3 C Build the virtual polypeptide chain. Side-chain centroids are moveable.
6 implicit real*8 (a-h,o-z)
12 include 'COMMON.IOUNITS'
13 include 'COMMON.NAMES'
14 include 'COMMON.INTERACT'
16 C Set lprn=.true. for debugging
19 C Define the origin and orientation of the coordinate system and locate the
20 C first three CA's and SC(2).
24 * Build the alpha-carbon chain.
27 call locate_next_res(i)
30 C First and last SC must coincide with the corresponding CA.
34 dc_norm(j,nres+1)=0.0D0
36 dc_norm(j,nres+nres)=0.0D0
38 c(j,nres+nres)=c(j,nres)
46 write (iout,'(/a)') 'Recalculated internal coordinates'
49 c(j,maxres2)=0.5D0*(c(j,i-1)+c(j,i+1))
52 if (i.gt.3) be=rad2deg*beta(i-3,i-2,i-1,i)
53 be1=rad2deg*beta(nres+i,i,maxres2,i+1)
55 if (i.gt.2) alfai=rad2deg*alpha(i-2,i-1,i)
56 write (iout,1212) restyp(itype(i)),i,dist(i-1,i),
57 & alfai,be,dist(nres+i,i),rad2deg*alpha(nres+i,i,maxres2),be1
59 1212 format (a3,'(',i3,')',2(f10.5,2f10.2))
65 c-------------------------------------------------------------------------
68 C Define the origin and orientation of the coordinate system and locate
69 C the first three atoms.
71 implicit real*8 (a-h,o-z)
73 include 'COMMON.CHAIN'
74 include 'COMMON.LOCAL'
128 dc_norm(j,2)=prod(j,1,2)
129 dc(j,2)=vbld(3)*prod(j,1,2)
130 c(j,3)=c(j,2)+dc(j,2)
132 call locate_side_chain(2)
135 c-----------------------------------------------------------------------------
136 subroutine locate_next_res(i)
138 C Locate CA(i) and SC(i-1)
140 implicit real*8 (a-h,o-z)
142 include 'COMMON.CHAIN'
143 include 'COMMON.LOCAL'
146 include 'COMMON.IOUNITS'
147 include 'COMMON.NAMES'
148 include 'COMMON.INTERACT'
150 C Define the rotation matrices corresponding to CA(i)
154 if (theti.ne.theti) theti=100.0
156 if (phii.ne.phii) phii=180.0
165 * Define the matrices of the rotation about the virtual-bond valence angles
166 * theta, T(i,j,k), virtual-bond dihedral angles gamma (miscalled PHI in this
167 * program), R(i,j,k), and, the cumulative matrices of rotation RT
189 rt(2,1,i-2)=sint*cosphi
190 rt(2,2,i-2)=-cost*cosphi
192 rt(3,1,i-2)=-sint*sinphi
193 rt(3,2,i-2)=cost*sinphi
195 call matmult(prod(1,1,i-2),rt(1,1,i-2),prod(1,1,i-1))
197 dc_norm(j,i-1)=prod(j,1,i-1)
198 dc(j,i-1)=vbld(i)*prod(j,1,i-1)
199 c(j,i)=c(j,i-1)+dc(j,i-1)
201 cd print '(2i3,2(3f10.5,5x))', i-1,i,(dc(j,i-1),j=1,3),(c(j,i),j=1,3)
203 C Now calculate the coordinates of SC(i-1)
205 call locate_side_chain(i-1)
208 c-----------------------------------------------------------------------------
209 subroutine locate_side_chain(i)
211 C Locate the side-chain centroid i, 1 < i < NRES. Put in C(*,NRES+i).
213 implicit real*8 (a-h,o-z)
215 include 'COMMON.CHAIN'
216 include 'COMMON.LOCAL'
219 include 'COMMON.IOUNITS'
220 include 'COMMON.NAMES'
221 include 'COMMON.INTERACT'
225 c dsci_inv=dsc_inv(itype(i))
227 dsci_inv=vbld_inv(i+nres)
231 if (alphi.ne.alphi) alphi=100.0
232 if (omegi.ne.omegi) omegi=-100.0
242 yp= dsci*sinalphi*cosomegi
243 zp=-dsci*sinalphi*sinomegi
244 * Now we have to rotate the coordinate system by 180-theta(i)/2 so as to get its
245 * X-axis aligned with the vector DC(*,i)
246 theta2=pi-0.5D0*theta(i+1)
249 xx(1)= xp*cost2+yp*sint2
250 xx(2)=-xp*sint2+yp*cost2
252 cd print '(a3,i3,3f10.5,5x,3f10.5)',restyp(itype(i)),i,
253 cd & xp,yp,zp,(xx(k),k=1,3)
257 * Bring the SC vectors to the common coordinate system.
259 xx(2)=xloc(2,i)*r(2,2,i-1)+xloc(3,i)*r(2,3,i-1)
260 xx(3)=xloc(2,i)*r(3,2,i-1)+xloc(3,i)*r(3,3,i-1)
267 rj=rj+prod(j,k,i-1)*xx(k)
270 dc_norm(j,nres+i)=rj*dsci_inv
271 c(j,nres+i)=c(j,i)+rj