lll=1,3
9032 #ifdef MOMENT
9033             if (iii.eq.1) then
9034               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
9035             else
9036               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
9037             endif
9038 #endif
9039             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
9040      &        auxvec(1))
9041             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
9042             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
9043      &        auxvec(1))
9044             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
9045             call transpose2(EUg(1,1,k),auxmat(1,1))
9046             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
9047      &        pizda(1,1))
9048             vv(1)=pizda(1,1)-pizda(2,2)
9049             vv(2)=pizda(1,2)+pizda(2,1)
9050             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
9051 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
9052 #ifdef MOMENT
9053             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
9054 #else
9055             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
9056 #endif
9057             if (swap) then
9058               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
9059             else
9060               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9061             endif
9062           enddo
9063         enddo
9064       enddo
9065       return
9066       end
9067 c----------------------------------------------------------------------------
9068       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
9069       implicit real*8 (a-h,o-z)
9070       include 'DIMENSIONS'
9071       include 'COMMON.IOUNITS'
9072       include 'COMMON.CHAIN'
9073       include 'COMMON.DERIV'
9074       include 'COMMON.INTERACT'
9075       include 'COMMON.CONTACTS'
9076       include 'COMMON.TORSION'
9077       include 'COMMON.VAR'
9078       include 'COMMON.GEO'
9079       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
9080       logical swap
9081 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9082 C                                                                              C 
9083 C      Parallel       Antiparallel                                             C
9084 C                                                                              C
9085 C          o             o                                                     C 
9086 C         /l\   /   \   /j\                                                    C 
9087 C        /   \ /     \ /   \                                                   C
9088 C       /| o |o       o| o |\                                                  C
9089 C       j|/k\|  /      |/k\|l /                                                C
9090 C        /   \ /       /   \ /                                                 C
9091 C       /     o       /     o                                                  C
9092 C       i             i                                                        C
9093 C                                                                              C
9094 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9095 C
9096 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
9097 C           energy moment and not to the cluster cumulant.
9098       iti=itortyp(itype(i))
9099       if (j.lt.nres-1) then
9100         itj1=itortyp(itype(j+1))
9101       else
9102         itj1=ntortyp+1
9103       endif
9104       itk=itortyp(itype(k))
9105       itk1=itortyp(itype(k+1))
9106       if (l.lt.nres-1) then
9107         itl1=itortyp(itype(l+1))
9108       else
9109         itl1=ntortyp+1
9110       endif
9111 #ifdef MOMENT
9112       s1=dip(4,jj,i)*dip(4,kk,k)
9113 #endif
9114       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
9115       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9116       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
9117       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9118       call transpose2(EE(1,1,itk),auxmat(1,1))
9119       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
9120       vv(1)=pizda(1,1)+pizda(2,2)
9121       vv(2)=pizda(2,1)-pizda(1,2)
9122       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9123 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
9124 cd     & "sum",-(s2+s3+s4)
9125 #ifdef MOMENT
9126       eello6_graph3=-(s1+s2+s3+s4)
9127 #else
9128       eello6_graph3=-(s2+s3+s4)
9129 #endif
9130 c      eello6_graph3=-s4
9131 C Derivatives in gamma(k-1)
9132       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
9133       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9134       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
9135       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
9136 C Derivatives in gamma(l-1)
9137       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
9138       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9139       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
9140       vv(1)=pizda(1,1)+pizda(2,2)
9141       vv(2)=pizda(2,1)-pizda(1,2)
9142       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9143       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
9144 C Cartesian derivatives.
9145       do iii=1,2
9146         do kkk=1,5
9147           do lll=1,3
9148 #ifdef MOMENT
9149             if (iii.eq.1) then
9150               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
9151             else
9152               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
9153             endif
9154 #endif
9155             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
9156      &        auxvec(1))
9157             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9158             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
9159      &        auxvec(1))
9160             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9161             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
9162      &        pizda(1,1))
9163             vv(1)=pizda(1,1)+pizda(2,2)
9164             vv(2)=pizda(2,1)-pizda(1,2)
9165             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9166 #ifdef MOMENT
9167             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
9168 #else
9169             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
9170 #endif
9171             if (swap) then
9172               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
9173             else
9174               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9175             endif
9176 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
9177           enddo
9178         enddo
9179       enddo
9180       return
9181       end
9182 c----------------------------------------------------------------------------
9183       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
9184       implicit real*8 (a-h,o-z)
9185       include 'DIMENSIONS'
9186       include 'COMMON.IOUNITS'
9187       include 'COMMON.CHAIN'
9188       include 'COMMON.DERIV'
9189       include 'COMMON.INTERACT'
9190       include 'COMMON.CONTACTS'
9191       include 'COMMON.TORSION'
9192       include 'COMMON.VAR'
9193       include 'COMMON.GEO'
9194       include 'COMMON.FFIELD'
9195       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
9196      & auxvec1(2),auxmat1(2,2)
9197       logical swap
9198 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9199 C                                                                              C                       
9200 C      Parallel       Antiparallel                                             C
9201 C                                                                              C
9202 C          o             o                                                     C
9203 C         /l\   /   \   /j\                                                    C
9204 C        /   \ /     \ /   \                                                   C
9205 C       /| o |o       o| o |\                                                  C
9206 C     \ j|/k\|      \  |/k\|l                                                  C
9207 C      \ /   \       \ /   \                                                   C 
9208 C       o     \       o     \                                                  C
9209 C       i             i                                                        C
9210 C                                                                              C 
9211 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9212 C
9213 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
9214 C           energy moment and not to the cluster cumulant.
9215 cd      write (2,*) 'eello_graph4: wturn6',wturn6
9216       iti=itortyp(itype(i))
9217       itj=itortyp(itype(j))
9218       if (j.lt.nres-1) then
9219         itj1=itortyp(itype(j+1))
9220       else
9221         itj1=ntortyp+1
9222       endif
9223       itk=itortyp(itype(k))
9224       if (k.lt.nres-1) then
9225         itk1=itortyp(itype(k+1))
9226       else
9227         itk1=ntortyp+1
9228       endif
9229       itl=itortyp(itype(l))
9230       if (l.lt.nres-1) then
9231         itl1=itortyp(itype(l+1))
9232       else
9233         itl1=ntortyp+1
9234       endif
9235 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
9236 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
9237 cd     & ' itl',itl,' itl1',itl1
9238 #ifdef MOMENT
9239       if (imat.eq.1) then
9240         s1=dip(3,jj,i)*dip(3,kk,k)
9241       else
9242         s1=dip(2,jj,j)*dip(2,kk,l)
9243       endif
9244 #endif
9245       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
9246       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9247       if (j.eq.l+1) then
9248         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
9249         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9250       else
9251         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
9252         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9253       endif
9254       call transpose2(EUg(1,1,k),auxmat(1,1))
9255       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
9256       vv(1)=pizda(1,1)-pizda(2,2)
9257       vv(2)=pizda(2,1)+pizda(1,2)
9258       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9259 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
9260 #ifdef MOMENT
9261       eello6_graph4=-(s1+s2+s3+s4)
9262 #else
9263       eello6_graph4=-(s2+s3+s4)
9264 #endif
9265 C Derivatives in gamma(i-1)
9266       if (i.gt.1) then
9267 #ifdef MOMENT
9268         if (imat.eq.1) then
9269           s1=dipderg(2,jj,i)*dip(3,kk,k)
9270         else
9271           s1=dipderg(4,jj,j)*dip(2,kk,l)
9272         endif
9273 #endif
9274         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
9275         if (j.eq.l+1) then
9276           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
9277           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9278         else
9279           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
9280           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9281         endif
9282         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
9283         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9284 cd          write (2,*) 'turn6 derivatives'
9285 #ifdef MOMENT
9286           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
9287 #else
9288           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
9289 #endif
9290         else
9291 #ifdef MOMENT
9292           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
9293 #else
9294           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
9295 #endif
9296         endif
9297       endif
9298 C Derivatives in gamma(k-1)
9299 #ifdef MOMENT
9300       if (imat.eq.1) then
9301         s1=dip(3,jj,i)*dipderg(2,kk,k)
9302       else
9303         s1=dip(2,jj,j)*dipderg(4,kk,l)
9304       endif
9305 #endif
9306       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
9307       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
9308       if (j.eq.l+1) then
9309         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
9310         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9311       else
9312         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
9313         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9314       endif
9315       call transpose2(EUgder(1,1,k),auxmat1(1,1))
9316       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
9317       vv(1)=pizda(1,1)-pizda(2,2)
9318       vv(2)=pizda(2,1)+pizda(1,2)
9319       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9320       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9321 #ifdef MOMENT
9322         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
9323 #else
9324         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
9325 #endif
9326       else
9327 #ifdef MOMENT
9328         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
9329 #else
9330         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
9331 #endif
9332       endif
9333 C Derivatives in gamma(j-1) or gamma(l-1)
9334       if (l.eq.j+1 .and. l.gt.1) then
9335         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
9336         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9337         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
9338         vv(1)=pizda(1,1)-pizda(2,2)
9339         vv(2)=pizda(2,1)+pizda(1,2)
9340         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9341         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
9342       else if (j.gt.1) then
9343         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
9344         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9345         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
9346         vv(1)=pizda(1,1)-pizda(2,2)
9347         vv(2)=pizda(2,1)+pizda(1,2)
9348         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9349         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9350           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
9351         else
9352           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
9353         endif
9354       endif
9355 C Cartesian derivatives.
9356       do iii=1,2
9357         do kkk=1,5
9358           do lll=1,3
9359 #ifdef MOMENT
9360             if (iii.eq.1) then
9361               if (imat.eq.1) then
9362                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
9363               else
9364                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
9365               endif
9366             else
9367               if (imat.eq.1) then
9368                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
9369               else
9370                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
9371               endif
9372             endif
9373 #endif
9374             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
9375      &        auxvec(1))
9376             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9377             if (j.eq.l+1) then
9378               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
9379      &          b1(1,itj1),auxvec(1))
9380               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
9381             else
9382               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
9383      &          b1(1,itl1),auxvec(1))
9384               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
9385             endif
9386             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
9387      &        pizda(1,1))
9388             vv(1)=pizda(1,1)-pizda(2,2)
9389             vv(2)=pizda(2,1)+pizda(1,2)
9390             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9391             if (swap) then
9392               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9393 #ifdef MOMENT
9394                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
9395      &             -(s1+s2+s4)
9396 #else
9397                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
9398      &             -(s2+s4)
9399 #endif
9400                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
9401               else
9402 #ifdef MOMENT
9403                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
9404 #else
9405                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
9406 #endif
9407                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9408               endif
9409             else
9410 #ifdef MOMENT
9411               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
9412 #else
9413               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
9414 #endif
9415               if (l.eq.j+1) then
9416                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9417               else 
9418                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
9419               endif
9420             endif 
9421           enddo
9422         enddo
9423       enddo
9424       return
9425       end
9426 c----------------------------------------------------------------------------
9427       double precision function eello_turn6(i,jj,kk)
9428       implicit real*8 (a-h,o-z)
9429       include 'DIMENSIONS'
9430       include 'COMMON.IOUNITS'
9431       include 'COMMON.CHAIN'
9432       include 'COMMON.DERIV'
9433       include 'COMMON.INTERACT'
9434       include 'COMMON.CONTACTS'
9435       include 'COMMON.TORSION'
9436       include 'COMMON.VAR'
9437       include 'COMMON.GEO'
9438       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
9439      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
9440      &  ggg1(3),ggg2(3)
9441       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
9442      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
9443 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
9444 C           the respective energy moment and not to the cluster cumulant.
9445       s1=0.0d0
9446       s8=0.0d0
9447       s13=0.0d0
9448 c
9449       eello_turn6=0.0d0
9450       j=i+4
9451       k=i+1
9452       l=i+3
9453       iti=itortyp(itype(i))
9454       itk=itortyp(itype(k))
9455       itk1=itortyp(itype(k+1))
9456       itl=itortyp(itype(l))
9457       itj=itortyp(itype(j))
9458 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
9459 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
9460 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
9461 cd        eello6=0.0d0
9462 cd        return
9463 cd      endif
9464 cd      write (iout,*)
9465 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
9466 cd     &   ' and',k,l
9467 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
9468       do iii=1,2
9469         do kkk=1,5
9470           do lll=1,3
9471             derx_turn(lll,kkk,iii)=0.0d0
9472           enddo
9473         enddo
9474       enddo
9475 cd      eij=1.0d0
9476 cd      ekl=1.0d0
9477 cd      ekont=1.0d0
9478       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
9479 cd      eello6_5=0.0d0
9480 cd      write (2,*) 'eello6_5',eello6_5
9481 #ifdef MOMENT
9482       call transpose2(AEA(1,1,1),auxmat(1,1))
9483       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
9484       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
9485       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
9486 #endif
9487       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
9488       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
9489       s2 = scalar2(b1(1,itk),vtemp1(1))
9490 #ifdef MOMENT
9491       call transpose2(AEA(1,1,2),atemp(1,1))
9492       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
9493       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
9494       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9495 #endif
9496       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
9497       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
9498       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
9499 #ifdef MOMENT
9500       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
9501       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
9502       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
9503       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
9504       ss13 = scalar2(b1(1,itk),vtemp4(1))
9505       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
9506 #endif
9507 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
9508 c      s1=0.0d0
9509 c      s2=0.0d0
9510 c      s8=0.0d0
9511 c      s12=0.0d0
9512 c      s13=0.0d0
9513       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
9514 C Derivatives in gamma(i+2)
9515       s1d =0.0d0
9516       s8d =0.0d0
9517 #ifdef MOMENT
9518       call transpose2(AEA(1,1,1),auxmatd(1,1))
9519       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9520       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9521       call transpose2(AEAderg(1,1,2),atempd(1,1))
9522       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
9523       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9524 #endif
9525       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
9526       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9527       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9528 c      s1d=0.0d0
9529 c      s2d=0.0d0
9530 c      s8d=0.0d0
9531 c      s12d=0.0d0
9532 c      s13d=0.0d0
9533       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
9534 C Derivatives in gamma(i+3)
9535 #ifdef MOMENT
9536       call transpose2(AEA(1,1,1),auxmatd(1,1))
9537       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9538       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
9539       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
9540 #endif
9541       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
9542       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
9543       s2d = scalar2(b1(1,itk),vtemp1d(1))
9544 #ifdef MOMENT
9545       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
9546       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
9547 #endif
9548       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
9549 #ifdef MOMENT
9550       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
9551       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9552       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
9553 #endif
9554 c      s1d=0.0d0
9555 c      s2d=0.0d0
9556 c      s8d=0.0d0
9557 c      s12d=0.0d0
9558 c      s13d=0.0d0
9559 #ifdef MOMENT
9560       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
9561      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
9562 #else
9563       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
9564      &               -0.5d0*ekont*(s2d+s12d)
9565 #endif
9566 C Derivatives in gamma(i+4)
9567       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
9568       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9569       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9570 #ifdef MOMENT
9571       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
9572       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
9573       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
9574 #endif
9575 c      s1d=0.0d0
9576 c      s2d=0.0d0
9577 c      s8d=0.0d0
9578 C      s12d=0.0d0
9579 c      s13d=0.0d0
9580 #ifdef MOMENT
9581       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
9582 #else
9583       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
9584 #endif
9585 C Derivatives in gamma(i+5)
9586 #ifdef MOMENT
9587       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
9588       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9589       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9590 #endif
9591       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
9592       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
9593       s2d = scalar2(b1(1,itk),vtemp1d(1))
9594 #ifdef MOMENT
9595       call transpose2(AEA(1,1,2),atempd(1,1))
9596       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
9597       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9598 #endif
9599       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
9600       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9601 #ifdef MOMENT
9602       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
9603       ss13d = scalar2(b1(1,itk),vtemp4d(1))
9604       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9605 #endif
9606 c      s1d=0.0d0
9607 c      s2d=0.0d0
9608 c      s8d=0.0d0
9609 c      s12d=0.0d0
9610 c      s13d=0.0d0
9611 #ifdef MOMENT
9612       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
9613      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
9614 #else
9615       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
9616      &               -0.5d0*ekont*(s2d+s12d)
9617 #endif
9618 C Cartesian derivatives
9619       do iii=1,2
9620         do kkk=1,5
9621           do lll=1,3
9622 #ifdef MOMENT
9623             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
9624             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9625             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9626 #endif
9627             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
9628             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
9629      &          vtemp1d(1))
9630             s2d = scalar2(b1(1,itk),vtemp1d(1))
9631 #ifdef MOMENT
9632             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
9633             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
9634             s8d = -(atempd(1,1)+atempd(2,2))*
9635      &           scalar2(cc(1,1,itl),vtemp2(1))
9636 #endif
9637             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
9638      &           auxmatd(1,1))
9639             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9640             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9641 c      s1d=0.0d0
9642 c      s2d=0.0d0
9643 c      s8d=0.0d0
9644 c      s12d=0.0d0
9645 c      s13d=0.0d0
9646 #ifdef MOMENT
9647             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
9648      &        - 0.5d0*(s1d+s2d)
9649 #else
9650             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
9651      &        - 0.5d0*s2d
9652 #endif
9653 #ifdef MOMENT
9654             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9655      &        - 0.5d0*(s8d+s12d)
9656 #else
9657             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9658      &        - 0.5d0*s12d
9659 #endif
9660           enddo
9661         enddo
9662       enddo
9663 #ifdef MOMENT
9664       do kkk=1,5
9665         do lll=1,3
9666           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
9667      &      achuj_tempd(1,1))
9668           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
9669           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9670           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
9671           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
9672           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
9673      &      vtemp4d(1)) 
9674           ss13d = scalar2(b1(1,itk),vtemp4d(1))
9675           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9676           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
9677         enddo
9678       enddo
9679 #endif
9680 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
9681 cd     &  16*eel_turn6_num
9682 cd      goto 1112
9683       if (j.lt.nres-1) then
9684         j1=j+1
9685         j2=j-1
9686       else
9687         j1=j-1
9688         j2=j-2
9689       endif
9690       if (l.lt.nres-1) then
9691         l1=l+1
9692         l2=l-1
9693       else
9694         l1=l-1
9695         l2=l-2
9696       endif
9697       do ll=1,3
9698 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9699 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9700 cgrad        ghalf=0.5d0*ggg1(ll)
9701 cd        ghalf=0.0d0
9702         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9703         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9704         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9705      &    +ekont*derx_turn(ll,2,1)
9706         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9707         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9708      &    +ekont*derx_turn(ll,4,1)
9709         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9710         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9711         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9712 cgrad        ghalf=0.5d0*ggg2(ll)
9713 cd        ghalf=0.0d0
9714         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9715      &    +ekont*derx_turn(ll,2,2)
9716         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9717         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9718      &    +ekont*derx_turn(ll,4,2)
9719         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9720         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9721         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9722       enddo
9723 cd      goto 1112
9724 cgrad      do m=i+1,j-1
9725 cgrad        do ll=1,3
9726 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9727 cgrad        enddo
9728 cgrad      enddo
9729 cgrad      do m=k+1,l-1
9730 cgrad        do ll=1,3
9731 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9732 cgrad        enddo
9733 cgrad      enddo
9734 cgrad1112  continue
9735 cgrad      do m=i+2,j2
9736 cgrad        do ll=1,3
9737 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9738 cgrad        enddo
9739 cgrad      enddo
9740 cgrad      do m=k+2,l2
9741 cgrad        do ll=1,3
9742 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9743 cgrad        enddo
9744 cgrad      enddo 
9745 cd      do iii=1,nres-3
9746 cd        write (2,*) iii,g_corr6_loc(iii)
9747 cd      enddo
9748       eello_turn6=ekont*eel_turn6
9749 cd      write (2,*) 'ekont',ekont
9750 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9751       return
9752       end
9753
9754 C-----------------------------------------------------------------------------
9755       double precision function scalar(u,v)
9756 !DIR$ INLINEALWAYS scalar
9757 #ifndef OSF
9758 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9759 #endif
9760       implicit none
9761       double precision u(3),v(3)
9762 cd      double precision sc
9763 cd      integer i
9764 cd      sc=0.0d0
9765 cd      do i=1,3
9766 cd        sc=sc+u(i)*v(i)
9767 cd      enddo
9768 cd      scalar=sc
9769
9770       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9771       return
9772       end
9773 crc-------------------------------------------------
9774       SUBROUTINE MATVEC2(A1,V1,V2)
9775 !DIR$ INLINEALWAYS MATVEC2
9776 #ifndef OSF
9777 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9778 #endif
9779       implicit real*8 (a-h,o-z)
9780       include 'DIMENSIONS'
9781       DIMENSION A1(2,2),V1(2),V2(2)
9782 c      DO 1 I=1,2
9783 c        VI=0.0
9784 c        DO 3 K=1,2
9785 c    3     VI=VI+A1(I,K)*V1(K)
9786 c        Vaux(I)=VI
9787 c    1 CONTINUE
9788
9789       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9790       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9791
9792       v2(1)=vaux1
9793       v2(2)=vaux2
9794       END
9795 C---------------------------------------
9796       SUBROUTINE MATMAT2(A1,A2,A3)
9797 #ifndef OSF
9798 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9799 #endif
9800       implicit real*8 (a-h,o-z)
9801       include 'DIMENSIONS'
9802       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9803 c      DIMENSION AI3(2,2)
9804 c        DO  J=1,2
9805 c          A3IJ=0.0
9806 c          DO K=1,2
9807 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9808 c          enddo
9809 c          A3(I,J)=A3IJ
9810 c       enddo
9811 c      enddo
9812
9813       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9814       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9815       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9816       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9817
9818       A3(1,1)=AI3_11
9819       A3(2,1)=AI3_21
9820       A3(1,2)=AI3_12
9821       A3(2,2)=AI3_22
9822       END
9823
9824 c-------------------------------------------------------------------------
9825       double precision function scalar2(u,v)
9826 !DIR$ INLINEALWAYS scalar2
9827       implicit none
9828       double precision u(2),v(2)
9829       double precision sc
9830       integer i
9831       scalar2=u(1)*v(1)+u(2)*v(2)
9832       return
9833       end
9834
9835 C-----------------------------------------------------------------------------
9836
9837       subroutine transpose2(a,at)
9838 !DIR$ INLINEALWAYS transpose2
9839 #ifndef OSF
9840 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9841 #endif
9842       implicit none
9843       double precision a(2,2),at(2,2)
9844       at(1,1)=a(1,1)
9845       at(1,2)=a(2,1)
9846       at(2,1)=a(1,2)
9847       at(2,2)=a(2,2)
9848       return
9849       end
9850 c--------------------------------------------------------------------------
9851       subroutine transpose(n,a,at)
9852       implicit none
9853       integer n,i,j
9854       double precision a(n,n),at(n,n)
9855       do i=1,n
9856         do j=1,n
9857           at(j,i)=a(i,j)
9858         enddo
9859       enddo
9860       return
9861       end
9862 C---------------------------------------------------------------------------
9863       subroutine prodmat3(a1,a2,kk,transp,prod)
9864 !DIR$ INLINEALWAYS prodmat3
9865 #ifndef OSF
9866 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9867 #endif
9868       implicit none
9869       integer i,j
9870       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9871       logical transp
9872 crc      double precision auxmat(2,2),prod_(2,2)
9873
9874       if (transp) then
9875 crc        call transpose2(kk(1,1),auxmat(1,1))
9876 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9877 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9878         
9879            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9880      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9881            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9882      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9883            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9884      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9885            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9886      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9887
9888       else
9889 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9890 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9891
9892            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9893      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9894            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9895      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9896            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9897      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9898            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9899      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9900
9901       endif
9902 c      call transpose2(a2(1,1),a2t(1,1))
9903
9904 crc      print *,transp
9905 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9906 crc      print *,((prod(i,j),i=1,2),j=1,2)
9907
9908       return
9909       end
9910