REMD with HOMOL_NSET>1 and single weight for all homology restraints
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       call flush(iout)
31       if (nfgtasks.gt.1) then
32 #ifdef MPI
33         time00=MPI_Wtime()
34 #else
35         time00=tcpu()
36 #endif
37 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
38         if (fg_rank.eq.0) then
39           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
40 c          print *,"Processor",myrank," BROADCAST iorder"
41 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
42 C FG slaves as WEIGHTS array.
43           weights_(1)=wsc
44           weights_(2)=wscp
45           weights_(3)=welec
46           weights_(4)=wcorr
47           weights_(5)=wcorr5
48           weights_(6)=wcorr6
49           weights_(7)=wel_loc
50           weights_(8)=wturn3
51           weights_(9)=wturn4
52           weights_(10)=wturn6
53           weights_(11)=wang
54           weights_(12)=wscloc
55           weights_(13)=wtor
56           weights_(14)=wtor_d
57           weights_(15)=wstrain
58           weights_(16)=wvdwpp
59           weights_(17)=wbond
60           weights_(18)=scal14
61           weights_(21)=wsccor
62           weights_(22)=wsct
63 C FG Master broadcasts the WEIGHTS_ array
64           call MPI_Bcast(weights_(1),n_ene,
65      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
66         else
67 C FG slaves receive the WEIGHTS array
68           call MPI_Bcast(weights(1),n_ene,
69      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
70           wsc=weights(1)
71           wscp=weights(2)
72           welec=weights(3)
73           wcorr=weights(4)
74           wcorr5=weights(5)
75           wcorr6=weights(6)
76           wel_loc=weights(7)
77           wturn3=weights(8)
78           wturn4=weights(9)
79           wturn6=weights(10)
80           wang=weights(11)
81           wscloc=weights(12)
82           wtor=weights(13)
83           wtor_d=weights(14)
84           wstrain=weights(15)
85           wvdwpp=weights(16)
86           wbond=weights(17)
87           scal14=weights(18)
88           wsccor=weights(21)
89           wsct=weights(22)
90         endif
91         time_Bcast=time_Bcast+MPI_Wtime()-time00
92         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
93 c        call chainbuild_cart
94       endif
95 c      write(iout,*) 'Processor',myrank,' calling etotal ipot=',ipot
96 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
97 #else
98 c      if (modecalc.eq.12.or.modecalc.eq.14) then
99 c        call int_from_cart1(.false.)
100 c      endif
101 #endif     
102 #ifdef TIMING
103 #ifdef MPI
104       time00=MPI_Wtime()
105 #else
106       time00=tcpu()
107 #endif
108 #endif
109
110 C Compute the side-chain and electrostatic interaction energy
111 C
112       goto (101,102,103,104,105,106) ipot
113 C Lennard-Jones potential.
114   101 call elj(evdw,evdw_p,evdw_m)
115 cd    print '(a)','Exit ELJ'
116       goto 107
117 C Lennard-Jones-Kihara potential (shifted).
118   102 call eljk(evdw,evdw_p,evdw_m)
119       goto 107
120 C Berne-Pechukas potential (dilated LJ, angular dependence).
121   103 call ebp(evdw,evdw_p,evdw_m)
122       goto 107
123 C Gay-Berne potential (shifted LJ, angular dependence).
124   104 call egb(evdw,evdw_p,evdw_m)
125       goto 107
126 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
127   105 call egbv(evdw,evdw_p,evdw_m)
128       goto 107
129 C Soft-sphere potential
130   106 call e_softsphere(evdw)
131 C
132 C Calculate electrostatic (H-bonding) energy of the main chain.
133 C
134   107 continue
135 C     BARTEK for dfa test!
136       if (wdfa_dist.gt.0) then 
137         call edfad(edfadis)
138       else
139         edfadis=0
140       endif
141 c      print*, 'edfad is finished!', edfadis
142       if (wdfa_tor.gt.0) then
143         call edfat(edfator)
144       else
145         edfator=0
146       endif
147 c      print*, 'edfat is finished!', edfator
148       if (wdfa_nei.gt.0) then
149         call edfan(edfanei)
150       else
151         edfanei=0
152       endif    
153 c      print*, 'edfan is finished!', edfanei
154       if (wdfa_beta.gt.0) then 
155         call edfab(edfabet)
156       else
157         edfabet=0
158       endif
159 c      print*, 'edfab is finished!', edfabet
160 cmc
161 cmc Sep-06: egb takes care of dynamic ss bonds too
162 cmc
163 c      if (dyn_ss) call dyn_set_nss
164
165 c      print *,"Processor",myrank," computed USCSC"
166 #ifdef TIMING
167 #ifdef MPI
168       time01=MPI_Wtime() 
169 #else
170       time00=tcpu()
171 #endif
172 #endif
173       call vec_and_deriv
174 #ifdef TIMING
175 #ifdef MPI
176       time_vec=time_vec+MPI_Wtime()-time01
177 #else
178       time_vec=time_vec+tcpu()-time01
179 #endif
180 #endif
181 c      print *,"Processor",myrank," left VEC_AND_DERIV"
182       if (ipot.lt.6) then
183 #ifdef SPLITELE
184          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
185      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
186      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
187      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
188 #else
189          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
190      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
191      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
192      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
193 #endif
194             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
195          else
196             ees=0.0d0
197             evdw1=0.0d0
198             eel_loc=0.0d0
199             eello_turn3=0.0d0
200             eello_turn4=0.0d0
201          endif
202       else
203 c        write (iout,*) "Soft-spheer ELEC potential"
204         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
205      &   eello_turn4)
206       endif
207 c      print *,"Processor",myrank," computed UELEC"
208 C
209 C Calculate excluded-volume interaction energy between peptide groups
210 C and side chains.
211 C
212       if (ipot.lt.6) then
213        if(wscp.gt.0d0) then
214         call escp(evdw2,evdw2_14)
215        else
216         evdw2=0
217         evdw2_14=0
218        endif
219       else
220 c        write (iout,*) "Soft-sphere SCP potential"
221         call escp_soft_sphere(evdw2,evdw2_14)
222       endif
223 c
224 c Calculate the bond-stretching energy
225 c
226       call ebond(estr)
227
228 C Calculate the disulfide-bridge and other energy and the contributions
229 C from other distance constraints.
230 cd    print *,'Calling EHPB'
231       call edis(ehpb)
232 cd    print *,'EHPB exitted succesfully.'
233 C
234 C Calculate the virtual-bond-angle energy.
235 C
236       if (wang.gt.0d0) then
237         call ebend(ebe)
238       else
239         ebe=0
240       endif
241 c      print *,"Processor",myrank," computed UB"
242 C
243 C Calculate the SC local energy.
244 C
245       call esc(escloc)
246 c      print *,"Processor",myrank," computed USC"
247 C
248 C Calculate the virtual-bond torsional energy.
249 C
250 cd    print *,'nterm=',nterm
251       if (wtor.gt.0) then
252        call etor(etors,edihcnstr)
253       else
254        etors=0
255        edihcnstr=0
256       endif
257
258       if (constr_homology.ge.1) then
259         call e_modeller(ehomology_constr)
260 c        print *,'iset=',iset,'me=',me,ehomology_constr,
261 c     &  'Processor',fg_rank,' CG group',kolor,
262 c     &  ' absolute rank',MyRank
263       else
264         ehomology_constr=0.0d0
265       endif
266
267
268 c      write(iout,*) ehomology_constr
269 c      print *,"Processor",myrank," computed Utor"
270 C
271 C 6/23/01 Calculate double-torsional energy
272 C
273       if (wtor_d.gt.0) then
274        call etor_d(etors_d)
275       else
276        etors_d=0
277       endif
278 c      print *,"Processor",myrank," computed Utord"
279 C
280 C 21/5/07 Calculate local sicdechain correlation energy
281 C
282       if (wsccor.gt.0.0d0) then
283         call eback_sc_corr(esccor)
284       else
285         esccor=0.0d0
286       endif
287 c      print *,"Processor",myrank," computed Usccorr"
288
289 C 12/1/95 Multi-body terms
290 C
291       n_corr=0
292       n_corr1=0
293       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
294      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
295          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
296 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
297 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
298       else
299          ecorr=0.0d0
300          ecorr5=0.0d0
301          ecorr6=0.0d0
302          eturn6=0.0d0
303       endif
304       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
305          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
306 cd         write (iout,*) "multibody_hb ecorr",ecorr
307       endif
308 c      print *,"Processor",myrank," computed Ucorr"
309
310 C If performing constraint dynamics, call the constraint energy
311 C  after the equilibration time
312       if(usampl.and.totT.gt.eq_time) then
313 c         write (iout,*) "CALL TO ECONSTR_BACK"
314          call EconstrQ   
315          call Econstr_back
316       else
317          Uconst=0.0d0
318          Uconst_back=0.0d0
319       endif
320 #ifdef TIMING
321 #ifdef MPI
322       time_enecalc=time_enecalc+MPI_Wtime()-time00
323 #else
324       time_enecalc=time_enecalc+tcpu()-time00
325 #endif
326 #endif
327 c      print *,"Processor",myrank," computed Uconstr"
328 #ifdef TIMING
329 #ifdef MPI
330       time00=MPI_Wtime()
331 #else
332       time00=tcpu()
333 #endif
334 #endif
335 c
336 C Sum the energies
337 C
338       energia(1)=evdw
339 #ifdef SCP14
340       energia(2)=evdw2-evdw2_14
341       energia(18)=evdw2_14
342 #else
343       energia(2)=evdw2
344       energia(18)=0.0d0
345 #endif
346 #ifdef SPLITELE
347       energia(3)=ees
348       energia(16)=evdw1
349 #else
350       energia(3)=ees+evdw1
351       energia(16)=0.0d0
352 #endif
353       energia(4)=ecorr
354       energia(5)=ecorr5
355       energia(6)=ecorr6
356       energia(7)=eel_loc
357       energia(8)=eello_turn3
358       energia(9)=eello_turn4
359       energia(10)=eturn6
360       energia(11)=ebe
361       energia(12)=escloc
362       energia(13)=etors
363       energia(14)=etors_d
364       energia(15)=ehpb
365       energia(19)=edihcnstr
366       energia(17)=estr
367       energia(20)=Uconst+Uconst_back
368       energia(21)=esccor
369       energia(22)=evdw_p
370       energia(23)=evdw_m
371       energia(24)=ehomology_constr
372       energia(25)=edfadis
373       energia(26)=edfator
374       energia(27)=edfanei
375       energia(28)=edfabet
376 c      print *," Processor",myrank," calls SUM_ENERGY"
377       call sum_energy(energia,.true.)
378       if (dyn_ss) call dyn_set_nss
379 c      print *," Processor",myrank," left SUM_ENERGY"
380 #ifdef TIMING
381 #ifdef MPI
382       time_sumene=time_sumene+MPI_Wtime()-time00
383 #else
384       time_sumene=time_sumene+tcpu()-time00
385 #endif
386 #endif
387       return
388       end
389 c-------------------------------------------------------------------------------
390       subroutine sum_energy(energia,reduce)
391       implicit real*8 (a-h,o-z)
392       include 'DIMENSIONS'
393 #ifndef ISNAN
394       external proc_proc
395 #ifdef WINPGI
396 cMS$ATTRIBUTES C ::  proc_proc
397 #endif
398 #endif
399 #ifdef MPI
400       include "mpif.h"
401 #endif
402       include 'COMMON.SETUP'
403       include 'COMMON.IOUNITS'
404       double precision energia(0:n_ene),enebuff(0:n_ene+1)
405       include 'COMMON.FFIELD'
406       include 'COMMON.DERIV'
407       include 'COMMON.INTERACT'
408       include 'COMMON.SBRIDGE'
409       include 'COMMON.CHAIN'
410       include 'COMMON.VAR'
411       include 'COMMON.CONTROL'
412       include 'COMMON.TIME1'
413       logical reduce
414 #ifdef MPI
415       if (nfgtasks.gt.1 .and. reduce) then
416 #ifdef DEBUG
417         write (iout,*) "energies before REDUCE"
418         call enerprint(energia)
419         call flush(iout)
420 #endif
421         do i=0,n_ene
422           enebuff(i)=energia(i)
423         enddo
424         time00=MPI_Wtime()
425         call MPI_Barrier(FG_COMM,IERR)
426         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
427         time00=MPI_Wtime()
428         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
429      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
430 #ifdef DEBUG
431         write (iout,*) "energies after REDUCE"
432         call enerprint(energia)
433         call flush(iout)
434 #endif
435         time_Reduce=time_Reduce+MPI_Wtime()-time00
436       endif
437       if (fg_rank.eq.0) then
438 #endif
439 #ifdef TSCSC
440       evdw=energia(22)+wsct*energia(23)
441 #else
442       evdw=energia(1)
443 #endif
444 #ifdef SCP14
445       evdw2=energia(2)+energia(18)
446       evdw2_14=energia(18)
447 #else
448       evdw2=energia(2)
449 #endif
450 #ifdef SPLITELE
451       ees=energia(3)
452       evdw1=energia(16)
453 #else
454       ees=energia(3)
455       evdw1=0.0d0
456 #endif
457       ecorr=energia(4)
458       ecorr5=energia(5)
459       ecorr6=energia(6)
460       eel_loc=energia(7)
461       eello_turn3=energia(8)
462       eello_turn4=energia(9)
463       eturn6=energia(10)
464       ebe=energia(11)
465       escloc=energia(12)
466       etors=energia(13)
467       etors_d=energia(14)
468       ehpb=energia(15)
469       edihcnstr=energia(19)
470       estr=energia(17)
471       Uconst=energia(20)
472       esccor=energia(21)
473       ehomology_constr=energia(24)
474       edfadis=energia(25)
475       edfator=energia(26)
476       edfanei=energia(27)
477       edfabet=energia(28)
478 #ifdef SPLITELE
479       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
480      & +wang*ebe+wtor*etors+wscloc*escloc
481      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
482      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
483      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
484      & +wbond*estr+Uconst+wsccor*esccor+ehomology_constr
485      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
486      & +wdfa_beta*edfabet    
487 #else
488       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
489      & +wang*ebe+wtor*etors+wscloc*escloc
490      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
491      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
492      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
493      & +wbond*estr+Uconst+wsccor*esccor+ehomology_constr
494      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
495      & +wdfa_beta*edfabet    
496 #endif
497       energia(0)=etot
498 c detecting NaNQ
499 #ifdef ISNAN
500 #ifdef AIX
501       if (isnan(etot).ne.0) energia(0)=1.0d+99
502 #else
503       if (isnan(etot)) energia(0)=1.0d+99
504 #endif
505 #else
506       i=0
507 #ifdef WINPGI
508       idumm=proc_proc(etot,i)
509 #else
510       call proc_proc(etot,i)
511 #endif
512       if(i.eq.1)energia(0)=1.0d+99
513 #endif
514 #ifdef MPI
515       endif
516 #endif
517       return
518       end
519 c-------------------------------------------------------------------------------
520       subroutine sum_gradient
521       implicit real*8 (a-h,o-z)
522       include 'DIMENSIONS'
523 #ifndef ISNAN
524       external proc_proc
525 #ifdef WINPGI
526 cMS$ATTRIBUTES C ::  proc_proc
527 #endif
528 #endif
529 #ifdef MPI
530       include 'mpif.h'
531 #endif
532       double precision gradbufc(3,maxres),gradbufx(3,maxres),
533      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
534       include 'COMMON.SETUP'
535       include 'COMMON.IOUNITS'
536       include 'COMMON.FFIELD'
537       include 'COMMON.DERIV'
538       include 'COMMON.INTERACT'
539       include 'COMMON.SBRIDGE'
540       include 'COMMON.CHAIN'
541       include 'COMMON.VAR'
542       include 'COMMON.CONTROL'
543       include 'COMMON.TIME1'
544       include 'COMMON.MAXGRAD'
545       include 'COMMON.SCCOR'
546 #ifdef TIMING
547 #ifdef MPI
548       time01=MPI_Wtime()
549 #else
550       time01=tcpu()
551 #endif
552 #endif
553 #ifdef DEBUG
554       write (iout,*) "sum_gradient gvdwc, gvdwx"
555       do i=1,nres
556         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
557      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
558      &   (gvdwcT(j,i),j=1,3)
559       enddo
560       call flush(iout)
561 #endif
562 #ifdef MPI
563 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
564         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
565      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
566 #endif
567 C
568 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
569 C            in virtual-bond-vector coordinates
570 C
571 #ifdef DEBUG
572 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
573 c      do i=1,nres-1
574 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
575 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
576 c      enddo
577 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
578 c      do i=1,nres-1
579 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
580 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
581 c      enddo
582       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
583       do i=1,nres
584         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
585      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
586      &   g_corr5_loc(i)
587       enddo
588       call flush(iout)
589 #endif
590 #ifdef SPLITELE
591 #ifdef TSCSC
592       do i=1,nct
593         do j=1,3
594           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
595      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
596      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
597      &                wel_loc*gel_loc_long(j,i)+
598      &                wcorr*gradcorr_long(j,i)+
599      &                wcorr5*gradcorr5_long(j,i)+
600      &                wcorr6*gradcorr6_long(j,i)+
601      &                wturn6*gcorr6_turn_long(j,i)+
602      &                wstrain*ghpbc(j,i)+
603      &                wdfa_dist*gdfad(j,i)+
604      &                wdfa_tor*gdfat(j,i)+
605      &                wdfa_nei*gdfan(j,i)+
606      &                wdfa_beta*gdfab(j,i)
607         enddo
608       enddo 
609 #else
610       do i=1,nct
611         do j=1,3
612           gradbufc(j,i)=wsc*gvdwc(j,i)+
613      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
614      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
615      &                wel_loc*gel_loc_long(j,i)+
616      &                wcorr*gradcorr_long(j,i)+
617      &                wcorr5*gradcorr5_long(j,i)+
618      &                wcorr6*gradcorr6_long(j,i)+
619      &                wturn6*gcorr6_turn_long(j,i)+
620      &                wstrain*ghpbc(j,i)+
621      &                wdfa_dist*gdfad(j,i)+
622      &                wdfa_tor*gdfat(j,i)+
623      &                wdfa_nei*gdfan(j,i)+
624      &                wdfa_beta*gdfab(j,i)
625         enddo
626       enddo 
627 #endif
628 #else
629       do i=1,nct
630         do j=1,3
631           gradbufc(j,i)=wsc*gvdwc(j,i)+
632      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
633      &                welec*gelc_long(j,i)+
634      &                wbond*gradb(j,i)+
635      &                wel_loc*gel_loc_long(j,i)+
636      &                wcorr*gradcorr_long(j,i)+
637      &                wcorr5*gradcorr5_long(j,i)+
638      &                wcorr6*gradcorr6_long(j,i)+
639      &                wturn6*gcorr6_turn_long(j,i)+
640      &                wstrain*ghpbc(j,i)+
641      &                wdfa_dist*gdfad(j,i)+
642      &                wdfa_tor*gdfat(j,i)+
643      &                wdfa_nei*gdfan(j,i)+
644      &                wdfa_beta*gdfab(j,i)
645         enddo
646       enddo 
647 #endif
648 #ifdef MPI
649       if (nfgtasks.gt.1) then
650       time00=MPI_Wtime()
651 #ifdef DEBUG
652       write (iout,*) "gradbufc before allreduce"
653       do i=1,nres
654         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
655       enddo
656       call flush(iout)
657 #endif
658       do i=1,nres
659         do j=1,3
660           gradbufc_sum(j,i)=gradbufc(j,i)
661         enddo
662       enddo
663 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
664 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
665 c      time_reduce=time_reduce+MPI_Wtime()-time00
666 #ifdef DEBUG
667 c      write (iout,*) "gradbufc_sum after allreduce"
668 c      do i=1,nres
669 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
670 c      enddo
671 c      call flush(iout)
672 #endif
673 #ifdef TIMING
674 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
675 #endif
676       do i=nnt,nres
677         do k=1,3
678           gradbufc(k,i)=0.0d0
679         enddo
680       enddo
681 #ifdef DEBUG
682       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
683       write (iout,*) (i," jgrad_start",jgrad_start(i),
684      &                  " jgrad_end  ",jgrad_end(i),
685      &                  i=igrad_start,igrad_end)
686 #endif
687 c
688 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
689 c do not parallelize this part.
690 c
691 c      do i=igrad_start,igrad_end
692 c        do j=jgrad_start(i),jgrad_end(i)
693 c          do k=1,3
694 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
695 c          enddo
696 c        enddo
697 c      enddo
698       do j=1,3
699         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
700       enddo
701       do i=nres-2,nnt,-1
702         do j=1,3
703           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
704         enddo
705       enddo
706 #ifdef DEBUG
707       write (iout,*) "gradbufc after summing"
708       do i=1,nres
709         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
710       enddo
711       call flush(iout)
712 #endif
713       else
714 #endif
715 #ifdef DEBUG
716       write (iout,*) "gradbufc"
717       do i=1,nres
718         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
719       enddo
720       call flush(iout)
721 #endif
722       do i=1,nres
723         do j=1,3
724           gradbufc_sum(j,i)=gradbufc(j,i)
725           gradbufc(j,i)=0.0d0
726         enddo
727       enddo
728       do j=1,3
729         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
730       enddo
731       do i=nres-2,nnt,-1
732         do j=1,3
733           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
734         enddo
735       enddo
736 c      do i=nnt,nres-1
737 c        do k=1,3
738 c          gradbufc(k,i)=0.0d0
739 c        enddo
740 c        do j=i+1,nres
741 c          do k=1,3
742 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
743 c          enddo
744 c        enddo
745 c      enddo
746 #ifdef DEBUG
747       write (iout,*) "gradbufc after summing"
748       do i=1,nres
749         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
750       enddo
751       call flush(iout)
752 #endif
753 #ifdef MPI
754       endif
755 #endif
756       do k=1,3
757         gradbufc(k,nres)=0.0d0
758       enddo
759       do i=1,nct
760         do j=1,3
761 #ifdef SPLITELE
762           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
763      &                wel_loc*gel_loc(j,i)+
764      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
765      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
766      &                wel_loc*gel_loc_long(j,i)+
767      &                wcorr*gradcorr_long(j,i)+
768      &                wcorr5*gradcorr5_long(j,i)+
769      &                wcorr6*gradcorr6_long(j,i)+
770      &                wturn6*gcorr6_turn_long(j,i))+
771      &                wbond*gradb(j,i)+
772      &                wcorr*gradcorr(j,i)+
773      &                wturn3*gcorr3_turn(j,i)+
774      &                wturn4*gcorr4_turn(j,i)+
775      &                wcorr5*gradcorr5(j,i)+
776      &                wcorr6*gradcorr6(j,i)+
777      &                wturn6*gcorr6_turn(j,i)+
778      &                wsccor*gsccorc(j,i)
779      &               +wscloc*gscloc(j,i)
780 #else
781           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
782      &                wel_loc*gel_loc(j,i)+
783      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
784      &                welec*gelc_long(j,i)+
785      &                wel_loc*gel_loc_long(j,i)+
786      &                wcorr*gcorr_long(j,i)+
787      &                wcorr5*gradcorr5_long(j,i)+
788      &                wcorr6*gradcorr6_long(j,i)+
789      &                wturn6*gcorr6_turn_long(j,i))+
790      &                wbond*gradb(j,i)+
791      &                wcorr*gradcorr(j,i)+
792      &                wturn3*gcorr3_turn(j,i)+
793      &                wturn4*gcorr4_turn(j,i)+
794      &                wcorr5*gradcorr5(j,i)+
795      &                wcorr6*gradcorr6(j,i)+
796      &                wturn6*gcorr6_turn(j,i)+
797      &                wsccor*gsccorc(j,i)
798      &               +wscloc*gscloc(j,i)
799 #endif
800 #ifdef TSCSC
801           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
802      &                  wscp*gradx_scp(j,i)+
803      &                  wbond*gradbx(j,i)+
804      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
805      &                  wsccor*gsccorx(j,i)
806      &                 +wscloc*gsclocx(j,i)
807 #else
808           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
809      &                  wbond*gradbx(j,i)+
810      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
811      &                  wsccor*gsccorx(j,i)
812      &                 +wscloc*gsclocx(j,i)
813 #endif
814         enddo
815       enddo 
816 #ifdef DEBUG
817       write (iout,*) "gloc before adding corr"
818       do i=1,4*nres
819         write (iout,*) i,gloc(i,icg)
820       enddo
821 #endif
822       do i=1,nres-3
823         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
824      &   +wcorr5*g_corr5_loc(i)
825      &   +wcorr6*g_corr6_loc(i)
826      &   +wturn4*gel_loc_turn4(i)
827      &   +wturn3*gel_loc_turn3(i)
828      &   +wturn6*gel_loc_turn6(i)
829      &   +wel_loc*gel_loc_loc(i)
830       enddo
831 #ifdef DEBUG
832       write (iout,*) "gloc after adding corr"
833       do i=1,4*nres
834         write (iout,*) i,gloc(i,icg)
835       enddo
836 #endif
837 #ifdef MPI
838       if (nfgtasks.gt.1) then
839         do j=1,3
840           do i=1,nres
841             gradbufc(j,i)=gradc(j,i,icg)
842             gradbufx(j,i)=gradx(j,i,icg)
843           enddo
844         enddo
845         do i=1,4*nres
846           glocbuf(i)=gloc(i,icg)
847         enddo
848 #ifdef DEBUG
849       write (iout,*) "gloc_sc before reduce"
850       do i=1,nres
851        do j=1,3
852         write (iout,*) i,j,gloc_sc(j,i,icg)
853        enddo
854       enddo
855 #endif
856         do i=1,nres
857          do j=1,3
858           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
859          enddo
860         enddo
861         time00=MPI_Wtime()
862         call MPI_Barrier(FG_COMM,IERR)
863         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
864         time00=MPI_Wtime()
865         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
866      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
867         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
868      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
869         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
870      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
871         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
872      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
873         time_reduce=time_reduce+MPI_Wtime()-time00
874 #ifdef DEBUG
875       write (iout,*) "gloc_sc after reduce"
876       do i=1,nres
877        do j=1,3
878         write (iout,*) i,j,gloc_sc(j,i,icg)
879        enddo
880       enddo
881 #endif
882 #ifdef DEBUG
883       write (iout,*) "gloc after reduce"
884       do i=1,4*nres
885         write (iout,*) i,gloc(i,icg)
886       enddo
887 #endif
888       endif
889 #endif
890       if (gnorm_check) then
891 c
892 c Compute the maximum elements of the gradient
893 c
894       gvdwc_max=0.0d0
895       gvdwc_scp_max=0.0d0
896       gelc_max=0.0d0
897       gvdwpp_max=0.0d0
898       gradb_max=0.0d0
899       ghpbc_max=0.0d0
900       gradcorr_max=0.0d0
901       gel_loc_max=0.0d0
902       gcorr3_turn_max=0.0d0
903       gcorr4_turn_max=0.0d0
904       gradcorr5_max=0.0d0
905       gradcorr6_max=0.0d0
906       gcorr6_turn_max=0.0d0
907       gsccorc_max=0.0d0
908       gscloc_max=0.0d0
909       gvdwx_max=0.0d0
910       gradx_scp_max=0.0d0
911       ghpbx_max=0.0d0
912       gradxorr_max=0.0d0
913       gsccorx_max=0.0d0
914       gsclocx_max=0.0d0
915       do i=1,nct
916         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
917         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
918 #ifdef TSCSC
919         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
920         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
921 #endif
922         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
923         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
924      &   gvdwc_scp_max=gvdwc_scp_norm
925         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
926         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
927         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
928         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
929         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
930         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
931         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
932         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
933         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
934         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
935         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
936         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
937         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
938      &    gcorr3_turn(1,i)))
939         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
940      &    gcorr3_turn_max=gcorr3_turn_norm
941         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
942      &    gcorr4_turn(1,i)))
943         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
944      &    gcorr4_turn_max=gcorr4_turn_norm
945         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
946         if (gradcorr5_norm.gt.gradcorr5_max) 
947      &    gradcorr5_max=gradcorr5_norm
948         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
949         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
950         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
951      &    gcorr6_turn(1,i)))
952         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
953      &    gcorr6_turn_max=gcorr6_turn_norm
954         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
955         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
956         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
957         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
958         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
959         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
960 #ifdef TSCSC
961         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
962         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
963 #endif
964         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
965         if (gradx_scp_norm.gt.gradx_scp_max) 
966      &    gradx_scp_max=gradx_scp_norm
967         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
968         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
969         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
970         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
971         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
972         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
973         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
974         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
975       enddo 
976       if (gradout) then
977 #ifdef AIX
978         open(istat,file=statname,position="append")
979 #else
980         open(istat,file=statname,access="append")
981 #endif
982         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
983      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
984      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
985      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
986      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
987      &     gsccorx_max,gsclocx_max
988         close(istat)
989         if (gvdwc_max.gt.1.0d4) then
990           write (iout,*) "gvdwc gvdwx gradb gradbx"
991           do i=nnt,nct
992             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
993      &        gradb(j,i),gradbx(j,i),j=1,3)
994           enddo
995           call pdbout(0.0d0,'cipiszcze',iout)
996           call flush(iout)
997         endif
998       endif
999       endif
1000 #ifdef DEBUG
1001       write (iout,*) "gradc gradx gloc"
1002       do i=1,nres
1003         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
1004      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
1005       enddo 
1006 #endif
1007 #ifdef TIMING
1008 #ifdef MPI
1009       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
1010 #else
1011       time_sumgradient=time_sumgradient+tcpu()-time01
1012 #endif
1013 #endif
1014       return
1015       end
1016 c-------------------------------------------------------------------------------
1017       subroutine rescale_weights(t_bath)
1018       implicit real*8 (a-h,o-z)
1019       include 'DIMENSIONS'
1020       include 'COMMON.IOUNITS'
1021       include 'COMMON.FFIELD'
1022       include 'COMMON.SBRIDGE'
1023       double precision kfac /2.4d0/
1024       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
1025 c      facT=temp0/t_bath
1026 c      facT=2*temp0/(t_bath+temp0)
1027       if (rescale_mode.eq.0) then
1028         facT=1.0d0
1029         facT2=1.0d0
1030         facT3=1.0d0
1031         facT4=1.0d0
1032         facT5=1.0d0
1033       else if (rescale_mode.eq.1) then
1034         facT=kfac/(kfac-1.0d0+t_bath/temp0)
1035         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
1036         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
1037         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
1038         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
1039       else if (rescale_mode.eq.2) then
1040         x=t_bath/temp0
1041         x2=x*x
1042         x3=x2*x
1043         x4=x3*x
1044         x5=x4*x
1045         facT=licznik/dlog(dexp(x)+dexp(-x))
1046         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
1047         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
1048         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
1049         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
1050       else
1051         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
1052         write (*,*) "Wrong RESCALE_MODE",rescale_mode
1053 #ifdef MPI
1054        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
1055 #endif
1056        stop 555
1057       endif
1058       welec=weights(3)*fact
1059       wcorr=weights(4)*fact3
1060       wcorr5=weights(5)*fact4
1061       wcorr6=weights(6)*fact5
1062       wel_loc=weights(7)*fact2
1063       wturn3=weights(8)*fact2
1064       wturn4=weights(9)*fact3
1065       wturn6=weights(10)*fact5
1066       wtor=weights(13)*fact
1067       wtor_d=weights(14)*fact2
1068       wsccor=weights(21)*fact
1069 #ifdef TSCSC
1070 c      wsct=t_bath/temp0
1071       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1072 #endif
1073       return
1074       end
1075 C------------------------------------------------------------------------
1076       subroutine enerprint(energia)
1077       implicit real*8 (a-h,o-z)
1078       include 'DIMENSIONS'
1079       include 'COMMON.IOUNITS'
1080       include 'COMMON.FFIELD'
1081       include 'COMMON.SBRIDGE'
1082       include 'COMMON.MD'
1083       double precision energia(0:n_ene)
1084       etot=energia(0)
1085 #ifdef TSCSC
1086       evdw=energia(22)+wsct*energia(23)
1087 #else
1088       evdw=energia(1)
1089 #endif
1090       evdw2=energia(2)
1091 #ifdef SCP14
1092       evdw2=energia(2)+energia(18)
1093 #else
1094       evdw2=energia(2)
1095 #endif
1096       ees=energia(3)
1097 #ifdef SPLITELE
1098       evdw1=energia(16)
1099 #endif
1100       ecorr=energia(4)
1101       ecorr5=energia(5)
1102       ecorr6=energia(6)
1103       eel_loc=energia(7)
1104       eello_turn3=energia(8)
1105       eello_turn4=energia(9)
1106       eello_turn6=energia(10)
1107       ebe=energia(11)
1108       escloc=energia(12)
1109       etors=energia(13)
1110       etors_d=energia(14)
1111       ehpb=energia(15)
1112       edihcnstr=energia(19)
1113       estr=energia(17)
1114       Uconst=energia(20)
1115       esccor=energia(21)
1116       ehomology_constr=energia(24)
1117 C     Bartek
1118       edfadis = energia(25)
1119       edfator = energia(26)
1120       edfanei = energia(27)
1121       edfabet = energia(28)
1122
1123 #ifdef SPLITELE
1124       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1125      &  estr,wbond,ebe,wang,
1126      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1127      &  ecorr,wcorr,
1128      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1129      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1130      &  edihcnstr,ehomology_constr, ebr*nss,
1131      &  Uconst,edfadis,wdfa_dist,edfator,wdfa_tor,edfanei,wdfa_nei,
1132      &  edfabet,wdfa_beta,etot
1133    10 format (/'Virtual-chain energies:'//
1134      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1135      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1136      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1137      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1138      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1139      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1140      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1141      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1142      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1143      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1144      & ' (SS bridges & dist. cnstr.)'/
1145      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1146      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1147      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1148      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1149      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1150      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1151      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1152      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1153      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1154      & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/
1155      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1156      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1157      & 'EDFAD= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA distance energy)'/ 
1158      & 'EDFAT= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA torsion energy)'/ 
1159      & 'EDFAN= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA NCa energy)'/ 
1160      & 'EDFAB= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA Beta energy)'/ 
1161      & 'ETOT=  ',1pE16.6,' (total)')
1162 #else
1163       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1164      &  estr,wbond,ebe,wang,
1165      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1166      &  ecorr,wcorr,
1167      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1168      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1169      &  ehomology_constr,ebr*nss,Uconst,edfadis,wdfa_dist,edfator,
1170      &  wdfa_tor,edfanei,wdfa_nei,edfabet,wdfa_beta,
1171      &  etot
1172    10 format (/'Virtual-chain energies:'//
1173      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1174      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1175      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1176      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1177      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1178      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1179      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1180      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1181      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1182      & ' (SS bridges & dist. cnstr.)'/
1183      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1184      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1185      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1186      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1187      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1188      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1189      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1190      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1191      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1192      & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/
1193      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1194      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1195      & 'EDFAD= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA distance energy)'/ 
1196      & 'EDFAT= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA torsion energy)'/ 
1197      & 'EDFAN= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA NCa energy)'/ 
1198      & 'EDFAB= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA Beta energy)'/ 
1199      & 'ETOT=  ',1pE16.6,' (total)')
1200 #endif
1201       return
1202       end
1203 C-----------------------------------------------------------------------
1204       subroutine elj(evdw,evdw_p,evdw_m)
1205 C
1206 C This subroutine calculates the interaction energy of nonbonded side chains
1207 C assuming the LJ potential of interaction.
1208 C
1209       implicit real*8 (a-h,o-z)
1210       include 'DIMENSIONS'
1211       parameter (accur=1.0d-10)
1212       include 'COMMON.GEO'
1213       include 'COMMON.VAR'
1214       include 'COMMON.LOCAL'
1215       include 'COMMON.CHAIN'
1216       include 'COMMON.DERIV'
1217       include 'COMMON.INTERACT'
1218       include 'COMMON.TORSION'
1219       include 'COMMON.SBRIDGE'
1220       include 'COMMON.NAMES'
1221       include 'COMMON.IOUNITS'
1222       include 'COMMON.CONTACTS'
1223       dimension gg(3)
1224 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1225       evdw=0.0D0
1226       do i=iatsc_s,iatsc_e
1227         itypi=itype(i)
1228         itypi1=itype(i+1)
1229         xi=c(1,nres+i)
1230         yi=c(2,nres+i)
1231         zi=c(3,nres+i)
1232 C Change 12/1/95
1233         num_conti=0
1234 C
1235 C Calculate SC interaction energy.
1236 C
1237         do iint=1,nint_gr(i)
1238 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1239 cd   &                  'iend=',iend(i,iint)
1240           do j=istart(i,iint),iend(i,iint)
1241             itypj=itype(j)
1242             xj=c(1,nres+j)-xi
1243             yj=c(2,nres+j)-yi
1244             zj=c(3,nres+j)-zi
1245 C Change 12/1/95 to calculate four-body interactions
1246             rij=xj*xj+yj*yj+zj*zj
1247             rrij=1.0D0/rij
1248 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1249             eps0ij=eps(itypi,itypj)
1250             fac=rrij**expon2
1251             e1=fac*fac*aa(itypi,itypj)
1252             e2=fac*bb(itypi,itypj)
1253             evdwij=e1+e2
1254 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1255 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1256 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1257 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1258 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1259 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1260 #ifdef TSCSC
1261             if (bb(itypi,itypj).gt.0) then
1262                evdw_p=evdw_p+evdwij
1263             else
1264                evdw_m=evdw_m+evdwij
1265             endif
1266 #else
1267             evdw=evdw+evdwij
1268 #endif
1269
1270 C Calculate the components of the gradient in DC and X
1271 C
1272             fac=-rrij*(e1+evdwij)
1273             gg(1)=xj*fac
1274             gg(2)=yj*fac
1275             gg(3)=zj*fac
1276 #ifdef TSCSC
1277             if (bb(itypi,itypj).gt.0.0d0) then
1278               do k=1,3
1279                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1280                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1281                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1282                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1283               enddo
1284             else
1285               do k=1,3
1286                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1287                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1288                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1289                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1290               enddo
1291             endif
1292 #else
1293             do k=1,3
1294               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1295               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1296               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1297               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1298             enddo
1299 #endif
1300 cgrad            do k=i,j-1
1301 cgrad              do l=1,3
1302 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1303 cgrad              enddo
1304 cgrad            enddo
1305 C
1306 C 12/1/95, revised on 5/20/97
1307 C
1308 C Calculate the contact function. The ith column of the array JCONT will 
1309 C contain the numbers of atoms that make contacts with the atom I (of numbers
1310 C greater than I). The arrays FACONT and GACONT will contain the values of
1311 C the contact function and its derivative.
1312 C
1313 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1314 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1315 C Uncomment next line, if the correlation interactions are contact function only
1316             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1317               rij=dsqrt(rij)
1318               sigij=sigma(itypi,itypj)
1319               r0ij=rs0(itypi,itypj)
1320 C
1321 C Check whether the SC's are not too far to make a contact.
1322 C
1323               rcut=1.5d0*r0ij
1324               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1325 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1326 C
1327               if (fcont.gt.0.0D0) then
1328 C If the SC-SC distance if close to sigma, apply spline.
1329 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1330 cAdam &             fcont1,fprimcont1)
1331 cAdam           fcont1=1.0d0-fcont1
1332 cAdam           if (fcont1.gt.0.0d0) then
1333 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1334 cAdam             fcont=fcont*fcont1
1335 cAdam           endif
1336 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1337 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1338 cga             do k=1,3
1339 cga               gg(k)=gg(k)*eps0ij
1340 cga             enddo
1341 cga             eps0ij=-evdwij*eps0ij
1342 C Uncomment for AL's type of SC correlation interactions.
1343 cadam           eps0ij=-evdwij
1344                 num_conti=num_conti+1
1345                 jcont(num_conti,i)=j
1346                 facont(num_conti,i)=fcont*eps0ij
1347                 fprimcont=eps0ij*fprimcont/rij
1348                 fcont=expon*fcont
1349 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1350 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1351 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1352 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1353                 gacont(1,num_conti,i)=-fprimcont*xj
1354                 gacont(2,num_conti,i)=-fprimcont*yj
1355                 gacont(3,num_conti,i)=-fprimcont*zj
1356 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1357 cd              write (iout,'(2i3,3f10.5)') 
1358 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1359               endif
1360             endif
1361           enddo      ! j
1362         enddo        ! iint
1363 C Change 12/1/95
1364         num_cont(i)=num_conti
1365       enddo          ! i
1366       do i=1,nct
1367         do j=1,3
1368           gvdwc(j,i)=expon*gvdwc(j,i)
1369           gvdwx(j,i)=expon*gvdwx(j,i)
1370         enddo
1371       enddo
1372 C******************************************************************************
1373 C
1374 C                              N O T E !!!
1375 C
1376 C To save time, the factor of EXPON has been extracted from ALL components
1377 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1378 C use!
1379 C
1380 C******************************************************************************
1381       return
1382       end
1383 C-----------------------------------------------------------------------------
1384       subroutine eljk(evdw,evdw_p,evdw_m)
1385 C
1386 C This subroutine calculates the interaction energy of nonbonded side chains
1387 C assuming the LJK potential of interaction.
1388 C
1389       implicit real*8 (a-h,o-z)
1390       include 'DIMENSIONS'
1391       include 'COMMON.GEO'
1392       include 'COMMON.VAR'
1393       include 'COMMON.LOCAL'
1394       include 'COMMON.CHAIN'
1395       include 'COMMON.DERIV'
1396       include 'COMMON.INTERACT'
1397       include 'COMMON.IOUNITS'
1398       include 'COMMON.NAMES'
1399       dimension gg(3)
1400       logical scheck
1401 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1402       evdw=0.0D0
1403       do i=iatsc_s,iatsc_e
1404         itypi=itype(i)
1405         itypi1=itype(i+1)
1406         xi=c(1,nres+i)
1407         yi=c(2,nres+i)
1408         zi=c(3,nres+i)
1409 C
1410 C Calculate SC interaction energy.
1411 C
1412         do iint=1,nint_gr(i)
1413           do j=istart(i,iint),iend(i,iint)
1414             itypj=itype(j)
1415             xj=c(1,nres+j)-xi
1416             yj=c(2,nres+j)-yi
1417             zj=c(3,nres+j)-zi
1418             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1419             fac_augm=rrij**expon
1420             e_augm=augm(itypi,itypj)*fac_augm
1421             r_inv_ij=dsqrt(rrij)
1422             rij=1.0D0/r_inv_ij 
1423             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1424             fac=r_shift_inv**expon
1425             e1=fac*fac*aa(itypi,itypj)
1426             e2=fac*bb(itypi,itypj)
1427             evdwij=e_augm+e1+e2
1428 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1429 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1430 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1431 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1432 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1433 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1434 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1435 #ifdef TSCSC
1436             if (bb(itypi,itypj).gt.0) then
1437                evdw_p=evdw_p+evdwij
1438             else
1439                evdw_m=evdw_m+evdwij
1440             endif
1441 #else
1442             evdw=evdw+evdwij
1443 #endif
1444
1445 C Calculate the components of the gradient in DC and X
1446 C
1447             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1448             gg(1)=xj*fac
1449             gg(2)=yj*fac
1450             gg(3)=zj*fac
1451 #ifdef TSCSC
1452             if (bb(itypi,itypj).gt.0.0d0) then
1453               do k=1,3
1454                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1455                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1456                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1457                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1458               enddo
1459             else
1460               do k=1,3
1461                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1462                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1463                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1464                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1465               enddo
1466             endif
1467 #else
1468             do k=1,3
1469               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1470               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1471               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1472               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1473             enddo
1474 #endif
1475 cgrad            do k=i,j-1
1476 cgrad              do l=1,3
1477 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1478 cgrad              enddo
1479 cgrad            enddo
1480           enddo      ! j
1481         enddo        ! iint
1482       enddo          ! i
1483       do i=1,nct
1484         do j=1,3
1485           gvdwc(j,i)=expon*gvdwc(j,i)
1486           gvdwx(j,i)=expon*gvdwx(j,i)
1487         enddo
1488       enddo
1489       return
1490       end
1491 C-----------------------------------------------------------------------------
1492       subroutine ebp(evdw,evdw_p,evdw_m)
1493 C
1494 C This subroutine calculates the interaction energy of nonbonded side chains
1495 C assuming the Berne-Pechukas potential of interaction.
1496 C
1497       implicit real*8 (a-h,o-z)
1498       include 'DIMENSIONS'
1499       include 'COMMON.GEO'
1500       include 'COMMON.VAR'
1501       include 'COMMON.LOCAL'
1502       include 'COMMON.CHAIN'
1503       include 'COMMON.DERIV'
1504       include 'COMMON.NAMES'
1505       include 'COMMON.INTERACT'
1506       include 'COMMON.IOUNITS'
1507       include 'COMMON.CALC'
1508       common /srutu/ icall
1509 c     double precision rrsave(maxdim)
1510       logical lprn
1511       evdw=0.0D0
1512 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1513       evdw=0.0D0
1514 c     if (icall.eq.0) then
1515 c       lprn=.true.
1516 c     else
1517         lprn=.false.
1518 c     endif
1519       ind=0
1520       do i=iatsc_s,iatsc_e
1521         itypi=itype(i)
1522         itypi1=itype(i+1)
1523         xi=c(1,nres+i)
1524         yi=c(2,nres+i)
1525         zi=c(3,nres+i)
1526         dxi=dc_norm(1,nres+i)
1527         dyi=dc_norm(2,nres+i)
1528         dzi=dc_norm(3,nres+i)
1529 c        dsci_inv=dsc_inv(itypi)
1530         dsci_inv=vbld_inv(i+nres)
1531 C
1532 C Calculate SC interaction energy.
1533 C
1534         do iint=1,nint_gr(i)
1535           do j=istart(i,iint),iend(i,iint)
1536             ind=ind+1
1537             itypj=itype(j)
1538 c            dscj_inv=dsc_inv(itypj)
1539             dscj_inv=vbld_inv(j+nres)
1540             chi1=chi(itypi,itypj)
1541             chi2=chi(itypj,itypi)
1542             chi12=chi1*chi2
1543             chip1=chip(itypi)
1544             chip2=chip(itypj)
1545             chip12=chip1*chip2
1546             alf1=alp(itypi)
1547             alf2=alp(itypj)
1548             alf12=0.5D0*(alf1+alf2)
1549 C For diagnostics only!!!
1550 c           chi1=0.0D0
1551 c           chi2=0.0D0
1552 c           chi12=0.0D0
1553 c           chip1=0.0D0
1554 c           chip2=0.0D0
1555 c           chip12=0.0D0
1556 c           alf1=0.0D0
1557 c           alf2=0.0D0
1558 c           alf12=0.0D0
1559             xj=c(1,nres+j)-xi
1560             yj=c(2,nres+j)-yi
1561             zj=c(3,nres+j)-zi
1562             dxj=dc_norm(1,nres+j)
1563             dyj=dc_norm(2,nres+j)
1564             dzj=dc_norm(3,nres+j)
1565             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1566 cd          if (icall.eq.0) then
1567 cd            rrsave(ind)=rrij
1568 cd          else
1569 cd            rrij=rrsave(ind)
1570 cd          endif
1571             rij=dsqrt(rrij)
1572 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1573             call sc_angular
1574 C Calculate whole angle-dependent part of epsilon and contributions
1575 C to its derivatives
1576             fac=(rrij*sigsq)**expon2
1577             e1=fac*fac*aa(itypi,itypj)
1578             e2=fac*bb(itypi,itypj)
1579             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1580             eps2der=evdwij*eps3rt
1581             eps3der=evdwij*eps2rt
1582             evdwij=evdwij*eps2rt*eps3rt
1583 #ifdef TSCSC
1584             if (bb(itypi,itypj).gt.0) then
1585                evdw_p=evdw_p+evdwij
1586             else
1587                evdw_m=evdw_m+evdwij
1588             endif
1589 #else
1590             evdw=evdw+evdwij
1591 #endif
1592             if (lprn) then
1593             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1594             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1595 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1596 cd     &        restyp(itypi),i,restyp(itypj),j,
1597 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1598 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1599 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1600 cd     &        evdwij
1601             endif
1602 C Calculate gradient components.
1603             e1=e1*eps1*eps2rt**2*eps3rt**2
1604             fac=-expon*(e1+evdwij)
1605             sigder=fac/sigsq
1606             fac=rrij*fac
1607 C Calculate radial part of the gradient
1608             gg(1)=xj*fac
1609             gg(2)=yj*fac
1610             gg(3)=zj*fac
1611 C Calculate the angular part of the gradient and sum add the contributions
1612 C to the appropriate components of the Cartesian gradient.
1613 #ifdef TSCSC
1614             if (bb(itypi,itypj).gt.0) then
1615                call sc_grad
1616             else
1617                call sc_grad_T
1618             endif
1619 #else
1620             call sc_grad
1621 #endif
1622           enddo      ! j
1623         enddo        ! iint
1624       enddo          ! i
1625 c     stop
1626       return
1627       end
1628 C-----------------------------------------------------------------------------
1629       subroutine egb(evdw,evdw_p,evdw_m)
1630 C
1631 C This subroutine calculates the interaction energy of nonbonded side chains
1632 C assuming the Gay-Berne potential of interaction.
1633 C
1634       implicit real*8 (a-h,o-z)
1635       include 'DIMENSIONS'
1636       include 'COMMON.GEO'
1637       include 'COMMON.VAR'
1638       include 'COMMON.LOCAL'
1639       include 'COMMON.CHAIN'
1640       include 'COMMON.DERIV'
1641       include 'COMMON.NAMES'
1642       include 'COMMON.INTERACT'
1643       include 'COMMON.IOUNITS'
1644       include 'COMMON.CALC'
1645       include 'COMMON.CONTROL'
1646       include 'COMMON.SBRIDGE'
1647       logical lprn
1648       evdw=0.0D0
1649 ccccc      energy_dec=.false.
1650 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1651       evdw=0.0D0
1652       evdw_p=0.0D0
1653       evdw_m=0.0D0
1654       lprn=.false.
1655 c     if (icall.eq.0) lprn=.false.
1656       ind=0
1657       do i=iatsc_s,iatsc_e
1658         itypi=itype(i)
1659         itypi1=itype(i+1)
1660         xi=c(1,nres+i)
1661         yi=c(2,nres+i)
1662         zi=c(3,nres+i)
1663         dxi=dc_norm(1,nres+i)
1664         dyi=dc_norm(2,nres+i)
1665         dzi=dc_norm(3,nres+i)
1666 c        dsci_inv=dsc_inv(itypi)
1667         dsci_inv=vbld_inv(i+nres)
1668 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1669 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1670 C
1671 C Calculate SC interaction energy.
1672 C
1673         do iint=1,nint_gr(i)
1674           do j=istart(i,iint),iend(i,iint)
1675             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1676               call dyn_ssbond_ene(i,j,evdwij)
1677               evdw=evdw+evdwij
1678               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1679      &                        'evdw',i,j,evdwij,' ss'
1680             ELSE
1681             ind=ind+1
1682             itypj=itype(j)
1683 c            dscj_inv=dsc_inv(itypj)
1684             dscj_inv=vbld_inv(j+nres)
1685 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1686 c     &       1.0d0/vbld(j+nres)
1687 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1688             sig0ij=sigma(itypi,itypj)
1689             chi1=chi(itypi,itypj)
1690             chi2=chi(itypj,itypi)
1691             chi12=chi1*chi2
1692             chip1=chip(itypi)
1693             chip2=chip(itypj)
1694             chip12=chip1*chip2
1695             alf1=alp(itypi)
1696             alf2=alp(itypj)
1697             alf12=0.5D0*(alf1+alf2)
1698 C For diagnostics only!!!
1699 c           chi1=0.0D0
1700 c           chi2=0.0D0
1701 c           chi12=0.0D0
1702 c           chip1=0.0D0
1703 c           chip2=0.0D0
1704 c           chip12=0.0D0
1705 c           alf1=0.0D0
1706 c           alf2=0.0D0
1707 c           alf12=0.0D0
1708             xj=c(1,nres+j)-xi
1709             yj=c(2,nres+j)-yi
1710             zj=c(3,nres+j)-zi
1711             dxj=dc_norm(1,nres+j)
1712             dyj=dc_norm(2,nres+j)
1713             dzj=dc_norm(3,nres+j)
1714 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1715 c            write (iout,*) "j",j," dc_norm",
1716 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1717             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1718             rij=dsqrt(rrij)
1719 C Calculate angle-dependent terms of energy and contributions to their
1720 C derivatives.
1721             call sc_angular
1722             sigsq=1.0D0/sigsq
1723             sig=sig0ij*dsqrt(sigsq)
1724             rij_shift=1.0D0/rij-sig+sig0ij
1725 c for diagnostics; uncomment
1726 c            rij_shift=1.2*sig0ij
1727 C I hate to put IF's in the loops, but here don't have another choice!!!!
1728             if (rij_shift.le.0.0D0) then
1729               evdw=1.0D20
1730 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1731 cd     &        restyp(itypi),i,restyp(itypj),j,
1732 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1733               return
1734             endif
1735             sigder=-sig*sigsq
1736 c---------------------------------------------------------------
1737             rij_shift=1.0D0/rij_shift 
1738             fac=rij_shift**expon
1739             e1=fac*fac*aa(itypi,itypj)
1740             e2=fac*bb(itypi,itypj)
1741             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1742             eps2der=evdwij*eps3rt
1743             eps3der=evdwij*eps2rt
1744 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1745 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1746             evdwij=evdwij*eps2rt*eps3rt
1747 #ifdef TSCSC
1748             if (bb(itypi,itypj).gt.0) then
1749                evdw_p=evdw_p+evdwij
1750             else
1751                evdw_m=evdw_m+evdwij
1752             endif
1753 #else
1754             evdw=evdw+evdwij
1755 #endif
1756             if (lprn) then
1757             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1758             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1759             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1760      &        restyp(itypi),i,restyp(itypj),j,
1761      &        epsi,sigm,chi1,chi2,chip1,chip2,
1762      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1763      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1764      &        evdwij
1765             endif
1766
1767             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1768      &                        'evdw',i,j,evdwij
1769
1770 C Calculate gradient components.
1771             e1=e1*eps1*eps2rt**2*eps3rt**2
1772             fac=-expon*(e1+evdwij)*rij_shift
1773             sigder=fac*sigder
1774             fac=rij*fac
1775 c            fac=0.0d0
1776 C Calculate the radial part of the gradient
1777             gg(1)=xj*fac
1778             gg(2)=yj*fac
1779             gg(3)=zj*fac
1780 C Calculate angular part of the gradient.
1781 #ifdef TSCSC
1782             if (bb(itypi,itypj).gt.0) then
1783                call sc_grad
1784             else
1785                call sc_grad_T
1786             endif
1787 #else
1788             call sc_grad
1789 #endif
1790             ENDIF    ! dyn_ss            
1791           enddo      ! j
1792         enddo        ! iint
1793       enddo          ! i
1794 c      write (iout,*) "Number of loop steps in EGB:",ind
1795 cccc      energy_dec=.false.
1796       return
1797       end
1798 C-----------------------------------------------------------------------------
1799       subroutine egbv(evdw,evdw_p,evdw_m)
1800 C
1801 C This subroutine calculates the interaction energy of nonbonded side chains
1802 C assuming the Gay-Berne-Vorobjev potential of interaction.
1803 C
1804       implicit real*8 (a-h,o-z)
1805       include 'DIMENSIONS'
1806       include 'COMMON.GEO'
1807       include 'COMMON.VAR'
1808       include 'COMMON.LOCAL'
1809       include 'COMMON.CHAIN'
1810       include 'COMMON.DERIV'
1811       include 'COMMON.NAMES'
1812       include 'COMMON.INTERACT'
1813       include 'COMMON.IOUNITS'
1814       include 'COMMON.CALC'
1815       common /srutu/ icall
1816       logical lprn
1817       evdw=0.0D0
1818 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1819       evdw=0.0D0
1820       lprn=.false.
1821 c     if (icall.eq.0) lprn=.true.
1822       ind=0
1823       do i=iatsc_s,iatsc_e
1824         itypi=itype(i)
1825         itypi1=itype(i+1)
1826         xi=c(1,nres+i)
1827         yi=c(2,nres+i)
1828         zi=c(3,nres+i)
1829         dxi=dc_norm(1,nres+i)
1830         dyi=dc_norm(2,nres+i)
1831         dzi=dc_norm(3,nres+i)
1832 c        dsci_inv=dsc_inv(itypi)
1833         dsci_inv=vbld_inv(i+nres)
1834 C
1835 C Calculate SC interaction energy.
1836 C
1837         do iint=1,nint_gr(i)
1838           do j=istart(i,iint),iend(i,iint)
1839             ind=ind+1
1840             itypj=itype(j)
1841 c            dscj_inv=dsc_inv(itypj)
1842             dscj_inv=vbld_inv(j+nres)
1843             sig0ij=sigma(itypi,itypj)
1844             r0ij=r0(itypi,itypj)
1845             chi1=chi(itypi,itypj)
1846             chi2=chi(itypj,itypi)
1847             chi12=chi1*chi2
1848             chip1=chip(itypi)
1849             chip2=chip(itypj)
1850             chip12=chip1*chip2
1851             alf1=alp(itypi)
1852             alf2=alp(itypj)
1853             alf12=0.5D0*(alf1+alf2)
1854 C For diagnostics only!!!
1855 c           chi1=0.0D0
1856 c           chi2=0.0D0
1857 c           chi12=0.0D0
1858 c           chip1=0.0D0
1859 c           chip2=0.0D0
1860 c           chip12=0.0D0
1861 c           alf1=0.0D0
1862 c           alf2=0.0D0
1863 c           alf12=0.0D0
1864             xj=c(1,nres+j)-xi
1865             yj=c(2,nres+j)-yi
1866             zj=c(3,nres+j)-zi
1867             dxj=dc_norm(1,nres+j)
1868             dyj=dc_norm(2,nres+j)
1869             dzj=dc_norm(3,nres+j)
1870             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1871             rij=dsqrt(rrij)
1872 C Calculate angle-dependent terms of energy and contributions to their
1873 C derivatives.
1874             call sc_angular
1875             sigsq=1.0D0/sigsq
1876             sig=sig0ij*dsqrt(sigsq)
1877             rij_shift=1.0D0/rij-sig+r0ij
1878 C I hate to put IF's in the loops, but here don't have another choice!!!!
1879             if (rij_shift.le.0.0D0) then
1880               evdw=1.0D20
1881               return
1882             endif
1883             sigder=-sig*sigsq
1884 c---------------------------------------------------------------
1885             rij_shift=1.0D0/rij_shift 
1886             fac=rij_shift**expon
1887             e1=fac*fac*aa(itypi,itypj)
1888             e2=fac*bb(itypi,itypj)
1889             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1890             eps2der=evdwij*eps3rt
1891             eps3der=evdwij*eps2rt
1892             fac_augm=rrij**expon
1893             e_augm=augm(itypi,itypj)*fac_augm
1894             evdwij=evdwij*eps2rt*eps3rt
1895 #ifdef TSCSC
1896             if (bb(itypi,itypj).gt.0) then
1897                evdw_p=evdw_p+evdwij+e_augm
1898             else
1899                evdw_m=evdw_m+evdwij+e_augm
1900             endif
1901 #else
1902             evdw=evdw+evdwij+e_augm
1903 #endif
1904             if (lprn) then
1905             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1906             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1907             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1908      &        restyp(itypi),i,restyp(itypj),j,
1909      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1910      &        chi1,chi2,chip1,chip2,
1911      &        eps1,eps2rt**2,eps3rt**2,
1912      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1913      &        evdwij+e_augm
1914             endif
1915 C Calculate gradient components.
1916             e1=e1*eps1*eps2rt**2*eps3rt**2
1917             fac=-expon*(e1+evdwij)*rij_shift
1918             sigder=fac*sigder
1919             fac=rij*fac-2*expon*rrij*e_augm
1920 C Calculate the radial part of the gradient
1921             gg(1)=xj*fac
1922             gg(2)=yj*fac
1923             gg(3)=zj*fac
1924 C Calculate angular part of the gradient.
1925 #ifdef TSCSC
1926             if (bb(itypi,itypj).gt.0) then
1927                call sc_grad
1928             else
1929                call sc_grad_T
1930             endif
1931 #else
1932             call sc_grad
1933 #endif
1934           enddo      ! j
1935         enddo        ! iint
1936       enddo          ! i
1937       end
1938 C-----------------------------------------------------------------------------
1939       subroutine sc_angular
1940 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1941 C om12. Called by ebp, egb, and egbv.
1942       implicit none
1943       include 'COMMON.CALC'
1944       include 'COMMON.IOUNITS'
1945       erij(1)=xj*rij
1946       erij(2)=yj*rij
1947       erij(3)=zj*rij
1948       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1949       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1950       om12=dxi*dxj+dyi*dyj+dzi*dzj
1951       chiom12=chi12*om12
1952 C Calculate eps1(om12) and its derivative in om12
1953       faceps1=1.0D0-om12*chiom12
1954       faceps1_inv=1.0D0/faceps1
1955       eps1=dsqrt(faceps1_inv)
1956 C Following variable is eps1*deps1/dom12
1957       eps1_om12=faceps1_inv*chiom12
1958 c diagnostics only
1959 c      faceps1_inv=om12
1960 c      eps1=om12
1961 c      eps1_om12=1.0d0
1962 c      write (iout,*) "om12",om12," eps1",eps1
1963 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1964 C and om12.
1965       om1om2=om1*om2
1966       chiom1=chi1*om1
1967       chiom2=chi2*om2
1968       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1969       sigsq=1.0D0-facsig*faceps1_inv
1970       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1971       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1972       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1973 c diagnostics only
1974 c      sigsq=1.0d0
1975 c      sigsq_om1=0.0d0
1976 c      sigsq_om2=0.0d0
1977 c      sigsq_om12=0.0d0
1978 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1979 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1980 c     &    " eps1",eps1
1981 C Calculate eps2 and its derivatives in om1, om2, and om12.
1982       chipom1=chip1*om1
1983       chipom2=chip2*om2
1984       chipom12=chip12*om12
1985       facp=1.0D0-om12*chipom12
1986       facp_inv=1.0D0/facp
1987       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1988 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1989 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1990 C Following variable is the square root of eps2
1991       eps2rt=1.0D0-facp1*facp_inv
1992 C Following three variables are the derivatives of the square root of eps
1993 C in om1, om2, and om12.
1994       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1995       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1996       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1997 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1998       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1999 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
2000 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
2001 c     &  " eps2rt_om12",eps2rt_om12
2002 C Calculate whole angle-dependent part of epsilon and contributions
2003 C to its derivatives
2004       return
2005       end
2006
2007 C----------------------------------------------------------------------------
2008       subroutine sc_grad_T
2009       implicit real*8 (a-h,o-z)
2010       include 'DIMENSIONS'
2011       include 'COMMON.CHAIN'
2012       include 'COMMON.DERIV'
2013       include 'COMMON.CALC'
2014       include 'COMMON.IOUNITS'
2015       double precision dcosom1(3),dcosom2(3)
2016       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
2017       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
2018       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
2019      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
2020 c diagnostics only
2021 c      eom1=0.0d0
2022 c      eom2=0.0d0
2023 c      eom12=evdwij*eps1_om12
2024 c end diagnostics
2025 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
2026 c     &  " sigder",sigder
2027 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2028 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2029       do k=1,3
2030         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2031         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2032       enddo
2033       do k=1,3
2034         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2035       enddo 
2036 c      write (iout,*) "gg",(gg(k),k=1,3)
2037       do k=1,3
2038         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
2039      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2040      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2041         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
2042      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2043      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2044 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2045 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2046 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2047 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2048       enddo
2049
2050 C Calculate the components of the gradient in DC and X
2051 C
2052 cgrad      do k=i,j-1
2053 cgrad        do l=1,3
2054 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2055 cgrad        enddo
2056 cgrad      enddo
2057       do l=1,3
2058         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
2059         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
2060       enddo
2061       return
2062       end
2063
2064 C----------------------------------------------------------------------------
2065       subroutine sc_grad
2066       implicit real*8 (a-h,o-z)
2067       include 'DIMENSIONS'
2068       include 'COMMON.CHAIN'
2069       include 'COMMON.DERIV'
2070       include 'COMMON.CALC'
2071       include 'COMMON.IOUNITS'
2072       double precision dcosom1(3),dcosom2(3)
2073       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
2074       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
2075       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
2076      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
2077 c diagnostics only
2078 c      eom1=0.0d0
2079 c      eom2=0.0d0
2080 c      eom12=evdwij*eps1_om12
2081 c end diagnostics
2082 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
2083 c     &  " sigder",sigder
2084 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2085 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2086       do k=1,3
2087         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2088         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2089       enddo
2090       do k=1,3
2091         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2092       enddo 
2093 c      write (iout,*) "gg",(gg(k),k=1,3)
2094       do k=1,3
2095         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2096      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2097      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2098         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2099      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2100      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2101 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2102 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2103 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2104 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2105       enddo
2106
2107 C Calculate the components of the gradient in DC and X
2108 C
2109 cgrad      do k=i,j-1
2110 cgrad        do l=1,3
2111 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2112 cgrad        enddo
2113 cgrad      enddo
2114       do l=1,3
2115         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2116         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2117       enddo
2118       return
2119       end
2120 C-----------------------------------------------------------------------
2121       subroutine e_softsphere(evdw)
2122 C
2123 C This subroutine calculates the interaction energy of nonbonded side chains
2124 C assuming the LJ potential of interaction.
2125 C
2126       implicit real*8 (a-h,o-z)
2127       include 'DIMENSIONS'
2128       parameter (accur=1.0d-10)
2129       include 'COMMON.GEO'
2130       include 'COMMON.VAR'
2131       include 'COMMON.LOCAL'
2132       include 'COMMON.CHAIN'
2133       include 'COMMON.DERIV'
2134       include 'COMMON.INTERACT'
2135       include 'COMMON.TORSION'
2136       include 'COMMON.SBRIDGE'
2137       include 'COMMON.NAMES'
2138       include 'COMMON.IOUNITS'
2139       include 'COMMON.CONTACTS'
2140       dimension gg(3)
2141 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2142       evdw=0.0D0
2143       do i=iatsc_s,iatsc_e
2144         itypi=itype(i)
2145         itypi1=itype(i+1)
2146         xi=c(1,nres+i)
2147         yi=c(2,nres+i)
2148         zi=c(3,nres+i)
2149 C
2150 C Calculate SC interaction energy.
2151 C
2152         do iint=1,nint_gr(i)
2153 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2154 cd   &                  'iend=',iend(i,iint)
2155           do j=istart(i,iint),iend(i,iint)
2156             itypj=itype(j)
2157             xj=c(1,nres+j)-xi
2158             yj=c(2,nres+j)-yi
2159             zj=c(3,nres+j)-zi
2160             rij=xj*xj+yj*yj+zj*zj
2161 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2162             r0ij=r0(itypi,itypj)
2163             r0ijsq=r0ij*r0ij
2164 c            print *,i,j,r0ij,dsqrt(rij)
2165             if (rij.lt.r0ijsq) then
2166               evdwij=0.25d0*(rij-r0ijsq)**2
2167               fac=rij-r0ijsq
2168             else
2169               evdwij=0.0d0
2170               fac=0.0d0
2171             endif
2172             evdw=evdw+evdwij
2173
2174 C Calculate the components of the gradient in DC and X
2175 C
2176             gg(1)=xj*fac
2177             gg(2)=yj*fac
2178             gg(3)=zj*fac
2179             do k=1,3
2180               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2181               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2182               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2183               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2184             enddo
2185 cgrad            do k=i,j-1
2186 cgrad              do l=1,3
2187 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2188 cgrad              enddo
2189 cgrad            enddo
2190           enddo ! j
2191         enddo ! iint
2192       enddo ! i
2193       return
2194       end
2195 C--------------------------------------------------------------------------
2196       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2197      &              eello_turn4)
2198 C
2199 C Soft-sphere potential of p-p interaction
2200
2201       implicit real*8 (a-h,o-z)
2202       include 'DIMENSIONS'
2203       include 'COMMON.CONTROL'
2204       include 'COMMON.IOUNITS'
2205       include 'COMMON.GEO'
2206       include 'COMMON.VAR'
2207       include 'COMMON.LOCAL'
2208       include 'COMMON.CHAIN'
2209       include 'COMMON.DERIV'
2210       include 'COMMON.INTERACT'
2211       include 'COMMON.CONTACTS'
2212       include 'COMMON.TORSION'
2213       include 'COMMON.VECTORS'
2214       include 'COMMON.FFIELD'
2215       dimension ggg(3)
2216 cd      write(iout,*) 'In EELEC_soft_sphere'
2217       ees=0.0D0
2218       evdw1=0.0D0
2219       eel_loc=0.0d0 
2220       eello_turn3=0.0d0
2221       eello_turn4=0.0d0
2222       ind=0
2223       do i=iatel_s,iatel_e
2224         dxi=dc(1,i)
2225         dyi=dc(2,i)
2226         dzi=dc(3,i)
2227         xmedi=c(1,i)+0.5d0*dxi
2228         ymedi=c(2,i)+0.5d0*dyi
2229         zmedi=c(3,i)+0.5d0*dzi
2230         num_conti=0
2231 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2232         do j=ielstart(i),ielend(i)
2233           ind=ind+1
2234           iteli=itel(i)
2235           itelj=itel(j)
2236           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2237           r0ij=rpp(iteli,itelj)
2238           r0ijsq=r0ij*r0ij 
2239           dxj=dc(1,j)
2240           dyj=dc(2,j)
2241           dzj=dc(3,j)
2242           xj=c(1,j)+0.5D0*dxj-xmedi
2243           yj=c(2,j)+0.5D0*dyj-ymedi
2244           zj=c(3,j)+0.5D0*dzj-zmedi
2245           rij=xj*xj+yj*yj+zj*zj
2246           if (rij.lt.r0ijsq) then
2247             evdw1ij=0.25d0*(rij-r0ijsq)**2
2248             fac=rij-r0ijsq
2249           else
2250             evdw1ij=0.0d0
2251             fac=0.0d0
2252           endif
2253           evdw1=evdw1+evdw1ij
2254 C
2255 C Calculate contributions to the Cartesian gradient.
2256 C
2257           ggg(1)=fac*xj
2258           ggg(2)=fac*yj
2259           ggg(3)=fac*zj
2260           do k=1,3
2261             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2262             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2263           enddo
2264 *
2265 * Loop over residues i+1 thru j-1.
2266 *
2267 cgrad          do k=i+1,j-1
2268 cgrad            do l=1,3
2269 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2270 cgrad            enddo
2271 cgrad          enddo
2272         enddo ! j
2273       enddo   ! i
2274 cgrad      do i=nnt,nct-1
2275 cgrad        do k=1,3
2276 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2277 cgrad        enddo
2278 cgrad        do j=i+1,nct-1
2279 cgrad          do k=1,3
2280 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2281 cgrad          enddo
2282 cgrad        enddo
2283 cgrad      enddo
2284       return
2285       end
2286 c------------------------------------------------------------------------------
2287       subroutine vec_and_deriv
2288       implicit real*8 (a-h,o-z)
2289       include 'DIMENSIONS'
2290 #ifdef MPI
2291       include 'mpif.h'
2292 #endif
2293       include 'COMMON.IOUNITS'
2294       include 'COMMON.GEO'
2295       include 'COMMON.VAR'
2296       include 'COMMON.LOCAL'
2297       include 'COMMON.CHAIN'
2298       include 'COMMON.VECTORS'
2299       include 'COMMON.SETUP'
2300       include 'COMMON.TIME1'
2301       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2302 C Compute the local reference systems. For reference system (i), the
2303 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2304 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2305 #ifdef PARVEC
2306       do i=ivec_start,ivec_end
2307 #else
2308       do i=1,nres-1
2309 #endif
2310           if (i.eq.nres-1) then
2311 C Case of the last full residue
2312 C Compute the Z-axis
2313             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2314             costh=dcos(pi-theta(nres))
2315             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2316             do k=1,3
2317               uz(k,i)=fac*uz(k,i)
2318             enddo
2319 C Compute the derivatives of uz
2320             uzder(1,1,1)= 0.0d0
2321             uzder(2,1,1)=-dc_norm(3,i-1)
2322             uzder(3,1,1)= dc_norm(2,i-1) 
2323             uzder(1,2,1)= dc_norm(3,i-1)
2324             uzder(2,2,1)= 0.0d0
2325             uzder(3,2,1)=-dc_norm(1,i-1)
2326             uzder(1,3,1)=-dc_norm(2,i-1)
2327             uzder(2,3,1)= dc_norm(1,i-1)
2328             uzder(3,3,1)= 0.0d0
2329             uzder(1,1,2)= 0.0d0
2330             uzder(2,1,2)= dc_norm(3,i)
2331             uzder(3,1,2)=-dc_norm(2,i) 
2332             uzder(1,2,2)=-dc_norm(3,i)
2333             uzder(2,2,2)= 0.0d0
2334             uzder(3,2,2)= dc_norm(1,i)
2335             uzder(1,3,2)= dc_norm(2,i)
2336             uzder(2,3,2)=-dc_norm(1,i)
2337             uzder(3,3,2)= 0.0d0
2338 C Compute the Y-axis
2339             facy=fac
2340             do k=1,3
2341               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2342             enddo
2343 C Compute the derivatives of uy
2344             do j=1,3
2345               do k=1,3
2346                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2347      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2348                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2349               enddo
2350               uyder(j,j,1)=uyder(j,j,1)-costh
2351               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2352             enddo
2353             do j=1,2
2354               do k=1,3
2355                 do l=1,3
2356                   uygrad(l,k,j,i)=uyder(l,k,j)
2357                   uzgrad(l,k,j,i)=uzder(l,k,j)
2358                 enddo
2359               enddo
2360             enddo 
2361             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2362             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2363             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2364             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2365           else
2366 C Other residues
2367 C Compute the Z-axis
2368             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2369             costh=dcos(pi-theta(i+2))
2370             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2371             do k=1,3
2372               uz(k,i)=fac*uz(k,i)
2373             enddo
2374 C Compute the derivatives of uz
2375             uzder(1,1,1)= 0.0d0
2376             uzder(2,1,1)=-dc_norm(3,i+1)
2377             uzder(3,1,1)= dc_norm(2,i+1) 
2378             uzder(1,2,1)= dc_norm(3,i+1)
2379             uzder(2,2,1)= 0.0d0
2380             uzder(3,2,1)=-dc_norm(1,i+1)
2381             uzder(1,3,1)=-dc_norm(2,i+1)
2382             uzder(2,3,1)= dc_norm(1,i+1)
2383             uzder(3,3,1)= 0.0d0
2384             uzder(1,1,2)= 0.0d0
2385             uzder(2,1,2)= dc_norm(3,i)
2386             uzder(3,1,2)=-dc_norm(2,i) 
2387             uzder(1,2,2)=-dc_norm(3,i)
2388             uzder(2,2,2)= 0.0d0
2389             uzder(3,2,2)= dc_norm(1,i)
2390             uzder(1,3,2)= dc_norm(2,i)
2391             uzder(2,3,2)=-dc_norm(1,i)
2392             uzder(3,3,2)= 0.0d0
2393 C Compute the Y-axis
2394             facy=fac
2395             do k=1,3
2396               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2397             enddo
2398 C Compute the derivatives of uy
2399             do j=1,3
2400               do k=1,3
2401                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2402      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2403                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2404               enddo
2405               uyder(j,j,1)=uyder(j,j,1)-costh
2406               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2407             enddo
2408             do j=1,2
2409               do k=1,3
2410                 do l=1,3
2411                   uygrad(l,k,j,i)=uyder(l,k,j)
2412                   uzgrad(l,k,j,i)=uzder(l,k,j)
2413                 enddo
2414               enddo
2415             enddo 
2416             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2417             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2418             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2419             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2420           endif
2421       enddo
2422       do i=1,nres-1
2423         vbld_inv_temp(1)=vbld_inv(i+1)
2424         if (i.lt.nres-1) then
2425           vbld_inv_temp(2)=vbld_inv(i+2)
2426           else
2427           vbld_inv_temp(2)=vbld_inv(i)
2428           endif
2429         do j=1,2
2430           do k=1,3
2431             do l=1,3
2432               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2433               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2434             enddo
2435           enddo
2436         enddo
2437       enddo
2438 #if defined(PARVEC) && defined(MPI)
2439       if (nfgtasks1.gt.1) then
2440         time00=MPI_Wtime()
2441 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2442 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2443 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2444         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2445      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2446      &   FG_COMM1,IERR)
2447         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2448      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2449      &   FG_COMM1,IERR)
2450         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2451      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2452      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2453         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2454      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2455      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2456         time_gather=time_gather+MPI_Wtime()-time00
2457       endif
2458 c      if (fg_rank.eq.0) then
2459 c        write (iout,*) "Arrays UY and UZ"
2460 c        do i=1,nres-1
2461 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2462 c     &     (uz(k,i),k=1,3)
2463 c        enddo
2464 c      endif
2465 #endif
2466       return
2467       end
2468 C-----------------------------------------------------------------------------
2469       subroutine check_vecgrad
2470       implicit real*8 (a-h,o-z)
2471       include 'DIMENSIONS'
2472       include 'COMMON.IOUNITS'
2473       include 'COMMON.GEO'
2474       include 'COMMON.VAR'
2475       include 'COMMON.LOCAL'
2476       include 'COMMON.CHAIN'
2477       include 'COMMON.VECTORS'
2478       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2479       dimension uyt(3,maxres),uzt(3,maxres)
2480       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2481       double precision delta /1.0d-7/
2482       call vec_and_deriv
2483 cd      do i=1,nres
2484 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2485 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2486 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2487 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2488 cd     &     (dc_norm(if90,i),if90=1,3)
2489 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2490 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2491 cd          write(iout,'(a)')
2492 cd      enddo
2493       do i=1,nres
2494         do j=1,2
2495           do k=1,3
2496             do l=1,3
2497               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2498               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2499             enddo
2500           enddo
2501         enddo
2502       enddo
2503       call vec_and_deriv
2504       do i=1,nres
2505         do j=1,3
2506           uyt(j,i)=uy(j,i)
2507           uzt(j,i)=uz(j,i)
2508         enddo
2509       enddo
2510       do i=1,nres
2511 cd        write (iout,*) 'i=',i
2512         do k=1,3
2513           erij(k)=dc_norm(k,i)
2514         enddo
2515         do j=1,3
2516           do k=1,3
2517             dc_norm(k,i)=erij(k)
2518           enddo
2519           dc_norm(j,i)=dc_norm(j,i)+delta
2520 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2521 c          do k=1,3
2522 c            dc_norm(k,i)=dc_norm(k,i)/fac
2523 c          enddo
2524 c          write (iout,*) (dc_norm(k,i),k=1,3)
2525 c          write (iout,*) (erij(k),k=1,3)
2526           call vec_and_deriv
2527           do k=1,3
2528             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2529             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2530             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2531             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2532           enddo 
2533 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2534 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2535 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2536         enddo
2537         do k=1,3
2538           dc_norm(k,i)=erij(k)
2539         enddo
2540 cd        do k=1,3
2541 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2542 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2543 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2544 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2545 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2546 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2547 cd          write (iout,'(a)')
2548 cd        enddo
2549       enddo
2550       return
2551       end
2552 C--------------------------------------------------------------------------
2553       subroutine set_matrices
2554       implicit real*8 (a-h,o-z)
2555       include 'DIMENSIONS'
2556 #ifdef MPI
2557       include "mpif.h"
2558       include "COMMON.SETUP"
2559       integer IERR
2560       integer status(MPI_STATUS_SIZE)
2561 #endif
2562       include 'COMMON.IOUNITS'
2563       include 'COMMON.GEO'
2564       include 'COMMON.VAR'
2565       include 'COMMON.LOCAL'
2566       include 'COMMON.CHAIN'
2567       include 'COMMON.DERIV'
2568       include 'COMMON.INTERACT'
2569       include 'COMMON.CONTACTS'
2570       include 'COMMON.TORSION'
2571       include 'COMMON.VECTORS'
2572       include 'COMMON.FFIELD'
2573       double precision auxvec(2),auxmat(2,2)
2574 C
2575 C Compute the virtual-bond-torsional-angle dependent quantities needed
2576 C to calculate the el-loc multibody terms of various order.
2577 C
2578 #ifdef PARMAT
2579       do i=ivec_start+2,ivec_end+2
2580 #else
2581       do i=3,nres+1
2582 #endif
2583         if (i .lt. nres+1) then
2584           sin1=dsin(phi(i))
2585           cos1=dcos(phi(i))
2586           sintab(i-2)=sin1
2587           costab(i-2)=cos1
2588           obrot(1,i-2)=cos1
2589           obrot(2,i-2)=sin1
2590           sin2=dsin(2*phi(i))
2591           cos2=dcos(2*phi(i))
2592           sintab2(i-2)=sin2
2593           costab2(i-2)=cos2
2594           obrot2(1,i-2)=cos2
2595           obrot2(2,i-2)=sin2
2596           Ug(1,1,i-2)=-cos1
2597           Ug(1,2,i-2)=-sin1
2598           Ug(2,1,i-2)=-sin1
2599           Ug(2,2,i-2)= cos1
2600           Ug2(1,1,i-2)=-cos2
2601           Ug2(1,2,i-2)=-sin2
2602           Ug2(2,1,i-2)=-sin2
2603           Ug2(2,2,i-2)= cos2
2604         else
2605           costab(i-2)=1.0d0
2606           sintab(i-2)=0.0d0
2607           obrot(1,i-2)=1.0d0
2608           obrot(2,i-2)=0.0d0
2609           obrot2(1,i-2)=0.0d0
2610           obrot2(2,i-2)=0.0d0
2611           Ug(1,1,i-2)=1.0d0
2612           Ug(1,2,i-2)=0.0d0
2613           Ug(2,1,i-2)=0.0d0
2614           Ug(2,2,i-2)=1.0d0
2615           Ug2(1,1,i-2)=0.0d0
2616           Ug2(1,2,i-2)=0.0d0
2617           Ug2(2,1,i-2)=0.0d0
2618           Ug2(2,2,i-2)=0.0d0
2619         endif
2620         if (i .gt. 3 .and. i .lt. nres+1) then
2621           obrot_der(1,i-2)=-sin1
2622           obrot_der(2,i-2)= cos1
2623           Ugder(1,1,i-2)= sin1
2624           Ugder(1,2,i-2)=-cos1
2625           Ugder(2,1,i-2)=-cos1
2626           Ugder(2,2,i-2)=-sin1
2627           dwacos2=cos2+cos2
2628           dwasin2=sin2+sin2
2629           obrot2_der(1,i-2)=-dwasin2
2630           obrot2_der(2,i-2)= dwacos2
2631           Ug2der(1,1,i-2)= dwasin2
2632           Ug2der(1,2,i-2)=-dwacos2
2633           Ug2der(2,1,i-2)=-dwacos2
2634           Ug2der(2,2,i-2)=-dwasin2
2635         else
2636           obrot_der(1,i-2)=0.0d0
2637           obrot_der(2,i-2)=0.0d0
2638           Ugder(1,1,i-2)=0.0d0
2639           Ugder(1,2,i-2)=0.0d0
2640           Ugder(2,1,i-2)=0.0d0
2641           Ugder(2,2,i-2)=0.0d0
2642           obrot2_der(1,i-2)=0.0d0
2643           obrot2_der(2,i-2)=0.0d0
2644           Ug2der(1,1,i-2)=0.0d0
2645           Ug2der(1,2,i-2)=0.0d0
2646           Ug2der(2,1,i-2)=0.0d0
2647           Ug2der(2,2,i-2)=0.0d0
2648         endif
2649 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2650         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2651           iti = itortyp(itype(i-2))
2652         else
2653           iti=ntortyp+1
2654         endif
2655 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2656         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2657           iti1 = itortyp(itype(i-1))
2658         else
2659           iti1=ntortyp+1
2660         endif
2661 cd        write (iout,*) '*******i',i,' iti1',iti
2662 cd        write (iout,*) 'b1',b1(:,iti)
2663 cd        write (iout,*) 'b2',b2(:,iti)
2664 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2665 c        if (i .gt. iatel_s+2) then
2666         if (i .gt. nnt+2) then
2667           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2668           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2669           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2670      &    then
2671           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2672           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2673           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2674           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2675           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2676           endif
2677         else
2678           do k=1,2
2679             Ub2(k,i-2)=0.0d0
2680             Ctobr(k,i-2)=0.0d0 
2681             Dtobr2(k,i-2)=0.0d0
2682             do l=1,2
2683               EUg(l,k,i-2)=0.0d0
2684               CUg(l,k,i-2)=0.0d0
2685               DUg(l,k,i-2)=0.0d0
2686               DtUg2(l,k,i-2)=0.0d0
2687             enddo
2688           enddo
2689         endif
2690         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2691         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2692         do k=1,2
2693           muder(k,i-2)=Ub2der(k,i-2)
2694         enddo
2695 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2696         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2697           iti1 = itortyp(itype(i-1))
2698         else
2699           iti1=ntortyp+1
2700         endif
2701         do k=1,2
2702           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2703         enddo
2704 cd        write (iout,*) 'mu ',mu(:,i-2)
2705 cd        write (iout,*) 'mu1',mu1(:,i-2)
2706 cd        write (iout,*) 'mu2',mu2(:,i-2)
2707         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2708      &  then  
2709         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2710         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2711         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2712         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2713         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2714 C Vectors and matrices dependent on a single virtual-bond dihedral.
2715         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2716         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2717         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2718         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2719         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2720         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2721         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2722         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2723         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2724         endif
2725       enddo
2726 C Matrices dependent on two consecutive virtual-bond dihedrals.
2727 C The order of matrices is from left to right.
2728       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2729      &then
2730 c      do i=max0(ivec_start,2),ivec_end
2731       do i=2,nres-1
2732         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2733         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2734         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2735         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2736         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2737         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2738         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2739         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2740       enddo
2741       endif
2742 #if defined(MPI) && defined(PARMAT)
2743 #ifdef DEBUG
2744 c      if (fg_rank.eq.0) then
2745         write (iout,*) "Arrays UG and UGDER before GATHER"
2746         do i=1,nres-1
2747           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2748      &     ((ug(l,k,i),l=1,2),k=1,2),
2749      &     ((ugder(l,k,i),l=1,2),k=1,2)
2750         enddo
2751         write (iout,*) "Arrays UG2 and UG2DER"
2752         do i=1,nres-1
2753           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2754      &     ((ug2(l,k,i),l=1,2),k=1,2),
2755      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2756         enddo
2757         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2758         do i=1,nres-1
2759           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2760      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2761      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2762         enddo
2763         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2764         do i=1,nres-1
2765           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2766      &     costab(i),sintab(i),costab2(i),sintab2(i)
2767         enddo
2768         write (iout,*) "Array MUDER"
2769         do i=1,nres-1
2770           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2771         enddo
2772 c      endif
2773 #endif
2774       if (nfgtasks.gt.1) then
2775         time00=MPI_Wtime()
2776 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2777 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2778 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2779 #ifdef MATGATHER
2780         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2781      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2782      &   FG_COMM1,IERR)
2783         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2784      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2785      &   FG_COMM1,IERR)
2786         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2787      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2788      &   FG_COMM1,IERR)
2789         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2790      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2791      &   FG_COMM1,IERR)
2792         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2793      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2794      &   FG_COMM1,IERR)
2795         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2796      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2797      &   FG_COMM1,IERR)
2798         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2799      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2800      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2801         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2802      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2803      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2804         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2805      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2806      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2807         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2808      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2809      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2810         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2811      &  then
2812         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2813      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2814      &   FG_COMM1,IERR)
2815         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2816      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2817      &   FG_COMM1,IERR)
2818         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2819      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2820      &   FG_COMM1,IERR)
2821        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2822      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2823      &   FG_COMM1,IERR)
2824         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2825      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2826      &   FG_COMM1,IERR)
2827         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2828      &   ivec_count(fg_rank1),
2829      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2830      &   FG_COMM1,IERR)
2831         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2832      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2833      &   FG_COMM1,IERR)
2834         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2835      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2836      &   FG_COMM1,IERR)
2837         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2838      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2839      &   FG_COMM1,IERR)
2840         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2841      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2842      &   FG_COMM1,IERR)
2843         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2844      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2845      &   FG_COMM1,IERR)
2846         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2847      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2848      &   FG_COMM1,IERR)
2849         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2850      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2851      &   FG_COMM1,IERR)
2852         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2853      &   ivec_count(fg_rank1),
2854      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2855      &   FG_COMM1,IERR)
2856         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2857      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2858      &   FG_COMM1,IERR)
2859        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2860      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2861      &   FG_COMM1,IERR)
2862         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2863      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2864      &   FG_COMM1,IERR)
2865        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2866      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2867      &   FG_COMM1,IERR)
2868         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2869      &   ivec_count(fg_rank1),
2870      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2871      &   FG_COMM1,IERR)
2872         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2873      &   ivec_count(fg_rank1),
2874      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2875      &   FG_COMM1,IERR)
2876         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2877      &   ivec_count(fg_rank1),
2878      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2879      &   MPI_MAT2,FG_COMM1,IERR)
2880         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2881      &   ivec_count(fg_rank1),
2882      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2883      &   MPI_MAT2,FG_COMM1,IERR)
2884         endif
2885 #else
2886 c Passes matrix info through the ring
2887       isend=fg_rank1
2888       irecv=fg_rank1-1
2889       if (irecv.lt.0) irecv=nfgtasks1-1 
2890       iprev=irecv
2891       inext=fg_rank1+1
2892       if (inext.ge.nfgtasks1) inext=0
2893       do i=1,nfgtasks1-1
2894 c        write (iout,*) "isend",isend," irecv",irecv
2895 c        call flush(iout)
2896         lensend=lentyp(isend)
2897         lenrecv=lentyp(irecv)
2898 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2899 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2900 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2901 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2902 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2903 c        write (iout,*) "Gather ROTAT1"
2904 c        call flush(iout)
2905 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2906 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2907 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2908 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2909 c        write (iout,*) "Gather ROTAT2"
2910 c        call flush(iout)
2911         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2912      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2913      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2914      &   iprev,4400+irecv,FG_COMM,status,IERR)
2915 c        write (iout,*) "Gather ROTAT_OLD"
2916 c        call flush(iout)
2917         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2918      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2919      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2920      &   iprev,5500+irecv,FG_COMM,status,IERR)
2921 c        write (iout,*) "Gather PRECOMP11"
2922 c        call flush(iout)
2923         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2924      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2925      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2926      &   iprev,6600+irecv,FG_COMM,status,IERR)
2927 c        write (iout,*) "Gather PRECOMP12"
2928 c        call flush(iout)
2929         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2930      &  then
2931         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2932      &   MPI_ROTAT2(lensend),inext,7700+isend,
2933      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2934      &   iprev,7700+irecv,FG_COMM,status,IERR)
2935 c        write (iout,*) "Gather PRECOMP21"
2936 c        call flush(iout)
2937         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2938      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2939      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2940      &   iprev,8800+irecv,FG_COMM,status,IERR)
2941 c        write (iout,*) "Gather PRECOMP22"
2942 c        call flush(iout)
2943         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2944      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2945      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2946      &   MPI_PRECOMP23(lenrecv),
2947      &   iprev,9900+irecv,FG_COMM,status,IERR)
2948 c        write (iout,*) "Gather PRECOMP23"
2949 c        call flush(iout)
2950         endif
2951         isend=irecv
2952         irecv=irecv-1
2953         if (irecv.lt.0) irecv=nfgtasks1-1
2954       enddo
2955 #endif
2956         time_gather=time_gather+MPI_Wtime()-time00
2957       endif
2958 #ifdef DEBUG
2959 c      if (fg_rank.eq.0) then
2960         write (iout,*) "Arrays UG and UGDER"
2961         do i=1,nres-1
2962           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2963      &     ((ug(l,k,i),l=1,2),k=1,2),
2964      &     ((ugder(l,k,i),l=1,2),k=1,2)
2965         enddo
2966         write (iout,*) "Arrays UG2 and UG2DER"
2967         do i=1,nres-1
2968           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2969      &     ((ug2(l,k,i),l=1,2),k=1,2),
2970      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2971         enddo
2972         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2973         do i=1,nres-1
2974           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2975      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2976      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2977         enddo
2978         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2979         do i=1,nres-1
2980           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2981      &     costab(i),sintab(i),costab2(i),sintab2(i)
2982         enddo
2983         write (iout,*) "Array MUDER"
2984         do i=1,nres-1
2985           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2986         enddo
2987 c      endif
2988 #endif
2989 #endif
2990 cd      do i=1,nres
2991 cd        iti = itortyp(itype(i))
2992 cd        write (iout,*) i
2993 cd        do j=1,2
2994 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2995 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2996 cd        enddo
2997 cd      enddo
2998       return
2999       end
3000 C--------------------------------------------------------------------------
3001       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
3002 C
3003 C This subroutine calculates the average interaction energy and its gradient
3004 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
3005 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
3006 C The potential depends both on the distance of peptide-group centers and on 
3007 C the orientation of the CA-CA virtual bonds.
3008
3009       implicit real*8 (a-h,o-z)
3010 #ifdef MPI
3011       include 'mpif.h'
3012 #endif
3013       include 'DIMENSIONS'
3014       include 'COMMON.CONTROL'
3015       include 'COMMON.SETUP'
3016       include 'COMMON.IOUNITS'
3017       include 'COMMON.GEO'
3018       include 'COMMON.VAR'
3019       include 'COMMON.LOCAL'
3020       include 'COMMON.CHAIN'
3021       include 'COMMON.DERIV'
3022       include 'COMMON.INTERACT'
3023       include 'COMMON.CONTACTS'
3024       include 'COMMON.TORSION'
3025       include 'COMMON.VECTORS'
3026       include 'COMMON.FFIELD'
3027       include 'COMMON.TIME1'
3028       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3029      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3030       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3031      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3032       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3033      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3034      &    num_conti,j1,j2
3035 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3036 #ifdef MOMENT
3037       double precision scal_el /1.0d0/
3038 #else
3039       double precision scal_el /0.5d0/
3040 #endif
3041 C 12/13/98 
3042 C 13-go grudnia roku pamietnego... 
3043       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3044      &                   0.0d0,1.0d0,0.0d0,
3045      &                   0.0d0,0.0d0,1.0d0/
3046 cd      write(iout,*) 'In EELEC'
3047 cd      do i=1,nloctyp
3048 cd        write(iout,*) 'Type',i
3049 cd        write(iout,*) 'B1',B1(:,i)
3050 cd        write(iout,*) 'B2',B2(:,i)
3051 cd        write(iout,*) 'CC',CC(:,:,i)
3052 cd        write(iout,*) 'DD',DD(:,:,i)
3053 cd        write(iout,*) 'EE',EE(:,:,i)
3054 cd      enddo
3055 cd      call check_vecgrad
3056 cd      stop
3057       if (icheckgrad.eq.1) then
3058         do i=1,nres-1
3059           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
3060           do k=1,3
3061             dc_norm(k,i)=dc(k,i)*fac
3062           enddo
3063 c          write (iout,*) 'i',i,' fac',fac
3064         enddo
3065       endif
3066       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
3067      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
3068      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
3069 c        call vec_and_deriv
3070 #ifdef TIMING
3071         time01=MPI_Wtime()
3072 #endif
3073         call set_matrices
3074 #ifdef TIMING
3075         time_mat=time_mat+MPI_Wtime()-time01
3076 #endif
3077       endif
3078 cd      do i=1,nres-1
3079 cd        write (iout,*) 'i=',i
3080 cd        do k=1,3
3081 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
3082 cd        enddo
3083 cd        do k=1,3
3084 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3085 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3086 cd        enddo
3087 cd      enddo
3088       t_eelecij=0.0d0
3089       ees=0.0D0
3090       evdw1=0.0D0
3091       eel_loc=0.0d0 
3092       eello_turn3=0.0d0
3093       eello_turn4=0.0d0
3094       ind=0
3095       do i=1,nres
3096         num_cont_hb(i)=0
3097       enddo
3098 cd      print '(a)','Enter EELEC'
3099 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3100       do i=1,nres
3101         gel_loc_loc(i)=0.0d0
3102         gcorr_loc(i)=0.0d0
3103       enddo
3104 c
3105 c
3106 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3107 C
3108 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3109 C
3110       do i=iturn3_start,iturn3_end
3111         dxi=dc(1,i)
3112         dyi=dc(2,i)
3113         dzi=dc(3,i)
3114         dx_normi=dc_norm(1,i)
3115         dy_normi=dc_norm(2,i)
3116         dz_normi=dc_norm(3,i)
3117         xmedi=c(1,i)+0.5d0*dxi
3118         ymedi=c(2,i)+0.5d0*dyi
3119         zmedi=c(3,i)+0.5d0*dzi
3120         num_conti=0
3121         call eelecij(i,i+2,ees,evdw1,eel_loc)
3122         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3123         num_cont_hb(i)=num_conti
3124       enddo
3125       do i=iturn4_start,iturn4_end
3126         dxi=dc(1,i)
3127         dyi=dc(2,i)
3128         dzi=dc(3,i)
3129         dx_normi=dc_norm(1,i)
3130         dy_normi=dc_norm(2,i)
3131         dz_normi=dc_norm(3,i)
3132         xmedi=c(1,i)+0.5d0*dxi
3133         ymedi=c(2,i)+0.5d0*dyi
3134         zmedi=c(3,i)+0.5d0*dzi
3135         num_conti=num_cont_hb(i)
3136         call eelecij(i,i+3,ees,evdw1,eel_loc)
3137         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3138         num_cont_hb(i)=num_conti
3139       enddo   ! i
3140 c
3141 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3142 c
3143       do i=iatel_s,iatel_e
3144         dxi=dc(1,i)
3145         dyi=dc(2,i)
3146         dzi=dc(3,i)
3147         dx_normi=dc_norm(1,i)
3148         dy_normi=dc_norm(2,i)
3149         dz_normi=dc_norm(3,i)
3150         xmedi=c(1,i)+0.5d0*dxi
3151         ymedi=c(2,i)+0.5d0*dyi
3152         zmedi=c(3,i)+0.5d0*dzi
3153 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3154         num_conti=num_cont_hb(i)
3155         do j=ielstart(i),ielend(i)
3156           call eelecij(i,j,ees,evdw1,eel_loc)
3157         enddo ! j
3158         num_cont_hb(i)=num_conti
3159       enddo   ! i
3160 c      write (iout,*) "Number of loop steps in EELEC:",ind
3161 cd      do i=1,nres
3162 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3163 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3164 cd      enddo
3165 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3166 ccc      eel_loc=eel_loc+eello_turn3
3167 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3168       return
3169       end
3170 C-------------------------------------------------------------------------------
3171       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3172       implicit real*8 (a-h,o-z)
3173       include 'DIMENSIONS'
3174 #ifdef MPI
3175       include "mpif.h"
3176 #endif
3177       include 'COMMON.CONTROL'
3178       include 'COMMON.IOUNITS'
3179       include 'COMMON.GEO'
3180       include 'COMMON.VAR'
3181       include 'COMMON.LOCAL'
3182       include 'COMMON.CHAIN'
3183       include 'COMMON.DERIV'
3184       include 'COMMON.INTERACT'
3185       include 'COMMON.CONTACTS'
3186       include 'COMMON.TORSION'
3187       include 'COMMON.VECTORS'
3188       include 'COMMON.FFIELD'
3189       include 'COMMON.TIME1'
3190       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3191      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3192       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3193      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3194       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3195      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3196      &    num_conti,j1,j2
3197 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3198 #ifdef MOMENT
3199       double precision scal_el /1.0d0/
3200 #else
3201       double precision scal_el /0.5d0/
3202 #endif
3203 C 12/13/98 
3204 C 13-go grudnia roku pamietnego... 
3205       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3206      &                   0.0d0,1.0d0,0.0d0,
3207      &                   0.0d0,0.0d0,1.0d0/
3208 c          time00=MPI_Wtime()
3209 cd      write (iout,*) "eelecij",i,j
3210 c          ind=ind+1
3211           iteli=itel(i)
3212           itelj=itel(j)
3213           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3214           aaa=app(iteli,itelj)
3215           bbb=bpp(iteli,itelj)
3216           ael6i=ael6(iteli,itelj)
3217           ael3i=ael3(iteli,itelj) 
3218           dxj=dc(1,j)
3219           dyj=dc(2,j)
3220           dzj=dc(3,j)
3221           dx_normj=dc_norm(1,j)
3222           dy_normj=dc_norm(2,j)
3223           dz_normj=dc_norm(3,j)
3224           xj=c(1,j)+0.5D0*dxj-xmedi
3225           yj=c(2,j)+0.5D0*dyj-ymedi
3226           zj=c(3,j)+0.5D0*dzj-zmedi
3227           rij=xj*xj+yj*yj+zj*zj
3228           rrmij=1.0D0/rij
3229           rij=dsqrt(rij)
3230           rmij=1.0D0/rij
3231           r3ij=rrmij*rmij
3232           r6ij=r3ij*r3ij  
3233           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3234           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3235           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3236           fac=cosa-3.0D0*cosb*cosg
3237           ev1=aaa*r6ij*r6ij
3238 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3239           if (j.eq.i+2) ev1=scal_el*ev1
3240           ev2=bbb*r6ij
3241           fac3=ael6i*r6ij
3242           fac4=ael3i*r3ij
3243           evdwij=ev1+ev2
3244           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3245           el2=fac4*fac       
3246           eesij=el1+el2
3247 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3248           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3249           ees=ees+eesij
3250           evdw1=evdw1+evdwij
3251 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3252 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3253 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3254 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3255
3256           if (energy_dec) then 
3257               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3258               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3259           endif
3260
3261 C
3262 C Calculate contributions to the Cartesian gradient.
3263 C
3264 #ifdef SPLITELE
3265           facvdw=-6*rrmij*(ev1+evdwij)
3266           facel=-3*rrmij*(el1+eesij)
3267           fac1=fac
3268           erij(1)=xj*rmij
3269           erij(2)=yj*rmij
3270           erij(3)=zj*rmij
3271 *
3272 * Radial derivatives. First process both termini of the fragment (i,j)
3273 *
3274           ggg(1)=facel*xj
3275           ggg(2)=facel*yj
3276           ggg(3)=facel*zj
3277 c          do k=1,3
3278 c            ghalf=0.5D0*ggg(k)
3279 c            gelc(k,i)=gelc(k,i)+ghalf
3280 c            gelc(k,j)=gelc(k,j)+ghalf
3281 c          enddo
3282 c 9/28/08 AL Gradient compotents will be summed only at the end
3283           do k=1,3
3284             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3285             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3286           enddo
3287 *
3288 * Loop over residues i+1 thru j-1.
3289 *
3290 cgrad          do k=i+1,j-1
3291 cgrad            do l=1,3
3292 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3293 cgrad            enddo
3294 cgrad          enddo
3295           ggg(1)=facvdw*xj
3296           ggg(2)=facvdw*yj
3297           ggg(3)=facvdw*zj
3298 c          do k=1,3
3299 c            ghalf=0.5D0*ggg(k)
3300 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3301 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3302 c          enddo
3303 c 9/28/08 AL Gradient compotents will be summed only at the end
3304           do k=1,3
3305             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3306             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3307           enddo
3308 *
3309 * Loop over residues i+1 thru j-1.
3310 *
3311 cgrad          do k=i+1,j-1
3312 cgrad            do l=1,3
3313 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3314 cgrad            enddo
3315 cgrad          enddo
3316 #else
3317           facvdw=ev1+evdwij 
3318           facel=el1+eesij  
3319           fac1=fac
3320           fac=-3*rrmij*(facvdw+facvdw+facel)
3321           erij(1)=xj*rmij
3322           erij(2)=yj*rmij
3323           erij(3)=zj*rmij
3324 *
3325 * Radial derivatives. First process both termini of the fragment (i,j)
3326
3327           ggg(1)=fac*xj
3328           ggg(2)=fac*yj
3329           ggg(3)=fac*zj
3330 c          do k=1,3
3331 c            ghalf=0.5D0*ggg(k)
3332 c            gelc(k,i)=gelc(k,i)+ghalf
3333 c            gelc(k,j)=gelc(k,j)+ghalf
3334 c          enddo
3335 c 9/28/08 AL Gradient compotents will be summed only at the end
3336           do k=1,3
3337             gelc_long(k,j)=gelc(k,j)+ggg(k)
3338             gelc_long(k,i)=gelc(k,i)-ggg(k)
3339           enddo
3340 *
3341 * Loop over residues i+1 thru j-1.
3342 *
3343 cgrad          do k=i+1,j-1
3344 cgrad            do l=1,3
3345 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3346 cgrad            enddo
3347 cgrad          enddo
3348 c 9/28/08 AL Gradient compotents will be summed only at the end
3349           ggg(1)=facvdw*xj
3350           ggg(2)=facvdw*yj
3351           ggg(3)=facvdw*zj
3352           do k=1,3
3353             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3354             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3355           enddo
3356 #endif
3357 *
3358 * Angular part
3359 *          
3360           ecosa=2.0D0*fac3*fac1+fac4
3361           fac4=-3.0D0*fac4
3362           fac3=-6.0D0*fac3
3363           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3364           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3365           do k=1,3
3366             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3367             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3368           enddo
3369 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3370 cd   &          (dcosg(k),k=1,3)
3371           do k=1,3
3372             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3373           enddo
3374 c          do k=1,3
3375 c            ghalf=0.5D0*ggg(k)
3376 c            gelc(k,i)=gelc(k,i)+ghalf
3377 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3378 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3379 c            gelc(k,j)=gelc(k,j)+ghalf
3380 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3381 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3382 c          enddo
3383 cgrad          do k=i+1,j-1
3384 cgrad            do l=1,3
3385 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3386 cgrad            enddo
3387 cgrad          enddo
3388           do k=1,3
3389             gelc(k,i)=gelc(k,i)
3390      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3391      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3392             gelc(k,j)=gelc(k,j)
3393      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3394      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3395             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3396             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3397           enddo
3398           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3399      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3400      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3401 C
3402 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3403 C   energy of a peptide unit is assumed in the form of a second-order 
3404 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3405 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3406 C   are computed for EVERY pair of non-contiguous peptide groups.
3407 C
3408           if (j.lt.nres-1) then
3409             j1=j+1
3410             j2=j-1
3411           else
3412             j1=j-1
3413             j2=j-2
3414           endif
3415           kkk=0
3416           do k=1,2
3417             do l=1,2
3418               kkk=kkk+1
3419               muij(kkk)=mu(k,i)*mu(l,j)
3420             enddo
3421           enddo  
3422 cd         write (iout,*) 'EELEC: i',i,' j',j
3423 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3424 cd          write(iout,*) 'muij',muij
3425           ury=scalar(uy(1,i),erij)
3426           urz=scalar(uz(1,i),erij)
3427           vry=scalar(uy(1,j),erij)
3428           vrz=scalar(uz(1,j),erij)
3429           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3430           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3431           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3432           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3433           fac=dsqrt(-ael6i)*r3ij
3434           a22=a22*fac
3435           a23=a23*fac
3436           a32=a32*fac
3437           a33=a33*fac
3438 cd          write (iout,'(4i5,4f10.5)')
3439 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3440 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3441 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3442 cd     &      uy(:,j),uz(:,j)
3443 cd          write (iout,'(4f10.5)') 
3444 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3445 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3446 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3447 cd           write (iout,'(9f10.5/)') 
3448 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3449 C Derivatives of the elements of A in virtual-bond vectors
3450           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3451           do k=1,3
3452             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3453             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3454             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3455             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3456             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3457             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3458             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3459             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3460             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3461             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3462             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3463             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3464           enddo
3465 C Compute radial contributions to the gradient
3466           facr=-3.0d0*rrmij
3467           a22der=a22*facr
3468           a23der=a23*facr
3469           a32der=a32*facr
3470           a33der=a33*facr
3471           agg(1,1)=a22der*xj
3472           agg(2,1)=a22der*yj
3473           agg(3,1)=a22der*zj
3474           agg(1,2)=a23der*xj
3475           agg(2,2)=a23der*yj
3476           agg(3,2)=a23der*zj
3477           agg(1,3)=a32der*xj
3478           agg(2,3)=a32der*yj
3479           agg(3,3)=a32der*zj
3480           agg(1,4)=a33der*xj
3481           agg(2,4)=a33der*yj
3482           agg(3,4)=a33der*zj
3483 C Add the contributions coming from er
3484           fac3=-3.0d0*fac
3485           do k=1,3
3486             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3487             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3488             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3489             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3490           enddo
3491           do k=1,3
3492 C Derivatives in DC(i) 
3493 cgrad            ghalf1=0.5d0*agg(k,1)
3494 cgrad            ghalf2=0.5d0*agg(k,2)
3495 cgrad            ghalf3=0.5d0*agg(k,3)
3496 cgrad            ghalf4=0.5d0*agg(k,4)
3497             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3498      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3499             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3500      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3501             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3502      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3503             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3504      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3505 C Derivatives in DC(i+1)
3506             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3507      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3508             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3509      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3510             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3511      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3512             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3513      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3514 C Derivatives in DC(j)
3515             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3516      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3517             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3518      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3519             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3520      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3521             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3522      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3523 C Derivatives in DC(j+1) or DC(nres-1)
3524             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3525      &      -3.0d0*vryg(k,3)*ury)
3526             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3527      &      -3.0d0*vrzg(k,3)*ury)
3528             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3529      &      -3.0d0*vryg(k,3)*urz)
3530             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3531      &      -3.0d0*vrzg(k,3)*urz)
3532 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3533 cgrad              do l=1,4
3534 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3535 cgrad              enddo
3536 cgrad            endif
3537           enddo
3538           acipa(1,1)=a22
3539           acipa(1,2)=a23
3540           acipa(2,1)=a32
3541           acipa(2,2)=a33
3542           a22=-a22
3543           a23=-a23
3544           do l=1,2
3545             do k=1,3
3546               agg(k,l)=-agg(k,l)
3547               aggi(k,l)=-aggi(k,l)
3548               aggi1(k,l)=-aggi1(k,l)
3549               aggj(k,l)=-aggj(k,l)
3550               aggj1(k,l)=-aggj1(k,l)
3551             enddo
3552           enddo
3553           if (j.lt.nres-1) then
3554             a22=-a22
3555             a32=-a32
3556             do l=1,3,2
3557               do k=1,3
3558                 agg(k,l)=-agg(k,l)
3559                 aggi(k,l)=-aggi(k,l)
3560                 aggi1(k,l)=-aggi1(k,l)
3561                 aggj(k,l)=-aggj(k,l)
3562                 aggj1(k,l)=-aggj1(k,l)
3563               enddo
3564             enddo
3565           else
3566             a22=-a22
3567             a23=-a23
3568             a32=-a32
3569             a33=-a33
3570             do l=1,4
3571               do k=1,3
3572                 agg(k,l)=-agg(k,l)
3573                 aggi(k,l)=-aggi(k,l)
3574                 aggi1(k,l)=-aggi1(k,l)
3575                 aggj(k,l)=-aggj(k,l)
3576                 aggj1(k,l)=-aggj1(k,l)
3577               enddo
3578             enddo 
3579           endif    
3580           ENDIF ! WCORR
3581           IF (wel_loc.gt.0.0d0) THEN
3582 C Contribution to the local-electrostatic energy coming from the i-j pair
3583           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3584      &     +a33*muij(4)
3585 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3586
3587           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3588      &            'eelloc',i,j,eel_loc_ij
3589
3590           eel_loc=eel_loc+eel_loc_ij
3591 C Partial derivatives in virtual-bond dihedral angles gamma
3592           if (i.gt.1)
3593      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3594      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3595      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3596           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3597      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3598      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3599 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3600           do l=1,3
3601             ggg(l)=agg(l,1)*muij(1)+
3602      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3603             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3604             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3605 cgrad            ghalf=0.5d0*ggg(l)
3606 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3607 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3608           enddo
3609 cgrad          do k=i+1,j2
3610 cgrad            do l=1,3
3611 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3612 cgrad            enddo
3613 cgrad          enddo
3614 C Remaining derivatives of eello
3615           do l=1,3
3616             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3617      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3618             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3619      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3620             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3621      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3622             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3623      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3624           enddo
3625           ENDIF
3626 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3627 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3628           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3629      &       .and. num_conti.le.maxconts) then
3630 c            write (iout,*) i,j," entered corr"
3631 C
3632 C Calculate the contact function. The ith column of the array JCONT will 
3633 C contain the numbers of atoms that make contacts with the atom I (of numbers
3634 C greater than I). The arrays FACONT and GACONT will contain the values of
3635 C the contact function and its derivative.
3636 c           r0ij=1.02D0*rpp(iteli,itelj)
3637 c           r0ij=1.11D0*rpp(iteli,itelj)
3638             r0ij=2.20D0*rpp(iteli,itelj)
3639 c           r0ij=1.55D0*rpp(iteli,itelj)
3640             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3641             if (fcont.gt.0.0D0) then
3642               num_conti=num_conti+1
3643               if (num_conti.gt.maxconts) then
3644                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3645      &                         ' will skip next contacts for this conf.'
3646               else
3647                 jcont_hb(num_conti,i)=j
3648 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3649 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3650                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3651      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3652 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3653 C  terms.
3654                 d_cont(num_conti,i)=rij
3655 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3656 C     --- Electrostatic-interaction matrix --- 
3657                 a_chuj(1,1,num_conti,i)=a22
3658                 a_chuj(1,2,num_conti,i)=a23
3659                 a_chuj(2,1,num_conti,i)=a32
3660                 a_chuj(2,2,num_conti,i)=a33
3661 C     --- Gradient of rij
3662                 do kkk=1,3
3663                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3664                 enddo
3665                 kkll=0
3666                 do k=1,2
3667                   do l=1,2
3668                     kkll=kkll+1
3669                     do m=1,3
3670                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3671                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3672                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3673                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3674                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3675                     enddo
3676                   enddo
3677                 enddo
3678                 ENDIF
3679                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3680 C Calculate contact energies
3681                 cosa4=4.0D0*cosa
3682                 wij=cosa-3.0D0*cosb*cosg
3683                 cosbg1=cosb+cosg
3684                 cosbg2=cosb-cosg
3685 c               fac3=dsqrt(-ael6i)/r0ij**3     
3686                 fac3=dsqrt(-ael6i)*r3ij
3687 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3688                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3689                 if (ees0tmp.gt.0) then
3690                   ees0pij=dsqrt(ees0tmp)
3691                 else
3692                   ees0pij=0
3693                 endif
3694 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3695                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3696                 if (ees0tmp.gt.0) then
3697                   ees0mij=dsqrt(ees0tmp)
3698                 else
3699                   ees0mij=0
3700                 endif
3701 c               ees0mij=0.0D0
3702                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3703                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3704 C Diagnostics. Comment out or remove after debugging!
3705 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3706 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3707 c               ees0m(num_conti,i)=0.0D0
3708 C End diagnostics.
3709 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3710 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3711 C Angular derivatives of the contact function
3712                 ees0pij1=fac3/ees0pij 
3713                 ees0mij1=fac3/ees0mij
3714                 fac3p=-3.0D0*fac3*rrmij
3715                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3716                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3717 c               ees0mij1=0.0D0
3718                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3719                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3720                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3721                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3722                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3723                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3724                 ecosap=ecosa1+ecosa2
3725                 ecosbp=ecosb1+ecosb2
3726                 ecosgp=ecosg1+ecosg2
3727                 ecosam=ecosa1-ecosa2
3728                 ecosbm=ecosb1-ecosb2
3729                 ecosgm=ecosg1-ecosg2
3730 C Diagnostics
3731 c               ecosap=ecosa1
3732 c               ecosbp=ecosb1
3733 c               ecosgp=ecosg1
3734 c               ecosam=0.0D0
3735 c               ecosbm=0.0D0
3736 c               ecosgm=0.0D0
3737 C End diagnostics
3738                 facont_hb(num_conti,i)=fcont
3739                 fprimcont=fprimcont/rij
3740 cd              facont_hb(num_conti,i)=1.0D0
3741 C Following line is for diagnostics.
3742 cd              fprimcont=0.0D0
3743                 do k=1,3
3744                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3745                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3746                 enddo
3747                 do k=1,3
3748                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3749                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3750                 enddo
3751                 gggp(1)=gggp(1)+ees0pijp*xj
3752                 gggp(2)=gggp(2)+ees0pijp*yj
3753                 gggp(3)=gggp(3)+ees0pijp*zj
3754                 gggm(1)=gggm(1)+ees0mijp*xj
3755                 gggm(2)=gggm(2)+ees0mijp*yj
3756                 gggm(3)=gggm(3)+ees0mijp*zj
3757 C Derivatives due to the contact function
3758                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3759                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3760                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3761                 do k=1,3
3762 c
3763 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3764 c          following the change of gradient-summation algorithm.
3765 c
3766 cgrad                  ghalfp=0.5D0*gggp(k)
3767 cgrad                  ghalfm=0.5D0*gggm(k)
3768                   gacontp_hb1(k,num_conti,i)=!ghalfp
3769      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3770      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3771                   gacontp_hb2(k,num_conti,i)=!ghalfp
3772      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3773      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3774                   gacontp_hb3(k,num_conti,i)=gggp(k)
3775                   gacontm_hb1(k,num_conti,i)=!ghalfm
3776      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3777      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3778                   gacontm_hb2(k,num_conti,i)=!ghalfm
3779      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3780      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3781                   gacontm_hb3(k,num_conti,i)=gggm(k)
3782                 enddo
3783 C Diagnostics. Comment out or remove after debugging!
3784 cdiag           do k=1,3
3785 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3786 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3787 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3788 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3789 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3790 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3791 cdiag           enddo
3792               ENDIF ! wcorr
3793               endif  ! num_conti.le.maxconts
3794             endif  ! fcont.gt.0
3795           endif    ! j.gt.i+1
3796           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3797             do k=1,4
3798               do l=1,3
3799                 ghalf=0.5d0*agg(l,k)
3800                 aggi(l,k)=aggi(l,k)+ghalf
3801                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3802                 aggj(l,k)=aggj(l,k)+ghalf
3803               enddo
3804             enddo
3805             if (j.eq.nres-1 .and. i.lt.j-2) then
3806               do k=1,4
3807                 do l=1,3
3808                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3809                 enddo
3810               enddo
3811             endif
3812           endif
3813 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3814       return
3815       end
3816 C-----------------------------------------------------------------------------
3817       subroutine eturn3(i,eello_turn3)
3818 C Third- and fourth-order contributions from turns
3819       implicit real*8 (a-h,o-z)
3820       include 'DIMENSIONS'
3821       include 'COMMON.IOUNITS'
3822       include 'COMMON.GEO'
3823       include 'COMMON.VAR'
3824       include 'COMMON.LOCAL'
3825       include 'COMMON.CHAIN'
3826       include 'COMMON.DERIV'
3827       include 'COMMON.INTERACT'
3828       include 'COMMON.CONTACTS'
3829       include 'COMMON.TORSION'
3830       include 'COMMON.VECTORS'
3831       include 'COMMON.FFIELD'
3832       include 'COMMON.CONTROL'
3833       dimension ggg(3)
3834       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3835      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3836      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3837       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3838      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3839       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3840      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3841      &    num_conti,j1,j2
3842       j=i+2
3843 c      write (iout,*) "eturn3",i,j,j1,j2
3844       a_temp(1,1)=a22
3845       a_temp(1,2)=a23
3846       a_temp(2,1)=a32
3847       a_temp(2,2)=a33
3848 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3849 C
3850 C               Third-order contributions
3851 C        
3852 C                 (i+2)o----(i+3)
3853 C                      | |
3854 C                      | |
3855 C                 (i+1)o----i
3856 C
3857 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3858 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3859         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3860         call transpose2(auxmat(1,1),auxmat1(1,1))
3861         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3862         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3863         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3864      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3865 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3866 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3867 cd     &    ' eello_turn3_num',4*eello_turn3_num
3868 C Derivatives in gamma(i)
3869         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3870         call transpose2(auxmat2(1,1),auxmat3(1,1))
3871         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3872         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3873 C Derivatives in gamma(i+1)
3874         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3875         call transpose2(auxmat2(1,1),auxmat3(1,1))
3876         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3877         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3878      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3879 C Cartesian derivatives
3880         do l=1,3
3881 c            ghalf1=0.5d0*agg(l,1)
3882 c            ghalf2=0.5d0*agg(l,2)
3883 c            ghalf3=0.5d0*agg(l,3)
3884 c            ghalf4=0.5d0*agg(l,4)
3885           a_temp(1,1)=aggi(l,1)!+ghalf1
3886           a_temp(1,2)=aggi(l,2)!+ghalf2
3887           a_temp(2,1)=aggi(l,3)!+ghalf3
3888           a_temp(2,2)=aggi(l,4)!+ghalf4
3889           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3890           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3891      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3892           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3893           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3894           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3895           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3896           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3897           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3898      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3899           a_temp(1,1)=aggj(l,1)!+ghalf1
3900           a_temp(1,2)=aggj(l,2)!+ghalf2
3901           a_temp(2,1)=aggj(l,3)!+ghalf3
3902           a_temp(2,2)=aggj(l,4)!+ghalf4
3903           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3904           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3905      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3906           a_temp(1,1)=aggj1(l,1)
3907           a_temp(1,2)=aggj1(l,2)
3908           a_temp(2,1)=aggj1(l,3)
3909           a_temp(2,2)=aggj1(l,4)
3910           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3911           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3912      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3913         enddo
3914       return
3915       end
3916 C-------------------------------------------------------------------------------
3917       subroutine eturn4(i,eello_turn4)
3918 C Third- and fourth-order contributions from turns
3919       implicit real*8 (a-h,o-z)
3920       include 'DIMENSIONS'
3921       include 'COMMON.IOUNITS'
3922       include 'COMMON.GEO'
3923       include 'COMMON.VAR'
3924       include 'COMMON.LOCAL'
3925       include 'COMMON.CHAIN'
3926       include 'COMMON.DERIV'
3927       include 'COMMON.INTERACT'
3928       include 'COMMON.CONTACTS'
3929       include 'COMMON.TORSION'
3930       include 'COMMON.VECTORS'
3931       include 'COMMON.FFIELD'
3932       include 'COMMON.CONTROL'
3933       dimension ggg(3)
3934       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3935      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3936      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3937       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3938      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3939       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3940      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3941      &    num_conti,j1,j2
3942       j=i+3
3943 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3944 C
3945 C               Fourth-order contributions
3946 C        
3947 C                 (i+3)o----(i+4)
3948 C                     /  |
3949 C               (i+2)o   |
3950 C                     \  |
3951 C                 (i+1)o----i
3952 C
3953 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3954 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3955 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3956         a_temp(1,1)=a22
3957         a_temp(1,2)=a23
3958         a_temp(2,1)=a32
3959         a_temp(2,2)=a33
3960         iti1=itortyp(itype(i+1))
3961         iti2=itortyp(itype(i+2))
3962         iti3=itortyp(itype(i+3))
3963 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3964         call transpose2(EUg(1,1,i+1),e1t(1,1))
3965         call transpose2(Eug(1,1,i+2),e2t(1,1))
3966         call transpose2(Eug(1,1,i+3),e3t(1,1))
3967         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3968         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3969         s1=scalar2(b1(1,iti2),auxvec(1))
3970         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3971         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3972         s2=scalar2(b1(1,iti1),auxvec(1))
3973         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3974         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3975         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3976         eello_turn4=eello_turn4-(s1+s2+s3)
3977         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3978      &      'eturn4',i,j,-(s1+s2+s3)
3979 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3980 cd     &    ' eello_turn4_num',8*eello_turn4_num
3981 C Derivatives in gamma(i)
3982         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3983         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3984         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3985         s1=scalar2(b1(1,iti2),auxvec(1))
3986         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3987         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3988         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3989 C Derivatives in gamma(i+1)
3990         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3991         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3992         s2=scalar2(b1(1,iti1),auxvec(1))
3993         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3994         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3995         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3996         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3997 C Derivatives in gamma(i+2)
3998         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3999         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
4000         s1=scalar2(b1(1,iti2),auxvec(1))
4001         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
4002         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
4003         s2=scalar2(b1(1,iti1),auxvec(1))
4004         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
4005         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
4006         s3=0.5d0*(pizda(1,1)+pizda(2,2))
4007         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
4008 C Cartesian derivatives
4009 C Derivatives of this turn contributions in DC(i+2)
4010         if (j.lt.nres-1) then
4011           do l=1,3
4012             a_temp(1,1)=agg(l,1)
4013             a_temp(1,2)=agg(l,2)
4014             a_temp(2,1)=agg(l,3)
4015             a_temp(2,2)=agg(l,4)
4016             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4017             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4018             s1=scalar2(b1(1,iti2),auxvec(1))
4019             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4020             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4021             s2=scalar2(b1(1,iti1),auxvec(1))
4022             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4023             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4024             s3=0.5d0*(pizda(1,1)+pizda(2,2))
4025             ggg(l)=-(s1+s2+s3)
4026             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
4027           enddo
4028         endif
4029 C Remaining derivatives of this turn contribution
4030         do l=1,3
4031           a_temp(1,1)=aggi(l,1)
4032           a_temp(1,2)=aggi(l,2)
4033           a_temp(2,1)=aggi(l,3)
4034           a_temp(2,2)=aggi(l,4)
4035           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4036           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4037           s1=scalar2(b1(1,iti2),auxvec(1))
4038           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4039           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4040           s2=scalar2(b1(1,iti1),auxvec(1))
4041           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4042           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4043           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4044           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
4045           a_temp(1,1)=aggi1(l,1)
4046           a_temp(1,2)=aggi1(l,2)
4047           a_temp(2,1)=aggi1(l,3)
4048           a_temp(2,2)=aggi1(l,4)
4049           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4050           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4051           s1=scalar2(b1(1,iti2),auxvec(1))
4052           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4053           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4054           s2=scalar2(b1(1,iti1),auxvec(1))
4055           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4056           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4057           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4058           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
4059           a_temp(1,1)=aggj(l,1)
4060           a_temp(1,2)=aggj(l,2)
4061           a_temp(2,1)=aggj(l,3)
4062           a_temp(2,2)=aggj(l,4)
4063           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4064           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4065           s1=scalar2(b1(1,iti2),auxvec(1))
4066           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4067           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4068           s2=scalar2(b1(1,iti1),auxvec(1))
4069           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4070           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4071           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4072           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
4073           a_temp(1,1)=aggj1(l,1)
4074           a_temp(1,2)=aggj1(l,2)
4075           a_temp(2,1)=aggj1(l,3)
4076           a_temp(2,2)=aggj1(l,4)
4077           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4078           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4079           s1=scalar2(b1(1,iti2),auxvec(1))
4080           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4081           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4082           s2=scalar2(b1(1,iti1),auxvec(1))
4083           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4084           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4085           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4086 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4087           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4088         enddo
4089       return
4090       end
4091 C-----------------------------------------------------------------------------
4092       subroutine vecpr(u,v,w)
4093       implicit real*8(a-h,o-z)
4094       dimension u(3),v(3),w(3)
4095       w(1)=u(2)*v(3)-u(3)*v(2)
4096       w(2)=-u(1)*v(3)+u(3)*v(1)
4097       w(3)=u(1)*v(2)-u(2)*v(1)
4098       return
4099       end
4100 C-----------------------------------------------------------------------------
4101       subroutine unormderiv(u,ugrad,unorm,ungrad)
4102 C This subroutine computes the derivatives of a normalized vector u, given
4103 C the derivatives computed without normalization conditions, ugrad. Returns
4104 C ungrad.
4105       implicit none
4106       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4107       double precision vec(3)
4108       double precision scalar
4109       integer i,j
4110 c      write (2,*) 'ugrad',ugrad
4111 c      write (2,*) 'u',u
4112       do i=1,3
4113         vec(i)=scalar(ugrad(1,i),u(1))
4114       enddo
4115 c      write (2,*) 'vec',vec
4116       do i=1,3
4117         do j=1,3
4118           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4119         enddo
4120       enddo
4121 c      write (2,*) 'ungrad',ungrad
4122       return
4123       end
4124 C-----------------------------------------------------------------------------
4125       subroutine escp_soft_sphere(evdw2,evdw2_14)
4126 C
4127 C This subroutine calculates the excluded-volume interaction energy between
4128 C peptide-group centers and side chains and its gradient in virtual-bond and
4129 C side-chain vectors.
4130 C
4131       implicit real*8 (a-h,o-z)
4132       include 'DIMENSIONS'
4133       include 'COMMON.GEO'
4134       include 'COMMON.VAR'
4135       include 'COMMON.LOCAL'
4136       include 'COMMON.CHAIN'
4137       include 'COMMON.DERIV'
4138       include 'COMMON.INTERACT'
4139       include 'COMMON.FFIELD'
4140       include 'COMMON.IOUNITS'
4141       include 'COMMON.CONTROL'
4142       dimension ggg(3)
4143       evdw2=0.0D0
4144       evdw2_14=0.0d0
4145       r0_scp=4.5d0
4146 cd    print '(a)','Enter ESCP'
4147 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4148       do i=iatscp_s,iatscp_e
4149         iteli=itel(i)
4150         xi=0.5D0*(c(1,i)+c(1,i+1))
4151         yi=0.5D0*(c(2,i)+c(2,i+1))
4152         zi=0.5D0*(c(3,i)+c(3,i+1))
4153
4154         do iint=1,nscp_gr(i)
4155
4156         do j=iscpstart(i,iint),iscpend(i,iint)
4157           itypj=itype(j)
4158 C Uncomment following three lines for SC-p interactions
4159 c         xj=c(1,nres+j)-xi
4160 c         yj=c(2,nres+j)-yi
4161 c         zj=c(3,nres+j)-zi
4162 C Uncomment following three lines for Ca-p interactions
4163           xj=c(1,j)-xi
4164           yj=c(2,j)-yi
4165           zj=c(3,j)-zi
4166           rij=xj*xj+yj*yj+zj*zj
4167           r0ij=r0_scp
4168           r0ijsq=r0ij*r0ij
4169           if (rij.lt.r0ijsq) then
4170             evdwij=0.25d0*(rij-r0ijsq)**2
4171             fac=rij-r0ijsq
4172           else
4173             evdwij=0.0d0
4174             fac=0.0d0
4175           endif 
4176           evdw2=evdw2+evdwij
4177 C
4178 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4179 C
4180           ggg(1)=xj*fac
4181           ggg(2)=yj*fac
4182           ggg(3)=zj*fac
4183 cgrad          if (j.lt.i) then
4184 cd          write (iout,*) 'j<i'
4185 C Uncomment following three lines for SC-p interactions
4186 c           do k=1,3
4187 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4188 c           enddo
4189 cgrad          else
4190 cd          write (iout,*) 'j>i'
4191 cgrad            do k=1,3
4192 cgrad              ggg(k)=-ggg(k)
4193 C Uncomment following line for SC-p interactions
4194 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4195 cgrad            enddo
4196 cgrad          endif
4197 cgrad          do k=1,3
4198 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4199 cgrad          enddo
4200 cgrad          kstart=min0(i+1,j)
4201 cgrad          kend=max0(i-1,j-1)
4202 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4203 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4204 cgrad          do k=kstart,kend
4205 cgrad            do l=1,3
4206 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4207 cgrad            enddo
4208 cgrad          enddo
4209           do k=1,3
4210             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4211             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4212           enddo
4213         enddo
4214
4215         enddo ! iint
4216       enddo ! i
4217       return
4218       end
4219 C-----------------------------------------------------------------------------
4220       subroutine escp(evdw2,evdw2_14)
4221 C
4222 C This subroutine calculates the excluded-volume interaction energy between
4223 C peptide-group centers and side chains and its gradient in virtual-bond and
4224 C side-chain vectors.
4225 C
4226       implicit real*8 (a-h,o-z)
4227       include 'DIMENSIONS'
4228       include 'COMMON.GEO'
4229       include 'COMMON.VAR'
4230       include 'COMMON.LOCAL'
4231       include 'COMMON.CHAIN'
4232       include 'COMMON.DERIV'
4233       include 'COMMON.INTERACT'
4234       include 'COMMON.FFIELD'
4235       include 'COMMON.IOUNITS'
4236       include 'COMMON.CONTROL'
4237       dimension ggg(3)
4238       evdw2=0.0D0
4239       evdw2_14=0.0d0
4240 cd    print '(a)','Enter ESCP'
4241 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4242       do i=iatscp_s,iatscp_e
4243         iteli=itel(i)
4244         xi=0.5D0*(c(1,i)+c(1,i+1))
4245         yi=0.5D0*(c(2,i)+c(2,i+1))
4246         zi=0.5D0*(c(3,i)+c(3,i+1))
4247
4248         do iint=1,nscp_gr(i)
4249
4250         do j=iscpstart(i,iint),iscpend(i,iint)
4251           itypj=itype(j)
4252 C Uncomment following three lines for SC-p interactions
4253 c         xj=c(1,nres+j)-xi
4254 c         yj=c(2,nres+j)-yi
4255 c         zj=c(3,nres+j)-zi
4256 C Uncomment following three lines for Ca-p interactions
4257           xj=c(1,j)-xi
4258           yj=c(2,j)-yi
4259           zj=c(3,j)-zi
4260           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4261           fac=rrij**expon2
4262           e1=fac*fac*aad(itypj,iteli)
4263           e2=fac*bad(itypj,iteli)
4264           if (iabs(j-i) .le. 2) then
4265             e1=scal14*e1
4266             e2=scal14*e2
4267             evdw2_14=evdw2_14+e1+e2
4268           endif
4269           evdwij=e1+e2
4270           evdw2=evdw2+evdwij
4271           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4272      &        'evdw2',i,j,evdwij
4273 C
4274 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4275 C
4276           fac=-(evdwij+e1)*rrij
4277           ggg(1)=xj*fac
4278           ggg(2)=yj*fac
4279           ggg(3)=zj*fac
4280 cgrad          if (j.lt.i) then
4281 cd          write (iout,*) 'j<i'
4282 C Uncomment following three lines for SC-p interactions
4283 c           do k=1,3
4284 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4285 c           enddo
4286 cgrad          else
4287 cd          write (iout,*) 'j>i'
4288 cgrad            do k=1,3
4289 cgrad              ggg(k)=-ggg(k)
4290 C Uncomment following line for SC-p interactions
4291 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4292 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4293 cgrad            enddo
4294 cgrad          endif
4295 cgrad          do k=1,3
4296 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4297 cgrad          enddo
4298 cgrad          kstart=min0(i+1,j)
4299 cgrad          kend=max0(i-1,j-1)
4300 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4301 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4302 cgrad          do k=kstart,kend
4303 cgrad            do l=1,3
4304 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4305 cgrad            enddo
4306 cgrad          enddo
4307           do k=1,3
4308             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4309             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4310           enddo
4311         enddo
4312
4313         enddo ! iint
4314       enddo ! i
4315       do i=1,nct
4316         do j=1,3
4317           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4318           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4319           gradx_scp(j,i)=expon*gradx_scp(j,i)
4320         enddo
4321       enddo
4322 C******************************************************************************
4323 C
4324 C                              N O T E !!!
4325 C
4326 C To save time the factor EXPON has been extracted from ALL components
4327 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4328 C use!
4329 C
4330 C******************************************************************************
4331       return
4332       end
4333 C--------------------------------------------------------------------------
4334       subroutine edis(ehpb)
4335
4336 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4337 C
4338       implicit real*8 (a-h,o-z)
4339       include 'DIMENSIONS'
4340       include 'COMMON.SBRIDGE'
4341       include 'COMMON.CHAIN'
4342       include 'COMMON.DERIV'
4343       include 'COMMON.VAR'
4344       include 'COMMON.INTERACT'
4345       include 'COMMON.IOUNITS'
4346       dimension ggg(3)
4347       ehpb=0.0D0
4348 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4349 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4350       if (link_end.eq.0) return
4351       do i=link_start,link_end
4352 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4353 C CA-CA distance used in regularization of structure.
4354         ii=ihpb(i)
4355         jj=jhpb(i)
4356 C iii and jjj point to the residues for which the distance is assigned.
4357         if (ii.gt.nres) then
4358           iii=ii-nres
4359           jjj=jj-nres 
4360         else
4361           iii=ii
4362           jjj=jj
4363         endif
4364 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4365 c     &    dhpb(i),dhpb1(i),forcon(i)
4366 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4367 C    distance and angle dependent SS bond potential.
4368 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4369 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4370         if (.not.dyn_ss .and. i.le.nss) then
4371 C 15/02/13 CC dynamic SSbond - additional check
4372          if (ii.gt.nres 
4373      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4374           call ssbond_ene(iii,jjj,eij)
4375           ehpb=ehpb+2*eij
4376          endif
4377 cd          write (iout,*) "eij",eij
4378         else if (ii.gt.nres .and. jj.gt.nres) then
4379 c Restraints from contact prediction
4380           dd=dist(ii,jj)
4381           if (dhpb1(i).gt.0.0d0) then
4382             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4383             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4384 c            write (iout,*) "beta nmr",
4385 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4386           else
4387             dd=dist(ii,jj)
4388             rdis=dd-dhpb(i)
4389 C Get the force constant corresponding to this distance.
4390             waga=forcon(i)
4391 C Calculate the contribution to energy.
4392             ehpb=ehpb+waga*rdis*rdis
4393 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4394 C
4395 C Evaluate gradient.
4396 C
4397             fac=waga*rdis/dd
4398           endif  
4399           do j=1,3
4400             ggg(j)=fac*(c(j,jj)-c(j,ii))
4401           enddo
4402           do j=1,3
4403             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4404             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4405           enddo
4406           do k=1,3
4407             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4408             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4409           enddo
4410         else
4411 C Calculate the distance between the two points and its difference from the
4412 C target distance.
4413           dd=dist(ii,jj)
4414           if (dhpb1(i).gt.0.0d0) then
4415             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4416             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4417 c            write (iout,*) "alph nmr",
4418 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4419           else
4420             rdis=dd-dhpb(i)
4421 C Get the force constant corresponding to this distance.
4422             waga=forcon(i)
4423 C Calculate the contribution to energy.
4424             ehpb=ehpb+waga*rdis*rdis
4425 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4426 C
4427 C Evaluate gradient.
4428 C
4429             fac=waga*rdis/dd
4430           endif
4431 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4432 cd   &   ' waga=',waga,' fac=',fac
4433             do j=1,3
4434               ggg(j)=fac*(c(j,jj)-c(j,ii))
4435             enddo
4436 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4437 C If this is a SC-SC distance, we need to calculate the contributions to the
4438 C Cartesian gradient in the SC vectors (ghpbx).
4439           if (iii.lt.ii) then
4440           do j=1,3
4441             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4442             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4443           enddo
4444           endif
4445 cgrad        do j=iii,jjj-1
4446 cgrad          do k=1,3
4447 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4448 cgrad          enddo
4449 cgrad        enddo
4450           do k=1,3
4451             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4452             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4453           enddo
4454         endif
4455       enddo
4456       ehpb=0.5D0*ehpb
4457       return
4458       end
4459 C--------------------------------------------------------------------------
4460       subroutine ssbond_ene(i,j,eij)
4461
4462 C Calculate the distance and angle dependent SS-bond potential energy
4463 C using a free-energy function derived based on RHF/6-31G** ab initio
4464 C calculations of diethyl disulfide.
4465 C
4466 C A. Liwo and U. Kozlowska, 11/24/03
4467 C
4468       implicit real*8 (a-h,o-z)
4469       include 'DIMENSIONS'
4470       include 'COMMON.SBRIDGE'
4471       include 'COMMON.CHAIN'
4472       include 'COMMON.DERIV'
4473       include 'COMMON.LOCAL'
4474       include 'COMMON.INTERACT'
4475       include 'COMMON.VAR'
4476       include 'COMMON.IOUNITS'
4477       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4478       itypi=itype(i)
4479       xi=c(1,nres+i)
4480       yi=c(2,nres+i)
4481       zi=c(3,nres+i)
4482       dxi=dc_norm(1,nres+i)
4483       dyi=dc_norm(2,nres+i)
4484       dzi=dc_norm(3,nres+i)
4485 c      dsci_inv=dsc_inv(itypi)
4486       dsci_inv=vbld_inv(nres+i)
4487       itypj=itype(j)
4488 c      dscj_inv=dsc_inv(itypj)
4489       dscj_inv=vbld_inv(nres+j)
4490       xj=c(1,nres+j)-xi
4491       yj=c(2,nres+j)-yi
4492       zj=c(3,nres+j)-zi
4493       dxj=dc_norm(1,nres+j)
4494       dyj=dc_norm(2,nres+j)
4495       dzj=dc_norm(3,nres+j)
4496       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4497       rij=dsqrt(rrij)
4498       erij(1)=xj*rij
4499       erij(2)=yj*rij
4500       erij(3)=zj*rij
4501       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4502       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4503       om12=dxi*dxj+dyi*dyj+dzi*dzj
4504       do k=1,3
4505         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4506         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4507       enddo
4508       rij=1.0d0/rij
4509       deltad=rij-d0cm
4510       deltat1=1.0d0-om1
4511       deltat2=1.0d0+om2
4512       deltat12=om2-om1+2.0d0
4513       cosphi=om12-om1*om2
4514       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4515      &  +akct*deltad*deltat12+ebr
4516      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4517 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4518 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4519 c     &  " deltat12",deltat12," eij",eij 
4520       ed=2*akcm*deltad+akct*deltat12
4521       pom1=akct*deltad
4522       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4523       eom1=-2*akth*deltat1-pom1-om2*pom2
4524       eom2= 2*akth*deltat2+pom1-om1*pom2
4525       eom12=pom2
4526       do k=1,3
4527         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4528         ghpbx(k,i)=ghpbx(k,i)-ggk
4529      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4530      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4531         ghpbx(k,j)=ghpbx(k,j)+ggk
4532      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4533      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4534         ghpbc(k,i)=ghpbc(k,i)-ggk
4535         ghpbc(k,j)=ghpbc(k,j)+ggk
4536       enddo
4537 C
4538 C Calculate the components of the gradient in DC and X
4539 C
4540 cgrad      do k=i,j-1
4541 cgrad        do l=1,3
4542 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4543 cgrad        enddo
4544 cgrad      enddo
4545       return
4546       end
4547 C--------------------------------------------------------------------------
4548       subroutine ebond(estr)
4549 c
4550 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4551 c
4552       implicit real*8 (a-h,o-z)
4553       include 'DIMENSIONS'
4554       include 'COMMON.LOCAL'
4555       include 'COMMON.GEO'
4556       include 'COMMON.INTERACT'
4557       include 'COMMON.DERIV'
4558       include 'COMMON.VAR'
4559       include 'COMMON.CHAIN'
4560       include 'COMMON.IOUNITS'
4561       include 'COMMON.NAMES'
4562       include 'COMMON.FFIELD'
4563       include 'COMMON.CONTROL'
4564       include 'COMMON.SETUP'
4565       double precision u(3),ud(3)
4566       estr=0.0d0
4567       do i=ibondp_start,ibondp_end
4568         diff = vbld(i)-vbldp0
4569 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4570         estr=estr+diff*diff
4571         do j=1,3
4572           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4573         enddo
4574 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4575       enddo
4576       estr=0.5d0*AKP*estr
4577 c
4578 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4579 c
4580       do i=ibond_start,ibond_end
4581         iti=itype(i)
4582         if (iti.ne.10) then
4583           nbi=nbondterm(iti)
4584           if (nbi.eq.1) then
4585             diff=vbld(i+nres)-vbldsc0(1,iti)
4586 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4587 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4588             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4589             do j=1,3
4590               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4591             enddo
4592           else
4593             do j=1,nbi
4594               diff=vbld(i+nres)-vbldsc0(j,iti) 
4595               ud(j)=aksc(j,iti)*diff
4596               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4597             enddo
4598             uprod=u(1)
4599             do j=2,nbi
4600               uprod=uprod*u(j)
4601             enddo
4602             usum=0.0d0
4603             usumsqder=0.0d0
4604             do j=1,nbi
4605               uprod1=1.0d0
4606               uprod2=1.0d0
4607               do k=1,nbi
4608                 if (k.ne.j) then
4609                   uprod1=uprod1*u(k)
4610                   uprod2=uprod2*u(k)*u(k)
4611                 endif
4612               enddo
4613               usum=usum+uprod1
4614               usumsqder=usumsqder+ud(j)*uprod2   
4615             enddo
4616             estr=estr+uprod/usum
4617             do j=1,3
4618              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4619             enddo
4620           endif
4621         endif
4622       enddo
4623       return
4624       end 
4625 #ifdef CRYST_THETA
4626 C--------------------------------------------------------------------------
4627       subroutine ebend(etheta)
4628 C
4629 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4630 C angles gamma and its derivatives in consecutive thetas and gammas.
4631 C
4632       implicit real*8 (a-h,o-z)
4633       include 'DIMENSIONS'
4634       include 'COMMON.LOCAL'
4635       include 'COMMON.GEO'
4636       include 'COMMON.INTERACT'
4637       include 'COMMON.DERIV'
4638       include 'COMMON.VAR'
4639       include 'COMMON.CHAIN'
4640       include 'COMMON.IOUNITS'
4641       include 'COMMON.NAMES'
4642       include 'COMMON.FFIELD'
4643       include 'COMMON.CONTROL'
4644       common /calcthet/ term1,term2,termm,diffak,ratak,
4645      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4646      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4647       double precision y(2),z(2)
4648       delta=0.02d0*pi
4649 c      time11=dexp(-2*time)
4650 c      time12=1.0d0
4651       etheta=0.0D0
4652 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4653       do i=ithet_start,ithet_end
4654 C Zero the energy function and its derivative at 0 or pi.
4655         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4656         it=itype(i-1)
4657         if (i.gt.3) then
4658 #ifdef OSF
4659           phii=phi(i)
4660           if (phii.ne.phii) phii=150.0
4661 #else
4662           phii=phi(i)
4663 #endif
4664           y(1)=dcos(phii)
4665           y(2)=dsin(phii)
4666         else 
4667           y(1)=0.0D0
4668           y(2)=0.0D0
4669         endif
4670         if (i.lt.nres) then
4671 #ifdef OSF
4672           phii1=phi(i+1)
4673           if (phii1.ne.phii1) phii1=150.0
4674           phii1=pinorm(phii1)
4675           z(1)=cos(phii1)
4676 #else
4677           phii1=phi(i+1)
4678           z(1)=dcos(phii1)
4679 #endif
4680           z(2)=dsin(phii1)
4681         else
4682           z(1)=0.0D0
4683           z(2)=0.0D0
4684         endif  
4685 C Calculate the "mean" value of theta from the part of the distribution
4686 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4687 C In following comments this theta will be referred to as t_c.
4688         thet_pred_mean=0.0d0
4689         do k=1,2
4690           athetk=athet(k,it)
4691           bthetk=bthet(k,it)
4692           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4693         enddo
4694         dthett=thet_pred_mean*ssd
4695         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4696 C Derivatives of the "mean" values in gamma1 and gamma2.
4697         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4698         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4699         if (theta(i).gt.pi-delta) then
4700           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4701      &         E_tc0)
4702           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4703           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4704           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4705      &        E_theta)
4706           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4707      &        E_tc)
4708         else if (theta(i).lt.delta) then
4709           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4710           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4711           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4712      &        E_theta)
4713           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4714           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4715      &        E_tc)
4716         else
4717           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4718      &        E_theta,E_tc)
4719         endif
4720         etheta=etheta+ethetai
4721         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4722      &      'ebend',i,ethetai
4723         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4724         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4725         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)+gloc(nphi+i-2,icg)
4726       enddo
4727 C Ufff.... We've done all this!!! 
4728       return
4729       end
4730 C---------------------------------------------------------------------------
4731       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4732      &     E_tc)
4733       implicit real*8 (a-h,o-z)
4734       include 'DIMENSIONS'
4735       include 'COMMON.LOCAL'
4736       include 'COMMON.IOUNITS'
4737       common /calcthet/ term1,term2,termm,diffak,ratak,
4738      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4739      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4740 C Calculate the contributions to both Gaussian lobes.
4741 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4742 C The "polynomial part" of the "standard deviation" of this part of 
4743 C the distribution.
4744         sig=polthet(3,it)
4745         do j=2,0,-1
4746           sig=sig*thet_pred_mean+polthet(j,it)
4747         enddo
4748 C Derivative of the "interior part" of the "standard deviation of the" 
4749 C gamma-dependent Gaussian lobe in t_c.
4750         sigtc=3*polthet(3,it)
4751         do j=2,1,-1
4752           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4753         enddo
4754         sigtc=sig*sigtc
4755 C Set the parameters of both Gaussian lobes of the distribution.
4756 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4757         fac=sig*sig+sigc0(it)
4758         sigcsq=fac+fac
4759         sigc=1.0D0/sigcsq
4760 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4761         sigsqtc=-4.0D0*sigcsq*sigtc
4762 c       print *,i,sig,sigtc,sigsqtc
4763 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4764         sigtc=-sigtc/(fac*fac)
4765 C Following variable is sigma(t_c)**(-2)
4766         sigcsq=sigcsq*sigcsq
4767         sig0i=sig0(it)
4768         sig0inv=1.0D0/sig0i**2
4769         delthec=thetai-thet_pred_mean
4770         delthe0=thetai-theta0i
4771         term1=-0.5D0*sigcsq*delthec*delthec
4772         term2=-0.5D0*sig0inv*delthe0*delthe0
4773 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4774 C NaNs in taking the logarithm. We extract the largest exponent which is added
4775 C to the energy (this being the log of the distribution) at the end of energy
4776 C term evaluation for this virtual-bond angle.
4777         if (term1.gt.term2) then
4778           termm=term1
4779           term2=dexp(term2-termm)
4780           term1=1.0d0
4781         else
4782           termm=term2
4783           term1=dexp(term1-termm)
4784           term2=1.0d0
4785         endif
4786 C The ratio between the gamma-independent and gamma-dependent lobes of
4787 C the distribution is a Gaussian function of thet_pred_mean too.
4788         diffak=gthet(2,it)-thet_pred_mean
4789         ratak=diffak/gthet(3,it)**2
4790         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4791 C Let's differentiate it in thet_pred_mean NOW.
4792         aktc=ak*ratak
4793 C Now put together the distribution terms to make complete distribution.
4794         termexp=term1+ak*term2
4795         termpre=sigc+ak*sig0i
4796 C Contribution of the bending energy from this theta is just the -log of
4797 C the sum of the contributions from the two lobes and the pre-exponential
4798 C factor. Simple enough, isn't it?
4799         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4800 C NOW the derivatives!!!
4801 C 6/6/97 Take into account the deformation.
4802         E_theta=(delthec*sigcsq*term1
4803      &       +ak*delthe0*sig0inv*term2)/termexp
4804         E_tc=((sigtc+aktc*sig0i)/termpre
4805      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4806      &       aktc*term2)/termexp)
4807       return
4808       end
4809 c-----------------------------------------------------------------------------
4810       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4811       implicit real*8 (a-h,o-z)
4812       include 'DIMENSIONS'
4813       include 'COMMON.LOCAL'
4814       include 'COMMON.IOUNITS'
4815       common /calcthet/ term1,term2,termm,diffak,ratak,
4816      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4817      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4818       delthec=thetai-thet_pred_mean
4819       delthe0=thetai-theta0i
4820 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4821       t3 = thetai-thet_pred_mean
4822       t6 = t3**2
4823       t9 = term1
4824       t12 = t3*sigcsq
4825       t14 = t12+t6*sigsqtc
4826       t16 = 1.0d0
4827       t21 = thetai-theta0i
4828       t23 = t21**2
4829       t26 = term2
4830       t27 = t21*t26
4831       t32 = termexp
4832       t40 = t32**2
4833       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4834      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4835      & *(-t12*t9-ak*sig0inv*t27)
4836       return
4837       end
4838 #else
4839 C--------------------------------------------------------------------------
4840       subroutine ebend(etheta)
4841 C
4842 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4843 C angles gamma and its derivatives in consecutive thetas and gammas.
4844 C ab initio-derived potentials from 
4845 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4846 C
4847       implicit real*8 (a-h,o-z)
4848       include 'DIMENSIONS'
4849       include 'COMMON.LOCAL'
4850       include 'COMMON.GEO'
4851       include 'COMMON.INTERACT'
4852       include 'COMMON.DERIV'
4853       include 'COMMON.VAR'
4854       include 'COMMON.CHAIN'
4855       include 'COMMON.IOUNITS'
4856       include 'COMMON.NAMES'
4857       include 'COMMON.FFIELD'
4858       include 'COMMON.CONTROL'
4859       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4860      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4861      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4862      & sinph1ph2(maxdouble,maxdouble)
4863       logical lprn /.false./, lprn1 /.false./
4864       etheta=0.0D0
4865       do i=ithet_start,ithet_end
4866         if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
4867      &(itype(i).eq.ntyp1)) cycle
4868         dethetai=0.0d0
4869         dephii=0.0d0
4870         dephii1=0.0d0
4871         theti2=0.5d0*theta(i)
4872         ityp2=ithetyp(itype(i-1))
4873         do k=1,nntheterm
4874           coskt(k)=dcos(k*theti2)
4875           sinkt(k)=dsin(k*theti2)
4876         enddo
4877 C        if (i.gt.3) then
4878          if (i.gt.3 .and. itype(i-3).ne.ntyp1) then
4879 #ifdef OSF
4880           phii=phi(i)
4881           if (phii.ne.phii) phii=150.0
4882 #else
4883           phii=phi(i)
4884 #endif
4885           ityp1=ithetyp(itype(i-2))
4886           do k=1,nsingle
4887             cosph1(k)=dcos(k*phii)
4888             sinph1(k)=dsin(k*phii)
4889           enddo
4890         else
4891           phii=0.0d0
4892           ityp1=ithetyp(itype(i-2))
4893           do k=1,nsingle
4894             cosph1(k)=0.0d0
4895             sinph1(k)=0.0d0
4896           enddo 
4897         endif
4898         if ((i.lt.nres).and. itype(i+1).ne.ntyp1) then
4899 #ifdef OSF
4900           phii1=phi(i+1)
4901           if (phii1.ne.phii1) phii1=150.0
4902           phii1=pinorm(phii1)
4903 #else
4904           phii1=phi(i+1)
4905 #endif
4906           ityp3=ithetyp(itype(i))
4907           do k=1,nsingle
4908             cosph2(k)=dcos(k*phii1)
4909             sinph2(k)=dsin(k*phii1)
4910           enddo
4911         else
4912           phii1=0.0d0
4913           ityp3=ithetyp(itype(i))
4914           do k=1,nsingle
4915             cosph2(k)=0.0d0
4916             sinph2(k)=0.0d0
4917           enddo
4918         endif  
4919         ethetai=aa0thet(ityp1,ityp2,ityp3)
4920         do k=1,ndouble
4921           do l=1,k-1
4922             ccl=cosph1(l)*cosph2(k-l)
4923             ssl=sinph1(l)*sinph2(k-l)
4924             scl=sinph1(l)*cosph2(k-l)
4925             csl=cosph1(l)*sinph2(k-l)
4926             cosph1ph2(l,k)=ccl-ssl
4927             cosph1ph2(k,l)=ccl+ssl
4928             sinph1ph2(l,k)=scl+csl
4929             sinph1ph2(k,l)=scl-csl
4930           enddo
4931         enddo
4932         if (lprn) then
4933         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4934      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4935         write (iout,*) "coskt and sinkt"
4936         do k=1,nntheterm
4937           write (iout,*) k,coskt(k),sinkt(k)
4938         enddo
4939         endif
4940         do k=1,ntheterm
4941           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4942           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4943      &      *coskt(k)
4944           if (lprn)
4945      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4946      &     " ethetai",ethetai
4947         enddo
4948         if (lprn) then
4949         write (iout,*) "cosph and sinph"
4950         do k=1,nsingle
4951           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4952         enddo
4953         write (iout,*) "cosph1ph2 and sinph2ph2"
4954         do k=2,ndouble
4955           do l=1,k-1
4956             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4957      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4958           enddo
4959         enddo
4960         write(iout,*) "ethetai",ethetai
4961         endif
4962         do m=1,ntheterm2
4963           do k=1,nsingle
4964             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4965      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4966      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4967      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4968             ethetai=ethetai+sinkt(m)*aux
4969             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4970             dephii=dephii+k*sinkt(m)*(
4971      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4972      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4973             dephii1=dephii1+k*sinkt(m)*(
4974      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4975      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4976             if (lprn)
4977      &      write (iout,*) "m",m," k",k," bbthet",
4978      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4979      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4980      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4981      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4982           enddo
4983         enddo
4984         if (lprn)
4985      &  write(iout,*) "ethetai",ethetai
4986         do m=1,ntheterm3
4987           do k=2,ndouble
4988             do l=1,k-1
4989               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4990      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4991      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4992      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4993               ethetai=ethetai+sinkt(m)*aux
4994               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4995               dephii=dephii+l*sinkt(m)*(
4996      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4997      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4998      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4999      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
5000               dephii1=dephii1+(k-l)*sinkt(m)*(
5001      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
5002      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
5003      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
5004      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
5005               if (lprn) then
5006               write (iout,*) "m",m," k",k," l",l," ffthet",
5007      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
5008      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
5009      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
5010      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
5011               write (iout,*) cosph1ph2(l,k)*sinkt(m),
5012      &            cosph1ph2(k,l)*sinkt(m),
5013      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
5014               endif
5015             enddo
5016           enddo
5017         enddo
5018 10      continue
5019 c        lprn1=.true.
5020         if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)') 
5021      &  'ebe', i,theta(i)*rad2deg,phii*rad2deg,
5022      &   phii1*rad2deg,ethetai
5023 c        lprn1=.false.
5024         etheta=etheta+ethetai
5025         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
5026         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
5027         gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)+wang*dethetai
5028       enddo
5029       return
5030       end
5031 #endif
5032 #ifdef CRYST_SC
5033 c-----------------------------------------------------------------------------
5034       subroutine esc(escloc)
5035 C Calculate the local energy of a side chain and its derivatives in the
5036 C corresponding virtual-bond valence angles THETA and the spherical angles 
5037 C ALPHA and OMEGA.
5038       implicit real*8 (a-h,o-z)
5039       include 'DIMENSIONS'
5040       include 'COMMON.GEO'
5041       include 'COMMON.LOCAL'
5042       include 'COMMON.VAR'
5043       include 'COMMON.INTERACT'
5044       include 'COMMON.DERIV'
5045       include 'COMMON.CHAIN'
5046       include 'COMMON.IOUNITS'
5047       include 'COMMON.NAMES'
5048       include 'COMMON.FFIELD'
5049       include 'COMMON.CONTROL'
5050       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
5051      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
5052       common /sccalc/ time11,time12,time112,theti,it,nlobit
5053       delta=0.02d0*pi
5054       escloc=0.0D0
5055 c     write (iout,'(a)') 'ESC'
5056       do i=loc_start,loc_end
5057         it=itype(i)
5058         if (it.eq.10) goto 1
5059         nlobit=nlob(it)
5060 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
5061 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
5062         theti=theta(i+1)-pipol
5063         x(1)=dtan(theti)
5064         x(2)=alph(i)
5065         x(3)=omeg(i)
5066
5067         if (x(2).gt.pi-delta) then
5068           xtemp(1)=x(1)
5069           xtemp(2)=pi-delta
5070           xtemp(3)=x(3)
5071           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5072           xtemp(2)=pi
5073           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5074           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
5075      &        escloci,dersc(2))
5076           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5077      &        ddersc0(1),dersc(1))
5078           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
5079      &        ddersc0(3),dersc(3))
5080           xtemp(2)=pi-delta
5081           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5082           xtemp(2)=pi
5083           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5084           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
5085      &            dersc0(2),esclocbi,dersc02)
5086           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5087      &            dersc12,dersc01)
5088           call splinthet(x(2),0.5d0*delta,ss,ssd)
5089           dersc0(1)=dersc01
5090           dersc0(2)=dersc02
5091           dersc0(3)=0.0d0
5092           do k=1,3
5093             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5094           enddo
5095           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5096 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5097 c    &             esclocbi,ss,ssd
5098           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5099 c         escloci=esclocbi
5100 c         write (iout,*) escloci
5101         else if (x(2).lt.delta) then
5102           xtemp(1)=x(1)
5103           xtemp(2)=delta
5104           xtemp(3)=x(3)
5105           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5106           xtemp(2)=0.0d0
5107           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5108           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5109      &        escloci,dersc(2))
5110           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5111      &        ddersc0(1),dersc(1))
5112           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5113      &        ddersc0(3),dersc(3))
5114           xtemp(2)=delta
5115           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5116           xtemp(2)=0.0d0
5117           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5118           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5119      &            dersc0(2),esclocbi,dersc02)
5120           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5121      &            dersc12,dersc01)
5122           dersc0(1)=dersc01
5123           dersc0(2)=dersc02
5124           dersc0(3)=0.0d0
5125           call splinthet(x(2),0.5d0*delta,ss,ssd)
5126           do k=1,3
5127             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5128           enddo
5129           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5130 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5131 c    &             esclocbi,ss,ssd
5132           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5133 c         write (iout,*) escloci
5134         else
5135           call enesc(x,escloci,dersc,ddummy,.false.)
5136         endif
5137
5138         escloc=escloc+escloci
5139         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5140      &     'escloc',i,escloci
5141 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5142
5143         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5144      &   wscloc*dersc(1)
5145         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5146         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5147     1   continue
5148       enddo
5149       return
5150       end
5151 C---------------------------------------------------------------------------
5152       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5153       implicit real*8 (a-h,o-z)
5154       include 'DIMENSIONS'
5155       include 'COMMON.GEO'
5156       include 'COMMON.LOCAL'
5157       include 'COMMON.IOUNITS'
5158       common /sccalc/ time11,time12,time112,theti,it,nlobit
5159       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5160       double precision contr(maxlob,-1:1)
5161       logical mixed
5162 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5163         escloc_i=0.0D0
5164         do j=1,3
5165           dersc(j)=0.0D0
5166           if (mixed) ddersc(j)=0.0d0
5167         enddo
5168         x3=x(3)
5169
5170 C Because of periodicity of the dependence of the SC energy in omega we have
5171 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5172 C To avoid underflows, first compute & store the exponents.
5173
5174         do iii=-1,1
5175
5176           x(3)=x3+iii*dwapi
5177  
5178           do j=1,nlobit
5179             do k=1,3
5180               z(k)=x(k)-censc(k,j,it)
5181             enddo
5182             do k=1,3
5183               Axk=0.0D0
5184               do l=1,3
5185                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5186               enddo
5187               Ax(k,j,iii)=Axk
5188             enddo 
5189             expfac=0.0D0 
5190             do k=1,3
5191               expfac=expfac+Ax(k,j,iii)*z(k)
5192             enddo
5193             contr(j,iii)=expfac
5194           enddo ! j
5195
5196         enddo ! iii
5197
5198         x(3)=x3
5199 C As in the case of ebend, we want to avoid underflows in exponentiation and
5200 C subsequent NaNs and INFs in energy calculation.
5201 C Find the largest exponent
5202         emin=contr(1,-1)
5203         do iii=-1,1
5204           do j=1,nlobit
5205             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5206           enddo 
5207         enddo
5208         emin=0.5D0*emin
5209 cd      print *,'it=',it,' emin=',emin
5210
5211 C Compute the contribution to SC energy and derivatives
5212         do iii=-1,1
5213
5214           do j=1,nlobit
5215 #ifdef OSF
5216             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5217             if(adexp.ne.adexp) adexp=1.0
5218             expfac=dexp(adexp)
5219 #else
5220             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5221 #endif
5222 cd          print *,'j=',j,' expfac=',expfac
5223             escloc_i=escloc_i+expfac
5224             do k=1,3
5225               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5226             enddo
5227             if (mixed) then
5228               do k=1,3,2
5229                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5230      &            +gaussc(k,2,j,it))*expfac
5231               enddo
5232             endif
5233           enddo
5234
5235         enddo ! iii
5236
5237         dersc(1)=dersc(1)/cos(theti)**2
5238         ddersc(1)=ddersc(1)/cos(theti)**2
5239         ddersc(3)=ddersc(3)
5240
5241         escloci=-(dlog(escloc_i)-emin)
5242         do j=1,3
5243           dersc(j)=dersc(j)/escloc_i
5244         enddo
5245         if (mixed) then
5246           do j=1,3,2
5247             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5248           enddo
5249         endif
5250       return
5251       end
5252 C------------------------------------------------------------------------------
5253       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5254       implicit real*8 (a-h,o-z)
5255       include 'DIMENSIONS'
5256       include 'COMMON.GEO'
5257       include 'COMMON.LOCAL'
5258       include 'COMMON.IOUNITS'
5259       common /sccalc/ time11,time12,time112,theti,it,nlobit
5260       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5261       double precision contr(maxlob)
5262       logical mixed
5263
5264       escloc_i=0.0D0
5265
5266       do j=1,3
5267         dersc(j)=0.0D0
5268       enddo
5269
5270       do j=1,nlobit
5271         do k=1,2
5272           z(k)=x(k)-censc(k,j,it)
5273         enddo
5274         z(3)=dwapi
5275         do k=1,3
5276           Axk=0.0D0
5277           do l=1,3
5278             Axk=Axk+gaussc(l,k,j,it)*z(l)
5279           enddo
5280           Ax(k,j)=Axk
5281         enddo 
5282         expfac=0.0D0 
5283         do k=1,3
5284           expfac=expfac+Ax(k,j)*z(k)
5285         enddo
5286         contr(j)=expfac
5287       enddo ! j
5288
5289 C As in the case of ebend, we want to avoid underflows in exponentiation and
5290 C subsequent NaNs and INFs in energy calculation.
5291 C Find the largest exponent
5292       emin=contr(1)
5293       do j=1,nlobit
5294         if (emin.gt.contr(j)) emin=contr(j)
5295       enddo 
5296       emin=0.5D0*emin
5297  
5298 C Compute the contribution to SC energy and derivatives
5299
5300       dersc12=0.0d0
5301       do j=1,nlobit
5302         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5303         escloc_i=escloc_i+expfac
5304         do k=1,2
5305           dersc(k)=dersc(k)+Ax(k,j)*expfac
5306         enddo
5307         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5308      &            +gaussc(1,2,j,it))*expfac
5309         dersc(3)=0.0d0
5310       enddo
5311
5312       dersc(1)=dersc(1)/cos(theti)**2
5313       dersc12=dersc12/cos(theti)**2
5314       escloci=-(dlog(escloc_i)-emin)
5315       do j=1,2
5316         dersc(j)=dersc(j)/escloc_i
5317       enddo
5318       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5319       return
5320       end
5321 #else
5322 c----------------------------------------------------------------------------------
5323       subroutine esc(escloc)
5324 C Calculate the local energy of a side chain and its derivatives in the
5325 C corresponding virtual-bond valence angles THETA and the spherical angles 
5326 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5327 C added by Urszula Kozlowska. 07/11/2007
5328 C
5329       implicit real*8 (a-h,o-z)
5330       include 'DIMENSIONS'
5331       include 'COMMON.GEO'
5332       include 'COMMON.LOCAL'
5333       include 'COMMON.VAR'
5334       include 'COMMON.SCROT'
5335       include 'COMMON.INTERACT'
5336       include 'COMMON.DERIV'
5337       include 'COMMON.CHAIN'
5338       include 'COMMON.IOUNITS'
5339       include 'COMMON.NAMES'
5340       include 'COMMON.FFIELD'
5341       include 'COMMON.CONTROL'
5342       include 'COMMON.VECTORS'
5343       double precision x_prime(3),y_prime(3),z_prime(3)
5344      &    , sumene,dsc_i,dp2_i,x(65),
5345      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5346      &    de_dxx,de_dyy,de_dzz,de_dt
5347       double precision s1_t,s1_6_t,s2_t,s2_6_t
5348       double precision 
5349      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5350      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5351      & dt_dCi(3),dt_dCi1(3)
5352       common /sccalc/ time11,time12,time112,theti,it,nlobit
5353       delta=0.02d0*pi
5354       escloc=0.0D0
5355 c      write(iout,*) "ESC: loc_start",loc_start," loc_end",loc_end
5356       do i=loc_start,loc_end
5357         costtab(i+1) =dcos(theta(i+1))
5358         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5359         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5360         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5361         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5362         cosfac=dsqrt(cosfac2)
5363         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5364         sinfac=dsqrt(sinfac2)
5365         it=itype(i)
5366         if (it.eq.10) goto 1
5367 c
5368 C  Compute the axes of tghe local cartesian coordinates system; store in
5369 c   x_prime, y_prime and z_prime 
5370 c
5371         do j=1,3
5372           x_prime(j) = 0.00
5373           y_prime(j) = 0.00
5374           z_prime(j) = 0.00
5375         enddo
5376 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5377 C     &   dc_norm(3,i+nres)
5378         do j = 1,3
5379           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5380           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5381         enddo
5382         do j = 1,3
5383           z_prime(j) = -uz(j,i-1)
5384         enddo     
5385 c       write (2,*) "i",i
5386 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5387 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5388 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5389 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5390 c      & " xy",scalar(x_prime(1),y_prime(1)),
5391 c      & " xz",scalar(x_prime(1),z_prime(1)),
5392 c      & " yy",scalar(y_prime(1),y_prime(1)),
5393 c      & " yz",scalar(y_prime(1),z_prime(1)),
5394 c      & " zz",scalar(z_prime(1),z_prime(1))
5395 c
5396 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5397 C to local coordinate system. Store in xx, yy, zz.
5398 c
5399         xx=0.0d0
5400         yy=0.0d0
5401         zz=0.0d0
5402         do j = 1,3
5403           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5404           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5405           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5406         enddo
5407
5408         xxtab(i)=xx
5409         yytab(i)=yy
5410         zztab(i)=zz
5411 C
5412 C Compute the energy of the ith side cbain
5413 C
5414 c        write (2,*) "xx",xx," yy",yy," zz",zz
5415         it=itype(i)
5416         do j = 1,65
5417           x(j) = sc_parmin(j,it) 
5418         enddo
5419 #ifdef CHECK_COORD
5420 Cc diagnostics - remove later
5421         xx1 = dcos(alph(2))
5422         yy1 = dsin(alph(2))*dcos(omeg(2))
5423         zz1 = -dsin(alph(2))*dsin(omeg(2))
5424         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5425      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5426      &    xx1,yy1,zz1
5427 C,"  --- ", xx_w,yy_w,zz_w
5428 c end diagnostics
5429 #endif
5430         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5431      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5432      &   + x(10)*yy*zz
5433         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5434      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5435      & + x(20)*yy*zz
5436         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5437      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5438      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5439      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5440      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5441      &  +x(40)*xx*yy*zz
5442         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5443      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5444      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5445      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5446      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5447      &  +x(60)*xx*yy*zz
5448         dsc_i   = 0.743d0+x(61)
5449         dp2_i   = 1.9d0+x(62)
5450         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5451      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5452         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5453      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5454         s1=(1+x(63))/(0.1d0 + dscp1)
5455         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5456         s2=(1+x(65))/(0.1d0 + dscp2)
5457         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5458         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5459      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5460 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5461 c     &   sumene4,
5462 c     &   dscp1,dscp2,sumene
5463 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5464         escloc = escloc + sumene
5465 c        write (2,*) "i",i," escloc",sumene,escloc
5466 #ifdef DEBUG
5467 C
5468 C This section to check the numerical derivatives of the energy of ith side
5469 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5470 C #define DEBUG in the code to turn it on.
5471 C
5472         write (2,*) "sumene               =",sumene
5473         aincr=1.0d-7
5474         xxsave=xx
5475         xx=xx+aincr
5476         write (2,*) xx,yy,zz
5477         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5478         de_dxx_num=(sumenep-sumene)/aincr
5479         xx=xxsave
5480         write (2,*) "xx+ sumene from enesc=",sumenep
5481         yysave=yy
5482         yy=yy+aincr
5483         write (2,*) xx,yy,zz
5484         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5485         de_dyy_num=(sumenep-sumene)/aincr
5486         yy=yysave
5487         write (2,*) "yy+ sumene from enesc=",sumenep
5488         zzsave=zz
5489         zz=zz+aincr
5490         write (2,*) xx,yy,zz
5491         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5492         de_dzz_num=(sumenep-sumene)/aincr
5493         zz=zzsave
5494         write (2,*) "zz+ sumene from enesc=",sumenep
5495         costsave=cost2tab(i+1)
5496         sintsave=sint2tab(i+1)
5497         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5498         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5499         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5500         de_dt_num=(sumenep-sumene)/aincr
5501         write (2,*) " t+ sumene from enesc=",sumenep
5502         cost2tab(i+1)=costsave
5503         sint2tab(i+1)=sintsave
5504 C End of diagnostics section.
5505 #endif
5506 C        
5507 C Compute the gradient of esc
5508 C
5509         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5510         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5511         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5512         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5513         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5514         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5515         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5516         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5517         pom1=(sumene3*sint2tab(i+1)+sumene1)
5518      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5519         pom2=(sumene4*cost2tab(i+1)+sumene2)
5520      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5521         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5522         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5523      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5524      &  +x(40)*yy*zz
5525         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5526         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5527      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5528      &  +x(60)*yy*zz
5529         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5530      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5531      &        +(pom1+pom2)*pom_dx
5532 #ifdef DEBUG
5533         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5534 #endif
5535 C
5536         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5537         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5538      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5539      &  +x(40)*xx*zz
5540         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5541         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5542      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5543      &  +x(59)*zz**2 +x(60)*xx*zz
5544         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5545      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5546      &        +(pom1-pom2)*pom_dy
5547 #ifdef DEBUG
5548         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5549 #endif
5550 C
5551         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5552      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5553      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5554      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5555      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5556      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5557      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5558      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5559 #ifdef DEBUG
5560         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5561 #endif
5562 C
5563         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5564      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5565      &  +pom1*pom_dt1+pom2*pom_dt2
5566 #ifdef DEBUG
5567         write(2,*), "de_dt = ", de_dt,de_dt_num
5568 #endif
5569
5570 C
5571        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5572        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5573        cosfac2xx=cosfac2*xx
5574        sinfac2yy=sinfac2*yy
5575        do k = 1,3
5576          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5577      &      vbld_inv(i+1)
5578          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5579      &      vbld_inv(i)
5580          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5581          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5582 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5583 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5584 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5585 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5586          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5587          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5588          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5589          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5590          dZZ_Ci1(k)=0.0d0
5591          dZZ_Ci(k)=0.0d0
5592          do j=1,3
5593            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5594            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5595          enddo
5596           
5597          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5598          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5599          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5600 c
5601          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5602          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5603        enddo
5604
5605        do k=1,3
5606          dXX_Ctab(k,i)=dXX_Ci(k)
5607          dXX_C1tab(k,i)=dXX_Ci1(k)
5608          dYY_Ctab(k,i)=dYY_Ci(k)
5609          dYY_C1tab(k,i)=dYY_Ci1(k)
5610          dZZ_Ctab(k,i)=dZZ_Ci(k)
5611          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5612          dXX_XYZtab(k,i)=dXX_XYZ(k)
5613          dYY_XYZtab(k,i)=dYY_XYZ(k)
5614          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5615        enddo
5616
5617        do k = 1,3
5618 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5619 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5620 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5621 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5622 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5623 c     &    dt_dci(k)
5624 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5625 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5626          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5627      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5628          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5629      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5630          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5631      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5632        enddo
5633 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5634 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5635
5636 C to check gradient call subroutine check_grad
5637
5638     1 continue
5639       enddo
5640       return
5641       end
5642 c------------------------------------------------------------------------------
5643       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5644       implicit none
5645       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5646      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5647       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5648      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5649      &   + x(10)*yy*zz
5650       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5651      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5652      & + x(20)*yy*zz
5653       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5654      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5655      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5656      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5657      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5658      &  +x(40)*xx*yy*zz
5659       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5660      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5661      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5662      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5663      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5664      &  +x(60)*xx*yy*zz
5665       dsc_i   = 0.743d0+x(61)
5666       dp2_i   = 1.9d0+x(62)
5667       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5668      &          *(xx*cost2+yy*sint2))
5669       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5670      &          *(xx*cost2-yy*sint2))
5671       s1=(1+x(63))/(0.1d0 + dscp1)
5672       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5673       s2=(1+x(65))/(0.1d0 + dscp2)
5674       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5675       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5676      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5677       enesc=sumene
5678       return
5679       end
5680 #endif
5681 c------------------------------------------------------------------------------
5682       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5683 C
5684 C This procedure calculates two-body contact function g(rij) and its derivative:
5685 C
5686 C           eps0ij                                     !       x < -1
5687 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5688 C            0                                         !       x > 1
5689 C
5690 C where x=(rij-r0ij)/delta
5691 C
5692 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5693 C
5694       implicit none
5695       double precision rij,r0ij,eps0ij,fcont,fprimcont
5696       double precision x,x2,x4,delta
5697 c     delta=0.02D0*r0ij
5698 c      delta=0.2D0*r0ij
5699       x=(rij-r0ij)/delta
5700       if (x.lt.-1.0D0) then
5701         fcont=eps0ij
5702         fprimcont=0.0D0
5703       else if (x.le.1.0D0) then  
5704         x2=x*x
5705         x4=x2*x2
5706         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5707         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5708       else
5709         fcont=0.0D0
5710         fprimcont=0.0D0
5711       endif
5712       return
5713       end
5714 c------------------------------------------------------------------------------
5715       subroutine splinthet(theti,delta,ss,ssder)
5716       implicit real*8 (a-h,o-z)
5717       include 'DIMENSIONS'
5718       include 'COMMON.VAR'
5719       include 'COMMON.GEO'
5720       thetup=pi-delta
5721       thetlow=delta
5722       if (theti.gt.pipol) then
5723         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5724       else
5725         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5726         ssder=-ssder
5727       endif
5728       return
5729       end
5730 c------------------------------------------------------------------------------
5731       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5732       implicit none
5733       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5734       double precision ksi,ksi2,ksi3,a1,a2,a3
5735       a1=fprim0*delta/(f1-f0)
5736       a2=3.0d0-2.0d0*a1
5737       a3=a1-2.0d0
5738       ksi=(x-x0)/delta
5739       ksi2=ksi*ksi
5740       ksi3=ksi2*ksi  
5741       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5742       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5743       return
5744       end
5745 c------------------------------------------------------------------------------
5746       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5747       implicit none
5748       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5749       double precision ksi,ksi2,ksi3,a1,a2,a3
5750       ksi=(x-x0)/delta  
5751       ksi2=ksi*ksi
5752       ksi3=ksi2*ksi
5753       a1=fprim0x*delta
5754       a2=3*(f1x-f0x)-2*fprim0x*delta
5755       a3=fprim0x*delta-2*(f1x-f0x)
5756       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5757       return
5758       end
5759 C-----------------------------------------------------------------------------
5760 #ifdef CRYST_TOR
5761 C-----------------------------------------------------------------------------
5762       subroutine etor(etors,edihcnstr)
5763       implicit real*8 (a-h,o-z)
5764       include 'DIMENSIONS'
5765       include 'COMMON.VAR'
5766       include 'COMMON.GEO'
5767       include 'COMMON.LOCAL'
5768       include 'COMMON.TORSION'
5769       include 'COMMON.INTERACT'
5770       include 'COMMON.DERIV'
5771       include 'COMMON.CHAIN'
5772       include 'COMMON.NAMES'
5773       include 'COMMON.IOUNITS'
5774       include 'COMMON.FFIELD'
5775       include 'COMMON.TORCNSTR'
5776       include 'COMMON.CONTROL'
5777       logical lprn
5778 C Set lprn=.true. for debugging
5779       lprn=.false.
5780 c      lprn=.true.
5781       etors=0.0D0
5782       do i=iphi_start,iphi_end
5783       etors_ii=0.0D0
5784         itori=itortyp(itype(i-2))
5785         itori1=itortyp(itype(i-1))
5786         phii=phi(i)
5787         gloci=0.0D0
5788 C Proline-Proline pair is a special case...
5789         if (itori.eq.3 .and. itori1.eq.3) then
5790           if (phii.gt.-dwapi3) then
5791             cosphi=dcos(3*phii)
5792             fac=1.0D0/(1.0D0-cosphi)
5793             etorsi=v1(1,3,3)*fac
5794             etorsi=etorsi+etorsi
5795             etors=etors+etorsi-v1(1,3,3)
5796             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5797             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5798           endif
5799           do j=1,3
5800             v1ij=v1(j+1,itori,itori1)
5801             v2ij=v2(j+1,itori,itori1)
5802             cosphi=dcos(j*phii)
5803             sinphi=dsin(j*phii)
5804             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5805             if (energy_dec) etors_ii=etors_ii+
5806      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5807             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5808           enddo
5809         else 
5810           do j=1,nterm_old
5811             v1ij=v1(j,itori,itori1)
5812             v2ij=v2(j,itori,itori1)
5813             cosphi=dcos(j*phii)
5814             sinphi=dsin(j*phii)
5815             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5816             if (energy_dec) etors_ii=etors_ii+
5817      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5818             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5819           enddo
5820         endif
5821         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5822      &        'etor',i,etors_ii
5823         if (lprn)
5824      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5825      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5826      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5827         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5828         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5829       enddo
5830 ! 6/20/98 - dihedral angle constraints
5831       edihcnstr=0.0d0
5832       do i=1,ndih_constr
5833         itori=idih_constr(i)
5834         phii=phi(itori)
5835         difi=phii-phi0(i)
5836         if (difi.gt.drange(i)) then
5837           difi=difi-drange(i)
5838           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5839           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5840         else if (difi.lt.-drange(i)) then
5841           difi=difi+drange(i)
5842           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5843           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5844         endif
5845 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5846 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5847       enddo
5848 !      write (iout,*) 'edihcnstr',edihcnstr
5849       return
5850       end
5851 c------------------------------------------------------------------------------
5852 c LICZENIE WIEZOW Z ROWNANIA ENERGII MODELLERA
5853       subroutine e_modeller(ehomology_constr)
5854       ehomology_constr=0.0
5855       write (iout,*) "!!!!!UWAGA, JESTEM W DZIWNEJ PETLI, TEST!!!!!"
5856       return
5857       end
5858 C !!!!!!!! NIE CZYTANE !!!!!!!!!!!
5859
5860 c------------------------------------------------------------------------------
5861       subroutine etor_d(etors_d)
5862       etors_d=0.0d0
5863       return
5864       end
5865 c----------------------------------------------------------------------------
5866 #else
5867       subroutine etor(etors,edihcnstr)
5868       implicit real*8 (a-h,o-z)
5869       include 'DIMENSIONS'
5870       include 'COMMON.VAR'
5871       include 'COMMON.GEO'
5872       include 'COMMON.LOCAL'
5873       include 'COMMON.TORSION'
5874       include 'COMMON.INTERACT'
5875       include 'COMMON.DERIV'
5876       include 'COMMON.CHAIN'
5877       include 'COMMON.NAMES'
5878       include 'COMMON.IOUNITS'
5879       include 'COMMON.FFIELD'
5880       include 'COMMON.TORCNSTR'
5881       include 'COMMON.CONTROL'
5882       logical lprn
5883 C Set lprn=.true. for debugging
5884       lprn=.false.
5885 c     lprn=.true.
5886       etors=0.0D0
5887       do i=iphi_start,iphi_end
5888       etors_ii=0.0D0
5889         itori=itortyp(itype(i-2))
5890         itori1=itortyp(itype(i-1))
5891         phii=phi(i)
5892         gloci=0.0D0
5893 C Regular cosine and sine terms
5894         do j=1,nterm(itori,itori1)
5895           v1ij=v1(j,itori,itori1)
5896           v2ij=v2(j,itori,itori1)
5897           cosphi=dcos(j*phii)
5898           sinphi=dsin(j*phii)
5899           etors=etors+v1ij*cosphi+v2ij*sinphi
5900           if (energy_dec) etors_ii=etors_ii+
5901      &                v1ij*cosphi+v2ij*sinphi
5902           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5903         enddo
5904 C Lorentz terms
5905 C                         v1
5906 C  E = SUM ----------------------------------- - v1
5907 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5908 C
5909         cosphi=dcos(0.5d0*phii)
5910         sinphi=dsin(0.5d0*phii)
5911         do j=1,nlor(itori,itori1)
5912           vl1ij=vlor1(j,itori,itori1)
5913           vl2ij=vlor2(j,itori,itori1)
5914           vl3ij=vlor3(j,itori,itori1)
5915           pom=vl2ij*cosphi+vl3ij*sinphi
5916           pom1=1.0d0/(pom*pom+1.0d0)
5917           etors=etors+vl1ij*pom1
5918           if (energy_dec) etors_ii=etors_ii+
5919      &                vl1ij*pom1
5920           pom=-pom*pom1*pom1
5921           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5922         enddo
5923 C Subtract the constant term
5924         etors=etors-v0(itori,itori1)
5925           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5926      &         'etor',i,etors_ii-v0(itori,itori1)
5927         if (lprn)
5928      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5929      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5930      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5931         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5932 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5933       enddo
5934 ! 6/20/98 - dihedral angle constraints
5935       edihcnstr=0.0d0
5936 c      do i=1,ndih_constr
5937       do i=idihconstr_start,idihconstr_end
5938         itori=idih_constr(i)
5939         phii=phi(itori)
5940         difi=pinorm(phii-phi0(i))
5941         if (difi.gt.drange(i)) then
5942           difi=difi-drange(i)
5943           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5944           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5945         else if (difi.lt.-drange(i)) then
5946           difi=difi+drange(i)
5947           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5948           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5949         else
5950           difi=0.0
5951         endif
5952 c        write (iout,*) "gloci", gloc(i-3,icg)
5953 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5954 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5955 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5956       enddo
5957 cd       write (iout,*) 'edihcnstr',edihcnstr
5958       return
5959       end
5960 c----------------------------------------------------------------------------
5961 c MODELLER restraint function
5962       subroutine e_modeller(ehomology_constr)
5963       implicit real*8 (a-h,o-z)
5964       include 'DIMENSIONS'
5965
5966       integer nnn, i, j, k, ki, irec, l
5967       integer katy, odleglosci, test7
5968       real*8 odleg, odleg2, odleg3, kat, kat2, kat3, gdih(max_template)
5969       real*8 Eval,Erot
5970       real*8 distance(max_template),distancek(max_template),
5971      &    min_odl,godl(max_template),dih_diff(max_template)
5972
5973 c
5974 c     FP - 30/10/2014 Temporary specifications for homology restraints
5975 c
5976       double precision utheta_i,gutheta_i,sum_gtheta,sum_sgtheta,
5977      &                 sgtheta      
5978       double precision, dimension (maxres) :: guscdiff,usc_diff
5979       double precision, dimension (max_template) ::  
5980      &           gtheta,dscdiff,uscdiffk,guscdiff2,guscdiff3,
5981      &           theta_diff
5982 c
5983
5984       include 'COMMON.SBRIDGE'
5985       include 'COMMON.CHAIN'
5986       include 'COMMON.GEO'
5987       include 'COMMON.DERIV'
5988       include 'COMMON.LOCAL'
5989       include 'COMMON.INTERACT'
5990       include 'COMMON.VAR'
5991       include 'COMMON.IOUNITS'
5992       include 'COMMON.MD'
5993       include 'COMMON.CONTROL'
5994 c
5995 c     From subroutine Econstr_back
5996 c
5997       include 'COMMON.NAMES'
5998       include 'COMMON.TIME1'
5999 c
6000
6001
6002       do i=1,19
6003         distancek(i)=9999999.9
6004       enddo
6005
6006
6007       odleg=0.0d0
6008
6009 c Pseudo-energy and gradient from homology restraints (MODELLER-like
6010 c function)
6011 C AL 5/2/14 - Introduce list of restraints
6012 c     write(iout,*) "waga_theta",waga_theta,"waga_d",waga_d
6013 #ifdef DEBUG
6014       write(iout,*) "------- dist restrs start -------"
6015 #endif
6016       do ii = link_start_homo,link_end_homo
6017          i = ires_homo(ii)
6018          j = jres_homo(ii)
6019          dij=dist(i,j)
6020 c        write (iout,*) "dij(",i,j,") =",dij
6021          do k=1,constr_homology
6022            distance(k)=odl(k,ii)-dij
6023 c          write (iout,*) "distance(",k,") =",distance(k)
6024            distancek(k)=0.5d0*distance(k)**2*sigma_odl(k,ii) ! waga_dist rmvd from Gaussian argument
6025 c          write (iout,*) "sigma_odl(",k,ii,") =",sigma_odl(k,ii)
6026 c          write (iout,*) "distancek(",k,") =",distancek(k)
6027 c          distancek(k)=0.5d0*waga_dist*distance(k)**2*sigma_odl(k,ii)
6028          enddo
6029          
6030          min_odl=minval(distancek)
6031 c        write (iout,* )"min_odl",min_odl
6032 #ifdef DEBUG
6033          write (iout,*) "ij dij",i,j,dij
6034          write (iout,*) "distance",(distance(k),k=1,constr_homology)
6035          write (iout,*) "distancek",(distancek(k),k=1,constr_homology)
6036          write (iout,* )"min_odl",min_odl
6037 #endif
6038          odleg2=0.0d0
6039          do k=1,constr_homology
6040 c Nie wiem po co to liczycie jeszcze raz!
6041 c            odleg3=-waga_dist(iset)*((distance(i,j,k)**2)/ 
6042 c     &              (2*(sigma_odl(i,j,k))**2))
6043             godl(k)=dexp(-distancek(k)+min_odl)
6044             odleg2=odleg2+godl(k)
6045
6046 ccc       write(iout,779) i,j,k, "odleg2=",odleg2, "odleg3=", odleg3,
6047 ccc     & "dEXP(odleg3)=", dEXP(odleg3),"distance(i,j,k)^2=",
6048 ccc     & distance(i,j,k)**2, "dist(i+1,j+1)=", dist(i+1,j+1),
6049 ccc     & "sigma_odl(i,j,k)=", sigma_odl(i,j,k)
6050
6051          enddo
6052 c        write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents
6053 c        write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps
6054 #ifdef DEBUG
6055          write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents
6056          write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps
6057 #endif
6058          odleg=odleg-dLOG(odleg2/constr_homology)+min_odl
6059 c        write (iout,*) "odleg",odleg ! sum of -ln-s
6060 c Gradient
6061          sum_godl=odleg2
6062          sum_sgodl=0.0d0
6063          do k=1,constr_homology
6064 c            godl=dexp(((-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2))
6065 c     &           *waga_dist)+min_odl
6066 c          sgodl=-godl(k)*distance(k)*sigma_odl(k,ii)*waga_dist
6067            sgodl=-godl(k)*distance(k)*sigma_odl(k,ii) ! waga_dist rmvd
6068            sum_sgodl=sum_sgodl+sgodl
6069
6070 c            sgodl2=sgodl2+sgodl
6071 c      write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE1"
6072 c      write(iout,*) "constr_homology=",constr_homology
6073 c      write(iout,*) i, j, k, "TEST K"
6074          enddo
6075
6076          grad_odl3=waga_homology(iset)*waga_dist
6077      &            *sum_sgodl/(sum_godl*dij)
6078 c        grad_odl3=sum_sgodl/(sum_godl*dij)
6079
6080
6081 c      write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE2"
6082 c      write(iout,*) (distance(i,j,k)**2), (2*(sigma_odl(i,j,k))**2),
6083 c     &              (-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2))
6084
6085 ccc      write(iout,*) godl, sgodl, grad_odl3
6086
6087 c          grad_odl=grad_odl+grad_odl3
6088
6089          do jik=1,3
6090             ggodl=grad_odl3*(c(jik,i)-c(jik,j))
6091 ccc      write(iout,*) c(jik,i+1), c(jik,j+1), (c(jik,i+1)-c(jik,j+1))
6092 ccc      write(iout,746) "GRAD_ODL_1", i, j, jik, ggodl, 
6093 ccc     &              ghpbc(jik,i+1), ghpbc(jik,j+1)
6094             ghpbc(jik,i)=ghpbc(jik,i)+ggodl
6095             ghpbc(jik,j)=ghpbc(jik,j)-ggodl
6096 ccc      write(iout,746) "GRAD_ODL_2", i, j, jik, ggodl,
6097 ccc     &              ghpbc(jik,i+1), ghpbc(jik,j+1)
6098 c         if (i.eq.25.and.j.eq.27) then
6099 c         write(iout,*) "jik",jik,"i",i,"j",j
6100 c         write(iout,*) "sum_sgodl",sum_sgodl,"sgodl",sgodl
6101 c         write(iout,*) "grad_odl3",grad_odl3
6102 c         write(iout,*) "c(",jik,i,")",c(jik,i),"c(",jik,j,")",c(jik,j)
6103 c         write(iout,*) "ggodl",ggodl
6104 c         write(iout,*) "ghpbc(",jik,i,")",
6105 c     &                 ghpbc(jik,i),"ghpbc(",jik,j,")",
6106 c     &                 ghpbc(jik,j)   
6107 c         endif
6108          enddo
6109 ccc       write(iout,778)"TEST: odleg2=", odleg2, "DLOG(odleg2)=", 
6110 ccc     & dLOG(odleg2),"-odleg=", -odleg
6111
6112       enddo ! ii-loop for dist
6113 #ifdef DEBUG
6114       write(iout,*) "------- dist restrs end -------"
6115 c     if (waga_angle.eq.1.0d0 .or. waga_theta.eq.1.0d0 .or. 
6116 c    &     waga_d.eq.1.0d0) call sum_gradient
6117 #endif
6118 c Pseudo-energy and gradient from dihedral-angle restraints from
6119 c homology templates
6120 c      write (iout,*) "End of distance loop"
6121 c      call flush(iout)
6122       kat=0.0d0
6123 c      write (iout,*) idihconstr_start_homo,idihconstr_end_homo
6124 #ifdef DEBUG
6125       write(iout,*) "------- dih restrs start -------"
6126       do i=idihconstr_start_homo,idihconstr_end_homo
6127         write (iout,*) "gloc_init(",i,icg,")",gloc(i,icg)
6128       enddo
6129 #endif
6130       do i=idihconstr_start_homo,idihconstr_end_homo
6131         kat2=0.0d0
6132 c        betai=beta(i,i+1,i+2,i+3)
6133         betai = phi(i+3)
6134 c       write (iout,*) "betai =",betai
6135         do k=1,constr_homology
6136           dih_diff(k)=pinorm(dih(k,i)-betai)
6137 c         write (iout,*) "dih_diff(",k,") =",dih_diff(k)
6138 c          if (dih_diff(i,k).gt.3.14159) dih_diff(i,k)=
6139 c     &                                   -(6.28318-dih_diff(i,k))
6140 c          if (dih_diff(i,k).lt.-3.14159) dih_diff(i,k)=
6141 c     &                                   6.28318+dih_diff(i,k)
6142
6143           kat3=-0.5d0*dih_diff(k)**2*sigma_dih(k,i) ! waga_angle rmvd from Gaussian argument
6144 c         kat3=-0.5d0*waga_angle*dih_diff(k)**2*sigma_dih(k,i)
6145           gdih(k)=dexp(kat3)
6146           kat2=kat2+gdih(k)
6147 c          write(iout,*) "kat2=", kat2, "exp(kat3)=", exp(kat3)
6148 c          write(*,*)""
6149         enddo
6150 c       write (iout,*) "gdih",(gdih(k),k=1,constr_homology) ! exps
6151 c       write (iout,*) "i",i," betai",betai," kat2",kat2 ! sum of exps
6152 #ifdef DEBUG
6153         write (iout,*) "i",i," betai",betai," kat2",kat2
6154         write (iout,*) "gdih",(gdih(k),k=1,constr_homology)
6155 #endif
6156         if (kat2.le.1.0d-14) cycle
6157         kat=kat-dLOG(kat2/constr_homology)
6158 c       write (iout,*) "kat",kat ! sum of -ln-s
6159
6160 ccc       write(iout,778)"TEST: kat2=", kat2, "DLOG(kat2)=",
6161 ccc     & dLOG(kat2), "-kat=", -kat
6162
6163 c ----------------------------------------------------------------------
6164 c Gradient
6165 c ----------------------------------------------------------------------
6166
6167         sum_gdih=kat2
6168         sum_sgdih=0.0d0
6169         do k=1,constr_homology
6170           sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)  ! waga_angle rmvd
6171 c         sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)*waga_angle
6172           sum_sgdih=sum_sgdih+sgdih
6173         enddo
6174 c       grad_dih3=sum_sgdih/sum_gdih
6175         grad_dih3=waga_homology(iset)*waga_angle*sum_sgdih/sum_gdih
6176
6177 c      write(iout,*)i,k,gdih,sgdih,beta(i+1,i+2,i+3,i+4),grad_dih3
6178 ccc      write(iout,747) "GRAD_KAT_1", i, nphi, icg, grad_dih3,
6179 ccc     & gloc(nphi+i-3,icg)
6180         gloc(i,icg)=gloc(i,icg)+grad_dih3
6181 c        if (i.eq.25) then
6182 c        write(iout,*) "i",i,"icg",icg,"gloc(",i,icg,")",gloc(i,icg)
6183 c        endif
6184 ccc      write(iout,747) "GRAD_KAT_2", i, nphi, icg, grad_dih3,
6185 ccc     & gloc(nphi+i-3,icg)
6186
6187       enddo ! i-loop for dih
6188 #ifdef DEBUG
6189       write(iout,*) "------- dih restrs end -------"
6190 #endif
6191
6192 c Pseudo-energy and gradient for theta angle restraints from
6193 c homology templates
6194 c FP 01/15 - inserted from econstr_local_test.F, loop structure
6195 c adapted
6196
6197 c
6198 c     For constr_homology reference structures (FP)
6199 c     
6200 c     Uconst_back_tot=0.0d0
6201       Eval=0.0d0
6202       Erot=0.0d0
6203 c     Econstr_back legacy
6204       do i=1,nres
6205 c     do i=ithet_start,ithet_end
6206        dutheta(i)=0.0d0
6207 c     enddo
6208 c     do i=loc_start,loc_end
6209         do j=1,3
6210           duscdiff(j,i)=0.0d0
6211           duscdiffx(j,i)=0.0d0
6212         enddo
6213       enddo
6214 c
6215 c     do iref=1,nref
6216 c     write (iout,*) "ithet_start =",ithet_start,"ithet_end =",ithet_end
6217 c     write (iout,*) "waga_theta",waga_theta
6218       if (waga_theta.gt.0.0d0) then
6219 #ifdef DEBUG
6220       write (iout,*) "usampl",usampl
6221       write(iout,*) "------- theta restrs start -------"
6222 c     do i=ithet_start,ithet_end
6223 c       write (iout,*) "gloc_init(",nphi+i,icg,")",gloc(nphi+i,icg)
6224 c     enddo
6225 #endif
6226 c     write (iout,*) "maxres",maxres,"nres",nres
6227
6228       do i=ithet_start,ithet_end
6229 c
6230 c     do i=1,nfrag_back
6231 c       ii = ifrag_back(2,i,iset)-ifrag_back(1,i,iset)
6232 c
6233 c Deviation of theta angles wrt constr_homology ref structures
6234 c
6235         utheta_i=0.0d0 ! argument of Gaussian for single k
6236         gutheta_i=0.0d0 ! Sum of Gaussians over constr_homology ref structures
6237 c       do j=ifrag_back(1,i,iset)+2,ifrag_back(2,i,iset) ! original loop
6238 c       over residues in a fragment
6239 c       write (iout,*) "theta(",i,")=",theta(i)
6240         do k=1,constr_homology
6241 c
6242 c         dtheta_i=theta(j)-thetaref(j,iref)
6243 c         dtheta_i=thetaref(k,i)-theta(i) ! original form without indexing
6244           theta_diff(k)=thetatpl(k,i)-theta(i)
6245 c
6246           utheta_i=-0.5d0*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta rmvd from Gaussian argument
6247 c         utheta_i=-0.5d0*waga_theta*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta?
6248           gtheta(k)=dexp(utheta_i) ! + min_utheta_i?
6249           gutheta_i=gutheta_i+dexp(utheta_i)   ! Sum of Gaussians (pk)
6250 c         Gradient for single Gaussian restraint in subr Econstr_back
6251 c         dutheta(j-2)=dutheta(j-2)+wfrag_back(1,i,iset)*dtheta_i/(ii-1)
6252 c
6253         enddo
6254 c       write (iout,*) "gtheta",(gtheta(k),k=1,constr_homology) ! exps
6255 c       write (iout,*) "i",i," gutheta_i",gutheta_i ! sum of exps
6256
6257 c
6258 c         Gradient for multiple Gaussian restraint
6259         sum_gtheta=gutheta_i
6260         sum_sgtheta=0.0d0
6261         do k=1,constr_homology
6262 c        New generalized expr for multiple Gaussian from Econstr_back
6263          sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i) ! waga_theta rmvd
6264 c
6265 c        sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i)*waga_theta ! right functional form?
6266           sum_sgtheta=sum_sgtheta+sgtheta ! cum variable
6267         enddo
6268 c       grad_theta3=sum_sgtheta/sum_gtheta 1/*theta(i)? s. line below
6269 c       grad_theta3=sum_sgtheta/sum_gtheta
6270 c
6271 c       Final value of gradient using same var as in Econstr_back
6272         dutheta(i-2)=sum_sgtheta/sum_gtheta*waga_theta
6273      &               *waga_homology(iset)
6274 c       dutheta(i)=sum_sgtheta/sum_gtheta
6275 c
6276 c       Uconst_back=Uconst_back+waga_theta*utheta(i) ! waga_theta added as weight
6277         Eval=Eval-dLOG(gutheta_i/constr_homology)
6278 c       write (iout,*) "utheta(",i,")=",utheta(i) ! -ln of sum of exps
6279 c       write (iout,*) "Uconst_back",Uconst_back ! sum of -ln-s
6280 c       Uconst_back=Uconst_back+utheta(i)
6281       enddo ! (i-loop for theta)
6282 #ifdef DEBUG
6283       write(iout,*) "------- theta restrs end -------"
6284 #endif
6285       endif
6286 c
6287 c Deviation of local SC geometry
6288 c
6289 c Separation of two i-loops (instructed by AL - 11/3/2014)
6290 c
6291 c     write (iout,*) "loc_start =",loc_start,"loc_end =",loc_end
6292 c     write (iout,*) "waga_d",waga_d
6293
6294 #ifdef DEBUG
6295       write(iout,*) "------- SC restrs start -------"
6296       write (iout,*) "Initial duscdiff,duscdiffx"
6297       do i=loc_start,loc_end
6298         write (iout,*) i,(duscdiff(jik,i),jik=1,3),
6299      &                 (duscdiffx(jik,i),jik=1,3)
6300       enddo
6301 #endif
6302       do i=loc_start,loc_end
6303         usc_diff_i=0.0d0 ! argument of Gaussian for single k
6304         guscdiff(i)=0.0d0 ! Sum of Gaussians over constr_homology ref structures
6305 c       do j=ifrag_back(1,i,iset)+1,ifrag_back(2,i,iset)-1 ! Econstr_back legacy
6306 c       write(iout,*) "xxtab, yytab, zztab"
6307 c       write(iout,'(i5,3f8.2)') i,xxtab(i),yytab(i),zztab(i)
6308         do k=1,constr_homology
6309 c
6310           dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str?
6311 c                                    Original sign inverted for calc of gradients (s. Econstr_back)
6312           dyy=-yytpl(k,i)+yytab(i) ! ibid y
6313           dzz=-zztpl(k,i)+zztab(i) ! ibid z
6314 c         write(iout,*) "dxx, dyy, dzz"
6315 c         write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz
6316 c
6317           usc_diff_i=-0.5d0*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i)  ! waga_d rmvd from Gaussian argument
6318 c         usc_diff(i)=-0.5d0*waga_d*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i) ! waga_d?
6319 c         uscdiffk(k)=usc_diff(i)
6320           guscdiff2(k)=dexp(usc_diff_i) ! without min_scdiff
6321           guscdiff(i)=guscdiff(i)+dexp(usc_diff_i)   !Sum of Gaussians (pk)
6322 c          write (iout,'(i5,6f10.5)') j,xxtab(j),yytab(j),zztab(j),
6323 c     &      xxref(j),yyref(j),zzref(j)
6324         enddo
6325 c
6326 c       Gradient 
6327 c
6328 c       Generalized expression for multiple Gaussian acc to that for a single 
6329 c       Gaussian in Econstr_back as instructed by AL (FP - 03/11/2014)
6330 c
6331 c       Original implementation
6332 c       sum_guscdiff=guscdiff(i)
6333 c
6334 c       sum_sguscdiff=0.0d0
6335 c       do k=1,constr_homology
6336 c          sguscdiff=-guscdiff2(k)*dscdiff(k)*sigma_d(k,i)*waga_d !waga_d? 
6337 c          sguscdiff=-guscdiff3(k)*dscdiff(k)*sigma_d(k,i)*waga_d ! w min_uscdiff
6338 c          sum_sguscdiff=sum_sguscdiff+sguscdiff
6339 c       enddo
6340 c
6341 c       Implementation of new expressions for gradient (Jan. 2015)
6342 c
6343 c       grad_uscdiff=sum_sguscdiff/(sum_guscdiff*dtab) !?
6344         do k=1,constr_homology 
6345 c
6346 c       New calculation of dxx, dyy, and dzz corrected by AL (07/11), was missing and wrong
6347 c       before. Now the drivatives should be correct
6348 c
6349           dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str?
6350 c                                  Original sign inverted for calc of gradients (s. Econstr_back)
6351           dyy=-yytpl(k,i)+yytab(i) ! ibid y
6352           dzz=-zztpl(k,i)+zztab(i) ! ibid z
6353 c
6354 c         New implementation
6355 c
6356           sum_guscdiff=guscdiff2(k)*!(dsqrt(dxx*dxx+dyy*dyy+dzz*dzz))* -> wrong!
6357      &                 sigma_d(k,i) ! for the grad wrt r' 
6358 c         sum_sguscdiff=sum_sguscdiff+sum_guscdiff
6359 c
6360 c
6361 c        New implementation
6362          sum_guscdiff = waga_homology(iset)*waga_d*sum_guscdiff
6363          do jik=1,3
6364             duscdiff(jik,i-1)=duscdiff(jik,i-1)+
6365      &      sum_guscdiff*(dXX_C1tab(jik,i)*dxx+
6366      &      dYY_C1tab(jik,i)*dyy+dZZ_C1tab(jik,i)*dzz)/guscdiff(i)
6367             duscdiff(jik,i)=duscdiff(jik,i)+
6368      &      sum_guscdiff*(dXX_Ctab(jik,i)*dxx+
6369      &      dYY_Ctab(jik,i)*dyy+dZZ_Ctab(jik,i)*dzz)/guscdiff(i)
6370             duscdiffx(jik,i)=duscdiffx(jik,i)+
6371      &      sum_guscdiff*(dXX_XYZtab(jik,i)*dxx+
6372      &      dYY_XYZtab(jik,i)*dyy+dZZ_XYZtab(jik,i)*dzz)/guscdiff(i)
6373 c
6374 #ifdef DEBUG
6375              write(iout,*) "jik",jik,"i",i
6376              write(iout,*) "dxx, dyy, dzz"
6377              write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz
6378              write(iout,*) "guscdiff2(",k,")",guscdiff2(k)
6379 c            write(iout,*) "sum_sguscdiff",sum_sguscdiff
6380 cc           write(iout,*) "dXX_Ctab(",jik,i,")",dXX_Ctab(jik,i)
6381 c            write(iout,*) "dYY_Ctab(",jik,i,")",dYY_Ctab(jik,i)
6382 c            write(iout,*) "dZZ_Ctab(",jik,i,")",dZZ_Ctab(jik,i)
6383 c            write(iout,*) "dXX_C1tab(",jik,i,")",dXX_C1tab(jik,i)
6384 c            write(iout,*) "dYY_C1tab(",jik,i,")",dYY_C1tab(jik,i)
6385 c            write(iout,*) "dZZ_C1tab(",jik,i,")",dZZ_C1tab(jik,i)
6386 c            write(iout,*) "dXX_XYZtab(",jik,i,")",dXX_XYZtab(jik,i)
6387 c            write(iout,*) "dYY_XYZtab(",jik,i,")",dYY_XYZtab(jik,i)
6388 c            write(iout,*) "dZZ_XYZtab(",jik,i,")",dZZ_XYZtab(jik,i)
6389 c            write(iout,*) "duscdiff(",jik,i-1,")",duscdiff(jik,i-1)
6390 c            write(iout,*) "duscdiff(",jik,i,")",duscdiff(jik,i)
6391 c            write(iout,*) "duscdiffx(",jik,i,")",duscdiffx(jik,i)
6392 c            endif
6393 #endif
6394          enddo
6395         enddo
6396 c
6397 c       uscdiff(i)=-dLOG(guscdiff(i)/(ii-1))      ! Weighting by (ii-1) required?
6398 c        usc_diff(i)=-dLOG(guscdiff(i)/constr_homology) ! + min_uscdiff ?
6399 c
6400 c        write (iout,*) i," uscdiff",uscdiff(i)
6401 c
6402 c Put together deviations from local geometry
6403
6404 c       Uconst_back=Uconst_back+wfrag_back(1,i,iset)*utheta(i)+
6405 c      &            wfrag_back(3,i,iset)*uscdiff(i)
6406         Erot=Erot-dLOG(guscdiff(i)/constr_homology)
6407 c       write (iout,*) "usc_diff(",i,")=",usc_diff(i) ! -ln of sum of exps
6408 c       write (iout,*) "Uconst_back",Uconst_back ! cum sum of -ln-s
6409 c       Uconst_back=Uconst_back+usc_diff(i)
6410 c
6411 c     Gradient of multiple Gaussian restraint (FP - 04/11/2014 - right?)
6412 c
6413 c     New implment: multiplied by sum_sguscdiff
6414 c
6415
6416       enddo ! (i-loop for dscdiff)
6417
6418 c      endif
6419
6420 #ifdef DEBUG
6421       write(iout,*) "------- SC restrs end -------"
6422         write (iout,*) "------ After SC loop in e_modeller ------"
6423         do i=loc_start,loc_end
6424          write (iout,*) "i",i," gradc",(gradc(j,i,icg),j=1,3)
6425          write (iout,*) "i",i," gradx",(gradx(j,i,icg),j=1,3)
6426         enddo
6427       if (waga_theta.eq.1.0d0) then
6428       write (iout,*) "in e_modeller after SC restr end: dutheta"
6429       do i=ithet_start,ithet_end
6430         write (iout,*) i,dutheta(i)
6431       enddo
6432       endif
6433       if (waga_d.eq.1.0d0) then
6434       write (iout,*) "e_modeller after SC loop: duscdiff/x"
6435       do i=1,nres
6436         write (iout,*) i,(duscdiff(j,i),j=1,3)
6437         write (iout,*) i,(duscdiffx(j,i),j=1,3)
6438       enddo
6439       endif
6440 #endif
6441
6442 c Total energy from homology restraints
6443 #ifdef DEBUG
6444       write (iout,*) "odleg",odleg," kat",kat
6445 #endif
6446 c
6447 c Addition of energy of theta angle and SC local geom over constr_homologs ref strs
6448 c
6449 c     ehomology_constr=odleg+kat
6450        ehomology_constr=(waga_dist*odleg+waga_angle*kat+waga_theta*Eval
6451      &              +waga_d*Erot)*waga_homology(iset)
6452 c     write (iout,*) "odleg",odleg," kat",kat," Uconst_back",Uconst_back
6453 c     write (iout,*) "ehomology_constr",ehomology_constr
6454 c     ehomology_constr=odleg+kat+Uconst_back
6455       return
6456 c
6457 c FP 01/15 end
6458 c
6459   748 format(a8,f12.3,a6,f12.3,a7,f12.3)
6460   747 format(a12,i4,i4,i4,f8.3,f8.3)
6461   746 format(a12,i4,i4,i4,f8.3,f8.3,f8.3)
6462   778 format(a7,1X,f10.3,1X,a4,1X,f10.3,1X,a5,1X,f10.3)
6463   779 format(i3,1X,i3,1X,i2,1X,a7,1X,f7.3,1X,a7,1X,f7.3,1X,a13,1X,
6464      &       f7.3,1X,a17,1X,f9.3,1X,a10,1X,f8.3,1X,a10,1X,f8.3)
6465       end
6466
6467 c------------------------------------------------------------------------------
6468       subroutine etor_d(etors_d)
6469 C 6/23/01 Compute double torsional energy
6470       implicit real*8 (a-h,o-z)
6471       include 'DIMENSIONS'
6472       include 'COMMON.VAR'
6473       include 'COMMON.GEO'
6474       include 'COMMON.LOCAL'
6475       include 'COMMON.TORSION'
6476       include 'COMMON.INTERACT'
6477       include 'COMMON.DERIV'
6478       include 'COMMON.CHAIN'
6479       include 'COMMON.NAMES'
6480       include 'COMMON.IOUNITS'
6481       include 'COMMON.FFIELD'
6482       include 'COMMON.TORCNSTR'
6483       logical lprn
6484 C Set lprn=.true. for debugging
6485       lprn=.false.
6486 c     lprn=.true.
6487       etors_d=0.0D0
6488       do i=iphid_start,iphid_end
6489         itori=itortyp(itype(i-2))
6490         itori1=itortyp(itype(i-1))
6491         itori2=itortyp(itype(i))
6492         phii=phi(i)
6493         phii1=phi(i+1)
6494         gloci1=0.0D0
6495         gloci2=0.0D0
6496         do j=1,ntermd_1(itori,itori1,itori2)
6497           v1cij=v1c(1,j,itori,itori1,itori2)
6498           v1sij=v1s(1,j,itori,itori1,itori2)
6499           v2cij=v1c(2,j,itori,itori1,itori2)
6500           v2sij=v1s(2,j,itori,itori1,itori2)
6501           cosphi1=dcos(j*phii)
6502           sinphi1=dsin(j*phii)
6503           cosphi2=dcos(j*phii1)
6504           sinphi2=dsin(j*phii1)
6505           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
6506      &     v2cij*cosphi2+v2sij*sinphi2
6507           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
6508           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
6509         enddo
6510         do k=2,ntermd_2(itori,itori1,itori2)
6511           do l=1,k-1
6512             v1cdij = v2c(k,l,itori,itori1,itori2)
6513             v2cdij = v2c(l,k,itori,itori1,itori2)
6514             v1sdij = v2s(k,l,itori,itori1,itori2)
6515             v2sdij = v2s(l,k,itori,itori1,itori2)
6516             cosphi1p2=dcos(l*phii+(k-l)*phii1)
6517             cosphi1m2=dcos(l*phii-(k-l)*phii1)
6518             sinphi1p2=dsin(l*phii+(k-l)*phii1)
6519             sinphi1m2=dsin(l*phii-(k-l)*phii1)
6520             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
6521      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
6522             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
6523      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
6524             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
6525      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
6526           enddo
6527         enddo
6528         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
6529         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
6530 c        write (iout,*) "gloci", gloc(i-3,icg)
6531       enddo
6532       return
6533       end
6534 #endif
6535 c------------------------------------------------------------------------------
6536       subroutine eback_sc_corr(esccor)
6537 c 7/21/2007 Correlations between the backbone-local and side-chain-local
6538 c        conformational states; temporarily implemented as differences
6539 c        between UNRES torsional potentials (dependent on three types of
6540 c        residues) and the torsional potentials dependent on all 20 types
6541 c        of residues computed from AM1  energy surfaces of terminally-blocked
6542 c        amino-acid residues.
6543       implicit real*8 (a-h,o-z)
6544       include 'DIMENSIONS'
6545       include 'COMMON.VAR'
6546       include 'COMMON.GEO'
6547       include 'COMMON.LOCAL'
6548       include 'COMMON.TORSION'
6549       include 'COMMON.SCCOR'
6550       include 'COMMON.INTERACT'
6551       include 'COMMON.DERIV'
6552       include 'COMMON.CHAIN'
6553       include 'COMMON.NAMES'
6554       include 'COMMON.IOUNITS'
6555       include 'COMMON.FFIELD'
6556       include 'COMMON.CONTROL'
6557       logical lprn
6558 C Set lprn=.true. for debugging
6559       lprn=.false.
6560 c      lprn=.true.
6561 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
6562       esccor=0.0D0
6563       do i=itau_start,itau_end
6564         esccor_ii=0.0D0
6565         if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
6566         isccori=isccortyp(itype(i-2))
6567         isccori1=isccortyp(itype(i-1))
6568         phii=phi(i)
6569 cccc  Added 9 May 2012
6570 cc Tauangle is torsional engle depending on the value of first digit 
6571 c(see comment below)
6572 cc Omicron is flat angle depending on the value of first digit 
6573 c(see comment below)
6574
6575         
6576         do intertyp=1,3 !intertyp
6577 cc Added 09 May 2012 (Adasko)
6578 cc  Intertyp means interaction type of backbone mainchain correlation: 
6579 c   1 = SC...Ca...Ca...Ca
6580 c   2 = Ca...Ca...Ca...SC
6581 c   3 = SC...Ca...Ca...SCi
6582         gloci=0.0D0
6583         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
6584      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
6585      &      (itype(i-1).eq.21)))
6586      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
6587      &     .or.(itype(i-2).eq.21)))
6588      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
6589      &      (itype(i-1).eq.21)))) cycle  
6590         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
6591         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
6592      & cycle
6593         do j=1,nterm_sccor(isccori,isccori1)
6594           v1ij=v1sccor(j,intertyp,isccori,isccori1)
6595           v2ij=v2sccor(j,intertyp,isccori,isccori1)
6596           cosphi=dcos(j*tauangle(intertyp,i))
6597           sinphi=dsin(j*tauangle(intertyp,i))
6598           esccor=esccor+v1ij*cosphi+v2ij*sinphi
6599           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
6600         enddo
6601         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
6602 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
6603 c     &gloc_sc(intertyp,i-3,icg)
6604         if (lprn)
6605      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
6606      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
6607      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
6608      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
6609         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6610        enddo !intertyp
6611       enddo
6612 c        do i=1,nres
6613 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc(i,icg)
6614 c        enddo
6615       return
6616       end
6617 c----------------------------------------------------------------------------
6618       subroutine multibody(ecorr)
6619 C This subroutine calculates multi-body contributions to energy following
6620 C the idea of Skolnick et al. If side chains I and J make a contact and
6621 C at the same time side chains I+1 and J+1 make a contact, an extra 
6622 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6623       implicit real*8 (a-h,o-z)
6624       include 'DIMENSIONS'
6625       include 'COMMON.IOUNITS'
6626       include 'COMMON.DERIV'
6627       include 'COMMON.INTERACT'
6628       include 'COMMON.CONTACTS'
6629       double precision gx(3),gx1(3)
6630       logical lprn
6631
6632 C Set lprn=.true. for debugging
6633       lprn=.false.
6634
6635       if (lprn) then
6636         write (iout,'(a)') 'Contact function values:'
6637         do i=nnt,nct-2
6638           write (iout,'(i2,20(1x,i2,f10.5))') 
6639      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6640         enddo
6641       endif
6642       ecorr=0.0D0
6643       do i=nnt,nct
6644         do j=1,3
6645           gradcorr(j,i)=0.0D0
6646           gradxorr(j,i)=0.0D0
6647         enddo
6648       enddo
6649       do i=nnt,nct-2
6650
6651         DO ISHIFT = 3,4
6652
6653         i1=i+ishift
6654         num_conti=num_cont(i)
6655         num_conti1=num_cont(i1)
6656         do jj=1,num_conti
6657           j=jcont(jj,i)
6658           do kk=1,num_conti1
6659             j1=jcont(kk,i1)
6660             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6661 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6662 cd   &                   ' ishift=',ishift
6663 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6664 C The system gains extra energy.
6665               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6666             endif   ! j1==j+-ishift
6667           enddo     ! kk  
6668         enddo       ! jj
6669
6670         ENDDO ! ISHIFT
6671
6672       enddo         ! i
6673       return
6674       end
6675 c------------------------------------------------------------------------------
6676       double precision function esccorr(i,j,k,l,jj,kk)
6677       implicit real*8 (a-h,o-z)
6678       include 'DIMENSIONS'
6679       include 'COMMON.IOUNITS'
6680       include 'COMMON.DERIV'
6681       include 'COMMON.INTERACT'
6682       include 'COMMON.CONTACTS'
6683       double precision gx(3),gx1(3)
6684       logical lprn
6685       lprn=.false.
6686       eij=facont(jj,i)
6687       ekl=facont(kk,k)
6688 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6689 C Calculate the multi-body contribution to energy.
6690 C Calculate multi-body contributions to the gradient.
6691 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6692 cd   & k,l,(gacont(m,kk,k),m=1,3)
6693       do m=1,3
6694         gx(m) =ekl*gacont(m,jj,i)
6695         gx1(m)=eij*gacont(m,kk,k)
6696         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6697         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6698         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6699         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6700       enddo
6701       do m=i,j-1
6702         do ll=1,3
6703           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6704         enddo
6705       enddo
6706       do m=k,l-1
6707         do ll=1,3
6708           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6709         enddo
6710       enddo 
6711       esccorr=-eij*ekl
6712       return
6713       end
6714 c------------------------------------------------------------------------------
6715       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6716 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6717       implicit real*8 (a-h,o-z)
6718       include 'DIMENSIONS'
6719       include 'COMMON.IOUNITS'
6720 #ifdef MPI
6721       include "mpif.h"
6722       parameter (max_cont=maxconts)
6723       parameter (max_dim=26)
6724       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6725       double precision zapas(max_dim,maxconts,max_fg_procs),
6726      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6727       common /przechowalnia/ zapas
6728       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6729      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6730 #endif
6731       include 'COMMON.SETUP'
6732       include 'COMMON.FFIELD'
6733       include 'COMMON.DERIV'
6734       include 'COMMON.INTERACT'
6735       include 'COMMON.CONTACTS'
6736       include 'COMMON.CONTROL'
6737       include 'COMMON.LOCAL'
6738       double precision gx(3),gx1(3),time00
6739       logical lprn,ldone
6740
6741 C Set lprn=.true. for debugging
6742       lprn=.false.
6743 #ifdef MPI
6744       n_corr=0
6745       n_corr1=0
6746       if (nfgtasks.le.1) goto 30
6747       if (lprn) then
6748         write (iout,'(a)') 'Contact function values before RECEIVE:'
6749         do i=nnt,nct-2
6750           write (iout,'(2i3,50(1x,i2,f5.2))') 
6751      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6752      &    j=1,num_cont_hb(i))
6753         enddo
6754       endif
6755       call flush(iout)
6756       do i=1,ntask_cont_from
6757         ncont_recv(i)=0
6758       enddo
6759       do i=1,ntask_cont_to
6760         ncont_sent(i)=0
6761       enddo
6762 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6763 c     & ntask_cont_to
6764 C Make the list of contacts to send to send to other procesors
6765 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6766 c      call flush(iout)
6767       do i=iturn3_start,iturn3_end
6768 c        write (iout,*) "make contact list turn3",i," num_cont",
6769 c     &    num_cont_hb(i)
6770         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6771       enddo
6772       do i=iturn4_start,iturn4_end
6773 c        write (iout,*) "make contact list turn4",i," num_cont",
6774 c     &   num_cont_hb(i)
6775         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6776       enddo
6777       do ii=1,nat_sent
6778         i=iat_sent(ii)
6779 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6780 c     &    num_cont_hb(i)
6781         do j=1,num_cont_hb(i)
6782         do k=1,4
6783           jjc=jcont_hb(j,i)
6784           iproc=iint_sent_local(k,jjc,ii)
6785 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6786           if (iproc.gt.0) then
6787             ncont_sent(iproc)=ncont_sent(iproc)+1
6788             nn=ncont_sent(iproc)
6789             zapas(1,nn,iproc)=i
6790             zapas(2,nn,iproc)=jjc
6791             zapas(3,nn,iproc)=facont_hb(j,i)
6792             zapas(4,nn,iproc)=ees0p(j,i)
6793             zapas(5,nn,iproc)=ees0m(j,i)
6794             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6795             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6796             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6797             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6798             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6799             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6800             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6801             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6802             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6803             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6804             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6805             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6806             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6807             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6808             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6809             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6810             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6811             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6812             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6813             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6814             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6815           endif
6816         enddo
6817         enddo
6818       enddo
6819       if (lprn) then
6820       write (iout,*) 
6821      &  "Numbers of contacts to be sent to other processors",
6822      &  (ncont_sent(i),i=1,ntask_cont_to)
6823       write (iout,*) "Contacts sent"
6824       do ii=1,ntask_cont_to
6825         nn=ncont_sent(ii)
6826         iproc=itask_cont_to(ii)
6827         write (iout,*) nn," contacts to processor",iproc,
6828      &   " of CONT_TO_COMM group"
6829         do i=1,nn
6830           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6831         enddo
6832       enddo
6833       call flush(iout)
6834       endif
6835       CorrelType=477
6836       CorrelID=fg_rank+1
6837       CorrelType1=478
6838       CorrelID1=nfgtasks+fg_rank+1
6839       ireq=0
6840 C Receive the numbers of needed contacts from other processors 
6841       do ii=1,ntask_cont_from
6842         iproc=itask_cont_from(ii)
6843         ireq=ireq+1
6844         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6845      &    FG_COMM,req(ireq),IERR)
6846       enddo
6847 c      write (iout,*) "IRECV ended"
6848 c      call flush(iout)
6849 C Send the number of contacts needed by other processors
6850       do ii=1,ntask_cont_to
6851         iproc=itask_cont_to(ii)
6852         ireq=ireq+1
6853         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6854      &    FG_COMM,req(ireq),IERR)
6855       enddo
6856 c      write (iout,*) "ISEND ended"
6857 c      write (iout,*) "number of requests (nn)",ireq
6858       call flush(iout)
6859       if (ireq.gt.0) 
6860      &  call MPI_Waitall(ireq,req,status_array,ierr)
6861 c      write (iout,*) 
6862 c     &  "Numbers of contacts to be received from other processors",
6863 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6864 c      call flush(iout)
6865 C Receive contacts
6866       ireq=0
6867       do ii=1,ntask_cont_from
6868         iproc=itask_cont_from(ii)
6869         nn=ncont_recv(ii)
6870 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6871 c     &   " of CONT_TO_COMM group"
6872         call flush(iout)
6873         if (nn.gt.0) then
6874           ireq=ireq+1
6875           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6876      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6877 c          write (iout,*) "ireq,req",ireq,req(ireq)
6878         endif
6879       enddo
6880 C Send the contacts to processors that need them
6881       do ii=1,ntask_cont_to
6882         iproc=itask_cont_to(ii)
6883         nn=ncont_sent(ii)
6884 c        write (iout,*) nn," contacts to processor",iproc,
6885 c     &   " of CONT_TO_COMM group"
6886         if (nn.gt.0) then
6887           ireq=ireq+1 
6888           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6889      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6890 c          write (iout,*) "ireq,req",ireq,req(ireq)
6891 c          do i=1,nn
6892 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6893 c          enddo
6894         endif  
6895       enddo
6896 c      write (iout,*) "number of requests (contacts)",ireq
6897 c      write (iout,*) "req",(req(i),i=1,4)
6898 c      call flush(iout)
6899       if (ireq.gt.0) 
6900      & call MPI_Waitall(ireq,req,status_array,ierr)
6901       do iii=1,ntask_cont_from
6902         iproc=itask_cont_from(iii)
6903         nn=ncont_recv(iii)
6904         if (lprn) then
6905         write (iout,*) "Received",nn," contacts from processor",iproc,
6906      &   " of CONT_FROM_COMM group"
6907         call flush(iout)
6908         do i=1,nn
6909           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6910         enddo
6911         call flush(iout)
6912         endif
6913         do i=1,nn
6914           ii=zapas_recv(1,i,iii)
6915 c Flag the received contacts to prevent double-counting
6916           jj=-zapas_recv(2,i,iii)
6917 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6918 c          call flush(iout)
6919           nnn=num_cont_hb(ii)+1
6920           num_cont_hb(ii)=nnn
6921           jcont_hb(nnn,ii)=jj
6922           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6923           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6924           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6925           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6926           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6927           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6928           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6929           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6930           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6931           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6932           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6933           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6934           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6935           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6936           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6937           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6938           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6939           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6940           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6941           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6942           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6943           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6944           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6945           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6946         enddo
6947       enddo
6948       call flush(iout)
6949       if (lprn) then
6950         write (iout,'(a)') 'Contact function values after receive:'
6951         do i=nnt,nct-2
6952           write (iout,'(2i3,50(1x,i3,f5.2))') 
6953      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6954      &    j=1,num_cont_hb(i))
6955         enddo
6956         call flush(iout)
6957       endif
6958    30 continue
6959 #endif
6960       if (lprn) then
6961         write (iout,'(a)') 'Contact function values:'
6962         do i=nnt,nct-2
6963           write (iout,'(2i3,50(1x,i3,f5.2))') 
6964      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6965      &    j=1,num_cont_hb(i))
6966         enddo
6967       endif
6968       ecorr=0.0D0
6969 C Remove the loop below after debugging !!!
6970       do i=nnt,nct
6971         do j=1,3
6972           gradcorr(j,i)=0.0D0
6973           gradxorr(j,i)=0.0D0
6974         enddo
6975       enddo
6976 C Calculate the local-electrostatic correlation terms
6977       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6978         i1=i+1
6979         num_conti=num_cont_hb(i)
6980         num_conti1=num_cont_hb(i+1)
6981         do jj=1,num_conti
6982           j=jcont_hb(jj,i)
6983           jp=iabs(j)
6984           do kk=1,num_conti1
6985             j1=jcont_hb(kk,i1)
6986             jp1=iabs(j1)
6987 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6988 c     &         ' jj=',jj,' kk=',kk
6989             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6990      &          .or. j.lt.0 .and. j1.gt.0) .and.
6991      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6992 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6993 C The system gains extra energy.
6994               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6995               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6996      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6997               n_corr=n_corr+1
6998             else if (j1.eq.j) then
6999 C Contacts I-J and I-(J+1) occur simultaneously. 
7000 C The system loses extra energy.
7001 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
7002             endif
7003           enddo ! kk
7004           do kk=1,num_conti
7005             j1=jcont_hb(kk,i)
7006 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
7007 c    &         ' jj=',jj,' kk=',kk
7008             if (j1.eq.j+1) then
7009 C Contacts I-J and (I+1)-J occur simultaneously. 
7010 C The system loses extra energy.
7011 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
7012             endif ! j1==j+1
7013           enddo ! kk
7014         enddo ! jj
7015       enddo ! i
7016       return
7017       end
7018 c------------------------------------------------------------------------------
7019       subroutine add_hb_contact(ii,jj,itask)
7020       implicit real*8 (a-h,o-z)
7021       include "DIMENSIONS"
7022       include "COMMON.IOUNITS"
7023       integer max_cont
7024       integer max_dim
7025       parameter (max_cont=maxconts)
7026       parameter (max_dim=26)
7027       include "COMMON.CONTACTS"
7028       double precision zapas(max_dim,maxconts,max_fg_procs),
7029      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7030       common /przechowalnia/ zapas
7031       integer i,j,ii,jj,iproc,itask(4),nn
7032 c      write (iout,*) "itask",itask
7033       do i=1,2
7034         iproc=itask(i)
7035         if (iproc.gt.0) then
7036           do j=1,num_cont_hb(ii)
7037             jjc=jcont_hb(j,ii)
7038 c            write (iout,*) "i",ii," j",jj," jjc",jjc
7039             if (jjc.eq.jj) then
7040               ncont_sent(iproc)=ncont_sent(iproc)+1
7041               nn=ncont_sent(iproc)
7042               zapas(1,nn,iproc)=ii
7043               zapas(2,nn,iproc)=jjc
7044               zapas(3,nn,iproc)=facont_hb(j,ii)
7045               zapas(4,nn,iproc)=ees0p(j,ii)
7046               zapas(5,nn,iproc)=ees0m(j,ii)
7047               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
7048               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
7049               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
7050               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
7051               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
7052               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
7053               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
7054               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
7055               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
7056               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
7057               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
7058               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
7059               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
7060               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
7061               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
7062               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
7063               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
7064               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
7065               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
7066               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
7067               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
7068               exit
7069             endif
7070           enddo
7071         endif
7072       enddo
7073       return
7074       end
7075 c------------------------------------------------------------------------------
7076       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
7077      &  n_corr1)
7078 C This subroutine calculates multi-body contributions to hydrogen-bonding 
7079       implicit real*8 (a-h,o-z)
7080       include 'DIMENSIONS'
7081       include 'COMMON.IOUNITS'
7082 #ifdef MPI
7083       include "mpif.h"
7084       parameter (max_cont=maxconts)
7085       parameter (max_dim=70)
7086       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
7087       double precision zapas(max_dim,maxconts,max_fg_procs),
7088      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7089       common /przechowalnia/ zapas
7090       integer status(MPI_STATUS_SIZE),req(maxconts*2),
7091      &  status_array(MPI_STATUS_SIZE,maxconts*2)
7092 #endif
7093       include 'COMMON.SETUP'
7094       include 'COMMON.FFIELD'
7095       include 'COMMON.DERIV'
7096       include 'COMMON.LOCAL'
7097       include 'COMMON.INTERACT'
7098       include 'COMMON.CONTACTS'
7099       include 'COMMON.CHAIN'
7100       include 'COMMON.CONTROL'
7101       double precision gx(3),gx1(3)
7102       integer num_cont_hb_old(maxres)
7103       logical lprn,ldone
7104       double precision eello4,eello5,eelo6,eello_turn6
7105       external eello4,eello5,eello6,eello_turn6
7106 C Set lprn=.true. for debugging
7107       lprn=.false.
7108       eturn6=0.0d0
7109 #ifdef MPI
7110       do i=1,nres
7111         num_cont_hb_old(i)=num_cont_hb(i)
7112       enddo
7113       n_corr=0
7114       n_corr1=0
7115       if (nfgtasks.le.1) goto 30
7116       if (lprn) then
7117         write (iout,'(a)') 'Contact function values before RECEIVE:'
7118         do i=nnt,nct-2
7119           write (iout,'(2i3,50(1x,i2,f5.2))') 
7120      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
7121      &    j=1,num_cont_hb(i))
7122         enddo
7123       endif
7124       call flush(iout)
7125       do i=1,ntask_cont_from
7126         ncont_recv(i)=0
7127       enddo
7128       do i=1,ntask_cont_to
7129         ncont_sent(i)=0
7130       enddo
7131 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
7132 c     & ntask_cont_to
7133 C Make the list of contacts to send to send to other procesors
7134       do i=iturn3_start,iturn3_end
7135 c        write (iout,*) "make contact list turn3",i," num_cont",
7136 c     &    num_cont_hb(i)
7137         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
7138       enddo
7139       do i=iturn4_start,iturn4_end
7140 c        write (iout,*) "make contact list turn4",i," num_cont",
7141 c     &   num_cont_hb(i)
7142         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
7143       enddo
7144       do ii=1,nat_sent
7145         i=iat_sent(ii)
7146 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
7147 c     &    num_cont_hb(i)
7148         do j=1,num_cont_hb(i)
7149         do k=1,4
7150           jjc=jcont_hb(j,i)
7151           iproc=iint_sent_local(k,jjc,ii)
7152 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
7153           if (iproc.ne.0) then
7154             ncont_sent(iproc)=ncont_sent(iproc)+1
7155             nn=ncont_sent(iproc)
7156             zapas(1,nn,iproc)=i
7157             zapas(2,nn,iproc)=jjc
7158             zapas(3,nn,iproc)=d_cont(j,i)
7159             ind=3
7160             do kk=1,3
7161               ind=ind+1
7162               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
7163             enddo
7164             do kk=1,2
7165               do ll=1,2
7166                 ind=ind+1
7167                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
7168               enddo
7169             enddo
7170             do jj=1,5
7171               do kk=1,3
7172                 do ll=1,2
7173                   do mm=1,2
7174                     ind=ind+1
7175                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
7176                   enddo
7177                 enddo
7178               enddo
7179             enddo
7180           endif
7181         enddo
7182         enddo
7183       enddo
7184       if (lprn) then
7185       write (iout,*) 
7186      &  "Numbers of contacts to be sent to other processors",
7187      &  (ncont_sent(i),i=1,ntask_cont_to)
7188       write (iout,*) "Contacts sent"
7189       do ii=1,ntask_cont_to
7190         nn=ncont_sent(ii)
7191         iproc=itask_cont_to(ii)
7192         write (iout,*) nn," contacts to processor",iproc,
7193      &   " of CONT_TO_COMM group"
7194         do i=1,nn
7195           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
7196         enddo
7197       enddo
7198       call flush(iout)
7199       endif
7200       CorrelType=477
7201       CorrelID=fg_rank+1
7202       CorrelType1=478
7203       CorrelID1=nfgtasks+fg_rank+1
7204       ireq=0
7205 C Receive the numbers of needed contacts from other processors 
7206       do ii=1,ntask_cont_from
7207         iproc=itask_cont_from(ii)
7208         ireq=ireq+1
7209         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
7210      &    FG_COMM,req(ireq),IERR)
7211       enddo
7212 c      write (iout,*) "IRECV ended"
7213 c      call flush(iout)
7214 C Send the number of contacts needed by other processors
7215       do ii=1,ntask_cont_to
7216         iproc=itask_cont_to(ii)
7217         ireq=ireq+1
7218         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
7219      &    FG_COMM,req(ireq),IERR)
7220       enddo
7221 c      write (iout,*) "ISEND ended"
7222 c      write (iout,*) "number of requests (nn)",ireq
7223       call flush(iout)
7224       if (ireq.gt.0) 
7225      &  call MPI_Waitall(ireq,req,status_array,ierr)
7226 c      write (iout,*) 
7227 c     &  "Numbers of contacts to be received from other processors",
7228 c     &  (ncont_recv(i),i=1,ntask_cont_from)
7229 c      call flush(iout)
7230 C Receive contacts
7231       ireq=0
7232       do ii=1,ntask_cont_from
7233         iproc=itask_cont_from(ii)
7234         nn=ncont_recv(ii)
7235 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
7236 c     &   " of CONT_TO_COMM group"
7237         call flush(iout)
7238         if (nn.gt.0) then
7239           ireq=ireq+1
7240           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
7241      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
7242 c          write (iout,*) "ireq,req",ireq,req(ireq)
7243         endif
7244       enddo
7245 C Send the contacts to processors that need them
7246       do ii=1,ntask_cont_to
7247         iproc=itask_cont_to(ii)
7248         nn=ncont_sent(ii)
7249 c        write (iout,*) nn," contacts to processor",iproc,
7250 c     &   " of CONT_TO_COMM group"
7251         if (nn.gt.0) then
7252           ireq=ireq+1 
7253           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
7254      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
7255 c          write (iout,*) "ireq,req",ireq,req(ireq)
7256 c          do i=1,nn
7257 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
7258 c          enddo
7259         endif  
7260       enddo
7261 c      write (iout,*) "number of requests (contacts)",ireq
7262 c      write (iout,*) "req",(req(i),i=1,4)
7263 c      call flush(iout)
7264       if (ireq.gt.0) 
7265      & call MPI_Waitall(ireq,req,status_array,ierr)
7266       do iii=1,ntask_cont_from
7267         iproc=itask_cont_from(iii)
7268         nn=ncont_recv(iii)
7269         if (lprn) then
7270         write (iout,*) "Received",nn," contacts from processor",iproc,
7271      &   " of CONT_FROM_COMM group"
7272         call flush(iout)
7273         do i=1,nn
7274           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
7275         enddo
7276         call flush(iout)
7277         endif
7278         do i=1,nn
7279           ii=zapas_recv(1,i,iii)
7280 c Flag the received contacts to prevent double-counting
7281           jj=-zapas_recv(2,i,iii)
7282 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
7283 c          call flush(iout)
7284           nnn=num_cont_hb(ii)+1
7285           num_cont_hb(ii)=nnn
7286           jcont_hb(nnn,ii)=jj
7287           d_cont(nnn,ii)=zapas_recv(3,i,iii)
7288           ind=3
7289           do kk=1,3
7290             ind=ind+1
7291             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
7292           enddo
7293           do kk=1,2
7294             do ll=1,2
7295               ind=ind+1
7296               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
7297             enddo
7298           enddo
7299           do jj=1,5
7300             do kk=1,3
7301               do ll=1,2
7302                 do mm=1,2
7303                   ind=ind+1
7304                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
7305                 enddo
7306               enddo
7307             enddo
7308           enddo
7309         enddo
7310       enddo
7311       call flush(iout)
7312       if (lprn) then
7313         write (iout,'(a)') 'Contact function values after receive:'
7314         do i=nnt,nct-2
7315           write (iout,'(2i3,50(1x,i3,5f6.3))') 
7316      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
7317      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
7318         enddo
7319         call flush(iout)
7320       endif
7321    30 continue
7322 #endif
7323       if (lprn) then
7324         write (iout,'(a)') 'Contact function values:'
7325         do i=nnt,nct-2
7326           write (iout,'(2i3,50(1x,i2,5f6.3))') 
7327      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
7328      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
7329         enddo
7330       endif
7331       ecorr=0.0D0
7332       ecorr5=0.0d0
7333       ecorr6=0.0d0
7334 C Remove the loop below after debugging !!!
7335       do i=nnt,nct
7336         do j=1,3
7337           gradcorr(j,i)=0.0D0
7338           gradxorr(j,i)=0.0D0
7339         enddo
7340       enddo
7341 C Calculate the dipole-dipole interaction energies
7342       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
7343       do i=iatel_s,iatel_e+1
7344         num_conti=num_cont_hb(i)
7345         do jj=1,num_conti
7346           j=jcont_hb(jj,i)
7347 #ifdef MOMENT
7348           call dipole(i,j,jj)
7349 #endif
7350         enddo
7351       enddo
7352       endif
7353 C Calculate the local-electrostatic correlation terms
7354 c                write (iout,*) "gradcorr5 in eello5 before loop"
7355 c                do iii=1,nres
7356 c                  write (iout,'(i5,3f10.5)') 
7357 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7358 c                enddo
7359       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
7360 c        write (iout,*) "corr loop i",i
7361         i1=i+1
7362         num_conti=num_cont_hb(i)
7363         num_conti1=num_cont_hb(i+1)
7364         do jj=1,num_conti
7365           j=jcont_hb(jj,i)
7366           jp=iabs(j)
7367           do kk=1,num_conti1
7368             j1=jcont_hb(kk,i1)
7369             jp1=iabs(j1)
7370 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
7371 c     &         ' jj=',jj,' kk=',kk
7372 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
7373             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
7374      &          .or. j.lt.0 .and. j1.gt.0) .and.
7375      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
7376 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
7377 C The system gains extra energy.
7378               n_corr=n_corr+1
7379               sqd1=dsqrt(d_cont(jj,i))
7380               sqd2=dsqrt(d_cont(kk,i1))
7381               sred_geom = sqd1*sqd2
7382               IF (sred_geom.lt.cutoff_corr) THEN
7383                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
7384      &            ekont,fprimcont)
7385 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
7386 cd     &         ' jj=',jj,' kk=',kk
7387                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
7388                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
7389                 do l=1,3
7390                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
7391                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
7392                 enddo
7393                 n_corr1=n_corr1+1
7394 cd               write (iout,*) 'sred_geom=',sred_geom,
7395 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
7396 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
7397 cd               write (iout,*) "g_contij",g_contij
7398 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
7399 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
7400                 call calc_eello(i,jp,i+1,jp1,jj,kk)
7401                 if (wcorr4.gt.0.0d0) 
7402      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
7403                   if (energy_dec.and.wcorr4.gt.0.0d0) 
7404      1                 write (iout,'(a6,4i5,0pf7.3)')
7405      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
7406 c                write (iout,*) "gradcorr5 before eello5"
7407 c                do iii=1,nres
7408 c                  write (iout,'(i5,3f10.5)') 
7409 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7410 c                enddo
7411                 if (wcorr5.gt.0.0d0)
7412      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
7413 c                write (iout,*) "gradcorr5 after eello5"
7414 c                do iii=1,nres
7415 c                  write (iout,'(i5,3f10.5)') 
7416 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7417 c                enddo
7418                   if (energy_dec.and.wcorr5.gt.0.0d0) 
7419      1                 write (iout,'(a6,4i5,0pf7.3)')
7420      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
7421 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
7422 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
7423                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
7424      &               .or. wturn6.eq.0.0d0))then
7425 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
7426                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
7427                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
7428      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
7429 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
7430 cd     &            'ecorr6=',ecorr6
7431 cd                write (iout,'(4e15.5)') sred_geom,
7432 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
7433 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
7434 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
7435                 else if (wturn6.gt.0.0d0
7436      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
7437 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
7438                   eturn6=eturn6+eello_turn6(i,jj,kk)
7439                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
7440      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
7441 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
7442                 endif
7443               ENDIF
7444 1111          continue
7445             endif
7446           enddo ! kk
7447         enddo ! jj
7448       enddo ! i
7449       do i=1,nres
7450         num_cont_hb(i)=num_cont_hb_old(i)
7451       enddo
7452 c                write (iout,*) "gradcorr5 in eello5"
7453 c                do iii=1,nres
7454 c                  write (iout,'(i5,3f10.5)') 
7455 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7456 c                enddo
7457       return
7458       end
7459 c------------------------------------------------------------------------------
7460       subroutine add_hb_contact_eello(ii,jj,itask)
7461       implicit real*8 (a-h,o-z)
7462       include "DIMENSIONS"
7463       include "COMMON.IOUNITS"
7464       integer max_cont
7465       integer max_dim
7466       parameter (max_cont=maxconts)
7467       parameter (max_dim=70)
7468       include "COMMON.CONTACTS"
7469       double precision zapas(max_dim,maxconts,max_fg_procs),
7470      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7471       common /przechowalnia/ zapas
7472       integer i,j,ii,jj,iproc,itask(4),nn
7473 c      write (iout,*) "itask",itask
7474       do i=1,2
7475         iproc=itask(i)
7476         if (iproc.gt.0) then
7477           do j=1,num_cont_hb(ii)
7478             jjc=jcont_hb(j,ii)
7479 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
7480             if (jjc.eq.jj) then
7481               ncont_sent(iproc)=ncont_sent(iproc)+1
7482               nn=ncont_sent(iproc)
7483               zapas(1,nn,iproc)=ii
7484               zapas(2,nn,iproc)=jjc
7485               zapas(3,nn,iproc)=d_cont(j,ii)
7486               ind=3
7487               do kk=1,3
7488                 ind=ind+1
7489                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
7490               enddo
7491               do kk=1,2
7492                 do ll=1,2
7493                   ind=ind+1
7494                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
7495                 enddo
7496               enddo
7497               do jj=1,5
7498                 do kk=1,3
7499                   do ll=1,2
7500                     do mm=1,2
7501                       ind=ind+1
7502                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
7503                     enddo
7504                   enddo
7505                 enddo
7506               enddo
7507               exit
7508             endif
7509           enddo
7510         endif
7511       enddo
7512       return
7513       end
7514 c------------------------------------------------------------------------------
7515       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
7516       implicit real*8 (a-h,o-z)
7517       include 'DIMENSIONS'
7518       include 'COMMON.IOUNITS'
7519       include 'COMMON.DERIV'
7520       include 'COMMON.INTERACT'
7521       include 'COMMON.CONTACTS'
7522       double precision gx(3),gx1(3)
7523       logical lprn
7524       lprn=.false.
7525       eij=facont_hb(jj,i)
7526       ekl=facont_hb(kk,k)
7527       ees0pij=ees0p(jj,i)
7528       ees0pkl=ees0p(kk,k)
7529       ees0mij=ees0m(jj,i)
7530       ees0mkl=ees0m(kk,k)
7531       ekont=eij*ekl
7532       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
7533 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
7534 C Following 4 lines for diagnostics.
7535 cd    ees0pkl=0.0D0
7536 cd    ees0pij=1.0D0
7537 cd    ees0mkl=0.0D0
7538 cd    ees0mij=1.0D0
7539 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
7540 c     & 'Contacts ',i,j,
7541 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
7542 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
7543 c     & 'gradcorr_long'
7544 C Calculate the multi-body contribution to energy.
7545 c      ecorr=ecorr+ekont*ees
7546 C Calculate multi-body contributions to the gradient.
7547       coeffpees0pij=coeffp*ees0pij
7548       coeffmees0mij=coeffm*ees0mij
7549       coeffpees0pkl=coeffp*ees0pkl
7550       coeffmees0mkl=coeffm*ees0mkl
7551       do ll=1,3
7552 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
7553         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
7554      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
7555      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
7556         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
7557      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
7558      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
7559 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
7560         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
7561      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
7562      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
7563         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
7564      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
7565      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
7566         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
7567      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
7568      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
7569         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
7570         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
7571         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
7572      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
7573      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
7574         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
7575         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
7576 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
7577       enddo
7578 c      write (iout,*)
7579 cgrad      do m=i+1,j-1
7580 cgrad        do ll=1,3
7581 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7582 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
7583 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
7584 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
7585 cgrad        enddo
7586 cgrad      enddo
7587 cgrad      do m=k+1,l-1
7588 cgrad        do ll=1,3
7589 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7590 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
7591 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
7592 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
7593 cgrad        enddo
7594 cgrad      enddo 
7595 c      write (iout,*) "ehbcorr",ekont*ees
7596       ehbcorr=ekont*ees
7597       return
7598       end
7599 #ifdef MOMENT
7600 C---------------------------------------------------------------------------
7601       subroutine dipole(i,j,jj)
7602       implicit real*8 (a-h,o-z)
7603       include 'DIMENSIONS'
7604       include 'COMMON.IOUNITS'
7605       include 'COMMON.CHAIN'
7606       include 'COMMON.FFIELD'
7607       include 'COMMON.DERIV'
7608       include 'COMMON.INTERACT'
7609       include 'COMMON.CONTACTS'
7610       include 'COMMON.TORSION'
7611       include 'COMMON.VAR'
7612       include 'COMMON.GEO'
7613       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7614      &  auxmat(2,2)
7615       iti1 = itortyp(itype(i+1))
7616       if (j.lt.nres-1) then
7617         itj1 = itortyp(itype(j+1))
7618       else
7619         itj1=ntortyp+1
7620       endif
7621       do iii=1,2
7622         dipi(iii,1)=Ub2(iii,i)
7623         dipderi(iii)=Ub2der(iii,i)
7624         dipi(iii,2)=b1(iii,iti1)
7625         dipj(iii,1)=Ub2(iii,j)
7626         dipderj(iii)=Ub2der(iii,j)
7627         dipj(iii,2)=b1(iii,itj1)
7628       enddo
7629       kkk=0
7630       do iii=1,2
7631         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7632         do jjj=1,2
7633           kkk=kkk+1
7634           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7635         enddo
7636       enddo
7637       do kkk=1,5
7638         do lll=1,3
7639           mmm=0
7640           do iii=1,2
7641             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7642      &        auxvec(1))
7643             do jjj=1,2
7644               mmm=mmm+1
7645               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7646             enddo
7647           enddo
7648         enddo
7649       enddo
7650       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7651       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7652       do iii=1,2
7653         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7654       enddo
7655       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7656       do iii=1,2
7657         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7658       enddo
7659       return
7660       end
7661 #endif
7662 C---------------------------------------------------------------------------
7663       subroutine calc_eello(i,j,k,l,jj,kk)
7664
7665 C This subroutine computes matrices and vectors needed to calculate 
7666 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7667 C
7668       implicit real*8 (a-h,o-z)
7669       include 'DIMENSIONS'
7670       include 'COMMON.IOUNITS'
7671       include 'COMMON.CHAIN'
7672       include 'COMMON.DERIV'
7673       include 'COMMON.INTERACT'
7674       include 'COMMON.CONTACTS'
7675       include 'COMMON.TORSION'
7676       include 'COMMON.VAR'
7677       include 'COMMON.GEO'
7678       include 'COMMON.FFIELD'
7679       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7680      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7681       logical lprn
7682       common /kutas/ lprn
7683 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7684 cd     & ' jj=',jj,' kk=',kk
7685 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7686 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7687 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7688       do iii=1,2
7689         do jjj=1,2
7690           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7691           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7692         enddo
7693       enddo
7694       call transpose2(aa1(1,1),aa1t(1,1))
7695       call transpose2(aa2(1,1),aa2t(1,1))
7696       do kkk=1,5
7697         do lll=1,3
7698           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7699      &      aa1tder(1,1,lll,kkk))
7700           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7701      &      aa2tder(1,1,lll,kkk))
7702         enddo
7703       enddo 
7704       if (l.eq.j+1) then
7705 C parallel orientation of the two CA-CA-CA frames.
7706         if (i.gt.1) then
7707           iti=itortyp(itype(i))
7708         else
7709           iti=ntortyp+1
7710         endif
7711         itk1=itortyp(itype(k+1))
7712         itj=itortyp(itype(j))
7713         if (l.lt.nres-1) then
7714           itl1=itortyp(itype(l+1))
7715         else
7716           itl1=ntortyp+1
7717         endif
7718 C A1 kernel(j+1) A2T
7719 cd        do iii=1,2
7720 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7721 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7722 cd        enddo
7723         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7724      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7725      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7726 C Following matrices are needed only for 6-th order cumulants
7727         IF (wcorr6.gt.0.0d0) THEN
7728         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7729      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7730      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7731         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7732      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7733      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7734      &   ADtEAderx(1,1,1,1,1,1))
7735         lprn=.false.
7736         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7737      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7738      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7739      &   ADtEA1derx(1,1,1,1,1,1))
7740         ENDIF
7741 C End 6-th order cumulants
7742 cd        lprn=.false.
7743 cd        if (lprn) then
7744 cd        write (2,*) 'In calc_eello6'
7745 cd        do iii=1,2
7746 cd          write (2,*) 'iii=',iii
7747 cd          do kkk=1,5
7748 cd            write (2,*) 'kkk=',kkk
7749 cd            do jjj=1,2
7750 cd              write (2,'(3(2f10.5),5x)') 
7751 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7752 cd            enddo
7753 cd          enddo
7754 cd        enddo
7755 cd        endif
7756         call transpose2(EUgder(1,1,k),auxmat(1,1))
7757         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7758         call transpose2(EUg(1,1,k),auxmat(1,1))
7759         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7760         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7761         do iii=1,2
7762           do kkk=1,5
7763             do lll=1,3
7764               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7765      &          EAEAderx(1,1,lll,kkk,iii,1))
7766             enddo
7767           enddo
7768         enddo
7769 C A1T kernel(i+1) A2
7770         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7771      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7772      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7773 C Following matrices are needed only for 6-th order cumulants
7774         IF (wcorr6.gt.0.0d0) THEN
7775         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7776      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7777      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7778         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7779      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7780      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7781      &   ADtEAderx(1,1,1,1,1,2))
7782         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7783      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7784      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7785      &   ADtEA1derx(1,1,1,1,1,2))
7786         ENDIF
7787 C End 6-th order cumulants
7788         call transpose2(EUgder(1,1,l),auxmat(1,1))
7789         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7790         call transpose2(EUg(1,1,l),auxmat(1,1))
7791         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7792         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7793         do iii=1,2
7794           do kkk=1,5
7795             do lll=1,3
7796               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7797      &          EAEAderx(1,1,lll,kkk,iii,2))
7798             enddo
7799           enddo
7800         enddo
7801 C AEAb1 and AEAb2
7802 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7803 C They are needed only when the fifth- or the sixth-order cumulants are
7804 C indluded.
7805         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7806         call transpose2(AEA(1,1,1),auxmat(1,1))
7807         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7808         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7809         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7810         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7811         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7812         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7813         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7814         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7815         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7816         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7817         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7818         call transpose2(AEA(1,1,2),auxmat(1,1))
7819         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7820         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7821         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7822         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7823         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7824         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7825         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7826         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7827         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7828         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7829         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7830 C Calculate the Cartesian derivatives of the vectors.
7831         do iii=1,2
7832           do kkk=1,5
7833             do lll=1,3
7834               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7835               call matvec2(auxmat(1,1),b1(1,iti),
7836      &          AEAb1derx(1,lll,kkk,iii,1,1))
7837               call matvec2(auxmat(1,1),Ub2(1,i),
7838      &          AEAb2derx(1,lll,kkk,iii,1,1))
7839               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7840      &          AEAb1derx(1,lll,kkk,iii,2,1))
7841               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7842      &          AEAb2derx(1,lll,kkk,iii,2,1))
7843               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7844               call matvec2(auxmat(1,1),b1(1,itj),
7845      &          AEAb1derx(1,lll,kkk,iii,1,2))
7846               call matvec2(auxmat(1,1),Ub2(1,j),
7847      &          AEAb2derx(1,lll,kkk,iii,1,2))
7848               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7849      &          AEAb1derx(1,lll,kkk,iii,2,2))
7850               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7851      &          AEAb2derx(1,lll,kkk,iii,2,2))
7852             enddo
7853           enddo
7854         enddo
7855         ENDIF
7856 C End vectors
7857       else
7858 C Antiparallel orientation of the two CA-CA-CA frames.
7859         if (i.gt.1) then
7860           iti=itortyp(itype(i))
7861         else
7862           iti=ntortyp+1
7863         endif
7864         itk1=itortyp(itype(k+1))
7865         itl=itortyp(itype(l))
7866         itj=itortyp(itype(j))
7867         if (j.lt.nres-1) then
7868           itj1=itortyp(itype(j+1))
7869         else 
7870           itj1=ntortyp+1
7871         endif
7872 C A2 kernel(j-1)T A1T
7873         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7874      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7875      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7876 C Following matrices are needed only for 6-th order cumulants
7877         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7878      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7879         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7880      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7881      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7882         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7883      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7884      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7885      &   ADtEAderx(1,1,1,1,1,1))
7886         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7887      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7888      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7889      &   ADtEA1derx(1,1,1,1,1,1))
7890         ENDIF
7891 C End 6-th order cumulants
7892         call transpose2(EUgder(1,1,k),auxmat(1,1))
7893         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7894         call transpose2(EUg(1,1,k),auxmat(1,1))
7895         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7896         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7897         do iii=1,2
7898           do kkk=1,5
7899             do lll=1,3
7900               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7901      &          EAEAderx(1,1,lll,kkk,iii,1))
7902             enddo
7903           enddo
7904         enddo
7905 C A2T kernel(i+1)T A1
7906         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7907      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7908      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7909 C Following matrices are needed only for 6-th order cumulants
7910         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7911      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7912         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7913      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7914      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7915         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7916      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7917      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7918      &   ADtEAderx(1,1,1,1,1,2))
7919         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7920      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7921      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7922      &   ADtEA1derx(1,1,1,1,1,2))
7923         ENDIF
7924 C End 6-th order cumulants
7925         call transpose2(EUgder(1,1,j),auxmat(1,1))
7926         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7927         call transpose2(EUg(1,1,j),auxmat(1,1))
7928         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7929         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7930         do iii=1,2
7931           do kkk=1,5
7932             do lll=1,3
7933               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7934      &          EAEAderx(1,1,lll,kkk,iii,2))
7935             enddo
7936           enddo
7937         enddo
7938 C AEAb1 and AEAb2
7939 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7940 C They are needed only when the fifth- or the sixth-order cumulants are
7941 C indluded.
7942         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7943      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7944         call transpose2(AEA(1,1,1),auxmat(1,1))
7945         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7946         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7947         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7948         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7949         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7950         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7951         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7952         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7953         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7954         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7955         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7956         call transpose2(AEA(1,1,2),auxmat(1,1))
7957         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7958         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7959         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7960         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7961         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7962         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7963         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7964         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7965         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7966         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7967         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7968 C Calculate the Cartesian derivatives of the vectors.
7969         do iii=1,2
7970           do kkk=1,5
7971             do lll=1,3
7972               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7973               call matvec2(auxmat(1,1),b1(1,iti),
7974      &          AEAb1derx(1,lll,kkk,iii,1,1))
7975               call matvec2(auxmat(1,1),Ub2(1,i),
7976      &          AEAb2derx(1,lll,kkk,iii,1,1))
7977               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7978      &          AEAb1derx(1,lll,kkk,iii,2,1))
7979               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7980      &          AEAb2derx(1,lll,kkk,iii,2,1))
7981               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7982               call matvec2(auxmat(1,1),b1(1,itl),
7983      &          AEAb1derx(1,lll,kkk,iii,1,2))
7984               call matvec2(auxmat(1,1),Ub2(1,l),
7985      &          AEAb2derx(1,lll,kkk,iii,1,2))
7986               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7987      &          AEAb1derx(1,lll,kkk,iii,2,2))
7988               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7989      &          AEAb2derx(1,lll,kkk,iii,2,2))
7990             enddo
7991           enddo
7992         enddo
7993         ENDIF
7994 C End vectors
7995       endif
7996       return
7997       end
7998 C---------------------------------------------------------------------------
7999       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
8000      &  KK,KKderg,AKA,AKAderg,AKAderx)
8001       implicit none
8002       integer nderg
8003       logical transp
8004       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
8005      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
8006      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
8007       integer iii,kkk,lll
8008       integer jjj,mmm
8009       logical lprn
8010       common /kutas/ lprn
8011       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
8012       do iii=1,nderg 
8013         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
8014      &    AKAderg(1,1,iii))
8015       enddo
8016 cd      if (lprn) write (2,*) 'In kernel'
8017       do kkk=1,5
8018 cd        if (lprn) write (2,*) 'kkk=',kkk
8019         do lll=1,3
8020           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
8021      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
8022 cd          if (lprn) then
8023 cd            write (2,*) 'lll=',lll
8024 cd            write (2,*) 'iii=1'
8025 cd            do jjj=1,2
8026 cd              write (2,'(3(2f10.5),5x)') 
8027 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
8028 cd            enddo
8029 cd          endif
8030           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
8031      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
8032 cd          if (lprn) then
8033 cd            write (2,*) 'lll=',lll
8034 cd            write (2,*) 'iii=2'
8035 cd            do jjj=1,2
8036 cd              write (2,'(3(2f10.5),5x)') 
8037 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
8038 cd            enddo
8039 cd          endif
8040         enddo
8041       enddo
8042       return
8043       end
8044 C---------------------------------------------------------------------------
8045       double precision function eello4(i,j,k,l,jj,kk)
8046       implicit real*8 (a-h,o-z)
8047       include 'DIMENSIONS'
8048       include 'COMMON.IOUNITS'
8049       include 'COMMON.CHAIN'
8050       include 'COMMON.DERIV'
8051       include 'COMMON.INTERACT'
8052       include 'COMMON.CONTACTS'
8053       include 'COMMON.TORSION'
8054       include 'COMMON.VAR'
8055       include 'COMMON.GEO'
8056       double precision pizda(2,2),ggg1(3),ggg2(3)
8057 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
8058 cd        eello4=0.0d0
8059 cd        return
8060 cd      endif
8061 cd      print *,'eello4:',i,j,k,l,jj,kk
8062 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
8063 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
8064 cold      eij=facont_hb(jj,i)
8065 cold      ekl=facont_hb(kk,k)
8066 cold      ekont=eij*ekl
8067       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
8068 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
8069       gcorr_loc(k-1)=gcorr_loc(k-1)
8070      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
8071       if (l.eq.j+1) then
8072         gcorr_loc(l-1)=gcorr_loc(l-1)
8073      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
8074       else
8075         gcorr_loc(j-1)=gcorr_loc(j-1)
8076      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
8077       endif
8078       do iii=1,2
8079         do kkk=1,5
8080           do lll=1,3
8081             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
8082      &                        -EAEAderx(2,2,lll,kkk,iii,1)
8083 cd            derx(lll,kkk,iii)=0.0d0
8084           enddo
8085         enddo
8086       enddo
8087 cd      gcorr_loc(l-1)=0.0d0
8088 cd      gcorr_loc(j-1)=0.0d0
8089 cd      gcorr_loc(k-1)=0.0d0
8090 cd      eel4=1.0d0
8091 cd      write (iout,*)'Contacts have occurred for peptide groups',
8092 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
8093 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
8094       if (j.lt.nres-1) then
8095         j1=j+1
8096         j2=j-1
8097       else
8098         j1=j-1
8099         j2=j-2
8100       endif
8101       if (l.lt.nres-1) then
8102         l1=l+1
8103         l2=l-1
8104       else
8105         l1=l-1
8106         l2=l-2
8107       endif
8108       do ll=1,3
8109 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
8110 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
8111         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
8112         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
8113 cgrad        ghalf=0.5d0*ggg1(ll)
8114         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
8115         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
8116         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
8117         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
8118         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
8119         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
8120 cgrad        ghalf=0.5d0*ggg2(ll)
8121         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
8122         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
8123         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
8124         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
8125         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
8126         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
8127       enddo
8128 cgrad      do m=i+1,j-1
8129 cgrad        do ll=1,3
8130 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
8131 cgrad        enddo
8132 cgrad      enddo
8133 cgrad      do m=k+1,l-1
8134 cgrad        do ll=1,3
8135 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
8136 cgrad        enddo
8137 cgrad      enddo
8138 cgrad      do m=i+2,j2
8139 cgrad        do ll=1,3
8140 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
8141 cgrad        enddo
8142 cgrad      enddo
8143 cgrad      do m=k+2,l2
8144 cgrad        do ll=1,3
8145 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
8146 cgrad        enddo
8147 cgrad      enddo 
8148 cd      do iii=1,nres-3
8149 cd        write (2,*) iii,gcorr_loc(iii)
8150 cd      enddo
8151       eello4=ekont*eel4
8152 cd      write (2,*) 'ekont',ekont
8153 cd      write (iout,*) 'eello4',ekont*eel4
8154       return
8155       end
8156 C---------------------------------------------------------------------------
8157       double precision function eello5(i,j,k,l,jj,kk)
8158       implicit real*8 (a-h,o-z)
8159       include 'DIMENSIONS'
8160       include 'COMMON.IOUNITS'
8161       include 'COMMON.CHAIN'
8162       include 'COMMON.DERIV'
8163       include 'COMMON.INTERACT'
8164       include 'COMMON.CONTACTS'
8165       include 'COMMON.TORSION'
8166       include 'COMMON.VAR'
8167       include 'COMMON.GEO'
8168       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
8169       double precision ggg1(3),ggg2(3)
8170 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8171 C                                                                              C
8172 C                            Parallel chains                                   C
8173 C                                                                              C
8174 C          o             o                   o             o                   C
8175 C         /l\           / \             \   / \           / \   /              C
8176 C        /   \         /   \             \ /   \         /   \ /               C
8177 C       j| o |l1       | o |              o| o |         | o |o                C
8178 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
8179 C      \i/   \         /   \ /             /   \         /   \                 C
8180 C       o    k1             o                                                  C
8181 C         (I)          (II)                (III)          (IV)                 C
8182 C                                                                              C
8183 C      eello5_1        eello5_2            eello5_3       eello5_4             C
8184 C                                                                              C
8185 C                            Antiparallel chains                               C
8186 C                                                                              C
8187 C          o             o                   o             o                   C
8188 C         /j\           / \             \   / \           / \   /              C
8189 C        /   \         /   \             \ /   \         /   \ /               C
8190 C      j1| o |l        | o |              o| o |         | o |o                C
8191 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
8192 C      \i/   \         /   \ /             /   \         /   \                 C
8193 C       o     k1            o                                                  C
8194 C         (I)          (II)                (III)          (IV)                 C
8195 C                                                                              C
8196 C      eello5_1        eello5_2            eello5_3       eello5_4             C
8197 C                                                                              C
8198 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
8199 C                                                                              C
8200 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8201 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
8202 cd        eello5=0.0d0
8203 cd        return
8204 cd      endif
8205 cd      write (iout,*)
8206 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
8207 cd     &   ' and',k,l
8208       itk=itortyp(itype(k))
8209       itl=itortyp(itype(l))
8210       itj=itortyp(itype(j))
8211       eello5_1=0.0d0
8212       eello5_2=0.0d0
8213       eello5_3=0.0d0
8214       eello5_4=0.0d0
8215 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
8216 cd     &   eel5_3_num,eel5_4_num)
8217       do iii=1,2
8218         do kkk=1,5
8219           do lll=1,3
8220             derx(lll,kkk,iii)=0.0d0
8221           enddo
8222         enddo
8223       enddo
8224 cd      eij=facont_hb(jj,i)
8225 cd      ekl=facont_hb(kk,k)
8226 cd      ekont=eij*ekl
8227 cd      write (iout,*)'Contacts have occurred for peptide groups',
8228 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
8229 cd      goto 1111
8230 C Contribution from the graph I.
8231 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
8232 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
8233       call transpose2(EUg(1,1,k),auxmat(1,1))
8234       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
8235       vv(1)=pizda(1,1)-pizda(2,2)
8236       vv(2)=pizda(1,2)+pizda(2,1)
8237       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
8238      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
8239 C Explicit gradient in virtual-dihedral angles.
8240       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
8241      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
8242      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
8243       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8244       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
8245       vv(1)=pizda(1,1)-pizda(2,2)
8246       vv(2)=pizda(1,2)+pizda(2,1)
8247       g_corr5_loc(k-1)=g_corr5_loc(k-1)
8248      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
8249      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8250       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
8251       vv(1)=pizda(1,1)-pizda(2,2)
8252       vv(2)=pizda(1,2)+pizda(2,1)
8253       if (l.eq.j+1) then
8254         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
8255      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
8256      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8257       else
8258         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
8259      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
8260      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8261       endif 
8262 C Cartesian gradient
8263       do iii=1,2
8264         do kkk=1,5
8265           do lll=1,3
8266             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
8267      &        pizda(1,1))
8268             vv(1)=pizda(1,1)-pizda(2,2)
8269             vv(2)=pizda(1,2)+pizda(2,1)
8270             derx(lll,kkk,iii)=derx(lll,kkk,iii)
8271      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
8272      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
8273           enddo
8274         enddo
8275       enddo
8276 c      goto 1112
8277 c1111  continue
8278 C Contribution from graph II 
8279       call transpose2(EE(1,1,itk),auxmat(1,1))
8280       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
8281       vv(1)=pizda(1,1)+pizda(2,2)
8282       vv(2)=pizda(2,1)-pizda(1,2)
8283       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
8284      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
8285 C Explicit gradient in virtual-dihedral angles.
8286       g_corr5_loc(k-1)=g_corr5_loc(k-1)
8287      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
8288       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
8289       vv(1)=pizda(1,1)+pizda(2,2)
8290       vv(2)=pizda(2,1)-pizda(1,2)
8291       if (l.eq.j+1) then
8292         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8293      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
8294      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
8295       else
8296         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8297      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
8298      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
8299       endif
8300 C Cartesian gradient
8301       do iii=1,2
8302         do kkk=1,5
8303           do lll=1,3
8304             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
8305      &        pizda(1,1))
8306             vv(1)=pizda(1,1)+pizda(2,2)
8307             vv(2)=pizda(2,1)-pizda(1,2)
8308             derx(lll,kkk,iii)=derx(lll,kkk,iii)
8309      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
8310      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
8311           enddo
8312         enddo
8313       enddo
8314 cd      goto 1112
8315 cd1111  continue
8316       if (l.eq.j+1) then
8317 cd        goto 1110
8318 C Parallel orientation
8319 C Contribution from graph III
8320         call transpose2(EUg(1,1,l),auxmat(1,1))
8321         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
8322         vv(1)=pizda(1,1)-pizda(2,2)
8323         vv(2)=pizda(1,2)+pizda(2,1)
8324         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
8325      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
8326 C Explicit gradient in virtual-dihedral angles.
8327         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8328      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
8329      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
8330         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
8331         vv(1)=pizda(1,1)-pizda(2,2)
8332         vv(2)=pizda(1,2)+pizda(2,1)
8333         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8334      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
8335      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
8336         call transpose2(EUgder(1,1,l),auxmat1(1,1))
8337         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
8338         vv(1)=pizda(1,1)-pizda(2,2)
8339         vv(2)=pizda(1,2)+pizda(2,1)
8340         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8341      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
8342      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
8343 C Cartesian gradient
8344         do iii=1,2
8345           do kkk=1,5
8346             do lll=1,3
8347               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
8348      &          pizda(1,1))
8349               vv(1)=pizda(1,1)-pizda(2,2)
8350               vv(2)=pizda(1,2)+pizda(2,1)
8351               derx(lll,kkk,iii)=derx(lll,kkk,iii)
8352      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
8353      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
8354             enddo
8355           enddo
8356         enddo
8357 cd        goto 1112
8358 C Contribution from graph IV
8359 cd1110    continue
8360         call transpose2(EE(1,1,itl),auxmat(1,1))
8361         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
8362         vv(1)=pizda(1,1)+pizda(2,2)
8363         vv(2)=pizda(2,1)-pizda(1,2)
8364         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
8365      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
8366 C Explicit gradient in virtual-dihedral angles.
8367         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8368      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
8369         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
8370         vv(1)=pizda(1,1)+pizda(2,2)
8371         vv(2)=pizda(2,1)-pizda(1,2)
8372         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8373      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
8374      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
8375 C Cartesian gradient
8376         do iii=1,2
8377           do kkk=1,5
8378             do lll=1,3
8379               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
8380      &          pizda(1,1))
8381               vv(1)=pizda(1,1)+pizda(2,2)
8382               vv(2)=pizda(2,1)-pizda(1,2)
8383               derx(lll,kkk,iii)=derx(lll,kkk,iii)
8384      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
8385      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
8386             enddo
8387           enddo
8388         enddo
8389       else
8390 C Antiparallel orientation
8391 C Contribution from graph III
8392 c        goto 1110
8393         call transpose2(EUg(1,1,j),auxmat(1,1))
8394         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
8395         vv(1)=pizda(1,1)-pizda(2,2)
8396         vv(2)=pizda(1,2)+pizda(2,1)
8397         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
8398      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
8399 C Explicit gradient in virtual-dihedral angles.
8400         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8401      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
8402      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
8403         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
8404         vv(1)=pizda(1,1)-pizda(2,2)
8405         vv(2)=pizda(1,2)+pizda(2,1)
8406         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8407      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
8408      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
8409         call transpose2(EUgder(1,1,j),auxmat1(1,1))
8410         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
8411         vv(1)=pizda(1,1)-pizda(2,2)
8412         vv(2)=pizda(1,2)+pizda(2,1)
8413         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8414      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
8415      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
8416 C Cartesian gradient
8417         do iii=1,2
8418           do kkk=1,5
8419             do lll=1,3
8420               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
8421      &          pizda(1,1))
8422               vv(1)=pizda(1,1)-pizda(2,2)
8423               vv(2)=pizda(1,2)+pizda(2,1)
8424               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
8425      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
8426      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
8427             enddo
8428           enddo
8429         enddo
8430 cd        goto 1112
8431 C Contribution from graph IV
8432 1110    continue
8433         call transpose2(EE(1,1,itj),auxmat(1,1))
8434         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
8435         vv(1)=pizda(1,1)+pizda(2,2)
8436         vv(2)=pizda(2,1)-pizda(1,2)
8437         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
8438      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
8439 C Explicit gradient in virtual-dihedral angles.
8440         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8441      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
8442         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
8443         vv(1)=pizda(1,1)+pizda(2,2)
8444         vv(2)=pizda(2,1)-pizda(1,2)
8445         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8446      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
8447      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
8448 C Cartesian gradient
8449         do iii=1,2
8450           do kkk=1,5
8451             do lll=1,3
8452               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
8453      &          pizda(1,1))
8454               vv(1)=pizda(1,1)+pizda(2,2)
8455               vv(2)=pizda(2,1)-pizda(1,2)
8456               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
8457      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
8458      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
8459             enddo
8460           enddo
8461         enddo
8462       endif
8463 1112  continue
8464       eel5=eello5_1+eello5_2+eello5_3+eello5_4
8465 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
8466 cd        write (2,*) 'ijkl',i,j,k,l
8467 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
8468 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
8469 cd      endif
8470 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
8471 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
8472 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
8473 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
8474       if (j.lt.nres-1) then
8475         j1=j+1
8476         j2=j-1
8477       else
8478         j1=j-1
8479         j2=j-2
8480       endif
8481       if (l.lt.nres-1) then
8482         l1=l+1
8483         l2=l-1
8484       else
8485         l1=l-1
8486         l2=l-2
8487       endif
8488 cd      eij=1.0d0
8489 cd      ekl=1.0d0
8490 cd      ekont=1.0d0
8491 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
8492 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
8493 C        summed up outside the subrouine as for the other subroutines 
8494 C        handling long-range interactions. The old code is commented out
8495 C        with "cgrad" to keep track of changes.
8496       do ll=1,3
8497 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
8498 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
8499         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
8500         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
8501 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
8502 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
8503 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
8504 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
8505 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
8506 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
8507 c     &   gradcorr5ij,
8508 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
8509 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
8510 cgrad        ghalf=0.5d0*ggg1(ll)
8511 cd        ghalf=0.0d0
8512         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
8513         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
8514         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
8515         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
8516         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
8517         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
8518 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
8519 cgrad        ghalf=0.5d0*ggg2(ll)
8520 cd        ghalf=0.0d0
8521         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
8522         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
8523         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
8524         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
8525         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
8526         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
8527       enddo
8528 cd      goto 1112
8529 cgrad      do m=i+1,j-1
8530 cgrad        do ll=1,3
8531 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
8532 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
8533 cgrad        enddo
8534 cgrad      enddo
8535 cgrad      do m=k+1,l-1
8536 cgrad        do ll=1,3
8537 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
8538 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
8539 cgrad        enddo
8540 cgrad      enddo
8541 c1112  continue
8542 cgrad      do m=i+2,j2
8543 cgrad        do ll=1,3
8544 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
8545 cgrad        enddo
8546 cgrad      enddo
8547 cgrad      do m=k+2,l2
8548 cgrad        do ll=1,3
8549 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
8550 cgrad        enddo
8551 cgrad      enddo 
8552 cd      do iii=1,nres-3
8553 cd        write (2,*) iii,g_corr5_loc(iii)
8554 cd      enddo
8555       eello5=ekont*eel5
8556 cd      write (2,*) 'ekont',ekont
8557 cd      write (iout,*) 'eello5',ekont*eel5
8558       return
8559       end
8560 c--------------------------------------------------------------------------
8561       double precision function eello6(i,j,k,l,jj,kk)
8562       implicit real*8 (a-h,o-z)
8563       include 'DIMENSIONS'
8564       include 'COMMON.IOUNITS'
8565       include 'COMMON.CHAIN'
8566       include 'COMMON.DERIV'
8567       include 'COMMON.INTERACT'
8568       include 'COMMON.CONTACTS'
8569       include 'COMMON.TORSION'
8570       include 'COMMON.VAR'
8571       include 'COMMON.GEO'
8572       include 'COMMON.FFIELD'
8573       double precision ggg1(3),ggg2(3)
8574 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8575 cd        eello6=0.0d0
8576 cd        return
8577 cd      endif
8578 cd      write (iout,*)
8579 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8580 cd     &   ' and',k,l
8581       eello6_1=0.0d0
8582       eello6_2=0.0d0
8583       eello6_3=0.0d0
8584       eello6_4=0.0d0
8585       eello6_5=0.0d0
8586       eello6_6=0.0d0
8587 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
8588 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
8589       do iii=1,2
8590         do kkk=1,5
8591           do lll=1,3
8592             derx(lll,kkk,iii)=0.0d0
8593           enddo
8594         enddo
8595       enddo
8596 cd      eij=facont_hb(jj,i)
8597 cd      ekl=facont_hb(kk,k)
8598 cd      ekont=eij*ekl
8599 cd      eij=1.0d0
8600 cd      ekl=1.0d0
8601 cd      ekont=1.0d0
8602       if (l.eq.j+1) then
8603         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8604         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
8605         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
8606         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8607         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8608         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8609       else
8610         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8611         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8612         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8613         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8614         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8615           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8616         else
8617           eello6_5=0.0d0
8618         endif
8619         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8620       endif
8621 C If turn contributions are considered, they will be handled separately.
8622       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8623 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8624 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8625 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8626 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8627 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8628 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8629 cd      goto 1112
8630       if (j.lt.nres-1) then
8631         j1=j+1
8632         j2=j-1
8633       else
8634         j1=j-1
8635         j2=j-2
8636       endif
8637       if (l.lt.nres-1) then
8638         l1=l+1
8639         l2=l-1
8640       else
8641         l1=l-1
8642         l2=l-2
8643       endif
8644       do ll=1,3
8645 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8646 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8647 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8648 cgrad        ghalf=0.5d0*ggg1(ll)
8649 cd        ghalf=0.0d0
8650         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8651         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8652         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8653         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8654         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8655         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8656         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8657         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8658 cgrad        ghalf=0.5d0*ggg2(ll)
8659 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8660 cd        ghalf=0.0d0
8661         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8662         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8663         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8664         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8665         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8666         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8667       enddo
8668 cd      goto 1112
8669 cgrad      do m=i+1,j-1
8670 cgrad        do ll=1,3
8671 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8672 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8673 cgrad        enddo
8674 cgrad      enddo
8675 cgrad      do m=k+1,l-1
8676 cgrad        do ll=1,3
8677 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8678 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8679 cgrad        enddo
8680 cgrad      enddo
8681 cgrad1112  continue
8682 cgrad      do m=i+2,j2
8683 cgrad        do ll=1,3
8684 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8685 cgrad        enddo
8686 cgrad      enddo
8687 cgrad      do m=k+2,l2
8688 cgrad        do ll=1,3
8689 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8690 cgrad        enddo
8691 cgrad      enddo 
8692 cd      do iii=1,nres-3
8693 cd        write (2,*) iii,g_corr6_loc(iii)
8694 cd      enddo
8695       eello6=ekont*eel6
8696 cd      write (2,*) 'ekont',ekont
8697 cd      write (iout,*) 'eello6',ekont*eel6
8698       return
8699       end
8700 c--------------------------------------------------------------------------
8701       double precision function eello6_graph1(i,j,k,l,imat,swap)
8702       implicit real*8 (a-h,o-z)
8703       include 'DIMENSIONS'
8704       include 'COMMON.IOUNITS'
8705       include 'COMMON.CHAIN'
8706       include 'COMMON.DERIV'
8707       include 'COMMON.INTERACT'
8708       include 'COMMON.CONTACTS'
8709       include 'COMMON.TORSION'
8710       include 'COMMON.VAR'
8711       include 'COMMON.GEO'
8712       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8713       logical swap
8714       logical lprn
8715       common /kutas/ lprn
8716 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8717 C                                              
8718 C      Parallel       Antiparallel
8719 C                                             
8720 C          o             o         
8721 C         /l\           /j\
8722 C        /   \         /   \
8723 C       /| o |         | o |\
8724 C     \ j|/k\|  /   \  |/k\|l /   
8725 C      \ /   \ /     \ /   \ /    
8726 C       o     o       o     o                
8727 C       i             i                     
8728 C
8729 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8730       itk=itortyp(itype(k))
8731       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8732       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8733       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8734       call transpose2(EUgC(1,1,k),auxmat(1,1))
8735       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8736       vv1(1)=pizda1(1,1)-pizda1(2,2)
8737       vv1(2)=pizda1(1,2)+pizda1(2,1)
8738       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8739       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8740       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8741       s5=scalar2(vv(1),Dtobr2(1,i))
8742 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8743       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8744       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8745      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8746      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8747      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8748      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8749      & +scalar2(vv(1),Dtobr2der(1,i)))
8750       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8751       vv1(1)=pizda1(1,1)-pizda1(2,2)
8752       vv1(2)=pizda1(1,2)+pizda1(2,1)
8753       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8754       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8755       if (l.eq.j+1) then
8756         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8757      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8758      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8759      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8760      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8761       else
8762         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8763      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8764      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8765      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8766      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8767       endif
8768       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8769       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8770       vv1(1)=pizda1(1,1)-pizda1(2,2)
8771       vv1(2)=pizda1(1,2)+pizda1(2,1)
8772       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8773      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8774      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8775      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8776       do iii=1,2
8777         if (swap) then
8778           ind=3-iii
8779         else
8780           ind=iii
8781         endif
8782         do kkk=1,5
8783           do lll=1,3
8784             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8785             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8786             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8787             call transpose2(EUgC(1,1,k),auxmat(1,1))
8788             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8789      &        pizda1(1,1))
8790             vv1(1)=pizda1(1,1)-pizda1(2,2)
8791             vv1(2)=pizda1(1,2)+pizda1(2,1)
8792             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8793             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8794      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8795             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8796      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8797             s5=scalar2(vv(1),Dtobr2(1,i))
8798             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8799           enddo
8800         enddo
8801       enddo
8802       return
8803       end
8804 c----------------------------------------------------------------------------
8805       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8806       implicit real*8 (a-h,o-z)
8807       include 'DIMENSIONS'
8808       include 'COMMON.IOUNITS'
8809       include 'COMMON.CHAIN'
8810       include 'COMMON.DERIV'
8811       include 'COMMON.INTERACT'
8812       include 'COMMON.CONTACTS'
8813       include 'COMMON.TORSION'
8814       include 'COMMON.VAR'
8815       include 'COMMON.GEO'
8816       logical swap
8817       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8818      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8819       logical lprn
8820       common /kutas/ lprn
8821 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8822 C                                                                              C
8823 C      Parallel       Antiparallel                                             C
8824 C                                                                              C
8825 C          o             o                                                     C
8826 C     \   /l\           /j\   /                                                C
8827 C      \ /   \         /   \ /                                                 C
8828 C       o| o |         | o |o                                                  C                
8829 C     \ j|/k\|      \  |/k\|l                                                  C
8830 C      \ /   \       \ /   \                                                   C
8831 C       o             o                                                        C
8832 C       i             i                                                        C 
8833 C                                                                              C           
8834 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8835 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8836 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8837 C           but not in a cluster cumulant
8838 #ifdef MOMENT
8839       s1=dip(1,jj,i)*dip(1,kk,k)
8840 #endif
8841       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8842       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8843       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8844       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8845       call transpose2(EUg(1,1,k),auxmat(1,1))
8846       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8847       vv(1)=pizda(1,1)-pizda(2,2)
8848       vv(2)=pizda(1,2)+pizda(2,1)
8849       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8850 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8851 #ifdef MOMENT
8852       eello6_graph2=-(s1+s2+s3+s4)
8853 #else
8854       eello6_graph2=-(s2+s3+s4)
8855 #endif
8856 c      eello6_graph2=-s3
8857 C Derivatives in gamma(i-1)
8858       if (i.gt.1) then
8859 #ifdef MOMENT
8860         s1=dipderg(1,jj,i)*dip(1,kk,k)
8861 #endif
8862         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8863         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8864         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8865         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8866 #ifdef MOMENT
8867         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8868 #else
8869         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8870 #endif
8871 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8872       endif
8873 C Derivatives in gamma(k-1)
8874 #ifdef MOMENT
8875       s1=dip(1,jj,i)*dipderg(1,kk,k)
8876 #endif
8877       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8878       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8879       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8880       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8881       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8882       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8883       vv(1)=pizda(1,1)-pizda(2,2)
8884       vv(2)=pizda(1,2)+pizda(2,1)
8885       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8886 #ifdef MOMENT
8887       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8888 #else
8889       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8890 #endif
8891 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8892 C Derivatives in gamma(j-1) or gamma(l-1)
8893       if (j.gt.1) then
8894 #ifdef MOMENT
8895         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8896 #endif
8897         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8898         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8899         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8900         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8901         vv(1)=pizda(1,1)-pizda(2,2)
8902         vv(2)=pizda(1,2)+pizda(2,1)
8903         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8904 #ifdef MOMENT
8905         if (swap) then
8906           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8907         else
8908           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8909         endif
8910 #endif
8911         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8912 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8913       endif
8914 C Derivatives in gamma(l-1) or gamma(j-1)
8915       if (l.gt.1) then 
8916 #ifdef MOMENT
8917         s1=dip(1,jj,i)*dipderg(3,kk,k)
8918 #endif
8919         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8920         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8921         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8922         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8923         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8924         vv(1)=pizda(1,1)-pizda(2,2)
8925         vv(2)=pizda(1,2)+pizda(2,1)
8926         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8927 #ifdef MOMENT
8928         if (swap) then
8929           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8930         else
8931           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8932         endif
8933 #endif
8934         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8935 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8936       endif
8937 C Cartesian derivatives.
8938       if (lprn) then
8939         write (2,*) 'In eello6_graph2'
8940         do iii=1,2
8941           write (2,*) 'iii=',iii
8942           do kkk=1,5
8943             write (2,*) 'kkk=',kkk
8944             do jjj=1,2
8945               write (2,'(3(2f10.5),5x)') 
8946      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8947             enddo
8948           enddo
8949         enddo
8950       endif
8951       do iii=1,2
8952         do kkk=1,5
8953           do lll=1,3
8954 #ifdef MOMENT
8955             if (iii.eq.1) then
8956               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8957             else
8958               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8959             endif
8960 #endif
8961             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8962      &        auxvec(1))
8963             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8964             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8965      &        auxvec(1))
8966             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8967             call transpose2(EUg(1,1,k),auxmat(1,1))
8968             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8969      &        pizda(1,1))
8970             vv(1)=pizda(1,1)-pizda(2,2)
8971             vv(2)=pizda(1,2)+pizda(2,1)
8972             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8973 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8974 #ifdef MOMENT
8975             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8976 #else
8977             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8978 #endif
8979             if (swap) then
8980               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8981             else
8982               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8983             endif
8984           enddo
8985         enddo
8986       enddo
8987       return
8988       end
8989 c----------------------------------------------------------------------------
8990       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8991       implicit real*8 (a-h,o-z)
8992       include 'DIMENSIONS'
8993       include 'COMMON.IOUNITS'
8994       include 'COMMON.CHAIN'
8995       include 'COMMON.DERIV'
8996       include 'COMMON.INTERACT'
8997       include 'COMMON.CONTACTS'
8998       include 'COMMON.TORSION'
8999       include 'COMMON.VAR'
9000       include 'COMMON.GEO'
9001       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
9002       logical swap
9003 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9004 C                                                                              C 
9005 C      Parallel       Antiparallel                                             C
9006 C                                                                              C
9007 C          o             o                                                     C 
9008 C         /l\   /   \   /j\                                                    C 
9009 C        /   \ /     \ /   \                                                   C
9010 C       /| o |o       o| o |\                                                  C
9011 C       j|/k\|  /      |/k\|l /                                                C
9012 C        /   \ /       /   \ /                                                 C
9013 C       /     o       /     o                                                  C
9014 C       i             i                                                        C
9015 C                                                                              C
9016 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9017 C
9018 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
9019 C           energy moment and not to the cluster cumulant.
9020       iti=itortyp(itype(i))
9021       if (j.lt.nres-1) then
9022         itj1=itortyp(itype(j+1))
9023       else
9024         itj1=ntortyp+1
9025       endif
9026       itk=itortyp(itype(k))
9027       itk1=itortyp(itype(k+1))
9028       if (l.lt.nres-1) then
9029         itl1=itortyp(itype(l+1))
9030       else
9031         itl1=ntortyp+1
9032       endif
9033 #ifdef MOMENT
9034       s1=dip(4,jj,i)*dip(4,kk,k)
9035 #endif
9036       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
9037       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9038       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
9039       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9040       call transpose2(EE(1,1,itk),auxmat(1,1))
9041       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
9042       vv(1)=pizda(1,1)+pizda(2,2)
9043       vv(2)=pizda(2,1)-pizda(1,2)
9044       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9045 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
9046 cd     & "sum",-(s2+s3+s4)
9047 #ifdef MOMENT
9048       eello6_graph3=-(s1+s2+s3+s4)
9049 #else
9050       eello6_graph3=-(s2+s3+s4)
9051 #endif
9052 c      eello6_graph3=-s4
9053 C Derivatives in gamma(k-1)
9054       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
9055       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9056       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
9057       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
9058 C Derivatives in gamma(l-1)
9059       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
9060       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9061       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
9062       vv(1)=pizda(1,1)+pizda(2,2)
9063       vv(2)=pizda(2,1)-pizda(1,2)
9064       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9065       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
9066 C Cartesian derivatives.
9067       do iii=1,2
9068         do kkk=1,5
9069           do lll=1,3
9070 #ifdef MOMENT
9071             if (iii.eq.1) then
9072               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
9073             else
9074               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
9075             endif
9076 #endif
9077             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
9078      &        auxvec(1))
9079             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9080             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
9081      &        auxvec(1))
9082             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9083             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
9084      &        pizda(1,1))
9085             vv(1)=pizda(1,1)+pizda(2,2)
9086             vv(2)=pizda(2,1)-pizda(1,2)
9087             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9088 #ifdef MOMENT
9089             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
9090 #else
9091             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
9092 #endif
9093             if (swap) then
9094               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
9095             else
9096               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9097             endif
9098 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
9099           enddo
9100         enddo
9101       enddo
9102       return
9103       end
9104 c----------------------------------------------------------------------------
9105       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
9106       implicit real*8 (a-h,o-z)
9107       include 'DIMENSIONS'
9108       include 'COMMON.IOUNITS'
9109       include 'COMMON.CHAIN'
9110       include 'COMMON.DERIV'
9111       include 'COMMON.INTERACT'
9112       include 'COMMON.CONTACTS'
9113       include 'COMMON.TORSION'
9114       include 'COMMON.VAR'
9115       include 'COMMON.GEO'
9116       include 'COMMON.FFIELD'
9117       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
9118      & auxvec1(2),auxmat1(2,2)
9119       logical swap
9120 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9121 C                                                                              C                       
9122 C      Parallel       Antiparallel                                             C
9123 C                                                                              C
9124 C          o             o                                                     C
9125 C         /l\   /   \   /j\                                                    C
9126 C        /   \ /     \ /   \                                                   C
9127 C       /| o |o       o| o |\                                                  C
9128 C     \ j|/k\|      \  |/k\|l                                                  C
9129 C      \ /   \       \ /   \                                                   C 
9130 C       o     \       o     \                                                  C
9131 C       i             i                                                        C
9132 C                                                                              C 
9133 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9134 C
9135 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
9136 C           energy moment and not to the cluster cumulant.
9137 cd      write (2,*) 'eello_graph4: wturn6',wturn6
9138       iti=itortyp(itype(i))
9139       itj=itortyp(itype(j))
9140       if (j.lt.nres-1) then
9141         itj1=itortyp(itype(j+1))
9142       else
9143         itj1=ntortyp+1
9144       endif
9145       itk=itortyp(itype(k))
9146       if (k.lt.nres-1) then
9147         itk1=itortyp(itype(k+1))
9148       else
9149         itk1=ntortyp+1
9150       endif
9151       itl=itortyp(itype(l))
9152       if (l.lt.nres-1) then
9153         itl1=itortyp(itype(l+1))
9154       else
9155         itl1=ntortyp+1
9156       endif
9157 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
9158 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
9159 cd     & ' itl',itl,' itl1',itl1
9160 #ifdef MOMENT
9161       if (imat.eq.1) then
9162         s1=dip(3,jj,i)*dip(3,kk,k)
9163       else
9164         s1=dip(2,jj,j)*dip(2,kk,l)
9165       endif
9166 #endif
9167       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
9168       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9169       if (j.eq.l+1) then
9170         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
9171         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9172       else
9173         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
9174         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9175       endif
9176       call transpose2(EUg(1,1,k),auxmat(1,1))
9177       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
9178       vv(1)=pizda(1,1)-pizda(2,2)
9179       vv(2)=pizda(2,1)+pizda(1,2)
9180       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9181 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
9182 #ifdef MOMENT
9183       eello6_graph4=-(s1+s2+s3+s4)
9184 #else
9185       eello6_graph4=-(s2+s3+s4)
9186 #endif
9187 C Derivatives in gamma(i-1)
9188       if (i.gt.1) then
9189 #ifdef MOMENT
9190         if (imat.eq.1) then
9191           s1=dipderg(2,jj,i)*dip(3,kk,k)
9192         else
9193           s1=dipderg(4,jj,j)*dip(2,kk,l)
9194         endif
9195 #endif
9196         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
9197         if (j.eq.l+1) then
9198           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
9199           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9200         else
9201           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
9202           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9203         endif
9204         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
9205         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9206 cd          write (2,*) 'turn6 derivatives'
9207 #ifdef MOMENT
9208           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
9209 #else
9210           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
9211 #endif
9212         else
9213 #ifdef MOMENT
9214           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
9215 #else
9216           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
9217 #endif
9218         endif
9219       endif
9220 C Derivatives in gamma(k-1)
9221 #ifdef MOMENT
9222       if (imat.eq.1) then
9223         s1=dip(3,jj,i)*dipderg(2,kk,k)
9224       else
9225         s1=dip(2,jj,j)*dipderg(4,kk,l)
9226       endif
9227 #endif
9228       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
9229       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
9230       if (j.eq.l+1) then
9231         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
9232         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9233       else
9234         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
9235         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9236       endif
9237       call transpose2(EUgder(1,1,k),auxmat1(1,1))
9238       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
9239       vv(1)=pizda(1,1)-pizda(2,2)
9240       vv(2)=pizda(2,1)+pizda(1,2)
9241       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9242       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9243 #ifdef MOMENT
9244         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
9245 #else
9246         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
9247 #endif
9248       else
9249 #ifdef MOMENT
9250         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
9251 #else
9252         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
9253 #endif
9254       endif
9255 C Derivatives in gamma(j-1) or gamma(l-1)
9256       if (l.eq.j+1 .and. l.gt.1) then
9257         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
9258         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9259         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
9260         vv(1)=pizda(1,1)-pizda(2,2)
9261         vv(2)=pizda(2,1)+pizda(1,2)
9262         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9263         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
9264       else if (j.gt.1) then
9265         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
9266         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9267         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
9268         vv(1)=pizda(1,1)-pizda(2,2)
9269         vv(2)=pizda(2,1)+pizda(1,2)
9270         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9271         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9272           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
9273         else
9274           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
9275         endif
9276       endif
9277 C Cartesian derivatives.
9278       do iii=1,2
9279         do kkk=1,5
9280           do lll=1,3
9281 #ifdef MOMENT
9282             if (iii.eq.1) then
9283               if (imat.eq.1) then
9284                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
9285               else
9286                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
9287               endif
9288             else
9289               if (imat.eq.1) then
9290                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
9291               else
9292                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
9293               endif
9294             endif
9295 #endif
9296             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
9297      &        auxvec(1))
9298             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9299             if (j.eq.l+1) then
9300               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
9301      &          b1(1,itj1),auxvec(1))
9302               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
9303             else
9304               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
9305      &          b1(1,itl1),auxvec(1))
9306               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
9307             endif
9308             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
9309      &        pizda(1,1))
9310             vv(1)=pizda(1,1)-pizda(2,2)
9311             vv(2)=pizda(2,1)+pizda(1,2)
9312             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9313             if (swap) then
9314               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9315 #ifdef MOMENT
9316                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
9317      &             -(s1+s2+s4)
9318 #else
9319                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
9320      &             -(s2+s4)
9321 #endif
9322                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
9323               else
9324 #ifdef MOMENT
9325                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
9326 #else
9327                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
9328 #endif
9329                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9330               endif
9331             else
9332 #ifdef MOMENT
9333               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
9334 #else
9335               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
9336 #endif
9337               if (l.eq.j+1) then
9338                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9339               else 
9340                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
9341               endif
9342             endif 
9343           enddo
9344         enddo
9345       enddo
9346       return
9347       end
9348 c----------------------------------------------------------------------------
9349       double precision function eello_turn6(i,jj,kk)
9350       implicit real*8 (a-h,o-z)
9351       include 'DIMENSIONS'
9352       include 'COMMON.IOUNITS'
9353       include 'COMMON.CHAIN'
9354       include 'COMMON.DERIV'
9355       include 'COMMON.INTERACT'
9356       include 'COMMON.CONTACTS'
9357       include 'COMMON.TORSION'
9358       include 'COMMON.VAR'
9359       include 'COMMON.GEO'
9360       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
9361      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
9362      &  ggg1(3),ggg2(3)
9363       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
9364      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
9365 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
9366 C           the respective energy moment and not to the cluster cumulant.
9367       s1=0.0d0
9368       s8=0.0d0
9369       s13=0.0d0
9370 c
9371       eello_turn6=0.0d0
9372       j=i+4
9373       k=i+1
9374       l=i+3
9375       iti=itortyp(itype(i))
9376       itk=itortyp(itype(k))
9377       itk1=itortyp(itype(k+1))
9378       itl=itortyp(itype(l))
9379       itj=itortyp(itype(j))
9380 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
9381 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
9382 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
9383 cd        eello6=0.0d0
9384 cd        return
9385 cd      endif
9386 cd      write (iout,*)
9387 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
9388 cd     &   ' and',k,l
9389 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
9390       do iii=1,2
9391         do kkk=1,5
9392           do lll=1,3
9393             derx_turn(lll,kkk,iii)=0.0d0
9394           enddo
9395         enddo
9396       enddo
9397 cd      eij=1.0d0
9398 cd      ekl=1.0d0
9399 cd      ekont=1.0d0
9400       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
9401 cd      eello6_5=0.0d0
9402 cd      write (2,*) 'eello6_5',eello6_5
9403 #ifdef MOMENT
9404       call transpose2(AEA(1,1,1),auxmat(1,1))
9405       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
9406       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
9407       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
9408 #endif
9409       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
9410       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
9411       s2 = scalar2(b1(1,itk),vtemp1(1))
9412 #ifdef MOMENT
9413       call transpose2(AEA(1,1,2),atemp(1,1))
9414       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
9415       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
9416       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9417 #endif
9418       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
9419       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
9420       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
9421 #ifdef MOMENT
9422       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
9423       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
9424       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
9425       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
9426       ss13 = scalar2(b1(1,itk),vtemp4(1))
9427       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
9428 #endif
9429 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
9430 c      s1=0.0d0
9431 c      s2=0.0d0
9432 c      s8=0.0d0
9433 c      s12=0.0d0
9434 c      s13=0.0d0
9435       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
9436 C Derivatives in gamma(i+2)
9437       s1d =0.0d0
9438       s8d =0.0d0
9439 #ifdef MOMENT
9440       call transpose2(AEA(1,1,1),auxmatd(1,1))
9441       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9442       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9443       call transpose2(AEAderg(1,1,2),atempd(1,1))
9444       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
9445       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9446 #endif
9447       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
9448       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9449       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9450 c      s1d=0.0d0
9451 c      s2d=0.0d0
9452 c      s8d=0.0d0
9453 c      s12d=0.0d0
9454 c      s13d=0.0d0
9455       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
9456 C Derivatives in gamma(i+3)
9457 #ifdef MOMENT
9458       call transpose2(AEA(1,1,1),auxmatd(1,1))
9459       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9460       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
9461       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
9462 #endif
9463       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
9464       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
9465       s2d = scalar2(b1(1,itk),vtemp1d(1))
9466 #ifdef MOMENT
9467       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
9468       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
9469 #endif
9470       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
9471 #ifdef MOMENT
9472       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
9473       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9474       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
9475 #endif
9476 c      s1d=0.0d0
9477 c      s2d=0.0d0
9478 c      s8d=0.0d0
9479 c      s12d=0.0d0
9480 c      s13d=0.0d0
9481 #ifdef MOMENT
9482       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
9483      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
9484 #else
9485       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
9486      &               -0.5d0*ekont*(s2d+s12d)
9487 #endif
9488 C Derivatives in gamma(i+4)
9489       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
9490       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9491       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9492 #ifdef MOMENT
9493       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
9494       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
9495       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
9496 #endif
9497 c      s1d=0.0d0
9498 c      s2d=0.0d0
9499 c      s8d=0.0d0
9500 C      s12d=0.0d0
9501 c      s13d=0.0d0
9502 #ifdef MOMENT
9503       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
9504 #else
9505       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
9506 #endif
9507 C Derivatives in gamma(i+5)
9508 #ifdef MOMENT
9509       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
9510       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9511       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9512 #endif
9513       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
9514       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
9515       s2d = scalar2(b1(1,itk),vtemp1d(1))
9516 #ifdef MOMENT
9517       call transpose2(AEA(1,1,2),atempd(1,1))
9518       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
9519       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9520 #endif
9521       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
9522       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9523 #ifdef MOMENT
9524       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
9525       ss13d = scalar2(b1(1,itk),vtemp4d(1))
9526       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9527 #endif
9528 c      s1d=0.0d0
9529 c      s2d=0.0d0
9530 c      s8d=0.0d0
9531 c      s12d=0.0d0
9532 c      s13d=0.0d0
9533 #ifdef MOMENT
9534       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
9535      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
9536 #else
9537       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
9538      &               -0.5d0*ekont*(s2d+s12d)
9539 #endif
9540 C Cartesian derivatives
9541       do iii=1,2
9542         do kkk=1,5
9543           do lll=1,3
9544 #ifdef MOMENT
9545             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
9546             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9547             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9548 #endif
9549             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
9550             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
9551      &          vtemp1d(1))
9552             s2d = scalar2(b1(1,itk),vtemp1d(1))
9553 #ifdef MOMENT
9554             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
9555             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
9556             s8d = -(atempd(1,1)+atempd(2,2))*
9557      &           scalar2(cc(1,1,itl),vtemp2(1))
9558 #endif
9559             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
9560      &           auxmatd(1,1))
9561             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9562             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9563 c      s1d=0.0d0
9564 c      s2d=0.0d0
9565 c      s8d=0.0d0
9566 c      s12d=0.0d0
9567 c      s13d=0.0d0
9568 #ifdef MOMENT
9569             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
9570      &        - 0.5d0*(s1d+s2d)
9571 #else
9572             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
9573      &        - 0.5d0*s2d
9574 #endif
9575 #ifdef MOMENT
9576             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9577      &        - 0.5d0*(s8d+s12d)
9578 #else
9579             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9580      &        - 0.5d0*s12d
9581 #endif
9582           enddo
9583         enddo
9584       enddo
9585 #ifdef MOMENT
9586       do kkk=1,5
9587         do lll=1,3
9588           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
9589      &      achuj_tempd(1,1))
9590           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
9591           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9592           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
9593           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
9594           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
9595      &      vtemp4d(1)) 
9596           ss13d = scalar2(b1(1,itk),vtemp4d(1))
9597           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9598           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
9599         enddo
9600       enddo
9601 #endif
9602 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
9603 cd     &  16*eel_turn6_num
9604 cd      goto 1112
9605       if (j.lt.nres-1) then
9606         j1=j+1
9607         j2=j-1
9608       else
9609         j1=j-1
9610         j2=j-2
9611       endif
9612       if (l.lt.nres-1) then
9613         l1=l+1
9614         l2=l-1
9615       else
9616         l1=l-1
9617         l2=l-2
9618       endif
9619       do ll=1,3
9620 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9621 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9622 cgrad        ghalf=0.5d0*ggg1(ll)
9623 cd        ghalf=0.0d0
9624         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9625         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9626         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9627      &    +ekont*derx_turn(ll,2,1)
9628         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9629         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9630      &    +ekont*derx_turn(ll,4,1)
9631         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9632         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9633         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9634 cgrad        ghalf=0.5d0*ggg2(ll)
9635 cd        ghalf=0.0d0
9636         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9637      &    +ekont*derx_turn(ll,2,2)
9638         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9639         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9640      &    +ekont*derx_turn(ll,4,2)
9641         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9642         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9643         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9644       enddo
9645 cd      goto 1112
9646 cgrad      do m=i+1,j-1
9647 cgrad        do ll=1,3
9648 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9649 cgrad        enddo
9650 cgrad      enddo
9651 cgrad      do m=k+1,l-1
9652 cgrad        do ll=1,3
9653 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9654 cgrad        enddo
9655 cgrad      enddo
9656 cgrad1112  continue
9657 cgrad      do m=i+2,j2
9658 cgrad        do ll=1,3
9659 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9660 cgrad        enddo
9661 cgrad      enddo
9662 cgrad      do m=k+2,l2
9663 cgrad        do ll=1,3
9664 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9665 cgrad        enddo
9666 cgrad      enddo 
9667 cd      do iii=1,nres-3
9668 cd        write (2,*) iii,g_corr6_loc(iii)
9669 cd      enddo
9670       eello_turn6=ekont*eel_turn6
9671 cd      write (2,*) 'ekont',ekont
9672 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9673       return
9674       end
9675
9676 C-----------------------------------------------------------------------------
9677       double precision function scalar(u,v)
9678 !DIR$ INLINEALWAYS scalar
9679 #ifndef OSF
9680 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9681 #endif
9682       implicit none
9683       double precision u(3),v(3)
9684 cd      double precision sc
9685 cd      integer i
9686 cd      sc=0.0d0
9687 cd      do i=1,3
9688 cd        sc=sc+u(i)*v(i)
9689 cd      enddo
9690 cd      scalar=sc
9691
9692       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9693       return
9694       end
9695 crc-------------------------------------------------
9696       SUBROUTINE MATVEC2(A1,V1,V2)
9697 !DIR$ INLINEALWAYS MATVEC2
9698 #ifndef OSF
9699 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9700 #endif
9701       implicit real*8 (a-h,o-z)
9702       include 'DIMENSIONS'
9703       DIMENSION A1(2,2),V1(2),V2(2)
9704 c      DO 1 I=1,2
9705 c        VI=0.0
9706 c        DO 3 K=1,2
9707 c    3     VI=VI+A1(I,K)*V1(K)
9708 c        Vaux(I)=VI
9709 c    1 CONTINUE
9710
9711       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9712       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9713
9714       v2(1)=vaux1
9715       v2(2)=vaux2
9716       END
9717 C---------------------------------------
9718       SUBROUTINE MATMAT2(A1,A2,A3)
9719 #ifndef OSF
9720 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9721 #endif
9722       implicit real*8 (a-h,o-z)
9723       include 'DIMENSIONS'
9724       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9725 c      DIMENSION AI3(2,2)
9726 c        DO  J=1,2
9727 c          A3IJ=0.0
9728 c          DO K=1,2
9729 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9730 c          enddo
9731 c          A3(I,J)=A3IJ
9732 c       enddo
9733 c      enddo
9734
9735       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9736       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9737       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9738       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9739
9740       A3(1,1)=AI3_11
9741       A3(2,1)=AI3_21
9742       A3(1,2)=AI3_12
9743       A3(2,2)=AI3_22
9744       END
9745
9746 c-------------------------------------------------------------------------
9747       double precision function scalar2(u,v)
9748 !DIR$ INLINEALWAYS scalar2
9749       implicit none
9750       double precision u(2),v(2)
9751       double precision sc
9752       integer i
9753       scalar2=u(1)*v(1)+u(2)*v(2)
9754       return
9755       end
9756
9757 C-----------------------------------------------------------------------------
9758
9759       subroutine transpose2(a,at)
9760 !DIR$ INLINEALWAYS transpose2
9761 #ifndef OSF
9762 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9763 #endif
9764       implicit none
9765       double precision a(2,2),at(2,2)
9766       at(1,1)=a(1,1)
9767       at(1,2)=a(2,1)
9768       at(2,1)=a(1,2)
9769       at(2,2)=a(2,2)
9770       return
9771       end
9772 c--------------------------------------------------------------------------
9773       subroutine transpose(n,a,at)
9774       implicit none
9775       integer n,i,j
9776       double precision a(n,n),at(n,n)
9777       do i=1,n
9778         do j=1,n
9779           at(j,i)=a(i,j)
9780         enddo
9781       enddo
9782       return
9783       end
9784 C---------------------------------------------------------------------------
9785       subroutine prodmat3(a1,a2,kk,transp,prod)
9786 !DIR$ INLINEALWAYS prodmat3
9787 #ifndef OSF
9788 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9789 #endif
9790       implicit none
9791       integer i,j
9792       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9793       logical transp
9794 crc      double precision auxmat(2,2),prod_(2,2)
9795
9796       if (transp) then
9797 crc        call transpose2(kk(1,1),auxmat(1,1))
9798 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9799 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9800         
9801            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9802      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9803            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9804      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9805            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9806      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9807            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9808      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9809
9810       else
9811 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9812 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9813
9814            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9815      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9816            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9817      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9818            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9819      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9820            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9821      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9822
9823       endif
9824 c      call transpose2(a2(1,1),a2t(1,1))
9825
9826 crc      print *,transp
9827 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9828 crc      print *,((prod(i,j),i=1,2),j=1,2)
9829
9830       return
9831       end
9832