energy_dec works with etors_d
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       call flush(iout)
31       if (nfgtasks.gt.1) then
32 #ifdef MPI
33         time00=MPI_Wtime()
34 #else
35         time00=tcpu()
36 #endif
37 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
38         if (fg_rank.eq.0) then
39           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
40 c          print *,"Processor",myrank," BROADCAST iorder"
41 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
42 C FG slaves as WEIGHTS array.
43           weights_(1)=wsc
44           weights_(2)=wscp
45           weights_(3)=welec
46           weights_(4)=wcorr
47           weights_(5)=wcorr5
48           weights_(6)=wcorr6
49           weights_(7)=wel_loc
50           weights_(8)=wturn3
51           weights_(9)=wturn4
52           weights_(10)=wturn6
53           weights_(11)=wang
54           weights_(12)=wscloc
55           weights_(13)=wtor
56           weights_(14)=wtor_d
57           weights_(15)=wstrain
58           weights_(16)=wvdwpp
59           weights_(17)=wbond
60           weights_(18)=scal14
61           weights_(21)=wsccor
62           weights_(22)=wsct
63 C FG Master broadcasts the WEIGHTS_ array
64           call MPI_Bcast(weights_(1),n_ene,
65      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
66         else
67 C FG slaves receive the WEIGHTS array
68           call MPI_Bcast(weights(1),n_ene,
69      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
70           wsc=weights(1)
71           wscp=weights(2)
72           welec=weights(3)
73           wcorr=weights(4)
74           wcorr5=weights(5)
75           wcorr6=weights(6)
76           wel_loc=weights(7)
77           wturn3=weights(8)
78           wturn4=weights(9)
79           wturn6=weights(10)
80           wang=weights(11)
81           wscloc=weights(12)
82           wtor=weights(13)
83           wtor_d=weights(14)
84           wstrain=weights(15)
85           wvdwpp=weights(16)
86           wbond=weights(17)
87           scal14=weights(18)
88           wsccor=weights(21)
89           wsct=weights(22)
90         endif
91         time_Bcast=time_Bcast+MPI_Wtime()-time00
92         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
93 c        call chainbuild_cart
94       endif
95 c      write(iout,*) 'Processor',myrank,' calling etotal ipot=',ipot
96 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
97 #else
98 c      if (modecalc.eq.12.or.modecalc.eq.14) then
99 c        call int_from_cart1(.false.)
100 c      endif
101 #endif     
102 #ifndef DFA
103       edfadis=0.0d0
104       edfator=0.0d0
105       edfanei=0.0d0
106       edfabet=0.0d0
107 #endif
108 #ifdef TIMING
109 #ifdef MPI
110       time00=MPI_Wtime()
111 #else
112       time00=tcpu()
113 #endif
114 #endif
115
116 C Compute the side-chain and electrostatic interaction energy
117 C
118       goto (101,102,103,104,105,106) ipot
119 C Lennard-Jones potential.
120   101 call elj(evdw,evdw_p,evdw_m)
121 cd    print '(a)','Exit ELJ'
122       goto 107
123 C Lennard-Jones-Kihara potential (shifted).
124   102 call eljk(evdw,evdw_p,evdw_m)
125       goto 107
126 C Berne-Pechukas potential (dilated LJ, angular dependence).
127   103 call ebp(evdw,evdw_p,evdw_m)
128       goto 107
129 C Gay-Berne potential (shifted LJ, angular dependence).
130   104 call egb(evdw,evdw_p,evdw_m)
131       goto 107
132 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
133   105 call egbv(evdw,evdw_p,evdw_m)
134       goto 107
135 C Soft-sphere potential
136   106 call e_softsphere(evdw)
137 C
138 C Calculate electrostatic (H-bonding) energy of the main chain.
139 C
140   107 continue
141 #ifdef DFA
142 C     BARTEK for dfa test!
143       if (wdfa_dist.gt.0) then 
144         call edfad(edfadis)
145       else
146         edfadis=0
147       endif
148 c      print*, 'edfad is finished!', edfadis
149       if (wdfa_tor.gt.0) then
150         call edfat(edfator)
151       else
152         edfator=0
153       endif
154 c      print*, 'edfat is finished!', edfator
155       if (wdfa_nei.gt.0) then
156         call edfan(edfanei)
157       else
158         edfanei=0
159       endif    
160 c      print*, 'edfan is finished!', edfanei
161       if (wdfa_beta.gt.0) then 
162         call edfab(edfabet)
163       else
164         edfabet=0
165       endif
166 #endif
167 c      print*, 'edfab is finished!', edfabet
168 cmc
169 cmc Sep-06: egb takes care of dynamic ss bonds too
170 cmc
171 c      if (dyn_ss) call dyn_set_nss
172
173 c      print *,"Processor",myrank," computed USCSC"
174 #ifdef TIMING
175 #ifdef MPI
176       time01=MPI_Wtime() 
177 #else
178       time00=tcpu()
179 #endif
180 #endif
181       call vec_and_deriv
182 #ifdef TIMING
183 #ifdef MPI
184       time_vec=time_vec+MPI_Wtime()-time01
185 #else
186       time_vec=time_vec+tcpu()-time01
187 #endif
188 #endif
189 c      print *,"Processor",myrank," left VEC_AND_DERIV"
190       if (ipot.lt.6) then
191 #ifdef SPLITELE
192          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
193      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
194      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
195      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
196 #else
197          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
198      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
199      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
200      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
201 #endif
202             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
203          else
204             ees=0.0d0
205             evdw1=0.0d0
206             eel_loc=0.0d0
207             eello_turn3=0.0d0
208             eello_turn4=0.0d0
209          endif
210       else
211 c        write (iout,*) "Soft-spheer ELEC potential"
212         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
213      &   eello_turn4)
214       endif
215 c      print *,"Processor",myrank," computed UELEC"
216 C
217 C Calculate excluded-volume interaction energy between peptide groups
218 C and side chains.
219 C
220       if (ipot.lt.6) then
221        if(wscp.gt.0d0) then
222         call escp(evdw2,evdw2_14)
223        else
224         evdw2=0
225         evdw2_14=0
226        endif
227       else
228 c        write (iout,*) "Soft-sphere SCP potential"
229         call escp_soft_sphere(evdw2,evdw2_14)
230       endif
231 c
232 c Calculate the bond-stretching energy
233 c
234       call ebond(estr)
235
236 C Calculate the disulfide-bridge and other energy and the contributions
237 C from other distance constraints.
238 cd    print *,'Calling EHPB'
239       call edis(ehpb)
240 cd    print *,'EHPB exitted succesfully.'
241 C
242 C Calculate the virtual-bond-angle energy.
243 C
244       if (wang.gt.0d0) then
245         call ebend(ebe)
246       else
247         ebe=0
248       endif
249 c      print *,"Processor",myrank," computed UB"
250 C
251 C Calculate the SC local energy.
252 C
253       call esc(escloc)
254 c      print *,"Processor",myrank," computed USC"
255 C
256 C Calculate the virtual-bond torsional energy.
257 C
258 cd    print *,'nterm=',nterm
259       if (wtor.gt.0) then
260        call etor(etors,edihcnstr)
261       else
262        etors=0
263        edihcnstr=0
264       endif
265
266       if (constr_homology.ge.1) then
267         call e_modeller(ehomology_constr)
268 c        print *,'iset=',iset,'me=',me,ehomology_constr,
269 c     &  'Processor',fg_rank,' CG group',kolor,
270 c     &  ' absolute rank',MyRank
271       else
272         ehomology_constr=0.0d0
273       endif
274
275
276 c      write(iout,*) ehomology_constr
277 c      print *,"Processor",myrank," computed Utor"
278 C
279 C 6/23/01 Calculate double-torsional energy
280 C
281       if (wtor_d.gt.0) then
282        call etor_d(etors_d)
283       else
284        etors_d=0
285       endif
286 c      print *,"Processor",myrank," computed Utord"
287 C
288 C 21/5/07 Calculate local sicdechain correlation energy
289 C
290       if (wsccor.gt.0.0d0) then
291         call eback_sc_corr(esccor)
292       else
293         esccor=0.0d0
294       endif
295 c      print *,"Processor",myrank," computed Usccorr"
296
297 C 12/1/95 Multi-body terms
298 C
299       n_corr=0
300       n_corr1=0
301       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
302      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
303          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
304 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
305 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
306       else
307          ecorr=0.0d0
308          ecorr5=0.0d0
309          ecorr6=0.0d0
310          eturn6=0.0d0
311       endif
312       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
313          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
314 cd         write (iout,*) "multibody_hb ecorr",ecorr
315       endif
316 c      print *,"Processor",myrank," computed Ucorr"
317
318 C If performing constraint dynamics, call the constraint energy
319 C  after the equilibration time
320       if(usampl.and.totT.gt.eq_time) then
321 c         write (iout,*) "CALL TO ECONSTR_BACK"
322          call EconstrQ   
323          call Econstr_back
324       else
325          Uconst=0.0d0
326          Uconst_back=0.0d0
327       endif
328 #ifdef TIMING
329 #ifdef MPI
330       time_enecalc=time_enecalc+MPI_Wtime()-time00
331 #else
332       time_enecalc=time_enecalc+tcpu()-time00
333 #endif
334 #endif
335 c      print *,"Processor",myrank," computed Uconstr"
336 #ifdef TIMING
337 #ifdef MPI
338       time00=MPI_Wtime()
339 #else
340       time00=tcpu()
341 #endif
342 #endif
343 c
344 C Sum the energies
345 C
346       energia(1)=evdw
347 #ifdef SCP14
348       energia(2)=evdw2-evdw2_14
349       energia(18)=evdw2_14
350 #else
351       energia(2)=evdw2
352       energia(18)=0.0d0
353 #endif
354 #ifdef SPLITELE
355       energia(3)=ees
356       energia(16)=evdw1
357 #else
358       energia(3)=ees+evdw1
359       energia(16)=0.0d0
360 #endif
361       energia(4)=ecorr
362       energia(5)=ecorr5
363       energia(6)=ecorr6
364       energia(7)=eel_loc
365       energia(8)=eello_turn3
366       energia(9)=eello_turn4
367       energia(10)=eturn6
368       energia(11)=ebe
369       energia(12)=escloc
370       energia(13)=etors
371       energia(14)=etors_d
372       energia(15)=ehpb
373       energia(19)=edihcnstr
374       energia(17)=estr
375       energia(20)=Uconst+Uconst_back
376       energia(21)=esccor
377       energia(22)=evdw_p
378       energia(23)=evdw_m
379       energia(24)=ehomology_constr
380       energia(25)=edfadis
381       energia(26)=edfator
382       energia(27)=edfanei
383       energia(28)=edfabet
384 c      print *," Processor",myrank," calls SUM_ENERGY"
385       call sum_energy(energia,.true.)
386       if (dyn_ss) call dyn_set_nss
387 c      print *," Processor",myrank," left SUM_ENERGY"
388 #ifdef TIMING
389 #ifdef MPI
390       time_sumene=time_sumene+MPI_Wtime()-time00
391 #else
392       time_sumene=time_sumene+tcpu()-time00
393 #endif
394 #endif
395       return
396       end
397 c-------------------------------------------------------------------------------
398       subroutine sum_energy(energia,reduce)
399       implicit real*8 (a-h,o-z)
400       include 'DIMENSIONS'
401 #ifndef ISNAN
402       external proc_proc
403 #ifdef WINPGI
404 cMS$ATTRIBUTES C ::  proc_proc
405 #endif
406 #endif
407 #ifdef MPI
408       include "mpif.h"
409 #endif
410       include 'COMMON.SETUP'
411       include 'COMMON.IOUNITS'
412       double precision energia(0:n_ene),enebuff(0:n_ene+1)
413       include 'COMMON.FFIELD'
414       include 'COMMON.DERIV'
415       include 'COMMON.INTERACT'
416       include 'COMMON.SBRIDGE'
417       include 'COMMON.CHAIN'
418       include 'COMMON.VAR'
419       include 'COMMON.CONTROL'
420       include 'COMMON.TIME1'
421       logical reduce
422 #ifdef MPI
423       if (nfgtasks.gt.1 .and. reduce) then
424 #ifdef DEBUG
425         write (iout,*) "energies before REDUCE"
426         call enerprint(energia)
427         call flush(iout)
428 #endif
429         do i=0,n_ene
430           enebuff(i)=energia(i)
431         enddo
432         time00=MPI_Wtime()
433         call MPI_Barrier(FG_COMM,IERR)
434         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
435         time00=MPI_Wtime()
436         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
437      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
438 #ifdef DEBUG
439         write (iout,*) "energies after REDUCE"
440         call enerprint(energia)
441         call flush(iout)
442 #endif
443         time_Reduce=time_Reduce+MPI_Wtime()-time00
444       endif
445       if (fg_rank.eq.0) then
446 #endif
447 #ifdef TSCSC
448       evdw=energia(22)+wsct*energia(23)
449 #else
450       evdw=energia(1)
451 #endif
452 #ifdef SCP14
453       evdw2=energia(2)+energia(18)
454       evdw2_14=energia(18)
455 #else
456       evdw2=energia(2)
457 #endif
458 #ifdef SPLITELE
459       ees=energia(3)
460       evdw1=energia(16)
461 #else
462       ees=energia(3)
463       evdw1=0.0d0
464 #endif
465       ecorr=energia(4)
466       ecorr5=energia(5)
467       ecorr6=energia(6)
468       eel_loc=energia(7)
469       eello_turn3=energia(8)
470       eello_turn4=energia(9)
471       eturn6=energia(10)
472       ebe=energia(11)
473       escloc=energia(12)
474       etors=energia(13)
475       etors_d=energia(14)
476       ehpb=energia(15)
477       edihcnstr=energia(19)
478       estr=energia(17)
479       Uconst=energia(20)
480       esccor=energia(21)
481       ehomology_constr=energia(24)
482       edfadis=energia(25)
483       edfator=energia(26)
484       edfanei=energia(27)
485       edfabet=energia(28)
486 #ifdef SPLITELE
487       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
488      & +wang*ebe+wtor*etors+wscloc*escloc
489      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
490      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
491      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
492      & +wbond*estr+Uconst+wsccor*esccor+ehomology_constr
493      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
494      & +wdfa_beta*edfabet    
495 #else
496       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
497      & +wang*ebe+wtor*etors+wscloc*escloc
498      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
499      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
500      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
501      & +wbond*estr+Uconst+wsccor*esccor+ehomology_constr
502      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
503      & +wdfa_beta*edfabet    
504 #endif
505       energia(0)=etot
506 c detecting NaNQ
507 #ifdef ISNAN
508 #ifdef AIX
509       if (isnan(etot).ne.0) energia(0)=1.0d+99
510 #else
511       if (isnan(etot)) energia(0)=1.0d+99
512 #endif
513 #else
514       i=0
515 #ifdef WINPGI
516       idumm=proc_proc(etot,i)
517 #else
518       call proc_proc(etot,i)
519 #endif
520       if(i.eq.1)energia(0)=1.0d+99
521 #endif
522 #ifdef MPI
523       endif
524 #endif
525       return
526       end
527 c-------------------------------------------------------------------------------
528       subroutine sum_gradient
529       implicit real*8 (a-h,o-z)
530       include 'DIMENSIONS'
531 #ifndef ISNAN
532       external proc_proc
533 #ifdef WINPGI
534 cMS$ATTRIBUTES C ::  proc_proc
535 #endif
536 #endif
537 #ifdef MPI
538       include 'mpif.h'
539 #endif
540       double precision gradbufc(3,maxres),gradbufx(3,maxres),
541      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
542       include 'COMMON.SETUP'
543       include 'COMMON.IOUNITS'
544       include 'COMMON.FFIELD'
545       include 'COMMON.DERIV'
546       include 'COMMON.INTERACT'
547       include 'COMMON.SBRIDGE'
548       include 'COMMON.CHAIN'
549       include 'COMMON.VAR'
550       include 'COMMON.CONTROL'
551       include 'COMMON.TIME1'
552       include 'COMMON.MAXGRAD'
553       include 'COMMON.SCCOR'
554       include 'COMMON.MD'
555 #ifdef TIMING
556 #ifdef MPI
557       time01=MPI_Wtime()
558 #else
559       time01=tcpu()
560 #endif
561 #endif
562 #ifdef DEBUG
563       write (iout,*) "sum_gradient gvdwc, gvdwx"
564       do i=1,nres
565         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
566      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
567      &   (gvdwcT(j,i),j=1,3)
568       enddo
569       call flush(iout)
570 #endif
571 #ifdef MPI
572 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
573         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
574      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
575 #endif
576 C
577 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
578 C            in virtual-bond-vector coordinates
579 C
580 #ifdef DEBUG
581 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
582 c      do i=1,nres-1
583 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
584 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
585 c      enddo
586 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
587 c      do i=1,nres-1
588 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
589 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
590 c      enddo
591       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
592       do i=1,nres
593         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
594      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
595      &   g_corr5_loc(i)
596       enddo
597       call flush(iout)
598 #endif
599 #ifdef SPLITELE
600 #ifdef TSCSC
601       do i=1,nct
602         do j=1,3
603           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
604      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
605      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
606      &                wel_loc*gel_loc_long(j,i)+
607      &                wcorr*gradcorr_long(j,i)+
608      &                wcorr5*gradcorr5_long(j,i)+
609      &                wcorr6*gradcorr6_long(j,i)+
610      &                wturn6*gcorr6_turn_long(j,i)+
611      &                wstrain*ghpbc(j,i)+
612      &                wdfa_dist*gdfad(j,i)+
613      &                wdfa_tor*gdfat(j,i)+
614      &                wdfa_nei*gdfan(j,i)+
615      &                wdfa_beta*gdfab(j,i)
616         enddo
617       enddo 
618 #else
619       do i=1,nct
620         do j=1,3
621           gradbufc(j,i)=wsc*gvdwc(j,i)+
622      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
623      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
624      &                wel_loc*gel_loc_long(j,i)+
625      &                wcorr*gradcorr_long(j,i)+
626      &                wcorr5*gradcorr5_long(j,i)+
627      &                wcorr6*gradcorr6_long(j,i)+
628      &                wturn6*gcorr6_turn_long(j,i)+
629      &                wstrain*ghpbc(j,i)+
630      &                wdfa_dist*gdfad(j,i)+
631      &                wdfa_tor*gdfat(j,i)+
632      &                wdfa_nei*gdfan(j,i)+
633      &                wdfa_beta*gdfab(j,i)
634         enddo
635       enddo 
636 #endif
637 #else
638       do i=1,nct
639         do j=1,3
640           gradbufc(j,i)=wsc*gvdwc(j,i)+
641      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
642      &                welec*gelc_long(j,i)+
643      &                wbond*gradb(j,i)+
644      &                wel_loc*gel_loc_long(j,i)+
645      &                wcorr*gradcorr_long(j,i)+
646      &                wcorr5*gradcorr5_long(j,i)+
647      &                wcorr6*gradcorr6_long(j,i)+
648      &                wturn6*gcorr6_turn_long(j,i)+
649      &                wstrain*ghpbc(j,i)+
650      &                wdfa_dist*gdfad(j,i)+
651      &                wdfa_tor*gdfat(j,i)+
652      &                wdfa_nei*gdfan(j,i)+
653      &                wdfa_beta*gdfab(j,i)
654         enddo
655       enddo 
656 #endif
657 #ifdef MPI
658       if (nfgtasks.gt.1) then
659       time00=MPI_Wtime()
660 #ifdef DEBUG
661       write (iout,*) "gradbufc before allreduce"
662       do i=1,nres
663         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
664       enddo
665       call flush(iout)
666 #endif
667       do i=1,nres
668         do j=1,3
669           gradbufc_sum(j,i)=gradbufc(j,i)
670         enddo
671       enddo
672 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
673 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
674 c      time_reduce=time_reduce+MPI_Wtime()-time00
675 #ifdef DEBUG
676 c      write (iout,*) "gradbufc_sum after allreduce"
677 c      do i=1,nres
678 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
679 c      enddo
680 c      call flush(iout)
681 #endif
682 #ifdef TIMING
683 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
684 #endif
685       do i=nnt,nres
686         do k=1,3
687           gradbufc(k,i)=0.0d0
688         enddo
689       enddo
690 #ifdef DEBUG
691       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
692       write (iout,*) (i," jgrad_start",jgrad_start(i),
693      &                  " jgrad_end  ",jgrad_end(i),
694      &                  i=igrad_start,igrad_end)
695 #endif
696 c
697 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
698 c do not parallelize this part.
699 c
700 c      do i=igrad_start,igrad_end
701 c        do j=jgrad_start(i),jgrad_end(i)
702 c          do k=1,3
703 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
704 c          enddo
705 c        enddo
706 c      enddo
707       do j=1,3
708         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
709       enddo
710       do i=nres-2,nnt,-1
711         do j=1,3
712           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
713         enddo
714       enddo
715 #ifdef DEBUG
716       write (iout,*) "gradbufc after summing"
717       do i=1,nres
718         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
719       enddo
720       call flush(iout)
721 #endif
722       else
723 #endif
724 #ifdef DEBUG
725       write (iout,*) "gradbufc"
726       do i=1,nres
727         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
728       enddo
729       call flush(iout)
730 #endif
731       do i=1,nres
732         do j=1,3
733           gradbufc_sum(j,i)=gradbufc(j,i)
734           gradbufc(j,i)=0.0d0
735         enddo
736       enddo
737       do j=1,3
738         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
739       enddo
740       do i=nres-2,nnt,-1
741         do j=1,3
742           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
743         enddo
744       enddo
745 c      do i=nnt,nres-1
746 c        do k=1,3
747 c          gradbufc(k,i)=0.0d0
748 c        enddo
749 c        do j=i+1,nres
750 c          do k=1,3
751 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
752 c          enddo
753 c        enddo
754 c      enddo
755 #ifdef DEBUG
756       write (iout,*) "gradbufc after summing"
757       do i=1,nres
758         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
759       enddo
760       call flush(iout)
761 #endif
762 #ifdef MPI
763       endif
764 #endif
765       do k=1,3
766         gradbufc(k,nres)=0.0d0
767       enddo
768       do i=1,nct
769         do j=1,3
770 #ifdef SPLITELE
771           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
772      &                wel_loc*gel_loc(j,i)+
773      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
774      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
775      &                wel_loc*gel_loc_long(j,i)+
776      &                wcorr*gradcorr_long(j,i)+
777      &                wcorr5*gradcorr5_long(j,i)+
778      &                wcorr6*gradcorr6_long(j,i)+
779      &                wturn6*gcorr6_turn_long(j,i))+
780      &                wbond*gradb(j,i)+
781      &                wcorr*gradcorr(j,i)+
782      &                wturn3*gcorr3_turn(j,i)+
783      &                wturn4*gcorr4_turn(j,i)+
784      &                wcorr5*gradcorr5(j,i)+
785      &                wcorr6*gradcorr6(j,i)+
786      &                wturn6*gcorr6_turn(j,i)+
787      &                wsccor*gsccorc(j,i)
788      &               +wscloc*gscloc(j,i)
789 #else
790           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
791      &                wel_loc*gel_loc(j,i)+
792      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
793      &                welec*gelc_long(j,i)+
794      &                wel_loc*gel_loc_long(j,i)+
795      &                wcorr*gcorr_long(j,i)+
796      &                wcorr5*gradcorr5_long(j,i)+
797      &                wcorr6*gradcorr6_long(j,i)+
798      &                wturn6*gcorr6_turn_long(j,i))+
799      &                wbond*gradb(j,i)+
800      &                wcorr*gradcorr(j,i)+
801      &                wturn3*gcorr3_turn(j,i)+
802      &                wturn4*gcorr4_turn(j,i)+
803      &                wcorr5*gradcorr5(j,i)+
804      &                wcorr6*gradcorr6(j,i)+
805      &                wturn6*gcorr6_turn(j,i)+
806      &                wsccor*gsccorc(j,i)
807      &               +wscloc*gscloc(j,i)
808 #endif
809 #ifdef TSCSC
810           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
811      &                  wscp*gradx_scp(j,i)+
812      &                  wbond*gradbx(j,i)+
813      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
814      &                  wsccor*gsccorx(j,i)
815      &                 +wscloc*gsclocx(j,i)
816 #else
817           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
818      &                  wbond*gradbx(j,i)+
819      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
820      &                  wsccor*gsccorx(j,i)
821      &                 +wscloc*gsclocx(j,i)
822 #endif
823         enddo
824       enddo 
825       if (constr_homology.gt.0) then
826         do i=1,nct
827           do j=1,3
828             gradc(j,i,icg)=gradc(j,i,icg)+duscdiff(j,i)
829             gradx(j,i,icg)=gradx(j,i,icg)+duscdiffx(j,i)
830           enddo
831         enddo
832       endif
833 #ifdef DEBUG
834       write (iout,*) "gloc before adding corr"
835       do i=1,4*nres
836         write (iout,*) i,gloc(i,icg)
837       enddo
838 #endif
839       do i=1,nres-3
840         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
841      &   +wcorr5*g_corr5_loc(i)
842      &   +wcorr6*g_corr6_loc(i)
843      &   +wturn4*gel_loc_turn4(i)
844      &   +wturn3*gel_loc_turn3(i)
845      &   +wturn6*gel_loc_turn6(i)
846      &   +wel_loc*gel_loc_loc(i)
847       enddo
848 #ifdef DEBUG
849       write (iout,*) "gloc after adding corr"
850       do i=1,4*nres
851         write (iout,*) i,gloc(i,icg)
852       enddo
853 #endif
854 #ifdef MPI
855       if (nfgtasks.gt.1) then
856         do j=1,3
857           do i=1,nres
858             gradbufc(j,i)=gradc(j,i,icg)
859             gradbufx(j,i)=gradx(j,i,icg)
860           enddo
861         enddo
862         do i=1,4*nres
863           glocbuf(i)=gloc(i,icg)
864         enddo
865 #ifdef DEBUG
866       write (iout,*) "gloc_sc before reduce"
867       do i=1,nres
868        do j=1,3
869         write (iout,*) i,j,gloc_sc(j,i,icg)
870        enddo
871       enddo
872 #endif
873         do i=1,nres
874          do j=1,3
875           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
876          enddo
877         enddo
878         time00=MPI_Wtime()
879         call MPI_Barrier(FG_COMM,IERR)
880         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
881         time00=MPI_Wtime()
882         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
883      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
884         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
885      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
886         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
887      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
888         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
889      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
890         time_reduce=time_reduce+MPI_Wtime()-time00
891 #ifdef DEBUG
892       write (iout,*) "gloc_sc after reduce"
893       do i=1,nres
894        do j=1,3
895         write (iout,*) i,j,gloc_sc(j,i,icg)
896        enddo
897       enddo
898 #endif
899 #ifdef DEBUG
900       write (iout,*) "gloc after reduce"
901       do i=1,4*nres
902         write (iout,*) i,gloc(i,icg)
903       enddo
904 #endif
905       endif
906 #endif
907       if (gnorm_check) then
908 c
909 c Compute the maximum elements of the gradient
910 c
911       gvdwc_max=0.0d0
912       gvdwc_scp_max=0.0d0
913       gelc_max=0.0d0
914       gvdwpp_max=0.0d0
915       gradb_max=0.0d0
916       ghpbc_max=0.0d0
917       gradcorr_max=0.0d0
918       gel_loc_max=0.0d0
919       gcorr3_turn_max=0.0d0
920       gcorr4_turn_max=0.0d0
921       gradcorr5_max=0.0d0
922       gradcorr6_max=0.0d0
923       gcorr6_turn_max=0.0d0
924       gsccorc_max=0.0d0
925       gscloc_max=0.0d0
926       gvdwx_max=0.0d0
927       gradx_scp_max=0.0d0
928       ghpbx_max=0.0d0
929       gradxorr_max=0.0d0
930       gsccorx_max=0.0d0
931       gsclocx_max=0.0d0
932       do i=1,nct
933         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
934         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
935 #ifdef TSCSC
936         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
937         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
938 #endif
939         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
940         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
941      &   gvdwc_scp_max=gvdwc_scp_norm
942         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
943         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
944         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
945         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
946         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
947         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
948         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
949         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
950         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
951         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
952         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
953         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
954         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
955      &    gcorr3_turn(1,i)))
956         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
957      &    gcorr3_turn_max=gcorr3_turn_norm
958         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
959      &    gcorr4_turn(1,i)))
960         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
961      &    gcorr4_turn_max=gcorr4_turn_norm
962         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
963         if (gradcorr5_norm.gt.gradcorr5_max) 
964      &    gradcorr5_max=gradcorr5_norm
965         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
966         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
967         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
968      &    gcorr6_turn(1,i)))
969         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
970      &    gcorr6_turn_max=gcorr6_turn_norm
971         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
972         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
973         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
974         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
975         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
976         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
977 #ifdef TSCSC
978         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
979         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
980 #endif
981         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
982         if (gradx_scp_norm.gt.gradx_scp_max) 
983      &    gradx_scp_max=gradx_scp_norm
984         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
985         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
986         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
987         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
988         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
989         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
990         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
991         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
992       enddo 
993       if (gradout) then
994 #ifdef AIX
995         open(istat,file=statname,position="append")
996 #else
997         open(istat,file=statname,access="append")
998 #endif
999         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
1000      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
1001      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
1002      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
1003      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
1004      &     gsccorx_max,gsclocx_max
1005         close(istat)
1006         if (gvdwc_max.gt.1.0d4) then
1007           write (iout,*) "gvdwc gvdwx gradb gradbx"
1008           do i=nnt,nct
1009             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
1010      &        gradb(j,i),gradbx(j,i),j=1,3)
1011           enddo
1012           call pdbout(0.0d0,'cipiszcze',iout)
1013           call flush(iout)
1014         endif
1015       endif
1016       endif
1017 #ifdef DEBUG
1018       write (iout,*) "gradc gradx gloc"
1019       do i=1,nres
1020         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
1021      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
1022       enddo 
1023 #endif
1024 #ifdef TIMING
1025 #ifdef MPI
1026       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
1027 #else
1028       time_sumgradient=time_sumgradient+tcpu()-time01
1029 #endif
1030 #endif
1031       return
1032       end
1033 c-------------------------------------------------------------------------------
1034       subroutine rescale_weights(t_bath)
1035       implicit real*8 (a-h,o-z)
1036       include 'DIMENSIONS'
1037       include 'COMMON.IOUNITS'
1038       include 'COMMON.FFIELD'
1039       include 'COMMON.SBRIDGE'
1040       double precision kfac /2.4d0/
1041       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
1042 c      facT=temp0/t_bath
1043 c      facT=2*temp0/(t_bath+temp0)
1044       if (rescale_mode.eq.0) then
1045         facT=1.0d0
1046         facT2=1.0d0
1047         facT3=1.0d0
1048         facT4=1.0d0
1049         facT5=1.0d0
1050       else if (rescale_mode.eq.1) then
1051         facT=kfac/(kfac-1.0d0+t_bath/temp0)
1052         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
1053         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
1054         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
1055         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
1056       else if (rescale_mode.eq.2) then
1057         x=t_bath/temp0
1058         x2=x*x
1059         x3=x2*x
1060         x4=x3*x
1061         x5=x4*x
1062         facT=licznik/dlog(dexp(x)+dexp(-x))
1063         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
1064         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
1065         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
1066         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
1067       else
1068         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
1069         write (*,*) "Wrong RESCALE_MODE",rescale_mode
1070 #ifdef MPI
1071        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
1072 #endif
1073        stop 555
1074       endif
1075       welec=weights(3)*fact
1076       wcorr=weights(4)*fact3
1077       wcorr5=weights(5)*fact4
1078       wcorr6=weights(6)*fact5
1079       wel_loc=weights(7)*fact2
1080       wturn3=weights(8)*fact2
1081       wturn4=weights(9)*fact3
1082       wturn6=weights(10)*fact5
1083       wtor=weights(13)*fact
1084       wtor_d=weights(14)*fact2
1085       wsccor=weights(21)*fact
1086 #ifdef TSCSC
1087 c      wsct=t_bath/temp0
1088       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1089 #endif
1090       return
1091       end
1092 C------------------------------------------------------------------------
1093       subroutine enerprint(energia)
1094       implicit real*8 (a-h,o-z)
1095       include 'DIMENSIONS'
1096       include 'COMMON.IOUNITS'
1097       include 'COMMON.FFIELD'
1098       include 'COMMON.SBRIDGE'
1099       include 'COMMON.MD'
1100       double precision energia(0:n_ene)
1101       etot=energia(0)
1102 #ifdef TSCSC
1103       evdw=energia(22)+wsct*energia(23)
1104 #else
1105       evdw=energia(1)
1106 #endif
1107       evdw2=energia(2)
1108 #ifdef SCP14
1109       evdw2=energia(2)+energia(18)
1110 #else
1111       evdw2=energia(2)
1112 #endif
1113       ees=energia(3)
1114 #ifdef SPLITELE
1115       evdw1=energia(16)
1116 #endif
1117       ecorr=energia(4)
1118       ecorr5=energia(5)
1119       ecorr6=energia(6)
1120       eel_loc=energia(7)
1121       eello_turn3=energia(8)
1122       eello_turn4=energia(9)
1123       eello_turn6=energia(10)
1124       ebe=energia(11)
1125       escloc=energia(12)
1126       etors=energia(13)
1127       etors_d=energia(14)
1128       ehpb=energia(15)
1129       edihcnstr=energia(19)
1130       estr=energia(17)
1131       Uconst=energia(20)
1132       esccor=energia(21)
1133       ehomology_constr=energia(24)
1134 C     Bartek
1135       edfadis = energia(25)
1136       edfator = energia(26)
1137       edfanei = energia(27)
1138       edfabet = energia(28)
1139
1140 #ifdef SPLITELE
1141       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1142      &  estr,wbond,ebe,wang,
1143      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1144      &  ecorr,wcorr,
1145      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1146      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1147      &  edihcnstr,ehomology_constr, ebr*nss,
1148      &  Uconst,edfadis,wdfa_dist,edfator,wdfa_tor,edfanei,wdfa_nei,
1149      &  edfabet,wdfa_beta,etot
1150    10 format (/'Virtual-chain energies:'//
1151      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1152      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1153      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1154      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1155      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1156      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1157      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1158      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1159      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1160      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1161      & ' (SS bridges & dist. cnstr.)'/
1162      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1163      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1164      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1165      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1166      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1167      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1168      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1169      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1170      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1171      & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/
1172      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1173      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1174      & 'EDFAD= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA distance energy)'/ 
1175      & 'EDFAT= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA torsion energy)'/ 
1176      & 'EDFAN= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA NCa energy)'/ 
1177      & 'EDFAB= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA Beta energy)'/ 
1178      & 'ETOT=  ',1pE16.6,' (total)')
1179 #else
1180       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1181      &  estr,wbond,ebe,wang,
1182      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1183      &  ecorr,wcorr,
1184      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1185      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1186      &  ehomology_constr,ebr*nss,Uconst,edfadis,wdfa_dist,edfator,
1187      &  wdfa_tor,edfanei,wdfa_nei,edfabet,wdfa_beta,
1188      &  etot
1189    10 format (/'Virtual-chain energies:'//
1190      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1191      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1192      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1193      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1194      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1195      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1196      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1197      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1198      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1199      & ' (SS bridges & dist. cnstr.)'/
1200      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1201      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1202      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1203      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1204      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1205      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1206      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1207      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1208      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1209      & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/
1210      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1211      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1212      & 'EDFAD= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA distance energy)'/ 
1213      & 'EDFAT= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA torsion energy)'/ 
1214      & 'EDFAN= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA NCa energy)'/ 
1215      & 'EDFAB= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA Beta energy)'/ 
1216      & 'ETOT=  ',1pE16.6,' (total)')
1217 #endif
1218       return
1219       end
1220 C-----------------------------------------------------------------------
1221       subroutine elj(evdw,evdw_p,evdw_m)
1222 C
1223 C This subroutine calculates the interaction energy of nonbonded side chains
1224 C assuming the LJ potential of interaction.
1225 C
1226       implicit real*8 (a-h,o-z)
1227       include 'DIMENSIONS'
1228       parameter (accur=1.0d-10)
1229       include 'COMMON.GEO'
1230       include 'COMMON.VAR'
1231       include 'COMMON.LOCAL'
1232       include 'COMMON.CHAIN'
1233       include 'COMMON.DERIV'
1234       include 'COMMON.INTERACT'
1235       include 'COMMON.TORSION'
1236       include 'COMMON.SBRIDGE'
1237       include 'COMMON.NAMES'
1238       include 'COMMON.IOUNITS'
1239       include 'COMMON.CONTACTS'
1240       dimension gg(3)
1241 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1242       evdw=0.0D0
1243       do i=iatsc_s,iatsc_e
1244         itypi=itype(i)
1245         itypi1=itype(i+1)
1246         xi=c(1,nres+i)
1247         yi=c(2,nres+i)
1248         zi=c(3,nres+i)
1249 C Change 12/1/95
1250         num_conti=0
1251 C
1252 C Calculate SC interaction energy.
1253 C
1254         do iint=1,nint_gr(i)
1255 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1256 cd   &                  'iend=',iend(i,iint)
1257           do j=istart(i,iint),iend(i,iint)
1258             itypj=itype(j)
1259             xj=c(1,nres+j)-xi
1260             yj=c(2,nres+j)-yi
1261             zj=c(3,nres+j)-zi
1262 C Change 12/1/95 to calculate four-body interactions
1263             rij=xj*xj+yj*yj+zj*zj
1264             rrij=1.0D0/rij
1265 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1266             eps0ij=eps(itypi,itypj)
1267             fac=rrij**expon2
1268             e1=fac*fac*aa(itypi,itypj)
1269             e2=fac*bb(itypi,itypj)
1270             evdwij=e1+e2
1271 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1272 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1273 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1274 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1275 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1276 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1277 #ifdef TSCSC
1278             if (bb(itypi,itypj).gt.0) then
1279                evdw_p=evdw_p+evdwij
1280             else
1281                evdw_m=evdw_m+evdwij
1282             endif
1283 #else
1284             evdw=evdw+evdwij
1285 #endif
1286
1287 C Calculate the components of the gradient in DC and X
1288 C
1289             fac=-rrij*(e1+evdwij)
1290             gg(1)=xj*fac
1291             gg(2)=yj*fac
1292             gg(3)=zj*fac
1293 #ifdef TSCSC
1294             if (bb(itypi,itypj).gt.0.0d0) then
1295               do k=1,3
1296                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1297                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1298                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1299                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1300               enddo
1301             else
1302               do k=1,3
1303                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1304                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1305                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1306                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1307               enddo
1308             endif
1309 #else
1310             do k=1,3
1311               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1312               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1313               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1314               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1315             enddo
1316 #endif
1317 cgrad            do k=i,j-1
1318 cgrad              do l=1,3
1319 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1320 cgrad              enddo
1321 cgrad            enddo
1322 C
1323 C 12/1/95, revised on 5/20/97
1324 C
1325 C Calculate the contact function. The ith column of the array JCONT will 
1326 C contain the numbers of atoms that make contacts with the atom I (of numbers
1327 C greater than I). The arrays FACONT and GACONT will contain the values of
1328 C the contact function and its derivative.
1329 C
1330 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1331 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1332 C Uncomment next line, if the correlation interactions are contact function only
1333             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1334               rij=dsqrt(rij)
1335               sigij=sigma(itypi,itypj)
1336               r0ij=rs0(itypi,itypj)
1337 C
1338 C Check whether the SC's are not too far to make a contact.
1339 C
1340               rcut=1.5d0*r0ij
1341               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1342 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1343 C
1344               if (fcont.gt.0.0D0) then
1345 C If the SC-SC distance if close to sigma, apply spline.
1346 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1347 cAdam &             fcont1,fprimcont1)
1348 cAdam           fcont1=1.0d0-fcont1
1349 cAdam           if (fcont1.gt.0.0d0) then
1350 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1351 cAdam             fcont=fcont*fcont1
1352 cAdam           endif
1353 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1354 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1355 cga             do k=1,3
1356 cga               gg(k)=gg(k)*eps0ij
1357 cga             enddo
1358 cga             eps0ij=-evdwij*eps0ij
1359 C Uncomment for AL's type of SC correlation interactions.
1360 cadam           eps0ij=-evdwij
1361                 num_conti=num_conti+1
1362                 jcont(num_conti,i)=j
1363                 facont(num_conti,i)=fcont*eps0ij
1364                 fprimcont=eps0ij*fprimcont/rij
1365                 fcont=expon*fcont
1366 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1367 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1368 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1369 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1370                 gacont(1,num_conti,i)=-fprimcont*xj
1371                 gacont(2,num_conti,i)=-fprimcont*yj
1372                 gacont(3,num_conti,i)=-fprimcont*zj
1373 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1374 cd              write (iout,'(2i3,3f10.5)') 
1375 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1376               endif
1377             endif
1378           enddo      ! j
1379         enddo        ! iint
1380 C Change 12/1/95
1381         num_cont(i)=num_conti
1382       enddo          ! i
1383       do i=1,nct
1384         do j=1,3
1385           gvdwc(j,i)=expon*gvdwc(j,i)
1386           gvdwx(j,i)=expon*gvdwx(j,i)
1387         enddo
1388       enddo
1389 C******************************************************************************
1390 C
1391 C                              N O T E !!!
1392 C
1393 C To save time, the factor of EXPON has been extracted from ALL components
1394 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1395 C use!
1396 C
1397 C******************************************************************************
1398       return
1399       end
1400 C-----------------------------------------------------------------------------
1401       subroutine eljk(evdw,evdw_p,evdw_m)
1402 C
1403 C This subroutine calculates the interaction energy of nonbonded side chains
1404 C assuming the LJK potential of interaction.
1405 C
1406       implicit real*8 (a-h,o-z)
1407       include 'DIMENSIONS'
1408       include 'COMMON.GEO'
1409       include 'COMMON.VAR'
1410       include 'COMMON.LOCAL'
1411       include 'COMMON.CHAIN'
1412       include 'COMMON.DERIV'
1413       include 'COMMON.INTERACT'
1414       include 'COMMON.IOUNITS'
1415       include 'COMMON.NAMES'
1416       dimension gg(3)
1417       logical scheck
1418 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1419       evdw=0.0D0
1420       do i=iatsc_s,iatsc_e
1421         itypi=itype(i)
1422         itypi1=itype(i+1)
1423         xi=c(1,nres+i)
1424         yi=c(2,nres+i)
1425         zi=c(3,nres+i)
1426 C
1427 C Calculate SC interaction energy.
1428 C
1429         do iint=1,nint_gr(i)
1430           do j=istart(i,iint),iend(i,iint)
1431             itypj=itype(j)
1432             xj=c(1,nres+j)-xi
1433             yj=c(2,nres+j)-yi
1434             zj=c(3,nres+j)-zi
1435             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1436             fac_augm=rrij**expon
1437             e_augm=augm(itypi,itypj)*fac_augm
1438             r_inv_ij=dsqrt(rrij)
1439             rij=1.0D0/r_inv_ij 
1440             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1441             fac=r_shift_inv**expon
1442             e1=fac*fac*aa(itypi,itypj)
1443             e2=fac*bb(itypi,itypj)
1444             evdwij=e_augm+e1+e2
1445 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1446 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1447 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1448 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1449 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1450 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1451 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1452 #ifdef TSCSC
1453             if (bb(itypi,itypj).gt.0) then
1454                evdw_p=evdw_p+evdwij
1455             else
1456                evdw_m=evdw_m+evdwij
1457             endif
1458 #else
1459             evdw=evdw+evdwij
1460 #endif
1461
1462 C Calculate the components of the gradient in DC and X
1463 C
1464             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1465             gg(1)=xj*fac
1466             gg(2)=yj*fac
1467             gg(3)=zj*fac
1468 #ifdef TSCSC
1469             if (bb(itypi,itypj).gt.0.0d0) then
1470               do k=1,3
1471                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1472                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1473                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1474                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1475               enddo
1476             else
1477               do k=1,3
1478                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1479                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1480                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1481                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1482               enddo
1483             endif
1484 #else
1485             do k=1,3
1486               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1487               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1488               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1489               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1490             enddo
1491 #endif
1492 cgrad            do k=i,j-1
1493 cgrad              do l=1,3
1494 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1495 cgrad              enddo
1496 cgrad            enddo
1497           enddo      ! j
1498         enddo        ! iint
1499       enddo          ! i
1500       do i=1,nct
1501         do j=1,3
1502           gvdwc(j,i)=expon*gvdwc(j,i)
1503           gvdwx(j,i)=expon*gvdwx(j,i)
1504         enddo
1505       enddo
1506       return
1507       end
1508 C-----------------------------------------------------------------------------
1509       subroutine ebp(evdw,evdw_p,evdw_m)
1510 C
1511 C This subroutine calculates the interaction energy of nonbonded side chains
1512 C assuming the Berne-Pechukas potential of interaction.
1513 C
1514       implicit real*8 (a-h,o-z)
1515       include 'DIMENSIONS'
1516       include 'COMMON.GEO'
1517       include 'COMMON.VAR'
1518       include 'COMMON.LOCAL'
1519       include 'COMMON.CHAIN'
1520       include 'COMMON.DERIV'
1521       include 'COMMON.NAMES'
1522       include 'COMMON.INTERACT'
1523       include 'COMMON.IOUNITS'
1524       include 'COMMON.CALC'
1525       common /srutu/ icall
1526 c     double precision rrsave(maxdim)
1527       logical lprn
1528       evdw=0.0D0
1529 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1530       evdw=0.0D0
1531 c     if (icall.eq.0) then
1532 c       lprn=.true.
1533 c     else
1534         lprn=.false.
1535 c     endif
1536       ind=0
1537       do i=iatsc_s,iatsc_e
1538         itypi=itype(i)
1539         itypi1=itype(i+1)
1540         xi=c(1,nres+i)
1541         yi=c(2,nres+i)
1542         zi=c(3,nres+i)
1543         dxi=dc_norm(1,nres+i)
1544         dyi=dc_norm(2,nres+i)
1545         dzi=dc_norm(3,nres+i)
1546 c        dsci_inv=dsc_inv(itypi)
1547         dsci_inv=vbld_inv(i+nres)
1548 C
1549 C Calculate SC interaction energy.
1550 C
1551         do iint=1,nint_gr(i)
1552           do j=istart(i,iint),iend(i,iint)
1553             ind=ind+1
1554             itypj=itype(j)
1555 c            dscj_inv=dsc_inv(itypj)
1556             dscj_inv=vbld_inv(j+nres)
1557             chi1=chi(itypi,itypj)
1558             chi2=chi(itypj,itypi)
1559             chi12=chi1*chi2
1560             chip1=chip(itypi)
1561             chip2=chip(itypj)
1562             chip12=chip1*chip2
1563             alf1=alp(itypi)
1564             alf2=alp(itypj)
1565             alf12=0.5D0*(alf1+alf2)
1566 C For diagnostics only!!!
1567 c           chi1=0.0D0
1568 c           chi2=0.0D0
1569 c           chi12=0.0D0
1570 c           chip1=0.0D0
1571 c           chip2=0.0D0
1572 c           chip12=0.0D0
1573 c           alf1=0.0D0
1574 c           alf2=0.0D0
1575 c           alf12=0.0D0
1576             xj=c(1,nres+j)-xi
1577             yj=c(2,nres+j)-yi
1578             zj=c(3,nres+j)-zi
1579             dxj=dc_norm(1,nres+j)
1580             dyj=dc_norm(2,nres+j)
1581             dzj=dc_norm(3,nres+j)
1582             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1583 cd          if (icall.eq.0) then
1584 cd            rrsave(ind)=rrij
1585 cd          else
1586 cd            rrij=rrsave(ind)
1587 cd          endif
1588             rij=dsqrt(rrij)
1589 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1590             call sc_angular
1591 C Calculate whole angle-dependent part of epsilon and contributions
1592 C to its derivatives
1593             fac=(rrij*sigsq)**expon2
1594             e1=fac*fac*aa(itypi,itypj)
1595             e2=fac*bb(itypi,itypj)
1596             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1597             eps2der=evdwij*eps3rt
1598             eps3der=evdwij*eps2rt
1599             evdwij=evdwij*eps2rt*eps3rt
1600 #ifdef TSCSC
1601             if (bb(itypi,itypj).gt.0) then
1602                evdw_p=evdw_p+evdwij
1603             else
1604                evdw_m=evdw_m+evdwij
1605             endif
1606 #else
1607             evdw=evdw+evdwij
1608 #endif
1609             if (lprn) then
1610             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1611             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1612 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1613 cd     &        restyp(itypi),i,restyp(itypj),j,
1614 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1615 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1616 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1617 cd     &        evdwij
1618             endif
1619 C Calculate gradient components.
1620             e1=e1*eps1*eps2rt**2*eps3rt**2
1621             fac=-expon*(e1+evdwij)
1622             sigder=fac/sigsq
1623             fac=rrij*fac
1624 C Calculate radial part of the gradient
1625             gg(1)=xj*fac
1626             gg(2)=yj*fac
1627             gg(3)=zj*fac
1628 C Calculate the angular part of the gradient and sum add the contributions
1629 C to the appropriate components of the Cartesian gradient.
1630 #ifdef TSCSC
1631             if (bb(itypi,itypj).gt.0) then
1632                call sc_grad
1633             else
1634                call sc_grad_T
1635             endif
1636 #else
1637             call sc_grad
1638 #endif
1639           enddo      ! j
1640         enddo        ! iint
1641       enddo          ! i
1642 c     stop
1643       return
1644       end
1645 C-----------------------------------------------------------------------------
1646       subroutine egb(evdw,evdw_p,evdw_m)
1647 C
1648 C This subroutine calculates the interaction energy of nonbonded side chains
1649 C assuming the Gay-Berne potential of interaction.
1650 C
1651       implicit real*8 (a-h,o-z)
1652       include 'DIMENSIONS'
1653       include 'COMMON.GEO'
1654       include 'COMMON.VAR'
1655       include 'COMMON.LOCAL'
1656       include 'COMMON.CHAIN'
1657       include 'COMMON.DERIV'
1658       include 'COMMON.NAMES'
1659       include 'COMMON.INTERACT'
1660       include 'COMMON.IOUNITS'
1661       include 'COMMON.CALC'
1662       include 'COMMON.CONTROL'
1663       include 'COMMON.SBRIDGE'
1664       logical lprn
1665       evdw=0.0D0
1666 ccccc      energy_dec=.false.
1667 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1668       evdw=0.0D0
1669       evdw_p=0.0D0
1670       evdw_m=0.0D0
1671       lprn=.false.
1672 c     if (icall.eq.0) lprn=.false.
1673       ind=0
1674       do i=iatsc_s,iatsc_e
1675         itypi=itype(i)
1676         itypi1=itype(i+1)
1677         xi=c(1,nres+i)
1678         yi=c(2,nres+i)
1679         zi=c(3,nres+i)
1680         dxi=dc_norm(1,nres+i)
1681         dyi=dc_norm(2,nres+i)
1682         dzi=dc_norm(3,nres+i)
1683 c        dsci_inv=dsc_inv(itypi)
1684         dsci_inv=vbld_inv(i+nres)
1685 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1686 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1687 C
1688 C Calculate SC interaction energy.
1689 C
1690         do iint=1,nint_gr(i)
1691           do j=istart(i,iint),iend(i,iint)
1692             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1693               call dyn_ssbond_ene(i,j,evdwij)
1694               evdw=evdw+evdwij
1695               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1696      &                        'evdw',i,j,evdwij,' ss'
1697             ELSE
1698             ind=ind+1
1699             itypj=itype(j)
1700 c            dscj_inv=dsc_inv(itypj)
1701             dscj_inv=vbld_inv(j+nres)
1702 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1703 c     &       1.0d0/vbld(j+nres)
1704 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1705             sig0ij=sigma(itypi,itypj)
1706             chi1=chi(itypi,itypj)
1707             chi2=chi(itypj,itypi)
1708             chi12=chi1*chi2
1709             chip1=chip(itypi)
1710             chip2=chip(itypj)
1711             chip12=chip1*chip2
1712             alf1=alp(itypi)
1713             alf2=alp(itypj)
1714             alf12=0.5D0*(alf1+alf2)
1715 C For diagnostics only!!!
1716 c           chi1=0.0D0
1717 c           chi2=0.0D0
1718 c           chi12=0.0D0
1719 c           chip1=0.0D0
1720 c           chip2=0.0D0
1721 c           chip12=0.0D0
1722 c           alf1=0.0D0
1723 c           alf2=0.0D0
1724 c           alf12=0.0D0
1725             xj=c(1,nres+j)-xi
1726             yj=c(2,nres+j)-yi
1727             zj=c(3,nres+j)-zi
1728             dxj=dc_norm(1,nres+j)
1729             dyj=dc_norm(2,nres+j)
1730             dzj=dc_norm(3,nres+j)
1731 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1732 c            write (iout,*) "j",j," dc_norm",
1733 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1734             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1735             rij=dsqrt(rrij)
1736 C Calculate angle-dependent terms of energy and contributions to their
1737 C derivatives.
1738             call sc_angular
1739             sigsq=1.0D0/sigsq
1740             sig=sig0ij*dsqrt(sigsq)
1741             rij_shift=1.0D0/rij-sig+sig0ij
1742 c for diagnostics; uncomment
1743 c            rij_shift=1.2*sig0ij
1744 C I hate to put IF's in the loops, but here don't have another choice!!!!
1745             if (rij_shift.le.0.0D0) then
1746               evdw=1.0D20
1747 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1748 cd     &        restyp(itypi),i,restyp(itypj),j,
1749 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1750               return
1751             endif
1752             sigder=-sig*sigsq
1753 c---------------------------------------------------------------
1754             rij_shift=1.0D0/rij_shift 
1755             fac=rij_shift**expon
1756             e1=fac*fac*aa(itypi,itypj)
1757             e2=fac*bb(itypi,itypj)
1758             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1759             eps2der=evdwij*eps3rt
1760             eps3der=evdwij*eps2rt
1761 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1762 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1763             evdwij=evdwij*eps2rt*eps3rt
1764 #ifdef TSCSC
1765             if (bb(itypi,itypj).gt.0) then
1766                evdw_p=evdw_p+evdwij
1767             else
1768                evdw_m=evdw_m+evdwij
1769             endif
1770 #else
1771             evdw=evdw+evdwij
1772 #endif
1773             if (lprn) then
1774             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1775             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1776             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1777      &        restyp(itypi),i,restyp(itypj),j,
1778      &        epsi,sigm,chi1,chi2,chip1,chip2,
1779      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1780      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1781      &        evdwij
1782             endif
1783
1784             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1785      &                        'evdw',i,j,evdwij
1786
1787 C Calculate gradient components.
1788             e1=e1*eps1*eps2rt**2*eps3rt**2
1789             fac=-expon*(e1+evdwij)*rij_shift
1790             sigder=fac*sigder
1791             fac=rij*fac
1792 c            fac=0.0d0
1793 C Calculate the radial part of the gradient
1794             gg(1)=xj*fac
1795             gg(2)=yj*fac
1796             gg(3)=zj*fac
1797 C Calculate angular part of the gradient.
1798 #ifdef TSCSC
1799             if (bb(itypi,itypj).gt.0) then
1800                call sc_grad
1801             else
1802                call sc_grad_T
1803             endif
1804 #else
1805             call sc_grad
1806 #endif
1807             ENDIF    ! dyn_ss            
1808           enddo      ! j
1809         enddo        ! iint
1810       enddo          ! i
1811 c      write (iout,*) "Number of loop steps in EGB:",ind
1812 cccc      energy_dec=.false.
1813       return
1814       end
1815 C-----------------------------------------------------------------------------
1816       subroutine egbv(evdw,evdw_p,evdw_m)
1817 C
1818 C This subroutine calculates the interaction energy of nonbonded side chains
1819 C assuming the Gay-Berne-Vorobjev potential of interaction.
1820 C
1821       implicit real*8 (a-h,o-z)
1822       include 'DIMENSIONS'
1823       include 'COMMON.GEO'
1824       include 'COMMON.VAR'
1825       include 'COMMON.LOCAL'
1826       include 'COMMON.CHAIN'
1827       include 'COMMON.DERIV'
1828       include 'COMMON.NAMES'
1829       include 'COMMON.INTERACT'
1830       include 'COMMON.IOUNITS'
1831       include 'COMMON.CALC'
1832       common /srutu/ icall
1833       logical lprn
1834       evdw=0.0D0
1835 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1836       evdw=0.0D0
1837       lprn=.false.
1838 c     if (icall.eq.0) lprn=.true.
1839       ind=0
1840       do i=iatsc_s,iatsc_e
1841         itypi=itype(i)
1842         itypi1=itype(i+1)
1843         xi=c(1,nres+i)
1844         yi=c(2,nres+i)
1845         zi=c(3,nres+i)
1846         dxi=dc_norm(1,nres+i)
1847         dyi=dc_norm(2,nres+i)
1848         dzi=dc_norm(3,nres+i)
1849 c        dsci_inv=dsc_inv(itypi)
1850         dsci_inv=vbld_inv(i+nres)
1851 C
1852 C Calculate SC interaction energy.
1853 C
1854         do iint=1,nint_gr(i)
1855           do j=istart(i,iint),iend(i,iint)
1856             ind=ind+1
1857             itypj=itype(j)
1858 c            dscj_inv=dsc_inv(itypj)
1859             dscj_inv=vbld_inv(j+nres)
1860             sig0ij=sigma(itypi,itypj)
1861             r0ij=r0(itypi,itypj)
1862             chi1=chi(itypi,itypj)
1863             chi2=chi(itypj,itypi)
1864             chi12=chi1*chi2
1865             chip1=chip(itypi)
1866             chip2=chip(itypj)
1867             chip12=chip1*chip2
1868             alf1=alp(itypi)
1869             alf2=alp(itypj)
1870             alf12=0.5D0*(alf1+alf2)
1871 C For diagnostics only!!!
1872 c           chi1=0.0D0
1873 c           chi2=0.0D0
1874 c           chi12=0.0D0
1875 c           chip1=0.0D0
1876 c           chip2=0.0D0
1877 c           chip12=0.0D0
1878 c           alf1=0.0D0
1879 c           alf2=0.0D0
1880 c           alf12=0.0D0
1881             xj=c(1,nres+j)-xi
1882             yj=c(2,nres+j)-yi
1883             zj=c(3,nres+j)-zi
1884             dxj=dc_norm(1,nres+j)
1885             dyj=dc_norm(2,nres+j)
1886             dzj=dc_norm(3,nres+j)
1887             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1888             rij=dsqrt(rrij)
1889 C Calculate angle-dependent terms of energy and contributions to their
1890 C derivatives.
1891             call sc_angular
1892             sigsq=1.0D0/sigsq
1893             sig=sig0ij*dsqrt(sigsq)
1894             rij_shift=1.0D0/rij-sig+r0ij
1895 C I hate to put IF's in the loops, but here don't have another choice!!!!
1896             if (rij_shift.le.0.0D0) then
1897               evdw=1.0D20
1898               return
1899             endif
1900             sigder=-sig*sigsq
1901 c---------------------------------------------------------------
1902             rij_shift=1.0D0/rij_shift 
1903             fac=rij_shift**expon
1904             e1=fac*fac*aa(itypi,itypj)
1905             e2=fac*bb(itypi,itypj)
1906             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1907             eps2der=evdwij*eps3rt
1908             eps3der=evdwij*eps2rt
1909             fac_augm=rrij**expon
1910             e_augm=augm(itypi,itypj)*fac_augm
1911             evdwij=evdwij*eps2rt*eps3rt
1912 #ifdef TSCSC
1913             if (bb(itypi,itypj).gt.0) then
1914                evdw_p=evdw_p+evdwij+e_augm
1915             else
1916                evdw_m=evdw_m+evdwij+e_augm
1917             endif
1918 #else
1919             evdw=evdw+evdwij+e_augm
1920 #endif
1921             if (lprn) then
1922             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1923             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1924             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1925      &        restyp(itypi),i,restyp(itypj),j,
1926      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1927      &        chi1,chi2,chip1,chip2,
1928      &        eps1,eps2rt**2,eps3rt**2,
1929      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1930      &        evdwij+e_augm
1931             endif
1932 C Calculate gradient components.
1933             e1=e1*eps1*eps2rt**2*eps3rt**2
1934             fac=-expon*(e1+evdwij)*rij_shift
1935             sigder=fac*sigder
1936             fac=rij*fac-2*expon*rrij*e_augm
1937 C Calculate the radial part of the gradient
1938             gg(1)=xj*fac
1939             gg(2)=yj*fac
1940             gg(3)=zj*fac
1941 C Calculate angular part of the gradient.
1942 #ifdef TSCSC
1943             if (bb(itypi,itypj).gt.0) then
1944                call sc_grad
1945             else
1946                call sc_grad_T
1947             endif
1948 #else
1949             call sc_grad
1950 #endif
1951           enddo      ! j
1952         enddo        ! iint
1953       enddo          ! i
1954       end
1955 C-----------------------------------------------------------------------------
1956       subroutine sc_angular
1957 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1958 C om12. Called by ebp, egb, and egbv.
1959       implicit none
1960       include 'COMMON.CALC'
1961       include 'COMMON.IOUNITS'
1962       erij(1)=xj*rij
1963       erij(2)=yj*rij
1964       erij(3)=zj*rij
1965       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1966       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1967       om12=dxi*dxj+dyi*dyj+dzi*dzj
1968       chiom12=chi12*om12
1969 C Calculate eps1(om12) and its derivative in om12
1970       faceps1=1.0D0-om12*chiom12
1971       faceps1_inv=1.0D0/faceps1
1972       eps1=dsqrt(faceps1_inv)
1973 C Following variable is eps1*deps1/dom12
1974       eps1_om12=faceps1_inv*chiom12
1975 c diagnostics only
1976 c      faceps1_inv=om12
1977 c      eps1=om12
1978 c      eps1_om12=1.0d0
1979 c      write (iout,*) "om12",om12," eps1",eps1
1980 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1981 C and om12.
1982       om1om2=om1*om2
1983       chiom1=chi1*om1
1984       chiom2=chi2*om2
1985       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1986       sigsq=1.0D0-facsig*faceps1_inv
1987       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1988       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1989       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1990 c diagnostics only
1991 c      sigsq=1.0d0
1992 c      sigsq_om1=0.0d0
1993 c      sigsq_om2=0.0d0
1994 c      sigsq_om12=0.0d0
1995 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1996 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1997 c     &    " eps1",eps1
1998 C Calculate eps2 and its derivatives in om1, om2, and om12.
1999       chipom1=chip1*om1
2000       chipom2=chip2*om2
2001       chipom12=chip12*om12
2002       facp=1.0D0-om12*chipom12
2003       facp_inv=1.0D0/facp
2004       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
2005 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
2006 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
2007 C Following variable is the square root of eps2
2008       eps2rt=1.0D0-facp1*facp_inv
2009 C Following three variables are the derivatives of the square root of eps
2010 C in om1, om2, and om12.
2011       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
2012       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
2013       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
2014 C Evaluate the "asymmetric" factor in the VDW constant, eps3
2015       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
2016 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
2017 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
2018 c     &  " eps2rt_om12",eps2rt_om12
2019 C Calculate whole angle-dependent part of epsilon and contributions
2020 C to its derivatives
2021       return
2022       end
2023
2024 C----------------------------------------------------------------------------
2025       subroutine sc_grad_T
2026       implicit real*8 (a-h,o-z)
2027       include 'DIMENSIONS'
2028       include 'COMMON.CHAIN'
2029       include 'COMMON.DERIV'
2030       include 'COMMON.CALC'
2031       include 'COMMON.IOUNITS'
2032       double precision dcosom1(3),dcosom2(3)
2033       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
2034       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
2035       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
2036      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
2037 c diagnostics only
2038 c      eom1=0.0d0
2039 c      eom2=0.0d0
2040 c      eom12=evdwij*eps1_om12
2041 c end diagnostics
2042 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
2043 c     &  " sigder",sigder
2044 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2045 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2046       do k=1,3
2047         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2048         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2049       enddo
2050       do k=1,3
2051         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2052       enddo 
2053 c      write (iout,*) "gg",(gg(k),k=1,3)
2054       do k=1,3
2055         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
2056      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2057      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2058         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
2059      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2060      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2061 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2062 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2063 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2064 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2065       enddo
2066
2067 C Calculate the components of the gradient in DC and X
2068 C
2069 cgrad      do k=i,j-1
2070 cgrad        do l=1,3
2071 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2072 cgrad        enddo
2073 cgrad      enddo
2074       do l=1,3
2075         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
2076         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
2077       enddo
2078       return
2079       end
2080
2081 C----------------------------------------------------------------------------
2082       subroutine sc_grad
2083       implicit real*8 (a-h,o-z)
2084       include 'DIMENSIONS'
2085       include 'COMMON.CHAIN'
2086       include 'COMMON.DERIV'
2087       include 'COMMON.CALC'
2088       include 'COMMON.IOUNITS'
2089       double precision dcosom1(3),dcosom2(3)
2090       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
2091       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
2092       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
2093      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
2094 c diagnostics only
2095 c      eom1=0.0d0
2096 c      eom2=0.0d0
2097 c      eom12=evdwij*eps1_om12
2098 c end diagnostics
2099 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
2100 c     &  " sigder",sigder
2101 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2102 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2103       do k=1,3
2104         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2105         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2106       enddo
2107       do k=1,3
2108         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2109       enddo 
2110 c      write (iout,*) "gg",(gg(k),k=1,3)
2111       do k=1,3
2112         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2113      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2114      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2115         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2116      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2117      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2118 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2119 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2120 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2121 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2122       enddo
2123
2124 C Calculate the components of the gradient in DC and X
2125 C
2126 cgrad      do k=i,j-1
2127 cgrad        do l=1,3
2128 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2129 cgrad        enddo
2130 cgrad      enddo
2131       do l=1,3
2132         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2133         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2134       enddo
2135       return
2136       end
2137 C-----------------------------------------------------------------------
2138       subroutine e_softsphere(evdw)
2139 C
2140 C This subroutine calculates the interaction energy of nonbonded side chains
2141 C assuming the LJ potential of interaction.
2142 C
2143       implicit real*8 (a-h,o-z)
2144       include 'DIMENSIONS'
2145       parameter (accur=1.0d-10)
2146       include 'COMMON.GEO'
2147       include 'COMMON.VAR'
2148       include 'COMMON.LOCAL'
2149       include 'COMMON.CHAIN'
2150       include 'COMMON.DERIV'
2151       include 'COMMON.INTERACT'
2152       include 'COMMON.TORSION'
2153       include 'COMMON.SBRIDGE'
2154       include 'COMMON.NAMES'
2155       include 'COMMON.IOUNITS'
2156       include 'COMMON.CONTACTS'
2157       dimension gg(3)
2158 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2159       evdw=0.0D0
2160       do i=iatsc_s,iatsc_e
2161         itypi=itype(i)
2162         itypi1=itype(i+1)
2163         xi=c(1,nres+i)
2164         yi=c(2,nres+i)
2165         zi=c(3,nres+i)
2166 C
2167 C Calculate SC interaction energy.
2168 C
2169         do iint=1,nint_gr(i)
2170 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2171 cd   &                  'iend=',iend(i,iint)
2172           do j=istart(i,iint),iend(i,iint)
2173             itypj=itype(j)
2174             xj=c(1,nres+j)-xi
2175             yj=c(2,nres+j)-yi
2176             zj=c(3,nres+j)-zi
2177             rij=xj*xj+yj*yj+zj*zj
2178 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2179             r0ij=r0(itypi,itypj)
2180             r0ijsq=r0ij*r0ij
2181 c            print *,i,j,r0ij,dsqrt(rij)
2182             if (rij.lt.r0ijsq) then
2183               evdwij=0.25d0*(rij-r0ijsq)**2
2184               fac=rij-r0ijsq
2185             else
2186               evdwij=0.0d0
2187               fac=0.0d0
2188             endif
2189             evdw=evdw+evdwij
2190
2191 C Calculate the components of the gradient in DC and X
2192 C
2193             gg(1)=xj*fac
2194             gg(2)=yj*fac
2195             gg(3)=zj*fac
2196             do k=1,3
2197               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2198               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2199               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2200               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2201             enddo
2202 cgrad            do k=i,j-1
2203 cgrad              do l=1,3
2204 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2205 cgrad              enddo
2206 cgrad            enddo
2207           enddo ! j
2208         enddo ! iint
2209       enddo ! i
2210       return
2211       end
2212 C--------------------------------------------------------------------------
2213       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2214      &              eello_turn4)
2215 C
2216 C Soft-sphere potential of p-p interaction
2217
2218       implicit real*8 (a-h,o-z)
2219       include 'DIMENSIONS'
2220       include 'COMMON.CONTROL'
2221       include 'COMMON.IOUNITS'
2222       include 'COMMON.GEO'
2223       include 'COMMON.VAR'
2224       include 'COMMON.LOCAL'
2225       include 'COMMON.CHAIN'
2226       include 'COMMON.DERIV'
2227       include 'COMMON.INTERACT'
2228       include 'COMMON.CONTACTS'
2229       include 'COMMON.TORSION'
2230       include 'COMMON.VECTORS'
2231       include 'COMMON.FFIELD'
2232       dimension ggg(3)
2233 cd      write(iout,*) 'In EELEC_soft_sphere'
2234       ees=0.0D0
2235       evdw1=0.0D0
2236       eel_loc=0.0d0 
2237       eello_turn3=0.0d0
2238       eello_turn4=0.0d0
2239       ind=0
2240       do i=iatel_s,iatel_e
2241         dxi=dc(1,i)
2242         dyi=dc(2,i)
2243         dzi=dc(3,i)
2244         xmedi=c(1,i)+0.5d0*dxi
2245         ymedi=c(2,i)+0.5d0*dyi
2246         zmedi=c(3,i)+0.5d0*dzi
2247         num_conti=0
2248 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2249         do j=ielstart(i),ielend(i)
2250           ind=ind+1
2251           iteli=itel(i)
2252           itelj=itel(j)
2253           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2254           r0ij=rpp(iteli,itelj)
2255           r0ijsq=r0ij*r0ij 
2256           dxj=dc(1,j)
2257           dyj=dc(2,j)
2258           dzj=dc(3,j)
2259           xj=c(1,j)+0.5D0*dxj-xmedi
2260           yj=c(2,j)+0.5D0*dyj-ymedi
2261           zj=c(3,j)+0.5D0*dzj-zmedi
2262           rij=xj*xj+yj*yj+zj*zj
2263           if (rij.lt.r0ijsq) then
2264             evdw1ij=0.25d0*(rij-r0ijsq)**2
2265             fac=rij-r0ijsq
2266           else
2267             evdw1ij=0.0d0
2268             fac=0.0d0
2269           endif
2270           evdw1=evdw1+evdw1ij
2271 C
2272 C Calculate contributions to the Cartesian gradient.
2273 C
2274           ggg(1)=fac*xj
2275           ggg(2)=fac*yj
2276           ggg(3)=fac*zj
2277           do k=1,3
2278             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2279             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2280           enddo
2281 *
2282 * Loop over residues i+1 thru j-1.
2283 *
2284 cgrad          do k=i+1,j-1
2285 cgrad            do l=1,3
2286 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2287 cgrad            enddo
2288 cgrad          enddo
2289         enddo ! j
2290       enddo   ! i
2291 cgrad      do i=nnt,nct-1
2292 cgrad        do k=1,3
2293 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2294 cgrad        enddo
2295 cgrad        do j=i+1,nct-1
2296 cgrad          do k=1,3
2297 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2298 cgrad          enddo
2299 cgrad        enddo
2300 cgrad      enddo
2301       return
2302       end
2303 c------------------------------------------------------------------------------
2304       subroutine vec_and_deriv
2305       implicit real*8 (a-h,o-z)
2306       include 'DIMENSIONS'
2307 #ifdef MPI
2308       include 'mpif.h'
2309 #endif
2310       include 'COMMON.IOUNITS'
2311       include 'COMMON.GEO'
2312       include 'COMMON.VAR'
2313       include 'COMMON.LOCAL'
2314       include 'COMMON.CHAIN'
2315       include 'COMMON.VECTORS'
2316       include 'COMMON.SETUP'
2317       include 'COMMON.TIME1'
2318       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2319 C Compute the local reference systems. For reference system (i), the
2320 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2321 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2322 #ifdef PARVEC
2323       do i=ivec_start,ivec_end
2324 #else
2325       do i=1,nres-1
2326 #endif
2327           if (i.eq.nres-1) then
2328 C Case of the last full residue
2329 C Compute the Z-axis
2330             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2331             costh=dcos(pi-theta(nres))
2332             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2333             do k=1,3
2334               uz(k,i)=fac*uz(k,i)
2335             enddo
2336 C Compute the derivatives of uz
2337             uzder(1,1,1)= 0.0d0
2338             uzder(2,1,1)=-dc_norm(3,i-1)
2339             uzder(3,1,1)= dc_norm(2,i-1) 
2340             uzder(1,2,1)= dc_norm(3,i-1)
2341             uzder(2,2,1)= 0.0d0
2342             uzder(3,2,1)=-dc_norm(1,i-1)
2343             uzder(1,3,1)=-dc_norm(2,i-1)
2344             uzder(2,3,1)= dc_norm(1,i-1)
2345             uzder(3,3,1)= 0.0d0
2346             uzder(1,1,2)= 0.0d0
2347             uzder(2,1,2)= dc_norm(3,i)
2348             uzder(3,1,2)=-dc_norm(2,i) 
2349             uzder(1,2,2)=-dc_norm(3,i)
2350             uzder(2,2,2)= 0.0d0
2351             uzder(3,2,2)= dc_norm(1,i)
2352             uzder(1,3,2)= dc_norm(2,i)
2353             uzder(2,3,2)=-dc_norm(1,i)
2354             uzder(3,3,2)= 0.0d0
2355 C Compute the Y-axis
2356             facy=fac
2357             do k=1,3
2358               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2359             enddo
2360 C Compute the derivatives of uy
2361             do j=1,3
2362               do k=1,3
2363                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2364      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2365                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2366               enddo
2367               uyder(j,j,1)=uyder(j,j,1)-costh
2368               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2369             enddo
2370             do j=1,2
2371               do k=1,3
2372                 do l=1,3
2373                   uygrad(l,k,j,i)=uyder(l,k,j)
2374                   uzgrad(l,k,j,i)=uzder(l,k,j)
2375                 enddo
2376               enddo
2377             enddo 
2378             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2379             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2380             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2381             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2382           else
2383 C Other residues
2384 C Compute the Z-axis
2385             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2386             costh=dcos(pi-theta(i+2))
2387             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2388             do k=1,3
2389               uz(k,i)=fac*uz(k,i)
2390             enddo
2391 C Compute the derivatives of uz
2392             uzder(1,1,1)= 0.0d0
2393             uzder(2,1,1)=-dc_norm(3,i+1)
2394             uzder(3,1,1)= dc_norm(2,i+1) 
2395             uzder(1,2,1)= dc_norm(3,i+1)
2396             uzder(2,2,1)= 0.0d0
2397             uzder(3,2,1)=-dc_norm(1,i+1)
2398             uzder(1,3,1)=-dc_norm(2,i+1)
2399             uzder(2,3,1)= dc_norm(1,i+1)
2400             uzder(3,3,1)= 0.0d0
2401             uzder(1,1,2)= 0.0d0
2402             uzder(2,1,2)= dc_norm(3,i)
2403             uzder(3,1,2)=-dc_norm(2,i) 
2404             uzder(1,2,2)=-dc_norm(3,i)
2405             uzder(2,2,2)= 0.0d0
2406             uzder(3,2,2)= dc_norm(1,i)
2407             uzder(1,3,2)= dc_norm(2,i)
2408             uzder(2,3,2)=-dc_norm(1,i)
2409             uzder(3,3,2)= 0.0d0
2410 C Compute the Y-axis
2411             facy=fac
2412             do k=1,3
2413               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2414             enddo
2415 C Compute the derivatives of uy
2416             do j=1,3
2417               do k=1,3
2418                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2419      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2420                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2421               enddo
2422               uyder(j,j,1)=uyder(j,j,1)-costh
2423               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2424             enddo
2425             do j=1,2
2426               do k=1,3
2427                 do l=1,3
2428                   uygrad(l,k,j,i)=uyder(l,k,j)
2429                   uzgrad(l,k,j,i)=uzder(l,k,j)
2430                 enddo
2431               enddo
2432             enddo 
2433             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2434             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2435             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2436             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2437           endif
2438       enddo
2439       do i=1,nres-1
2440         vbld_inv_temp(1)=vbld_inv(i+1)
2441         if (i.lt.nres-1) then
2442           vbld_inv_temp(2)=vbld_inv(i+2)
2443           else
2444           vbld_inv_temp(2)=vbld_inv(i)
2445           endif
2446         do j=1,2
2447           do k=1,3
2448             do l=1,3
2449               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2450               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2451             enddo
2452           enddo
2453         enddo
2454       enddo
2455 #if defined(PARVEC) && defined(MPI)
2456       if (nfgtasks1.gt.1) then
2457         time00=MPI_Wtime()
2458 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2459 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2460 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2461         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2462      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2463      &   FG_COMM1,IERR)
2464         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2465      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2466      &   FG_COMM1,IERR)
2467         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2468      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2469      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2470         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2471      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2472      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2473         time_gather=time_gather+MPI_Wtime()-time00
2474       endif
2475 c      if (fg_rank.eq.0) then
2476 c        write (iout,*) "Arrays UY and UZ"
2477 c        do i=1,nres-1
2478 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2479 c     &     (uz(k,i),k=1,3)
2480 c        enddo
2481 c      endif
2482 #endif
2483       return
2484       end
2485 C-----------------------------------------------------------------------------
2486       subroutine check_vecgrad
2487       implicit real*8 (a-h,o-z)
2488       include 'DIMENSIONS'
2489       include 'COMMON.IOUNITS'
2490       include 'COMMON.GEO'
2491       include 'COMMON.VAR'
2492       include 'COMMON.LOCAL'
2493       include 'COMMON.CHAIN'
2494       include 'COMMON.VECTORS'
2495       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2496       dimension uyt(3,maxres),uzt(3,maxres)
2497       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2498       double precision delta /1.0d-7/
2499       call vec_and_deriv
2500 cd      do i=1,nres
2501 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2502 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2503 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2504 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2505 cd     &     (dc_norm(if90,i),if90=1,3)
2506 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2507 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2508 cd          write(iout,'(a)')
2509 cd      enddo
2510       do i=1,nres
2511         do j=1,2
2512           do k=1,3
2513             do l=1,3
2514               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2515               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2516             enddo
2517           enddo
2518         enddo
2519       enddo
2520       call vec_and_deriv
2521       do i=1,nres
2522         do j=1,3
2523           uyt(j,i)=uy(j,i)
2524           uzt(j,i)=uz(j,i)
2525         enddo
2526       enddo
2527       do i=1,nres
2528 cd        write (iout,*) 'i=',i
2529         do k=1,3
2530           erij(k)=dc_norm(k,i)
2531         enddo
2532         do j=1,3
2533           do k=1,3
2534             dc_norm(k,i)=erij(k)
2535           enddo
2536           dc_norm(j,i)=dc_norm(j,i)+delta
2537 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2538 c          do k=1,3
2539 c            dc_norm(k,i)=dc_norm(k,i)/fac
2540 c          enddo
2541 c          write (iout,*) (dc_norm(k,i),k=1,3)
2542 c          write (iout,*) (erij(k),k=1,3)
2543           call vec_and_deriv
2544           do k=1,3
2545             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2546             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2547             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2548             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2549           enddo 
2550 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2551 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2552 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2553         enddo
2554         do k=1,3
2555           dc_norm(k,i)=erij(k)
2556         enddo
2557 cd        do k=1,3
2558 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2559 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2560 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2561 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2562 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2563 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2564 cd          write (iout,'(a)')
2565 cd        enddo
2566       enddo
2567       return
2568       end
2569 C--------------------------------------------------------------------------
2570       subroutine set_matrices
2571       implicit real*8 (a-h,o-z)
2572       include 'DIMENSIONS'
2573 #ifdef MPI
2574       include "mpif.h"
2575       include "COMMON.SETUP"
2576       integer IERR
2577       integer status(MPI_STATUS_SIZE)
2578 #endif
2579       include 'COMMON.IOUNITS'
2580       include 'COMMON.GEO'
2581       include 'COMMON.VAR'
2582       include 'COMMON.LOCAL'
2583       include 'COMMON.CHAIN'
2584       include 'COMMON.DERIV'
2585       include 'COMMON.INTERACT'
2586       include 'COMMON.CONTACTS'
2587       include 'COMMON.TORSION'
2588       include 'COMMON.VECTORS'
2589       include 'COMMON.FFIELD'
2590       double precision auxvec(2),auxmat(2,2)
2591 C
2592 C Compute the virtual-bond-torsional-angle dependent quantities needed
2593 C to calculate the el-loc multibody terms of various order.
2594 C
2595 #ifdef PARMAT
2596       do i=ivec_start+2,ivec_end+2
2597 #else
2598       do i=3,nres+1
2599 #endif
2600         if (i .lt. nres+1) then
2601           sin1=dsin(phi(i))
2602           cos1=dcos(phi(i))
2603           sintab(i-2)=sin1
2604           costab(i-2)=cos1
2605           obrot(1,i-2)=cos1
2606           obrot(2,i-2)=sin1
2607           sin2=dsin(2*phi(i))
2608           cos2=dcos(2*phi(i))
2609           sintab2(i-2)=sin2
2610           costab2(i-2)=cos2
2611           obrot2(1,i-2)=cos2
2612           obrot2(2,i-2)=sin2
2613           Ug(1,1,i-2)=-cos1
2614           Ug(1,2,i-2)=-sin1
2615           Ug(2,1,i-2)=-sin1
2616           Ug(2,2,i-2)= cos1
2617           Ug2(1,1,i-2)=-cos2
2618           Ug2(1,2,i-2)=-sin2
2619           Ug2(2,1,i-2)=-sin2
2620           Ug2(2,2,i-2)= cos2
2621         else
2622           costab(i-2)=1.0d0
2623           sintab(i-2)=0.0d0
2624           obrot(1,i-2)=1.0d0
2625           obrot(2,i-2)=0.0d0
2626           obrot2(1,i-2)=0.0d0
2627           obrot2(2,i-2)=0.0d0
2628           Ug(1,1,i-2)=1.0d0
2629           Ug(1,2,i-2)=0.0d0
2630           Ug(2,1,i-2)=0.0d0
2631           Ug(2,2,i-2)=1.0d0
2632           Ug2(1,1,i-2)=0.0d0
2633           Ug2(1,2,i-2)=0.0d0
2634           Ug2(2,1,i-2)=0.0d0
2635           Ug2(2,2,i-2)=0.0d0
2636         endif
2637         if (i .gt. 3 .and. i .lt. nres+1) then
2638           obrot_der(1,i-2)=-sin1
2639           obrot_der(2,i-2)= cos1
2640           Ugder(1,1,i-2)= sin1
2641           Ugder(1,2,i-2)=-cos1
2642           Ugder(2,1,i-2)=-cos1
2643           Ugder(2,2,i-2)=-sin1
2644           dwacos2=cos2+cos2
2645           dwasin2=sin2+sin2
2646           obrot2_der(1,i-2)=-dwasin2
2647           obrot2_der(2,i-2)= dwacos2
2648           Ug2der(1,1,i-2)= dwasin2
2649           Ug2der(1,2,i-2)=-dwacos2
2650           Ug2der(2,1,i-2)=-dwacos2
2651           Ug2der(2,2,i-2)=-dwasin2
2652         else
2653           obrot_der(1,i-2)=0.0d0
2654           obrot_der(2,i-2)=0.0d0
2655           Ugder(1,1,i-2)=0.0d0
2656           Ugder(1,2,i-2)=0.0d0
2657           Ugder(2,1,i-2)=0.0d0
2658           Ugder(2,2,i-2)=0.0d0
2659           obrot2_der(1,i-2)=0.0d0
2660           obrot2_der(2,i-2)=0.0d0
2661           Ug2der(1,1,i-2)=0.0d0
2662           Ug2der(1,2,i-2)=0.0d0
2663           Ug2der(2,1,i-2)=0.0d0
2664           Ug2der(2,2,i-2)=0.0d0
2665         endif
2666 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2667         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2668           iti = itortyp(itype(i-2))
2669         else
2670           iti=ntortyp+1
2671         endif
2672 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2673         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2674           iti1 = itortyp(itype(i-1))
2675         else
2676           iti1=ntortyp+1
2677         endif
2678 cd        write (iout,*) '*******i',i,' iti1',iti
2679 cd        write (iout,*) 'b1',b1(:,iti)
2680 cd        write (iout,*) 'b2',b2(:,iti)
2681 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2682 c        if (i .gt. iatel_s+2) then
2683         if (i .gt. nnt+2) then
2684           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2685           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2686           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2687      &    then
2688           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2689           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2690           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2691           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2692           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2693           endif
2694         else
2695           do k=1,2
2696             Ub2(k,i-2)=0.0d0
2697             Ctobr(k,i-2)=0.0d0 
2698             Dtobr2(k,i-2)=0.0d0
2699             do l=1,2
2700               EUg(l,k,i-2)=0.0d0
2701               CUg(l,k,i-2)=0.0d0
2702               DUg(l,k,i-2)=0.0d0
2703               DtUg2(l,k,i-2)=0.0d0
2704             enddo
2705           enddo
2706         endif
2707         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2708         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2709         do k=1,2
2710           muder(k,i-2)=Ub2der(k,i-2)
2711         enddo
2712 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2713         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2714           iti1 = itortyp(itype(i-1))
2715         else
2716           iti1=ntortyp+1
2717         endif
2718         do k=1,2
2719           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2720         enddo
2721 cd        write (iout,*) 'mu ',mu(:,i-2)
2722 cd        write (iout,*) 'mu1',mu1(:,i-2)
2723 cd        write (iout,*) 'mu2',mu2(:,i-2)
2724         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2725      &  then  
2726         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2727         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2728         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2729         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2730         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2731 C Vectors and matrices dependent on a single virtual-bond dihedral.
2732         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2733         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2734         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2735         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2736         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2737         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2738         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2739         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2740         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2741         endif
2742       enddo
2743 C Matrices dependent on two consecutive virtual-bond dihedrals.
2744 C The order of matrices is from left to right.
2745       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2746      &then
2747 c      do i=max0(ivec_start,2),ivec_end
2748       do i=2,nres-1
2749         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2750         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2751         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2752         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2753         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2754         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2755         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2756         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2757       enddo
2758       endif
2759 #if defined(MPI) && defined(PARMAT)
2760 #ifdef DEBUG
2761 c      if (fg_rank.eq.0) then
2762         write (iout,*) "Arrays UG and UGDER before GATHER"
2763         do i=1,nres-1
2764           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2765      &     ((ug(l,k,i),l=1,2),k=1,2),
2766      &     ((ugder(l,k,i),l=1,2),k=1,2)
2767         enddo
2768         write (iout,*) "Arrays UG2 and UG2DER"
2769         do i=1,nres-1
2770           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2771      &     ((ug2(l,k,i),l=1,2),k=1,2),
2772      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2773         enddo
2774         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2775         do i=1,nres-1
2776           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2777      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2778      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2779         enddo
2780         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2781         do i=1,nres-1
2782           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2783      &     costab(i),sintab(i),costab2(i),sintab2(i)
2784         enddo
2785         write (iout,*) "Array MUDER"
2786         do i=1,nres-1
2787           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2788         enddo
2789 c      endif
2790 #endif
2791       if (nfgtasks.gt.1) then
2792         time00=MPI_Wtime()
2793 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2794 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2795 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2796 #ifdef MATGATHER
2797         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2798      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2799      &   FG_COMM1,IERR)
2800         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2801      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2802      &   FG_COMM1,IERR)
2803         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2804      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2805      &   FG_COMM1,IERR)
2806         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2807      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2808      &   FG_COMM1,IERR)
2809         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2810      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2811      &   FG_COMM1,IERR)
2812         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2813      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2814      &   FG_COMM1,IERR)
2815         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2816      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2817      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2818         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2819      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2820      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2821         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2822      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2823      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2824         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2825      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2826      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2827         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2828      &  then
2829         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2830      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2831      &   FG_COMM1,IERR)
2832         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2833      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2834      &   FG_COMM1,IERR)
2835         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2836      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2837      &   FG_COMM1,IERR)
2838        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2839      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2840      &   FG_COMM1,IERR)
2841         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2842      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2843      &   FG_COMM1,IERR)
2844         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2845      &   ivec_count(fg_rank1),
2846      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2847      &   FG_COMM1,IERR)
2848         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2849      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2850      &   FG_COMM1,IERR)
2851         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2852      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2853      &   FG_COMM1,IERR)
2854         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2855      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2856      &   FG_COMM1,IERR)
2857         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2858      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2859      &   FG_COMM1,IERR)
2860         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2861      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2862      &   FG_COMM1,IERR)
2863         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2864      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2865      &   FG_COMM1,IERR)
2866         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2867      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2868      &   FG_COMM1,IERR)
2869         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2870      &   ivec_count(fg_rank1),
2871      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2872      &   FG_COMM1,IERR)
2873         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2874      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2875      &   FG_COMM1,IERR)
2876        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2877      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2878      &   FG_COMM1,IERR)
2879         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2880      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2881      &   FG_COMM1,IERR)
2882        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2883      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2884      &   FG_COMM1,IERR)
2885         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2886      &   ivec_count(fg_rank1),
2887      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2888      &   FG_COMM1,IERR)
2889         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2890      &   ivec_count(fg_rank1),
2891      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2892      &   FG_COMM1,IERR)
2893         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2894      &   ivec_count(fg_rank1),
2895      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2896      &   MPI_MAT2,FG_COMM1,IERR)
2897         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2898      &   ivec_count(fg_rank1),
2899      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2900      &   MPI_MAT2,FG_COMM1,IERR)
2901         endif
2902 #else
2903 c Passes matrix info through the ring
2904       isend=fg_rank1
2905       irecv=fg_rank1-1
2906       if (irecv.lt.0) irecv=nfgtasks1-1 
2907       iprev=irecv
2908       inext=fg_rank1+1
2909       if (inext.ge.nfgtasks1) inext=0
2910       do i=1,nfgtasks1-1
2911 c        write (iout,*) "isend",isend," irecv",irecv
2912 c        call flush(iout)
2913         lensend=lentyp(isend)
2914         lenrecv=lentyp(irecv)
2915 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2916 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2917 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2918 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2919 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2920 c        write (iout,*) "Gather ROTAT1"
2921 c        call flush(iout)
2922 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2923 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2924 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2925 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2926 c        write (iout,*) "Gather ROTAT2"
2927 c        call flush(iout)
2928         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2929      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2930      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2931      &   iprev,4400+irecv,FG_COMM,status,IERR)
2932 c        write (iout,*) "Gather ROTAT_OLD"
2933 c        call flush(iout)
2934         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2935      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2936      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2937      &   iprev,5500+irecv,FG_COMM,status,IERR)
2938 c        write (iout,*) "Gather PRECOMP11"
2939 c        call flush(iout)
2940         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2941      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2942      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2943      &   iprev,6600+irecv,FG_COMM,status,IERR)
2944 c        write (iout,*) "Gather PRECOMP12"
2945 c        call flush(iout)
2946         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2947      &  then
2948         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2949      &   MPI_ROTAT2(lensend),inext,7700+isend,
2950      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2951      &   iprev,7700+irecv,FG_COMM,status,IERR)
2952 c        write (iout,*) "Gather PRECOMP21"
2953 c        call flush(iout)
2954         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2955      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2956      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2957      &   iprev,8800+irecv,FG_COMM,status,IERR)
2958 c        write (iout,*) "Gather PRECOMP22"
2959 c        call flush(iout)
2960         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2961      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2962      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2963      &   MPI_PRECOMP23(lenrecv),
2964      &   iprev,9900+irecv,FG_COMM,status,IERR)
2965 c        write (iout,*) "Gather PRECOMP23"
2966 c        call flush(iout)
2967         endif
2968         isend=irecv
2969         irecv=irecv-1
2970         if (irecv.lt.0) irecv=nfgtasks1-1
2971       enddo
2972 #endif
2973         time_gather=time_gather+MPI_Wtime()-time00
2974       endif
2975 #ifdef DEBUG
2976 c      if (fg_rank.eq.0) then
2977         write (iout,*) "Arrays UG and UGDER"
2978         do i=1,nres-1
2979           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2980      &     ((ug(l,k,i),l=1,2),k=1,2),
2981      &     ((ugder(l,k,i),l=1,2),k=1,2)
2982         enddo
2983         write (iout,*) "Arrays UG2 and UG2DER"
2984         do i=1,nres-1
2985           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2986      &     ((ug2(l,k,i),l=1,2),k=1,2),
2987      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2988         enddo
2989         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2990         do i=1,nres-1
2991           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2992      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2993      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2994         enddo
2995         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2996         do i=1,nres-1
2997           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2998      &     costab(i),sintab(i),costab2(i),sintab2(i)
2999         enddo
3000         write (iout,*) "Array MUDER"
3001         do i=1,nres-1
3002           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
3003         enddo
3004 c      endif
3005 #endif
3006 #endif
3007 cd      do i=1,nres
3008 cd        iti = itortyp(itype(i))
3009 cd        write (iout,*) i
3010 cd        do j=1,2
3011 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
3012 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
3013 cd        enddo
3014 cd      enddo
3015       return
3016       end
3017 C--------------------------------------------------------------------------
3018       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
3019 C
3020 C This subroutine calculates the average interaction energy and its gradient
3021 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
3022 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
3023 C The potential depends both on the distance of peptide-group centers and on 
3024 C the orientation of the CA-CA virtual bonds.
3025
3026       implicit real*8 (a-h,o-z)
3027 #ifdef MPI
3028       include 'mpif.h'
3029 #endif
3030       include 'DIMENSIONS'
3031       include 'COMMON.CONTROL'
3032       include 'COMMON.SETUP'
3033       include 'COMMON.IOUNITS'
3034       include 'COMMON.GEO'
3035       include 'COMMON.VAR'
3036       include 'COMMON.LOCAL'
3037       include 'COMMON.CHAIN'
3038       include 'COMMON.DERIV'
3039       include 'COMMON.INTERACT'
3040       include 'COMMON.CONTACTS'
3041       include 'COMMON.TORSION'
3042       include 'COMMON.VECTORS'
3043       include 'COMMON.FFIELD'
3044       include 'COMMON.TIME1'
3045       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3046      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3047       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3048      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3049       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3050      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3051      &    num_conti,j1,j2
3052 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3053 #ifdef MOMENT
3054       double precision scal_el /1.0d0/
3055 #else
3056       double precision scal_el /0.5d0/
3057 #endif
3058 C 12/13/98 
3059 C 13-go grudnia roku pamietnego... 
3060       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3061      &                   0.0d0,1.0d0,0.0d0,
3062      &                   0.0d0,0.0d0,1.0d0/
3063 cd      write(iout,*) 'In EELEC'
3064 cd      do i=1,nloctyp
3065 cd        write(iout,*) 'Type',i
3066 cd        write(iout,*) 'B1',B1(:,i)
3067 cd        write(iout,*) 'B2',B2(:,i)
3068 cd        write(iout,*) 'CC',CC(:,:,i)
3069 cd        write(iout,*) 'DD',DD(:,:,i)
3070 cd        write(iout,*) 'EE',EE(:,:,i)
3071 cd      enddo
3072 cd      call check_vecgrad
3073 cd      stop
3074       if (icheckgrad.eq.1) then
3075         do i=1,nres-1
3076           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
3077           do k=1,3
3078             dc_norm(k,i)=dc(k,i)*fac
3079           enddo
3080 c          write (iout,*) 'i',i,' fac',fac
3081         enddo
3082       endif
3083       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
3084      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
3085      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
3086 c        call vec_and_deriv
3087 #ifdef TIMING
3088         time01=MPI_Wtime()
3089 #endif
3090         call set_matrices
3091 #ifdef TIMING
3092         time_mat=time_mat+MPI_Wtime()-time01
3093 #endif
3094       endif
3095 cd      do i=1,nres-1
3096 cd        write (iout,*) 'i=',i
3097 cd        do k=1,3
3098 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
3099 cd        enddo
3100 cd        do k=1,3
3101 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3102 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3103 cd        enddo
3104 cd      enddo
3105       t_eelecij=0.0d0
3106       ees=0.0D0
3107       evdw1=0.0D0
3108       eel_loc=0.0d0 
3109       eello_turn3=0.0d0
3110       eello_turn4=0.0d0
3111       ind=0
3112       do i=1,nres
3113         num_cont_hb(i)=0
3114       enddo
3115 cd      print '(a)','Enter EELEC'
3116 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3117       do i=1,nres
3118         gel_loc_loc(i)=0.0d0
3119         gcorr_loc(i)=0.0d0
3120       enddo
3121 c
3122 c
3123 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3124 C
3125 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3126 C
3127       do i=iturn3_start,iturn3_end
3128         dxi=dc(1,i)
3129         dyi=dc(2,i)
3130         dzi=dc(3,i)
3131         dx_normi=dc_norm(1,i)
3132         dy_normi=dc_norm(2,i)
3133         dz_normi=dc_norm(3,i)
3134         xmedi=c(1,i)+0.5d0*dxi
3135         ymedi=c(2,i)+0.5d0*dyi
3136         zmedi=c(3,i)+0.5d0*dzi
3137         num_conti=0
3138         call eelecij(i,i+2,ees,evdw1,eel_loc)
3139         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3140         num_cont_hb(i)=num_conti
3141       enddo
3142       do i=iturn4_start,iturn4_end
3143         dxi=dc(1,i)
3144         dyi=dc(2,i)
3145         dzi=dc(3,i)
3146         dx_normi=dc_norm(1,i)
3147         dy_normi=dc_norm(2,i)
3148         dz_normi=dc_norm(3,i)
3149         xmedi=c(1,i)+0.5d0*dxi
3150         ymedi=c(2,i)+0.5d0*dyi
3151         zmedi=c(3,i)+0.5d0*dzi
3152         num_conti=num_cont_hb(i)
3153         call eelecij(i,i+3,ees,evdw1,eel_loc)
3154         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3155         num_cont_hb(i)=num_conti
3156       enddo   ! i
3157 c
3158 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3159 c
3160       do i=iatel_s,iatel_e
3161         dxi=dc(1,i)
3162         dyi=dc(2,i)
3163         dzi=dc(3,i)
3164         dx_normi=dc_norm(1,i)
3165         dy_normi=dc_norm(2,i)
3166         dz_normi=dc_norm(3,i)
3167         xmedi=c(1,i)+0.5d0*dxi
3168         ymedi=c(2,i)+0.5d0*dyi
3169         zmedi=c(3,i)+0.5d0*dzi
3170 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3171         num_conti=num_cont_hb(i)
3172         do j=ielstart(i),ielend(i)
3173           call eelecij(i,j,ees,evdw1,eel_loc)
3174         enddo ! j
3175         num_cont_hb(i)=num_conti
3176       enddo   ! i
3177 c      write (iout,*) "Number of loop steps in EELEC:",ind
3178 cd      do i=1,nres
3179 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3180 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3181 cd      enddo
3182 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3183 ccc      eel_loc=eel_loc+eello_turn3
3184 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3185       return
3186       end
3187 C-------------------------------------------------------------------------------
3188       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3189       implicit real*8 (a-h,o-z)
3190       include 'DIMENSIONS'
3191 #ifdef MPI
3192       include "mpif.h"
3193 #endif
3194       include 'COMMON.CONTROL'
3195       include 'COMMON.IOUNITS'
3196       include 'COMMON.GEO'
3197       include 'COMMON.VAR'
3198       include 'COMMON.LOCAL'
3199       include 'COMMON.CHAIN'
3200       include 'COMMON.DERIV'
3201       include 'COMMON.INTERACT'
3202       include 'COMMON.CONTACTS'
3203       include 'COMMON.TORSION'
3204       include 'COMMON.VECTORS'
3205       include 'COMMON.FFIELD'
3206       include 'COMMON.TIME1'
3207       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3208      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3209       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3210      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3211       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3212      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3213      &    num_conti,j1,j2
3214 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3215 #ifdef MOMENT
3216       double precision scal_el /1.0d0/
3217 #else
3218       double precision scal_el /0.5d0/
3219 #endif
3220 C 12/13/98 
3221 C 13-go grudnia roku pamietnego... 
3222       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3223      &                   0.0d0,1.0d0,0.0d0,
3224      &                   0.0d0,0.0d0,1.0d0/
3225 c          time00=MPI_Wtime()
3226 cd      write (iout,*) "eelecij",i,j
3227 c          ind=ind+1
3228           iteli=itel(i)
3229           itelj=itel(j)
3230           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3231           aaa=app(iteli,itelj)
3232           bbb=bpp(iteli,itelj)
3233           ael6i=ael6(iteli,itelj)
3234           ael3i=ael3(iteli,itelj) 
3235           dxj=dc(1,j)
3236           dyj=dc(2,j)
3237           dzj=dc(3,j)
3238           dx_normj=dc_norm(1,j)
3239           dy_normj=dc_norm(2,j)
3240           dz_normj=dc_norm(3,j)
3241           xj=c(1,j)+0.5D0*dxj-xmedi
3242           yj=c(2,j)+0.5D0*dyj-ymedi
3243           zj=c(3,j)+0.5D0*dzj-zmedi
3244           rij=xj*xj+yj*yj+zj*zj
3245           rrmij=1.0D0/rij
3246           rij=dsqrt(rij)
3247           rmij=1.0D0/rij
3248           r3ij=rrmij*rmij
3249           r6ij=r3ij*r3ij  
3250           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3251           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3252           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3253           fac=cosa-3.0D0*cosb*cosg
3254           ev1=aaa*r6ij*r6ij
3255 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3256           if (j.eq.i+2) ev1=scal_el*ev1
3257           ev2=bbb*r6ij
3258           fac3=ael6i*r6ij
3259           fac4=ael3i*r3ij
3260           evdwij=ev1+ev2
3261           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3262           el2=fac4*fac       
3263           eesij=el1+el2
3264 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3265           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3266           ees=ees+eesij
3267           evdw1=evdw1+evdwij
3268 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3269 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3270 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3271 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3272
3273           if (energy_dec) then 
3274               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3275               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3276           endif
3277
3278 C
3279 C Calculate contributions to the Cartesian gradient.
3280 C
3281 #ifdef SPLITELE
3282           facvdw=-6*rrmij*(ev1+evdwij)
3283           facel=-3*rrmij*(el1+eesij)
3284           fac1=fac
3285           erij(1)=xj*rmij
3286           erij(2)=yj*rmij
3287           erij(3)=zj*rmij
3288 *
3289 * Radial derivatives. First process both termini of the fragment (i,j)
3290 *
3291           ggg(1)=facel*xj
3292           ggg(2)=facel*yj
3293           ggg(3)=facel*zj
3294 c          do k=1,3
3295 c            ghalf=0.5D0*ggg(k)
3296 c            gelc(k,i)=gelc(k,i)+ghalf
3297 c            gelc(k,j)=gelc(k,j)+ghalf
3298 c          enddo
3299 c 9/28/08 AL Gradient compotents will be summed only at the end
3300           do k=1,3
3301             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3302             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3303           enddo
3304 *
3305 * Loop over residues i+1 thru j-1.
3306 *
3307 cgrad          do k=i+1,j-1
3308 cgrad            do l=1,3
3309 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3310 cgrad            enddo
3311 cgrad          enddo
3312           ggg(1)=facvdw*xj
3313           ggg(2)=facvdw*yj
3314           ggg(3)=facvdw*zj
3315 c          do k=1,3
3316 c            ghalf=0.5D0*ggg(k)
3317 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3318 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3319 c          enddo
3320 c 9/28/08 AL Gradient compotents will be summed only at the end
3321           do k=1,3
3322             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3323             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3324           enddo
3325 *
3326 * Loop over residues i+1 thru j-1.
3327 *
3328 cgrad          do k=i+1,j-1
3329 cgrad            do l=1,3
3330 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3331 cgrad            enddo
3332 cgrad          enddo
3333 #else
3334           facvdw=ev1+evdwij 
3335           facel=el1+eesij  
3336           fac1=fac
3337           fac=-3*rrmij*(facvdw+facvdw+facel)
3338           erij(1)=xj*rmij
3339           erij(2)=yj*rmij
3340           erij(3)=zj*rmij
3341 *
3342 * Radial derivatives. First process both termini of the fragment (i,j)
3343
3344           ggg(1)=fac*xj
3345           ggg(2)=fac*yj
3346           ggg(3)=fac*zj
3347 c          do k=1,3
3348 c            ghalf=0.5D0*ggg(k)
3349 c            gelc(k,i)=gelc(k,i)+ghalf
3350 c            gelc(k,j)=gelc(k,j)+ghalf
3351 c          enddo
3352 c 9/28/08 AL Gradient compotents will be summed only at the end
3353           do k=1,3
3354             gelc_long(k,j)=gelc(k,j)+ggg(k)
3355             gelc_long(k,i)=gelc(k,i)-ggg(k)
3356           enddo
3357 *
3358 * Loop over residues i+1 thru j-1.
3359 *
3360 cgrad          do k=i+1,j-1
3361 cgrad            do l=1,3
3362 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3363 cgrad            enddo
3364 cgrad          enddo
3365 c 9/28/08 AL Gradient compotents will be summed only at the end
3366           ggg(1)=facvdw*xj
3367           ggg(2)=facvdw*yj
3368           ggg(3)=facvdw*zj
3369           do k=1,3
3370             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3371             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3372           enddo
3373 #endif
3374 *
3375 * Angular part
3376 *          
3377           ecosa=2.0D0*fac3*fac1+fac4
3378           fac4=-3.0D0*fac4
3379           fac3=-6.0D0*fac3
3380           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3381           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3382           do k=1,3
3383             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3384             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3385           enddo
3386 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3387 cd   &          (dcosg(k),k=1,3)
3388           do k=1,3
3389             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3390           enddo
3391 c          do k=1,3
3392 c            ghalf=0.5D0*ggg(k)
3393 c            gelc(k,i)=gelc(k,i)+ghalf
3394 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3395 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3396 c            gelc(k,j)=gelc(k,j)+ghalf
3397 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3398 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3399 c          enddo
3400 cgrad          do k=i+1,j-1
3401 cgrad            do l=1,3
3402 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3403 cgrad            enddo
3404 cgrad          enddo
3405           do k=1,3
3406             gelc(k,i)=gelc(k,i)
3407      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3408      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3409             gelc(k,j)=gelc(k,j)
3410      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3411      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3412             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3413             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3414           enddo
3415           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3416      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3417      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3418 C
3419 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3420 C   energy of a peptide unit is assumed in the form of a second-order 
3421 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3422 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3423 C   are computed for EVERY pair of non-contiguous peptide groups.
3424 C
3425           if (j.lt.nres-1) then
3426             j1=j+1
3427             j2=j-1
3428           else
3429             j1=j-1
3430             j2=j-2
3431           endif
3432           kkk=0
3433           do k=1,2
3434             do l=1,2
3435               kkk=kkk+1
3436               muij(kkk)=mu(k,i)*mu(l,j)
3437             enddo
3438           enddo  
3439 cd         write (iout,*) 'EELEC: i',i,' j',j
3440 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3441 cd          write(iout,*) 'muij',muij
3442           ury=scalar(uy(1,i),erij)
3443           urz=scalar(uz(1,i),erij)
3444           vry=scalar(uy(1,j),erij)
3445           vrz=scalar(uz(1,j),erij)
3446           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3447           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3448           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3449           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3450           fac=dsqrt(-ael6i)*r3ij
3451           a22=a22*fac
3452           a23=a23*fac
3453           a32=a32*fac
3454           a33=a33*fac
3455 cd          write (iout,'(4i5,4f10.5)')
3456 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3457 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3458 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3459 cd     &      uy(:,j),uz(:,j)
3460 cd          write (iout,'(4f10.5)') 
3461 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3462 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3463 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3464 cd           write (iout,'(9f10.5/)') 
3465 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3466 C Derivatives of the elements of A in virtual-bond vectors
3467           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3468           do k=1,3
3469             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3470             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3471             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3472             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3473             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3474             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3475             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3476             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3477             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3478             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3479             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3480             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3481           enddo
3482 C Compute radial contributions to the gradient
3483           facr=-3.0d0*rrmij
3484           a22der=a22*facr
3485           a23der=a23*facr
3486           a32der=a32*facr
3487           a33der=a33*facr
3488           agg(1,1)=a22der*xj
3489           agg(2,1)=a22der*yj
3490           agg(3,1)=a22der*zj
3491           agg(1,2)=a23der*xj
3492           agg(2,2)=a23der*yj
3493           agg(3,2)=a23der*zj
3494           agg(1,3)=a32der*xj
3495           agg(2,3)=a32der*yj
3496           agg(3,3)=a32der*zj
3497           agg(1,4)=a33der*xj
3498           agg(2,4)=a33der*yj
3499           agg(3,4)=a33der*zj
3500 C Add the contributions coming from er
3501           fac3=-3.0d0*fac
3502           do k=1,3
3503             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3504             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3505             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3506             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3507           enddo
3508           do k=1,3
3509 C Derivatives in DC(i) 
3510 cgrad            ghalf1=0.5d0*agg(k,1)
3511 cgrad            ghalf2=0.5d0*agg(k,2)
3512 cgrad            ghalf3=0.5d0*agg(k,3)
3513 cgrad            ghalf4=0.5d0*agg(k,4)
3514             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3515      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3516             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3517      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3518             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3519      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3520             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3521      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3522 C Derivatives in DC(i+1)
3523             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3524      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3525             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3526      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3527             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3528      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3529             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3530      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3531 C Derivatives in DC(j)
3532             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3533      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3534             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3535      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3536             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3537      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3538             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3539      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3540 C Derivatives in DC(j+1) or DC(nres-1)
3541             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3542      &      -3.0d0*vryg(k,3)*ury)
3543             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3544      &      -3.0d0*vrzg(k,3)*ury)
3545             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3546      &      -3.0d0*vryg(k,3)*urz)
3547             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3548      &      -3.0d0*vrzg(k,3)*urz)
3549 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3550 cgrad              do l=1,4
3551 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3552 cgrad              enddo
3553 cgrad            endif
3554           enddo
3555           acipa(1,1)=a22
3556           acipa(1,2)=a23
3557           acipa(2,1)=a32
3558           acipa(2,2)=a33
3559           a22=-a22
3560           a23=-a23
3561           do l=1,2
3562             do k=1,3
3563               agg(k,l)=-agg(k,l)
3564               aggi(k,l)=-aggi(k,l)
3565               aggi1(k,l)=-aggi1(k,l)
3566               aggj(k,l)=-aggj(k,l)
3567               aggj1(k,l)=-aggj1(k,l)
3568             enddo
3569           enddo
3570           if (j.lt.nres-1) then
3571             a22=-a22
3572             a32=-a32
3573             do l=1,3,2
3574               do k=1,3
3575                 agg(k,l)=-agg(k,l)
3576                 aggi(k,l)=-aggi(k,l)
3577                 aggi1(k,l)=-aggi1(k,l)
3578                 aggj(k,l)=-aggj(k,l)
3579                 aggj1(k,l)=-aggj1(k,l)
3580               enddo
3581             enddo
3582           else
3583             a22=-a22
3584             a23=-a23
3585             a32=-a32
3586             a33=-a33
3587             do l=1,4
3588               do k=1,3
3589                 agg(k,l)=-agg(k,l)
3590                 aggi(k,l)=-aggi(k,l)
3591                 aggi1(k,l)=-aggi1(k,l)
3592                 aggj(k,l)=-aggj(k,l)
3593                 aggj1(k,l)=-aggj1(k,l)
3594               enddo
3595             enddo 
3596           endif    
3597           ENDIF ! WCORR
3598           IF (wel_loc.gt.0.0d0) THEN
3599 C Contribution to the local-electrostatic energy coming from the i-j pair
3600           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3601      &     +a33*muij(4)
3602 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3603
3604           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3605      &            'eelloc',i,j,eel_loc_ij
3606
3607           eel_loc=eel_loc+eel_loc_ij
3608 C Partial derivatives in virtual-bond dihedral angles gamma
3609           if (i.gt.1)
3610      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3611      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3612      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3613           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3614      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3615      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3616 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3617           do l=1,3
3618             ggg(l)=agg(l,1)*muij(1)+
3619      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3620             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3621             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3622 cgrad            ghalf=0.5d0*ggg(l)
3623 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3624 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3625           enddo
3626 cgrad          do k=i+1,j2
3627 cgrad            do l=1,3
3628 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3629 cgrad            enddo
3630 cgrad          enddo
3631 C Remaining derivatives of eello
3632           do l=1,3
3633             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3634      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3635             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3636      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3637             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3638      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3639             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3640      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3641           enddo
3642           ENDIF
3643 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3644 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3645           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3646      &       .and. num_conti.le.maxconts) then
3647 c            write (iout,*) i,j," entered corr"
3648 C
3649 C Calculate the contact function. The ith column of the array JCONT will 
3650 C contain the numbers of atoms that make contacts with the atom I (of numbers
3651 C greater than I). The arrays FACONT and GACONT will contain the values of
3652 C the contact function and its derivative.
3653 c           r0ij=1.02D0*rpp(iteli,itelj)
3654 c           r0ij=1.11D0*rpp(iteli,itelj)
3655             r0ij=2.20D0*rpp(iteli,itelj)
3656 c           r0ij=1.55D0*rpp(iteli,itelj)
3657             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3658             if (fcont.gt.0.0D0) then
3659               num_conti=num_conti+1
3660               if (num_conti.gt.maxconts) then
3661                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3662      &                         ' will skip next contacts for this conf.'
3663               else
3664                 jcont_hb(num_conti,i)=j
3665 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3666 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3667                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3668      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3669 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3670 C  terms.
3671                 d_cont(num_conti,i)=rij
3672 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3673 C     --- Electrostatic-interaction matrix --- 
3674                 a_chuj(1,1,num_conti,i)=a22
3675                 a_chuj(1,2,num_conti,i)=a23
3676                 a_chuj(2,1,num_conti,i)=a32
3677                 a_chuj(2,2,num_conti,i)=a33
3678 C     --- Gradient of rij
3679                 do kkk=1,3
3680                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3681                 enddo
3682                 kkll=0
3683                 do k=1,2
3684                   do l=1,2
3685                     kkll=kkll+1
3686                     do m=1,3
3687                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3688                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3689                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3690                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3691                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3692                     enddo
3693                   enddo
3694                 enddo
3695                 ENDIF
3696                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3697 C Calculate contact energies
3698                 cosa4=4.0D0*cosa
3699                 wij=cosa-3.0D0*cosb*cosg
3700                 cosbg1=cosb+cosg
3701                 cosbg2=cosb-cosg
3702 c               fac3=dsqrt(-ael6i)/r0ij**3     
3703                 fac3=dsqrt(-ael6i)*r3ij
3704 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3705                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3706                 if (ees0tmp.gt.0) then
3707                   ees0pij=dsqrt(ees0tmp)
3708                 else
3709                   ees0pij=0
3710                 endif
3711 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3712                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3713                 if (ees0tmp.gt.0) then
3714                   ees0mij=dsqrt(ees0tmp)
3715                 else
3716                   ees0mij=0
3717                 endif
3718 c               ees0mij=0.0D0
3719                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3720                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3721 C Diagnostics. Comment out or remove after debugging!
3722 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3723 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3724 c               ees0m(num_conti,i)=0.0D0
3725 C End diagnostics.
3726 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3727 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3728 C Angular derivatives of the contact function
3729                 ees0pij1=fac3/ees0pij 
3730                 ees0mij1=fac3/ees0mij
3731                 fac3p=-3.0D0*fac3*rrmij
3732                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3733                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3734 c               ees0mij1=0.0D0
3735                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3736                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3737                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3738                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3739                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3740                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3741                 ecosap=ecosa1+ecosa2
3742                 ecosbp=ecosb1+ecosb2
3743                 ecosgp=ecosg1+ecosg2
3744                 ecosam=ecosa1-ecosa2
3745                 ecosbm=ecosb1-ecosb2
3746                 ecosgm=ecosg1-ecosg2
3747 C Diagnostics
3748 c               ecosap=ecosa1
3749 c               ecosbp=ecosb1
3750 c               ecosgp=ecosg1
3751 c               ecosam=0.0D0
3752 c               ecosbm=0.0D0
3753 c               ecosgm=0.0D0
3754 C End diagnostics
3755                 facont_hb(num_conti,i)=fcont
3756                 fprimcont=fprimcont/rij
3757 cd              facont_hb(num_conti,i)=1.0D0
3758 C Following line is for diagnostics.
3759 cd              fprimcont=0.0D0
3760                 do k=1,3
3761                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3762                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3763                 enddo
3764                 do k=1,3
3765                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3766                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3767                 enddo
3768                 gggp(1)=gggp(1)+ees0pijp*xj
3769                 gggp(2)=gggp(2)+ees0pijp*yj
3770                 gggp(3)=gggp(3)+ees0pijp*zj
3771                 gggm(1)=gggm(1)+ees0mijp*xj
3772                 gggm(2)=gggm(2)+ees0mijp*yj
3773                 gggm(3)=gggm(3)+ees0mijp*zj
3774 C Derivatives due to the contact function
3775                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3776                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3777                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3778                 do k=1,3
3779 c
3780 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3781 c          following the change of gradient-summation algorithm.
3782 c
3783 cgrad                  ghalfp=0.5D0*gggp(k)
3784 cgrad                  ghalfm=0.5D0*gggm(k)
3785                   gacontp_hb1(k,num_conti,i)=!ghalfp
3786      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3787      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3788                   gacontp_hb2(k,num_conti,i)=!ghalfp
3789      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3790      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3791                   gacontp_hb3(k,num_conti,i)=gggp(k)
3792                   gacontm_hb1(k,num_conti,i)=!ghalfm
3793      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3794      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3795                   gacontm_hb2(k,num_conti,i)=!ghalfm
3796      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3797      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3798                   gacontm_hb3(k,num_conti,i)=gggm(k)
3799                 enddo
3800 C Diagnostics. Comment out or remove after debugging!
3801 cdiag           do k=1,3
3802 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3803 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3804 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3805 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3806 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3807 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3808 cdiag           enddo
3809               ENDIF ! wcorr
3810               endif  ! num_conti.le.maxconts
3811             endif  ! fcont.gt.0
3812           endif    ! j.gt.i+1
3813           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3814             do k=1,4
3815               do l=1,3
3816                 ghalf=0.5d0*agg(l,k)
3817                 aggi(l,k)=aggi(l,k)+ghalf
3818                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3819                 aggj(l,k)=aggj(l,k)+ghalf
3820               enddo
3821             enddo
3822             if (j.eq.nres-1 .and. i.lt.j-2) then
3823               do k=1,4
3824                 do l=1,3
3825                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3826                 enddo
3827               enddo
3828             endif
3829           endif
3830 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3831       return
3832       end
3833 C-----------------------------------------------------------------------------
3834       subroutine eturn3(i,eello_turn3)
3835 C Third- and fourth-order contributions from turns
3836       implicit real*8 (a-h,o-z)
3837       include 'DIMENSIONS'
3838       include 'COMMON.IOUNITS'
3839       include 'COMMON.GEO'
3840       include 'COMMON.VAR'
3841       include 'COMMON.LOCAL'
3842       include 'COMMON.CHAIN'
3843       include 'COMMON.DERIV'
3844       include 'COMMON.INTERACT'
3845       include 'COMMON.CONTACTS'
3846       include 'COMMON.TORSION'
3847       include 'COMMON.VECTORS'
3848       include 'COMMON.FFIELD'
3849       include 'COMMON.CONTROL'
3850       dimension ggg(3)
3851       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3852      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3853      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3854       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3855      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3856       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3857      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3858      &    num_conti,j1,j2
3859       j=i+2
3860 c      write (iout,*) "eturn3",i,j,j1,j2
3861       a_temp(1,1)=a22
3862       a_temp(1,2)=a23
3863       a_temp(2,1)=a32
3864       a_temp(2,2)=a33
3865 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3866 C
3867 C               Third-order contributions
3868 C        
3869 C                 (i+2)o----(i+3)
3870 C                      | |
3871 C                      | |
3872 C                 (i+1)o----i
3873 C
3874 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3875 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3876         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3877         call transpose2(auxmat(1,1),auxmat1(1,1))
3878         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3879         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3880         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3881      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3882 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3883 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3884 cd     &    ' eello_turn3_num',4*eello_turn3_num
3885 C Derivatives in gamma(i)
3886         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3887         call transpose2(auxmat2(1,1),auxmat3(1,1))
3888         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3889         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3890 C Derivatives in gamma(i+1)
3891         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3892         call transpose2(auxmat2(1,1),auxmat3(1,1))
3893         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3894         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3895      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3896 C Cartesian derivatives
3897         do l=1,3
3898 c            ghalf1=0.5d0*agg(l,1)
3899 c            ghalf2=0.5d0*agg(l,2)
3900 c            ghalf3=0.5d0*agg(l,3)
3901 c            ghalf4=0.5d0*agg(l,4)
3902           a_temp(1,1)=aggi(l,1)!+ghalf1
3903           a_temp(1,2)=aggi(l,2)!+ghalf2
3904           a_temp(2,1)=aggi(l,3)!+ghalf3
3905           a_temp(2,2)=aggi(l,4)!+ghalf4
3906           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3907           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3908      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3909           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3910           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3911           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3912           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3913           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3914           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3915      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3916           a_temp(1,1)=aggj(l,1)!+ghalf1
3917           a_temp(1,2)=aggj(l,2)!+ghalf2
3918           a_temp(2,1)=aggj(l,3)!+ghalf3
3919           a_temp(2,2)=aggj(l,4)!+ghalf4
3920           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3921           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3922      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3923           a_temp(1,1)=aggj1(l,1)
3924           a_temp(1,2)=aggj1(l,2)
3925           a_temp(2,1)=aggj1(l,3)
3926           a_temp(2,2)=aggj1(l,4)
3927           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3928           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3929      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3930         enddo
3931       return
3932       end
3933 C-------------------------------------------------------------------------------
3934       subroutine eturn4(i,eello_turn4)
3935 C Third- and fourth-order contributions from turns
3936       implicit real*8 (a-h,o-z)
3937       include 'DIMENSIONS'
3938       include 'COMMON.IOUNITS'
3939       include 'COMMON.GEO'
3940       include 'COMMON.VAR'
3941       include 'COMMON.LOCAL'
3942       include 'COMMON.CHAIN'
3943       include 'COMMON.DERIV'
3944       include 'COMMON.INTERACT'
3945       include 'COMMON.CONTACTS'
3946       include 'COMMON.TORSION'
3947       include 'COMMON.VECTORS'
3948       include 'COMMON.FFIELD'
3949       include 'COMMON.CONTROL'
3950       dimension ggg(3)
3951       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3952      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3953      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3954       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3955      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3956       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3957      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3958      &    num_conti,j1,j2
3959       j=i+3
3960 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3961 C
3962 C               Fourth-order contributions
3963 C        
3964 C                 (i+3)o----(i+4)
3965 C                     /  |
3966 C               (i+2)o   |
3967 C                     \  |
3968 C                 (i+1)o----i
3969 C
3970 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3971 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3972 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3973         a_temp(1,1)=a22
3974         a_temp(1,2)=a23
3975         a_temp(2,1)=a32
3976         a_temp(2,2)=a33
3977         iti1=itortyp(itype(i+1))
3978         iti2=itortyp(itype(i+2))
3979         iti3=itortyp(itype(i+3))
3980 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3981         call transpose2(EUg(1,1,i+1),e1t(1,1))
3982         call transpose2(Eug(1,1,i+2),e2t(1,1))
3983         call transpose2(Eug(1,1,i+3),e3t(1,1))
3984         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3985         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3986         s1=scalar2(b1(1,iti2),auxvec(1))
3987         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3988         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3989         s2=scalar2(b1(1,iti1),auxvec(1))
3990         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3991         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3992         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3993         eello_turn4=eello_turn4-(s1+s2+s3)
3994         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3995      &      'eturn4',i,j,-(s1+s2+s3)
3996 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3997 cd     &    ' eello_turn4_num',8*eello_turn4_num
3998 C Derivatives in gamma(i)
3999         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
4000         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
4001         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
4002         s1=scalar2(b1(1,iti2),auxvec(1))
4003         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
4004         s3=0.5d0*(pizda(1,1)+pizda(2,2))
4005         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
4006 C Derivatives in gamma(i+1)
4007         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
4008         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
4009         s2=scalar2(b1(1,iti1),auxvec(1))
4010         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
4011         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
4012         s3=0.5d0*(pizda(1,1)+pizda(2,2))
4013         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
4014 C Derivatives in gamma(i+2)
4015         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
4016         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
4017         s1=scalar2(b1(1,iti2),auxvec(1))
4018         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
4019         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
4020         s2=scalar2(b1(1,iti1),auxvec(1))
4021         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
4022         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
4023         s3=0.5d0*(pizda(1,1)+pizda(2,2))
4024         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
4025 C Cartesian derivatives
4026 C Derivatives of this turn contributions in DC(i+2)
4027         if (j.lt.nres-1) then
4028           do l=1,3
4029             a_temp(1,1)=agg(l,1)
4030             a_temp(1,2)=agg(l,2)
4031             a_temp(2,1)=agg(l,3)
4032             a_temp(2,2)=agg(l,4)
4033             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4034             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4035             s1=scalar2(b1(1,iti2),auxvec(1))
4036             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4037             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4038             s2=scalar2(b1(1,iti1),auxvec(1))
4039             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4040             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4041             s3=0.5d0*(pizda(1,1)+pizda(2,2))
4042             ggg(l)=-(s1+s2+s3)
4043             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
4044           enddo
4045         endif
4046 C Remaining derivatives of this turn contribution
4047         do l=1,3
4048           a_temp(1,1)=aggi(l,1)
4049           a_temp(1,2)=aggi(l,2)
4050           a_temp(2,1)=aggi(l,3)
4051           a_temp(2,2)=aggi(l,4)
4052           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4053           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4054           s1=scalar2(b1(1,iti2),auxvec(1))
4055           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4056           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4057           s2=scalar2(b1(1,iti1),auxvec(1))
4058           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4059           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4060           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4061           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
4062           a_temp(1,1)=aggi1(l,1)
4063           a_temp(1,2)=aggi1(l,2)
4064           a_temp(2,1)=aggi1(l,3)
4065           a_temp(2,2)=aggi1(l,4)
4066           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4067           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4068           s1=scalar2(b1(1,iti2),auxvec(1))
4069           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4070           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4071           s2=scalar2(b1(1,iti1),auxvec(1))
4072           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4073           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4074           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4075           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
4076           a_temp(1,1)=aggj(l,1)
4077           a_temp(1,2)=aggj(l,2)
4078           a_temp(2,1)=aggj(l,3)
4079           a_temp(2,2)=aggj(l,4)
4080           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4081           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4082           s1=scalar2(b1(1,iti2),auxvec(1))
4083           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4084           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4085           s2=scalar2(b1(1,iti1),auxvec(1))
4086           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4087           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4088           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4089           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
4090           a_temp(1,1)=aggj1(l,1)
4091           a_temp(1,2)=aggj1(l,2)
4092           a_temp(2,1)=aggj1(l,3)
4093           a_temp(2,2)=aggj1(l,4)
4094           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4095           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4096           s1=scalar2(b1(1,iti2),auxvec(1))
4097           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4098           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4099           s2=scalar2(b1(1,iti1),auxvec(1))
4100           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4101           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4102           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4103 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4104           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4105         enddo
4106       return
4107       end
4108 C-----------------------------------------------------------------------------
4109       subroutine vecpr(u,v,w)
4110       implicit real*8(a-h,o-z)
4111       dimension u(3),v(3),w(3)
4112       w(1)=u(2)*v(3)-u(3)*v(2)
4113       w(2)=-u(1)*v(3)+u(3)*v(1)
4114       w(3)=u(1)*v(2)-u(2)*v(1)
4115       return
4116       end
4117 C-----------------------------------------------------------------------------
4118       subroutine unormderiv(u,ugrad,unorm,ungrad)
4119 C This subroutine computes the derivatives of a normalized vector u, given
4120 C the derivatives computed without normalization conditions, ugrad. Returns
4121 C ungrad.
4122       implicit none
4123       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4124       double precision vec(3)
4125       double precision scalar
4126       integer i,j
4127 c      write (2,*) 'ugrad',ugrad
4128 c      write (2,*) 'u',u
4129       do i=1,3
4130         vec(i)=scalar(ugrad(1,i),u(1))
4131       enddo
4132 c      write (2,*) 'vec',vec
4133       do i=1,3
4134         do j=1,3
4135           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4136         enddo
4137       enddo
4138 c      write (2,*) 'ungrad',ungrad
4139       return
4140       end
4141 C-----------------------------------------------------------------------------
4142       subroutine escp_soft_sphere(evdw2,evdw2_14)
4143 C
4144 C This subroutine calculates the excluded-volume interaction energy between
4145 C peptide-group centers and side chains and its gradient in virtual-bond and
4146 C side-chain vectors.
4147 C
4148       implicit real*8 (a-h,o-z)
4149       include 'DIMENSIONS'
4150       include 'COMMON.GEO'
4151       include 'COMMON.VAR'
4152       include 'COMMON.LOCAL'
4153       include 'COMMON.CHAIN'
4154       include 'COMMON.DERIV'
4155       include 'COMMON.INTERACT'
4156       include 'COMMON.FFIELD'
4157       include 'COMMON.IOUNITS'
4158       include 'COMMON.CONTROL'
4159       dimension ggg(3)
4160       evdw2=0.0D0
4161       evdw2_14=0.0d0
4162       r0_scp=4.5d0
4163 cd    print '(a)','Enter ESCP'
4164 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4165       do i=iatscp_s,iatscp_e
4166         iteli=itel(i)
4167         xi=0.5D0*(c(1,i)+c(1,i+1))
4168         yi=0.5D0*(c(2,i)+c(2,i+1))
4169         zi=0.5D0*(c(3,i)+c(3,i+1))
4170
4171         do iint=1,nscp_gr(i)
4172
4173         do j=iscpstart(i,iint),iscpend(i,iint)
4174           itypj=itype(j)
4175 C Uncomment following three lines for SC-p interactions
4176 c         xj=c(1,nres+j)-xi
4177 c         yj=c(2,nres+j)-yi
4178 c         zj=c(3,nres+j)-zi
4179 C Uncomment following three lines for Ca-p interactions
4180           xj=c(1,j)-xi
4181           yj=c(2,j)-yi
4182           zj=c(3,j)-zi
4183           rij=xj*xj+yj*yj+zj*zj
4184           r0ij=r0_scp
4185           r0ijsq=r0ij*r0ij
4186           if (rij.lt.r0ijsq) then
4187             evdwij=0.25d0*(rij-r0ijsq)**2
4188             fac=rij-r0ijsq
4189           else
4190             evdwij=0.0d0
4191             fac=0.0d0
4192           endif 
4193           evdw2=evdw2+evdwij
4194 C
4195 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4196 C
4197           ggg(1)=xj*fac
4198           ggg(2)=yj*fac
4199           ggg(3)=zj*fac
4200 cgrad          if (j.lt.i) then
4201 cd          write (iout,*) 'j<i'
4202 C Uncomment following three lines for SC-p interactions
4203 c           do k=1,3
4204 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4205 c           enddo
4206 cgrad          else
4207 cd          write (iout,*) 'j>i'
4208 cgrad            do k=1,3
4209 cgrad              ggg(k)=-ggg(k)
4210 C Uncomment following line for SC-p interactions
4211 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4212 cgrad            enddo
4213 cgrad          endif
4214 cgrad          do k=1,3
4215 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4216 cgrad          enddo
4217 cgrad          kstart=min0(i+1,j)
4218 cgrad          kend=max0(i-1,j-1)
4219 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4220 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4221 cgrad          do k=kstart,kend
4222 cgrad            do l=1,3
4223 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4224 cgrad            enddo
4225 cgrad          enddo
4226           do k=1,3
4227             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4228             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4229           enddo
4230         enddo
4231
4232         enddo ! iint
4233       enddo ! i
4234       return
4235       end
4236 C-----------------------------------------------------------------------------
4237       subroutine escp(evdw2,evdw2_14)
4238 C
4239 C This subroutine calculates the excluded-volume interaction energy between
4240 C peptide-group centers and side chains and its gradient in virtual-bond and
4241 C side-chain vectors.
4242 C
4243       implicit real*8 (a-h,o-z)
4244       include 'DIMENSIONS'
4245       include 'COMMON.GEO'
4246       include 'COMMON.VAR'
4247       include 'COMMON.LOCAL'
4248       include 'COMMON.CHAIN'
4249       include 'COMMON.DERIV'
4250       include 'COMMON.INTERACT'
4251       include 'COMMON.FFIELD'
4252       include 'COMMON.IOUNITS'
4253       include 'COMMON.CONTROL'
4254       dimension ggg(3)
4255       evdw2=0.0D0
4256       evdw2_14=0.0d0
4257 cd    print '(a)','Enter ESCP'
4258 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4259       do i=iatscp_s,iatscp_e
4260         iteli=itel(i)
4261         xi=0.5D0*(c(1,i)+c(1,i+1))
4262         yi=0.5D0*(c(2,i)+c(2,i+1))
4263         zi=0.5D0*(c(3,i)+c(3,i+1))
4264
4265         do iint=1,nscp_gr(i)
4266
4267         do j=iscpstart(i,iint),iscpend(i,iint)
4268           itypj=itype(j)
4269 C Uncomment following three lines for SC-p interactions
4270 c         xj=c(1,nres+j)-xi
4271 c         yj=c(2,nres+j)-yi
4272 c         zj=c(3,nres+j)-zi
4273 C Uncomment following three lines for Ca-p interactions
4274           xj=c(1,j)-xi
4275           yj=c(2,j)-yi
4276           zj=c(3,j)-zi
4277           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4278           fac=rrij**expon2
4279           e1=fac*fac*aad(itypj,iteli)
4280           e2=fac*bad(itypj,iteli)
4281           if (iabs(j-i) .le. 2) then
4282             e1=scal14*e1
4283             e2=scal14*e2
4284             evdw2_14=evdw2_14+e1+e2
4285           endif
4286           evdwij=e1+e2
4287           evdw2=evdw2+evdwij
4288           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4289      &        'evdw2',i,j,evdwij
4290 C
4291 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4292 C
4293           fac=-(evdwij+e1)*rrij
4294           ggg(1)=xj*fac
4295           ggg(2)=yj*fac
4296           ggg(3)=zj*fac
4297 cgrad          if (j.lt.i) then
4298 cd          write (iout,*) 'j<i'
4299 C Uncomment following three lines for SC-p interactions
4300 c           do k=1,3
4301 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4302 c           enddo
4303 cgrad          else
4304 cd          write (iout,*) 'j>i'
4305 cgrad            do k=1,3
4306 cgrad              ggg(k)=-ggg(k)
4307 C Uncomment following line for SC-p interactions
4308 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4309 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4310 cgrad            enddo
4311 cgrad          endif
4312 cgrad          do k=1,3
4313 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4314 cgrad          enddo
4315 cgrad          kstart=min0(i+1,j)
4316 cgrad          kend=max0(i-1,j-1)
4317 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4318 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4319 cgrad          do k=kstart,kend
4320 cgrad            do l=1,3
4321 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4322 cgrad            enddo
4323 cgrad          enddo
4324           do k=1,3
4325             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4326             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4327           enddo
4328         enddo
4329
4330         enddo ! iint
4331       enddo ! i
4332       do i=1,nct
4333         do j=1,3
4334           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4335           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4336           gradx_scp(j,i)=expon*gradx_scp(j,i)
4337         enddo
4338       enddo
4339 C******************************************************************************
4340 C
4341 C                              N O T E !!!
4342 C
4343 C To save time the factor EXPON has been extracted from ALL components
4344 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4345 C use!
4346 C
4347 C******************************************************************************
4348       return
4349       end
4350 C--------------------------------------------------------------------------
4351       subroutine edis(ehpb)
4352
4353 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4354 C
4355       implicit real*8 (a-h,o-z)
4356       include 'DIMENSIONS'
4357       include 'COMMON.SBRIDGE'
4358       include 'COMMON.CHAIN'
4359       include 'COMMON.DERIV'
4360       include 'COMMON.VAR'
4361       include 'COMMON.INTERACT'
4362       include 'COMMON.IOUNITS'
4363       dimension ggg(3)
4364       ehpb=0.0D0
4365 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4366 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4367       if (link_end.eq.0) return
4368       do i=link_start,link_end
4369 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4370 C CA-CA distance used in regularization of structure.
4371         ii=ihpb(i)
4372         jj=jhpb(i)
4373 C iii and jjj point to the residues for which the distance is assigned.
4374         if (ii.gt.nres) then
4375           iii=ii-nres
4376           jjj=jj-nres 
4377         else
4378           iii=ii
4379           jjj=jj
4380         endif
4381 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4382 c     &    dhpb(i),dhpb1(i),forcon(i)
4383 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4384 C    distance and angle dependent SS bond potential.
4385 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4386 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4387         if (.not.dyn_ss .and. i.le.nss) then
4388 C 15/02/13 CC dynamic SSbond - additional check
4389          if (ii.gt.nres 
4390      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4391           call ssbond_ene(iii,jjj,eij)
4392           ehpb=ehpb+2*eij
4393          endif
4394 cd          write (iout,*) "eij",eij
4395         else if (ii.gt.nres .and. jj.gt.nres) then
4396 c Restraints from contact prediction
4397           dd=dist(ii,jj)
4398           if (dhpb1(i).gt.0.0d0) then
4399             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4400             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4401 c            write (iout,*) "beta nmr",
4402 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4403           else
4404             dd=dist(ii,jj)
4405             rdis=dd-dhpb(i)
4406 C Get the force constant corresponding to this distance.
4407             waga=forcon(i)
4408 C Calculate the contribution to energy.
4409             ehpb=ehpb+waga*rdis*rdis
4410 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4411 C
4412 C Evaluate gradient.
4413 C
4414             fac=waga*rdis/dd
4415           endif  
4416           do j=1,3
4417             ggg(j)=fac*(c(j,jj)-c(j,ii))
4418           enddo
4419           do j=1,3
4420             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4421             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4422           enddo
4423           do k=1,3
4424             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4425             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4426           enddo
4427         else
4428 C Calculate the distance between the two points and its difference from the
4429 C target distance.
4430           dd=dist(ii,jj)
4431           if (dhpb1(i).gt.0.0d0) then
4432             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4433             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4434 c            write (iout,*) "alph nmr",
4435 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4436           else
4437             rdis=dd-dhpb(i)
4438 C Get the force constant corresponding to this distance.
4439             waga=forcon(i)
4440 C Calculate the contribution to energy.
4441             ehpb=ehpb+waga*rdis*rdis
4442 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4443 C
4444 C Evaluate gradient.
4445 C
4446             fac=waga*rdis/dd
4447           endif
4448 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4449 cd   &   ' waga=',waga,' fac=',fac
4450             do j=1,3
4451               ggg(j)=fac*(c(j,jj)-c(j,ii))
4452             enddo
4453 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4454 C If this is a SC-SC distance, we need to calculate the contributions to the
4455 C Cartesian gradient in the SC vectors (ghpbx).
4456           if (iii.lt.ii) then
4457           do j=1,3
4458             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4459             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4460           enddo
4461           endif
4462 cgrad        do j=iii,jjj-1
4463 cgrad          do k=1,3
4464 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4465 cgrad          enddo
4466 cgrad        enddo
4467           do k=1,3
4468             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4469             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4470           enddo
4471         endif
4472       enddo
4473       ehpb=0.5D0*ehpb
4474       return
4475       end
4476 C--------------------------------------------------------------------------
4477       subroutine ssbond_ene(i,j,eij)
4478
4479 C Calculate the distance and angle dependent SS-bond potential energy
4480 C using a free-energy function derived based on RHF/6-31G** ab initio
4481 C calculations of diethyl disulfide.
4482 C
4483 C A. Liwo and U. Kozlowska, 11/24/03
4484 C
4485       implicit real*8 (a-h,o-z)
4486       include 'DIMENSIONS'
4487       include 'COMMON.SBRIDGE'
4488       include 'COMMON.CHAIN'
4489       include 'COMMON.DERIV'
4490       include 'COMMON.LOCAL'
4491       include 'COMMON.INTERACT'
4492       include 'COMMON.VAR'
4493       include 'COMMON.IOUNITS'
4494       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4495       itypi=itype(i)
4496       xi=c(1,nres+i)
4497       yi=c(2,nres+i)
4498       zi=c(3,nres+i)
4499       dxi=dc_norm(1,nres+i)
4500       dyi=dc_norm(2,nres+i)
4501       dzi=dc_norm(3,nres+i)
4502 c      dsci_inv=dsc_inv(itypi)
4503       dsci_inv=vbld_inv(nres+i)
4504       itypj=itype(j)
4505 c      dscj_inv=dsc_inv(itypj)
4506       dscj_inv=vbld_inv(nres+j)
4507       xj=c(1,nres+j)-xi
4508       yj=c(2,nres+j)-yi
4509       zj=c(3,nres+j)-zi
4510       dxj=dc_norm(1,nres+j)
4511       dyj=dc_norm(2,nres+j)
4512       dzj=dc_norm(3,nres+j)
4513       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4514       rij=dsqrt(rrij)
4515       erij(1)=xj*rij
4516       erij(2)=yj*rij
4517       erij(3)=zj*rij
4518       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4519       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4520       om12=dxi*dxj+dyi*dyj+dzi*dzj
4521       do k=1,3
4522         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4523         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4524       enddo
4525       rij=1.0d0/rij
4526       deltad=rij-d0cm
4527       deltat1=1.0d0-om1
4528       deltat2=1.0d0+om2
4529       deltat12=om2-om1+2.0d0
4530       cosphi=om12-om1*om2
4531       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4532      &  +akct*deltad*deltat12+ebr
4533      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4534 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4535 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4536 c     &  " deltat12",deltat12," eij",eij 
4537       ed=2*akcm*deltad+akct*deltat12
4538       pom1=akct*deltad
4539       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4540       eom1=-2*akth*deltat1-pom1-om2*pom2
4541       eom2= 2*akth*deltat2+pom1-om1*pom2
4542       eom12=pom2
4543       do k=1,3
4544         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4545         ghpbx(k,i)=ghpbx(k,i)-ggk
4546      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4547      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4548         ghpbx(k,j)=ghpbx(k,j)+ggk
4549      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4550      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4551         ghpbc(k,i)=ghpbc(k,i)-ggk
4552         ghpbc(k,j)=ghpbc(k,j)+ggk
4553       enddo
4554 C
4555 C Calculate the components of the gradient in DC and X
4556 C
4557 cgrad      do k=i,j-1
4558 cgrad        do l=1,3
4559 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4560 cgrad        enddo
4561 cgrad      enddo
4562       return
4563       end
4564 C--------------------------------------------------------------------------
4565       subroutine ebond(estr)
4566 c
4567 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4568 c
4569       implicit real*8 (a-h,o-z)
4570       include 'DIMENSIONS'
4571       include 'COMMON.LOCAL'
4572       include 'COMMON.GEO'
4573       include 'COMMON.INTERACT'
4574       include 'COMMON.DERIV'
4575       include 'COMMON.VAR'
4576       include 'COMMON.CHAIN'
4577       include 'COMMON.IOUNITS'
4578       include 'COMMON.NAMES'
4579       include 'COMMON.FFIELD'
4580       include 'COMMON.CONTROL'
4581       include 'COMMON.SETUP'
4582       double precision u(3),ud(3)
4583       estr=0.0d0
4584       do i=ibondp_start,ibondp_end
4585         diff = vbld(i)-vbldp0
4586 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4587         estr=estr+diff*diff
4588         do j=1,3
4589           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4590         enddo
4591 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4592       enddo
4593       estr=0.5d0*AKP*estr
4594 c
4595 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4596 c
4597       do i=ibond_start,ibond_end
4598         iti=itype(i)
4599         if (iti.ne.10) then
4600           nbi=nbondterm(iti)
4601           if (nbi.eq.1) then
4602             diff=vbld(i+nres)-vbldsc0(1,iti)
4603 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4604 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4605             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4606             do j=1,3
4607               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4608             enddo
4609           else
4610             do j=1,nbi
4611               diff=vbld(i+nres)-vbldsc0(j,iti) 
4612               ud(j)=aksc(j,iti)*diff
4613               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4614             enddo
4615             uprod=u(1)
4616             do j=2,nbi
4617               uprod=uprod*u(j)
4618             enddo
4619             usum=0.0d0
4620             usumsqder=0.0d0
4621             do j=1,nbi
4622               uprod1=1.0d0
4623               uprod2=1.0d0
4624               do k=1,nbi
4625                 if (k.ne.j) then
4626                   uprod1=uprod1*u(k)
4627                   uprod2=uprod2*u(k)*u(k)
4628                 endif
4629               enddo
4630               usum=usum+uprod1
4631               usumsqder=usumsqder+ud(j)*uprod2   
4632             enddo
4633             estr=estr+uprod/usum
4634             do j=1,3
4635              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4636             enddo
4637           endif
4638         endif
4639       enddo
4640       return
4641       end 
4642 #ifdef CRYST_THETA
4643 C--------------------------------------------------------------------------
4644       subroutine ebend(etheta)
4645 C
4646 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4647 C angles gamma and its derivatives in consecutive thetas and gammas.
4648 C
4649       implicit real*8 (a-h,o-z)
4650       include 'DIMENSIONS'
4651       include 'COMMON.LOCAL'
4652       include 'COMMON.GEO'
4653       include 'COMMON.INTERACT'
4654       include 'COMMON.DERIV'
4655       include 'COMMON.VAR'
4656       include 'COMMON.CHAIN'
4657       include 'COMMON.IOUNITS'
4658       include 'COMMON.NAMES'
4659       include 'COMMON.FFIELD'
4660       include 'COMMON.CONTROL'
4661       common /calcthet/ term1,term2,termm,diffak,ratak,
4662      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4663      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4664       double precision y(2),z(2)
4665       delta=0.02d0*pi
4666 c      time11=dexp(-2*time)
4667 c      time12=1.0d0
4668       etheta=0.0D0
4669 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4670       do i=ithet_start,ithet_end
4671 C Zero the energy function and its derivative at 0 or pi.
4672         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4673         it=itype(i-1)
4674         if (i.gt.3) then
4675 #ifdef OSF
4676           phii=phi(i)
4677           if (phii.ne.phii) phii=150.0
4678 #else
4679           phii=phi(i)
4680 #endif
4681           y(1)=dcos(phii)
4682           y(2)=dsin(phii)
4683         else 
4684           y(1)=0.0D0
4685           y(2)=0.0D0
4686         endif
4687         if (i.lt.nres) then
4688 #ifdef OSF
4689           phii1=phi(i+1)
4690           if (phii1.ne.phii1) phii1=150.0
4691           phii1=pinorm(phii1)
4692           z(1)=cos(phii1)
4693 #else
4694           phii1=phi(i+1)
4695           z(1)=dcos(phii1)
4696 #endif
4697           z(2)=dsin(phii1)
4698         else
4699           z(1)=0.0D0
4700           z(2)=0.0D0
4701         endif  
4702 C Calculate the "mean" value of theta from the part of the distribution
4703 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4704 C In following comments this theta will be referred to as t_c.
4705         thet_pred_mean=0.0d0
4706         do k=1,2
4707           athetk=athet(k,it)
4708           bthetk=bthet(k,it)
4709           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4710         enddo
4711         dthett=thet_pred_mean*ssd
4712         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4713 C Derivatives of the "mean" values in gamma1 and gamma2.
4714         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4715         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4716         if (theta(i).gt.pi-delta) then
4717           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4718      &         E_tc0)
4719           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4720           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4721           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4722      &        E_theta)
4723           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4724      &        E_tc)
4725         else if (theta(i).lt.delta) then
4726           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4727           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4728           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4729      &        E_theta)
4730           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4731           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4732      &        E_tc)
4733         else
4734           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4735      &        E_theta,E_tc)
4736         endif
4737         etheta=etheta+ethetai
4738         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4739      &      'ebend',i,ethetai
4740         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4741         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4742         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)+gloc(nphi+i-2,icg)
4743       enddo
4744 C Ufff.... We've done all this!!! 
4745       return
4746       end
4747 C---------------------------------------------------------------------------
4748       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4749      &     E_tc)
4750       implicit real*8 (a-h,o-z)
4751       include 'DIMENSIONS'
4752       include 'COMMON.LOCAL'
4753       include 'COMMON.IOUNITS'
4754       common /calcthet/ term1,term2,termm,diffak,ratak,
4755      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4756      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4757 C Calculate the contributions to both Gaussian lobes.
4758 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4759 C The "polynomial part" of the "standard deviation" of this part of 
4760 C the distribution.
4761         sig=polthet(3,it)
4762         do j=2,0,-1
4763           sig=sig*thet_pred_mean+polthet(j,it)
4764         enddo
4765 C Derivative of the "interior part" of the "standard deviation of the" 
4766 C gamma-dependent Gaussian lobe in t_c.
4767         sigtc=3*polthet(3,it)
4768         do j=2,1,-1
4769           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4770         enddo
4771         sigtc=sig*sigtc
4772 C Set the parameters of both Gaussian lobes of the distribution.
4773 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4774         fac=sig*sig+sigc0(it)
4775         sigcsq=fac+fac
4776         sigc=1.0D0/sigcsq
4777 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4778         sigsqtc=-4.0D0*sigcsq*sigtc
4779 c       print *,i,sig,sigtc,sigsqtc
4780 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4781         sigtc=-sigtc/(fac*fac)
4782 C Following variable is sigma(t_c)**(-2)
4783         sigcsq=sigcsq*sigcsq
4784         sig0i=sig0(it)
4785         sig0inv=1.0D0/sig0i**2
4786         delthec=thetai-thet_pred_mean
4787         delthe0=thetai-theta0i
4788         term1=-0.5D0*sigcsq*delthec*delthec
4789         term2=-0.5D0*sig0inv*delthe0*delthe0
4790 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4791 C NaNs in taking the logarithm. We extract the largest exponent which is added
4792 C to the energy (this being the log of the distribution) at the end of energy
4793 C term evaluation for this virtual-bond angle.
4794         if (term1.gt.term2) then
4795           termm=term1
4796           term2=dexp(term2-termm)
4797           term1=1.0d0
4798         else
4799           termm=term2
4800           term1=dexp(term1-termm)
4801           term2=1.0d0
4802         endif
4803 C The ratio between the gamma-independent and gamma-dependent lobes of
4804 C the distribution is a Gaussian function of thet_pred_mean too.
4805         diffak=gthet(2,it)-thet_pred_mean
4806         ratak=diffak/gthet(3,it)**2
4807         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4808 C Let's differentiate it in thet_pred_mean NOW.
4809         aktc=ak*ratak
4810 C Now put together the distribution terms to make complete distribution.
4811         termexp=term1+ak*term2
4812         termpre=sigc+ak*sig0i
4813 C Contribution of the bending energy from this theta is just the -log of
4814 C the sum of the contributions from the two lobes and the pre-exponential
4815 C factor. Simple enough, isn't it?
4816         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4817 C NOW the derivatives!!!
4818 C 6/6/97 Take into account the deformation.
4819         E_theta=(delthec*sigcsq*term1
4820      &       +ak*delthe0*sig0inv*term2)/termexp
4821         E_tc=((sigtc+aktc*sig0i)/termpre
4822      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4823      &       aktc*term2)/termexp)
4824       return
4825       end
4826 c-----------------------------------------------------------------------------
4827       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4828       implicit real*8 (a-h,o-z)
4829       include 'DIMENSIONS'
4830       include 'COMMON.LOCAL'
4831       include 'COMMON.IOUNITS'
4832       common /calcthet/ term1,term2,termm,diffak,ratak,
4833      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4834      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4835       delthec=thetai-thet_pred_mean
4836       delthe0=thetai-theta0i
4837 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4838       t3 = thetai-thet_pred_mean
4839       t6 = t3**2
4840       t9 = term1
4841       t12 = t3*sigcsq
4842       t14 = t12+t6*sigsqtc
4843       t16 = 1.0d0
4844       t21 = thetai-theta0i
4845       t23 = t21**2
4846       t26 = term2
4847       t27 = t21*t26
4848       t32 = termexp
4849       t40 = t32**2
4850       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4851      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4852      & *(-t12*t9-ak*sig0inv*t27)
4853       return
4854       end
4855 #else
4856 C--------------------------------------------------------------------------
4857       subroutine ebend(etheta)
4858 C
4859 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4860 C angles gamma and its derivatives in consecutive thetas and gammas.
4861 C ab initio-derived potentials from 
4862 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4863 C
4864       implicit real*8 (a-h,o-z)
4865       include 'DIMENSIONS'
4866       include 'COMMON.LOCAL'
4867       include 'COMMON.GEO'
4868       include 'COMMON.INTERACT'
4869       include 'COMMON.DERIV'
4870       include 'COMMON.VAR'
4871       include 'COMMON.CHAIN'
4872       include 'COMMON.IOUNITS'
4873       include 'COMMON.NAMES'
4874       include 'COMMON.FFIELD'
4875       include 'COMMON.CONTROL'
4876       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4877      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4878      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4879      & sinph1ph2(maxdouble,maxdouble)
4880       logical lprn /.false./, lprn1 /.false./
4881       etheta=0.0D0
4882 c      write (iout,*) "EBEND ithet_start",ithet_start,
4883 c     &     " ithet_end",ithet_end
4884       do i=ithet_start,ithet_end
4885         if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
4886      &(itype(i).eq.ntyp1)) cycle
4887         dethetai=0.0d0
4888         dephii=0.0d0
4889         dephii1=0.0d0
4890         theti2=0.5d0*theta(i)
4891         ityp2=ithetyp(itype(i-1))
4892         do k=1,nntheterm
4893           coskt(k)=dcos(k*theti2)
4894           sinkt(k)=dsin(k*theti2)
4895         enddo
4896 C        if (i.gt.3) then
4897          if (i.gt.3 .and. itype(i-3).ne.ntyp1) then
4898 #ifdef OSF
4899           phii=phi(i)
4900           if (phii.ne.phii) phii=150.0
4901 #else
4902           phii=phi(i)
4903 #endif
4904           ityp1=ithetyp(itype(i-2))
4905           do k=1,nsingle
4906             cosph1(k)=dcos(k*phii)
4907             sinph1(k)=dsin(k*phii)
4908           enddo
4909         else
4910           phii=0.0d0
4911           ityp1=ithetyp(itype(i-2))
4912           do k=1,nsingle
4913             cosph1(k)=0.0d0
4914             sinph1(k)=0.0d0
4915           enddo 
4916         endif
4917         if ((i.lt.nres).and. itype(i+1).ne.ntyp1) then
4918 #ifdef OSF
4919           phii1=phi(i+1)
4920           if (phii1.ne.phii1) phii1=150.0
4921           phii1=pinorm(phii1)
4922 #else
4923           phii1=phi(i+1)
4924 #endif
4925           ityp3=ithetyp(itype(i))
4926           do k=1,nsingle
4927             cosph2(k)=dcos(k*phii1)
4928             sinph2(k)=dsin(k*phii1)
4929           enddo
4930         else
4931           phii1=0.0d0
4932           ityp3=ithetyp(itype(i))
4933           do k=1,nsingle
4934             cosph2(k)=0.0d0
4935             sinph2(k)=0.0d0
4936           enddo
4937         endif  
4938         ethetai=aa0thet(ityp1,ityp2,ityp3)
4939         do k=1,ndouble
4940           do l=1,k-1
4941             ccl=cosph1(l)*cosph2(k-l)
4942             ssl=sinph1(l)*sinph2(k-l)
4943             scl=sinph1(l)*cosph2(k-l)
4944             csl=cosph1(l)*sinph2(k-l)
4945             cosph1ph2(l,k)=ccl-ssl
4946             cosph1ph2(k,l)=ccl+ssl
4947             sinph1ph2(l,k)=scl+csl
4948             sinph1ph2(k,l)=scl-csl
4949           enddo
4950         enddo
4951         if (lprn) then
4952         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4953      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4954         write (iout,*) "coskt and sinkt"
4955         do k=1,nntheterm
4956           write (iout,*) k,coskt(k),sinkt(k)
4957         enddo
4958         endif
4959         do k=1,ntheterm
4960           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4961           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4962      &      *coskt(k)
4963           if (lprn)
4964      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4965      &     " ethetai",ethetai
4966         enddo
4967         if (lprn) then
4968         write (iout,*) "cosph and sinph"
4969         do k=1,nsingle
4970           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4971         enddo
4972         write (iout,*) "cosph1ph2 and sinph2ph2"
4973         do k=2,ndouble
4974           do l=1,k-1
4975             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4976      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4977           enddo
4978         enddo
4979         write(iout,*) "ethetai",ethetai
4980         endif
4981         do m=1,ntheterm2
4982           do k=1,nsingle
4983             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4984      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4985      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4986      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4987             ethetai=ethetai+sinkt(m)*aux
4988             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4989             dephii=dephii+k*sinkt(m)*(
4990      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4991      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4992             dephii1=dephii1+k*sinkt(m)*(
4993      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4994      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4995             if (lprn)
4996      &      write (iout,*) "m",m," k",k," bbthet",
4997      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4998      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4999      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
5000      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
5001           enddo
5002         enddo
5003         if (lprn)
5004      &  write(iout,*) "ethetai",ethetai
5005         do m=1,ntheterm3
5006           do k=2,ndouble
5007             do l=1,k-1
5008               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
5009      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
5010      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
5011      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
5012               ethetai=ethetai+sinkt(m)*aux
5013               dethetai=dethetai+0.5d0*m*coskt(m)*aux
5014               dephii=dephii+l*sinkt(m)*(
5015      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
5016      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
5017      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
5018      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
5019               dephii1=dephii1+(k-l)*sinkt(m)*(
5020      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
5021      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
5022      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
5023      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
5024               if (lprn) then
5025               write (iout,*) "m",m," k",k," l",l," ffthet",
5026      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
5027      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
5028      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
5029      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
5030               write (iout,*) cosph1ph2(l,k)*sinkt(m),
5031      &            cosph1ph2(k,l)*sinkt(m),
5032      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
5033               endif
5034             enddo
5035           enddo
5036         enddo
5037 10      continue
5038 c        lprn1=.true.
5039         if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)') 
5040      &  'ebe', i,theta(i)*rad2deg,phii*rad2deg,
5041      &   phii1*rad2deg,ethetai
5042 c        lprn1=.false.
5043         etheta=etheta+ethetai
5044         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
5045         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
5046         gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)+wang*dethetai
5047       enddo
5048       return
5049       end
5050 #endif
5051 #ifdef CRYST_SC
5052 c-----------------------------------------------------------------------------
5053       subroutine esc(escloc)
5054 C Calculate the local energy of a side chain and its derivatives in the
5055 C corresponding virtual-bond valence angles THETA and the spherical angles 
5056 C ALPHA and OMEGA.
5057       implicit real*8 (a-h,o-z)
5058       include 'DIMENSIONS'
5059       include 'COMMON.GEO'
5060       include 'COMMON.LOCAL'
5061       include 'COMMON.VAR'
5062       include 'COMMON.INTERACT'
5063       include 'COMMON.DERIV'
5064       include 'COMMON.CHAIN'
5065       include 'COMMON.IOUNITS'
5066       include 'COMMON.NAMES'
5067       include 'COMMON.FFIELD'
5068       include 'COMMON.CONTROL'
5069       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
5070      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
5071       common /sccalc/ time11,time12,time112,theti,it,nlobit
5072       delta=0.02d0*pi
5073       escloc=0.0D0
5074 c     write (iout,'(a)') 'ESC'
5075       do i=loc_start,loc_end
5076         it=itype(i)
5077         if (it.eq.10) goto 1
5078         nlobit=nlob(it)
5079 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
5080 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
5081         theti=theta(i+1)-pipol
5082         x(1)=dtan(theti)
5083         x(2)=alph(i)
5084         x(3)=omeg(i)
5085
5086         if (x(2).gt.pi-delta) then
5087           xtemp(1)=x(1)
5088           xtemp(2)=pi-delta
5089           xtemp(3)=x(3)
5090           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5091           xtemp(2)=pi
5092           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5093           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
5094      &        escloci,dersc(2))
5095           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5096      &        ddersc0(1),dersc(1))
5097           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
5098      &        ddersc0(3),dersc(3))
5099           xtemp(2)=pi-delta
5100           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5101           xtemp(2)=pi
5102           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5103           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
5104      &            dersc0(2),esclocbi,dersc02)
5105           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5106      &            dersc12,dersc01)
5107           call splinthet(x(2),0.5d0*delta,ss,ssd)
5108           dersc0(1)=dersc01
5109           dersc0(2)=dersc02
5110           dersc0(3)=0.0d0
5111           do k=1,3
5112             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5113           enddo
5114           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5115 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5116 c    &             esclocbi,ss,ssd
5117           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5118 c         escloci=esclocbi
5119 c         write (iout,*) escloci
5120         else if (x(2).lt.delta) then
5121           xtemp(1)=x(1)
5122           xtemp(2)=delta
5123           xtemp(3)=x(3)
5124           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5125           xtemp(2)=0.0d0
5126           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5127           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5128      &        escloci,dersc(2))
5129           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5130      &        ddersc0(1),dersc(1))
5131           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5132      &        ddersc0(3),dersc(3))
5133           xtemp(2)=delta
5134           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5135           xtemp(2)=0.0d0
5136           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5137           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5138      &            dersc0(2),esclocbi,dersc02)
5139           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5140      &            dersc12,dersc01)
5141           dersc0(1)=dersc01
5142           dersc0(2)=dersc02
5143           dersc0(3)=0.0d0
5144           call splinthet(x(2),0.5d0*delta,ss,ssd)
5145           do k=1,3
5146             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5147           enddo
5148           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5149 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5150 c    &             esclocbi,ss,ssd
5151           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5152 c         write (iout,*) escloci
5153         else
5154           call enesc(x,escloci,dersc,ddummy,.false.)
5155         endif
5156
5157         escloc=escloc+escloci
5158         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5159      &     'escloc',i,escloci
5160 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5161
5162         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5163      &   wscloc*dersc(1)
5164         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5165         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5166     1   continue
5167       enddo
5168       return
5169       end
5170 C---------------------------------------------------------------------------
5171       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5172       implicit real*8 (a-h,o-z)
5173       include 'DIMENSIONS'
5174       include 'COMMON.GEO'
5175       include 'COMMON.LOCAL'
5176       include 'COMMON.IOUNITS'
5177       common /sccalc/ time11,time12,time112,theti,it,nlobit
5178       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5179       double precision contr(maxlob,-1:1)
5180       logical mixed
5181 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5182         escloc_i=0.0D0
5183         do j=1,3
5184           dersc(j)=0.0D0
5185           if (mixed) ddersc(j)=0.0d0
5186         enddo
5187         x3=x(3)
5188
5189 C Because of periodicity of the dependence of the SC energy in omega we have
5190 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5191 C To avoid underflows, first compute & store the exponents.
5192
5193         do iii=-1,1
5194
5195           x(3)=x3+iii*dwapi
5196  
5197           do j=1,nlobit
5198             do k=1,3
5199               z(k)=x(k)-censc(k,j,it)
5200             enddo
5201             do k=1,3
5202               Axk=0.0D0
5203               do l=1,3
5204                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5205               enddo
5206               Ax(k,j,iii)=Axk
5207             enddo 
5208             expfac=0.0D0 
5209             do k=1,3
5210               expfac=expfac+Ax(k,j,iii)*z(k)
5211             enddo
5212             contr(j,iii)=expfac
5213           enddo ! j
5214
5215         enddo ! iii
5216
5217         x(3)=x3
5218 C As in the case of ebend, we want to avoid underflows in exponentiation and
5219 C subsequent NaNs and INFs in energy calculation.
5220 C Find the largest exponent
5221         emin=contr(1,-1)
5222         do iii=-1,1
5223           do j=1,nlobit
5224             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5225           enddo 
5226         enddo
5227         emin=0.5D0*emin
5228 cd      print *,'it=',it,' emin=',emin
5229
5230 C Compute the contribution to SC energy and derivatives
5231         do iii=-1,1
5232
5233           do j=1,nlobit
5234 #ifdef OSF
5235             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5236             if(adexp.ne.adexp) adexp=1.0
5237             expfac=dexp(adexp)
5238 #else
5239             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5240 #endif
5241 cd          print *,'j=',j,' expfac=',expfac
5242             escloc_i=escloc_i+expfac
5243             do k=1,3
5244               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5245             enddo
5246             if (mixed) then
5247               do k=1,3,2
5248                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5249      &            +gaussc(k,2,j,it))*expfac
5250               enddo
5251             endif
5252           enddo
5253
5254         enddo ! iii
5255
5256         dersc(1)=dersc(1)/cos(theti)**2
5257         ddersc(1)=ddersc(1)/cos(theti)**2
5258         ddersc(3)=ddersc(3)
5259
5260         escloci=-(dlog(escloc_i)-emin)
5261         do j=1,3
5262           dersc(j)=dersc(j)/escloc_i
5263         enddo
5264         if (mixed) then
5265           do j=1,3,2
5266             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5267           enddo
5268         endif
5269       return
5270       end
5271 C------------------------------------------------------------------------------
5272       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5273       implicit real*8 (a-h,o-z)
5274       include 'DIMENSIONS'
5275       include 'COMMON.GEO'
5276       include 'COMMON.LOCAL'
5277       include 'COMMON.IOUNITS'
5278       common /sccalc/ time11,time12,time112,theti,it,nlobit
5279       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5280       double precision contr(maxlob)
5281       logical mixed
5282
5283       escloc_i=0.0D0
5284
5285       do j=1,3
5286         dersc(j)=0.0D0
5287       enddo
5288
5289       do j=1,nlobit
5290         do k=1,2
5291           z(k)=x(k)-censc(k,j,it)
5292         enddo
5293         z(3)=dwapi
5294         do k=1,3
5295           Axk=0.0D0
5296           do l=1,3
5297             Axk=Axk+gaussc(l,k,j,it)*z(l)
5298           enddo
5299           Ax(k,j)=Axk
5300         enddo 
5301         expfac=0.0D0 
5302         do k=1,3
5303           expfac=expfac+Ax(k,j)*z(k)
5304         enddo
5305         contr(j)=expfac
5306       enddo ! j
5307
5308 C As in the case of ebend, we want to avoid underflows in exponentiation and
5309 C subsequent NaNs and INFs in energy calculation.
5310 C Find the largest exponent
5311       emin=contr(1)
5312       do j=1,nlobit
5313         if (emin.gt.contr(j)) emin=contr(j)
5314       enddo 
5315       emin=0.5D0*emin
5316  
5317 C Compute the contribution to SC energy and derivatives
5318
5319       dersc12=0.0d0
5320       do j=1,nlobit
5321         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5322         escloc_i=escloc_i+expfac
5323         do k=1,2
5324           dersc(k)=dersc(k)+Ax(k,j)*expfac
5325         enddo
5326         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5327      &            +gaussc(1,2,j,it))*expfac
5328         dersc(3)=0.0d0
5329       enddo
5330
5331       dersc(1)=dersc(1)/cos(theti)**2
5332       dersc12=dersc12/cos(theti)**2
5333       escloci=-(dlog(escloc_i)-emin)
5334       do j=1,2
5335         dersc(j)=dersc(j)/escloc_i
5336       enddo
5337       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5338       return
5339       end
5340 #else
5341 c----------------------------------------------------------------------------------
5342       subroutine esc(escloc)
5343 C Calculate the local energy of a side chain and its derivatives in the
5344 C corresponding virtual-bond valence angles THETA and the spherical angles 
5345 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5346 C added by Urszula Kozlowska. 07/11/2007
5347 C
5348       implicit real*8 (a-h,o-z)
5349       include 'DIMENSIONS'
5350       include 'COMMON.GEO'
5351       include 'COMMON.LOCAL'
5352       include 'COMMON.VAR'
5353       include 'COMMON.SCROT'
5354       include 'COMMON.INTERACT'
5355       include 'COMMON.DERIV'
5356       include 'COMMON.CHAIN'
5357       include 'COMMON.IOUNITS'
5358       include 'COMMON.NAMES'
5359       include 'COMMON.FFIELD'
5360       include 'COMMON.CONTROL'
5361       include 'COMMON.VECTORS'
5362       double precision x_prime(3),y_prime(3),z_prime(3)
5363      &    , sumene,dsc_i,dp2_i,x(65),
5364      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5365      &    de_dxx,de_dyy,de_dzz,de_dt
5366       double precision s1_t,s1_6_t,s2_t,s2_6_t
5367       double precision 
5368      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5369      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5370      & dt_dCi(3),dt_dCi1(3)
5371       common /sccalc/ time11,time12,time112,theti,it,nlobit
5372       delta=0.02d0*pi
5373       escloc=0.0D0
5374 c      write(iout,*) "ESC: loc_start",loc_start," loc_end",loc_end
5375       do i=loc_start,loc_end
5376         costtab(i+1) =dcos(theta(i+1))
5377         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5378         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5379         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5380         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5381         cosfac=dsqrt(cosfac2)
5382         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5383         sinfac=dsqrt(sinfac2)
5384         it=itype(i)
5385         if (it.eq.10) goto 1
5386 c
5387 C  Compute the axes of tghe local cartesian coordinates system; store in
5388 c   x_prime, y_prime and z_prime 
5389 c
5390         do j=1,3
5391           x_prime(j) = 0.00
5392           y_prime(j) = 0.00
5393           z_prime(j) = 0.00
5394         enddo
5395 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5396 C     &   dc_norm(3,i+nres)
5397         do j = 1,3
5398           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5399           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5400         enddo
5401         do j = 1,3
5402           z_prime(j) = -uz(j,i-1)
5403         enddo     
5404 c       write (2,*) "i",i
5405 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5406 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5407 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5408 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5409 c      & " xy",scalar(x_prime(1),y_prime(1)),
5410 c      & " xz",scalar(x_prime(1),z_prime(1)),
5411 c      & " yy",scalar(y_prime(1),y_prime(1)),
5412 c      & " yz",scalar(y_prime(1),z_prime(1)),
5413 c      & " zz",scalar(z_prime(1),z_prime(1))
5414 c
5415 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5416 C to local coordinate system. Store in xx, yy, zz.
5417 c
5418         xx=0.0d0
5419         yy=0.0d0
5420         zz=0.0d0
5421         do j = 1,3
5422           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5423           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5424           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5425         enddo
5426
5427         xxtab(i)=xx
5428         yytab(i)=yy
5429         zztab(i)=zz
5430 C
5431 C Compute the energy of the ith side cbain
5432 C
5433 c        write (2,*) "xx",xx," yy",yy," zz",zz
5434         it=itype(i)
5435         do j = 1,65
5436           x(j) = sc_parmin(j,it) 
5437         enddo
5438 #ifdef CHECK_COORD
5439 Cc diagnostics - remove later
5440         xx1 = dcos(alph(2))
5441         yy1 = dsin(alph(2))*dcos(omeg(2))
5442         zz1 = -dsin(alph(2))*dsin(omeg(2))
5443         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5444      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5445      &    xx1,yy1,zz1
5446 C,"  --- ", xx_w,yy_w,zz_w
5447 c end diagnostics
5448 #endif
5449         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5450      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5451      &   + x(10)*yy*zz
5452         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5453      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5454      & + x(20)*yy*zz
5455         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5456      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5457      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5458      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5459      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5460      &  +x(40)*xx*yy*zz
5461         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5462      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5463      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5464      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5465      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5466      &  +x(60)*xx*yy*zz
5467         dsc_i   = 0.743d0+x(61)
5468         dp2_i   = 1.9d0+x(62)
5469         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5470      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5471         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5472      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5473         s1=(1+x(63))/(0.1d0 + dscp1)
5474         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5475         s2=(1+x(65))/(0.1d0 + dscp2)
5476         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5477         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5478      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5479 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5480 c     &   sumene4,
5481 c     &   dscp1,dscp2,sumene
5482 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5483         escloc = escloc + sumene
5484 c        write (2,*) "i",i," escloc",sumene,escloc
5485 #ifdef DEBUG
5486 C
5487 C This section to check the numerical derivatives of the energy of ith side
5488 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5489 C #define DEBUG in the code to turn it on.
5490 C
5491         write (2,*) "sumene               =",sumene
5492         aincr=1.0d-7
5493         xxsave=xx
5494         xx=xx+aincr
5495         write (2,*) xx,yy,zz
5496         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5497         de_dxx_num=(sumenep-sumene)/aincr
5498         xx=xxsave
5499         write (2,*) "xx+ sumene from enesc=",sumenep
5500         yysave=yy
5501         yy=yy+aincr
5502         write (2,*) xx,yy,zz
5503         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5504         de_dyy_num=(sumenep-sumene)/aincr
5505         yy=yysave
5506         write (2,*) "yy+ sumene from enesc=",sumenep
5507         zzsave=zz
5508         zz=zz+aincr
5509         write (2,*) xx,yy,zz
5510         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5511         de_dzz_num=(sumenep-sumene)/aincr
5512         zz=zzsave
5513         write (2,*) "zz+ sumene from enesc=",sumenep
5514         costsave=cost2tab(i+1)
5515         sintsave=sint2tab(i+1)
5516         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5517         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5518         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5519         de_dt_num=(sumenep-sumene)/aincr
5520         write (2,*) " t+ sumene from enesc=",sumenep
5521         cost2tab(i+1)=costsave
5522         sint2tab(i+1)=sintsave
5523 C End of diagnostics section.
5524 #endif
5525 C        
5526 C Compute the gradient of esc
5527 C
5528         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5529         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5530         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5531         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5532         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5533         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5534         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5535         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5536         pom1=(sumene3*sint2tab(i+1)+sumene1)
5537      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5538         pom2=(sumene4*cost2tab(i+1)+sumene2)
5539      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5540         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5541         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5542      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5543      &  +x(40)*yy*zz
5544         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5545         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5546      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5547      &  +x(60)*yy*zz
5548         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5549      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5550      &        +(pom1+pom2)*pom_dx
5551 #ifdef DEBUG
5552         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5553 #endif
5554 C
5555         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5556         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5557      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5558      &  +x(40)*xx*zz
5559         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5560         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5561      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5562      &  +x(59)*zz**2 +x(60)*xx*zz
5563         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5564      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5565      &        +(pom1-pom2)*pom_dy
5566 #ifdef DEBUG
5567         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5568 #endif
5569 C
5570         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5571      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5572      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5573      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5574      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5575      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5576      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5577      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5578 #ifdef DEBUG
5579         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5580 #endif
5581 C
5582         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5583      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5584      &  +pom1*pom_dt1+pom2*pom_dt2
5585 #ifdef DEBUG
5586         write(2,*), "de_dt = ", de_dt,de_dt_num
5587 #endif
5588
5589 C
5590        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5591        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5592        cosfac2xx=cosfac2*xx
5593        sinfac2yy=sinfac2*yy
5594        do k = 1,3
5595          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5596      &      vbld_inv(i+1)
5597          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5598      &      vbld_inv(i)
5599          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5600          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5601 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5602 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5603 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5604 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5605          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5606          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5607          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5608          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5609          dZZ_Ci1(k)=0.0d0
5610          dZZ_Ci(k)=0.0d0
5611          do j=1,3
5612            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5613            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5614          enddo
5615           
5616          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5617          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5618          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5619 c
5620          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5621          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5622        enddo
5623
5624        do k=1,3
5625          dXX_Ctab(k,i)=dXX_Ci(k)
5626          dXX_C1tab(k,i)=dXX_Ci1(k)
5627          dYY_Ctab(k,i)=dYY_Ci(k)
5628          dYY_C1tab(k,i)=dYY_Ci1(k)
5629          dZZ_Ctab(k,i)=dZZ_Ci(k)
5630          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5631          dXX_XYZtab(k,i)=dXX_XYZ(k)
5632          dYY_XYZtab(k,i)=dYY_XYZ(k)
5633          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5634        enddo
5635
5636        do k = 1,3
5637 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5638 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5639 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5640 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5641 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5642 c     &    dt_dci(k)
5643 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5644 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5645          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5646      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5647          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5648      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5649          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5650      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5651        enddo
5652 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5653 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5654
5655 C to check gradient call subroutine check_grad
5656
5657     1 continue
5658       enddo
5659       return
5660       end
5661 c------------------------------------------------------------------------------
5662       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5663       implicit none
5664       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5665      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5666       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5667      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5668      &   + x(10)*yy*zz
5669       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5670      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5671      & + x(20)*yy*zz
5672       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5673      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5674      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5675      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5676      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5677      &  +x(40)*xx*yy*zz
5678       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5679      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5680      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5681      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5682      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5683      &  +x(60)*xx*yy*zz
5684       dsc_i   = 0.743d0+x(61)
5685       dp2_i   = 1.9d0+x(62)
5686       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5687      &          *(xx*cost2+yy*sint2))
5688       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5689      &          *(xx*cost2-yy*sint2))
5690       s1=(1+x(63))/(0.1d0 + dscp1)
5691       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5692       s2=(1+x(65))/(0.1d0 + dscp2)
5693       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5694       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5695      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5696       enesc=sumene
5697       return
5698       end
5699 #endif
5700 c------------------------------------------------------------------------------
5701       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5702 C
5703 C This procedure calculates two-body contact function g(rij) and its derivative:
5704 C
5705 C           eps0ij                                     !       x < -1
5706 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5707 C            0                                         !       x > 1
5708 C
5709 C where x=(rij-r0ij)/delta
5710 C
5711 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5712 C
5713       implicit none
5714       double precision rij,r0ij,eps0ij,fcont,fprimcont
5715       double precision x,x2,x4,delta
5716 c     delta=0.02D0*r0ij
5717 c      delta=0.2D0*r0ij
5718       x=(rij-r0ij)/delta
5719       if (x.lt.-1.0D0) then
5720         fcont=eps0ij
5721         fprimcont=0.0D0
5722       else if (x.le.1.0D0) then  
5723         x2=x*x
5724         x4=x2*x2
5725         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5726         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5727       else
5728         fcont=0.0D0
5729         fprimcont=0.0D0
5730       endif
5731       return
5732       end
5733 c------------------------------------------------------------------------------
5734       subroutine splinthet(theti,delta,ss,ssder)
5735       implicit real*8 (a-h,o-z)
5736       include 'DIMENSIONS'
5737       include 'COMMON.VAR'
5738       include 'COMMON.GEO'
5739       thetup=pi-delta
5740       thetlow=delta
5741       if (theti.gt.pipol) then
5742         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5743       else
5744         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5745         ssder=-ssder
5746       endif
5747       return
5748       end
5749 c------------------------------------------------------------------------------
5750       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5751       implicit none
5752       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5753       double precision ksi,ksi2,ksi3,a1,a2,a3
5754       a1=fprim0*delta/(f1-f0)
5755       a2=3.0d0-2.0d0*a1
5756       a3=a1-2.0d0
5757       ksi=(x-x0)/delta
5758       ksi2=ksi*ksi
5759       ksi3=ksi2*ksi  
5760       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5761       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5762       return
5763       end
5764 c------------------------------------------------------------------------------
5765       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5766       implicit none
5767       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5768       double precision ksi,ksi2,ksi3,a1,a2,a3
5769       ksi=(x-x0)/delta  
5770       ksi2=ksi*ksi
5771       ksi3=ksi2*ksi
5772       a1=fprim0x*delta
5773       a2=3*(f1x-f0x)-2*fprim0x*delta
5774       a3=fprim0x*delta-2*(f1x-f0x)
5775       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5776       return
5777       end
5778 C-----------------------------------------------------------------------------
5779 #ifdef CRYST_TOR
5780 C-----------------------------------------------------------------------------
5781       subroutine etor(etors,edihcnstr)
5782       implicit real*8 (a-h,o-z)
5783       include 'DIMENSIONS'
5784       include 'COMMON.VAR'
5785       include 'COMMON.GEO'
5786       include 'COMMON.LOCAL'
5787       include 'COMMON.TORSION'
5788       include 'COMMON.INTERACT'
5789       include 'COMMON.DERIV'
5790       include 'COMMON.CHAIN'
5791       include 'COMMON.NAMES'
5792       include 'COMMON.IOUNITS'
5793       include 'COMMON.FFIELD'
5794       include 'COMMON.TORCNSTR'
5795       include 'COMMON.CONTROL'
5796       logical lprn
5797 C Set lprn=.true. for debugging
5798       lprn=.false.
5799 c      lprn=.true.
5800       etors=0.0D0
5801       do i=iphi_start,iphi_end
5802       etors_ii=0.0D0
5803         itori=itortyp(itype(i-2))
5804         itori1=itortyp(itype(i-1))
5805         phii=phi(i)
5806         gloci=0.0D0
5807 C Proline-Proline pair is a special case...
5808         if (itori.eq.3 .and. itori1.eq.3) then
5809           if (phii.gt.-dwapi3) then
5810             cosphi=dcos(3*phii)
5811             fac=1.0D0/(1.0D0-cosphi)
5812             etorsi=v1(1,3,3)*fac
5813             etorsi=etorsi+etorsi
5814             etors=etors+etorsi-v1(1,3,3)
5815             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5816             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5817           endif
5818           do j=1,3
5819             v1ij=v1(j+1,itori,itori1)
5820             v2ij=v2(j+1,itori,itori1)
5821             cosphi=dcos(j*phii)
5822             sinphi=dsin(j*phii)
5823             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5824             if (energy_dec) etors_ii=etors_ii+
5825      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5826             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5827           enddo
5828         else 
5829           do j=1,nterm_old
5830             v1ij=v1(j,itori,itori1)
5831             v2ij=v2(j,itori,itori1)
5832             cosphi=dcos(j*phii)
5833             sinphi=dsin(j*phii)
5834             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5835             if (energy_dec) etors_ii=etors_ii+
5836      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5837             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5838           enddo
5839         endif
5840         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5841      &        'etor',i,etors_ii
5842         if (lprn)
5843      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5844      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5845      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5846         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5847         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5848       enddo
5849 ! 6/20/98 - dihedral angle constraints
5850       edihcnstr=0.0d0
5851       do i=1,ndih_constr
5852         itori=idih_constr(i)
5853         phii=phi(itori)
5854         difi=phii-phi0(i)
5855         if (difi.gt.drange(i)) then
5856           difi=difi-drange(i)
5857           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5858           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5859         else if (difi.lt.-drange(i)) then
5860           difi=difi+drange(i)
5861           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5862           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5863         endif
5864 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5865 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5866       enddo
5867 !      write (iout,*) 'edihcnstr',edihcnstr
5868       return
5869       end
5870 c------------------------------------------------------------------------------
5871 c LICZENIE WIEZOW Z ROWNANIA ENERGII MODELLERA
5872       subroutine e_modeller(ehomology_constr)
5873       ehomology_constr=0.0d0
5874       write (iout,*) "!!!!!UWAGA, JESTEM W DZIWNEJ PETLI, TEST!!!!!"
5875       return
5876       end
5877 C !!!!!!!! NIE CZYTANE !!!!!!!!!!!
5878
5879 c------------------------------------------------------------------------------
5880       subroutine etor_d(etors_d)
5881       etors_d=0.0d0
5882       return
5883       end
5884 c----------------------------------------------------------------------------
5885 #else
5886       subroutine etor(etors,edihcnstr)
5887       implicit real*8 (a-h,o-z)
5888       include 'DIMENSIONS'
5889       include 'COMMON.VAR'
5890       include 'COMMON.GEO'
5891       include 'COMMON.LOCAL'
5892       include 'COMMON.TORSION'
5893       include 'COMMON.INTERACT'
5894       include 'COMMON.DERIV'
5895       include 'COMMON.CHAIN'
5896       include 'COMMON.NAMES'
5897       include 'COMMON.IOUNITS'
5898       include 'COMMON.FFIELD'
5899       include 'COMMON.TORCNSTR'
5900       include 'COMMON.CONTROL'
5901       logical lprn
5902 C Set lprn=.true. for debugging
5903       lprn=.false.
5904 c     lprn=.true.
5905       etors=0.0D0
5906       do i=iphi_start,iphi_end
5907       etors_ii=0.0D0
5908         itori=itortyp(itype(i-2))
5909         itori1=itortyp(itype(i-1))
5910         phii=phi(i)
5911         gloci=0.0D0
5912 C Regular cosine and sine terms
5913         do j=1,nterm(itori,itori1)
5914           v1ij=v1(j,itori,itori1)
5915           v2ij=v2(j,itori,itori1)
5916           cosphi=dcos(j*phii)
5917           sinphi=dsin(j*phii)
5918           etors=etors+v1ij*cosphi+v2ij*sinphi
5919           if (energy_dec) etors_ii=etors_ii+
5920      &                v1ij*cosphi+v2ij*sinphi
5921           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5922         enddo
5923 C Lorentz terms
5924 C                         v1
5925 C  E = SUM ----------------------------------- - v1
5926 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5927 C
5928         cosphi=dcos(0.5d0*phii)
5929         sinphi=dsin(0.5d0*phii)
5930         do j=1,nlor(itori,itori1)
5931           vl1ij=vlor1(j,itori,itori1)
5932           vl2ij=vlor2(j,itori,itori1)
5933           vl3ij=vlor3(j,itori,itori1)
5934           pom=vl2ij*cosphi+vl3ij*sinphi
5935           pom1=1.0d0/(pom*pom+1.0d0)
5936           etors=etors+vl1ij*pom1
5937           if (energy_dec) etors_ii=etors_ii+
5938      &                vl1ij*pom1
5939           pom=-pom*pom1*pom1
5940           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5941         enddo
5942 C Subtract the constant term
5943         etors=etors-v0(itori,itori1)
5944           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5945      &         'etor',i,etors_ii-v0(itori,itori1)
5946         if (lprn)
5947      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5948      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5949      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5950         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5951 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5952       enddo
5953 ! 6/20/98 - dihedral angle constraints
5954       edihcnstr=0.0d0
5955 c      do i=1,ndih_constr
5956       do i=idihconstr_start,idihconstr_end
5957         itori=idih_constr(i)
5958         phii=phi(itori)
5959         difi=pinorm(phii-phi0(i))
5960         if (difi.gt.drange(i)) then
5961           difi=difi-drange(i)
5962           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5963           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5964         else if (difi.lt.-drange(i)) then
5965           difi=difi+drange(i)
5966           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5967           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5968         else
5969           difi=0.0
5970         endif
5971 c        write (iout,*) "gloci", gloc(i-3,icg)
5972 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5973 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5974 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5975       enddo
5976 cd       write (iout,*) 'edihcnstr',edihcnstr
5977       return
5978       end
5979 c----------------------------------------------------------------------------
5980 c MODELLER restraint function
5981       subroutine e_modeller(ehomology_constr)
5982       implicit real*8 (a-h,o-z)
5983       include 'DIMENSIONS'
5984
5985       integer nnn, i, j, k, ki, irec, l
5986       integer katy, odleglosci, test7
5987       real*8 odleg, odleg2, odleg3, kat, kat2, kat3, gdih(max_template)
5988       real*8 Eval,Erot
5989       real*8 distance(max_template),distancek(max_template),
5990      &    min_odl,godl(max_template),dih_diff(max_template)
5991
5992 c
5993 c     FP - 30/10/2014 Temporary specifications for homology restraints
5994 c
5995       double precision utheta_i,gutheta_i,sum_gtheta,sum_sgtheta,
5996      &                 sgtheta      
5997       double precision, dimension (maxres) :: guscdiff,usc_diff
5998       double precision, dimension (max_template) ::  
5999      &           gtheta,dscdiff,uscdiffk,guscdiff2,guscdiff3,
6000      &           theta_diff
6001 c
6002
6003       include 'COMMON.SBRIDGE'
6004       include 'COMMON.CHAIN'
6005       include 'COMMON.GEO'
6006       include 'COMMON.DERIV'
6007       include 'COMMON.LOCAL'
6008       include 'COMMON.INTERACT'
6009       include 'COMMON.VAR'
6010       include 'COMMON.IOUNITS'
6011       include 'COMMON.MD'
6012       include 'COMMON.CONTROL'
6013 c
6014 c     From subroutine Econstr_back
6015 c
6016       include 'COMMON.NAMES'
6017       include 'COMMON.TIME1'
6018 c
6019
6020
6021       do i=1,19
6022         distancek(i)=9999999.9
6023       enddo
6024
6025
6026       odleg=0.0d0
6027
6028 c Pseudo-energy and gradient from homology restraints (MODELLER-like
6029 c function)
6030 C AL 5/2/14 - Introduce list of restraints
6031 c     write(iout,*) "waga_theta",waga_theta,"waga_d",waga_d
6032 #ifdef DEBUG
6033       write(iout,*) "------- dist restrs start -------"
6034 #endif
6035       do ii = link_start_homo,link_end_homo
6036          i = ires_homo(ii)
6037          j = jres_homo(ii)
6038          dij=dist(i,j)
6039 c        write (iout,*) "dij(",i,j,") =",dij
6040          do k=1,constr_homology
6041 c           write(iout,*) ii,k,i,j,l_homo(k,ii),dij,odl(k,ii)
6042            if(.not.l_homo(k,ii)) cycle
6043            distance(k)=odl(k,ii)-dij
6044 c          write (iout,*) "distance(",k,") =",distance(k)
6045 c
6046 c          For Gaussian-type Urestr
6047 c
6048            distancek(k)=0.5d0*distance(k)**2*sigma_odl(k,ii) ! waga_dist rmvd from Gaussian argument
6049 c          write (iout,*) "sigma_odl(",k,ii,") =",sigma_odl(k,ii)
6050 c          write (iout,*) "distancek(",k,") =",distancek(k)
6051 c          distancek(k)=0.5d0*waga_dist*distance(k)**2*sigma_odl(k,ii)
6052 c
6053 c          For Lorentzian-type Urestr
6054 c
6055            if (waga_dist.lt.0.0d0) then
6056               sigma_odlir(k,ii)=dsqrt(1/sigma_odl(k,ii))
6057               distancek(k)=distance(k)**2/(sigma_odlir(k,ii)*
6058      &                     (distance(k)**2+sigma_odlir(k,ii)**2))
6059            endif
6060          enddo
6061          
6062          min_odl=minval(distancek)
6063 c        write (iout,* )"min_odl",min_odl
6064 #ifdef DEBUG
6065          write (iout,*) "ij dij",i,j,dij
6066          write (iout,*) "distance",(distance(k),k=1,constr_homology)
6067          write (iout,*) "distancek",(distancek(k),k=1,constr_homology)
6068          write (iout,* )"min_odl",min_odl
6069 #endif
6070          odleg2=0.0d0
6071          do k=1,constr_homology
6072 c Nie wiem po co to liczycie jeszcze raz!
6073 c            odleg3=-waga_dist(iset)*((distance(i,j,k)**2)/ 
6074 c     &              (2*(sigma_odl(i,j,k))**2))
6075            if(.not.l_homo(k,ii)) cycle
6076            if (waga_dist.ge.0.0d0) then
6077 c
6078 c          For Gaussian-type Urestr
6079 c
6080             godl(k)=dexp(-distancek(k)+min_odl)
6081             odleg2=odleg2+godl(k)
6082 c
6083 c          For Lorentzian-type Urestr
6084 c
6085            else
6086             odleg2=odleg2+distancek(k)
6087            endif
6088
6089 ccc       write(iout,779) i,j,k, "odleg2=",odleg2, "odleg3=", odleg3,
6090 ccc     & "dEXP(odleg3)=", dEXP(odleg3),"distance(i,j,k)^2=",
6091 ccc     & distance(i,j,k)**2, "dist(i+1,j+1)=", dist(i+1,j+1),
6092 ccc     & "sigma_odl(i,j,k)=", sigma_odl(i,j,k)
6093
6094          enddo
6095 c        write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents
6096 c        write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps
6097 #ifdef DEBUG
6098          write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents
6099          write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps
6100 #endif
6101            if (waga_dist.ge.0.0d0) then
6102 c
6103 c          For Gaussian-type Urestr
6104 c
6105               odleg=odleg-dLOG(odleg2/constr_homology)+min_odl
6106 c
6107 c          For Lorentzian-type Urestr
6108 c
6109            else
6110               odleg=odleg+odleg2/constr_homology
6111            endif
6112 c
6113 c        write (iout,*) "odleg",odleg ! sum of -ln-s
6114 c Gradient
6115 c
6116 c          For Gaussian-type Urestr
6117 c
6118          if (waga_dist.ge.0.0d0) sum_godl=odleg2
6119          sum_sgodl=0.0d0
6120          do k=1,constr_homology
6121 c            godl=dexp(((-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2))
6122 c     &           *waga_dist)+min_odl
6123 c          sgodl=-godl(k)*distance(k)*sigma_odl(k,ii)*waga_dist
6124 c
6125          if(.not.l_homo(k,ii)) cycle
6126          if (waga_dist.ge.0.0d0) then
6127 c          For Gaussian-type Urestr
6128 c
6129            sgodl=-godl(k)*distance(k)*sigma_odl(k,ii) ! waga_dist rmvd
6130 c
6131 c          For Lorentzian-type Urestr
6132 c
6133          else
6134            sgodl=-2*sigma_odlir(k,ii)*(distance(k)/(distance(k)**2+
6135      &           sigma_odlir(k,ii)**2)**2)
6136          endif
6137            sum_sgodl=sum_sgodl+sgodl
6138
6139 c            sgodl2=sgodl2+sgodl
6140 c      write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE1"
6141 c      write(iout,*) "constr_homology=",constr_homology
6142 c      write(iout,*) i, j, k, "TEST K"
6143          enddo
6144          if (waga_dist.ge.0.0d0) then
6145 c
6146 c          For Gaussian-type Urestr
6147 c
6148             grad_odl3=waga_homology(iset)*waga_dist
6149      &                *sum_sgodl/(sum_godl*dij)
6150 c
6151 c          For Lorentzian-type Urestr
6152 c
6153          else
6154 c Original grad expr modified by analogy w Gaussian-type Urestr grad
6155 c           grad_odl3=-waga_homology(iset)*waga_dist*sum_sgodl
6156             grad_odl3=-waga_homology(iset)*waga_dist*
6157      &                sum_sgodl/(constr_homology*dij)
6158          endif
6159 c
6160 c        grad_odl3=sum_sgodl/(sum_godl*dij)
6161
6162
6163 c      write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE2"
6164 c      write(iout,*) (distance(i,j,k)**2), (2*(sigma_odl(i,j,k))**2),
6165 c     &              (-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2))
6166
6167 ccc      write(iout,*) godl, sgodl, grad_odl3
6168
6169 c          grad_odl=grad_odl+grad_odl3
6170
6171          do jik=1,3
6172             ggodl=grad_odl3*(c(jik,i)-c(jik,j))
6173 ccc      write(iout,*) c(jik,i+1), c(jik,j+1), (c(jik,i+1)-c(jik,j+1))
6174 ccc      write(iout,746) "GRAD_ODL_1", i, j, jik, ggodl, 
6175 ccc     &              ghpbc(jik,i+1), ghpbc(jik,j+1)
6176             ghpbc(jik,i)=ghpbc(jik,i)+ggodl
6177             ghpbc(jik,j)=ghpbc(jik,j)-ggodl
6178 ccc      write(iout,746) "GRAD_ODL_2", i, j, jik, ggodl,
6179 ccc     &              ghpbc(jik,i+1), ghpbc(jik,j+1)
6180 c         if (i.eq.25.and.j.eq.27) then
6181 c         write(iout,*) "jik",jik,"i",i,"j",j
6182 c         write(iout,*) "sum_sgodl",sum_sgodl,"sgodl",sgodl
6183 c         write(iout,*) "grad_odl3",grad_odl3
6184 c         write(iout,*) "c(",jik,i,")",c(jik,i),"c(",jik,j,")",c(jik,j)
6185 c         write(iout,*) "ggodl",ggodl
6186 c         write(iout,*) "ghpbc(",jik,i,")",
6187 c     &                 ghpbc(jik,i),"ghpbc(",jik,j,")",
6188 c     &                 ghpbc(jik,j)   
6189 c         endif
6190          enddo
6191 ccc       write(iout,778)"TEST: odleg2=", odleg2, "DLOG(odleg2)=", 
6192 ccc     & dLOG(odleg2),"-odleg=", -odleg
6193
6194       enddo ! ii-loop for dist
6195 #ifdef DEBUG
6196       write(iout,*) "------- dist restrs end -------"
6197 c     if (waga_angle.eq.1.0d0 .or. waga_theta.eq.1.0d0 .or. 
6198 c    &     waga_d.eq.1.0d0) call sum_gradient
6199 #endif
6200 c Pseudo-energy and gradient from dihedral-angle restraints from
6201 c homology templates
6202 c      write (iout,*) "End of distance loop"
6203 c      call flush(iout)
6204       kat=0.0d0
6205 c      write (iout,*) idihconstr_start_homo,idihconstr_end_homo
6206 #ifdef DEBUG
6207       write(iout,*) "------- dih restrs start -------"
6208       do i=idihconstr_start_homo,idihconstr_end_homo
6209         write (iout,*) "gloc_init(",i,icg,")",gloc(i,icg)
6210       enddo
6211 #endif
6212       do i=idihconstr_start_homo,idihconstr_end_homo
6213         kat2=0.0d0
6214 c        betai=beta(i,i+1,i+2,i+3)
6215         betai = phi(i+3)
6216 c       write (iout,*) "betai =",betai
6217         do k=1,constr_homology
6218           dih_diff(k)=pinorm(dih(k,i)-betai)
6219 c         write (iout,*) "dih_diff(",k,") =",dih_diff(k)
6220 c          if (dih_diff(i,k).gt.3.14159) dih_diff(i,k)=
6221 c     &                                   -(6.28318-dih_diff(i,k))
6222 c          if (dih_diff(i,k).lt.-3.14159) dih_diff(i,k)=
6223 c     &                                   6.28318+dih_diff(i,k)
6224
6225           kat3=-0.5d0*dih_diff(k)**2*sigma_dih(k,i) ! waga_angle rmvd from Gaussian argument
6226 c         kat3=-0.5d0*waga_angle*dih_diff(k)**2*sigma_dih(k,i)
6227           gdih(k)=dexp(kat3)
6228           kat2=kat2+gdih(k)
6229 c          write(iout,*) "kat2=", kat2, "exp(kat3)=", exp(kat3)
6230 c          write(*,*)""
6231         enddo
6232 c       write (iout,*) "gdih",(gdih(k),k=1,constr_homology) ! exps
6233 c       write (iout,*) "i",i," betai",betai," kat2",kat2 ! sum of exps
6234 #ifdef DEBUG
6235         write (iout,*) "i",i," betai",betai," kat2",kat2
6236         write (iout,*) "gdih",(gdih(k),k=1,constr_homology)
6237 #endif
6238         if (kat2.le.1.0d-14) cycle
6239         kat=kat-dLOG(kat2/constr_homology)
6240 c       write (iout,*) "kat",kat ! sum of -ln-s
6241
6242 ccc       write(iout,778)"TEST: kat2=", kat2, "DLOG(kat2)=",
6243 ccc     & dLOG(kat2), "-kat=", -kat
6244
6245 c ----------------------------------------------------------------------
6246 c Gradient
6247 c ----------------------------------------------------------------------
6248
6249         sum_gdih=kat2
6250         sum_sgdih=0.0d0
6251         do k=1,constr_homology
6252           sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)  ! waga_angle rmvd
6253 c         sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)*waga_angle
6254           sum_sgdih=sum_sgdih+sgdih
6255         enddo
6256 c       grad_dih3=sum_sgdih/sum_gdih
6257         grad_dih3=waga_homology(iset)*waga_angle*sum_sgdih/sum_gdih
6258
6259 c      write(iout,*)i,k,gdih,sgdih,beta(i+1,i+2,i+3,i+4),grad_dih3
6260 ccc      write(iout,747) "GRAD_KAT_1", i, nphi, icg, grad_dih3,
6261 ccc     & gloc(nphi+i-3,icg)
6262         gloc(i,icg)=gloc(i,icg)+grad_dih3
6263 c        if (i.eq.25) then
6264 c        write(iout,*) "i",i,"icg",icg,"gloc(",i,icg,")",gloc(i,icg)
6265 c        endif
6266 ccc      write(iout,747) "GRAD_KAT_2", i, nphi, icg, grad_dih3,
6267 ccc     & gloc(nphi+i-3,icg)
6268
6269       enddo ! i-loop for dih
6270 #ifdef DEBUG
6271       write(iout,*) "------- dih restrs end -------"
6272 #endif
6273
6274 c Pseudo-energy and gradient for theta angle restraints from
6275 c homology templates
6276 c FP 01/15 - inserted from econstr_local_test.F, loop structure
6277 c adapted
6278
6279 c
6280 c     For constr_homology reference structures (FP)
6281 c     
6282 c     Uconst_back_tot=0.0d0
6283       Eval=0.0d0
6284       Erot=0.0d0
6285 c     Econstr_back legacy
6286       do i=1,nres
6287 c     do i=ithet_start,ithet_end
6288        dutheta(i)=0.0d0
6289 c     enddo
6290 c     do i=loc_start,loc_end
6291         do j=1,3
6292           duscdiff(j,i)=0.0d0
6293           duscdiffx(j,i)=0.0d0
6294         enddo
6295       enddo
6296 c
6297 c     do iref=1,nref
6298 c     write (iout,*) "ithet_start =",ithet_start,"ithet_end =",ithet_end
6299 c     write (iout,*) "waga_theta",waga_theta
6300       if (waga_theta.gt.0.0d0) then
6301 #ifdef DEBUG
6302       write (iout,*) "usampl",usampl
6303       write(iout,*) "------- theta restrs start -------"
6304 c     do i=ithet_start,ithet_end
6305 c       write (iout,*) "gloc_init(",nphi+i,icg,")",gloc(nphi+i,icg)
6306 c     enddo
6307 #endif
6308 c     write (iout,*) "maxres",maxres,"nres",nres
6309
6310       do i=ithet_start,ithet_end
6311 c
6312 c     do i=1,nfrag_back
6313 c       ii = ifrag_back(2,i,iset)-ifrag_back(1,i,iset)
6314 c
6315 c Deviation of theta angles wrt constr_homology ref structures
6316 c
6317         utheta_i=0.0d0 ! argument of Gaussian for single k
6318         gutheta_i=0.0d0 ! Sum of Gaussians over constr_homology ref structures
6319 c       do j=ifrag_back(1,i,iset)+2,ifrag_back(2,i,iset) ! original loop
6320 c       over residues in a fragment
6321 c       write (iout,*) "theta(",i,")=",theta(i)
6322         do k=1,constr_homology
6323 c
6324 c         dtheta_i=theta(j)-thetaref(j,iref)
6325 c         dtheta_i=thetaref(k,i)-theta(i) ! original form without indexing
6326           theta_diff(k)=thetatpl(k,i)-theta(i)
6327 c
6328           utheta_i=-0.5d0*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta rmvd from Gaussian argument
6329 c         utheta_i=-0.5d0*waga_theta*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta?
6330           gtheta(k)=dexp(utheta_i) ! + min_utheta_i?
6331           gutheta_i=gutheta_i+dexp(utheta_i)   ! Sum of Gaussians (pk)
6332 c         Gradient for single Gaussian restraint in subr Econstr_back
6333 c         dutheta(j-2)=dutheta(j-2)+wfrag_back(1,i,iset)*dtheta_i/(ii-1)
6334 c
6335         enddo
6336 c       write (iout,*) "gtheta",(gtheta(k),k=1,constr_homology) ! exps
6337 c       write (iout,*) "i",i," gutheta_i",gutheta_i ! sum of exps
6338
6339 c
6340 c         Gradient for multiple Gaussian restraint
6341         sum_gtheta=gutheta_i
6342         sum_sgtheta=0.0d0
6343         do k=1,constr_homology
6344 c        New generalized expr for multiple Gaussian from Econstr_back
6345          sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i) ! waga_theta rmvd
6346 c
6347 c        sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i)*waga_theta ! right functional form?
6348           sum_sgtheta=sum_sgtheta+sgtheta ! cum variable
6349         enddo
6350 c       Final value of gradient using same var as in Econstr_back
6351         gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)
6352      &      +sum_sgtheta/sum_gtheta*waga_theta
6353      &               *waga_homology(iset)
6354 c        dutheta(i-2)=sum_sgtheta/sum_gtheta*waga_theta
6355 c     &               *waga_homology(iset)
6356 c       dutheta(i)=sum_sgtheta/sum_gtheta
6357 c
6358 c       Uconst_back=Uconst_back+waga_theta*utheta(i) ! waga_theta added as weight
6359         Eval=Eval-dLOG(gutheta_i/constr_homology)
6360 c       write (iout,*) "utheta(",i,")=",utheta(i) ! -ln of sum of exps
6361 c       write (iout,*) "Uconst_back",Uconst_back ! sum of -ln-s
6362 c       Uconst_back=Uconst_back+utheta(i)
6363       enddo ! (i-loop for theta)
6364 #ifdef DEBUG
6365       write(iout,*) "------- theta restrs end -------"
6366 #endif
6367       endif
6368 c
6369 c Deviation of local SC geometry
6370 c
6371 c Separation of two i-loops (instructed by AL - 11/3/2014)
6372 c
6373 c     write (iout,*) "loc_start =",loc_start,"loc_end =",loc_end
6374 c     write (iout,*) "waga_d",waga_d
6375
6376 #ifdef DEBUG
6377       write(iout,*) "------- SC restrs start -------"
6378       write (iout,*) "Initial duscdiff,duscdiffx"
6379       do i=loc_start,loc_end
6380         write (iout,*) i,(duscdiff(jik,i),jik=1,3),
6381      &                 (duscdiffx(jik,i),jik=1,3)
6382       enddo
6383 #endif
6384       do i=loc_start,loc_end
6385         usc_diff_i=0.0d0 ! argument of Gaussian for single k
6386         guscdiff(i)=0.0d0 ! Sum of Gaussians over constr_homology ref structures
6387 c       do j=ifrag_back(1,i,iset)+1,ifrag_back(2,i,iset)-1 ! Econstr_back legacy
6388 c       write(iout,*) "xxtab, yytab, zztab"
6389 c       write(iout,'(i5,3f8.2)') i,xxtab(i),yytab(i),zztab(i)
6390         do k=1,constr_homology
6391 c
6392           dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str?
6393 c                                    Original sign inverted for calc of gradients (s. Econstr_back)
6394           dyy=-yytpl(k,i)+yytab(i) ! ibid y
6395           dzz=-zztpl(k,i)+zztab(i) ! ibid z
6396 c         write(iout,*) "dxx, dyy, dzz"
6397 c         write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz
6398 c
6399           usc_diff_i=-0.5d0*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i)  ! waga_d rmvd from Gaussian argument
6400 c         usc_diff(i)=-0.5d0*waga_d*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i) ! waga_d?
6401 c         uscdiffk(k)=usc_diff(i)
6402           guscdiff2(k)=dexp(usc_diff_i) ! without min_scdiff
6403           guscdiff(i)=guscdiff(i)+dexp(usc_diff_i)   !Sum of Gaussians (pk)
6404 c          write (iout,'(i5,6f10.5)') j,xxtab(j),yytab(j),zztab(j),
6405 c     &      xxref(j),yyref(j),zzref(j)
6406         enddo
6407 c
6408 c       Gradient 
6409 c
6410 c       Generalized expression for multiple Gaussian acc to that for a single 
6411 c       Gaussian in Econstr_back as instructed by AL (FP - 03/11/2014)
6412 c
6413 c       Original implementation
6414 c       sum_guscdiff=guscdiff(i)
6415 c
6416 c       sum_sguscdiff=0.0d0
6417 c       do k=1,constr_homology
6418 c          sguscdiff=-guscdiff2(k)*dscdiff(k)*sigma_d(k,i)*waga_d !waga_d? 
6419 c          sguscdiff=-guscdiff3(k)*dscdiff(k)*sigma_d(k,i)*waga_d ! w min_uscdiff
6420 c          sum_sguscdiff=sum_sguscdiff+sguscdiff
6421 c       enddo
6422 c
6423 c       Implementation of new expressions for gradient (Jan. 2015)
6424 c
6425 c       grad_uscdiff=sum_sguscdiff/(sum_guscdiff*dtab) !?
6426         do k=1,constr_homology 
6427 c
6428 c       New calculation of dxx, dyy, and dzz corrected by AL (07/11), was missing and wrong
6429 c       before. Now the drivatives should be correct
6430 c
6431           dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str?
6432 c                                  Original sign inverted for calc of gradients (s. Econstr_back)
6433           dyy=-yytpl(k,i)+yytab(i) ! ibid y
6434           dzz=-zztpl(k,i)+zztab(i) ! ibid z
6435 c
6436 c         New implementation
6437 c
6438           sum_guscdiff=guscdiff2(k)*!(dsqrt(dxx*dxx+dyy*dyy+dzz*dzz))* -> wrong!
6439      &                 sigma_d(k,i) ! for the grad wrt r' 
6440 c         sum_sguscdiff=sum_sguscdiff+sum_guscdiff
6441 c
6442 c
6443 c        New implementation
6444          sum_guscdiff = waga_homology(iset)*waga_d*sum_guscdiff
6445          do jik=1,3
6446             duscdiff(jik,i-1)=duscdiff(jik,i-1)+
6447      &      sum_guscdiff*(dXX_C1tab(jik,i)*dxx+
6448      &      dYY_C1tab(jik,i)*dyy+dZZ_C1tab(jik,i)*dzz)/guscdiff(i)
6449             duscdiff(jik,i)=duscdiff(jik,i)+
6450      &      sum_guscdiff*(dXX_Ctab(jik,i)*dxx+
6451      &      dYY_Ctab(jik,i)*dyy+dZZ_Ctab(jik,i)*dzz)/guscdiff(i)
6452             duscdiffx(jik,i)=duscdiffx(jik,i)+
6453      &      sum_guscdiff*(dXX_XYZtab(jik,i)*dxx+
6454      &      dYY_XYZtab(jik,i)*dyy+dZZ_XYZtab(jik,i)*dzz)/guscdiff(i)
6455 c
6456 #ifdef DEBUG
6457              write(iout,*) "jik",jik,"i",i
6458              write(iout,*) "dxx, dyy, dzz"
6459              write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz
6460              write(iout,*) "guscdiff2(",k,")",guscdiff2(k)
6461 c            write(iout,*) "sum_sguscdiff",sum_sguscdiff
6462 cc           write(iout,*) "dXX_Ctab(",jik,i,")",dXX_Ctab(jik,i)
6463 c            write(iout,*) "dYY_Ctab(",jik,i,")",dYY_Ctab(jik,i)
6464 c            write(iout,*) "dZZ_Ctab(",jik,i,")",dZZ_Ctab(jik,i)
6465 c            write(iout,*) "dXX_C1tab(",jik,i,")",dXX_C1tab(jik,i)
6466 c            write(iout,*) "dYY_C1tab(",jik,i,")",dYY_C1tab(jik,i)
6467 c            write(iout,*) "dZZ_C1tab(",jik,i,")",dZZ_C1tab(jik,i)
6468 c            write(iout,*) "dXX_XYZtab(",jik,i,")",dXX_XYZtab(jik,i)
6469 c            write(iout,*) "dYY_XYZtab(",jik,i,")",dYY_XYZtab(jik,i)
6470 c            write(iout,*) "dZZ_XYZtab(",jik,i,")",dZZ_XYZtab(jik,i)
6471 c            write(iout,*) "duscdiff(",jik,i-1,")",duscdiff(jik,i-1)
6472 c            write(iout,*) "duscdiff(",jik,i,")",duscdiff(jik,i)
6473 c            write(iout,*) "duscdiffx(",jik,i,")",duscdiffx(jik,i)
6474 c            endif
6475 #endif
6476          enddo
6477         enddo
6478 c
6479 c       uscdiff(i)=-dLOG(guscdiff(i)/(ii-1))      ! Weighting by (ii-1) required?
6480 c        usc_diff(i)=-dLOG(guscdiff(i)/constr_homology) ! + min_uscdiff ?
6481 c
6482 c        write (iout,*) i," uscdiff",uscdiff(i)
6483 c
6484 c Put together deviations from local geometry
6485
6486 c       Uconst_back=Uconst_back+wfrag_back(1,i,iset)*utheta(i)+
6487 c      &            wfrag_back(3,i,iset)*uscdiff(i)
6488         Erot=Erot-dLOG(guscdiff(i)/constr_homology)
6489 c       write (iout,*) "usc_diff(",i,")=",usc_diff(i) ! -ln of sum of exps
6490 c       write (iout,*) "Uconst_back",Uconst_back ! cum sum of -ln-s
6491 c       Uconst_back=Uconst_back+usc_diff(i)
6492 c
6493 c     Gradient of multiple Gaussian restraint (FP - 04/11/2014 - right?)
6494 c
6495 c     New implment: multiplied by sum_sguscdiff
6496 c
6497
6498       enddo ! (i-loop for dscdiff)
6499
6500 c      endif
6501
6502 #ifdef DEBUG
6503       write(iout,*) "------- SC restrs end -------"
6504         write (iout,*) "------ After SC loop in e_modeller ------"
6505         do i=loc_start,loc_end
6506          write (iout,*) "i",i," gradc",(gradc(j,i,icg),j=1,3)
6507          write (iout,*) "i",i," gradx",(gradx(j,i,icg),j=1,3)
6508         enddo
6509       if (waga_theta.eq.1.0d0) then
6510       write (iout,*) "in e_modeller after SC restr end: dutheta"
6511       do i=ithet_start,ithet_end
6512         write (iout,*) i,dutheta(i)
6513       enddo
6514       endif
6515       if (waga_d.eq.1.0d0) then
6516       write (iout,*) "e_modeller after SC loop: duscdiff/x"
6517       do i=1,nres
6518         write (iout,*) i,(duscdiff(j,i),j=1,3)
6519         write (iout,*) i,(duscdiffx(j,i),j=1,3)
6520       enddo
6521       endif
6522 #endif
6523
6524 c Total energy from homology restraints
6525 #ifdef DEBUG
6526       write (iout,*) "odleg",odleg," kat",kat
6527 #endif
6528 c
6529 c Addition of energy of theta angle and SC local geom over constr_homologs ref strs
6530 c
6531 c     ehomology_constr=odleg+kat
6532 c
6533 c     For Lorentzian-type Urestr
6534 c
6535
6536       if (waga_dist.ge.0.0d0) then
6537 c
6538 c          For Gaussian-type Urestr
6539 c
6540         ehomology_constr=(waga_dist*odleg+waga_angle*kat+
6541      &              waga_theta*Eval+waga_d*Erot)*waga_homology(iset)
6542 c     write (iout,*) "ehomology_constr=",ehomology_constr
6543       else
6544 c
6545 c          For Lorentzian-type Urestr
6546 c  
6547         ehomology_constr=(-waga_dist*odleg+waga_angle*kat+
6548      &              waga_theta*Eval+waga_d*Erot)*waga_homology(iset)
6549 c     write (iout,*) "ehomology_constr=",ehomology_constr
6550       endif
6551 #ifdef DEBUG
6552       write (iout,*) "odleg",waga_dist,odleg," kat",waga_angle,kat,
6553      & "Eval",waga_theta,eval,
6554      &   "Erot",waga_d,Erot
6555       write (iout,*) "ehomology_constr",ehomology_constr
6556 #endif
6557       return
6558 c
6559 c FP 01/15 end
6560 c
6561   748 format(a8,f12.3,a6,f12.3,a7,f12.3)
6562   747 format(a12,i4,i4,i4,f8.3,f8.3)
6563   746 format(a12,i4,i4,i4,f8.3,f8.3,f8.3)
6564   778 format(a7,1X,f10.3,1X,a4,1X,f10.3,1X,a5,1X,f10.3)
6565   779 format(i3,1X,i3,1X,i2,1X,a7,1X,f7.3,1X,a7,1X,f7.3,1X,a13,1X,
6566      &       f7.3,1X,a17,1X,f9.3,1X,a10,1X,f8.3,1X,a10,1X,f8.3)
6567       end
6568
6569 c------------------------------------------------------------------------------
6570       subroutine etor_d(etors_d)
6571 C 6/23/01 Compute double torsional energy
6572       implicit real*8 (a-h,o-z)
6573       include 'DIMENSIONS'
6574       include 'COMMON.VAR'
6575       include 'COMMON.GEO'
6576       include 'COMMON.LOCAL'
6577       include 'COMMON.TORSION'
6578       include 'COMMON.INTERACT'
6579       include 'COMMON.DERIV'
6580       include 'COMMON.CHAIN'
6581       include 'COMMON.NAMES'
6582       include 'COMMON.IOUNITS'
6583       include 'COMMON.FFIELD'
6584       include 'COMMON.TORCNSTR'
6585       include 'COMMON.CONTROL'
6586       logical lprn
6587 C Set lprn=.true. for debugging
6588       lprn=.false.
6589 c     lprn=.true.
6590       etors_d=0.0D0
6591       do i=iphid_start,iphid_end
6592         etors_d_ii=0.0D0
6593         itori=itortyp(itype(i-2))
6594         itori1=itortyp(itype(i-1))
6595         itori2=itortyp(itype(i))
6596         phii=phi(i)
6597         phii1=phi(i+1)
6598         gloci1=0.0D0
6599         gloci2=0.0D0
6600         do j=1,ntermd_1(itori,itori1,itori2)
6601           v1cij=v1c(1,j,itori,itori1,itori2)
6602           v1sij=v1s(1,j,itori,itori1,itori2)
6603           v2cij=v1c(2,j,itori,itori1,itori2)
6604           v2sij=v1s(2,j,itori,itori1,itori2)
6605           cosphi1=dcos(j*phii)
6606           sinphi1=dsin(j*phii)
6607           cosphi2=dcos(j*phii1)
6608           sinphi2=dsin(j*phii1)
6609           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
6610      &     v2cij*cosphi2+v2sij*sinphi2
6611           if (energy_dec) etors_d_ii=etors_d_ii+
6612      &     v1cij*cosphi1+v1sij*sinphi1+v2cij*cosphi2+v2sij*sinphi2
6613           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
6614           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
6615         enddo
6616         do k=2,ntermd_2(itori,itori1,itori2)
6617           do l=1,k-1
6618             v1cdij = v2c(k,l,itori,itori1,itori2)
6619             v2cdij = v2c(l,k,itori,itori1,itori2)
6620             v1sdij = v2s(k,l,itori,itori1,itori2)
6621             v2sdij = v2s(l,k,itori,itori1,itori2)
6622             cosphi1p2=dcos(l*phii+(k-l)*phii1)
6623             cosphi1m2=dcos(l*phii-(k-l)*phii1)
6624             sinphi1p2=dsin(l*phii+(k-l)*phii1)
6625             sinphi1m2=dsin(l*phii-(k-l)*phii1)
6626             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
6627      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
6628             if (energy_dec) etors_d_ii=etors_d_ii+
6629      &        v1cdij*cosphi1p2+v2cdij*cosphi1m2+
6630      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
6631             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
6632      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
6633             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
6634      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
6635           enddo
6636         enddo
6637         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
6638      &        'etor_d',i,etors_d_ii
6639         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
6640         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
6641 c        write (iout,*) "gloci", gloc(i-3,icg)
6642       enddo
6643       return
6644       end
6645 #endif
6646 c------------------------------------------------------------------------------
6647       subroutine eback_sc_corr(esccor)
6648 c 7/21/2007 Correlations between the backbone-local and side-chain-local
6649 c        conformational states; temporarily implemented as differences
6650 c        between UNRES torsional potentials (dependent on three types of
6651 c        residues) and the torsional potentials dependent on all 20 types
6652 c        of residues computed from AM1  energy surfaces of terminally-blocked
6653 c        amino-acid residues.
6654       implicit real*8 (a-h,o-z)
6655       include 'DIMENSIONS'
6656       include 'COMMON.VAR'
6657       include 'COMMON.GEO'
6658       include 'COMMON.LOCAL'
6659       include 'COMMON.TORSION'
6660       include 'COMMON.SCCOR'
6661       include 'COMMON.INTERACT'
6662       include 'COMMON.DERIV'
6663       include 'COMMON.CHAIN'
6664       include 'COMMON.NAMES'
6665       include 'COMMON.IOUNITS'
6666       include 'COMMON.FFIELD'
6667       include 'COMMON.CONTROL'
6668       logical lprn
6669 C Set lprn=.true. for debugging
6670       lprn=.false.
6671 c      lprn=.true.
6672 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
6673       esccor=0.0D0
6674       do i=itau_start,itau_end
6675         esccor_ii=0.0D0
6676         if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
6677         isccori=isccortyp(itype(i-2))
6678         isccori1=isccortyp(itype(i-1))
6679         phii=phi(i)
6680 cccc  Added 9 May 2012
6681 cc Tauangle is torsional engle depending on the value of first digit 
6682 c(see comment below)
6683 cc Omicron is flat angle depending on the value of first digit 
6684 c(see comment below)
6685
6686         
6687         do intertyp=1,3 !intertyp
6688 cc Added 09 May 2012 (Adasko)
6689 cc  Intertyp means interaction type of backbone mainchain correlation: 
6690 c   1 = SC...Ca...Ca...Ca
6691 c   2 = Ca...Ca...Ca...SC
6692 c   3 = SC...Ca...Ca...SCi
6693         gloci=0.0D0
6694         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
6695      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
6696      &      (itype(i-1).eq.21)))
6697      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
6698      &     .or.(itype(i-2).eq.21)))
6699      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
6700      &      (itype(i-1).eq.21)))) cycle  
6701         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
6702         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
6703      & cycle
6704         do j=1,nterm_sccor(isccori,isccori1)
6705           v1ij=v1sccor(j,intertyp,isccori,isccori1)
6706           v2ij=v2sccor(j,intertyp,isccori,isccori1)
6707           cosphi=dcos(j*tauangle(intertyp,i))
6708           sinphi=dsin(j*tauangle(intertyp,i))
6709           esccor=esccor+v1ij*cosphi+v2ij*sinphi
6710           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
6711         enddo
6712         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
6713 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
6714 c     &gloc_sc(intertyp,i-3,icg)
6715         if (lprn)
6716      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
6717      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
6718      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
6719      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
6720         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6721        enddo !intertyp
6722       enddo
6723 c        do i=1,nres
6724 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc(i,icg)
6725 c        enddo
6726       return
6727       end
6728 c----------------------------------------------------------------------------
6729       subroutine multibody(ecorr)
6730 C This subroutine calculates multi-body contributions to energy following
6731 C the idea of Skolnick et al. If side chains I and J make a contact and
6732 C at the same time side chains I+1 and J+1 make a contact, an extra 
6733 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6734       implicit real*8 (a-h,o-z)
6735       include 'DIMENSIONS'
6736       include 'COMMON.IOUNITS'
6737       include 'COMMON.DERIV'
6738       include 'COMMON.INTERACT'
6739       include 'COMMON.CONTACTS'
6740       double precision gx(3),gx1(3)
6741       logical lprn
6742
6743 C Set lprn=.true. for debugging
6744       lprn=.false.
6745
6746       if (lprn) then
6747         write (iout,'(a)') 'Contact function values:'
6748         do i=nnt,nct-2
6749           write (iout,'(i2,20(1x,i2,f10.5))') 
6750      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6751         enddo
6752       endif
6753       ecorr=0.0D0
6754       do i=nnt,nct
6755         do j=1,3
6756           gradcorr(j,i)=0.0D0
6757           gradxorr(j,i)=0.0D0
6758         enddo
6759       enddo
6760       do i=nnt,nct-2
6761
6762         DO ISHIFT = 3,4
6763
6764         i1=i+ishift
6765         num_conti=num_cont(i)
6766         num_conti1=num_cont(i1)
6767         do jj=1,num_conti
6768           j=jcont(jj,i)
6769           do kk=1,num_conti1
6770             j1=jcont(kk,i1)
6771             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6772 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6773 cd   &                   ' ishift=',ishift
6774 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6775 C The system gains extra energy.
6776               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6777             endif   ! j1==j+-ishift
6778           enddo     ! kk  
6779         enddo       ! jj
6780
6781         ENDDO ! ISHIFT
6782
6783       enddo         ! i
6784       return
6785       end
6786 c------------------------------------------------------------------------------
6787       double precision function esccorr(i,j,k,l,jj,kk)
6788       implicit real*8 (a-h,o-z)
6789       include 'DIMENSIONS'
6790       include 'COMMON.IOUNITS'
6791       include 'COMMON.DERIV'
6792       include 'COMMON.INTERACT'
6793       include 'COMMON.CONTACTS'
6794       double precision gx(3),gx1(3)
6795       logical lprn
6796       lprn=.false.
6797       eij=facont(jj,i)
6798       ekl=facont(kk,k)
6799 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6800 C Calculate the multi-body contribution to energy.
6801 C Calculate multi-body contributions to the gradient.
6802 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6803 cd   & k,l,(gacont(m,kk,k),m=1,3)
6804       do m=1,3
6805         gx(m) =ekl*gacont(m,jj,i)
6806         gx1(m)=eij*gacont(m,kk,k)
6807         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6808         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6809         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6810         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6811       enddo
6812       do m=i,j-1
6813         do ll=1,3
6814           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6815         enddo
6816       enddo
6817       do m=k,l-1
6818         do ll=1,3
6819           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6820         enddo
6821       enddo 
6822       esccorr=-eij*ekl
6823       return
6824       end
6825 c------------------------------------------------------------------------------
6826       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6827 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6828       implicit real*8 (a-h,o-z)
6829       include 'DIMENSIONS'
6830       include 'COMMON.IOUNITS'
6831 #ifdef MPI
6832       include "mpif.h"
6833       parameter (max_cont=maxconts)
6834       parameter (max_dim=26)
6835       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6836       double precision zapas(max_dim,maxconts,max_fg_procs),
6837      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6838       common /przechowalnia/ zapas
6839       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6840      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6841 #endif
6842       include 'COMMON.SETUP'
6843       include 'COMMON.FFIELD'
6844       include 'COMMON.DERIV'
6845       include 'COMMON.INTERACT'
6846       include 'COMMON.CONTACTS'
6847       include 'COMMON.CONTROL'
6848       include 'COMMON.LOCAL'
6849       double precision gx(3),gx1(3),time00
6850       logical lprn,ldone
6851
6852 C Set lprn=.true. for debugging
6853       lprn=.false.
6854 #ifdef MPI
6855       n_corr=0
6856       n_corr1=0
6857       if (nfgtasks.le.1) goto 30
6858       if (lprn) then
6859         write (iout,'(a)') 'Contact function values before RECEIVE:'
6860         do i=nnt,nct-2
6861           write (iout,'(2i3,50(1x,i2,f5.2))') 
6862      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6863      &    j=1,num_cont_hb(i))
6864         enddo
6865       endif
6866       call flush(iout)
6867       do i=1,ntask_cont_from
6868         ncont_recv(i)=0
6869       enddo
6870       do i=1,ntask_cont_to
6871         ncont_sent(i)=0
6872       enddo
6873 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6874 c     & ntask_cont_to
6875 C Make the list of contacts to send to send to other procesors
6876 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6877 c      call flush(iout)
6878       do i=iturn3_start,iturn3_end
6879 c        write (iout,*) "make contact list turn3",i," num_cont",
6880 c     &    num_cont_hb(i)
6881         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6882       enddo
6883       do i=iturn4_start,iturn4_end
6884 c        write (iout,*) "make contact list turn4",i," num_cont",
6885 c     &   num_cont_hb(i)
6886         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6887       enddo
6888       do ii=1,nat_sent
6889         i=iat_sent(ii)
6890 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6891 c     &    num_cont_hb(i)
6892         do j=1,num_cont_hb(i)
6893         do k=1,4
6894           jjc=jcont_hb(j,i)
6895           iproc=iint_sent_local(k,jjc,ii)
6896 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6897           if (iproc.gt.0) then
6898             ncont_sent(iproc)=ncont_sent(iproc)+1
6899             nn=ncont_sent(iproc)
6900             zapas(1,nn,iproc)=i
6901             zapas(2,nn,iproc)=jjc
6902             zapas(3,nn,iproc)=facont_hb(j,i)
6903             zapas(4,nn,iproc)=ees0p(j,i)
6904             zapas(5,nn,iproc)=ees0m(j,i)
6905             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6906             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6907             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6908             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6909             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6910             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6911             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6912             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6913             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6914             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6915             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6916             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6917             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6918             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6919             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6920             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6921             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6922             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6923             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6924             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6925             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6926           endif
6927         enddo
6928         enddo
6929       enddo
6930       if (lprn) then
6931       write (iout,*) 
6932      &  "Numbers of contacts to be sent to other processors",
6933      &  (ncont_sent(i),i=1,ntask_cont_to)
6934       write (iout,*) "Contacts sent"
6935       do ii=1,ntask_cont_to
6936         nn=ncont_sent(ii)
6937         iproc=itask_cont_to(ii)
6938         write (iout,*) nn," contacts to processor",iproc,
6939      &   " of CONT_TO_COMM group"
6940         do i=1,nn
6941           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6942         enddo
6943       enddo
6944       call flush(iout)
6945       endif
6946       CorrelType=477
6947       CorrelID=fg_rank+1
6948       CorrelType1=478
6949       CorrelID1=nfgtasks+fg_rank+1
6950       ireq=0
6951 C Receive the numbers of needed contacts from other processors 
6952       do ii=1,ntask_cont_from
6953         iproc=itask_cont_from(ii)
6954         ireq=ireq+1
6955         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6956      &    FG_COMM,req(ireq),IERR)
6957       enddo
6958 c      write (iout,*) "IRECV ended"
6959 c      call flush(iout)
6960 C Send the number of contacts needed by other processors
6961       do ii=1,ntask_cont_to
6962         iproc=itask_cont_to(ii)
6963         ireq=ireq+1
6964         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6965      &    FG_COMM,req(ireq),IERR)
6966       enddo
6967 c      write (iout,*) "ISEND ended"
6968 c      write (iout,*) "number of requests (nn)",ireq
6969       call flush(iout)
6970       if (ireq.gt.0) 
6971      &  call MPI_Waitall(ireq,req,status_array,ierr)
6972 c      write (iout,*) 
6973 c     &  "Numbers of contacts to be received from other processors",
6974 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6975 c      call flush(iout)
6976 C Receive contacts
6977       ireq=0
6978       do ii=1,ntask_cont_from
6979         iproc=itask_cont_from(ii)
6980         nn=ncont_recv(ii)
6981 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6982 c     &   " of CONT_TO_COMM group"
6983         call flush(iout)
6984         if (nn.gt.0) then
6985           ireq=ireq+1
6986           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6987      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6988 c          write (iout,*) "ireq,req",ireq,req(ireq)
6989         endif
6990       enddo
6991 C Send the contacts to processors that need them
6992       do ii=1,ntask_cont_to
6993         iproc=itask_cont_to(ii)
6994         nn=ncont_sent(ii)
6995 c        write (iout,*) nn," contacts to processor",iproc,
6996 c     &   " of CONT_TO_COMM group"
6997         if (nn.gt.0) then
6998           ireq=ireq+1 
6999           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
7000      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
7001 c          write (iout,*) "ireq,req",ireq,req(ireq)
7002 c          do i=1,nn
7003 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
7004 c          enddo
7005         endif  
7006       enddo
7007 c      write (iout,*) "number of requests (contacts)",ireq
7008 c      write (iout,*) "req",(req(i),i=1,4)
7009 c      call flush(iout)
7010       if (ireq.gt.0) 
7011      & call MPI_Waitall(ireq,req,status_array,ierr)
7012       do iii=1,ntask_cont_from
7013         iproc=itask_cont_from(iii)
7014         nn=ncont_recv(iii)
7015         if (lprn) then
7016         write (iout,*) "Received",nn," contacts from processor",iproc,
7017      &   " of CONT_FROM_COMM group"
7018         call flush(iout)
7019         do i=1,nn
7020           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
7021         enddo
7022         call flush(iout)
7023         endif
7024         do i=1,nn
7025           ii=zapas_recv(1,i,iii)
7026 c Flag the received contacts to prevent double-counting
7027           jj=-zapas_recv(2,i,iii)
7028 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
7029 c          call flush(iout)
7030           nnn=num_cont_hb(ii)+1
7031           num_cont_hb(ii)=nnn
7032           jcont_hb(nnn,ii)=jj
7033           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
7034           ees0p(nnn,ii)=zapas_recv(4,i,iii)
7035           ees0m(nnn,ii)=zapas_recv(5,i,iii)
7036           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
7037           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
7038           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
7039           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
7040           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
7041           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
7042           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
7043           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
7044           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
7045           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
7046           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
7047           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
7048           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
7049           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
7050           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
7051           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
7052           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
7053           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
7054           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
7055           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
7056           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
7057         enddo
7058       enddo
7059       call flush(iout)
7060       if (lprn) then
7061         write (iout,'(a)') 'Contact function values after receive:'
7062         do i=nnt,nct-2
7063           write (iout,'(2i3,50(1x,i3,f5.2))') 
7064      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
7065      &    j=1,num_cont_hb(i))
7066         enddo
7067         call flush(iout)
7068       endif
7069    30 continue
7070 #endif
7071       if (lprn) then
7072         write (iout,'(a)') 'Contact function values:'
7073         do i=nnt,nct-2
7074           write (iout,'(2i3,50(1x,i3,f5.2))') 
7075      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
7076      &    j=1,num_cont_hb(i))
7077         enddo
7078       endif
7079       ecorr=0.0D0
7080 C Remove the loop below after debugging !!!
7081       do i=nnt,nct
7082         do j=1,3
7083           gradcorr(j,i)=0.0D0
7084           gradxorr(j,i)=0.0D0
7085         enddo
7086       enddo
7087 C Calculate the local-electrostatic correlation terms
7088       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
7089         i1=i+1
7090         num_conti=num_cont_hb(i)
7091         num_conti1=num_cont_hb(i+1)
7092         do jj=1,num_conti
7093           j=jcont_hb(jj,i)
7094           jp=iabs(j)
7095           do kk=1,num_conti1
7096             j1=jcont_hb(kk,i1)
7097             jp1=iabs(j1)
7098 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
7099 c     &         ' jj=',jj,' kk=',kk
7100             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
7101      &          .or. j.lt.0 .and. j1.gt.0) .and.
7102      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
7103 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
7104 C The system gains extra energy.
7105               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
7106               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
7107      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
7108               n_corr=n_corr+1
7109             else if (j1.eq.j) then
7110 C Contacts I-J and I-(J+1) occur simultaneously. 
7111 C The system loses extra energy.
7112 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
7113             endif
7114           enddo ! kk
7115           do kk=1,num_conti
7116             j1=jcont_hb(kk,i)
7117 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
7118 c    &         ' jj=',jj,' kk=',kk
7119             if (j1.eq.j+1) then
7120 C Contacts I-J and (I+1)-J occur simultaneously. 
7121 C The system loses extra energy.
7122 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
7123             endif ! j1==j+1
7124           enddo ! kk
7125         enddo ! jj
7126       enddo ! i
7127       return
7128       end
7129 c------------------------------------------------------------------------------
7130       subroutine add_hb_contact(ii,jj,itask)
7131       implicit real*8 (a-h,o-z)
7132       include "DIMENSIONS"
7133       include "COMMON.IOUNITS"
7134       integer max_cont
7135       integer max_dim
7136       parameter (max_cont=maxconts)
7137       parameter (max_dim=26)
7138       include "COMMON.CONTACTS"
7139       double precision zapas(max_dim,maxconts,max_fg_procs),
7140      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7141       common /przechowalnia/ zapas
7142       integer i,j,ii,jj,iproc,itask(4),nn
7143 c      write (iout,*) "itask",itask
7144       do i=1,2
7145         iproc=itask(i)
7146         if (iproc.gt.0) then
7147           do j=1,num_cont_hb(ii)
7148             jjc=jcont_hb(j,ii)
7149 c            write (iout,*) "i",ii," j",jj," jjc",jjc
7150             if (jjc.eq.jj) then
7151               ncont_sent(iproc)=ncont_sent(iproc)+1
7152               nn=ncont_sent(iproc)
7153               zapas(1,nn,iproc)=ii
7154               zapas(2,nn,iproc)=jjc
7155               zapas(3,nn,iproc)=facont_hb(j,ii)
7156               zapas(4,nn,iproc)=ees0p(j,ii)
7157               zapas(5,nn,iproc)=ees0m(j,ii)
7158               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
7159               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
7160               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
7161               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
7162               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
7163               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
7164               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
7165               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
7166               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
7167               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
7168               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
7169               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
7170               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
7171               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
7172               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
7173               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
7174               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
7175               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
7176               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
7177               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
7178               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
7179               exit
7180             endif
7181           enddo
7182         endif
7183       enddo
7184       return
7185       end
7186 c------------------------------------------------------------------------------
7187       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
7188      &  n_corr1)
7189 C This subroutine calculates multi-body contributions to hydrogen-bonding 
7190       implicit real*8 (a-h,o-z)
7191       include 'DIMENSIONS'
7192       include 'COMMON.IOUNITS'
7193 #ifdef MPI
7194       include "mpif.h"
7195       parameter (max_cont=maxconts)
7196       parameter (max_dim=70)
7197       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
7198       double precision zapas(max_dim,maxconts,max_fg_procs),
7199      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7200       common /przechowalnia/ zapas
7201       integer status(MPI_STATUS_SIZE),req(maxconts*2),
7202      &  status_array(MPI_STATUS_SIZE,maxconts*2)
7203 #endif
7204       include 'COMMON.SETUP'
7205       include 'COMMON.FFIELD'
7206       include 'COMMON.DERIV'
7207       include 'COMMON.LOCAL'
7208       include 'COMMON.INTERACT'
7209       include 'COMMON.CONTACTS'
7210       include 'COMMON.CHAIN'
7211       include 'COMMON.CONTROL'
7212       double precision gx(3),gx1(3)
7213       integer num_cont_hb_old(maxres)
7214       logical lprn,ldone
7215       double precision eello4,eello5,eelo6,eello_turn6
7216       external eello4,eello5,eello6,eello_turn6
7217 C Set lprn=.true. for debugging
7218       lprn=.false.
7219       eturn6=0.0d0
7220 #ifdef MPI
7221       do i=1,nres
7222         num_cont_hb_old(i)=num_cont_hb(i)
7223       enddo
7224       n_corr=0
7225       n_corr1=0
7226       if (nfgtasks.le.1) goto 30
7227       if (lprn) then
7228         write (iout,'(a)') 'Contact function values before RECEIVE:'
7229         do i=nnt,nct-2
7230           write (iout,'(2i3,50(1x,i2,f5.2))') 
7231      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
7232      &    j=1,num_cont_hb(i))
7233         enddo
7234       endif
7235       call flush(iout)
7236       do i=1,ntask_cont_from
7237         ncont_recv(i)=0
7238       enddo
7239       do i=1,ntask_cont_to
7240         ncont_sent(i)=0
7241       enddo
7242 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
7243 c     & ntask_cont_to
7244 C Make the list of contacts to send to send to other procesors
7245       do i=iturn3_start,iturn3_end
7246 c        write (iout,*) "make contact list turn3",i," num_cont",
7247 c     &    num_cont_hb(i)
7248         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
7249       enddo
7250       do i=iturn4_start,iturn4_end
7251 c        write (iout,*) "make contact list turn4",i," num_cont",
7252 c     &   num_cont_hb(i)
7253         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
7254       enddo
7255       do ii=1,nat_sent
7256         i=iat_sent(ii)
7257 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
7258 c     &    num_cont_hb(i)
7259         do j=1,num_cont_hb(i)
7260         do k=1,4
7261           jjc=jcont_hb(j,i)
7262           iproc=iint_sent_local(k,jjc,ii)
7263 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
7264           if (iproc.ne.0) then
7265             ncont_sent(iproc)=ncont_sent(iproc)+1
7266             nn=ncont_sent(iproc)
7267             zapas(1,nn,iproc)=i
7268             zapas(2,nn,iproc)=jjc
7269             zapas(3,nn,iproc)=d_cont(j,i)
7270             ind=3
7271             do kk=1,3
7272               ind=ind+1
7273               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
7274             enddo
7275             do kk=1,2
7276               do ll=1,2
7277                 ind=ind+1
7278                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
7279               enddo
7280             enddo
7281             do jj=1,5
7282               do kk=1,3
7283                 do ll=1,2
7284                   do mm=1,2
7285                     ind=ind+1
7286                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
7287                   enddo
7288                 enddo
7289               enddo
7290             enddo
7291           endif
7292         enddo
7293         enddo
7294       enddo
7295       if (lprn) then
7296       write (iout,*) 
7297      &  "Numbers of contacts to be sent to other processors",
7298      &  (ncont_sent(i),i=1,ntask_cont_to)
7299       write (iout,*) "Contacts sent"
7300       do ii=1,ntask_cont_to
7301         nn=ncont_sent(ii)
7302         iproc=itask_cont_to(ii)
7303         write (iout,*) nn," contacts to processor",iproc,
7304      &   " of CONT_TO_COMM group"
7305         do i=1,nn
7306           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
7307         enddo
7308       enddo
7309       call flush(iout)
7310       endif
7311       CorrelType=477
7312       CorrelID=fg_rank+1
7313       CorrelType1=478
7314       CorrelID1=nfgtasks+fg_rank+1
7315       ireq=0
7316 C Receive the numbers of needed contacts from other processors 
7317       do ii=1,ntask_cont_from
7318         iproc=itask_cont_from(ii)
7319         ireq=ireq+1
7320         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
7321      &    FG_COMM,req(ireq),IERR)
7322       enddo
7323 c      write (iout,*) "IRECV ended"
7324 c      call flush(iout)
7325 C Send the number of contacts needed by other processors
7326       do ii=1,ntask_cont_to
7327         iproc=itask_cont_to(ii)
7328         ireq=ireq+1
7329         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
7330      &    FG_COMM,req(ireq),IERR)
7331       enddo
7332 c      write (iout,*) "ISEND ended"
7333 c      write (iout,*) "number of requests (nn)",ireq
7334       call flush(iout)
7335       if (ireq.gt.0) 
7336      &  call MPI_Waitall(ireq,req,status_array,ierr)
7337 c      write (iout,*) 
7338 c     &  "Numbers of contacts to be received from other processors",
7339 c     &  (ncont_recv(i),i=1,ntask_cont_from)
7340 c      call flush(iout)
7341 C Receive contacts
7342       ireq=0
7343       do ii=1,ntask_cont_from
7344         iproc=itask_cont_from(ii)
7345         nn=ncont_recv(ii)
7346 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
7347 c     &   " of CONT_TO_COMM group"
7348         call flush(iout)
7349         if (nn.gt.0) then
7350           ireq=ireq+1
7351           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
7352      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
7353 c          write (iout,*) "ireq,req",ireq,req(ireq)
7354         endif
7355       enddo
7356 C Send the contacts to processors that need them
7357       do ii=1,ntask_cont_to
7358         iproc=itask_cont_to(ii)
7359         nn=ncont_sent(ii)
7360 c        write (iout,*) nn," contacts to processor",iproc,
7361 c     &   " of CONT_TO_COMM group"
7362         if (nn.gt.0) then
7363           ireq=ireq+1 
7364           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
7365      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
7366 c          write (iout,*) "ireq,req",ireq,req(ireq)
7367 c          do i=1,nn
7368 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
7369 c          enddo
7370         endif  
7371       enddo
7372 c      write (iout,*) "number of requests (contacts)",ireq
7373 c      write (iout,*) "req",(req(i),i=1,4)
7374 c      call flush(iout)
7375       if (ireq.gt.0) 
7376      & call MPI_Waitall(ireq,req,status_array,ierr)
7377       do iii=1,ntask_cont_from
7378         iproc=itask_cont_from(iii)
7379         nn=ncont_recv(iii)
7380         if (lprn) then
7381         write (iout,*) "Received",nn," contacts from processor",iproc,
7382      &   " of CONT_FROM_COMM group"
7383         call flush(iout)
7384         do i=1,nn
7385           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
7386         enddo
7387         call flush(iout)
7388         endif
7389         do i=1,nn
7390           ii=zapas_recv(1,i,iii)
7391 c Flag the received contacts to prevent double-counting
7392           jj=-zapas_recv(2,i,iii)
7393 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
7394 c          call flush(iout)
7395           nnn=num_cont_hb(ii)+1
7396           num_cont_hb(ii)=nnn
7397           jcont_hb(nnn,ii)=jj
7398           d_cont(nnn,ii)=zapas_recv(3,i,iii)
7399           ind=3
7400           do kk=1,3
7401             ind=ind+1
7402             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
7403           enddo
7404           do kk=1,2
7405             do ll=1,2
7406               ind=ind+1
7407               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
7408             enddo
7409           enddo
7410           do jj=1,5
7411             do kk=1,3
7412               do ll=1,2
7413                 do mm=1,2
7414                   ind=ind+1
7415                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
7416                 enddo
7417               enddo
7418             enddo
7419           enddo
7420         enddo
7421       enddo
7422       call flush(iout)
7423       if (lprn) then
7424         write (iout,'(a)') 'Contact function values after receive:'
7425         do i=nnt,nct-2
7426           write (iout,'(2i3,50(1x,i3,5f6.3))') 
7427      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
7428      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
7429         enddo
7430         call flush(iout)
7431       endif
7432    30 continue
7433 #endif
7434       if (lprn) then
7435         write (iout,'(a)') 'Contact function values:'
7436         do i=nnt,nct-2
7437           write (iout,'(2i3,50(1x,i2,5f6.3))') 
7438      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
7439      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
7440         enddo
7441       endif
7442       ecorr=0.0D0
7443       ecorr5=0.0d0
7444       ecorr6=0.0d0
7445 C Remove the loop below after debugging !!!
7446       do i=nnt,nct
7447         do j=1,3
7448           gradcorr(j,i)=0.0D0
7449           gradxorr(j,i)=0.0D0
7450         enddo
7451       enddo
7452 C Calculate the dipole-dipole interaction energies
7453       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
7454       do i=iatel_s,iatel_e+1
7455         num_conti=num_cont_hb(i)
7456         do jj=1,num_conti
7457           j=jcont_hb(jj,i)
7458 #ifdef MOMENT
7459           call dipole(i,j,jj)
7460 #endif
7461         enddo
7462       enddo
7463       endif
7464 C Calculate the local-electrostatic correlation terms
7465 c                write (iout,*) "gradcorr5 in eello5 before loop"
7466 c                do iii=1,nres
7467 c                  write (iout,'(i5,3f10.5)') 
7468 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7469 c                enddo
7470       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
7471 c        write (iout,*) "corr loop i",i
7472         i1=i+1
7473         num_conti=num_cont_hb(i)
7474         num_conti1=num_cont_hb(i+1)
7475         do jj=1,num_conti
7476           j=jcont_hb(jj,i)
7477           jp=iabs(j)
7478           do kk=1,num_conti1
7479             j1=jcont_hb(kk,i1)
7480             jp1=iabs(j1)
7481 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
7482 c     &         ' jj=',jj,' kk=',kk
7483 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
7484             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
7485      &          .or. j.lt.0 .and. j1.gt.0) .and.
7486      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
7487 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
7488 C The system gains extra energy.
7489               n_corr=n_corr+1
7490               sqd1=dsqrt(d_cont(jj,i))
7491               sqd2=dsqrt(d_cont(kk,i1))
7492               sred_geom = sqd1*sqd2
7493               IF (sred_geom.lt.cutoff_corr) THEN
7494                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
7495      &            ekont,fprimcont)
7496 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
7497 cd     &         ' jj=',jj,' kk=',kk
7498                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
7499                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
7500                 do l=1,3
7501                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
7502                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
7503                 enddo
7504                 n_corr1=n_corr1+1
7505 cd               write (iout,*) 'sred_geom=',sred_geom,
7506 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
7507 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
7508 cd               write (iout,*) "g_contij",g_contij
7509 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
7510 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
7511                 call calc_eello(i,jp,i+1,jp1,jj,kk)
7512                 if (wcorr4.gt.0.0d0) 
7513      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
7514                   if (energy_dec.and.wcorr4.gt.0.0d0) 
7515      1                 write (iout,'(a6,4i5,0pf7.3)')
7516      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
7517 c                write (iout,*) "gradcorr5 before eello5"
7518 c                do iii=1,nres
7519 c                  write (iout,'(i5,3f10.5)') 
7520 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7521 c                enddo
7522                 if (wcorr5.gt.0.0d0)
7523      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
7524 c                write (iout,*) "gradcorr5 after eello5"
7525 c                do iii=1,nres
7526 c                  write (iout,'(i5,3f10.5)') 
7527 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7528 c                enddo
7529                   if (energy_dec.and.wcorr5.gt.0.0d0) 
7530      1                 write (iout,'(a6,4i5,0pf7.3)')
7531      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
7532 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
7533 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
7534                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
7535      &               .or. wturn6.eq.0.0d0))then
7536 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
7537                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
7538                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
7539      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
7540 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
7541 cd     &            'ecorr6=',ecorr6
7542 cd                write (iout,'(4e15.5)') sred_geom,
7543 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
7544 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
7545 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
7546                 else if (wturn6.gt.0.0d0
7547      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
7548 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
7549                   eturn6=eturn6+eello_turn6(i,jj,kk)
7550                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
7551      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
7552 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
7553                 endif
7554               ENDIF
7555 1111          continue
7556             endif
7557           enddo ! kk
7558         enddo ! jj
7559       enddo ! i
7560       do i=1,nres
7561         num_cont_hb(i)=num_cont_hb_old(i)
7562       enddo
7563 c                write (iout,*) "gradcorr5 in eello5"
7564 c                do iii=1,nres
7565 c                  write (iout,'(i5,3f10.5)') 
7566 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7567 c                enddo
7568       return
7569       end
7570 c------------------------------------------------------------------------------
7571       subroutine add_hb_contact_eello(ii,jj,itask)
7572       implicit real*8 (a-h,o-z)
7573       include "DIMENSIONS"
7574       include "COMMON.IOUNITS"
7575       integer max_cont
7576       integer max_dim
7577       parameter (max_cont=maxconts)
7578       parameter (max_dim=70)
7579       include "COMMON.CONTACTS"
7580       double precision zapas(max_dim,maxconts,max_fg_procs),
7581      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7582       common /przechowalnia/ zapas
7583       integer i,j,ii,jj,iproc,itask(4),nn
7584 c      write (iout,*) "itask",itask
7585       do i=1,2
7586         iproc=itask(i)
7587         if (iproc.gt.0) then
7588           do j=1,num_cont_hb(ii)
7589             jjc=jcont_hb(j,ii)
7590 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
7591             if (jjc.eq.jj) then
7592               ncont_sent(iproc)=ncont_sent(iproc)+1
7593               nn=ncont_sent(iproc)
7594               zapas(1,nn,iproc)=ii
7595               zapas(2,nn,iproc)=jjc
7596               zapas(3,nn,iproc)=d_cont(j,ii)
7597               ind=3
7598               do kk=1,3
7599                 ind=ind+1
7600                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
7601               enddo
7602               do kk=1,2
7603                 do ll=1,2
7604                   ind=ind+1
7605                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
7606                 enddo
7607               enddo
7608               do jj=1,5
7609                 do kk=1,3
7610                   do ll=1,2
7611                     do mm=1,2
7612                       ind=ind+1
7613                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
7614                     enddo
7615                   enddo
7616                 enddo
7617               enddo
7618               exit
7619             endif
7620           enddo
7621         endif
7622       enddo
7623       return
7624       end
7625 c------------------------------------------------------------------------------
7626       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
7627       implicit real*8 (a-h,o-z)
7628       include 'DIMENSIONS'
7629       include 'COMMON.IOUNITS'
7630       include 'COMMON.DERIV'
7631       include 'COMMON.INTERACT'
7632       include 'COMMON.CONTACTS'
7633       double precision gx(3),gx1(3)
7634       logical lprn
7635       lprn=.false.
7636       eij=facont_hb(jj,i)
7637       ekl=facont_hb(kk,k)
7638       ees0pij=ees0p(jj,i)
7639       ees0pkl=ees0p(kk,k)
7640       ees0mij=ees0m(jj,i)
7641       ees0mkl=ees0m(kk,k)
7642       ekont=eij*ekl
7643       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
7644 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
7645 C Following 4 lines for diagnostics.
7646 cd    ees0pkl=0.0D0
7647 cd    ees0pij=1.0D0
7648 cd    ees0mkl=0.0D0
7649 cd    ees0mij=1.0D0
7650 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
7651 c     & 'Contacts ',i,j,
7652 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
7653 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
7654 c     & 'gradcorr_long'
7655 C Calculate the multi-body contribution to energy.
7656 c      ecorr=ecorr+ekont*ees
7657 C Calculate multi-body contributions to the gradient.
7658       coeffpees0pij=coeffp*ees0pij
7659       coeffmees0mij=coeffm*ees0mij
7660       coeffpees0pkl=coeffp*ees0pkl
7661       coeffmees0mkl=coeffm*ees0mkl
7662       do ll=1,3
7663 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
7664         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
7665      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
7666      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
7667         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
7668      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
7669      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
7670 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
7671         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
7672      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
7673      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
7674         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
7675      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
7676      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
7677         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
7678      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
7679      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
7680         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
7681         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
7682         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
7683      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
7684      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
7685         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
7686         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
7687 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
7688       enddo
7689 c      write (iout,*)
7690 cgrad      do m=i+1,j-1
7691 cgrad        do ll=1,3
7692 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7693 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
7694 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
7695 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
7696 cgrad        enddo
7697 cgrad      enddo
7698 cgrad      do m=k+1,l-1
7699 cgrad        do ll=1,3
7700 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7701 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
7702 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
7703 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
7704 cgrad        enddo
7705 cgrad      enddo 
7706 c      write (iout,*) "ehbcorr",ekont*ees
7707       ehbcorr=ekont*ees
7708       return
7709       end
7710 #ifdef MOMENT
7711 C---------------------------------------------------------------------------
7712       subroutine dipole(i,j,jj)
7713       implicit real*8 (a-h,o-z)
7714       include 'DIMENSIONS'
7715       include 'COMMON.IOUNITS'
7716       include 'COMMON.CHAIN'
7717       include 'COMMON.FFIELD'
7718       include 'COMMON.DERIV'
7719       include 'COMMON.INTERACT'
7720       include 'COMMON.CONTACTS'
7721       include 'COMMON.TORSION'
7722       include 'COMMON.VAR'
7723       include 'COMMON.GEO'
7724       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7725      &  auxmat(2,2)
7726       iti1 = itortyp(itype(i+1))
7727       if (j.lt.nres-1) then
7728         itj1 = itortyp(itype(j+1))
7729       else
7730         itj1=ntortyp+1
7731       endif
7732       do iii=1,2
7733         dipi(iii,1)=Ub2(iii,i)
7734         dipderi(iii)=Ub2der(iii,i)
7735         dipi(iii,2)=b1(iii,iti1)
7736         dipj(iii,1)=Ub2(iii,j)
7737         dipderj(iii)=Ub2der(iii,j)
7738         dipj(iii,2)=b1(iii,itj1)
7739       enddo
7740       kkk=0
7741       do iii=1,2
7742         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7743         do jjj=1,2
7744           kkk=kkk+1
7745           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7746         enddo
7747       enddo
7748       do kkk=1,5
7749         do lll=1,3
7750           mmm=0
7751           do iii=1,2
7752             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7753      &        auxvec(1))
7754             do jjj=1,2
7755               mmm=mmm+1
7756               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7757             enddo
7758           enddo
7759         enddo
7760       enddo
7761       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7762       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7763       do iii=1,2
7764         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7765       enddo
7766       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7767       do iii=1,2
7768         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7769       enddo
7770       return
7771       end
7772 #endif
7773 C---------------------------------------------------------------------------
7774       subroutine calc_eello(i,j,k,l,jj,kk)
7775
7776 C This subroutine computes matrices and vectors needed to calculate 
7777 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7778 C
7779       implicit real*8 (a-h,o-z)
7780       include 'DIMENSIONS'
7781       include 'COMMON.IOUNITS'
7782       include 'COMMON.CHAIN'
7783       include 'COMMON.DERIV'
7784       include 'COMMON.INTERACT'
7785       include 'COMMON.CONTACTS'
7786       include 'COMMON.TORSION'
7787       include 'COMMON.VAR'
7788       include 'COMMON.GEO'
7789       include 'COMMON.FFIELD'
7790       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7791      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7792       logical lprn
7793       common /kutas/ lprn
7794 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7795 cd     & ' jj=',jj,' kk=',kk
7796 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7797 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7798 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7799       do iii=1,2
7800         do jjj=1,2
7801           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7802           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7803         enddo
7804       enddo
7805       call transpose2(aa1(1,1),aa1t(1,1))
7806       call transpose2(aa2(1,1),aa2t(1,1))
7807       do kkk=1,5
7808         do lll=1,3
7809           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7810      &      aa1tder(1,1,lll,kkk))
7811           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7812      &      aa2tder(1,1,lll,kkk))
7813         enddo
7814       enddo 
7815       if (l.eq.j+1) then
7816 C parallel orientation of the two CA-CA-CA frames.
7817         if (i.gt.1) then
7818           iti=itortyp(itype(i))
7819         else
7820           iti=ntortyp+1
7821         endif
7822         itk1=itortyp(itype(k+1))
7823         itj=itortyp(itype(j))
7824         if (l.lt.nres-1) then
7825           itl1=itortyp(itype(l+1))
7826         else
7827           itl1=ntortyp+1
7828         endif
7829 C A1 kernel(j+1) A2T
7830 cd        do iii=1,2
7831 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7832 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7833 cd        enddo
7834         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7835      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7836      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7837 C Following matrices are needed only for 6-th order cumulants
7838         IF (wcorr6.gt.0.0d0) THEN
7839         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7840      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7841      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7842         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7843      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7844      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7845      &   ADtEAderx(1,1,1,1,1,1))
7846         lprn=.false.
7847         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7848      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7849      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7850      &   ADtEA1derx(1,1,1,1,1,1))
7851         ENDIF
7852 C End 6-th order cumulants
7853 cd        lprn=.false.
7854 cd        if (lprn) then
7855 cd        write (2,*) 'In calc_eello6'
7856 cd        do iii=1,2
7857 cd          write (2,*) 'iii=',iii
7858 cd          do kkk=1,5
7859 cd            write (2,*) 'kkk=',kkk
7860 cd            do jjj=1,2
7861 cd              write (2,'(3(2f10.5),5x)') 
7862 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7863 cd            enddo
7864 cd          enddo
7865 cd        enddo
7866 cd        endif
7867         call transpose2(EUgder(1,1,k),auxmat(1,1))
7868         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7869         call transpose2(EUg(1,1,k),auxmat(1,1))
7870         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7871         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7872         do iii=1,2
7873           do kkk=1,5
7874             do lll=1,3
7875               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7876      &          EAEAderx(1,1,lll,kkk,iii,1))
7877             enddo
7878           enddo
7879         enddo
7880 C A1T kernel(i+1) A2
7881         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7882      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7883      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7884 C Following matrices are needed only for 6-th order cumulants
7885         IF (wcorr6.gt.0.0d0) THEN
7886         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7887      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7888      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7889         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7890      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7891      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7892      &   ADtEAderx(1,1,1,1,1,2))
7893         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7894      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7895      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7896      &   ADtEA1derx(1,1,1,1,1,2))
7897         ENDIF
7898 C End 6-th order cumulants
7899         call transpose2(EUgder(1,1,l),auxmat(1,1))
7900         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7901         call transpose2(EUg(1,1,l),auxmat(1,1))
7902         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7903         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7904         do iii=1,2
7905           do kkk=1,5
7906             do lll=1,3
7907               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7908      &          EAEAderx(1,1,lll,kkk,iii,2))
7909             enddo
7910           enddo
7911         enddo
7912 C AEAb1 and AEAb2
7913 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7914 C They are needed only when the fifth- or the sixth-order cumulants are
7915 C indluded.
7916         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7917         call transpose2(AEA(1,1,1),auxmat(1,1))
7918         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7919         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7920         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7921         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7922         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7923         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7924         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7925         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7926         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7927         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7928         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7929         call transpose2(AEA(1,1,2),auxmat(1,1))
7930         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7931         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7932         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7933         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7934         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7935         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7936         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7937         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7938         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7939         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7940         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7941 C Calculate the Cartesian derivatives of the vectors.
7942         do iii=1,2
7943           do kkk=1,5
7944             do lll=1,3
7945               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7946               call matvec2(auxmat(1,1),b1(1,iti),
7947      &          AEAb1derx(1,lll,kkk,iii,1,1))
7948               call matvec2(auxmat(1,1),Ub2(1,i),
7949      &          AEAb2derx(1,lll,kkk,iii,1,1))
7950               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7951      &          AEAb1derx(1,lll,kkk,iii,2,1))
7952               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7953      &          AEAb2derx(1,lll,kkk,iii,2,1))
7954               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7955               call matvec2(auxmat(1,1),b1(1,itj),
7956      &          AEAb1derx(1,lll,kkk,iii,1,2))
7957               call matvec2(auxmat(1,1),Ub2(1,j),
7958      &          AEAb2derx(1,lll,kkk,iii,1,2))
7959               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7960      &          AEAb1derx(1,lll,kkk,iii,2,2))
7961               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7962      &          AEAb2derx(1,lll,kkk,iii,2,2))
7963             enddo
7964           enddo
7965         enddo
7966         ENDIF
7967 C End vectors
7968       else
7969 C Antiparallel orientation of the two CA-CA-CA frames.
7970         if (i.gt.1) then
7971           iti=itortyp(itype(i))
7972         else
7973           iti=ntortyp+1
7974         endif
7975         itk1=itortyp(itype(k+1))
7976         itl=itortyp(itype(l))
7977         itj=itortyp(itype(j))
7978         if (j.lt.nres-1) then
7979           itj1=itortyp(itype(j+1))
7980         else 
7981           itj1=ntortyp+1
7982         endif
7983 C A2 kernel(j-1)T A1T
7984         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7985      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7986      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7987 C Following matrices are needed only for 6-th order cumulants
7988         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7989      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7990         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7991      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7992      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7993         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7994      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7995      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7996      &   ADtEAderx(1,1,1,1,1,1))
7997         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7998      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7999      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
8000      &   ADtEA1derx(1,1,1,1,1,1))
8001         ENDIF
8002 C End 6-th order cumulants
8003         call transpose2(EUgder(1,1,k),auxmat(1,1))
8004         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
8005         call transpose2(EUg(1,1,k),auxmat(1,1))
8006         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
8007         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
8008         do iii=1,2
8009           do kkk=1,5
8010             do lll=1,3
8011               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
8012      &          EAEAderx(1,1,lll,kkk,iii,1))
8013             enddo
8014           enddo
8015         enddo
8016 C A2T kernel(i+1)T A1
8017         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
8018      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
8019      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
8020 C Following matrices are needed only for 6-th order cumulants
8021         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
8022      &     j.eq.i+4 .and. l.eq.i+3)) THEN
8023         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
8024      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
8025      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
8026         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
8027      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
8028      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
8029      &   ADtEAderx(1,1,1,1,1,2))
8030         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
8031      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
8032      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
8033      &   ADtEA1derx(1,1,1,1,1,2))
8034         ENDIF
8035 C End 6-th order cumulants
8036         call transpose2(EUgder(1,1,j),auxmat(1,1))
8037         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
8038         call transpose2(EUg(1,1,j),auxmat(1,1))
8039         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
8040         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
8041         do iii=1,2
8042           do kkk=1,5
8043             do lll=1,3
8044               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
8045      &          EAEAderx(1,1,lll,kkk,iii,2))
8046             enddo
8047           enddo
8048         enddo
8049 C AEAb1 and AEAb2
8050 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
8051 C They are needed only when the fifth- or the sixth-order cumulants are
8052 C indluded.
8053         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
8054      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
8055         call transpose2(AEA(1,1,1),auxmat(1,1))
8056         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
8057         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
8058         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
8059         call transpose2(AEAderg(1,1,1),auxmat(1,1))
8060         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
8061         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
8062         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
8063         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
8064         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
8065         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
8066         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
8067         call transpose2(AEA(1,1,2),auxmat(1,1))
8068         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
8069         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
8070         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
8071         call transpose2(AEAderg(1,1,2),auxmat(1,1))
8072         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
8073         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
8074         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
8075         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
8076         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
8077         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
8078         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
8079 C Calculate the Cartesian derivatives of the vectors.
8080         do iii=1,2
8081           do kkk=1,5
8082             do lll=1,3
8083               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
8084               call matvec2(auxmat(1,1),b1(1,iti),
8085      &          AEAb1derx(1,lll,kkk,iii,1,1))
8086               call matvec2(auxmat(1,1),Ub2(1,i),
8087      &          AEAb2derx(1,lll,kkk,iii,1,1))
8088               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8089      &          AEAb1derx(1,lll,kkk,iii,2,1))
8090               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
8091      &          AEAb2derx(1,lll,kkk,iii,2,1))
8092               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
8093               call matvec2(auxmat(1,1),b1(1,itl),
8094      &          AEAb1derx(1,lll,kkk,iii,1,2))
8095               call matvec2(auxmat(1,1),Ub2(1,l),
8096      &          AEAb2derx(1,lll,kkk,iii,1,2))
8097               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
8098      &          AEAb1derx(1,lll,kkk,iii,2,2))
8099               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
8100      &          AEAb2derx(1,lll,kkk,iii,2,2))
8101             enddo
8102           enddo
8103         enddo
8104         ENDIF
8105 C End vectors
8106       endif
8107       return
8108       end
8109 C---------------------------------------------------------------------------
8110       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
8111      &  KK,KKderg,AKA,AKAderg,AKAderx)
8112       implicit none
8113       integer nderg
8114       logical transp
8115       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
8116      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
8117      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
8118       integer iii,kkk,lll
8119       integer jjj,mmm
8120       logical lprn
8121       common /kutas/ lprn
8122       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
8123       do iii=1,nderg 
8124         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
8125      &    AKAderg(1,1,iii))
8126       enddo
8127 cd      if (lprn) write (2,*) 'In kernel'
8128       do kkk=1,5
8129 cd        if (lprn) write (2,*) 'kkk=',kkk
8130         do lll=1,3
8131           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
8132      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
8133 cd          if (lprn) then
8134 cd            write (2,*) 'lll=',lll
8135 cd            write (2,*) 'iii=1'
8136 cd            do jjj=1,2
8137 cd              write (2,'(3(2f10.5),5x)') 
8138 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
8139 cd            enddo
8140 cd          endif
8141           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
8142      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
8143 cd          if (lprn) then
8144 cd            write (2,*) 'lll=',lll
8145 cd            write (2,*) 'iii=2'
8146 cd            do jjj=1,2
8147 cd              write (2,'(3(2f10.5),5x)') 
8148 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
8149 cd            enddo
8150 cd          endif
8151         enddo
8152       enddo
8153       return
8154       end
8155 C---------------------------------------------------------------------------
8156       double precision function eello4(i,j,k,l,jj,kk)
8157       implicit real*8 (a-h,o-z)
8158       include 'DIMENSIONS'
8159       include 'COMMON.IOUNITS'
8160       include 'COMMON.CHAIN'
8161       include 'COMMON.DERIV'
8162       include 'COMMON.INTERACT'
8163       include 'COMMON.CONTACTS'
8164       include 'COMMON.TORSION'
8165       include 'COMMON.VAR'
8166       include 'COMMON.GEO'
8167       double precision pizda(2,2),ggg1(3),ggg2(3)
8168 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
8169 cd        eello4=0.0d0
8170 cd        return
8171 cd      endif
8172 cd      print *,'eello4:',i,j,k,l,jj,kk
8173 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
8174 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
8175 cold      eij=facont_hb(jj,i)
8176 cold      ekl=facont_hb(kk,k)
8177 cold      ekont=eij*ekl
8178       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
8179 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
8180       gcorr_loc(k-1)=gcorr_loc(k-1)
8181      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
8182       if (l.eq.j+1) then
8183         gcorr_loc(l-1)=gcorr_loc(l-1)
8184      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
8185       else
8186         gcorr_loc(j-1)=gcorr_loc(j-1)
8187      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
8188       endif
8189       do iii=1,2
8190         do kkk=1,5
8191           do lll=1,3
8192             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
8193      &                        -EAEAderx(2,2,lll,kkk,iii,1)
8194 cd            derx(lll,kkk,iii)=0.0d0
8195           enddo
8196         enddo
8197       enddo
8198 cd      gcorr_loc(l-1)=0.0d0
8199 cd      gcorr_loc(j-1)=0.0d0
8200 cd      gcorr_loc(k-1)=0.0d0
8201 cd      eel4=1.0d0
8202 cd      write (iout,*)'Contacts have occurred for peptide groups',
8203 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
8204 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
8205       if (j.lt.nres-1) then
8206         j1=j+1
8207         j2=j-1
8208       else
8209         j1=j-1
8210         j2=j-2
8211       endif
8212       if (l.lt.nres-1) then
8213         l1=l+1
8214         l2=l-1
8215       else
8216         l1=l-1
8217         l2=l-2
8218       endif
8219       do ll=1,3
8220 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
8221 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
8222         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
8223         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
8224 cgrad        ghalf=0.5d0*ggg1(ll)
8225         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
8226         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
8227         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
8228         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
8229         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
8230         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
8231 cgrad        ghalf=0.5d0*ggg2(ll)
8232         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
8233         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
8234         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
8235         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
8236         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
8237         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
8238       enddo
8239 cgrad      do m=i+1,j-1
8240 cgrad        do ll=1,3
8241 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
8242 cgrad        enddo
8243 cgrad      enddo
8244 cgrad      do m=k+1,l-1
8245 cgrad        do ll=1,3
8246 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
8247 cgrad        enddo
8248 cgrad      enddo
8249 cgrad      do m=i+2,j2
8250 cgrad        do ll=1,3
8251 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
8252 cgrad        enddo
8253 cgrad      enddo
8254 cgrad      do m=k+2,l2
8255 cgrad        do ll=1,3
8256 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
8257 cgrad        enddo
8258 cgrad      enddo 
8259 cd      do iii=1,nres-3
8260 cd        write (2,*) iii,gcorr_loc(iii)
8261 cd      enddo
8262       eello4=ekont*eel4
8263 cd      write (2,*) 'ekont',ekont
8264 cd      write (iout,*) 'eello4',ekont*eel4
8265       return
8266       end
8267 C---------------------------------------------------------------------------
8268       double precision function eello5(i,j,k,l,jj,kk)
8269       implicit real*8 (a-h,o-z)
8270       include 'DIMENSIONS'
8271       include 'COMMON.IOUNITS'
8272       include 'COMMON.CHAIN'
8273       include 'COMMON.DERIV'
8274       include 'COMMON.INTERACT'
8275       include 'COMMON.CONTACTS'
8276       include 'COMMON.TORSION'
8277       include 'COMMON.VAR'
8278       include 'COMMON.GEO'
8279       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
8280       double precision ggg1(3),ggg2(3)
8281 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8282 C                                                                              C
8283 C                            Parallel chains                                   C
8284 C                                                                              C
8285 C          o             o                   o             o                   C
8286 C         /l\           / \             \   / \           / \   /              C
8287 C        /   \         /   \             \ /   \         /   \ /               C
8288 C       j| o |l1       | o |              o| o |         | o |o                C
8289 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
8290 C      \i/   \         /   \ /             /   \         /   \                 C
8291 C       o    k1             o                                                  C
8292 C         (I)          (II)                (III)          (IV)                 C
8293 C                                                                              C
8294 C      eello5_1        eello5_2            eello5_3       eello5_4             C
8295 C                                                                              C
8296 C                            Antiparallel chains                               C
8297 C                                                                              C
8298 C          o             o                   o             o                   C
8299 C         /j\           / \             \   / \           / \   /              C
8300 C        /   \         /   \             \ /   \         /   \ /               C
8301 C      j1| o |l        | o |              o| o |         | o |o                C
8302 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
8303 C      \i/   \         /   \ /             /   \         /   \                 C
8304 C       o     k1            o                                                  C
8305 C         (I)          (II)                (III)          (IV)                 C
8306 C                                                                              C
8307 C      eello5_1        eello5_2            eello5_3       eello5_4             C
8308 C                                                                              C
8309 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
8310 C                                                                              C
8311 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8312 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
8313 cd        eello5=0.0d0
8314 cd        return
8315 cd      endif
8316 cd      write (iout,*)
8317 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
8318 cd     &   ' and',k,l
8319       itk=itortyp(itype(k))
8320       itl=itortyp(itype(l))
8321       itj=itortyp(itype(j))
8322       eello5_1=0.0d0
8323       eello5_2=0.0d0
8324       eello5_3=0.0d0
8325       eello5_4=0.0d0
8326 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
8327 cd     &   eel5_3_num,eel5_4_num)
8328       do iii=1,2
8329         do kkk=1,5
8330           do lll=1,3
8331             derx(lll,kkk,iii)=0.0d0
8332           enddo
8333         enddo
8334       enddo
8335 cd      eij=facont_hb(jj,i)
8336 cd      ekl=facont_hb(kk,k)
8337 cd      ekont=eij*ekl
8338 cd      write (iout,*)'Contacts have occurred for peptide groups',
8339 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
8340 cd      goto 1111
8341 C Contribution from the graph I.
8342 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
8343 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
8344       call transpose2(EUg(1,1,k),auxmat(1,1))
8345       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
8346       vv(1)=pizda(1,1)-pizda(2,2)
8347       vv(2)=pizda(1,2)+pizda(2,1)
8348       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
8349      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
8350 C Explicit gradient in virtual-dihedral angles.
8351       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
8352      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
8353      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
8354       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8355       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
8356       vv(1)=pizda(1,1)-pizda(2,2)
8357       vv(2)=pizda(1,2)+pizda(2,1)
8358       g_corr5_loc(k-1)=g_corr5_loc(k-1)
8359      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
8360      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8361       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
8362       vv(1)=pizda(1,1)-pizda(2,2)
8363       vv(2)=pizda(1,2)+pizda(2,1)
8364       if (l.eq.j+1) then
8365         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
8366      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
8367      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8368       else
8369         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
8370      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
8371      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8372       endif 
8373 C Cartesian gradient
8374       do iii=1,2
8375         do kkk=1,5
8376           do lll=1,3
8377             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
8378      &        pizda(1,1))
8379             vv(1)=pizda(1,1)-pizda(2,2)
8380             vv(2)=pizda(1,2)+pizda(2,1)
8381             derx(lll,kkk,iii)=derx(lll,kkk,iii)
8382      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
8383      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
8384           enddo
8385         enddo
8386       enddo
8387 c      goto 1112
8388 c1111  continue
8389 C Contribution from graph II 
8390       call transpose2(EE(1,1,itk),auxmat(1,1))
8391       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
8392       vv(1)=pizda(1,1)+pizda(2,2)
8393       vv(2)=pizda(2,1)-pizda(1,2)
8394       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
8395      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
8396 C Explicit gradient in virtual-dihedral angles.
8397       g_corr5_loc(k-1)=g_corr5_loc(k-1)
8398      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
8399       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
8400       vv(1)=pizda(1,1)+pizda(2,2)
8401       vv(2)=pizda(2,1)-pizda(1,2)
8402       if (l.eq.j+1) then
8403         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8404      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
8405      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
8406       else
8407         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8408      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
8409      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
8410       endif
8411 C Cartesian gradient
8412       do iii=1,2
8413         do kkk=1,5
8414           do lll=1,3
8415             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
8416      &        pizda(1,1))
8417             vv(1)=pizda(1,1)+pizda(2,2)
8418             vv(2)=pizda(2,1)-pizda(1,2)
8419             derx(lll,kkk,iii)=derx(lll,kkk,iii)
8420      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
8421      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
8422           enddo
8423         enddo
8424       enddo
8425 cd      goto 1112
8426 cd1111  continue
8427       if (l.eq.j+1) then
8428 cd        goto 1110
8429 C Parallel orientation
8430 C Contribution from graph III
8431         call transpose2(EUg(1,1,l),auxmat(1,1))
8432         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
8433         vv(1)=pizda(1,1)-pizda(2,2)
8434         vv(2)=pizda(1,2)+pizda(2,1)
8435         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
8436      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
8437 C Explicit gradient in virtual-dihedral angles.
8438         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8439      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
8440      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
8441         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
8442         vv(1)=pizda(1,1)-pizda(2,2)
8443         vv(2)=pizda(1,2)+pizda(2,1)
8444         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8445      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
8446      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
8447         call transpose2(EUgder(1,1,l),auxmat1(1,1))
8448         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
8449         vv(1)=pizda(1,1)-pizda(2,2)
8450         vv(2)=pizda(1,2)+pizda(2,1)
8451         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8452      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
8453      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
8454 C Cartesian gradient
8455         do iii=1,2
8456           do kkk=1,5
8457             do lll=1,3
8458               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
8459      &          pizda(1,1))
8460               vv(1)=pizda(1,1)-pizda(2,2)
8461               vv(2)=pizda(1,2)+pizda(2,1)
8462               derx(lll,kkk,iii)=derx(lll,kkk,iii)
8463      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
8464      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
8465             enddo
8466           enddo
8467         enddo
8468 cd        goto 1112
8469 C Contribution from graph IV
8470 cd1110    continue
8471         call transpose2(EE(1,1,itl),auxmat(1,1))
8472         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
8473         vv(1)=pizda(1,1)+pizda(2,2)
8474         vv(2)=pizda(2,1)-pizda(1,2)
8475         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
8476      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
8477 C Explicit gradient in virtual-dihedral angles.
8478         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8479      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
8480         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
8481         vv(1)=pizda(1,1)+pizda(2,2)
8482         vv(2)=pizda(2,1)-pizda(1,2)
8483         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8484      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
8485      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
8486 C Cartesian gradient
8487         do iii=1,2
8488           do kkk=1,5
8489             do lll=1,3
8490               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
8491      &          pizda(1,1))
8492               vv(1)=pizda(1,1)+pizda(2,2)
8493               vv(2)=pizda(2,1)-pizda(1,2)
8494               derx(lll,kkk,iii)=derx(lll,kkk,iii)
8495      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
8496      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
8497             enddo
8498           enddo
8499         enddo
8500       else
8501 C Antiparallel orientation
8502 C Contribution from graph III
8503 c        goto 1110
8504         call transpose2(EUg(1,1,j),auxmat(1,1))
8505         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
8506         vv(1)=pizda(1,1)-pizda(2,2)
8507         vv(2)=pizda(1,2)+pizda(2,1)
8508         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
8509      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
8510 C Explicit gradient in virtual-dihedral angles.
8511         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8512      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
8513      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
8514         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
8515         vv(1)=pizda(1,1)-pizda(2,2)
8516         vv(2)=pizda(1,2)+pizda(2,1)
8517         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8518      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
8519      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
8520         call transpose2(EUgder(1,1,j),auxmat1(1,1))
8521         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
8522         vv(1)=pizda(1,1)-pizda(2,2)
8523         vv(2)=pizda(1,2)+pizda(2,1)
8524         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8525      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
8526      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
8527 C Cartesian gradient
8528         do iii=1,2
8529           do kkk=1,5
8530             do lll=1,3
8531               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
8532      &          pizda(1,1))
8533               vv(1)=pizda(1,1)-pizda(2,2)
8534               vv(2)=pizda(1,2)+pizda(2,1)
8535               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
8536      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
8537      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
8538             enddo
8539           enddo
8540         enddo
8541 cd        goto 1112
8542 C Contribution from graph IV
8543 1110    continue
8544         call transpose2(EE(1,1,itj),auxmat(1,1))
8545         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
8546         vv(1)=pizda(1,1)+pizda(2,2)
8547         vv(2)=pizda(2,1)-pizda(1,2)
8548         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
8549      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
8550 C Explicit gradient in virtual-dihedral angles.
8551         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8552      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
8553         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
8554         vv(1)=pizda(1,1)+pizda(2,2)
8555         vv(2)=pizda(2,1)-pizda(1,2)
8556         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8557      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
8558      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
8559 C Cartesian gradient
8560         do iii=1,2
8561           do kkk=1,5
8562             do lll=1,3
8563               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
8564      &          pizda(1,1))
8565               vv(1)=pizda(1,1)+pizda(2,2)
8566               vv(2)=pizda(2,1)-pizda(1,2)
8567               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
8568      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
8569      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
8570             enddo
8571           enddo
8572         enddo
8573       endif
8574 1112  continue
8575       eel5=eello5_1+eello5_2+eello5_3+eello5_4
8576 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
8577 cd        write (2,*) 'ijkl',i,j,k,l
8578 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
8579 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
8580 cd      endif
8581 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
8582 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
8583 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
8584 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
8585       if (j.lt.nres-1) then
8586         j1=j+1
8587         j2=j-1
8588       else
8589         j1=j-1
8590         j2=j-2
8591       endif
8592       if (l.lt.nres-1) then
8593         l1=l+1
8594         l2=l-1
8595       else
8596         l1=l-1
8597         l2=l-2
8598       endif
8599 cd      eij=1.0d0
8600 cd      ekl=1.0d0
8601 cd      ekont=1.0d0
8602 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
8603 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
8604 C        summed up outside the subrouine as for the other subroutines 
8605 C        handling long-range interactions. The old code is commented out
8606 C        with "cgrad" to keep track of changes.
8607       do ll=1,3
8608 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
8609 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
8610         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
8611         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
8612 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
8613 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
8614 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
8615 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
8616 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
8617 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
8618 c     &   gradcorr5ij,
8619 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
8620 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
8621 cgrad        ghalf=0.5d0*ggg1(ll)
8622 cd        ghalf=0.0d0
8623         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
8624         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
8625         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
8626         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
8627         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
8628         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
8629 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
8630 cgrad        ghalf=0.5d0*ggg2(ll)
8631 cd        ghalf=0.0d0
8632         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
8633         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
8634         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
8635         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
8636         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
8637         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
8638       enddo
8639 cd      goto 1112
8640 cgrad      do m=i+1,j-1
8641 cgrad        do ll=1,3
8642 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
8643 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
8644 cgrad        enddo
8645 cgrad      enddo
8646 cgrad      do m=k+1,l-1
8647 cgrad        do ll=1,3
8648 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
8649 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
8650 cgrad        enddo
8651 cgrad      enddo
8652 c1112  continue
8653 cgrad      do m=i+2,j2
8654 cgrad        do ll=1,3
8655 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
8656 cgrad        enddo
8657 cgrad      enddo
8658 cgrad      do m=k+2,l2
8659 cgrad        do ll=1,3
8660 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
8661 cgrad        enddo
8662 cgrad      enddo 
8663 cd      do iii=1,nres-3
8664 cd        write (2,*) iii,g_corr5_loc(iii)
8665 cd      enddo
8666       eello5=ekont*eel5
8667 cd      write (2,*) 'ekont',ekont
8668 cd      write (iout,*) 'eello5',ekont*eel5
8669       return
8670       end
8671 c--------------------------------------------------------------------------
8672       double precision function eello6(i,j,k,l,jj,kk)
8673       implicit real*8 (a-h,o-z)
8674       include 'DIMENSIONS'
8675       include 'COMMON.IOUNITS'
8676       include 'COMMON.CHAIN'
8677       include 'COMMON.DERIV'
8678       include 'COMMON.INTERACT'
8679       include 'COMMON.CONTACTS'
8680       include 'COMMON.TORSION'
8681       include 'COMMON.VAR'
8682       include 'COMMON.GEO'
8683       include 'COMMON.FFIELD'
8684       double precision ggg1(3),ggg2(3)
8685 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8686 cd        eello6=0.0d0
8687 cd        return
8688 cd      endif
8689 cd      write (iout,*)
8690 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8691 cd     &   ' and',k,l
8692       eello6_1=0.0d0
8693       eello6_2=0.0d0
8694       eello6_3=0.0d0
8695       eello6_4=0.0d0
8696       eello6_5=0.0d0
8697       eello6_6=0.0d0
8698 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
8699 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
8700       do iii=1,2
8701         do kkk=1,5
8702           do lll=1,3
8703             derx(lll,kkk,iii)=0.0d0
8704           enddo
8705         enddo
8706       enddo
8707 cd      eij=facont_hb(jj,i)
8708 cd      ekl=facont_hb(kk,k)
8709 cd      ekont=eij*ekl
8710 cd      eij=1.0d0
8711 cd      ekl=1.0d0
8712 cd      ekont=1.0d0
8713       if (l.eq.j+1) then
8714         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8715         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
8716         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
8717         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8718         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8719         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8720       else
8721         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8722         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8723         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8724         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8725         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8726           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8727         else
8728           eello6_5=0.0d0
8729         endif
8730         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8731       endif
8732 C If turn contributions are considered, they will be handled separately.
8733       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8734 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8735 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8736 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8737 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8738 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8739 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8740 cd      goto 1112
8741       if (j.lt.nres-1) then
8742         j1=j+1
8743         j2=j-1
8744       else
8745         j1=j-1
8746         j2=j-2
8747       endif
8748       if (l.lt.nres-1) then
8749         l1=l+1
8750         l2=l-1
8751       else
8752         l1=l-1
8753         l2=l-2
8754       endif
8755       do ll=1,3
8756 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8757 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8758 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8759 cgrad        ghalf=0.5d0*ggg1(ll)
8760 cd        ghalf=0.0d0
8761         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8762         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8763         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8764         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8765         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8766         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8767         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8768         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8769 cgrad        ghalf=0.5d0*ggg2(ll)
8770 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8771 cd        ghalf=0.0d0
8772         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8773         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8774         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8775         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8776         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8777         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8778       enddo
8779 cd      goto 1112
8780 cgrad      do m=i+1,j-1
8781 cgrad        do ll=1,3
8782 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8783 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8784 cgrad        enddo
8785 cgrad      enddo
8786 cgrad      do m=k+1,l-1
8787 cgrad        do ll=1,3
8788 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8789 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8790 cgrad        enddo
8791 cgrad      enddo
8792 cgrad1112  continue
8793 cgrad      do m=i+2,j2
8794 cgrad        do ll=1,3
8795 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8796 cgrad        enddo
8797 cgrad      enddo
8798 cgrad      do m=k+2,l2
8799 cgrad        do ll=1,3
8800 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8801 cgrad        enddo
8802 cgrad      enddo 
8803 cd      do iii=1,nres-3
8804 cd        write (2,*) iii,g_corr6_loc(iii)
8805 cd      enddo
8806       eello6=ekont*eel6
8807 cd      write (2,*) 'ekont',ekont
8808 cd      write (iout,*) 'eello6',ekont*eel6
8809       return
8810       end
8811 c--------------------------------------------------------------------------
8812       double precision function eello6_graph1(i,j,k,l,imat,swap)
8813       implicit real*8 (a-h,o-z)
8814       include 'DIMENSIONS'
8815       include 'COMMON.IOUNITS'
8816       include 'COMMON.CHAIN'
8817       include 'COMMON.DERIV'
8818       include 'COMMON.INTERACT'
8819       include 'COMMON.CONTACTS'
8820       include 'COMMON.TORSION'
8821       include 'COMMON.VAR'
8822       include 'COMMON.GEO'
8823       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8824       logical swap
8825       logical lprn
8826       common /kutas/ lprn
8827 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8828 C                                              
8829 C      Parallel       Antiparallel
8830 C                                             
8831 C          o             o         
8832 C         /l\           /j\
8833 C        /   \         /   \
8834 C       /| o |         | o |\
8835 C     \ j|/k\|  /   \  |/k\|l /   
8836 C      \ /   \ /     \ /   \ /    
8837 C       o     o       o     o                
8838 C       i             i                     
8839 C
8840 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8841       itk=itortyp(itype(k))
8842       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8843       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8844       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8845       call transpose2(EUgC(1,1,k),auxmat(1,1))
8846       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8847       vv1(1)=pizda1(1,1)-pizda1(2,2)
8848       vv1(2)=pizda1(1,2)+pizda1(2,1)
8849       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8850       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8851       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8852       s5=scalar2(vv(1),Dtobr2(1,i))
8853 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8854       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8855       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8856      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8857      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8858      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8859      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8860      & +scalar2(vv(1),Dtobr2der(1,i)))
8861       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8862       vv1(1)=pizda1(1,1)-pizda1(2,2)
8863       vv1(2)=pizda1(1,2)+pizda1(2,1)
8864       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8865       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8866       if (l.eq.j+1) then
8867         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8868      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8869      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8870      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8871      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8872       else
8873         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8874      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8875      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8876      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8877      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8878       endif
8879       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8880       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8881       vv1(1)=pizda1(1,1)-pizda1(2,2)
8882       vv1(2)=pizda1(1,2)+pizda1(2,1)
8883       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8884      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8885      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8886      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8887       do iii=1,2
8888         if (swap) then
8889           ind=3-iii
8890         else
8891           ind=iii
8892         endif
8893         do kkk=1,5
8894           do lll=1,3
8895             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8896             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8897             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8898             call transpose2(EUgC(1,1,k),auxmat(1,1))
8899             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8900      &        pizda1(1,1))
8901             vv1(1)=pizda1(1,1)-pizda1(2,2)
8902             vv1(2)=pizda1(1,2)+pizda1(2,1)
8903             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8904             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8905      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8906             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8907      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8908             s5=scalar2(vv(1),Dtobr2(1,i))
8909             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8910           enddo
8911         enddo
8912       enddo
8913       return
8914       end
8915 c----------------------------------------------------------------------------
8916       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8917       implicit real*8 (a-h,o-z)
8918       include 'DIMENSIONS'
8919       include 'COMMON.IOUNITS'
8920       include 'COMMON.CHAIN'
8921       include 'COMMON.DERIV'
8922       include 'COMMON.INTERACT'
8923       include 'COMMON.CONTACTS'
8924       include 'COMMON.TORSION'
8925       include 'COMMON.VAR'
8926       include 'COMMON.GEO'
8927       logical swap
8928       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8929      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8930       logical lprn
8931       common /kutas/ lprn
8932 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8933 C                                                                              C
8934 C      Parallel       Antiparallel                                             C
8935 C                                                                              C
8936 C          o             o                                                     C
8937 C     \   /l\           /j\   /                                                C
8938 C      \ /   \         /   \ /                                                 C
8939 C       o| o |         | o |o                                                  C                
8940 C     \ j|/k\|      \  |/k\|l                                                  C
8941 C      \ /   \       \ /   \                                                   C
8942 C       o             o                                                        C
8943 C       i             i                                                        C 
8944 C                                                                              C           
8945 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8946 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8947 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8948 C           but not in a cluster cumulant
8949 #ifdef MOMENT
8950       s1=dip(1,jj,i)*dip(1,kk,k)
8951 #endif
8952       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8953       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8954       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8955       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8956       call transpose2(EUg(1,1,k),auxmat(1,1))
8957       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8958       vv(1)=pizda(1,1)-pizda(2,2)
8959       vv(2)=pizda(1,2)+pizda(2,1)
8960       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8961 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8962 #ifdef MOMENT
8963       eello6_graph2=-(s1+s2+s3+s4)
8964 #else
8965       eello6_graph2=-(s2+s3+s4)
8966 #endif
8967 c      eello6_graph2=-s3
8968 C Derivatives in gamma(i-1)
8969       if (i.gt.1) then
8970 #ifdef MOMENT
8971         s1=dipderg(1,jj,i)*dip(1,kk,k)
8972 #endif
8973         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8974         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8975         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8976         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8977 #ifdef MOMENT
8978         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8979 #else
8980         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8981 #endif
8982 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8983       endif
8984 C Derivatives in gamma(k-1)
8985 #ifdef MOMENT
8986       s1=dip(1,jj,i)*dipderg(1,kk,k)
8987 #endif
8988       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8989       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8990       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8991       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8992       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8993       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8994       vv(1)=pizda(1,1)-pizda(2,2)
8995       vv(2)=pizda(1,2)+pizda(2,1)
8996       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8997 #ifdef MOMENT
8998       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8999 #else
9000       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
9001 #endif
9002 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
9003 C Derivatives in gamma(j-1) or gamma(l-1)
9004       if (j.gt.1) then
9005 #ifdef MOMENT
9006         s1=dipderg(3,jj,i)*dip(1,kk,k) 
9007 #endif
9008         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
9009         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
9010         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
9011         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
9012         vv(1)=pizda(1,1)-pizda(2,2)
9013         vv(2)=pizda(1,2)+pizda(2,1)
9014         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
9015 #ifdef MOMENT
9016         if (swap) then
9017           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
9018         else
9019           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
9020         endif
9021 #endif
9022         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
9023 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
9024       endif
9025 C Derivatives in gamma(l-1) or gamma(j-1)
9026       if (l.gt.1) then 
9027 #ifdef MOMENT
9028         s1=dip(1,jj,i)*dipderg(3,kk,k)
9029 #endif
9030         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
9031         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
9032         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
9033         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
9034         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
9035         vv(1)=pizda(1,1)-pizda(2,2)
9036         vv(2)=pizda(1,2)+pizda(2,1)
9037         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
9038 #ifdef MOMENT
9039         if (swap) then
9040           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
9041         else
9042           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
9043         endif
9044 #endif
9045         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
9046 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
9047       endif
9048 C Cartesian derivatives.
9049       if (lprn) then
9050         write (2,*) 'In eello6_graph2'
9051         do iii=1,2
9052           write (2,*) 'iii=',iii
9053           do kkk=1,5
9054             write (2,*) 'kkk=',kkk
9055             do jjj=1,2
9056               write (2,'(3(2f10.5),5x)') 
9057      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
9058             enddo
9059           enddo
9060         enddo
9061       endif
9062       do iii=1,2
9063         do kkk=1,5
9064           do lll=1,3
9065 #ifdef MOMENT
9066             if (iii.eq.1) then
9067               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
9068             else
9069               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
9070             endif
9071 #endif
9072             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
9073      &        auxvec(1))
9074             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
9075             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
9076      &        auxvec(1))
9077             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
9078             call transpose2(EUg(1,1,k),auxmat(1,1))
9079             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
9080      &        pizda(1,1))
9081             vv(1)=pizda(1,1)-pizda(2,2)
9082             vv(2)=pizda(1,2)+pizda(2,1)
9083             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
9084 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
9085 #ifdef MOMENT
9086             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
9087 #else
9088             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
9089 #endif
9090             if (swap) then
9091               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
9092             else
9093               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9094             endif
9095           enddo
9096         enddo
9097       enddo
9098       return
9099       end
9100 c----------------------------------------------------------------------------
9101       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
9102       implicit real*8 (a-h,o-z)
9103       include 'DIMENSIONS'
9104       include 'COMMON.IOUNITS'
9105       include 'COMMON.CHAIN'
9106       include 'COMMON.DERIV'
9107       include 'COMMON.INTERACT'
9108       include 'COMMON.CONTACTS'
9109       include 'COMMON.TORSION'
9110       include 'COMMON.VAR'
9111       include 'COMMON.GEO'
9112       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
9113       logical swap
9114 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9115 C                                                                              C 
9116 C      Parallel       Antiparallel                                             C
9117 C                                                                              C
9118 C          o             o                                                     C 
9119 C         /l\   /   \   /j\                                                    C 
9120 C        /   \ /     \ /   \                                                   C
9121 C       /| o |o       o| o |\                                                  C
9122 C       j|/k\|  /      |/k\|l /                                                C
9123 C        /   \ /       /   \ /                                                 C
9124 C       /     o       /     o                                                  C
9125 C       i             i                                                        C
9126 C                                                                              C
9127 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9128 C
9129 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
9130 C           energy moment and not to the cluster cumulant.
9131       iti=itortyp(itype(i))
9132       if (j.lt.nres-1) then
9133         itj1=itortyp(itype(j+1))
9134       else
9135         itj1=ntortyp+1
9136       endif
9137       itk=itortyp(itype(k))
9138       itk1=itortyp(itype(k+1))
9139       if (l.lt.nres-1) then
9140         itl1=itortyp(itype(l+1))
9141       else
9142         itl1=ntortyp+1
9143       endif
9144 #ifdef MOMENT
9145       s1=dip(4,jj,i)*dip(4,kk,k)
9146 #endif
9147       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
9148       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9149       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
9150       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9151       call transpose2(EE(1,1,itk),auxmat(1,1))
9152       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
9153       vv(1)=pizda(1,1)+pizda(2,2)
9154       vv(2)=pizda(2,1)-pizda(1,2)
9155       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9156 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
9157 cd     & "sum",-(s2+s3+s4)
9158 #ifdef MOMENT
9159       eello6_graph3=-(s1+s2+s3+s4)
9160 #else
9161       eello6_graph3=-(s2+s3+s4)
9162 #endif
9163 c      eello6_graph3=-s4
9164 C Derivatives in gamma(k-1)
9165       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
9166       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9167       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
9168       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
9169 C Derivatives in gamma(l-1)
9170       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
9171       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9172       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
9173       vv(1)=pizda(1,1)+pizda(2,2)
9174       vv(2)=pizda(2,1)-pizda(1,2)
9175       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9176       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
9177 C Cartesian derivatives.
9178       do iii=1,2
9179         do kkk=1,5
9180           do lll=1,3
9181 #ifdef MOMENT
9182             if (iii.eq.1) then
9183               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
9184             else
9185               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
9186             endif
9187 #endif
9188             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
9189      &        auxvec(1))
9190             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9191             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
9192      &        auxvec(1))
9193             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9194             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
9195      &        pizda(1,1))
9196             vv(1)=pizda(1,1)+pizda(2,2)
9197             vv(2)=pizda(2,1)-pizda(1,2)
9198             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9199 #ifdef MOMENT
9200             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
9201 #else
9202             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
9203 #endif
9204             if (swap) then
9205               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
9206             else
9207               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9208             endif
9209 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
9210           enddo
9211         enddo
9212       enddo
9213       return
9214       end
9215 c----------------------------------------------------------------------------
9216       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
9217       implicit real*8 (a-h,o-z)
9218       include 'DIMENSIONS'
9219       include 'COMMON.IOUNITS'
9220       include 'COMMON.CHAIN'
9221       include 'COMMON.DERIV'
9222       include 'COMMON.INTERACT'
9223       include 'COMMON.CONTACTS'
9224       include 'COMMON.TORSION'
9225       include 'COMMON.VAR'
9226       include 'COMMON.GEO'
9227       include 'COMMON.FFIELD'
9228       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
9229      & auxvec1(2),auxmat1(2,2)
9230       logical swap
9231 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9232 C                                                                              C                       
9233 C      Parallel       Antiparallel                                             C
9234 C                                                                              C
9235 C          o             o                                                     C
9236 C         /l\   /   \   /j\                                                    C
9237 C        /   \ /     \ /   \                                                   C
9238 C       /| o |o       o| o |\                                                  C
9239 C     \ j|/k\|      \  |/k\|l                                                  C
9240 C      \ /   \       \ /   \                                                   C 
9241 C       o     \       o     \                                                  C
9242 C       i             i                                                        C
9243 C                                                                              C 
9244 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9245 C
9246 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
9247 C           energy moment and not to the cluster cumulant.
9248 cd      write (2,*) 'eello_graph4: wturn6',wturn6
9249       iti=itortyp(itype(i))
9250       itj=itortyp(itype(j))
9251       if (j.lt.nres-1) then
9252         itj1=itortyp(itype(j+1))
9253       else
9254         itj1=ntortyp+1
9255       endif
9256       itk=itortyp(itype(k))
9257       if (k.lt.nres-1) then
9258         itk1=itortyp(itype(k+1))
9259       else
9260         itk1=ntortyp+1
9261       endif
9262       itl=itortyp(itype(l))
9263       if (l.lt.nres-1) then
9264         itl1=itortyp(itype(l+1))
9265       else
9266         itl1=ntortyp+1
9267       endif
9268 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
9269 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
9270 cd     & ' itl',itl,' itl1',itl1
9271 #ifdef MOMENT
9272       if (imat.eq.1) then
9273         s1=dip(3,jj,i)*dip(3,kk,k)
9274       else
9275         s1=dip(2,jj,j)*dip(2,kk,l)
9276       endif
9277 #endif
9278       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
9279       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9280       if (j.eq.l+1) then
9281         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
9282         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9283       else
9284         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
9285         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9286       endif
9287       call transpose2(EUg(1,1,k),auxmat(1,1))
9288       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
9289       vv(1)=pizda(1,1)-pizda(2,2)
9290       vv(2)=pizda(2,1)+pizda(1,2)
9291       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9292 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
9293 #ifdef MOMENT
9294       eello6_graph4=-(s1+s2+s3+s4)
9295 #else
9296       eello6_graph4=-(s2+s3+s4)
9297 #endif
9298 C Derivatives in gamma(i-1)
9299       if (i.gt.1) then
9300 #ifdef MOMENT
9301         if (imat.eq.1) then
9302           s1=dipderg(2,jj,i)*dip(3,kk,k)
9303         else
9304           s1=dipderg(4,jj,j)*dip(2,kk,l)
9305         endif
9306 #endif
9307         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
9308         if (j.eq.l+1) then
9309           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
9310           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9311         else
9312           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
9313           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9314         endif
9315         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
9316         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9317 cd          write (2,*) 'turn6 derivatives'
9318 #ifdef MOMENT
9319           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
9320 #else
9321           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
9322 #endif
9323         else
9324 #ifdef MOMENT
9325           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
9326 #else
9327           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
9328 #endif
9329         endif
9330       endif
9331 C Derivatives in gamma(k-1)
9332 #ifdef MOMENT
9333       if (imat.eq.1) then
9334         s1=dip(3,jj,i)*dipderg(2,kk,k)
9335       else
9336         s1=dip(2,jj,j)*dipderg(4,kk,l)
9337       endif
9338 #endif
9339       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
9340       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
9341       if (j.eq.l+1) then
9342         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
9343         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9344       else
9345         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
9346         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9347       endif
9348       call transpose2(EUgder(1,1,k),auxmat1(1,1))
9349       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
9350       vv(1)=pizda(1,1)-pizda(2,2)
9351       vv(2)=pizda(2,1)+pizda(1,2)
9352       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9353       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9354 #ifdef MOMENT
9355         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
9356 #else
9357         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
9358 #endif
9359       else
9360 #ifdef MOMENT
9361         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
9362 #else
9363         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
9364 #endif
9365       endif
9366 C Derivatives in gamma(j-1) or gamma(l-1)
9367       if (l.eq.j+1 .and. l.gt.1) then
9368         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
9369         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9370         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
9371         vv(1)=pizda(1,1)-pizda(2,2)
9372         vv(2)=pizda(2,1)+pizda(1,2)
9373         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9374         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
9375       else if (j.gt.1) then
9376         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
9377         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9378         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
9379         vv(1)=pizda(1,1)-pizda(2,2)
9380         vv(2)=pizda(2,1)+pizda(1,2)
9381         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9382         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9383           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
9384         else
9385           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
9386         endif
9387       endif
9388 C Cartesian derivatives.
9389       do iii=1,2
9390         do kkk=1,5
9391           do lll=1,3
9392 #ifdef MOMENT
9393             if (iii.eq.1) then
9394               if (imat.eq.1) then
9395                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
9396               else
9397                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
9398               endif
9399             else
9400               if (imat.eq.1) then
9401                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
9402               else
9403                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
9404               endif
9405             endif
9406 #endif
9407             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
9408      &        auxvec(1))
9409             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9410             if (j.eq.l+1) then
9411               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
9412      &          b1(1,itj1),auxvec(1))
9413               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
9414             else
9415               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
9416      &          b1(1,itl1),auxvec(1))
9417               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
9418             endif
9419             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
9420      &        pizda(1,1))
9421             vv(1)=pizda(1,1)-pizda(2,2)
9422             vv(2)=pizda(2,1)+pizda(1,2)
9423             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9424             if (swap) then
9425               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9426 #ifdef MOMENT
9427                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
9428      &             -(s1+s2+s4)
9429 #else
9430                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
9431      &             -(s2+s4)
9432 #endif
9433                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
9434               else
9435 #ifdef MOMENT
9436                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
9437 #else
9438                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
9439 #endif
9440                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9441               endif
9442             else
9443 #ifdef MOMENT
9444               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
9445 #else
9446               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
9447 #endif
9448               if (l.eq.j+1) then
9449                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9450               else 
9451                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
9452               endif
9453             endif 
9454           enddo
9455         enddo
9456       enddo
9457       return
9458       end
9459 c----------------------------------------------------------------------------
9460       double precision function eello_turn6(i,jj,kk)
9461       implicit real*8 (a-h,o-z)
9462       include 'DIMENSIONS'
9463       include 'COMMON.IOUNITS'
9464       include 'COMMON.CHAIN'
9465       include 'COMMON.DERIV'
9466       include 'COMMON.INTERACT'
9467       include 'COMMON.CONTACTS'
9468       include 'COMMON.TORSION'
9469       include 'COMMON.VAR'
9470       include 'COMMON.GEO'
9471       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
9472      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
9473      &  ggg1(3),ggg2(3)
9474       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
9475      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
9476 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
9477 C           the respective energy moment and not to the cluster cumulant.
9478       s1=0.0d0
9479       s8=0.0d0
9480       s13=0.0d0
9481 c
9482       eello_turn6=0.0d0
9483       j=i+4
9484       k=i+1
9485       l=i+3
9486       iti=itortyp(itype(i))
9487       itk=itortyp(itype(k))
9488       itk1=itortyp(itype(k+1))
9489       itl=itortyp(itype(l))
9490       itj=itortyp(itype(j))
9491 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
9492 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
9493 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
9494 cd        eello6=0.0d0
9495 cd        return
9496 cd      endif
9497 cd      write (iout,*)
9498 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
9499 cd     &   ' and',k,l
9500 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
9501       do iii=1,2
9502         do kkk=1,5
9503           do lll=1,3
9504             derx_turn(lll,kkk,iii)=0.0d0
9505           enddo
9506         enddo
9507       enddo
9508 cd      eij=1.0d0
9509 cd      ekl=1.0d0
9510 cd      ekont=1.0d0
9511       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
9512 cd      eello6_5=0.0d0
9513 cd      write (2,*) 'eello6_5',eello6_5
9514 #ifdef MOMENT
9515       call transpose2(AEA(1,1,1),auxmat(1,1))
9516       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
9517       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
9518       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
9519 #endif
9520       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
9521       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
9522       s2 = scalar2(b1(1,itk),vtemp1(1))
9523 #ifdef MOMENT
9524       call transpose2(AEA(1,1,2),atemp(1,1))
9525       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
9526       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
9527       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9528 #endif
9529       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
9530       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
9531       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
9532 #ifdef MOMENT
9533       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
9534       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
9535       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
9536       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
9537       ss13 = scalar2(b1(1,itk),vtemp4(1))
9538       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
9539 #endif
9540 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
9541 c      s1=0.0d0
9542 c      s2=0.0d0
9543 c      s8=0.0d0
9544 c      s12=0.0d0
9545 c      s13=0.0d0
9546       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
9547 C Derivatives in gamma(i+2)
9548       s1d =0.0d0
9549       s8d =0.0d0
9550 #ifdef MOMENT
9551       call transpose2(AEA(1,1,1),auxmatd(1,1))
9552       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9553       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9554       call transpose2(AEAderg(1,1,2),atempd(1,1))
9555       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
9556       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9557 #endif
9558       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
9559       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9560       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9561 c      s1d=0.0d0
9562 c      s2d=0.0d0
9563 c      s8d=0.0d0
9564 c      s12d=0.0d0
9565 c      s13d=0.0d0
9566       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
9567 C Derivatives in gamma(i+3)
9568 #ifdef MOMENT
9569       call transpose2(AEA(1,1,1),auxmatd(1,1))
9570       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9571       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
9572       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
9573 #endif
9574       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
9575       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
9576       s2d = scalar2(b1(1,itk),vtemp1d(1))
9577 #ifdef MOMENT
9578       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
9579       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
9580 #endif
9581       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
9582 #ifdef MOMENT
9583       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
9584       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9585       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
9586 #endif
9587 c      s1d=0.0d0
9588 c      s2d=0.0d0
9589 c      s8d=0.0d0
9590 c      s12d=0.0d0
9591 c      s13d=0.0d0
9592 #ifdef MOMENT
9593       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
9594      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
9595 #else
9596       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
9597      &               -0.5d0*ekont*(s2d+s12d)
9598 #endif
9599 C Derivatives in gamma(i+4)
9600       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
9601       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9602       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9603 #ifdef MOMENT
9604       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
9605       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
9606       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
9607 #endif
9608 c      s1d=0.0d0
9609 c      s2d=0.0d0
9610 c      s8d=0.0d0
9611 C      s12d=0.0d0
9612 c      s13d=0.0d0
9613 #ifdef MOMENT
9614       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
9615 #else
9616       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
9617 #endif
9618 C Derivatives in gamma(i+5)
9619 #ifdef MOMENT
9620       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
9621       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9622       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9623 #endif
9624       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
9625       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
9626       s2d = scalar2(b1(1,itk),vtemp1d(1))
9627 #ifdef MOMENT
9628       call transpose2(AEA(1,1,2),atempd(1,1))
9629       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
9630       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9631 #endif
9632       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
9633       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9634 #ifdef MOMENT
9635       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
9636       ss13d = scalar2(b1(1,itk),vtemp4d(1))
9637       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9638 #endif
9639 c      s1d=0.0d0
9640 c      s2d=0.0d0
9641 c      s8d=0.0d0
9642 c      s12d=0.0d0
9643 c      s13d=0.0d0
9644 #ifdef MOMENT
9645       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
9646      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
9647 #else
9648       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
9649      &               -0.5d0*ekont*(s2d+s12d)
9650 #endif
9651 C Cartesian derivatives
9652       do iii=1,2
9653         do kkk=1,5
9654           do lll=1,3
9655 #ifdef MOMENT
9656             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
9657             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9658             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9659 #endif
9660             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
9661             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
9662      &          vtemp1d(1))
9663             s2d = scalar2(b1(1,itk),vtemp1d(1))
9664 #ifdef MOMENT
9665             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
9666             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
9667             s8d = -(atempd(1,1)+atempd(2,2))*
9668      &           scalar2(cc(1,1,itl),vtemp2(1))
9669 #endif
9670             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
9671      &           auxmatd(1,1))
9672             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9673             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9674 c      s1d=0.0d0
9675 c      s2d=0.0d0
9676 c      s8d=0.0d0
9677 c      s12d=0.0d0
9678 c      s13d=0.0d0
9679 #ifdef MOMENT
9680             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
9681      &        - 0.5d0*(s1d+s2d)
9682 #else
9683             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
9684      &        - 0.5d0*s2d
9685 #endif
9686 #ifdef MOMENT
9687             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9688      &        - 0.5d0*(s8d+s12d)
9689 #else
9690             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9691      &        - 0.5d0*s12d
9692 #endif
9693           enddo
9694         enddo
9695       enddo
9696 #ifdef MOMENT
9697       do kkk=1,5
9698         do lll=1,3
9699           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
9700      &      achuj_tempd(1,1))
9701           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
9702           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9703           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
9704           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
9705           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
9706      &      vtemp4d(1)) 
9707           ss13d = scalar2(b1(1,itk),vtemp4d(1))
9708           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9709           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
9710         enddo
9711       enddo
9712 #endif
9713 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
9714 cd     &  16*eel_turn6_num
9715 cd      goto 1112
9716       if (j.lt.nres-1) then
9717         j1=j+1
9718         j2=j-1
9719       else
9720         j1=j-1
9721         j2=j-2
9722       endif
9723       if (l.lt.nres-1) then
9724         l1=l+1
9725         l2=l-1
9726       else
9727         l1=l-1
9728         l2=l-2
9729       endif
9730       do ll=1,3
9731 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9732 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9733 cgrad        ghalf=0.5d0*ggg1(ll)
9734 cd        ghalf=0.0d0
9735         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9736         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9737         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9738      &    +ekont*derx_turn(ll,2,1)
9739         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9740         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9741      &    +ekont*derx_turn(ll,4,1)
9742         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9743         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9744         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9745 cgrad        ghalf=0.5d0*ggg2(ll)
9746 cd        ghalf=0.0d0
9747         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9748      &    +ekont*derx_turn(ll,2,2)
9749         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9750         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9751      &    +ekont*derx_turn(ll,4,2)
9752         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9753         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9754         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9755       enddo
9756 cd      goto 1112
9757 cgrad      do m=i+1,j-1
9758 cgrad        do ll=1,3
9759 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9760 cgrad        enddo
9761 cgrad      enddo
9762 cgrad      do m=k+1,l-1
9763 cgrad        do ll=1,3
9764 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9765 cgrad        enddo
9766 cgrad      enddo
9767 cgrad1112  continue
9768 cgrad      do m=i+2,j2
9769 cgrad        do ll=1,3
9770 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9771 cgrad        enddo
9772 cgrad      enddo
9773 cgrad      do m=k+2,l2
9774 cgrad        do ll=1,3
9775 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9776 cgrad        enddo
9777 cgrad      enddo 
9778 cd      do iii=1,nres-3
9779 cd        write (2,*) iii,g_corr6_loc(iii)
9780 cd      enddo
9781       eello_turn6=ekont*eel_turn6
9782 cd      write (2,*) 'ekont',ekont
9783 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9784       return
9785       end
9786
9787 C-----------------------------------------------------------------------------
9788       double precision function scalar(u,v)
9789 !DIR$ INLINEALWAYS scalar
9790 #ifndef OSF
9791 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9792 #endif
9793       implicit none
9794       double precision u(3),v(3)
9795 cd      double precision sc
9796 cd      integer i
9797 cd      sc=0.0d0
9798 cd      do i=1,3
9799 cd        sc=sc+u(i)*v(i)
9800 cd      enddo
9801 cd      scalar=sc
9802
9803       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9804       return
9805       end
9806 crc-------------------------------------------------
9807       SUBROUTINE MATVEC2(A1,V1,V2)
9808 !DIR$ INLINEALWAYS MATVEC2
9809 #ifndef OSF
9810 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9811 #endif
9812       implicit real*8 (a-h,o-z)
9813       include 'DIMENSIONS'
9814       DIMENSION A1(2,2),V1(2),V2(2)
9815 c      DO 1 I=1,2
9816 c        VI=0.0
9817 c        DO 3 K=1,2
9818 c    3     VI=VI+A1(I,K)*V1(K)
9819 c        Vaux(I)=VI
9820 c    1 CONTINUE
9821
9822       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9823       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9824
9825       v2(1)=vaux1
9826       v2(2)=vaux2
9827       END
9828 C---------------------------------------
9829       SUBROUTINE MATMAT2(A1,A2,A3)
9830 #ifndef OSF
9831 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9832 #endif
9833       implicit real*8 (a-h,o-z)
9834       include 'DIMENSIONS'
9835       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9836 c      DIMENSION AI3(2,2)
9837 c        DO  J=1,2
9838 c          A3IJ=0.0
9839 c          DO K=1,2
9840 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9841 c          enddo
9842 c          A3(I,J)=A3IJ
9843 c       enddo
9844 c      enddo
9845
9846       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9847       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9848       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9849       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9850
9851       A3(1,1)=AI3_11
9852       A3(2,1)=AI3_21
9853       A3(1,2)=AI3_12
9854       A3(2,2)=AI3_22
9855       END
9856
9857 c-------------------------------------------------------------------------
9858       double precision function scalar2(u,v)
9859 !DIR$ INLINEALWAYS scalar2
9860       implicit none
9861       double precision u(2),v(2)
9862       double precision sc
9863       integer i
9864       scalar2=u(1)*v(1)+u(2)*v(2)
9865       return
9866       end
9867
9868 C-----------------------------------------------------------------------------
9869
9870       subroutine transpose2(a,at)
9871 !DIR$ INLINEALWAYS transpose2
9872 #ifndef OSF
9873 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9874 #endif
9875       implicit none
9876       double precision a(2,2),at(2,2)
9877       at(1,1)=a(1,1)
9878       at(1,2)=a(2,1)
9879       at(2,1)=a(1,2)
9880       at(2,2)=a(2,2)
9881       return
9882       end
9883 c--------------------------------------------------------------------------
9884       subroutine transpose(n,a,at)
9885       implicit none
9886       integer n,i,j
9887       double precision a(n,n),at(n,n)
9888       do i=1,n
9889         do j=1,n
9890           at(j,i)=a(i,j)
9891         enddo
9892       enddo
9893       return
9894       end
9895 C---------------------------------------------------------------------------
9896       subroutine prodmat3(a1,a2,kk,transp,prod)
9897 !DIR$ INLINEALWAYS prodmat3
9898 #ifndef OSF
9899 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9900 #endif
9901       implicit none
9902       integer i,j
9903       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9904       logical transp
9905 crc      double precision auxmat(2,2),prod_(2,2)
9906
9907       if (transp) then
9908 crc        call transpose2(kk(1,1),auxmat(1,1))
9909 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9910 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9911         
9912            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9913      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9914            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9915      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9916            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9917      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9918            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9919      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9920
9921       else
9922 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9923 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9924
9925            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9926      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9927            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9928      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9929            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9930      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9931            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9932      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9933
9934       endif
9935 c      call transpose2(a2(1,1),a2t(1,1))
9936
9937 crc      print *,transp
9938 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9939 crc      print *,((prod(i,j),i=1,2),j=1,2)
9940
9941       return
9942       end
9943