1 subroutine etotal(energia,fact)
2 implicit real*8 (a-h,o-z)
8 cMS$ATTRIBUTES C :: proc_proc
11 include 'COMMON.IOUNITS'
12 double precision energia(0:max_ene),energia1(0:max_ene+1)
18 include 'COMMON.FFIELD'
19 include 'COMMON.DERIV'
20 include 'COMMON.INTERACT'
21 include 'COMMON.SBRIDGE'
22 include 'COMMON.CHAIN'
23 include 'COMMON.CONTROL'
25 double precision fact(5)
26 cd write(iout, '(a,i2)')'Calling etotal ipot=',ipot
27 cd print *,'nnt=',nnt,' nct=',nct
29 C Compute the side-chain and electrostatic interaction energy
31 goto (101,102,103,104,105) ipot
32 C Lennard-Jones potential.
34 cd print '(a)','Exit ELJ'
36 C Lennard-Jones-Kihara potential (shifted).
39 C Berne-Pechukas potential (dilated LJ, angular dependence).
42 C Gay-Berne potential (shifted LJ, angular dependence).
45 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
48 C Calculate electrostatic (H-bonding) energy of the main chain.
50 106 call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
52 C Calculate excluded-volume interaction energy between peptide groups
55 call escp(evdw2,evdw2_14)
57 c Calculate the bond-stretching energy
60 c write (iout,*) "estr",estr
62 C Calculate the disulfide-bridge and other energy and the contributions
63 C from other distance constraints.
64 cd print *,'Calling EHPB'
66 cd print *,'EHPB exitted succesfully.'
68 C Calculate the virtual-bond-angle energy.
71 cd print *,'Bend energy finished.'
73 C Calculate the SC local energy.
76 cd print *,'SCLOC energy finished.'
78 C Calculate the virtual-bond torsional energy.
80 cd print *,'nterm=',nterm
81 call etor(etors,edihcnstr,fact(1))
83 C 6/23/01 Calculate double-torsional energy
85 call etor_d(etors_d,fact(2))
87 C 21/5/07 Calculate local sicdechain correlation energy
89 call eback_sc_corr(esccor,fact(1))
91 C 12/1/95 Multi-body terms
95 if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0
96 & .or. wturn6.gt.0.0d0) then
97 c print *,"calling multibody_eello"
98 call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
99 c write (*,*) 'n_corr=',n_corr,' n_corr1=',n_corr1
100 c print *,ecorr,ecorr5,ecorr6,eturn6
102 if (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) then
103 call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
106 c write(iout,*) "TEST_ENE",constr_homology
107 if (constr_homology.ge.1) then
108 call e_modeller(ehomology_constr)
110 ehomology_constr=0.0d0
112 c write(iout,*) "TEST_ENE",ehomology_constr
114 C BARTEK for dfa test!
115 if (wdfa_dist.gt.0) call edfad(edfadis)
116 c print*, 'edfad is finished!', edfadis
117 if (wdfa_tor.gt.0) call edfat(edfator)
118 c print*, 'edfat is finished!', edfator
119 if (wdfa_nei.gt.0) call edfan(edfanei)
120 c print*, 'edfan is finished!', edfanei
121 if (wdfa_beta.gt.0) call edfab(edfabet)
122 c print*, 'edfab is finished!', edfabet
125 C call multibody(ecorr)
130 etot=wsc*evdw+wscp*evdw2+welec*fact(1)*ees+wvdwpp*evdw1
131 & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
132 & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5
133 & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4
134 & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
135 & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
136 & +wbond*estr+wsccor*fact(1)*esccor+ehomology_constr
137 & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
140 etot=wsc*evdw+wscp*evdw2+welec*fact(1)*(ees+evdw1)
141 & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
142 & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5
143 & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4
144 & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
145 & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
146 & +wbond*estr+wsccor*fact(1)*esccor+ehomology_constr
147 & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
153 energia(2)=evdw2-evdw2_14
170 energia(8)=eello_turn3
171 energia(9)=eello_turn4
180 energia(20)=edihcnstr
181 energia(21)=ehomology_constr
186 cc if (dyn_ss) call dyn_set_nss
190 idumm=proc_proc(etot,i)
192 c call proc_proc(etot,i)
194 if(i.eq.1)energia(0)=1.0d+99
200 C Sum up the components of the Cartesian gradient.
205 gradc(j,i,icg)=wsc*gvdwc(j,i)+wscp*gvdwc_scp(j,i)+
206 & welec*fact(1)*gelc(j,i)+wvdwpp*gvdwpp(j,i)+
208 & wstrain*ghpbc(j,i)+
209 & wcorr*fact(3)*gradcorr(j,i)+
210 & wel_loc*fact(2)*gel_loc(j,i)+
211 & wturn3*fact(2)*gcorr3_turn(j,i)+
212 & wturn4*fact(3)*gcorr4_turn(j,i)+
213 & wcorr5*fact(4)*gradcorr5(j,i)+
214 & wcorr6*fact(5)*gradcorr6(j,i)+
215 & wturn6*fact(5)*gcorr6_turn(j,i)+
216 & wsccor*fact(2)*gsccorc(j,i)+
217 & wdfa_dist*gdfad(j,i)+
218 & wdfa_tor*gdfat(j,i)+
219 & wdfa_nei*gdfan(j,i)+
220 & wdfa_beta*gdfab(j,i)
221 gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
223 & wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)
228 gradc(j,i,icg)=wsc*gvdwc(j,i)+wscp*gvdwc_scp(j,i)+
229 & welec*fact(1)*gelc(j,i)+wstrain*ghpbc(j,i)+
231 & wcorr*fact(3)*gradcorr(j,i)+
232 & wel_loc*fact(2)*gel_loc(j,i)+
233 & wturn3*fact(2)*gcorr3_turn(j,i)+
234 & wturn4*fact(3)*gcorr4_turn(j,i)+
235 & wcorr5*fact(4)*gradcorr5(j,i)+
236 & wcorr6*fact(5)*gradcorr6(j,i)+
237 & wturn6*fact(5)*gcorr6_turn(j,i)+
238 & wsccor*fact(2)*gsccorc(j,i)+
239 & wdfa_dist*gdfad(j,i)+
240 & wdfa_tor*gdfat(j,i)+
241 & wdfa_nei*gdfan(j,i)+
242 & wdfa_beta*gdfab(j,i)
243 gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
245 & wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)
248 cd print '(i3,9(1pe12.4))',i,(gvdwc(k,i),k=1,3),(gelc(k,i),k=1,3),
249 cd & (gradc(k,i),k=1,3)
254 cd write (iout,*) i,g_corr5_loc(i)
255 gloc(i,icg)=gloc(i,icg)+wcorr*fact(3)*gcorr_loc(i)
256 & +wcorr5*fact(4)*g_corr5_loc(i)
257 & +wcorr6*fact(5)*g_corr6_loc(i)
258 & +wturn4*fact(3)*gel_loc_turn4(i)
259 & +wturn3*fact(2)*gel_loc_turn3(i)
260 & +wturn6*fact(5)*gel_loc_turn6(i)
261 & +wel_loc*fact(2)*gel_loc_loc(i)
262 & +wsccor*fact(1)*gsccor_loc(i)
265 c call enerprint(energia(0),fact)
270 C------------------------------------------------------------------------
271 subroutine enerprint(energia,fact)
272 implicit real*8 (a-h,o-z)
274 include 'sizesclu.dat'
275 include 'COMMON.IOUNITS'
276 include 'COMMON.FFIELD'
277 include 'COMMON.SBRIDGE'
278 double precision energia(0:max_ene),fact(5)
282 evdw2=energia(2)+energia(17)
294 eello_turn3=energia(8)
295 eello_turn4=energia(9)
296 eello_turn6=energia(10)
303 edihcnstr=energia(20)
305 ehomology_constr=energia(21)
311 write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),evdw1,
313 & estr,wbond,ebe,wang,escloc,wscloc,etors,wtor*fact(1),
314 & etors_d,wtor_d*fact(2),ehpb,wstrain,
315 & ecorr,wcorr*fact(3),ecorr5,wcorr5*fact(4),ecorr6,wcorr6*fact(5),
316 & eel_loc,wel_loc*fact(2),eello_turn3,wturn3*fact(2),
317 & eello_turn4,wturn4*fact(3),eello_turn6,wturn6*fact(5),
318 & esccor,wsccor*fact(1),edihcnstr,ehomology_constr,ebr*nss,
319 & edfadis,wdfa_dist,edfator,wdfa_tor,edfanei,wdfa_nei,edfabet,
321 10 format (/'Virtual-chain energies:'//
322 & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
323 & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
324 & 'EES= ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p elec)'/
325 & 'EVDWPP=',1pE16.6,' WEIGHT=',1pD16.6,' (p-p VDW)'/
326 & 'ESTR= ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
327 & 'EBE= ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
328 & 'ESC= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
329 & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
330 & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
331 & 'EHBP= ',1pE16.6,' WEIGHT=',1pD16.6,
332 & ' (SS bridges & dist. cnstr.)'/
333 & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
334 & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
335 & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
336 & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
337 & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
338 & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
339 & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
340 & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
341 & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
342 & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/
343 & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
344 & 'EDFAD= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA distance energy)'/
345 & 'EDFAT= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA torsion energy)'/
346 & 'EDFAN= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA NCa energy)'/
347 & 'EDFAB= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA Beta energy)'/
348 & 'ETOT= ',1pE16.6,' (total)')
350 write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),estr,wbond,
351 & ebe,wang,escloc,wscloc,etors,wtor*fact(1),etors_d,wtor_d*fact2,
352 & ehpb,wstrain,ecorr,wcorr*fact(3),ecorr5,wcorr5*fact(4),
353 & ecorr6,wcorr6*fact(5),eel_loc,wel_loc*fact(2),
354 & eello_turn3,wturn3*fact(2),eello_turn4,wturn4*fact(3),
355 & eello_turn6,wturn6*fact(5),esccor*fact(1),wsccor,
356 & edihcnstr,ehomology_constr,ebr*nss,
357 & edfadis,wdfa_dist,edfator,wdfa_tor,edfanei,wdfa_nei,edfabet,
359 10 format (/'Virtual-chain energies:'//
360 & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
361 & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
362 & 'EES= ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
363 & 'ESTR= ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
364 & 'EBE= ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
365 & 'ESC= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
366 & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
367 & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
368 & 'EHBP= ',1pE16.6,' WEIGHT=',1pD16.6,
369 & ' (SS bridges & dist. cnstr.)'/
370 & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
371 & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
372 & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
373 & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
374 & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
375 & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
376 & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
377 & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
378 & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
379 & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/
380 & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
381 & 'EDFAD= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA distance energy)'/
382 & 'EDFAT= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA torsion energy)'/
383 & 'EDFAN= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA NCa energy)'/
384 & 'EDFAB= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA Beta energy)'/
385 & 'ETOT= ',1pE16.6,' (total)')
389 C-----------------------------------------------------------------------
392 C This subroutine calculates the interaction energy of nonbonded side chains
393 C assuming the LJ potential of interaction.
395 implicit real*8 (a-h,o-z)
397 include 'sizesclu.dat'
398 c include "DIMENSIONS.COMPAR"
399 parameter (accur=1.0d-10)
402 include 'COMMON.LOCAL'
403 include 'COMMON.CHAIN'
404 include 'COMMON.DERIV'
405 include 'COMMON.INTERACT'
406 include 'COMMON.TORSION'
407 include 'COMMON.SBRIDGE'
408 include 'COMMON.NAMES'
409 include 'COMMON.IOUNITS'
410 include 'COMMON.CONTACTS'
414 cd print *,'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
425 C Calculate SC interaction energy.
428 cd write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
429 cd & 'iend=',iend(i,iint)
430 do j=istart(i,iint),iend(i,iint)
435 C Change 12/1/95 to calculate four-body interactions
436 rij=xj*xj+yj*yj+zj*zj
438 c write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
439 eps0ij=eps(itypi,itypj)
441 e1=fac*fac*aa(itypi,itypj)
442 e2=fac*bb(itypi,itypj)
444 ij=icant(itypi,itypj)
445 cd sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
446 cd epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
447 cd write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
448 cd & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
449 cd & bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
450 cd & (c(k,i),k=1,3),(c(k,j),k=1,3)
454 C Calculate the components of the gradient in DC and X
456 fac=-rrij*(e1+evdwij)
461 gvdwx(k,i)=gvdwx(k,i)-gg(k)
462 gvdwx(k,j)=gvdwx(k,j)+gg(k)
466 gvdwc(l,k)=gvdwc(l,k)+gg(l)
471 C 12/1/95, revised on 5/20/97
473 C Calculate the contact function. The ith column of the array JCONT will
474 C contain the numbers of atoms that make contacts with the atom I (of numbers
475 C greater than I). The arrays FACONT and GACONT will contain the values of
476 C the contact function and its derivative.
478 C Uncomment next line, if the correlation interactions include EVDW explicitly.
479 c if (j.gt.i+1 .and. evdwij.le.0.0D0) then
480 C Uncomment next line, if the correlation interactions are contact function only
481 if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
483 sigij=sigma(itypi,itypj)
484 r0ij=rs0(itypi,itypj)
486 C Check whether the SC's are not too far to make a contact.
489 call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
490 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
492 if (fcont.gt.0.0D0) then
493 C If the SC-SC distance if close to sigma, apply spline.
494 cAdam call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
495 cAdam & fcont1,fprimcont1)
496 cAdam fcont1=1.0d0-fcont1
497 cAdam if (fcont1.gt.0.0d0) then
498 cAdam fprimcont=fprimcont*fcont1+fcont*fprimcont1
499 cAdam fcont=fcont*fcont1
501 C Uncomment following 4 lines to have the geometric average of the epsilon0's
502 cga eps0ij=1.0d0/dsqrt(eps0ij)
504 cga gg(k)=gg(k)*eps0ij
506 cga eps0ij=-evdwij*eps0ij
507 C Uncomment for AL's type of SC correlation interactions.
509 num_conti=num_conti+1
511 facont(num_conti,i)=fcont*eps0ij
512 fprimcont=eps0ij*fprimcont/rij
514 cAdam gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
515 cAdam gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
516 cAdam gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
517 C Uncomment following 3 lines for Skolnick's type of SC correlation.
518 gacont(1,num_conti,i)=-fprimcont*xj
519 gacont(2,num_conti,i)=-fprimcont*yj
520 gacont(3,num_conti,i)=-fprimcont*zj
521 cd write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
522 cd write (iout,'(2i3,3f10.5)')
523 cd & i,j,(gacont(kk,num_conti,i),kk=1,3)
529 num_cont(i)=num_conti
534 gvdwc(j,i)=expon*gvdwc(j,i)
535 gvdwx(j,i)=expon*gvdwx(j,i)
539 C******************************************************************************
543 C To save time, the factor of EXPON has been extracted from ALL components
544 C of GVDWC and GRADX. Remember to multiply them by this factor before further
547 C******************************************************************************
550 C-----------------------------------------------------------------------------
551 subroutine eljk(evdw)
553 C This subroutine calculates the interaction energy of nonbonded side chains
554 C assuming the LJK potential of interaction.
556 implicit real*8 (a-h,o-z)
558 include 'sizesclu.dat'
559 c include "DIMENSIONS.COMPAR"
562 include 'COMMON.LOCAL'
563 include 'COMMON.CHAIN'
564 include 'COMMON.DERIV'
565 include 'COMMON.INTERACT'
566 include 'COMMON.IOUNITS'
567 include 'COMMON.NAMES'
572 c print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
581 C Calculate SC interaction energy.
584 do j=istart(i,iint),iend(i,iint)
589 rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
591 e_augm=augm(itypi,itypj)*fac_augm
594 r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
595 fac=r_shift_inv**expon
596 e1=fac*fac*aa(itypi,itypj)
597 e2=fac*bb(itypi,itypj)
599 ij=icant(itypi,itypj)
600 cd sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
601 cd epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
602 cd write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
603 cd & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
604 cd & bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
605 cd & sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
606 cd & (c(k,i),k=1,3),(c(k,j),k=1,3)
610 C Calculate the components of the gradient in DC and X
612 fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
617 gvdwx(k,i)=gvdwx(k,i)-gg(k)
618 gvdwx(k,j)=gvdwx(k,j)+gg(k)
622 gvdwc(l,k)=gvdwc(l,k)+gg(l)
632 gvdwc(j,i)=expon*gvdwc(j,i)
633 gvdwx(j,i)=expon*gvdwx(j,i)
639 C-----------------------------------------------------------------------------
642 C This subroutine calculates the interaction energy of nonbonded side chains
643 C assuming the Berne-Pechukas potential of interaction.
645 implicit real*8 (a-h,o-z)
647 include 'sizesclu.dat'
648 c include "DIMENSIONS.COMPAR"
651 include 'COMMON.LOCAL'
652 include 'COMMON.CHAIN'
653 include 'COMMON.DERIV'
654 include 'COMMON.NAMES'
655 include 'COMMON.INTERACT'
656 include 'COMMON.IOUNITS'
657 include 'COMMON.CALC'
659 c double precision rrsave(maxdim)
664 c print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
666 c if (icall.eq.0) then
678 dxi=dc_norm(1,nres+i)
679 dyi=dc_norm(2,nres+i)
680 dzi=dc_norm(3,nres+i)
681 dsci_inv=vbld_inv(i+nres)
683 C Calculate SC interaction energy.
686 do j=istart(i,iint),iend(i,iint)
689 dscj_inv=vbld_inv(j+nres)
690 chi1=chi(itypi,itypj)
691 chi2=chi(itypj,itypi)
698 alf12=0.5D0*(alf1+alf2)
699 C For diagnostics only!!!
712 dxj=dc_norm(1,nres+j)
713 dyj=dc_norm(2,nres+j)
714 dzj=dc_norm(3,nres+j)
715 rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
716 cd if (icall.eq.0) then
722 C Calculate the angle-dependent terms of energy & contributions to derivatives.
724 C Calculate whole angle-dependent part of epsilon and contributions
726 fac=(rrij*sigsq)**expon2
727 e1=fac*fac*aa(itypi,itypj)
728 e2=fac*bb(itypi,itypj)
729 evdwij=eps1*eps2rt*eps3rt*(e1+e2)
730 eps2der=evdwij*eps3rt
731 eps3der=evdwij*eps2rt
732 evdwij=evdwij*eps2rt*eps3rt
733 ij=icant(itypi,itypj)
734 aux=eps1*eps2rt**2*eps3rt**2
738 sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
739 epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
740 cd write (iout,'(2(a3,i3,2x),15(0pf7.3))')
741 cd & restyp(itypi),i,restyp(itypj),j,
742 cd & epsi,sigm,chi1,chi2,chip1,chip2,
743 cd & eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
744 cd & om1,om2,om12,1.0D0/dsqrt(rrij),
747 C Calculate gradient components.
748 e1=e1*eps1*eps2rt**2*eps3rt**2
749 fac=-expon*(e1+evdwij)
752 C Calculate radial part of the gradient
756 C Calculate the angular part of the gradient and sum add the contributions
757 C to the appropriate components of the Cartesian gradient.
766 C-----------------------------------------------------------------------------
769 C This subroutine calculates the interaction energy of nonbonded side chains
770 C assuming the Gay-Berne potential of interaction.
772 implicit real*8 (a-h,o-z)
774 include 'sizesclu.dat'
775 c include "DIMENSIONS.COMPAR"
778 include 'COMMON.LOCAL'
779 include 'COMMON.CHAIN'
780 include 'COMMON.DERIV'
781 include 'COMMON.NAMES'
782 include 'COMMON.INTERACT'
783 include 'COMMON.IOUNITS'
784 include 'COMMON.CALC'
785 include 'COMMON.SBRIDGE'
791 c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
794 c if (icall.gt.0) lprn=.true.
802 dxi=dc_norm(1,nres+i)
803 dyi=dc_norm(2,nres+i)
804 dzi=dc_norm(3,nres+i)
805 dsci_inv=vbld_inv(i+nres)
807 C Calculate SC interaction energy.
810 do j=istart(i,iint),iend(i,iint)
811 IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
812 call dyn_ssbond_ene(i,j,evdwij)
814 c if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)')
815 c & 'evdw',i,j,evdwij,' ss'
819 dscj_inv=vbld_inv(j+nres)
820 sig0ij=sigma(itypi,itypj)
821 chi1=chi(itypi,itypj)
822 chi2=chi(itypj,itypi)
829 alf12=0.5D0*(alf1+alf2)
830 C For diagnostics only!!!
843 dxj=dc_norm(1,nres+j)
844 dyj=dc_norm(2,nres+j)
845 dzj=dc_norm(3,nres+j)
846 c write (iout,*) i,j,xj,yj,zj
847 rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
849 C Calculate angle-dependent terms of energy and contributions to their
853 sig=sig0ij*dsqrt(sigsq)
854 rij_shift=1.0D0/rij-sig+sig0ij
855 C I hate to put IF's in the loops, but here don't have another choice!!!!
856 if (rij_shift.le.0.0D0) then
861 c---------------------------------------------------------------
862 rij_shift=1.0D0/rij_shift
864 e1=fac*fac*aa(itypi,itypj)
865 e2=fac*bb(itypi,itypj)
866 evdwij=eps1*eps2rt*eps3rt*(e1+e2)
867 eps2der=evdwij*eps3rt
868 eps3der=evdwij*eps2rt
869 evdwij=evdwij*eps2rt*eps3rt
871 ij=icant(itypi,itypj)
872 aux=eps1*eps2rt**2*eps3rt**2
873 c write (iout,*) "i",i," j",j," itypi",itypi," itypj",itypj,
874 c & " ij",ij," eneps",aux*e1/dabs(eps(itypi,itypj)),
875 c & aux*e2/eps(itypi,itypj)
877 sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
878 epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
879 write (iout,'(2(a3,i3,2x),17(0pf7.3))')
880 & restyp(itypi),i,restyp(itypj),j,
881 & epsi,sigm,chi1,chi2,chip1,chip2,
882 & eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
883 & om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
887 C Calculate gradient components.
888 e1=e1*eps1*eps2rt**2*eps3rt**2
889 fac=-expon*(e1+evdwij)*rij_shift
892 C Calculate the radial part of the gradient
896 C Calculate angular part of the gradient.
905 C-----------------------------------------------------------------------------
906 subroutine egbv(evdw)
908 C This subroutine calculates the interaction energy of nonbonded side chains
909 C assuming the Gay-Berne-Vorobjev potential of interaction.
911 implicit real*8 (a-h,o-z)
913 include 'sizesclu.dat'
914 c include "DIMENSIONS.COMPAR"
917 include 'COMMON.LOCAL'
918 include 'COMMON.CHAIN'
919 include 'COMMON.DERIV'
920 include 'COMMON.NAMES'
921 include 'COMMON.INTERACT'
922 include 'COMMON.IOUNITS'
923 include 'COMMON.CALC'
924 include 'COMMON.SBRIDGE'
930 c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
933 c if (icall.gt.0) lprn=.true.
941 dxi=dc_norm(1,nres+i)
942 dyi=dc_norm(2,nres+i)
943 dzi=dc_norm(3,nres+i)
944 dsci_inv=vbld_inv(i+nres)
946 C Calculate SC interaction energy.
949 do j=istart(i,iint),iend(i,iint)
950 C in case of diagnostics write (iout,*) "TU SZUKAJ",i,j,dyn_ss_mask(i),dyn_ss_mask(j)
951 IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
952 call dyn_ssbond_ene(i,j,evdwij)
954 c if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)')
955 c & 'evdw',i,j,evdwij,' ss'
959 dscj_inv=vbld_inv(j+nres)
960 sig0ij=sigma(itypi,itypj)
962 chi1=chi(itypi,itypj)
963 chi2=chi(itypj,itypi)
970 alf12=0.5D0*(alf1+alf2)
971 C For diagnostics only!!!
984 dxj=dc_norm(1,nres+j)
985 dyj=dc_norm(2,nres+j)
986 dzj=dc_norm(3,nres+j)
987 rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
989 C Calculate angle-dependent terms of energy and contributions to their
993 sig=sig0ij*dsqrt(sigsq)
994 rij_shift=1.0D0/rij-sig+r0ij
995 C I hate to put IF's in the loops, but here don't have another choice!!!!
996 if (rij_shift.le.0.0D0) then
1001 c---------------------------------------------------------------
1002 rij_shift=1.0D0/rij_shift
1003 fac=rij_shift**expon
1004 e1=fac*fac*aa(itypi,itypj)
1005 e2=fac*bb(itypi,itypj)
1006 evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1007 eps2der=evdwij*eps3rt
1008 eps3der=evdwij*eps2rt
1009 fac_augm=rrij**expon
1010 e_augm=augm(itypi,itypj)*fac_augm
1011 evdwij=evdwij*eps2rt*eps3rt
1012 evdw=evdw+evdwij+e_augm
1013 ij=icant(itypi,itypj)
1014 aux=eps1*eps2rt**2*eps3rt**2
1016 c sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1017 c epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1018 c write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1019 c & restyp(itypi),i,restyp(itypj),j,
1020 c & epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1021 c & chi1,chi2,chip1,chip2,
1022 c & eps1,eps2rt**2,eps3rt**2,
1023 c & om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1027 C Calculate gradient components.
1028 e1=e1*eps1*eps2rt**2*eps3rt**2
1029 fac=-expon*(e1+evdwij)*rij_shift
1031 fac=rij*fac-2*expon*rrij*e_augm
1032 C Calculate the radial part of the gradient
1036 C Calculate angular part of the gradient.
1045 C-----------------------------------------------------------------------------
1046 subroutine sc_angular
1047 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1048 C om12. Called by ebp, egb, and egbv.
1050 include 'COMMON.CALC'
1054 om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1055 om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1056 om12=dxi*dxj+dyi*dyj+dzi*dzj
1058 C Calculate eps1(om12) and its derivative in om12
1059 faceps1=1.0D0-om12*chiom12
1060 faceps1_inv=1.0D0/faceps1
1061 eps1=dsqrt(faceps1_inv)
1062 C Following variable is eps1*deps1/dom12
1063 eps1_om12=faceps1_inv*chiom12
1064 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1069 facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1070 sigsq=1.0D0-facsig*faceps1_inv
1071 sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1072 sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1073 sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1074 C Calculate eps2 and its derivatives in om1, om2, and om12.
1077 chipom12=chip12*om12
1078 facp=1.0D0-om12*chipom12
1080 facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1081 C Following variable is the square root of eps2
1082 eps2rt=1.0D0-facp1*facp_inv
1083 C Following three variables are the derivatives of the square root of eps
1084 C in om1, om2, and om12.
1085 eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1086 eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1087 eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2
1088 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1089 eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12
1090 C Calculate whole angle-dependent part of epsilon and contributions
1091 C to its derivatives
1094 C----------------------------------------------------------------------------
1096 implicit real*8 (a-h,o-z)
1097 include 'DIMENSIONS'
1098 include 'sizesclu.dat'
1099 include 'COMMON.CHAIN'
1100 include 'COMMON.DERIV'
1101 include 'COMMON.CALC'
1102 double precision dcosom1(3),dcosom2(3)
1103 eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1104 eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1105 eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1106 & -2.0D0*alf12*eps3der+sigder*sigsq_om12
1108 dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1109 dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1112 gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1115 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1116 & +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1117 & +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1118 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1119 & +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1120 & +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1123 C Calculate the components of the gradient in DC and X
1127 gvdwc(l,k)=gvdwc(l,k)+gg(l)
1132 c------------------------------------------------------------------------------
1133 subroutine vec_and_deriv
1134 implicit real*8 (a-h,o-z)
1135 include 'DIMENSIONS'
1136 include 'sizesclu.dat'
1137 include 'COMMON.IOUNITS'
1138 include 'COMMON.GEO'
1139 include 'COMMON.VAR'
1140 include 'COMMON.LOCAL'
1141 include 'COMMON.CHAIN'
1142 include 'COMMON.VECTORS'
1143 include 'COMMON.DERIV'
1144 include 'COMMON.INTERACT'
1145 dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
1146 C Compute the local reference systems. For reference system (i), the
1147 C X-axis points from CA(i) to CA(i+1), the Y axis is in the
1148 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
1150 c if (i.eq.nres-1 .or. itel(i+1).eq.0) then
1151 if (i.eq.nres-1) then
1152 C Case of the last full residue
1153 C Compute the Z-axis
1154 call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
1155 costh=dcos(pi-theta(nres))
1156 fac=1.0d0/dsqrt(1.0d0-costh*costh)
1161 C Compute the derivatives of uz
1163 uzder(2,1,1)=-dc_norm(3,i-1)
1164 uzder(3,1,1)= dc_norm(2,i-1)
1165 uzder(1,2,1)= dc_norm(3,i-1)
1167 uzder(3,2,1)=-dc_norm(1,i-1)
1168 uzder(1,3,1)=-dc_norm(2,i-1)
1169 uzder(2,3,1)= dc_norm(1,i-1)
1172 uzder(2,1,2)= dc_norm(3,i)
1173 uzder(3,1,2)=-dc_norm(2,i)
1174 uzder(1,2,2)=-dc_norm(3,i)
1176 uzder(3,2,2)= dc_norm(1,i)
1177 uzder(1,3,2)= dc_norm(2,i)
1178 uzder(2,3,2)=-dc_norm(1,i)
1181 C Compute the Y-axis
1184 uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
1187 C Compute the derivatives of uy
1190 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
1191 & -dc_norm(k,i)*dc_norm(j,i-1)
1192 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1194 uyder(j,j,1)=uyder(j,j,1)-costh
1195 uyder(j,j,2)=1.0d0+uyder(j,j,2)
1200 uygrad(l,k,j,i)=uyder(l,k,j)
1201 uzgrad(l,k,j,i)=uzder(l,k,j)
1205 call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1206 call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1207 call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1208 call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1212 C Compute the Z-axis
1213 call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
1214 costh=dcos(pi-theta(i+2))
1215 fac=1.0d0/dsqrt(1.0d0-costh*costh)
1220 C Compute the derivatives of uz
1222 uzder(2,1,1)=-dc_norm(3,i+1)
1223 uzder(3,1,1)= dc_norm(2,i+1)
1224 uzder(1,2,1)= dc_norm(3,i+1)
1226 uzder(3,2,1)=-dc_norm(1,i+1)
1227 uzder(1,3,1)=-dc_norm(2,i+1)
1228 uzder(2,3,1)= dc_norm(1,i+1)
1231 uzder(2,1,2)= dc_norm(3,i)
1232 uzder(3,1,2)=-dc_norm(2,i)
1233 uzder(1,2,2)=-dc_norm(3,i)
1235 uzder(3,2,2)= dc_norm(1,i)
1236 uzder(1,3,2)= dc_norm(2,i)
1237 uzder(2,3,2)=-dc_norm(1,i)
1240 C Compute the Y-axis
1243 uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
1246 C Compute the derivatives of uy
1249 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
1250 & -dc_norm(k,i)*dc_norm(j,i+1)
1251 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1253 uyder(j,j,1)=uyder(j,j,1)-costh
1254 uyder(j,j,2)=1.0d0+uyder(j,j,2)
1259 uygrad(l,k,j,i)=uyder(l,k,j)
1260 uzgrad(l,k,j,i)=uzder(l,k,j)
1264 call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1265 call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1266 call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1267 call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1273 vbld_inv_temp(1)=vbld_inv(i+1)
1274 if (i.lt.nres-1) then
1275 vbld_inv_temp(2)=vbld_inv(i+2)
1277 vbld_inv_temp(2)=vbld_inv(i)
1282 uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
1283 uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
1291 C-----------------------------------------------------------------------------
1292 subroutine vec_and_deriv_test
1293 implicit real*8 (a-h,o-z)
1294 include 'DIMENSIONS'
1295 include 'sizesclu.dat'
1296 include 'COMMON.IOUNITS'
1297 include 'COMMON.GEO'
1298 include 'COMMON.VAR'
1299 include 'COMMON.LOCAL'
1300 include 'COMMON.CHAIN'
1301 include 'COMMON.VECTORS'
1302 dimension uyder(3,3,2),uzder(3,3,2)
1303 C Compute the local reference systems. For reference system (i), the
1304 C X-axis points from CA(i) to CA(i+1), the Y axis is in the
1305 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
1307 if (i.eq.nres-1) then
1308 C Case of the last full residue
1309 C Compute the Z-axis
1310 call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
1311 costh=dcos(pi-theta(nres))
1312 fac=1.0d0/dsqrt(1.0d0-costh*costh)
1313 c write (iout,*) 'fac',fac,
1314 c & 1.0d0/dsqrt(scalar(uz(1,i),uz(1,i)))
1315 fac=1.0d0/dsqrt(scalar(uz(1,i),uz(1,i)))
1319 C Compute the derivatives of uz
1321 uzder(2,1,1)=-dc_norm(3,i-1)
1322 uzder(3,1,1)= dc_norm(2,i-1)
1323 uzder(1,2,1)= dc_norm(3,i-1)
1325 uzder(3,2,1)=-dc_norm(1,i-1)
1326 uzder(1,3,1)=-dc_norm(2,i-1)
1327 uzder(2,3,1)= dc_norm(1,i-1)
1330 uzder(2,1,2)= dc_norm(3,i)
1331 uzder(3,1,2)=-dc_norm(2,i)
1332 uzder(1,2,2)=-dc_norm(3,i)
1334 uzder(3,2,2)= dc_norm(1,i)
1335 uzder(1,3,2)= dc_norm(2,i)
1336 uzder(2,3,2)=-dc_norm(1,i)
1338 C Compute the Y-axis
1340 uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
1343 facy=1.0d0/dsqrt(scalar(dc_norm(1,i),dc_norm(1,i))*
1344 & (scalar(dc_norm(1,i-1),dc_norm(1,i-1))**2-
1345 & scalar(dc_norm(1,i),dc_norm(1,i-1))**2))
1347 c uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
1350 & dc_norm(k,i-1)*scalar(dc_norm(1,i),dc_norm(1,i))
1351 & -scalar(dc_norm(1,i),dc_norm(1,i-1))*dc_norm(k,i)
1354 c write (iout,*) 'facy',facy,
1355 c & 1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1356 facy=1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1358 uy(k,i)=facy*uy(k,i)
1360 C Compute the derivatives of uy
1363 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
1364 & -dc_norm(k,i)*dc_norm(j,i-1)
1365 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1367 c uyder(j,j,1)=uyder(j,j,1)-costh
1368 c uyder(j,j,2)=1.0d0+uyder(j,j,2)
1369 uyder(j,j,1)=uyder(j,j,1)
1370 & -scalar(dc_norm(1,i),dc_norm(1,i-1))
1371 uyder(j,j,2)=scalar(dc_norm(1,i),dc_norm(1,i))
1377 uygrad(l,k,j,i)=uyder(l,k,j)
1378 uzgrad(l,k,j,i)=uzder(l,k,j)
1382 call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1383 call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1384 call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1385 call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1388 C Compute the Z-axis
1389 call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
1390 costh=dcos(pi-theta(i+2))
1391 fac=1.0d0/dsqrt(1.0d0-costh*costh)
1392 fac=1.0d0/dsqrt(scalar(uz(1,i),uz(1,i)))
1396 C Compute the derivatives of uz
1398 uzder(2,1,1)=-dc_norm(3,i+1)
1399 uzder(3,1,1)= dc_norm(2,i+1)
1400 uzder(1,2,1)= dc_norm(3,i+1)
1402 uzder(3,2,1)=-dc_norm(1,i+1)
1403 uzder(1,3,1)=-dc_norm(2,i+1)
1404 uzder(2,3,1)= dc_norm(1,i+1)
1407 uzder(2,1,2)= dc_norm(3,i)
1408 uzder(3,1,2)=-dc_norm(2,i)
1409 uzder(1,2,2)=-dc_norm(3,i)
1411 uzder(3,2,2)= dc_norm(1,i)
1412 uzder(1,3,2)= dc_norm(2,i)
1413 uzder(2,3,2)=-dc_norm(1,i)
1415 C Compute the Y-axis
1417 facy=1.0d0/dsqrt(scalar(dc_norm(1,i),dc_norm(1,i))*
1418 & (scalar(dc_norm(1,i+1),dc_norm(1,i+1))**2-
1419 & scalar(dc_norm(1,i),dc_norm(1,i+1))**2))
1421 c uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
1424 & dc_norm(k,i+1)*scalar(dc_norm(1,i),dc_norm(1,i))
1425 & -scalar(dc_norm(1,i),dc_norm(1,i+1))*dc_norm(k,i)
1428 c write (iout,*) 'facy',facy,
1429 c & 1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1430 facy=1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1432 uy(k,i)=facy*uy(k,i)
1434 C Compute the derivatives of uy
1437 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
1438 & -dc_norm(k,i)*dc_norm(j,i+1)
1439 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1441 c uyder(j,j,1)=uyder(j,j,1)-costh
1442 c uyder(j,j,2)=1.0d0+uyder(j,j,2)
1443 uyder(j,j,1)=uyder(j,j,1)
1444 & -scalar(dc_norm(1,i),dc_norm(1,i+1))
1445 uyder(j,j,2)=scalar(dc_norm(1,i),dc_norm(1,i))
1451 uygrad(l,k,j,i)=uyder(l,k,j)
1452 uzgrad(l,k,j,i)=uzder(l,k,j)
1456 call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1457 call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1458 call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1459 call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1466 uygrad(l,k,j,i)=vblinv*uygrad(l,k,j,i)
1467 uzgrad(l,k,j,i)=vblinv*uzgrad(l,k,j,i)
1474 C-----------------------------------------------------------------------------
1475 subroutine check_vecgrad
1476 implicit real*8 (a-h,o-z)
1477 include 'DIMENSIONS'
1478 include 'sizesclu.dat'
1479 include 'COMMON.IOUNITS'
1480 include 'COMMON.GEO'
1481 include 'COMMON.VAR'
1482 include 'COMMON.LOCAL'
1483 include 'COMMON.CHAIN'
1484 include 'COMMON.VECTORS'
1485 dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
1486 dimension uyt(3,maxres),uzt(3,maxres)
1487 dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
1488 double precision delta /1.0d-7/
1491 crc write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
1492 crc write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
1493 crc write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
1494 cd write(iout,'(2i5,2(3f10.5,5x))') i,1,
1495 cd & (dc_norm(if90,i),if90=1,3)
1496 cd write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
1497 cd write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
1498 cd write(iout,'(a)')
1504 uygradt(l,k,j,i)=uygrad(l,k,j,i)
1505 uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
1518 cd write (iout,*) 'i=',i
1520 erij(k)=dc_norm(k,i)
1524 dc_norm(k,i)=erij(k)
1526 dc_norm(j,i)=dc_norm(j,i)+delta
1527 c fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
1529 c dc_norm(k,i)=dc_norm(k,i)/fac
1531 c write (iout,*) (dc_norm(k,i),k=1,3)
1532 c write (iout,*) (erij(k),k=1,3)
1535 uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
1536 uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
1537 uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
1538 uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
1540 c write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)')
1541 c & j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
1542 c & (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
1545 dc_norm(k,i)=erij(k)
1548 cd write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)')
1549 cd & k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
1550 cd & (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
1551 cd write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)')
1552 cd & k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
1553 cd & (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
1554 cd write (iout,'(a)')
1559 C--------------------------------------------------------------------------
1560 subroutine set_matrices
1561 implicit real*8 (a-h,o-z)
1562 include 'DIMENSIONS'
1563 include 'sizesclu.dat'
1564 include 'COMMON.IOUNITS'
1565 include 'COMMON.GEO'
1566 include 'COMMON.VAR'
1567 include 'COMMON.LOCAL'
1568 include 'COMMON.CHAIN'
1569 include 'COMMON.DERIV'
1570 include 'COMMON.INTERACT'
1571 include 'COMMON.CONTACTS'
1572 include 'COMMON.TORSION'
1573 include 'COMMON.VECTORS'
1574 include 'COMMON.FFIELD'
1575 double precision auxvec(2),auxmat(2,2)
1577 C Compute the virtual-bond-torsional-angle dependent quantities needed
1578 C to calculate the el-loc multibody terms of various order.
1581 if (i .lt. nres+1) then
1618 if (i .gt. 3 .and. i .lt. nres+1) then
1619 obrot_der(1,i-2)=-sin1
1620 obrot_der(2,i-2)= cos1
1621 Ugder(1,1,i-2)= sin1
1622 Ugder(1,2,i-2)=-cos1
1623 Ugder(2,1,i-2)=-cos1
1624 Ugder(2,2,i-2)=-sin1
1627 obrot2_der(1,i-2)=-dwasin2
1628 obrot2_der(2,i-2)= dwacos2
1629 Ug2der(1,1,i-2)= dwasin2
1630 Ug2der(1,2,i-2)=-dwacos2
1631 Ug2der(2,1,i-2)=-dwacos2
1632 Ug2der(2,2,i-2)=-dwasin2
1634 obrot_der(1,i-2)=0.0d0
1635 obrot_der(2,i-2)=0.0d0
1636 Ugder(1,1,i-2)=0.0d0
1637 Ugder(1,2,i-2)=0.0d0
1638 Ugder(2,1,i-2)=0.0d0
1639 Ugder(2,2,i-2)=0.0d0
1640 obrot2_der(1,i-2)=0.0d0
1641 obrot2_der(2,i-2)=0.0d0
1642 Ug2der(1,1,i-2)=0.0d0
1643 Ug2der(1,2,i-2)=0.0d0
1644 Ug2der(2,1,i-2)=0.0d0
1645 Ug2der(2,2,i-2)=0.0d0
1647 if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
1648 iti = itortyp(itype(i-2))
1652 if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
1653 iti1 = itortyp(itype(i-1))
1657 cd write (iout,*) '*******i',i,' iti1',iti
1658 cd write (iout,*) 'b1',b1(:,iti)
1659 cd write (iout,*) 'b2',b2(:,iti)
1660 cd write (iout,*) 'Ug',Ug(:,:,i-2)
1661 if (i .gt. iatel_s+2) then
1662 call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
1663 call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
1664 call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
1665 call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
1666 call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
1667 call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
1668 call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
1678 DtUg2(l,k,i-2)=0.0d0
1682 call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
1683 call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
1684 call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
1685 call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
1686 call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
1687 call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
1688 call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
1690 muder(k,i-2)=Ub2der(k,i-2)
1692 if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
1693 iti1 = itortyp(itype(i-1))
1698 mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
1700 C Vectors and matrices dependent on a single virtual-bond dihedral.
1701 call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
1702 call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2))
1703 call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2))
1704 call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
1705 call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
1706 call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
1707 call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
1708 call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
1709 call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
1710 cd write (iout,*) 'i',i,' mu ',(mu(k,i-2),k=1,2),
1711 cd & ' mu1',(b1(k,i-2),k=1,2),' mu2',(Ub2(k,i-2),k=1,2)
1713 C Matrices dependent on two consecutive virtual-bond dihedrals.
1714 C The order of matrices is from left to right.
1716 call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
1717 call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
1718 call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
1719 call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
1720 call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
1721 call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
1722 call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
1723 call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
1726 cd iti = itortyp(itype(i))
1729 cd write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)')
1730 cd & (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
1735 C--------------------------------------------------------------------------
1736 subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
1738 C This subroutine calculates the average interaction energy and its gradient
1739 C in the virtual-bond vectors between non-adjacent peptide groups, based on
1740 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715.
1741 C The potential depends both on the distance of peptide-group centers and on
1742 C the orientation of the CA-CA virtual bonds.
1744 implicit real*8 (a-h,o-z)
1745 include 'DIMENSIONS'
1746 include 'sizesclu.dat'
1747 include 'COMMON.CONTROL'
1748 include 'COMMON.IOUNITS'
1749 include 'COMMON.GEO'
1750 include 'COMMON.VAR'
1751 include 'COMMON.LOCAL'
1752 include 'COMMON.CHAIN'
1753 include 'COMMON.DERIV'
1754 include 'COMMON.INTERACT'
1755 include 'COMMON.CONTACTS'
1756 include 'COMMON.TORSION'
1757 include 'COMMON.VECTORS'
1758 include 'COMMON.FFIELD'
1759 dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
1760 & erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
1761 double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
1762 & aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
1763 common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,j1
1764 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
1765 double precision scal_el /0.5d0/
1767 C 13-go grudnia roku pamietnego...
1768 double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
1769 & 0.0d0,1.0d0,0.0d0,
1770 & 0.0d0,0.0d0,1.0d0/
1771 cd write(iout,*) 'In EELEC'
1773 cd write(iout,*) 'Type',i
1774 cd write(iout,*) 'B1',B1(:,i)
1775 cd write(iout,*) 'B2',B2(:,i)
1776 cd write(iout,*) 'CC',CC(:,:,i)
1777 cd write(iout,*) 'DD',DD(:,:,i)
1778 cd write(iout,*) 'EE',EE(:,:,i)
1780 cd call check_vecgrad
1782 if (icheckgrad.eq.1) then
1784 fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
1786 dc_norm(k,i)=dc(k,i)*fac
1788 c write (iout,*) 'i',i,' fac',fac
1791 if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
1792 & .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or.
1793 & wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
1794 cd if (wel_loc.gt.0.0d0) then
1795 if (icheckgrad.eq.1) then
1796 call vec_and_deriv_test
1803 cd write (iout,*) 'i=',i
1805 cd write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
1808 cd write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)')
1809 cd & uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
1822 cd print '(a)','Enter EELEC'
1823 cd write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
1825 gel_loc_loc(i)=0.0d0
1828 do i=iatel_s,iatel_e
1829 if (itel(i).eq.0) goto 1215
1833 dx_normi=dc_norm(1,i)
1834 dy_normi=dc_norm(2,i)
1835 dz_normi=dc_norm(3,i)
1836 xmedi=c(1,i)+0.5d0*dxi
1837 ymedi=c(2,i)+0.5d0*dyi
1838 zmedi=c(3,i)+0.5d0*dzi
1840 c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
1841 do j=ielstart(i),ielend(i)
1842 if (itel(j).eq.0) goto 1216
1846 if (j.eq.i+2 .and. itelj.eq.2) iteli=2
1847 aaa=app(iteli,itelj)
1848 bbb=bpp(iteli,itelj)
1849 C Diagnostics only!!!
1855 ael6i=ael6(iteli,itelj)
1856 ael3i=ael3(iteli,itelj)
1860 dx_normj=dc_norm(1,j)
1861 dy_normj=dc_norm(2,j)
1862 dz_normj=dc_norm(3,j)
1863 xj=c(1,j)+0.5D0*dxj-xmedi
1864 yj=c(2,j)+0.5D0*dyj-ymedi
1865 zj=c(3,j)+0.5D0*dzj-zmedi
1866 rij=xj*xj+yj*yj+zj*zj
1872 cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
1873 cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
1874 cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
1875 fac=cosa-3.0D0*cosb*cosg
1877 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
1878 if (j.eq.i+2) ev1=scal_el*ev1
1883 el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
1886 c write (iout,*) "i",i,iteli," j",j,itelj," eesij",eesij
1887 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
1888 ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
1891 cd write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
1892 cd & iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
1893 cd & 1.0D0/dsqrt(rrmij),evdwij,eesij,
1894 cd & xmedi,ymedi,zmedi,xj,yj,zj
1896 C Calculate contributions to the Cartesian gradient.
1899 facvdw=-6*rrmij*(ev1+evdwij)
1900 facel=-3*rrmij*(el1+eesij)
1907 * Radial derivatives. First process both termini of the fragment (i,j)
1914 gelc(k,i)=gelc(k,i)+ghalf
1915 gelc(k,j)=gelc(k,j)+ghalf
1918 * Loop over residues i+1 thru j-1.
1922 gelc(l,k)=gelc(l,k)+ggg(l)
1930 gvdwpp(k,i)=gvdwpp(k,i)+ghalf
1931 gvdwpp(k,j)=gvdwpp(k,j)+ghalf
1934 * Loop over residues i+1 thru j-1.
1938 gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
1945 fac=-3*rrmij*(facvdw+facvdw+facel)
1951 * Radial derivatives. First process both termini of the fragment (i,j)
1958 gelc(k,i)=gelc(k,i)+ghalf
1959 gelc(k,j)=gelc(k,j)+ghalf
1962 * Loop over residues i+1 thru j-1.
1966 gelc(l,k)=gelc(l,k)+ggg(l)
1973 ecosa=2.0D0*fac3*fac1+fac4
1976 ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
1977 ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
1979 dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
1980 dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
1982 cd print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
1983 cd & (dcosg(k),k=1,3)
1985 ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k)
1989 gelc(k,i)=gelc(k,i)+ghalf
1990 & +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
1991 & + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
1992 gelc(k,j)=gelc(k,j)+ghalf
1993 & +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
1994 & + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
1998 gelc(l,k)=gelc(l,k)+ggg(l)
2003 IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
2004 & .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0
2005 & .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
2007 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction
2008 C energy of a peptide unit is assumed in the form of a second-order
2009 C Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
2010 C Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
2011 C are computed for EVERY pair of non-contiguous peptide groups.
2013 if (j.lt.nres-1) then
2024 muij(kkk)=mu(k,i)*mu(l,j)
2027 cd write (iout,*) 'EELEC: i',i,' j',j
2028 cd write (iout,*) 'j',j,' j1',j1,' j2',j2
2029 cd write(iout,*) 'muij',muij
2030 ury=scalar(uy(1,i),erij)
2031 urz=scalar(uz(1,i),erij)
2032 vry=scalar(uy(1,j),erij)
2033 vrz=scalar(uz(1,j),erij)
2034 a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
2035 a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
2036 a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
2037 a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
2038 C For diagnostics only
2043 fac=dsqrt(-ael6i)*r3ij
2044 cd write (2,*) 'fac=',fac
2045 C For diagnostics only
2051 cd write (iout,'(4i5,4f10.5)')
2052 cd & i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
2053 cd write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
2054 cd write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') (uy(k,i),k=1,3),
2055 cd & (uz(k,i),k=1,3),(uy(k,j),k=1,3),(uz(k,j),k=1,3)
2056 cd write (iout,'(4f10.5)')
2057 cd & scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
2058 cd & scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
2059 cd write (iout,'(4f10.5)') ury,urz,vry,vrz
2060 cd write (iout,'(2i3,9f10.5/)') i,j,
2061 cd & fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
2063 C Derivatives of the elements of A in virtual-bond vectors
2064 call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
2071 uryg(k,1)=scalar(erder(1,k),uy(1,i))
2072 uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
2073 uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
2074 urzg(k,1)=scalar(erder(1,k),uz(1,i))
2075 urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
2076 urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
2077 vryg(k,1)=scalar(erder(1,k),uy(1,j))
2078 vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
2079 vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
2080 vrzg(k,1)=scalar(erder(1,k),uz(1,j))
2081 vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
2082 vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
2092 C Compute radial contributions to the gradient
2114 C Add the contributions coming from er
2117 agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
2118 agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
2119 agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
2120 agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
2123 C Derivatives in DC(i)
2124 ghalf1=0.5d0*agg(k,1)
2125 ghalf2=0.5d0*agg(k,2)
2126 ghalf3=0.5d0*agg(k,3)
2127 ghalf4=0.5d0*agg(k,4)
2128 aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
2129 & -3.0d0*uryg(k,2)*vry)+ghalf1
2130 aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
2131 & -3.0d0*uryg(k,2)*vrz)+ghalf2
2132 aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
2133 & -3.0d0*urzg(k,2)*vry)+ghalf3
2134 aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
2135 & -3.0d0*urzg(k,2)*vrz)+ghalf4
2136 C Derivatives in DC(i+1)
2137 aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
2138 & -3.0d0*uryg(k,3)*vry)+agg(k,1)
2139 aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
2140 & -3.0d0*uryg(k,3)*vrz)+agg(k,2)
2141 aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
2142 & -3.0d0*urzg(k,3)*vry)+agg(k,3)
2143 aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
2144 & -3.0d0*urzg(k,3)*vrz)+agg(k,4)
2145 C Derivatives in DC(j)
2146 aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
2147 & -3.0d0*vryg(k,2)*ury)+ghalf1
2148 aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
2149 & -3.0d0*vrzg(k,2)*ury)+ghalf2
2150 aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
2151 & -3.0d0*vryg(k,2)*urz)+ghalf3
2152 aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i))
2153 & -3.0d0*vrzg(k,2)*urz)+ghalf4
2154 C Derivatives in DC(j+1) or DC(nres-1)
2155 aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
2156 & -3.0d0*vryg(k,3)*ury)
2157 aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
2158 & -3.0d0*vrzg(k,3)*ury)
2159 aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
2160 & -3.0d0*vryg(k,3)*urz)
2161 aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i))
2162 & -3.0d0*vrzg(k,3)*urz)
2167 C Derivatives in DC(i+1)
2168 cd aggi1(k,1)=agg(k,1)
2169 cd aggi1(k,2)=agg(k,2)
2170 cd aggi1(k,3)=agg(k,3)
2171 cd aggi1(k,4)=agg(k,4)
2172 C Derivatives in DC(j)
2177 C Derivatives in DC(j+1)
2182 if (j.eq.nres-1 .and. i.lt.j-2) then
2184 aggj1(k,l)=aggj1(k,l)+agg(k,l)
2185 cd aggj1(k,l)=agg(k,l)
2191 C Check the loc-el terms by numerical integration
2201 aggi(k,l)=-aggi(k,l)
2202 aggi1(k,l)=-aggi1(k,l)
2203 aggj(k,l)=-aggj(k,l)
2204 aggj1(k,l)=-aggj1(k,l)
2207 if (j.lt.nres-1) then
2213 aggi(k,l)=-aggi(k,l)
2214 aggi1(k,l)=-aggi1(k,l)
2215 aggj(k,l)=-aggj(k,l)
2216 aggj1(k,l)=-aggj1(k,l)
2227 aggi(k,l)=-aggi(k,l)
2228 aggi1(k,l)=-aggi1(k,l)
2229 aggj(k,l)=-aggj(k,l)
2230 aggj1(k,l)=-aggj1(k,l)
2236 IF (wel_loc.gt.0.0d0) THEN
2237 C Contribution to the local-electrostatic energy coming from the i-j pair
2238 eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
2240 cd write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
2241 cd write (iout,*) a22,muij(1),a23,muij(2),a32,muij(3)
2242 eel_loc=eel_loc+eel_loc_ij
2243 C Partial derivatives in virtual-bond dihedral angles gamma
2246 & gel_loc_loc(i-1)=gel_loc_loc(i-1)+
2247 & a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
2248 & +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
2249 gel_loc_loc(j-1)=gel_loc_loc(j-1)+
2250 & a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
2251 & +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
2252 cd call checkint3(i,j,mu1,mu2,a22,a23,a32,a33,acipa,eel_loc_ij)
2253 cd write(iout,*) 'agg ',agg
2254 cd write(iout,*) 'aggi ',aggi
2255 cd write(iout,*) 'aggi1',aggi1
2256 cd write(iout,*) 'aggj ',aggj
2257 cd write(iout,*) 'aggj1',aggj1
2259 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
2261 ggg(l)=agg(l,1)*muij(1)+
2262 & agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
2266 gel_loc(l,k)=gel_loc(l,k)+ggg(l)
2269 C Remaining derivatives of eello
2271 gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
2272 & aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
2273 gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
2274 & aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
2275 gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
2276 & aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
2277 gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
2278 & aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
2282 if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
2283 C Contributions from turns
2288 call eturn34(i,j,eello_turn3,eello_turn4)
2290 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
2291 if (j.gt.i+1 .and. num_conti.le.maxconts) then
2293 C Calculate the contact function. The ith column of the array JCONT will
2294 C contain the numbers of atoms that make contacts with the atom I (of numbers
2295 C greater than I). The arrays FACONT and GACONT will contain the values of
2296 C the contact function and its derivative.
2297 c r0ij=1.02D0*rpp(iteli,itelj)
2298 c r0ij=1.11D0*rpp(iteli,itelj)
2299 r0ij=2.20D0*rpp(iteli,itelj)
2300 c r0ij=1.55D0*rpp(iteli,itelj)
2301 call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
2302 if (fcont.gt.0.0D0) then
2303 num_conti=num_conti+1
2304 if (num_conti.gt.maxconts) then
2305 write (iout,*) 'WARNING - max. # of contacts exceeded;',
2306 & ' will skip next contacts for this conf.'
2308 jcont_hb(num_conti,i)=j
2309 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.
2310 & wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
2311 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
2313 d_cont(num_conti,i)=rij
2314 cd write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
2315 C --- Electrostatic-interaction matrix ---
2316 a_chuj(1,1,num_conti,i)=a22
2317 a_chuj(1,2,num_conti,i)=a23
2318 a_chuj(2,1,num_conti,i)=a32
2319 a_chuj(2,2,num_conti,i)=a33
2320 C --- Gradient of rij
2322 grij_hb_cont(kkk,num_conti,i)=erij(kkk)
2325 c a_chuj(1,1,num_conti,i)=-0.61d0
2326 c a_chuj(1,2,num_conti,i)= 0.4d0
2327 c a_chuj(2,1,num_conti,i)= 0.65d0
2328 c a_chuj(2,2,num_conti,i)= 0.50d0
2329 c else if (i.eq.2) then
2330 c a_chuj(1,1,num_conti,i)= 0.0d0
2331 c a_chuj(1,2,num_conti,i)= 0.0d0
2332 c a_chuj(2,1,num_conti,i)= 0.0d0
2333 c a_chuj(2,2,num_conti,i)= 0.0d0
2335 C --- and its gradients
2336 cd write (iout,*) 'i',i,' j',j
2338 cd write (iout,*) 'iii 1 kkk',kkk
2339 cd write (iout,*) agg(kkk,:)
2342 cd write (iout,*) 'iii 2 kkk',kkk
2343 cd write (iout,*) aggi(kkk,:)
2346 cd write (iout,*) 'iii 3 kkk',kkk
2347 cd write (iout,*) aggi1(kkk,:)
2350 cd write (iout,*) 'iii 4 kkk',kkk
2351 cd write (iout,*) aggj(kkk,:)
2354 cd write (iout,*) 'iii 5 kkk',kkk
2355 cd write (iout,*) aggj1(kkk,:)
2362 a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
2363 a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
2364 a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
2365 a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
2366 a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
2368 c a_chuj_der(k,l,m,mm,num_conti,i)=0.0d0
2374 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
2375 C Calculate contact energies
2377 wij=cosa-3.0D0*cosb*cosg
2380 c fac3=dsqrt(-ael6i)/r0ij**3
2381 fac3=dsqrt(-ael6i)*r3ij
2382 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
2383 ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
2385 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
2386 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
2387 C Diagnostics. Comment out or remove after debugging!
2388 c ees0p(num_conti,i)=0.5D0*fac3*ees0pij
2389 c ees0m(num_conti,i)=0.5D0*fac3*ees0mij
2390 c ees0m(num_conti,i)=0.0D0
2392 c write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
2393 c & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
2394 facont_hb(num_conti,i)=fcont
2396 C Angular derivatives of the contact function
2397 ees0pij1=fac3/ees0pij
2398 ees0mij1=fac3/ees0mij
2399 fac3p=-3.0D0*fac3*rrmij
2400 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
2401 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
2403 ecosa1= ees0pij1*( 1.0D0+0.5D0*wij)
2404 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
2405 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
2406 ecosa2= ees0mij1*(-1.0D0+0.5D0*wij)
2407 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2)
2408 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
2409 ecosap=ecosa1+ecosa2
2410 ecosbp=ecosb1+ecosb2
2411 ecosgp=ecosg1+ecosg2
2412 ecosam=ecosa1-ecosa2
2413 ecosbm=ecosb1-ecosb2
2414 ecosgm=ecosg1-ecosg2
2423 fprimcont=fprimcont/rij
2424 cd facont_hb(num_conti,i)=1.0D0
2425 C Following line is for diagnostics.
2428 dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
2429 dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
2432 gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
2433 gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
2435 gggp(1)=gggp(1)+ees0pijp*xj
2436 gggp(2)=gggp(2)+ees0pijp*yj
2437 gggp(3)=gggp(3)+ees0pijp*zj
2438 gggm(1)=gggm(1)+ees0mijp*xj
2439 gggm(2)=gggm(2)+ees0mijp*yj
2440 gggm(3)=gggm(3)+ees0mijp*zj
2441 C Derivatives due to the contact function
2442 gacont_hbr(1,num_conti,i)=fprimcont*xj
2443 gacont_hbr(2,num_conti,i)=fprimcont*yj
2444 gacont_hbr(3,num_conti,i)=fprimcont*zj
2446 ghalfp=0.5D0*gggp(k)
2447 ghalfm=0.5D0*gggm(k)
2448 gacontp_hb1(k,num_conti,i)=ghalfp
2449 & +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
2450 & + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
2451 gacontp_hb2(k,num_conti,i)=ghalfp
2452 & +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
2453 & + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
2454 gacontp_hb3(k,num_conti,i)=gggp(k)
2455 gacontm_hb1(k,num_conti,i)=ghalfm
2456 & +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
2457 & + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
2458 gacontm_hb2(k,num_conti,i)=ghalfm
2459 & +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
2460 & + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
2461 gacontm_hb3(k,num_conti,i)=gggm(k)
2464 C Diagnostics. Comment out or remove after debugging!
2466 cdiag gacontp_hb1(k,num_conti,i)=0.0D0
2467 cdiag gacontp_hb2(k,num_conti,i)=0.0D0
2468 cdiag gacontp_hb3(k,num_conti,i)=0.0D0
2469 cdiag gacontm_hb1(k,num_conti,i)=0.0D0
2470 cdiag gacontm_hb2(k,num_conti,i)=0.0D0
2471 cdiag gacontm_hb3(k,num_conti,i)=0.0D0
2474 endif ! num_conti.le.maxconts
2479 num_cont_hb(i)=num_conti
2483 cd write (iout,'(i3,3f10.5,5x,3f10.5)')
2484 cd & i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
2486 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
2487 ccc eel_loc=eel_loc+eello_turn3
2490 C-----------------------------------------------------------------------------
2491 subroutine eturn34(i,j,eello_turn3,eello_turn4)
2492 C Third- and fourth-order contributions from turns
2493 implicit real*8 (a-h,o-z)
2494 include 'DIMENSIONS'
2495 include 'sizesclu.dat'
2496 include 'COMMON.IOUNITS'
2497 include 'COMMON.GEO'
2498 include 'COMMON.VAR'
2499 include 'COMMON.LOCAL'
2500 include 'COMMON.CHAIN'
2501 include 'COMMON.DERIV'
2502 include 'COMMON.INTERACT'
2503 include 'COMMON.CONTACTS'
2504 include 'COMMON.TORSION'
2505 include 'COMMON.VECTORS'
2506 include 'COMMON.FFIELD'
2508 double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
2509 & e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
2510 & e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
2511 double precision agg(3,4),aggi(3,4),aggi1(3,4),
2512 & aggj(3,4),aggj1(3,4),a_temp(2,2)
2513 common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,j1,j2
2515 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
2517 C Third-order contributions
2524 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
2525 cd call checkint_turn3(i,a_temp,eello_turn3_num)
2526 call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
2527 call transpose2(auxmat(1,1),auxmat1(1,1))
2528 call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2529 eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
2530 cd write (2,*) 'i,',i,' j',j,'eello_turn3',
2531 cd & 0.5d0*(pizda(1,1)+pizda(2,2)),
2532 cd & ' eello_turn3_num',4*eello_turn3_num
2534 C Derivatives in gamma(i)
2535 call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
2536 call transpose2(auxmat2(1,1),pizda(1,1))
2537 call matmat2(a_temp(1,1),pizda(1,1),pizda(1,1))
2538 gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
2539 C Derivatives in gamma(i+1)
2540 call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
2541 call transpose2(auxmat2(1,1),pizda(1,1))
2542 call matmat2(a_temp(1,1),pizda(1,1),pizda(1,1))
2543 gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
2544 & +0.5d0*(pizda(1,1)+pizda(2,2))
2545 C Cartesian derivatives
2547 a_temp(1,1)=aggi(l,1)
2548 a_temp(1,2)=aggi(l,2)
2549 a_temp(2,1)=aggi(l,3)
2550 a_temp(2,2)=aggi(l,4)
2551 call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2552 gcorr3_turn(l,i)=gcorr3_turn(l,i)
2553 & +0.5d0*(pizda(1,1)+pizda(2,2))
2554 a_temp(1,1)=aggi1(l,1)
2555 a_temp(1,2)=aggi1(l,2)
2556 a_temp(2,1)=aggi1(l,3)
2557 a_temp(2,2)=aggi1(l,4)
2558 call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2559 gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
2560 & +0.5d0*(pizda(1,1)+pizda(2,2))
2561 a_temp(1,1)=aggj(l,1)
2562 a_temp(1,2)=aggj(l,2)
2563 a_temp(2,1)=aggj(l,3)
2564 a_temp(2,2)=aggj(l,4)
2565 call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2566 gcorr3_turn(l,j)=gcorr3_turn(l,j)
2567 & +0.5d0*(pizda(1,1)+pizda(2,2))
2568 a_temp(1,1)=aggj1(l,1)
2569 a_temp(1,2)=aggj1(l,2)
2570 a_temp(2,1)=aggj1(l,3)
2571 a_temp(2,2)=aggj1(l,4)
2572 call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2573 gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
2574 & +0.5d0*(pizda(1,1)+pizda(2,2))
2577 else if (j.eq.i+3) then
2578 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
2580 C Fourth-order contributions
2588 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
2589 cd call checkint_turn4(i,a_temp,eello_turn4_num)
2590 iti1=itortyp(itype(i+1))
2591 iti2=itortyp(itype(i+2))
2592 iti3=itortyp(itype(i+3))
2593 call transpose2(EUg(1,1,i+1),e1t(1,1))
2594 call transpose2(Eug(1,1,i+2),e2t(1,1))
2595 call transpose2(Eug(1,1,i+3),e3t(1,1))
2596 call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2597 call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2598 s1=scalar2(b1(1,iti2),auxvec(1))
2599 call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2600 call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1))
2601 s2=scalar2(b1(1,iti1),auxvec(1))
2602 call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2603 call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2604 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2605 eello_turn4=eello_turn4-(s1+s2+s3)
2606 cd write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
2607 cd & ' eello_turn4_num',8*eello_turn4_num
2608 C Derivatives in gamma(i)
2610 call transpose2(EUgder(1,1,i+1),e1tder(1,1))
2611 call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
2612 call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
2613 s1=scalar2(b1(1,iti2),auxvec(1))
2614 call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
2615 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2616 gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
2617 C Derivatives in gamma(i+1)
2618 call transpose2(EUgder(1,1,i+2),e2tder(1,1))
2619 call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1))
2620 s2=scalar2(b1(1,iti1),auxvec(1))
2621 call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
2622 call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
2623 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2624 gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
2625 C Derivatives in gamma(i+2)
2626 call transpose2(EUgder(1,1,i+3),e3tder(1,1))
2627 call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
2628 s1=scalar2(b1(1,iti2),auxvec(1))
2629 call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
2630 call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1))
2631 s2=scalar2(b1(1,iti1),auxvec(1))
2632 call matmat2(auxmat(1,1),e2t(1,1),auxmat(1,1))
2633 call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
2634 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2635 gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
2636 C Cartesian derivatives
2637 C Derivatives of this turn contributions in DC(i+2)
2638 if (j.lt.nres-1) then
2640 a_temp(1,1)=agg(l,1)
2641 a_temp(1,2)=agg(l,2)
2642 a_temp(2,1)=agg(l,3)
2643 a_temp(2,2)=agg(l,4)
2644 call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2645 call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2646 s1=scalar2(b1(1,iti2),auxvec(1))
2647 call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2648 call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1))
2649 s2=scalar2(b1(1,iti1),auxvec(1))
2650 call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2651 call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2652 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2654 gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
2657 C Remaining derivatives of this turn contribution
2659 a_temp(1,1)=aggi(l,1)
2660 a_temp(1,2)=aggi(l,2)
2661 a_temp(2,1)=aggi(l,3)
2662 a_temp(2,2)=aggi(l,4)
2663 call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2664 call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2665 s1=scalar2(b1(1,iti2),auxvec(1))
2666 call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2667 call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1))
2668 s2=scalar2(b1(1,iti1),auxvec(1))
2669 call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2670 call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2671 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2672 gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
2673 a_temp(1,1)=aggi1(l,1)
2674 a_temp(1,2)=aggi1(l,2)
2675 a_temp(2,1)=aggi1(l,3)
2676 a_temp(2,2)=aggi1(l,4)
2677 call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2678 call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2679 s1=scalar2(b1(1,iti2),auxvec(1))
2680 call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2681 call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1))
2682 s2=scalar2(b1(1,iti1),auxvec(1))
2683 call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2684 call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2685 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2686 gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
2687 a_temp(1,1)=aggj(l,1)
2688 a_temp(1,2)=aggj(l,2)
2689 a_temp(2,1)=aggj(l,3)
2690 a_temp(2,2)=aggj(l,4)
2691 call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2692 call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2693 s1=scalar2(b1(1,iti2),auxvec(1))
2694 call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2695 call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1))
2696 s2=scalar2(b1(1,iti1),auxvec(1))
2697 call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2698 call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2699 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2700 gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
2701 a_temp(1,1)=aggj1(l,1)
2702 a_temp(1,2)=aggj1(l,2)
2703 a_temp(2,1)=aggj1(l,3)
2704 a_temp(2,2)=aggj1(l,4)
2705 call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2706 call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2707 s1=scalar2(b1(1,iti2),auxvec(1))
2708 call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2709 call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1))
2710 s2=scalar2(b1(1,iti1),auxvec(1))
2711 call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2712 call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2713 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2714 gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
2720 C-----------------------------------------------------------------------------
2721 subroutine vecpr(u,v,w)
2722 implicit real*8(a-h,o-z)
2723 dimension u(3),v(3),w(3)
2724 w(1)=u(2)*v(3)-u(3)*v(2)
2725 w(2)=-u(1)*v(3)+u(3)*v(1)
2726 w(3)=u(1)*v(2)-u(2)*v(1)
2729 C-----------------------------------------------------------------------------
2730 subroutine unormderiv(u,ugrad,unorm,ungrad)
2731 C This subroutine computes the derivatives of a normalized vector u, given
2732 C the derivatives computed without normalization conditions, ugrad. Returns
2735 double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
2736 double precision vec(3)
2737 double precision scalar
2739 c write (2,*) 'ugrad',ugrad
2742 vec(i)=scalar(ugrad(1,i),u(1))
2744 c write (2,*) 'vec',vec
2747 ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
2750 c write (2,*) 'ungrad',ungrad
2753 C-----------------------------------------------------------------------------
2754 subroutine escp(evdw2,evdw2_14)
2756 C This subroutine calculates the excluded-volume interaction energy between
2757 C peptide-group centers and side chains and its gradient in virtual-bond and
2758 C side-chain vectors.
2760 implicit real*8 (a-h,o-z)
2761 include 'DIMENSIONS'
2762 include 'sizesclu.dat'
2763 include 'COMMON.GEO'
2764 include 'COMMON.VAR'
2765 include 'COMMON.LOCAL'
2766 include 'COMMON.CHAIN'
2767 include 'COMMON.DERIV'
2768 include 'COMMON.INTERACT'
2769 include 'COMMON.FFIELD'
2770 include 'COMMON.IOUNITS'
2774 cd print '(a)','Enter ESCP'
2775 c write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e,
2776 c & ' scal14',scal14
2777 do i=iatscp_s,iatscp_e
2779 c write (iout,*) "i",i," iteli",iteli," nscp_gr",nscp_gr(i),
2780 c & " iscp",(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i))
2781 if (iteli.eq.0) goto 1225
2782 xi=0.5D0*(c(1,i)+c(1,i+1))
2783 yi=0.5D0*(c(2,i)+c(2,i+1))
2784 zi=0.5D0*(c(3,i)+c(3,i+1))
2786 do iint=1,nscp_gr(i)
2788 do j=iscpstart(i,iint),iscpend(i,iint)
2790 C Uncomment following three lines for SC-p interactions
2794 C Uncomment following three lines for Ca-p interactions
2798 rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
2800 e1=fac*fac*aad(itypj,iteli)
2801 e2=fac*bad(itypj,iteli)
2802 if (iabs(j-i) .le. 2) then
2805 evdw2_14=evdw2_14+e1+e2
2808 c write (iout,*) i,j,evdwij
2812 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
2814 fac=-(evdwij+e1)*rrij
2819 cd write (iout,*) 'j<i'
2820 C Uncomment following three lines for SC-p interactions
2822 c gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
2825 cd write (iout,*) 'j>i'
2828 C Uncomment following line for SC-p interactions
2829 c gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
2833 gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
2837 cd write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
2838 cd write (iout,*) ggg(1),ggg(2),ggg(3)
2841 gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
2851 gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
2852 gradx_scp(j,i)=expon*gradx_scp(j,i)
2855 C******************************************************************************
2859 C To save time the factor EXPON has been extracted from ALL components
2860 C of GVDWC and GRADX. Remember to multiply them by this factor before further
2863 C******************************************************************************
2866 C--------------------------------------------------------------------------
2867 subroutine edis(ehpb)
2869 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
2871 implicit real*8 (a-h,o-z)
2872 include 'DIMENSIONS'
2873 include 'COMMON.SBRIDGE'
2874 include 'COMMON.CHAIN'
2875 include 'COMMON.DERIV'
2876 include 'COMMON.VAR'
2877 include 'COMMON.INTERACT'
2878 include 'COMMON.IOUNITS'
2881 cd write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
2882 cd write(iout,*)'link_start=',link_start,' link_end=',link_end
2883 if (link_end.eq.0) return
2884 do i=link_start,link_end
2885 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
2886 C CA-CA distance used in regularization of structure.
2889 C iii and jjj point to the residues for which the distance is assigned.
2890 if (ii.gt.nres) then
2897 c write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
2898 c & dhpb(i),dhpb1(i),forcon(i)
2899 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
2900 C distance and angle dependent SS bond potential.
2901 if (.not.dyn_ss .and. i.le.nss) then
2902 C 15/02/13 CC dynamic SSbond - additional check
2903 if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
2904 call ssbond_ene(iii,jjj,eij)
2906 cd write (iout,*) "eij",eij
2908 else if (ii.gt.nres .and. jj.gt.nres) then
2909 c Restraints from contact prediction
2911 if (dhpb1(i).gt.0.0d0) then
2912 ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
2913 fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
2914 c write (iout,*) "beta nmr",
2915 c & dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
2919 C Get the force constant corresponding to this distance.
2921 C Calculate the contribution to energy.
2922 ehpb=ehpb+waga*rdis*rdis
2923 c write (iout,*) "beta reg",dd,waga*rdis*rdis
2925 C Evaluate gradient.
2930 ggg(j)=fac*(c(j,jj)-c(j,ii))
2933 ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
2934 ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
2937 ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
2938 ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
2941 C Calculate the distance between the two points and its difference from the
2944 if (dhpb1(i).gt.0.0d0) then
2945 ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
2946 fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
2947 c write (iout,*) "alph nmr",
2948 c & dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
2951 C Get the force constant corresponding to this distance.
2953 C Calculate the contribution to energy.
2954 ehpb=ehpb+waga*rdis*rdis
2955 c write (iout,*) "alpha reg",dd,waga*rdis*rdis
2957 C Evaluate gradient.
2961 cd print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
2962 cd & ' waga=',waga,' fac=',fac
2964 ggg(j)=fac*(c(j,jj)-c(j,ii))
2966 cd print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
2967 C If this is a SC-SC distance, we need to calculate the contributions to the
2968 C Cartesian gradient in the SC vectors (ghpbx).
2971 ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
2972 ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
2976 ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
2977 ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
2984 C--------------------------------------------------------------------------
2985 subroutine ssbond_ene(i,j,eij)
2987 C Calculate the distance and angle dependent SS-bond potential energy
2988 C using a free-energy function derived based on RHF/6-31G** ab initio
2989 C calculations of diethyl disulfide.
2991 C A. Liwo and U. Kozlowska, 11/24/03
2993 implicit real*8 (a-h,o-z)
2994 include 'DIMENSIONS'
2995 include 'sizesclu.dat'
2996 include 'COMMON.SBRIDGE'
2997 include 'COMMON.CHAIN'
2998 include 'COMMON.DERIV'
2999 include 'COMMON.LOCAL'
3000 include 'COMMON.INTERACT'
3001 include 'COMMON.VAR'
3002 include 'COMMON.IOUNITS'
3003 double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
3008 dxi=dc_norm(1,nres+i)
3009 dyi=dc_norm(2,nres+i)
3010 dzi=dc_norm(3,nres+i)
3011 dsci_inv=dsc_inv(itypi)
3013 dscj_inv=dsc_inv(itypj)
3017 dxj=dc_norm(1,nres+j)
3018 dyj=dc_norm(2,nres+j)
3019 dzj=dc_norm(3,nres+j)
3020 rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
3025 om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
3026 om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
3027 om12=dxi*dxj+dyi*dyj+dzi*dzj
3029 dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
3030 dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
3036 deltat12=om2-om1+2.0d0
3038 eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
3039 & +akct*deltad*deltat12+ebr
3040 & +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
3041 c write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
3042 c & " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
3043 c & " deltat12",deltat12," eij",eij
3044 ed=2*akcm*deltad+akct*deltat12
3046 pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
3047 eom1=-2*akth*deltat1-pom1-om2*pom2
3048 eom2= 2*akth*deltat2+pom1-om1*pom2
3051 gg(k)=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
3054 ghpbx(k,i)=ghpbx(k,i)-gg(k)
3055 & +(eom12*dc_norm(k,nres+j)+eom1*erij(k))*dsci_inv
3056 ghpbx(k,j)=ghpbx(k,j)+gg(k)
3057 & +(eom12*dc_norm(k,nres+i)+eom2*erij(k))*dscj_inv
3060 C Calculate the components of the gradient in DC and X
3064 ghpbc(l,k)=ghpbc(l,k)+gg(l)
3070 C--------------------------------------------------------------------------
3073 c LICZENIE WIEZOW Z ROWNANIA ENERGII MODELLERA
3074 subroutine e_modeller(ehomology_constr)
3075 implicit real*8 (a-h,o-z)
3077 include 'DIMENSIONS'
3079 integer nnn, i, j, k, ki, irec, l
3080 integer katy, odleglosci, test7
3081 real*8 odleg, odleg2, odleg3, kat, kat2, kat3, gdih(max_template)
3082 real*8 distance(max_template),distancek(max_template),
3083 & min_odl,godl(max_template),dih_diff(max_template)
3086 c FP - 30/10/2014 Temporary specifications for homology restraints
3088 double precision utheta_i,gutheta_i,sum_gtheta,sum_sgtheta,
3090 double precision, dimension (maxres) :: guscdiff,usc_diff
3091 double precision, dimension (max_template) ::
3092 & gtheta,dscdiff,uscdiffk,guscdiff2,guscdiff3,
3095 include 'COMMON.SBRIDGE'
3096 include 'COMMON.CHAIN'
3097 include 'COMMON.GEO'
3098 include 'COMMON.DERIV'
3099 include 'COMMON.LOCAL'
3100 include 'COMMON.INTERACT'
3101 include 'COMMON.VAR'
3102 include 'COMMON.IOUNITS'
3103 include 'COMMON.CONTROL'
3104 include 'COMMON.HOMRESTR'
3106 include 'COMMON.SETUP'
3107 include 'COMMON.NAMES'
3110 distancek(i)=9999999.9
3115 c Pseudo-energy and gradient from homology restraints (MODELLER-like
3117 C AL 5/2/14 - Introduce list of restraints
3118 c write(iout,*) "waga_theta",waga_theta,"waga_d",waga_d
3120 write(iout,*) "------- dist restrs start -------"
3121 write (iout,*) "link_start_homo",link_start_homo,
3122 & " link_end_homo",link_end_homo
3124 do ii = link_start_homo,link_end_homo
3128 c write (iout,*) "dij(",i,j,") =",dij
3129 do k=1,constr_homology
3130 distance(k)=odl(k,ii)-dij
3131 c write (iout,*) "distance(",k,") =",distance(k)
3133 c For Gaussian-type Urestr
3135 distancek(k)=0.5d0*distance(k)**2*sigma_odl(k,ii) ! waga_dist rmvd from Gaussian argument
3136 c write (iout,*) "sigma_odl(",k,ii,") =",sigma_odl(k,ii)
3137 c write (iout,*) "distancek(",k,") =",distancek(k)
3138 c distancek(k)=0.5d0*waga_dist*distance(k)**2*sigma_odl(k,ii)
3140 c For Lorentzian-type Urestr
3142 if (waga_dist.lt.0.0d0) then
3143 sigma_odlir(k,ii)=dsqrt(1/sigma_odl(k,ii))
3144 distancek(k)=distance(k)**2/(sigma_odlir(k,ii)*
3145 & (distance(k)**2+sigma_odlir(k,ii)**2))
3149 min_odl=minval(distancek)
3150 c write (iout,* )"min_odl",min_odl
3152 write (iout,*) "ij dij",i,j,dij
3153 write (iout,*) "distance",(distance(k),k=1,constr_homology)
3154 write (iout,*) "distancek",(distancek(k),k=1,constr_homology)
3155 write (iout,* )"min_odl",min_odl
3158 do k=1,constr_homology
3159 c Nie wiem po co to liczycie jeszcze raz!
3160 c odleg3=-waga_dist(iset)*((distance(i,j,k)**2)/
3161 c & (2*(sigma_odl(i,j,k))**2))
3162 if (waga_dist.ge.0.0d0) then
3164 c For Gaussian-type Urestr
3166 godl(k)=dexp(-distancek(k)+min_odl)
3167 odleg2=odleg2+godl(k)
3169 c For Lorentzian-type Urestr
3172 odleg2=odleg2+distancek(k)
3175 ccc write(iout,779) i,j,k, "odleg2=",odleg2, "odleg3=", odleg3,
3176 ccc & "dEXP(odleg3)=", dEXP(odleg3),"distance(i,j,k)^2=",
3177 ccc & distance(i,j,k)**2, "dist(i+1,j+1)=", dist(i+1,j+1),
3178 ccc & "sigma_odl(i,j,k)=", sigma_odl(i,j,k)
3181 c write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents
3182 c write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps
3184 write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents
3185 write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps
3187 if (waga_dist.ge.0.0d0) then
3189 c For Gaussian-type Urestr
3191 odleg=odleg-dLOG(odleg2/constr_homology)+min_odl
3193 c For Lorentzian-type Urestr
3196 odleg=odleg+odleg2/constr_homology
3200 c write (iout,*) "odleg",odleg ! sum of -ln-s
3203 c For Gaussian-type Urestr
3205 if (waga_dist.ge.0.0d0) sum_godl=odleg2
3207 do k=1,constr_homology
3208 c godl=dexp(((-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2))
3209 c & *waga_dist)+min_odl
3210 c sgodl=-godl(k)*distance(k)*sigma_odl(k,ii)*waga_dist
3212 if (waga_dist.ge.0.0d0) then
3213 c For Gaussian-type Urestr
3215 sgodl=-godl(k)*distance(k)*sigma_odl(k,ii) ! waga_dist rmvd
3217 c For Lorentzian-type Urestr
3220 sgodl=-2*sigma_odlir(k,ii)*(distance(k)/(distance(k)**2+
3221 & sigma_odlir(k,ii)**2)**2)
3223 sum_sgodl=sum_sgodl+sgodl
3225 c sgodl2=sgodl2+sgodl
3226 c write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE1"
3227 c write(iout,*) "constr_homology=",constr_homology
3228 c write(iout,*) i, j, k, "TEST K"
3230 if (waga_dist.ge.0.0d0) then
3232 c For Gaussian-type Urestr
3234 grad_odl3=waga_homology(iset)*waga_dist
3235 & *sum_sgodl/(sum_godl*dij)
3237 c For Lorentzian-type Urestr
3240 c Original grad expr modified by analogy w Gaussian-type Urestr grad
3241 c grad_odl3=-waga_homology(iset)*waga_dist*sum_sgodl
3242 grad_odl3=-waga_homology(iset)*waga_dist*
3243 & sum_sgodl/(constr_homology*dij)
3246 c grad_odl3=sum_sgodl/(sum_godl*dij)
3249 c write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE2"
3250 c write(iout,*) (distance(i,j,k)**2), (2*(sigma_odl(i,j,k))**2),
3251 c & (-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2))
3253 ccc write(iout,*) godl, sgodl, grad_odl3
3255 c grad_odl=grad_odl+grad_odl3
3258 ggodl=grad_odl3*(c(jik,i)-c(jik,j))
3259 ccc write(iout,*) c(jik,i+1), c(jik,j+1), (c(jik,i+1)-c(jik,j+1))
3260 ccc write(iout,746) "GRAD_ODL_1", i, j, jik, ggodl,
3261 ccc & ghpbc(jik,i+1), ghpbc(jik,j+1)
3262 ghpbc(jik,i)=ghpbc(jik,i)+ggodl
3263 ghpbc(jik,j)=ghpbc(jik,j)-ggodl
3264 ccc write(iout,746) "GRAD_ODL_2", i, j, jik, ggodl,
3265 ccc & ghpbc(jik,i+1), ghpbc(jik,j+1)
3266 c if (i.eq.25.and.j.eq.27) then
3267 c write(iout,*) "jik",jik,"i",i,"j",j
3268 c write(iout,*) "sum_sgodl",sum_sgodl,"sgodl",sgodl
3269 c write(iout,*) "grad_odl3",grad_odl3
3270 c write(iout,*) "c(",jik,i,")",c(jik,i),"c(",jik,j,")",c(jik,j)
3271 c write(iout,*) "ggodl",ggodl
3272 c write(iout,*) "ghpbc(",jik,i,")",
3273 c & ghpbc(jik,i),"ghpbc(",jik,j,")",
3278 ccc write(iout,778)"TEST: odleg2=", odleg2, "DLOG(odleg2)=",
3279 ccc & dLOG(odleg2),"-odleg=", -odleg
3281 enddo ! ii-loop for dist
3283 write(iout,*) "------- dist restrs end -------"
3284 c if (waga_angle.eq.1.0d0 .or. waga_theta.eq.1.0d0 .or.
3285 c & waga_d.eq.1.0d0) call sum_gradient
3287 c Pseudo-energy and gradient from dihedral-angle restraints from
3288 c homology templates
3289 c write (iout,*) "End of distance loop"
3292 c write (iout,*) idihconstr_start_homo,idihconstr_end_homo
3294 write(iout,*) "------- dih restrs start -------"
3295 do i=idihconstr_start_homo,idihconstr_end_homo
3296 write (iout,*) "gloc_init(",i,icg,")",gloc(i,icg)
3299 do i=idihconstr_start_homo,idihconstr_end_homo
3301 c betai=beta(i,i+1,i+2,i+3)
3303 c write (iout,*) "betai =",betai
3304 do k=1,constr_homology
3305 dih_diff(k)=pinorm(dih(k,i)-betai)
3306 c write (iout,*) "dih_diff(",k,") =",dih_diff(k)
3307 c if (dih_diff(i,k).gt.3.14159) dih_diff(i,k)=
3308 c & -(6.28318-dih_diff(i,k))
3309 c if (dih_diff(i,k).lt.-3.14159) dih_diff(i,k)=
3310 c & 6.28318+dih_diff(i,k)
3312 kat3=-0.5d0*dih_diff(k)**2*sigma_dih(k,i) ! waga_angle rmvd from Gaussian argument
3313 c kat3=-0.5d0*waga_angle*dih_diff(k)**2*sigma_dih(k,i)
3316 c write(iout,*) "kat2=", kat2, "exp(kat3)=", exp(kat3)
3319 c write (iout,*) "gdih",(gdih(k),k=1,constr_homology) ! exps
3320 c write (iout,*) "i",i," betai",betai," kat2",kat2 ! sum of exps
3322 write (iout,*) "i",i," betai",betai," kat2",kat2
3323 write (iout,*) "gdih",(gdih(k),k=1,constr_homology)
3325 if (kat2.le.1.0d-14) cycle
3326 kat=kat-dLOG(kat2/constr_homology)
3327 c write (iout,*) "kat",kat ! sum of -ln-s
3329 ccc write(iout,778)"TEST: kat2=", kat2, "DLOG(kat2)=",
3330 ccc & dLOG(kat2), "-kat=", -kat
3333 c ----------------------------------------------------------------------
3335 c ----------------------------------------------------------------------
3339 do k=1,constr_homology
3340 sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i) ! waga_angle rmvd
3341 c sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)*waga_angle
3342 sum_sgdih=sum_sgdih+sgdih
3344 c grad_dih3=sum_sgdih/sum_gdih
3345 grad_dih3=waga_homology(iset)*waga_angle*sum_sgdih/sum_gdih
3347 c write(iout,*)i,k,gdih,sgdih,beta(i+1,i+2,i+3,i+4),grad_dih3
3348 ccc write(iout,747) "GRAD_KAT_1", i, nphi, icg, grad_dih3,
3349 ccc & gloc(nphi+i-3,icg)
3350 gloc(i,icg)=gloc(i,icg)+grad_dih3
3352 c write(iout,*) "i",i,"icg",icg,"gloc(",i,icg,")",gloc(i,icg)
3354 ccc write(iout,747) "GRAD_KAT_2", i, nphi, icg, grad_dih3,
3355 ccc & gloc(nphi+i-3,icg)
3357 enddo ! i-loop for dih
3359 write(iout,*) "------- dih restrs end -------"
3362 c Pseudo-energy and gradient for theta angle restraints from
3363 c homology templates
3364 c FP 01/15 - inserted from econstr_local_test.F, loop structure
3368 c For constr_homology reference structures (FP)
3370 c Uconst_back_tot=0.0d0
3373 c Econstr_back legacy
3376 c do i=ithet_start,ithet_end
3379 c do i=loc_start,loc_end
3382 duscdiffx(j,i)=0.0d0
3388 c write (iout,*) "ithet_start =",ithet_start,"ithet_end =",ithet_end
3389 c write (iout,*) "waga_theta",waga_theta
3390 if (waga_theta.gt.0.0d0) then
3392 write (iout,*) "usampl",usampl
3393 write(iout,*) "------- theta restrs start -------"
3394 c do i=ithet_start,ithet_end
3395 c write (iout,*) "gloc_init(",nphi+i,icg,")",gloc(nphi+i,icg)
3398 c write (iout,*) "maxres",maxres,"nres",nres
3400 do i=ithet_start,ithet_end
3403 c ii = ifrag_back(2,i,iset)-ifrag_back(1,i,iset)
3405 c Deviation of theta angles wrt constr_homology ref structures
3407 utheta_i=0.0d0 ! argument of Gaussian for single k
3408 gutheta_i=0.0d0 ! Sum of Gaussians over constr_homology ref structures
3409 c do j=ifrag_back(1,i,iset)+2,ifrag_back(2,i,iset) ! original loop
3410 c over residues in a fragment
3411 c write (iout,*) "theta(",i,")=",theta(i)
3412 do k=1,constr_homology
3414 c dtheta_i=theta(j)-thetaref(j,iref)
3415 c dtheta_i=thetaref(k,i)-theta(i) ! original form without indexing
3416 theta_diff(k)=thetatpl(k,i)-theta(i)
3418 utheta_i=-0.5d0*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta rmvd from Gaussian argument
3419 c utheta_i=-0.5d0*waga_theta*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta?
3420 gtheta(k)=dexp(utheta_i) ! + min_utheta_i?
3421 gutheta_i=gutheta_i+dexp(utheta_i) ! Sum of Gaussians (pk)
3422 c Gradient for single Gaussian restraint in subr Econstr_back
3423 c dutheta(j-2)=dutheta(j-2)+wfrag_back(1,i,iset)*dtheta_i/(ii-1)
3426 c write (iout,*) "gtheta",(gtheta(k),k=1,constr_homology) ! exps
3427 c write (iout,*) "i",i," gutheta_i",gutheta_i ! sum of exps
3431 c Gradient for multiple Gaussian restraint
3432 sum_gtheta=gutheta_i
3434 do k=1,constr_homology
3435 c New generalized expr for multiple Gaussian from Econstr_back
3436 sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i) ! waga_theta rmvd
3438 c sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i)*waga_theta ! right functional form?
3439 sum_sgtheta=sum_sgtheta+sgtheta ! cum variable
3442 c Final value of gradient using same var as in Econstr_back
3443 dutheta(i-2)=sum_sgtheta/sum_gtheta*waga_theta
3444 & *waga_homology(iset)
3445 c dutheta(i)=sum_sgtheta/sum_gtheta
3447 c Uconst_back=Uconst_back+waga_theta*utheta(i) ! waga_theta added as weight
3449 Eval=Eval-dLOG(gutheta_i/constr_homology)
3450 c write (iout,*) "utheta(",i,")=",utheta(i) ! -ln of sum of exps
3451 c write (iout,*) "Uconst_back",Uconst_back ! sum of -ln-s
3452 c Uconst_back=Uconst_back+utheta(i)
3453 enddo ! (i-loop for theta)
3455 write(iout,*) "------- theta restrs end -------"
3459 c Deviation of local SC geometry
3461 c Separation of two i-loops (instructed by AL - 11/3/2014)
3463 c write (iout,*) "loc_start =",loc_start,"loc_end =",loc_end
3464 c write (iout,*) "waga_d",waga_d
3467 write(iout,*) "------- SC restrs start -------"
3468 write (iout,*) "Initial duscdiff,duscdiffx"
3469 do i=loc_start,loc_end
3470 write (iout,*) i,(duscdiff(jik,i),jik=1,3),
3471 & (duscdiffx(jik,i),jik=1,3)
3474 do i=loc_start,loc_end
3475 usc_diff_i=0.0d0 ! argument of Gaussian for single k
3476 guscdiff(i)=0.0d0 ! Sum of Gaussians over constr_homology ref structures
3477 c do j=ifrag_back(1,i,iset)+1,ifrag_back(2,i,iset)-1 ! Econstr_back legacy
3478 c write(iout,*) "xxtab, yytab, zztab"
3479 c write(iout,'(i5,3f8.2)') i,xxtab(i),yytab(i),zztab(i)
3480 do k=1,constr_homology
3482 dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str?
3483 c Original sign inverted for calc of gradients (s. Econstr_back)
3484 dyy=-yytpl(k,i)+yytab(i) ! ibid y
3485 dzz=-zztpl(k,i)+zztab(i) ! ibid z
3486 c write(iout,*) "dxx, dyy, dzz"
3487 c write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz
3489 usc_diff_i=-0.5d0*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i) ! waga_d rmvd from Gaussian argument
3490 c usc_diff(i)=-0.5d0*waga_d*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i) ! waga_d?
3491 c uscdiffk(k)=usc_diff(i)
3492 guscdiff2(k)=dexp(usc_diff_i) ! without min_scdiff
3493 guscdiff(i)=guscdiff(i)+dexp(usc_diff_i) !Sum of Gaussians (pk)
3494 c write (iout,'(i5,6f10.5)') j,xxtab(j),yytab(j),zztab(j),
3495 c & xxref(j),yyref(j),zzref(j)
3500 c Generalized expression for multiple Gaussian acc to that for a single
3501 c Gaussian in Econstr_back as instructed by AL (FP - 03/11/2014)
3503 c Original implementation
3504 c sum_guscdiff=guscdiff(i)
3506 c sum_sguscdiff=0.0d0
3507 c do k=1,constr_homology
3508 c sguscdiff=-guscdiff2(k)*dscdiff(k)*sigma_d(k,i)*waga_d !waga_d?
3509 c sguscdiff=-guscdiff3(k)*dscdiff(k)*sigma_d(k,i)*waga_d ! w min_uscdiff
3510 c sum_sguscdiff=sum_sguscdiff+sguscdiff
3513 c Implementation of new expressions for gradient (Jan. 2015)
3515 c grad_uscdiff=sum_sguscdiff/(sum_guscdiff*dtab) !?
3517 do k=1,constr_homology
3519 c New calculation of dxx, dyy, and dzz corrected by AL (07/11), was missing and wrong
3520 c before. Now the drivatives should be correct
3522 dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str?
3523 c Original sign inverted for calc of gradients (s. Econstr_back)
3524 dyy=-yytpl(k,i)+yytab(i) ! ibid y
3525 dzz=-zztpl(k,i)+zztab(i) ! ibid z
3527 c New implementation
3529 sum_guscdiff=guscdiff2(k)*!(dsqrt(dxx*dxx+dyy*dyy+dzz*dzz))* -> wrong!
3530 & sigma_d(k,i) ! for the grad wrt r'
3531 c sum_sguscdiff=sum_sguscdiff+sum_guscdiff
3534 c New implementation
3535 sum_guscdiff = waga_homology(iset)*waga_d*sum_guscdiff
3537 duscdiff(jik,i-1)=duscdiff(jik,i-1)+
3538 & sum_guscdiff*(dXX_C1tab(jik,i)*dxx+
3539 & dYY_C1tab(jik,i)*dyy+dZZ_C1tab(jik,i)*dzz)/guscdiff(i)
3540 duscdiff(jik,i)=duscdiff(jik,i)+
3541 & sum_guscdiff*(dXX_Ctab(jik,i)*dxx+
3542 & dYY_Ctab(jik,i)*dyy+dZZ_Ctab(jik,i)*dzz)/guscdiff(i)
3543 duscdiffx(jik,i)=duscdiffx(jik,i)+
3544 & sum_guscdiff*(dXX_XYZtab(jik,i)*dxx+
3545 & dYY_XYZtab(jik,i)*dyy+dZZ_XYZtab(jik,i)*dzz)/guscdiff(i)
3548 write(iout,*) "jik",jik,"i",i
3549 write(iout,*) "dxx, dyy, dzz"
3550 write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz
3551 write(iout,*) "guscdiff2(",k,")",guscdiff2(k)
3552 c write(iout,*) "sum_sguscdiff",sum_sguscdiff
3553 cc write(iout,*) "dXX_Ctab(",jik,i,")",dXX_Ctab(jik,i)
3554 c write(iout,*) "dYY_Ctab(",jik,i,")",dYY_Ctab(jik,i)
3555 c write(iout,*) "dZZ_Ctab(",jik,i,")",dZZ_Ctab(jik,i)
3556 c write(iout,*) "dXX_C1tab(",jik,i,")",dXX_C1tab(jik,i)
3557 c write(iout,*) "dYY_C1tab(",jik,i,")",dYY_C1tab(jik,i)
3558 c write(iout,*) "dZZ_C1tab(",jik,i,")",dZZ_C1tab(jik,i)
3559 c write(iout,*) "dXX_XYZtab(",jik,i,")",dXX_XYZtab(jik,i)
3560 c write(iout,*) "dYY_XYZtab(",jik,i,")",dYY_XYZtab(jik,i)
3561 c write(iout,*) "dZZ_XYZtab(",jik,i,")",dZZ_XYZtab(jik,i)
3562 c write(iout,*) "duscdiff(",jik,i-1,")",duscdiff(jik,i-1)
3563 c write(iout,*) "duscdiff(",jik,i,")",duscdiff(jik,i)
3564 c write(iout,*) "duscdiffx(",jik,i,")",duscdiffx(jik,i)
3571 c uscdiff(i)=-dLOG(guscdiff(i)/(ii-1)) ! Weighting by (ii-1) required?
3572 c usc_diff(i)=-dLOG(guscdiff(i)/constr_homology) ! + min_uscdiff ?
3574 c write (iout,*) i," uscdiff",uscdiff(i)
3576 c Put together deviations from local geometry
3578 c Uconst_back=Uconst_back+wfrag_back(1,i,iset)*utheta(i)+
3579 c & wfrag_back(3,i,iset)*uscdiff(i)
3580 Erot=Erot-dLOG(guscdiff(i)/constr_homology)
3581 c write (iout,*) "usc_diff(",i,")=",usc_diff(i) ! -ln of sum of exps
3582 c write (iout,*) "Uconst_back",Uconst_back ! cum sum of -ln-s
3583 c Uconst_back=Uconst_back+usc_diff(i)
3585 c Gradient of multiple Gaussian restraint (FP - 04/11/2014 - right?)
3587 c New implment: multiplied by sum_sguscdiff
3590 enddo ! (i-loop for dscdiff)
3595 write(iout,*) "------- SC restrs end -------"
3596 write (iout,*) "------ After SC loop in e_modeller ------"
3597 do i=loc_start,loc_end
3598 write (iout,*) "i",i," gradc",(gradc(j,i,icg),j=1,3)
3599 write (iout,*) "i",i," gradx",(gradx(j,i,icg),j=1,3)
3601 if (waga_theta.eq.1.0d0) then
3602 write (iout,*) "in e_modeller after SC restr end: dutheta"
3603 do i=ithet_start,ithet_end
3604 write (iout,*) i,dutheta(i)
3607 if (waga_d.eq.1.0d0) then
3608 write (iout,*) "e_modeller after SC loop: duscdiff/x"
3610 write (iout,*) i,(duscdiff(j,i),j=1,3)
3611 write (iout,*) i,(duscdiffx(j,i),j=1,3)
3616 c Total energy from homology restraints
3618 write (iout,*) "odleg",odleg," kat",kat
3619 write (iout,*) "odleg",odleg," kat",kat
3620 write (iout,*) "Eval",Eval," Erot",Erot
3621 write (iout,*) "waga_homology(",iset,")",waga_homology(iset)
3622 write (iout,*) "waga_dist ",waga_dist,"waga_angle ",waga_angle
3623 write (iout,*) "waga_theta ",waga_theta,"waga_d ",waga_d
3624 write (iout,*) "waga_homology(",iset,")",waga_homology(iset)
3627 c Addition of energy of theta angle and SC local geom over constr_homologs ref strs
3629 c ehomology_constr=odleg+kat
3631 c For Lorentzian-type Urestr
3634 if (waga_dist.ge.0.0d0) then
3636 c For Gaussian-type Urestr
3638 ehomology_constr=(waga_dist*odleg+waga_angle*kat+
3639 & waga_theta*Eval+waga_d*Erot)*waga_homology(iset)
3640 c write (iout,*) "ehomology_constr=",ehomology_constr
3643 c For Lorentzian-type Urestr
3645 ehomology_constr=(-waga_dist*odleg+waga_angle*kat+
3646 & waga_theta*Eval+waga_d*Erot)*waga_homology(iset)
3647 c write (iout,*) "ehomology_constr=",ehomology_constr
3650 write (iout,*) "iset",iset," waga_homology",waga_homology(iset)
3651 write (iout,*) "odleg",waga_dist,odleg," kat",waga_angle,kat,
3652 & " Eval",waga_theta,Eval," Erot",waga_d,Erot
3653 write (iout,*) "ehomology_constr",ehomology_constr
3657 748 format(a8,f12.3,a6,f12.3,a7,f12.3)
3658 747 format(a12,i4,i4,i4,f8.3,f8.3)
3659 746 format(a12,i4,i4,i4,f8.3,f8.3,f8.3)
3660 778 format(a7,1X,f10.3,1X,a4,1X,f10.3,1X,a5,1X,f10.3)
3661 779 format(i3,1X,i3,1X,i2,1X,a7,1X,f7.3,1X,a7,1X,f7.3,1X,a13,1X,
3662 & f7.3,1X,a17,1X,f9.3,1X,a10,1X,f8.3,1X,a10,1X,f8.3)
3664 C--------------------------------------------------------------------------
3665 subroutine ebond(estr)
3667 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
3669 implicit real*8 (a-h,o-z)
3670 include 'DIMENSIONS'
3671 include 'COMMON.LOCAL'
3672 include 'COMMON.GEO'
3673 include 'COMMON.INTERACT'
3674 include 'COMMON.DERIV'
3675 include 'COMMON.VAR'
3676 include 'COMMON.CHAIN'
3677 include 'COMMON.IOUNITS'
3678 include 'COMMON.NAMES'
3679 include 'COMMON.FFIELD'
3680 include 'COMMON.CONTROL'
3681 double precision u(3),ud(3)
3684 diff = vbld(i)-vbldp0
3685 c write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
3688 gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
3693 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
3700 diff=vbld(i+nres)-vbldsc0(1,iti)
3701 c write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
3702 c & AKSC(1,iti),AKSC(1,iti)*diff*diff
3703 estr=estr+0.5d0*AKSC(1,iti)*diff*diff
3705 gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
3709 diff=vbld(i+nres)-vbldsc0(j,iti)
3710 ud(j)=aksc(j,iti)*diff
3711 u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
3725 uprod2=uprod2*u(k)*u(k)
3729 usumsqder=usumsqder+ud(j)*uprod2
3731 c write (iout,*) i,iti,vbld(i+nres),(vbldsc0(j,iti),
3732 c & AKSC(j,iti),abond0(j,iti),u(j),j=1,nbi)
3733 estr=estr+uprod/usum
3735 gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
3743 C--------------------------------------------------------------------------
3744 subroutine ebend(etheta)
3746 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
3747 C angles gamma and its derivatives in consecutive thetas and gammas.
3749 implicit real*8 (a-h,o-z)
3750 include 'DIMENSIONS'
3751 include 'sizesclu.dat'
3752 include 'COMMON.LOCAL'
3753 include 'COMMON.GEO'
3754 include 'COMMON.INTERACT'
3755 include 'COMMON.DERIV'
3756 include 'COMMON.VAR'
3757 include 'COMMON.CHAIN'
3758 include 'COMMON.IOUNITS'
3759 include 'COMMON.NAMES'
3760 include 'COMMON.FFIELD'
3761 common /calcthet/ term1,term2,termm,diffak,ratak,
3762 & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
3763 & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
3764 double precision y(2),z(2)
3766 time11=dexp(-2*time)
3769 c write (iout,*) "nres",nres
3770 c write (*,'(a,i2)') 'EBEND ICG=',icg
3771 c write (iout,*) ithet_start,ithet_end
3772 do i=ithet_start,ithet_end
3773 C Zero the energy function and its derivative at 0 or pi.
3774 call splinthet(theta(i),0.5d0*delta,ss,ssd)
3776 c if (i.gt.ithet_start .and.
3777 c & (itel(i-1).eq.0 .or. itel(i-2).eq.0)) goto 1215
3778 c if (i.gt.3 .and. (i.le.4 .or. itel(i-3).ne.0)) then
3786 c if (i.lt.nres .and. itel(i).ne.0) then
3798 call proc_proc(phii,icrc)
3799 if (icrc.eq.1) phii=150.0
3813 call proc_proc(phii1,icrc)
3814 if (icrc.eq.1) phii1=150.0
3826 C Calculate the "mean" value of theta from the part of the distribution
3827 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
3828 C In following comments this theta will be referred to as t_c.
3829 thet_pred_mean=0.0d0
3833 thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
3835 c write (iout,*) "thet_pred_mean",thet_pred_mean
3836 dthett=thet_pred_mean*ssd
3837 thet_pred_mean=thet_pred_mean*ss+a0thet(it)
3838 c write (iout,*) "thet_pred_mean",thet_pred_mean
3839 C Derivatives of the "mean" values in gamma1 and gamma2.
3840 dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
3841 dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
3842 if (theta(i).gt.pi-delta) then
3843 call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
3845 call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
3846 call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
3847 call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
3849 call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
3851 else if (theta(i).lt.delta) then
3852 call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
3853 call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
3854 call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
3856 call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
3857 call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
3860 call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
3863 etheta=etheta+ethetai
3864 c write (iout,'(2i3,3f8.3,f10.5)') i,it,rad2deg*theta(i),
3865 c & rad2deg*phii,rad2deg*phii1,ethetai
3866 if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
3867 if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
3868 gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
3871 C Ufff.... We've done all this!!!
3874 C---------------------------------------------------------------------------
3875 subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
3877 implicit real*8 (a-h,o-z)
3878 include 'DIMENSIONS'
3879 include 'COMMON.LOCAL'
3880 include 'COMMON.IOUNITS'
3881 common /calcthet/ term1,term2,termm,diffak,ratak,
3882 & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
3883 & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
3884 C Calculate the contributions to both Gaussian lobes.
3885 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
3886 C The "polynomial part" of the "standard deviation" of this part of
3890 sig=sig*thet_pred_mean+polthet(j,it)
3892 C Derivative of the "interior part" of the "standard deviation of the"
3893 C gamma-dependent Gaussian lobe in t_c.
3894 sigtc=3*polthet(3,it)
3896 sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
3899 C Set the parameters of both Gaussian lobes of the distribution.
3900 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
3901 fac=sig*sig+sigc0(it)
3904 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
3905 sigsqtc=-4.0D0*sigcsq*sigtc
3906 c print *,i,sig,sigtc,sigsqtc
3907 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
3908 sigtc=-sigtc/(fac*fac)
3909 C Following variable is sigma(t_c)**(-2)
3910 sigcsq=sigcsq*sigcsq
3912 sig0inv=1.0D0/sig0i**2
3913 delthec=thetai-thet_pred_mean
3914 delthe0=thetai-theta0i
3915 term1=-0.5D0*sigcsq*delthec*delthec
3916 term2=-0.5D0*sig0inv*delthe0*delthe0
3917 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
3918 C NaNs in taking the logarithm. We extract the largest exponent which is added
3919 C to the energy (this being the log of the distribution) at the end of energy
3920 C term evaluation for this virtual-bond angle.
3921 if (term1.gt.term2) then
3923 term2=dexp(term2-termm)
3927 term1=dexp(term1-termm)
3930 C The ratio between the gamma-independent and gamma-dependent lobes of
3931 C the distribution is a Gaussian function of thet_pred_mean too.
3932 diffak=gthet(2,it)-thet_pred_mean
3933 ratak=diffak/gthet(3,it)**2
3934 ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
3935 C Let's differentiate it in thet_pred_mean NOW.
3937 C Now put together the distribution terms to make complete distribution.
3938 termexp=term1+ak*term2
3939 termpre=sigc+ak*sig0i
3940 C Contribution of the bending energy from this theta is just the -log of
3941 C the sum of the contributions from the two lobes and the pre-exponential
3942 C factor. Simple enough, isn't it?
3943 ethetai=(-dlog(termexp)-termm+dlog(termpre))
3944 C NOW the derivatives!!!
3945 C 6/6/97 Take into account the deformation.
3946 E_theta=(delthec*sigcsq*term1
3947 & +ak*delthe0*sig0inv*term2)/termexp
3948 E_tc=((sigtc+aktc*sig0i)/termpre
3949 & -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
3950 & aktc*term2)/termexp)
3953 c-----------------------------------------------------------------------------
3954 subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
3955 implicit real*8 (a-h,o-z)
3956 include 'DIMENSIONS'
3957 include 'COMMON.LOCAL'
3958 include 'COMMON.IOUNITS'
3959 common /calcthet/ term1,term2,termm,diffak,ratak,
3960 & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
3961 & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
3962 delthec=thetai-thet_pred_mean
3963 delthe0=thetai-theta0i
3964 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
3965 t3 = thetai-thet_pred_mean
3969 t14 = t12+t6*sigsqtc
3971 t21 = thetai-theta0i
3977 E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
3978 & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
3979 & *(-t12*t9-ak*sig0inv*t27)
3983 C--------------------------------------------------------------------------
3984 subroutine ebend(etheta)
3986 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
3987 C angles gamma and its derivatives in consecutive thetas and gammas.
3988 C ab initio-derived potentials from
3989 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
3991 implicit real*8 (a-h,o-z)
3992 include 'DIMENSIONS'
3993 include 'COMMON.LOCAL'
3994 include 'COMMON.GEO'
3995 include 'COMMON.INTERACT'
3996 include 'COMMON.DERIV'
3997 include 'COMMON.VAR'
3998 include 'COMMON.CHAIN'
3999 include 'COMMON.IOUNITS'
4000 include 'COMMON.NAMES'
4001 include 'COMMON.FFIELD'
4002 include 'COMMON.CONTROL'
4003 double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4004 & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4005 & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4006 & sinph1ph2(maxdouble,maxdouble)
4007 logical lprn /.false./, lprn1 /.false./
4009 do i=ithet_start,ithet_end
4010 if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
4011 & (itype(i).eq.ntyp1)) cycle
4015 theti2=0.5d0*theta(i)
4016 ityp2=ithetyp(itype(i-1))
4018 coskt(k)=dcos(k*theti2)
4019 sinkt(k)=dsin(k*theti2)
4021 if (i.gt.3 .and. itype(i-3).ne.ntyp1) then
4024 if (phii.ne.phii) phii=150.0
4028 ityp1=ithetyp(itype(i-2))
4030 cosph1(k)=dcos(k*phii)
4031 sinph1(k)=dsin(k*phii)
4035 ityp1=ithetyp(itype(i-2))
4041 if (i.lt.nres .and. itype(i+1).ne.ntyp1) then
4044 if (phii1.ne.phii1) phii1=150.0
4049 ityp3=ithetyp(itype(i))
4051 cosph2(k)=dcos(k*phii1)
4052 sinph2(k)=dsin(k*phii1)
4056 ityp3=ithetyp(itype(i))
4062 c write (iout,*) "i",i," ityp1",itype(i-2),ityp1,
4063 c & " ityp2",itype(i-1),ityp2," ityp3",itype(i),ityp3
4065 ethetai=aa0thet(ityp1,ityp2,ityp3)
4068 ccl=cosph1(l)*cosph2(k-l)
4069 ssl=sinph1(l)*sinph2(k-l)
4070 scl=sinph1(l)*cosph2(k-l)
4071 csl=cosph1(l)*sinph2(k-l)
4072 cosph1ph2(l,k)=ccl-ssl
4073 cosph1ph2(k,l)=ccl+ssl
4074 sinph1ph2(l,k)=scl+csl
4075 sinph1ph2(k,l)=scl-csl
4079 write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4080 & " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4081 write (iout,*) "coskt and sinkt"
4083 write (iout,*) k,coskt(k),sinkt(k)
4087 ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4088 dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4091 & write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4092 & " ethetai",ethetai
4095 write (iout,*) "cosph and sinph"
4097 write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4099 write (iout,*) "cosph1ph2 and sinph2ph2"
4102 write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4103 & sinph1ph2(l,k),sinph1ph2(k,l)
4106 write(iout,*) "ethetai",ethetai
4110 aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4111 & +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4112 & +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4113 & +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4114 ethetai=ethetai+sinkt(m)*aux
4115 dethetai=dethetai+0.5d0*m*aux*coskt(m)
4116 dephii=dephii+k*sinkt(m)*(
4117 & ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4118 & bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4119 dephii1=dephii1+k*sinkt(m)*(
4120 & eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4121 & ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4123 & write (iout,*) "m",m," k",k," bbthet",
4124 & bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4125 & ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4126 & ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4127 & eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4131 & write(iout,*) "ethetai",ethetai
4135 aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4136 & ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4137 & ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4138 & ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4139 ethetai=ethetai+sinkt(m)*aux
4140 dethetai=dethetai+0.5d0*m*coskt(m)*aux
4141 dephii=dephii+l*sinkt(m)*(
4142 & -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4143 & ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4144 & ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4145 & ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4146 dephii1=dephii1+(k-l)*sinkt(m)*(
4147 & -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4148 & ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4149 & ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
4150 & ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4152 write (iout,*) "m",m," k",k," l",l," ffthet",
4153 & ffthet(l,k,m,ityp1,ityp2,ityp3),
4154 & ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
4155 & ggthet(l,k,m,ityp1,ityp2,ityp3),
4156 & ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4157 write (iout,*) cosph1ph2(l,k)*sinkt(m),
4158 & cosph1ph2(k,l)*sinkt(m),
4159 & sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4166 if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)')
4167 & 'ebe',i,theta(i)*rad2deg,phii*rad2deg,
4168 & phii1*rad2deg,ethetai
4170 etheta=etheta+ethetai
4172 if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4173 if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4174 gloc(nphi+i-2,icg)=wang*dethetai
4180 c-----------------------------------------------------------------------------
4181 subroutine esc(escloc)
4182 C Calculate the local energy of a side chain and its derivatives in the
4183 C corresponding virtual-bond valence angles THETA and the spherical angles
4185 implicit real*8 (a-h,o-z)
4186 include 'DIMENSIONS'
4187 include 'sizesclu.dat'
4188 include 'COMMON.GEO'
4189 include 'COMMON.LOCAL'
4190 include 'COMMON.VAR'
4191 include 'COMMON.INTERACT'
4192 include 'COMMON.DERIV'
4193 include 'COMMON.CHAIN'
4194 include 'COMMON.IOUNITS'
4195 include 'COMMON.NAMES'
4196 include 'COMMON.FFIELD'
4197 double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4198 & ddersc0(3),ddummy(3),xtemp(3),temp(3)
4199 common /sccalc/ time11,time12,time112,theti,it,nlobit
4202 c write (iout,'(a)') 'ESC'
4203 do i=loc_start,loc_end
4205 if (it.eq.10) goto 1
4207 c print *,'i=',i,' it=',it,' nlobit=',nlobit
4208 c write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4209 theti=theta(i+1)-pipol
4213 c write (iout,*) "i",i," x",x(1),x(2),x(3)
4215 if (x(2).gt.pi-delta) then
4219 call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4221 call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4222 call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
4224 call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4225 & ddersc0(1),dersc(1))
4226 call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
4227 & ddersc0(3),dersc(3))
4229 call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4231 call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4232 call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
4233 & dersc0(2),esclocbi,dersc02)
4234 call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4236 call splinthet(x(2),0.5d0*delta,ss,ssd)
4241 dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
4243 dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
4244 c write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
4246 escloci=ss*escloci+(1.0d0-ss)*esclocbi
4248 c write (iout,*) escloci
4249 else if (x(2).lt.delta) then
4253 call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4255 call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4256 call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
4258 call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
4259 & ddersc0(1),dersc(1))
4260 call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
4261 & ddersc0(3),dersc(3))
4263 call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4265 call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4266 call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
4267 & dersc0(2),esclocbi,dersc02)
4268 call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
4273 call splinthet(x(2),0.5d0*delta,ss,ssd)
4275 dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
4277 dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
4278 c write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
4280 escloci=ss*escloci+(1.0d0-ss)*esclocbi
4281 c write (iout,*) escloci
4283 call enesc(x,escloci,dersc,ddummy,.false.)
4286 escloc=escloc+escloci
4287 c write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
4289 gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
4291 gloc(ialph(i,1),icg)=wscloc*dersc(2)
4292 gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
4297 C---------------------------------------------------------------------------
4298 subroutine enesc(x,escloci,dersc,ddersc,mixed)
4299 implicit real*8 (a-h,o-z)
4300 include 'DIMENSIONS'
4301 include 'COMMON.GEO'
4302 include 'COMMON.LOCAL'
4303 include 'COMMON.IOUNITS'
4304 common /sccalc/ time11,time12,time112,theti,it,nlobit
4305 double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
4306 double precision contr(maxlob,-1:1)
4308 c write (iout,*) 'it=',it,' nlobit=',nlobit
4312 if (mixed) ddersc(j)=0.0d0
4316 C Because of periodicity of the dependence of the SC energy in omega we have
4317 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
4318 C To avoid underflows, first compute & store the exponents.
4326 z(k)=x(k)-censc(k,j,it)
4331 Axk=Axk+gaussc(l,k,j,it)*z(l)
4337 expfac=expfac+Ax(k,j,iii)*z(k)
4345 C As in the case of ebend, we want to avoid underflows in exponentiation and
4346 C subsequent NaNs and INFs in energy calculation.
4347 C Find the largest exponent
4351 if (emin.gt.contr(j,iii)) emin=contr(j,iii)
4355 cd print *,'it=',it,' emin=',emin
4357 C Compute the contribution to SC energy and derivatives
4361 expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
4362 cd print *,'j=',j,' expfac=',expfac
4363 escloc_i=escloc_i+expfac
4365 dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
4369 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
4370 & +gaussc(k,2,j,it))*expfac
4377 dersc(1)=dersc(1)/cos(theti)**2
4378 ddersc(1)=ddersc(1)/cos(theti)**2
4381 escloci=-(dlog(escloc_i)-emin)
4383 dersc(j)=dersc(j)/escloc_i
4387 ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
4392 C------------------------------------------------------------------------------
4393 subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
4394 implicit real*8 (a-h,o-z)
4395 include 'DIMENSIONS'
4396 include 'COMMON.GEO'
4397 include 'COMMON.LOCAL'
4398 include 'COMMON.IOUNITS'
4399 common /sccalc/ time11,time12,time112,theti,it,nlobit
4400 double precision x(3),z(3),Ax(3,maxlob),dersc(3)
4401 double precision contr(maxlob)
4412 z(k)=x(k)-censc(k,j,it)
4418 Axk=Axk+gaussc(l,k,j,it)*z(l)
4424 expfac=expfac+Ax(k,j)*z(k)
4429 C As in the case of ebend, we want to avoid underflows in exponentiation and
4430 C subsequent NaNs and INFs in energy calculation.
4431 C Find the largest exponent
4434 if (emin.gt.contr(j)) emin=contr(j)
4438 C Compute the contribution to SC energy and derivatives
4442 expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
4443 escloc_i=escloc_i+expfac
4445 dersc(k)=dersc(k)+Ax(k,j)*expfac
4447 if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
4448 & +gaussc(1,2,j,it))*expfac
4452 dersc(1)=dersc(1)/cos(theti)**2
4453 dersc12=dersc12/cos(theti)**2
4454 escloci=-(dlog(escloc_i)-emin)
4456 dersc(j)=dersc(j)/escloc_i
4458 if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
4462 c----------------------------------------------------------------------------------
4463 subroutine esc(escloc)
4464 C Calculate the local energy of a side chain and its derivatives in the
4465 C corresponding virtual-bond valence angles THETA and the spherical angles
4466 C ALPHA and OMEGA derived from AM1 all-atom calculations.
4467 C added by Urszula Kozlowska. 07/11/2007
4469 implicit real*8 (a-h,o-z)
4470 include 'DIMENSIONS'
4471 include 'COMMON.GEO'
4472 include 'COMMON.LOCAL'
4473 include 'COMMON.VAR'
4474 include 'COMMON.SCROT'
4475 include 'COMMON.INTERACT'
4476 include 'COMMON.DERIV'
4477 include 'COMMON.CHAIN'
4478 include 'COMMON.IOUNITS'
4479 include 'COMMON.NAMES'
4480 include 'COMMON.FFIELD'
4481 include 'COMMON.CONTROL'
4482 include 'COMMON.VECTORS'
4483 double precision x_prime(3),y_prime(3),z_prime(3)
4484 & , sumene,dsc_i,dp2_i,x(65),
4485 & xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
4486 & de_dxx,de_dyy,de_dzz,de_dt
4487 double precision s1_t,s1_6_t,s2_t,s2_6_t
4489 & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
4490 & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
4491 & dt_dCi(3),dt_dCi1(3)
4492 common /sccalc/ time11,time12,time112,theti,it,nlobit
4495 do i=loc_start,loc_end
4496 costtab(i+1) =dcos(theta(i+1))
4497 sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
4498 cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
4499 sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
4500 cosfac2=0.5d0/(1.0d0+costtab(i+1))
4501 cosfac=dsqrt(cosfac2)
4502 sinfac2=0.5d0/(1.0d0-costtab(i+1))
4503 sinfac=dsqrt(sinfac2)
4505 if (it.eq.10) goto 1
4507 C Compute the axes of tghe local cartesian coordinates system; store in
4508 c x_prime, y_prime and z_prime
4515 C write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
4516 C & dc_norm(3,i+nres)
4518 x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
4519 y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
4522 z_prime(j) = -uz(j,i-1)
4525 c write (2,*) "x_prime",(x_prime(j),j=1,3)
4526 c write (2,*) "y_prime",(y_prime(j),j=1,3)
4527 c write (2,*) "z_prime",(z_prime(j),j=1,3)
4528 c write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
4529 c & " xy",scalar(x_prime(1),y_prime(1)),
4530 c & " xz",scalar(x_prime(1),z_prime(1)),
4531 c & " yy",scalar(y_prime(1),y_prime(1)),
4532 c & " yz",scalar(y_prime(1),z_prime(1)),
4533 c & " zz",scalar(z_prime(1),z_prime(1))
4535 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
4536 C to local coordinate system. Store in xx, yy, zz.
4542 xx = xx + x_prime(j)*dc_norm(j,i+nres)
4543 yy = yy + y_prime(j)*dc_norm(j,i+nres)
4544 zz = zz + z_prime(j)*dc_norm(j,i+nres)
4551 C Compute the energy of the ith side cbain
4553 c write (2,*) "xx",xx," yy",yy," zz",zz
4556 x(j) = sc_parmin(j,it)
4559 Cc diagnostics - remove later
4561 yy1 = dsin(alph(2))*dcos(omeg(2))
4562 zz1 = -dsin(alph(2))*dsin(omeg(2))
4563 write(2,'(3f8.1,3f9.3,1x,3f9.3)')
4564 & alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
4566 C," --- ", xx_w,yy_w,zz_w
4569 sumene1= x(1)+ x(2)*xx+ x(3)*yy+ x(4)*zz+ x(5)*xx**2
4570 & + x(6)*yy**2+ x(7)*zz**2+ x(8)*xx*zz+ x(9)*xx*yy
4572 sumene2= x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
4573 & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
4575 sumene3= x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
4576 & +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
4577 & +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
4578 & +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
4579 & +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
4581 sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
4582 & +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
4583 & +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
4584 & +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
4585 & +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
4587 dsc_i = 0.743d0+x(61)
4589 dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
4590 & *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
4591 dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
4592 & *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
4593 s1=(1+x(63))/(0.1d0 + dscp1)
4594 s1_6=(1+x(64))/(0.1d0 + dscp1**6)
4595 s2=(1+x(65))/(0.1d0 + dscp2)
4596 s2_6=(1+x(65))/(0.1d0 + dscp2**6)
4597 sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
4598 & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
4599 c write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
4601 c & dscp1,dscp2,sumene
4602 c sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4603 escloc = escloc + sumene
4604 c write (2,*) "escloc",escloc
4605 if (.not. calc_grad) goto 1
4608 C This section to check the numerical derivatives of the energy of ith side
4609 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
4610 C #define DEBUG in the code to turn it on.
4612 write (2,*) "sumene =",sumene
4616 write (2,*) xx,yy,zz
4617 sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4618 de_dxx_num=(sumenep-sumene)/aincr
4620 write (2,*) "xx+ sumene from enesc=",sumenep
4623 write (2,*) xx,yy,zz
4624 sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4625 de_dyy_num=(sumenep-sumene)/aincr
4627 write (2,*) "yy+ sumene from enesc=",sumenep
4630 write (2,*) xx,yy,zz
4631 sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4632 de_dzz_num=(sumenep-sumene)/aincr
4634 write (2,*) "zz+ sumene from enesc=",sumenep
4635 costsave=cost2tab(i+1)
4636 sintsave=sint2tab(i+1)
4637 cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
4638 sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
4639 sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4640 de_dt_num=(sumenep-sumene)/aincr
4641 write (2,*) " t+ sumene from enesc=",sumenep
4642 cost2tab(i+1)=costsave
4643 sint2tab(i+1)=sintsave
4644 C End of diagnostics section.
4647 C Compute the gradient of esc
4649 pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
4650 pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
4651 pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
4652 pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
4653 pom_dx=dsc_i*dp2_i*cost2tab(i+1)
4654 pom_dy=dsc_i*dp2_i*sint2tab(i+1)
4655 pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
4656 pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
4657 pom1=(sumene3*sint2tab(i+1)+sumene1)
4658 & *(pom_s1/dscp1+pom_s16*dscp1**4)
4659 pom2=(sumene4*cost2tab(i+1)+sumene2)
4660 & *(pom_s2/dscp2+pom_s26*dscp2**4)
4661 sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
4662 sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
4663 & +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
4665 sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
4666 sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
4667 & +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
4669 de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
4670 & +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
4671 & +(pom1+pom2)*pom_dx
4673 write(2,*), "de_dxx = ", de_dxx,de_dxx_num
4676 sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
4677 sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
4678 & +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
4680 sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
4681 sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
4682 & +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
4683 & +x(59)*zz**2 +x(60)*xx*zz
4684 de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
4685 & +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
4686 & +(pom1-pom2)*pom_dy
4688 write(2,*), "de_dyy = ", de_dyy,de_dyy_num
4691 de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
4692 & +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx
4693 & +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6)
4694 & +(x(4) + 2*x(7)*zz+ x(8)*xx + x(10)*yy)*(s1+s1_6)
4695 & +(x(44)+2*x(47)*zz +x(48)*xx +x(50)*yy +3*x(53)*zz**2
4696 & +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy
4697 & +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
4698 & + ( x(14) + 2*x(17)*zz+ x(18)*xx + x(20)*yy)*(s2+s2_6)
4700 write(2,*), "de_dzz = ", de_dzz,de_dzz_num
4703 de_dt = 0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6)
4704 & -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
4705 & +pom1*pom_dt1+pom2*pom_dt2
4707 write(2,*), "de_dt = ", de_dt,de_dt_num
4711 cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
4712 cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
4713 cosfac2xx=cosfac2*xx
4714 sinfac2yy=sinfac2*yy
4716 dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
4718 dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
4720 pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
4721 pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
4722 c write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
4723 c & " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
4724 c write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
4725 c & (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
4726 dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
4727 dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
4728 dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
4729 dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
4733 dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
4734 dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
4737 dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
4738 dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
4739 dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
4741 dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
4742 dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
4746 dXX_Ctab(k,i)=dXX_Ci(k)
4747 dXX_C1tab(k,i)=dXX_Ci1(k)
4748 dYY_Ctab(k,i)=dYY_Ci(k)
4749 dYY_C1tab(k,i)=dYY_Ci1(k)
4750 dZZ_Ctab(k,i)=dZZ_Ci(k)
4751 dZZ_C1tab(k,i)=dZZ_Ci1(k)
4752 dXX_XYZtab(k,i)=dXX_XYZ(k)
4753 dYY_XYZtab(k,i)=dYY_XYZ(k)
4754 dZZ_XYZtab(k,i)=dZZ_XYZ(k)
4758 c write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
4759 c & dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
4760 c write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
4761 c & dyy_ci(k)," dzz_ci",dzz_ci(k)
4762 c write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
4764 c write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
4765 c & dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k)
4766 gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
4767 & +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
4768 gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
4769 & +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
4770 gsclocx(k,i)= de_dxx*dxx_XYZ(k)
4771 & +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
4773 c write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
4774 c & (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)
4776 C to check gradient call subroutine check_grad
4783 c------------------------------------------------------------------------------
4784 subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
4786 C This procedure calculates two-body contact function g(rij) and its derivative:
4789 C g(rij) = esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5) ! -1 =< x =< 1
4792 C where x=(rij-r0ij)/delta
4794 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
4797 double precision rij,r0ij,eps0ij,fcont,fprimcont
4798 double precision x,x2,x4,delta
4802 if (x.lt.-1.0D0) then
4805 else if (x.le.1.0D0) then
4808 fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
4809 fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
4816 c------------------------------------------------------------------------------
4817 subroutine splinthet(theti,delta,ss,ssder)
4818 implicit real*8 (a-h,o-z)
4819 include 'DIMENSIONS'
4820 include 'sizesclu.dat'
4821 include 'COMMON.VAR'
4822 include 'COMMON.GEO'
4825 if (theti.gt.pipol) then
4826 call gcont(theti,thetup,1.0d0,delta,ss,ssder)
4828 call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
4833 c------------------------------------------------------------------------------
4834 subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
4836 double precision x,x0,delta,f0,f1,fprim0,f,fprim
4837 double precision ksi,ksi2,ksi3,a1,a2,a3
4838 a1=fprim0*delta/(f1-f0)
4844 f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
4845 fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
4848 c------------------------------------------------------------------------------
4849 subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
4851 double precision x,x0,delta,f0x,f1x,fprim0x,fx
4852 double precision ksi,ksi2,ksi3,a1,a2,a3
4857 a2=3*(f1x-f0x)-2*fprim0x*delta
4858 a3=fprim0x*delta-2*(f1x-f0x)
4859 fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
4862 C-----------------------------------------------------------------------------
4864 C-----------------------------------------------------------------------------
4865 subroutine etor(etors,edihcnstr,fact)
4866 implicit real*8 (a-h,o-z)
4867 include 'DIMENSIONS'
4868 include 'sizesclu.dat'
4869 include 'COMMON.VAR'
4870 include 'COMMON.GEO'
4871 include 'COMMON.LOCAL'
4872 include 'COMMON.TORSION'
4873 include 'COMMON.INTERACT'
4874 include 'COMMON.DERIV'
4875 include 'COMMON.CHAIN'
4876 include 'COMMON.NAMES'
4877 include 'COMMON.IOUNITS'
4878 include 'COMMON.FFIELD'
4879 include 'COMMON.TORCNSTR'
4881 C Set lprn=.true. for debugging
4885 do i=iphi_start,iphi_end
4886 itori=itortyp(itype(i-2))
4887 itori1=itortyp(itype(i-1))
4890 C Proline-Proline pair is a special case...
4891 if (itori.eq.3 .and. itori1.eq.3) then
4892 if (phii.gt.-dwapi3) then
4894 fac=1.0D0/(1.0D0-cosphi)
4895 etorsi=v1(1,3,3)*fac
4896 etorsi=etorsi+etorsi
4897 etors=etors+etorsi-v1(1,3,3)
4898 gloci=gloci-3*fac*etorsi*dsin(3*phii)
4901 v1ij=v1(j+1,itori,itori1)
4902 v2ij=v2(j+1,itori,itori1)
4905 etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
4906 gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
4910 v1ij=v1(j,itori,itori1)
4911 v2ij=v2(j,itori,itori1)
4914 etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
4915 gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
4919 & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
4920 & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
4921 & (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
4922 gloc(i-3,icg)=gloc(i-3,icg)+wtor*fact*gloci
4923 c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
4925 ! 6/20/98 - dihedral angle constraints
4928 itori=idih_constr(i)
4930 difi=pinorm(phii-phi0(i))
4931 if (difi.gt.drange(i)) then
4933 edihcnstr=edihcnstr+0.25d0*ftors*difi**4
4934 gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
4935 else if (difi.lt.-drange(i)) then
4937 edihcnstr=edihcnstr+0.25d0*ftors*difi**4
4938 gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
4940 c write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
4941 c & rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
4943 write (iout,*) 'edihcnstr',edihcnstr
4946 c------------------------------------------------------------------------------
4948 subroutine etor(etors,edihcnstr,fact)
4949 implicit real*8 (a-h,o-z)
4950 include 'DIMENSIONS'
4951 include 'sizesclu.dat'
4952 include 'COMMON.VAR'
4953 include 'COMMON.GEO'
4954 include 'COMMON.LOCAL'
4955 include 'COMMON.TORSION'
4956 include 'COMMON.INTERACT'
4957 include 'COMMON.DERIV'
4958 include 'COMMON.CHAIN'
4959 include 'COMMON.NAMES'
4960 include 'COMMON.IOUNITS'
4961 include 'COMMON.FFIELD'
4962 include 'COMMON.TORCNSTR'
4964 C Set lprn=.true. for debugging
4968 do i=iphi_start,iphi_end
4969 if (itel(i-2).eq.0 .or. itel(i-1).eq.0) goto 1215
4970 itori=itortyp(itype(i-2))
4971 itori1=itortyp(itype(i-1))
4974 C Regular cosine and sine terms
4975 do j=1,nterm(itori,itori1)
4976 v1ij=v1(j,itori,itori1)
4977 v2ij=v2(j,itori,itori1)
4980 etors=etors+v1ij*cosphi+v2ij*sinphi
4981 gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
4985 C E = SUM ----------------------------------- - v1
4986 C [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
4988 cosphi=dcos(0.5d0*phii)
4989 sinphi=dsin(0.5d0*phii)
4990 do j=1,nlor(itori,itori1)
4991 vl1ij=vlor1(j,itori,itori1)
4992 vl2ij=vlor2(j,itori,itori1)
4993 vl3ij=vlor3(j,itori,itori1)
4994 pom=vl2ij*cosphi+vl3ij*sinphi
4995 pom1=1.0d0/(pom*pom+1.0d0)
4996 etors=etors+vl1ij*pom1
4998 gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5000 C Subtract the constant term
5001 etors=etors-v0(itori,itori1)
5003 & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5004 & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5005 & (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5006 gloc(i-3,icg)=gloc(i-3,icg)+wtor*fact*gloci
5007 c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5010 ! 6/20/98 - dihedral angle constraints
5012 c write (iout,*) "Dihedral angle restraint energy"
5014 itori=idih_constr(i)
5016 difi=pinorm(phii-phi0(i))
5017 c write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5018 c & rad2deg*difi,rad2deg*phi0(i),rad2deg*drange(i)
5019 if (difi.gt.drange(i)) then
5021 edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5022 gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5023 c write (iout,*) 0.25d0*ftors*difi**4
5024 else if (difi.lt.-drange(i)) then
5026 edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5027 gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5028 c write (iout,*) 0.25d0*ftors*difi**4
5031 c write (iout,*) 'edihcnstr',edihcnstr
5034 c----------------------------------------------------------------------------
5035 subroutine etor_d(etors_d,fact2)
5036 C 6/23/01 Compute double torsional energy
5037 implicit real*8 (a-h,o-z)
5038 include 'DIMENSIONS'
5039 include 'sizesclu.dat'
5040 include 'COMMON.VAR'
5041 include 'COMMON.GEO'
5042 include 'COMMON.LOCAL'
5043 include 'COMMON.TORSION'
5044 include 'COMMON.INTERACT'
5045 include 'COMMON.DERIV'
5046 include 'COMMON.CHAIN'
5047 include 'COMMON.NAMES'
5048 include 'COMMON.IOUNITS'
5049 include 'COMMON.FFIELD'
5050 include 'COMMON.TORCNSTR'
5052 C Set lprn=.true. for debugging
5056 do i=iphi_start,iphi_end-1
5057 if (itel(i-2).eq.0 .or. itel(i-1).eq.0 .or. itel(i).eq.0)
5059 itori=itortyp(itype(i-2))
5060 itori1=itortyp(itype(i-1))
5061 itori2=itortyp(itype(i))
5066 C Regular cosine and sine terms
5067 do j=1,ntermd_1(itori,itori1,itori2)
5068 v1cij=v1c(1,j,itori,itori1,itori2)
5069 v1sij=v1s(1,j,itori,itori1,itori2)
5070 v2cij=v1c(2,j,itori,itori1,itori2)
5071 v2sij=v1s(2,j,itori,itori1,itori2)
5072 cosphi1=dcos(j*phii)
5073 sinphi1=dsin(j*phii)
5074 cosphi2=dcos(j*phii1)
5075 sinphi2=dsin(j*phii1)
5076 etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5077 & v2cij*cosphi2+v2sij*sinphi2
5078 gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5079 gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5081 do k=2,ntermd_2(itori,itori1,itori2)
5083 v1cdij = v2c(k,l,itori,itori1,itori2)
5084 v2cdij = v2c(l,k,itori,itori1,itori2)
5085 v1sdij = v2s(k,l,itori,itori1,itori2)
5086 v2sdij = v2s(l,k,itori,itori1,itori2)
5087 cosphi1p2=dcos(l*phii+(k-l)*phii1)
5088 cosphi1m2=dcos(l*phii-(k-l)*phii1)
5089 sinphi1p2=dsin(l*phii+(k-l)*phii1)
5090 sinphi1m2=dsin(l*phii-(k-l)*phii1)
5091 etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5092 & v1sdij*sinphi1p2+v2sdij*sinphi1m2
5093 gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5094 & -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5095 gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5096 & -v1cdij*sinphi1p2+v2cdij*sinphi1m2)
5099 gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*fact2*gloci1
5100 gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*fact2*gloci2
5106 c------------------------------------------------------------------------------
5107 subroutine eback_sc_corr(esccor,fact)
5108 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5109 c conformational states; temporarily implemented as differences
5110 c between UNRES torsional potentials (dependent on three types of
5111 c residues) and the torsional potentials dependent on all 20 types
5112 c of residues computed from AM1 energy surfaces of terminally-blocked
5113 c amino-acid residues.
5114 implicit real*8 (a-h,o-z)
5115 include 'DIMENSIONS'
5116 include 'COMMON.VAR'
5117 include 'COMMON.GEO'
5118 include 'COMMON.LOCAL'
5119 include 'COMMON.TORSION'
5120 include 'COMMON.SCCOR'
5121 include 'COMMON.INTERACT'
5122 include 'COMMON.DERIV'
5123 include 'COMMON.CHAIN'
5124 include 'COMMON.NAMES'
5125 include 'COMMON.IOUNITS'
5126 include 'COMMON.FFIELD'
5127 include 'COMMON.CONTROL'
5129 C Set lprn=.true. for debugging
5132 c write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
5134 do i=itau_start,itau_end
5136 isccori=isccortyp(itype(i-2))
5137 isccori1=isccortyp(itype(i-1))
5139 cccc Added 9 May 2012
5140 cc Tauangle is torsional engle depending on the value of first digit
5141 c(see comment below)
5142 cc Omicron is flat angle depending on the value of first digit
5143 c(see comment below)
5146 do intertyp=1,3 !intertyp
5147 cc Added 09 May 2012 (Adasko)
5148 cc Intertyp means interaction type of backbone mainchain correlation:
5149 c 1 = SC...Ca...Ca...Ca
5150 c 2 = Ca...Ca...Ca...SC
5151 c 3 = SC...Ca...Ca...SCi
5153 if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
5154 & (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
5155 & (itype(i-1).eq.21)))
5156 & .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
5157 & .or.(itype(i-2).eq.21)))
5158 & .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
5159 & (itype(i-1).eq.21)))) cycle
5160 if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
5161 if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
5163 do j=1,nterm_sccor(isccori,isccori1)
5164 v1ij=v1sccor(j,intertyp,isccori,isccori1)
5165 v2ij=v2sccor(j,intertyp,isccori,isccori1)
5166 cosphi=dcos(j*tauangle(intertyp,i))
5167 sinphi=dsin(j*tauangle(intertyp,i))
5168 esccor=esccor+v1ij*cosphi+v2ij*sinphi
5170 esccor_ii=esccor_ii+v1ij*cosphi+v2ij*sinphi
5172 gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5174 gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
5175 c write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
5176 c &gloc_sc(intertyp,i-3,icg)
5178 & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5179 & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5180 & (v1sccor(j,intertyp,itori,itori1),j=1,6)
5181 & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
5182 gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
5185 write (iout,*) "i",i,(tauangle(j,i),j=1,3),esccor_ii
5191 c------------------------------------------------------------------------------
5192 subroutine multibody(ecorr)
5193 C This subroutine calculates multi-body contributions to energy following
5194 C the idea of Skolnick et al. If side chains I and J make a contact and
5195 C at the same time side chains I+1 and J+1 make a contact, an extra
5196 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
5197 implicit real*8 (a-h,o-z)
5198 include 'DIMENSIONS'
5199 include 'COMMON.IOUNITS'
5200 include 'COMMON.DERIV'
5201 include 'COMMON.INTERACT'
5202 include 'COMMON.CONTACTS'
5203 double precision gx(3),gx1(3)
5206 C Set lprn=.true. for debugging
5210 write (iout,'(a)') 'Contact function values:'
5212 write (iout,'(i2,20(1x,i2,f10.5))')
5213 & i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
5228 num_conti=num_cont(i)
5229 num_conti1=num_cont(i1)
5234 if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
5235 cd write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5236 cd & ' ishift=',ishift
5237 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously.
5238 C The system gains extra energy.
5239 ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
5240 endif ! j1==j+-ishift
5249 c------------------------------------------------------------------------------
5250 double precision function esccorr(i,j,k,l,jj,kk)
5251 implicit real*8 (a-h,o-z)
5252 include 'DIMENSIONS'
5253 include 'COMMON.IOUNITS'
5254 include 'COMMON.DERIV'
5255 include 'COMMON.INTERACT'
5256 include 'COMMON.CONTACTS'
5257 double precision gx(3),gx1(3)
5262 cd write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
5263 C Calculate the multi-body contribution to energy.
5264 C Calculate multi-body contributions to the gradient.
5265 cd write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
5266 cd & k,l,(gacont(m,kk,k),m=1,3)
5268 gx(m) =ekl*gacont(m,jj,i)
5269 gx1(m)=eij*gacont(m,kk,k)
5270 gradxorr(m,i)=gradxorr(m,i)-gx(m)
5271 gradxorr(m,j)=gradxorr(m,j)+gx(m)
5272 gradxorr(m,k)=gradxorr(m,k)-gx1(m)
5273 gradxorr(m,l)=gradxorr(m,l)+gx1(m)
5277 gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
5282 gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
5288 c------------------------------------------------------------------------------
5290 subroutine pack_buffer(dimen1,dimen2,atom,indx,buffer)
5291 implicit real*8 (a-h,o-z)
5292 include 'DIMENSIONS'
5293 integer dimen1,dimen2,atom,indx
5294 double precision buffer(dimen1,dimen2)
5295 double precision zapas
5296 common /contacts_hb/ zapas(3,20,maxres,7),
5297 & facont_hb(20,maxres),ees0p(20,maxres),ees0m(20,maxres),
5298 & num_cont_hb(maxres),jcont_hb(20,maxres)
5299 num_kont=num_cont_hb(atom)
5303 buffer(i,indx+(k-1)*3+j)=zapas(j,i,atom,k)
5306 buffer(i,indx+22)=facont_hb(i,atom)
5307 buffer(i,indx+23)=ees0p(i,atom)
5308 buffer(i,indx+24)=ees0m(i,atom)
5309 buffer(i,indx+25)=dfloat(jcont_hb(i,atom))
5311 buffer(1,indx+26)=dfloat(num_kont)
5314 c------------------------------------------------------------------------------
5315 subroutine unpack_buffer(dimen1,dimen2,atom,indx,buffer)
5316 implicit real*8 (a-h,o-z)
5317 include 'DIMENSIONS'
5318 integer dimen1,dimen2,atom,indx
5319 double precision buffer(dimen1,dimen2)
5320 double precision zapas
5321 common /contacts_hb/ zapas(3,20,maxres,7),
5322 & facont_hb(20,maxres),ees0p(20,maxres),ees0m(20,maxres),
5323 & num_cont_hb(maxres),jcont_hb(20,maxres)
5324 num_kont=buffer(1,indx+26)
5325 num_kont_old=num_cont_hb(atom)
5326 num_cont_hb(atom)=num_kont+num_kont_old
5331 zapas(j,ii,atom,k)=buffer(i,indx+(k-1)*3+j)
5334 facont_hb(ii,atom)=buffer(i,indx+22)
5335 ees0p(ii,atom)=buffer(i,indx+23)
5336 ees0m(ii,atom)=buffer(i,indx+24)
5337 jcont_hb(ii,atom)=buffer(i,indx+25)
5341 c------------------------------------------------------------------------------
5343 subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
5344 C This subroutine calculates multi-body contributions to hydrogen-bonding
5345 implicit real*8 (a-h,o-z)
5346 include 'DIMENSIONS'
5347 include 'sizesclu.dat'
5348 include 'COMMON.IOUNITS'
5350 include 'COMMON.INFO'
5352 include 'COMMON.FFIELD'
5353 include 'COMMON.DERIV'
5354 include 'COMMON.INTERACT'
5355 include 'COMMON.CONTACTS'
5357 parameter (max_cont=maxconts)
5358 parameter (max_dim=2*(8*3+2))
5359 parameter (msglen1=max_cont*max_dim*4)
5360 parameter (msglen2=2*msglen1)
5361 integer source,CorrelType,CorrelID,Error
5362 double precision buffer(max_cont,max_dim)
5364 double precision gx(3),gx1(3)
5367 C Set lprn=.true. for debugging
5372 if (fgProcs.le.1) goto 30
5374 write (iout,'(a)') 'Contact function values:'
5376 write (iout,'(2i3,50(1x,i2,f5.2))')
5377 & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
5378 & j=1,num_cont_hb(i))
5381 C Caution! Following code assumes that electrostatic interactions concerning
5382 C a given atom are split among at most two processors!
5392 cd write (iout,*) 'MyRank',MyRank,' mm',mm
5395 cd write (iout,*) 'Sending: MyRank',MyRank,' mm',mm,' ldone',ldone
5396 if (MyRank.gt.0) then
5397 C Send correlation contributions to the preceding processor
5399 nn=num_cont_hb(iatel_s)
5400 call pack_buffer(max_cont,max_dim,iatel_s,0,buffer)
5401 cd write (iout,*) 'The BUFFER array:'
5403 cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,26)
5405 if (ielstart(iatel_s).gt.iatel_s+ispp) then
5407 call pack_buffer(max_cont,max_dim,iatel_s+1,26,buffer)
5408 C Clear the contacts of the atom passed to the neighboring processor
5409 nn=num_cont_hb(iatel_s+1)
5411 cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j+26),j=1,26)
5413 num_cont_hb(iatel_s)=0
5415 cd write (iout,*) 'Processor ',MyID,MyRank,
5416 cd & ' is sending correlation contribution to processor',MyID-1,
5417 cd & ' msglen=',msglen
5418 cd write (*,*) 'Processor ',MyID,MyRank,
5419 cd & ' is sending correlation contribution to processor',MyID-1,
5420 cd & ' msglen=',msglen,' CorrelType=',CorrelType
5421 call mp_bsend(buffer,msglen,MyID-1,CorrelType,CorrelID)
5422 cd write (iout,*) 'Processor ',MyID,
5423 cd & ' has sent correlation contribution to processor',MyID-1,
5424 cd & ' msglen=',msglen,' CorrelID=',CorrelID
5425 cd write (*,*) 'Processor ',MyID,
5426 cd & ' has sent correlation contribution to processor',MyID-1,
5427 cd & ' msglen=',msglen,' CorrelID=',CorrelID
5429 endif ! (MyRank.gt.0)
5433 cd write (iout,*) 'Receiving: MyRank',MyRank,' mm',mm,' ldone',ldone
5434 if (MyRank.lt.fgProcs-1) then
5435 C Receive correlation contributions from the next processor
5437 if (ielend(iatel_e).lt.nct-1) msglen=msglen2
5438 cd write (iout,*) 'Processor',MyID,
5439 cd & ' is receiving correlation contribution from processor',MyID+1,
5440 cd & ' msglen=',msglen,' CorrelType=',CorrelType
5441 cd write (*,*) 'Processor',MyID,
5442 cd & ' is receiving correlation contribution from processor',MyID+1,
5443 cd & ' msglen=',msglen,' CorrelType=',CorrelType
5445 do while (nbytes.le.0)
5446 call mp_probe(MyID+1,CorrelType,nbytes)
5448 cd print *,'Processor',MyID,' msglen',msglen,' nbytes',nbytes
5449 call mp_brecv(buffer,msglen,MyID+1,CorrelType,nbytes)
5450 cd write (iout,*) 'Processor',MyID,
5451 cd & ' has received correlation contribution from processor',MyID+1,
5452 cd & ' msglen=',msglen,' nbytes=',nbytes
5453 cd write (iout,*) 'The received BUFFER array:'
5455 cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,52)
5457 if (msglen.eq.msglen1) then
5458 call unpack_buffer(max_cont,max_dim,iatel_e+1,0,buffer)
5459 else if (msglen.eq.msglen2) then
5460 call unpack_buffer(max_cont,max_dim,iatel_e,0,buffer)
5461 call unpack_buffer(max_cont,max_dim,iatel_e+1,26,buffer)
5464 & 'ERROR!!!! message length changed while processing correlations.'
5466 & 'ERROR!!!! message length changed while processing correlations.'
5467 call mp_stopall(Error)
5468 endif ! msglen.eq.msglen1
5469 endif ! MyRank.lt.fgProcs-1
5476 write (iout,'(a)') 'Contact function values:'
5478 write (iout,'(2i3,50(1x,i2,f5.2))')
5479 & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
5480 & j=1,num_cont_hb(i))
5484 C Remove the loop below after debugging !!!
5491 C Calculate the local-electrostatic correlation terms
5492 do i=iatel_s,iatel_e+1
5494 num_conti=num_cont_hb(i)
5495 num_conti1=num_cont_hb(i+1)
5500 c write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5501 c & ' jj=',jj,' kk=',kk
5502 if (j1.eq.j+1 .or. j1.eq.j-1) then
5503 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously.
5504 C The system gains extra energy.
5505 ecorr=ecorr+ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
5507 else if (j1.eq.j) then
5508 C Contacts I-J and I-(J+1) occur simultaneously.
5509 C The system loses extra energy.
5510 c ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0)
5515 c write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5516 c & ' jj=',jj,' kk=',kk
5518 C Contacts I-J and (I+1)-J occur simultaneously.
5519 C The system loses extra energy.
5520 c ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
5527 c------------------------------------------------------------------------------
5528 subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
5530 C This subroutine calculates multi-body contributions to hydrogen-bonding
5531 implicit real*8 (a-h,o-z)
5532 include 'DIMENSIONS'
5533 include 'sizesclu.dat'
5534 include 'COMMON.IOUNITS'
5536 include 'COMMON.INFO'
5538 include 'COMMON.FFIELD'
5539 include 'COMMON.DERIV'
5540 include 'COMMON.INTERACT'
5541 include 'COMMON.CONTACTS'
5543 parameter (max_cont=maxconts)
5544 parameter (max_dim=2*(8*3+2))
5545 parameter (msglen1=max_cont*max_dim*4)
5546 parameter (msglen2=2*msglen1)
5547 integer source,CorrelType,CorrelID,Error
5548 double precision buffer(max_cont,max_dim)
5550 double precision gx(3),gx1(3)
5553 C Set lprn=.true. for debugging
5560 if (fgProcs.le.1) goto 30
5562 write (iout,'(a)') 'Contact function values:'
5564 write (iout,'(2i3,50(1x,i2,f5.2))')
5565 & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
5566 & j=1,num_cont_hb(i))
5569 C Caution! Following code assumes that electrostatic interactions concerning
5570 C a given atom are split among at most two processors!
5580 cd write (iout,*) 'MyRank',MyRank,' mm',mm
5583 cd write (iout,*) 'Sending: MyRank',MyRank,' mm',mm,' ldone',ldone
5584 if (MyRank.gt.0) then
5585 C Send correlation contributions to the preceding processor
5587 nn=num_cont_hb(iatel_s)
5588 call pack_buffer(max_cont,max_dim,iatel_s,0,buffer)
5589 cd write (iout,*) 'The BUFFER array:'
5591 cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,26)
5593 if (ielstart(iatel_s).gt.iatel_s+ispp) then
5595 call pack_buffer(max_cont,max_dim,iatel_s+1,26,buffer)
5596 C Clear the contacts of the atom passed to the neighboring processor
5597 nn=num_cont_hb(iatel_s+1)
5599 cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j+26),j=1,26)
5601 num_cont_hb(iatel_s)=0
5603 cd write (iout,*) 'Processor ',MyID,MyRank,
5604 cd & ' is sending correlation contribution to processor',MyID-1,
5605 cd & ' msglen=',msglen
5606 cd write (*,*) 'Processor ',MyID,MyRank,
5607 cd & ' is sending correlation contribution to processor',MyID-1,
5608 cd & ' msglen=',msglen,' CorrelType=',CorrelType
5609 call mp_bsend(buffer,msglen,MyID-1,CorrelType,CorrelID)
5610 cd write (iout,*) 'Processor ',MyID,
5611 cd & ' has sent correlation contribution to processor',MyID-1,
5612 cd & ' msglen=',msglen,' CorrelID=',CorrelID
5613 cd write (*,*) 'Processor ',MyID,
5614 cd & ' has sent correlation contribution to processor',MyID-1,
5615 cd & ' msglen=',msglen,' CorrelID=',CorrelID
5617 endif ! (MyRank.gt.0)
5621 cd write (iout,*) 'Receiving: MyRank',MyRank,' mm',mm,' ldone',ldone
5622 if (MyRank.lt.fgProcs-1) then
5623 C Receive correlation contributions from the next processor
5625 if (ielend(iatel_e).lt.nct-1) msglen=msglen2
5626 cd write (iout,*) 'Processor',MyID,
5627 cd & ' is receiving correlation contribution from processor',MyID+1,
5628 cd & ' msglen=',msglen,' CorrelType=',CorrelType
5629 cd write (*,*) 'Processor',MyID,
5630 cd & ' is receiving correlation contribution from processor',MyID+1,
5631 cd & ' msglen=',msglen,' CorrelType=',CorrelType
5633 do while (nbytes.le.0)
5634 call mp_probe(MyID+1,CorrelType,nbytes)
5636 cd print *,'Processor',MyID,' msglen',msglen,' nbytes',nbytes
5637 call mp_brecv(buffer,msglen,MyID+1,CorrelType,nbytes)
5638 cd write (iout,*) 'Processor',MyID,
5639 cd & ' has received correlation contribution from processor',MyID+1,
5640 cd & ' msglen=',msglen,' nbytes=',nbytes
5641 cd write (iout,*) 'The received BUFFER array:'
5643 cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,52)
5645 if (msglen.eq.msglen1) then
5646 call unpack_buffer(max_cont,max_dim,iatel_e+1,0,buffer)
5647 else if (msglen.eq.msglen2) then
5648 call unpack_buffer(max_cont,max_dim,iatel_e,0,buffer)
5649 call unpack_buffer(max_cont,max_dim,iatel_e+1,26,buffer)
5652 & 'ERROR!!!! message length changed while processing correlations.'
5654 & 'ERROR!!!! message length changed while processing correlations.'
5655 call mp_stopall(Error)
5656 endif ! msglen.eq.msglen1
5657 endif ! MyRank.lt.fgProcs-1
5664 write (iout,'(a)') 'Contact function values:'
5666 write (iout,'(2i3,50(1x,i2,f5.2))')
5667 & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
5668 & j=1,num_cont_hb(i))
5674 C Remove the loop below after debugging !!!
5681 C Calculate the dipole-dipole interaction energies
5682 if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
5683 do i=iatel_s,iatel_e+1
5684 num_conti=num_cont_hb(i)
5691 C Calculate the local-electrostatic correlation terms
5692 do i=iatel_s,iatel_e+1
5694 num_conti=num_cont_hb(i)
5695 num_conti1=num_cont_hb(i+1)
5700 c write (*,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5701 c & ' jj=',jj,' kk=',kk
5702 if (j1.eq.j+1 .or. j1.eq.j-1) then
5703 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously.
5704 C The system gains extra energy.
5706 sqd1=dsqrt(d_cont(jj,i))
5707 sqd2=dsqrt(d_cont(kk,i1))
5708 sred_geom = sqd1*sqd2
5709 IF (sred_geom.lt.cutoff_corr) THEN
5710 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
5712 c write (*,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5713 c & ' jj=',jj,' kk=',kk
5714 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
5715 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
5717 g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
5718 g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
5721 cd write (iout,*) 'sred_geom=',sred_geom,
5722 cd & ' ekont=',ekont,' fprim=',fprimcont
5723 call calc_eello(i,j,i+1,j1,jj,kk)
5724 if (wcorr4.gt.0.0d0)
5725 & ecorr=ecorr+eello4(i,j,i+1,j1,jj,kk)
5726 if (wcorr5.gt.0.0d0)
5727 & ecorr5=ecorr5+eello5(i,j,i+1,j1,jj,kk)
5728 c print *,"wcorr5",ecorr5
5729 cd write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
5730 cd write(2,*)'ijkl',i,j,i+1,j1
5731 if (wcorr6.gt.0.0d0 .and. (j.ne.i+4 .or. j1.ne.i+3
5732 & .or. wturn6.eq.0.0d0))then
5733 c write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
5734 c ecorr6=ecorr6+eello6(i,j,i+1,j1,jj,kk)
5735 c write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
5736 c & 'ecorr6=',ecorr6, wcorr6
5737 cd write (iout,'(4e15.5)') sred_geom,
5738 cd & dabs(eello4(i,j,i+1,j1,jj,kk)),
5739 cd & dabs(eello5(i,j,i+1,j1,jj,kk)),
5740 cd & dabs(eello6(i,j,i+1,j1,jj,kk))
5741 else if (wturn6.gt.0.0d0
5742 & .and. (j.eq.i+4 .and. j1.eq.i+3)) then
5743 cd write (iout,*) '******eturn6: i,j,i+1,j1',i,j,i+1,j1
5744 eturn6=eturn6+eello_turn6(i,jj,kk)
5745 cd write (2,*) 'multibody_eello:eturn6',eturn6
5749 else if (j1.eq.j) then
5750 C Contacts I-J and I-(J+1) occur simultaneously.
5751 C The system loses extra energy.
5752 c ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0)
5757 c write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5758 c & ' jj=',jj,' kk=',kk
5760 C Contacts I-J and (I+1)-J occur simultaneously.
5761 C The system loses extra energy.
5762 c ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
5769 c------------------------------------------------------------------------------
5770 double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
5771 implicit real*8 (a-h,o-z)
5772 include 'DIMENSIONS'
5773 include 'COMMON.IOUNITS'
5774 include 'COMMON.DERIV'
5775 include 'COMMON.INTERACT'
5776 include 'COMMON.CONTACTS'
5777 double precision gx(3),gx1(3)
5787 ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
5788 cd ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
5789 C Following 4 lines for diagnostics.
5794 c write (iout,*)'Contacts have occurred for peptide groups',i,j,
5796 c write (iout,*)'Contacts have occurred for peptide groups',
5797 c & i,j,' fcont:',eij,' eij',' eesij',ees0pij,ees0mij,' and ',k,l
5798 c & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' ees=',ees
5799 C Calculate the multi-body contribution to energy.
5800 ecorr=ecorr+ekont*ees
5802 C Calculate multi-body contributions to the gradient.
5804 ghalf=0.5D0*ees*ekl*gacont_hbr(ll,jj,i)
5805 gradcorr(ll,i)=gradcorr(ll,i)+ghalf
5806 & -ekont*(coeffp*ees0pkl*gacontp_hb1(ll,jj,i)+
5807 & coeffm*ees0mkl*gacontm_hb1(ll,jj,i))
5808 gradcorr(ll,j)=gradcorr(ll,j)+ghalf
5809 & -ekont*(coeffp*ees0pkl*gacontp_hb2(ll,jj,i)+
5810 & coeffm*ees0mkl*gacontm_hb2(ll,jj,i))
5811 ghalf=0.5D0*ees*eij*gacont_hbr(ll,kk,k)
5812 gradcorr(ll,k)=gradcorr(ll,k)+ghalf
5813 & -ekont*(coeffp*ees0pij*gacontp_hb1(ll,kk,k)+
5814 & coeffm*ees0mij*gacontm_hb1(ll,kk,k))
5815 gradcorr(ll,l)=gradcorr(ll,l)+ghalf
5816 & -ekont*(coeffp*ees0pij*gacontp_hb2(ll,kk,k)+
5817 & coeffm*ees0mij*gacontm_hb2(ll,kk,k))
5821 gradcorr(ll,m)=gradcorr(ll,m)+
5822 & ees*ekl*gacont_hbr(ll,jj,i)-
5823 & ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
5824 & coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
5829 gradcorr(ll,m)=gradcorr(ll,m)+
5830 & ees*eij*gacont_hbr(ll,kk,k)-
5831 & ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
5832 & coeffm*ees0mij*gacontm_hb3(ll,kk,k))
5839 C---------------------------------------------------------------------------
5840 subroutine dipole(i,j,jj)
5841 implicit real*8 (a-h,o-z)
5842 include 'DIMENSIONS'
5843 include 'sizesclu.dat'
5844 include 'COMMON.IOUNITS'
5845 include 'COMMON.CHAIN'
5846 include 'COMMON.FFIELD'
5847 include 'COMMON.DERIV'
5848 include 'COMMON.INTERACT'
5849 include 'COMMON.CONTACTS'
5850 include 'COMMON.TORSION'
5851 include 'COMMON.VAR'
5852 include 'COMMON.GEO'
5853 dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
5855 iti1 = itortyp(itype(i+1))
5856 if (j.lt.nres-1) then
5857 itj1 = itortyp(itype(j+1))
5862 dipi(iii,1)=Ub2(iii,i)
5863 dipderi(iii)=Ub2der(iii,i)
5864 dipi(iii,2)=b1(iii,iti1)
5865 dipj(iii,1)=Ub2(iii,j)
5866 dipderj(iii)=Ub2der(iii,j)
5867 dipj(iii,2)=b1(iii,itj1)
5871 call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1))
5874 dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
5877 if (.not.calc_grad) return
5882 call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
5886 dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
5891 call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
5892 call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
5894 dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
5896 call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
5898 dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
5902 C---------------------------------------------------------------------------
5903 subroutine calc_eello(i,j,k,l,jj,kk)
5905 C This subroutine computes matrices and vectors needed to calculate
5906 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
5908 implicit real*8 (a-h,o-z)
5909 include 'DIMENSIONS'
5910 include 'sizesclu.dat'
5911 include 'COMMON.IOUNITS'
5912 include 'COMMON.CHAIN'
5913 include 'COMMON.DERIV'
5914 include 'COMMON.INTERACT'
5915 include 'COMMON.CONTACTS'
5916 include 'COMMON.TORSION'
5917 include 'COMMON.VAR'
5918 include 'COMMON.GEO'
5919 include 'COMMON.FFIELD'
5920 double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
5921 & aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
5924 cd write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
5925 cd & ' jj=',jj,' kk=',kk
5926 cd if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
5929 aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
5930 aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
5933 call transpose2(aa1(1,1),aa1t(1,1))
5934 call transpose2(aa2(1,1),aa2t(1,1))
5937 call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
5938 & aa1tder(1,1,lll,kkk))
5939 call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
5940 & aa2tder(1,1,lll,kkk))
5944 C parallel orientation of the two CA-CA-CA frames.
5946 iti=itortyp(itype(i))
5950 itk1=itortyp(itype(k+1))
5951 itj=itortyp(itype(j))
5952 if (l.lt.nres-1) then
5953 itl1=itortyp(itype(l+1))
5957 C A1 kernel(j+1) A2T
5959 cd write (iout,'(3f10.5,5x,3f10.5)')
5960 cd & (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
5962 call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5963 & aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
5964 & AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
5965 C Following matrices are needed only for 6-th order cumulants
5966 IF (wcorr6.gt.0.0d0) THEN
5967 call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5968 & aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
5969 & AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
5970 call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5971 & aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
5972 & Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
5973 & ADtEAderx(1,1,1,1,1,1))
5975 call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5976 & aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
5977 & DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
5978 & ADtEA1derx(1,1,1,1,1,1))
5980 C End 6-th order cumulants
5983 cd write (2,*) 'In calc_eello6'
5985 cd write (2,*) 'iii=',iii
5987 cd write (2,*) 'kkk=',kkk
5989 cd write (2,'(3(2f10.5),5x)')
5990 cd & ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
5995 call transpose2(EUgder(1,1,k),auxmat(1,1))
5996 call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
5997 call transpose2(EUg(1,1,k),auxmat(1,1))
5998 call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
5999 call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
6003 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
6004 & EAEAderx(1,1,lll,kkk,iii,1))
6008 C A1T kernel(i+1) A2
6009 call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
6010 & a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
6011 & AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
6012 C Following matrices are needed only for 6-th order cumulants
6013 IF (wcorr6.gt.0.0d0) THEN
6014 call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
6015 & a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
6016 & AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
6017 call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
6018 & a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
6019 & Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
6020 & ADtEAderx(1,1,1,1,1,2))
6021 call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
6022 & a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
6023 & DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
6024 & ADtEA1derx(1,1,1,1,1,2))
6026 C End 6-th order cumulants
6027 call transpose2(EUgder(1,1,l),auxmat(1,1))
6028 call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
6029 call transpose2(EUg(1,1,l),auxmat(1,1))
6030 call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
6031 call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
6035 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
6036 & EAEAderx(1,1,lll,kkk,iii,2))
6041 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
6042 C They are needed only when the fifth- or the sixth-order cumulants are
6044 IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
6045 call transpose2(AEA(1,1,1),auxmat(1,1))
6046 call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
6047 call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
6048 call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
6049 call transpose2(AEAderg(1,1,1),auxmat(1,1))
6050 call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
6051 call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
6052 call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
6053 call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
6054 call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
6055 call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
6056 call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
6057 call transpose2(AEA(1,1,2),auxmat(1,1))
6058 call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
6059 call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
6060 call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
6061 call transpose2(AEAderg(1,1,2),auxmat(1,1))
6062 call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
6063 call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
6064 call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
6065 call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
6066 call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
6067 call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
6068 call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
6069 C Calculate the Cartesian derivatives of the vectors.
6073 call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
6074 call matvec2(auxmat(1,1),b1(1,iti),
6075 & AEAb1derx(1,lll,kkk,iii,1,1))
6076 call matvec2(auxmat(1,1),Ub2(1,i),
6077 & AEAb2derx(1,lll,kkk,iii,1,1))
6078 call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
6079 & AEAb1derx(1,lll,kkk,iii,2,1))
6080 call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
6081 & AEAb2derx(1,lll,kkk,iii,2,1))
6082 call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
6083 call matvec2(auxmat(1,1),b1(1,itj),
6084 & AEAb1derx(1,lll,kkk,iii,1,2))
6085 call matvec2(auxmat(1,1),Ub2(1,j),
6086 & AEAb2derx(1,lll,kkk,iii,1,2))
6087 call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
6088 & AEAb1derx(1,lll,kkk,iii,2,2))
6089 call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
6090 & AEAb2derx(1,lll,kkk,iii,2,2))
6097 C Antiparallel orientation of the two CA-CA-CA frames.
6099 iti=itortyp(itype(i))
6103 itk1=itortyp(itype(k+1))
6104 itl=itortyp(itype(l))
6105 itj=itortyp(itype(j))
6106 if (j.lt.nres-1) then
6107 itj1=itortyp(itype(j+1))
6111 C A2 kernel(j-1)T A1T
6112 call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
6113 & aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
6114 & AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
6115 C Following matrices are needed only for 6-th order cumulants
6116 IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
6117 & j.eq.i+4 .and. l.eq.i+3)) THEN
6118 call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
6119 & aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
6120 & AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
6121 call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
6122 & aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
6123 & Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
6124 & ADtEAderx(1,1,1,1,1,1))
6125 call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
6126 & aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
6127 & DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
6128 & ADtEA1derx(1,1,1,1,1,1))
6130 C End 6-th order cumulants
6131 call transpose2(EUgder(1,1,k),auxmat(1,1))
6132 call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
6133 call transpose2(EUg(1,1,k),auxmat(1,1))
6134 call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
6135 call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
6139 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
6140 & EAEAderx(1,1,lll,kkk,iii,1))
6144 C A2T kernel(i+1)T A1
6145 call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
6146 & a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
6147 & AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
6148 C Following matrices are needed only for 6-th order cumulants
6149 IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
6150 & j.eq.i+4 .and. l.eq.i+3)) THEN
6151 call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
6152 & a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
6153 & AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
6154 call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
6155 & a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
6156 & Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
6157 & ADtEAderx(1,1,1,1,1,2))
6158 call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
6159 & a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
6160 & DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
6161 & ADtEA1derx(1,1,1,1,1,2))
6163 C End 6-th order cumulants
6164 call transpose2(EUgder(1,1,j),auxmat(1,1))
6165 call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
6166 call transpose2(EUg(1,1,j),auxmat(1,1))
6167 call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
6168 call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
6172 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
6173 & EAEAderx(1,1,lll,kkk,iii,2))
6178 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
6179 C They are needed only when the fifth- or the sixth-order cumulants are
6181 IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
6182 & (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
6183 call transpose2(AEA(1,1,1),auxmat(1,1))
6184 call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
6185 call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
6186 call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
6187 call transpose2(AEAderg(1,1,1),auxmat(1,1))
6188 call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
6189 call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
6190 call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
6191 call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
6192 call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
6193 call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
6194 call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
6195 call transpose2(AEA(1,1,2),auxmat(1,1))
6196 call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
6197 call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
6198 call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
6199 call transpose2(AEAderg(1,1,2),auxmat(1,1))
6200 call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
6201 call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
6202 call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
6203 call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
6204 call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
6205 call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
6206 call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
6207 C Calculate the Cartesian derivatives of the vectors.
6211 call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
6212 call matvec2(auxmat(1,1),b1(1,iti),
6213 & AEAb1derx(1,lll,kkk,iii,1,1))
6214 call matvec2(auxmat(1,1),Ub2(1,i),
6215 & AEAb2derx(1,lll,kkk,iii,1,1))
6216 call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
6217 & AEAb1derx(1,lll,kkk,iii,2,1))
6218 call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
6219 & AEAb2derx(1,lll,kkk,iii,2,1))
6220 call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
6221 call matvec2(auxmat(1,1),b1(1,itl),
6222 & AEAb1derx(1,lll,kkk,iii,1,2))
6223 call matvec2(auxmat(1,1),Ub2(1,l),
6224 & AEAb2derx(1,lll,kkk,iii,1,2))
6225 call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
6226 & AEAb1derx(1,lll,kkk,iii,2,2))
6227 call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
6228 & AEAb2derx(1,lll,kkk,iii,2,2))
6237 C---------------------------------------------------------------------------
6238 subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
6239 & KK,KKderg,AKA,AKAderg,AKAderx)
6243 double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
6244 & aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
6245 & AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
6250 call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
6252 call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
6255 cd if (lprn) write (2,*) 'In kernel'
6257 cd if (lprn) write (2,*) 'kkk=',kkk
6259 call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
6260 & KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
6262 cd write (2,*) 'lll=',lll
6263 cd write (2,*) 'iii=1'
6265 cd write (2,'(3(2f10.5),5x)')
6266 cd & (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
6269 call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
6270 & KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
6272 cd write (2,*) 'lll=',lll
6273 cd write (2,*) 'iii=2'
6275 cd write (2,'(3(2f10.5),5x)')
6276 cd & (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
6283 C---------------------------------------------------------------------------
6284 double precision function eello4(i,j,k,l,jj,kk)
6285 implicit real*8 (a-h,o-z)
6286 include 'DIMENSIONS'
6287 include 'sizesclu.dat'
6288 include 'COMMON.IOUNITS'
6289 include 'COMMON.CHAIN'
6290 include 'COMMON.DERIV'
6291 include 'COMMON.INTERACT'
6292 include 'COMMON.CONTACTS'
6293 include 'COMMON.TORSION'
6294 include 'COMMON.VAR'
6295 include 'COMMON.GEO'
6296 double precision pizda(2,2),ggg1(3),ggg2(3)
6297 cd if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
6301 cd print *,'eello4:',i,j,k,l,jj,kk
6302 cd write (2,*) 'i',i,' j',j,' k',k,' l',l
6303 cd call checkint4(i,j,k,l,jj,kk,eel4_num)
6304 cold eij=facont_hb(jj,i)
6305 cold ekl=facont_hb(kk,k)
6307 eel4=-EAEA(1,1,1)-EAEA(2,2,1)
6309 cd eel41=-EAEA(1,1,2)-EAEA(2,2,2)
6310 gcorr_loc(k-1)=gcorr_loc(k-1)
6311 & -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
6313 gcorr_loc(l-1)=gcorr_loc(l-1)
6314 & -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
6316 gcorr_loc(j-1)=gcorr_loc(j-1)
6317 & -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
6322 derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
6323 & -EAEAderx(2,2,lll,kkk,iii,1)
6324 cd derx(lll,kkk,iii)=0.0d0
6328 cd gcorr_loc(l-1)=0.0d0
6329 cd gcorr_loc(j-1)=0.0d0
6330 cd gcorr_loc(k-1)=0.0d0
6332 cd write (iout,*)'Contacts have occurred for peptide groups',
6333 cd & i,j,' fcont:',eij,' eij',' and ',k,l,
6334 cd & ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
6335 if (j.lt.nres-1) then
6342 if (l.lt.nres-1) then
6350 cold ghalf=0.5d0*eel4*ekl*gacont_hbr(ll,jj,i)
6351 ggg1(ll)=eel4*g_contij(ll,1)
6352 ggg2(ll)=eel4*g_contij(ll,2)
6353 ghalf=0.5d0*ggg1(ll)
6355 gradcorr(ll,i)=gradcorr(ll,i)+ghalf+ekont*derx(ll,2,1)
6356 gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
6357 gradcorr(ll,j)=gradcorr(ll,j)+ghalf+ekont*derx(ll,4,1)
6358 gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
6359 cold ghalf=0.5d0*eel4*eij*gacont_hbr(ll,kk,k)
6360 ghalf=0.5d0*ggg2(ll)
6362 gradcorr(ll,k)=gradcorr(ll,k)+ghalf+ekont*derx(ll,2,2)
6363 gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
6364 gradcorr(ll,l)=gradcorr(ll,l)+ghalf+ekont*derx(ll,4,2)
6365 gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
6370 cold gradcorr(ll,m)=gradcorr(ll,m)+eel4*ekl*gacont_hbr(ll,jj,i)
6371 gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
6376 cold gradcorr(ll,m)=gradcorr(ll,m)+eel4*eij*gacont_hbr(ll,kk,k)
6377 gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
6383 gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
6388 gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
6392 cd write (2,*) iii,gcorr_loc(iii)
6396 cd write (2,*) 'ekont',ekont
6397 cd write (iout,*) 'eello4',ekont*eel4
6400 C---------------------------------------------------------------------------
6401 double precision function eello5(i,j,k,l,jj,kk)
6402 implicit real*8 (a-h,o-z)
6403 include 'DIMENSIONS'
6404 include 'sizesclu.dat'
6405 include 'COMMON.IOUNITS'
6406 include 'COMMON.CHAIN'
6407 include 'COMMON.DERIV'
6408 include 'COMMON.INTERACT'
6409 include 'COMMON.CONTACTS'
6410 include 'COMMON.TORSION'
6411 include 'COMMON.VAR'
6412 include 'COMMON.GEO'
6413 double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
6414 double precision ggg1(3),ggg2(3)
6415 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6420 C /l\ / \ \ / \ / \ / C
6421 C / \ / \ \ / \ / \ / C
6422 C j| o |l1 | o | o| o | | o |o C
6423 C \ |/k\| |/ \| / |/ \| |/ \| C
6424 C \i/ \ / \ / / \ / \ C
6426 C (I) (II) (III) (IV) C
6428 C eello5_1 eello5_2 eello5_3 eello5_4 C
6430 C Antiparallel chains C
6433 C /j\ / \ \ / \ / \ / C
6434 C / \ / \ \ / \ / \ / C
6435 C j1| o |l | o | o| o | | o |o C
6436 C \ |/k\| |/ \| / |/ \| |/ \| C
6437 C \i/ \ / \ / / \ / \ C
6439 C (I) (II) (III) (IV) C
6441 C eello5_1 eello5_2 eello5_3 eello5_4 C
6443 C o denotes a local interaction, vertical lines an electrostatic interaction. C
6445 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6446 cd if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
6451 cd & 'EELLO5: Contacts have occurred for peptide groups',i,j,
6453 itk=itortyp(itype(k))
6454 itl=itortyp(itype(l))
6455 itj=itortyp(itype(j))
6460 cd call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
6461 cd & eel5_3_num,eel5_4_num)
6465 derx(lll,kkk,iii)=0.0d0
6469 cd eij=facont_hb(jj,i)
6470 cd ekl=facont_hb(kk,k)
6472 cd write (iout,*)'Contacts have occurred for peptide groups',
6473 cd & i,j,' fcont:',eij,' eij',' and ',k,l
6475 C Contribution from the graph I.
6476 cd write (2,*) 'AEA ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
6477 cd write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
6478 call transpose2(EUg(1,1,k),auxmat(1,1))
6479 call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
6480 vv(1)=pizda(1,1)-pizda(2,2)
6481 vv(2)=pizda(1,2)+pizda(2,1)
6482 eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
6483 & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
6485 C Explicit gradient in virtual-dihedral angles.
6486 if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
6487 & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
6488 & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
6489 call transpose2(EUgder(1,1,k),auxmat1(1,1))
6490 call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
6491 vv(1)=pizda(1,1)-pizda(2,2)
6492 vv(2)=pizda(1,2)+pizda(2,1)
6493 g_corr5_loc(k-1)=g_corr5_loc(k-1)
6494 & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
6495 & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
6496 call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
6497 vv(1)=pizda(1,1)-pizda(2,2)
6498 vv(2)=pizda(1,2)+pizda(2,1)
6500 if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
6501 & +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
6502 & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
6504 if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
6505 & +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
6506 & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
6508 C Cartesian gradient
6512 call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
6514 vv(1)=pizda(1,1)-pizda(2,2)
6515 vv(2)=pizda(1,2)+pizda(2,1)
6516 derx(lll,kkk,iii)=derx(lll,kkk,iii)
6517 & +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
6518 & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
6525 C Contribution from graph II
6526 call transpose2(EE(1,1,itk),auxmat(1,1))
6527 call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
6528 vv(1)=pizda(1,1)+pizda(2,2)
6529 vv(2)=pizda(2,1)-pizda(1,2)
6530 eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
6531 & -0.5d0*scalar2(vv(1),Ctobr(1,k))
6533 C Explicit gradient in virtual-dihedral angles.
6534 g_corr5_loc(k-1)=g_corr5_loc(k-1)
6535 & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
6536 call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
6537 vv(1)=pizda(1,1)+pizda(2,2)
6538 vv(2)=pizda(2,1)-pizda(1,2)
6540 g_corr5_loc(l-1)=g_corr5_loc(l-1)
6541 & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
6542 & -0.5d0*scalar2(vv(1),Ctobr(1,k)))
6544 g_corr5_loc(j-1)=g_corr5_loc(j-1)
6545 & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
6546 & -0.5d0*scalar2(vv(1),Ctobr(1,k)))
6548 C Cartesian gradient
6552 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
6554 vv(1)=pizda(1,1)+pizda(2,2)
6555 vv(2)=pizda(2,1)-pizda(1,2)
6556 derx(lll,kkk,iii)=derx(lll,kkk,iii)
6557 & +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
6558 & -0.5d0*scalar2(vv(1),Ctobr(1,k))
6567 C Parallel orientation
6568 C Contribution from graph III
6569 call transpose2(EUg(1,1,l),auxmat(1,1))
6570 call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
6571 vv(1)=pizda(1,1)-pizda(2,2)
6572 vv(2)=pizda(1,2)+pizda(2,1)
6573 eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
6574 & +0.5d0*scalar2(vv(1),Dtobr2(1,j))
6576 C Explicit gradient in virtual-dihedral angles.
6577 g_corr5_loc(j-1)=g_corr5_loc(j-1)
6578 & +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
6579 & +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
6580 call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
6581 vv(1)=pizda(1,1)-pizda(2,2)
6582 vv(2)=pizda(1,2)+pizda(2,1)
6583 g_corr5_loc(k-1)=g_corr5_loc(k-1)
6584 & +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
6585 & +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
6586 call transpose2(EUgder(1,1,l),auxmat1(1,1))
6587 call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
6588 vv(1)=pizda(1,1)-pizda(2,2)
6589 vv(2)=pizda(1,2)+pizda(2,1)
6590 g_corr5_loc(l-1)=g_corr5_loc(l-1)
6591 & +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
6592 & +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
6593 C Cartesian gradient
6597 call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
6599 vv(1)=pizda(1,1)-pizda(2,2)
6600 vv(2)=pizda(1,2)+pizda(2,1)
6601 derx(lll,kkk,iii)=derx(lll,kkk,iii)
6602 & +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
6603 & +0.5d0*scalar2(vv(1),Dtobr2(1,j))
6609 C Contribution from graph IV
6611 call transpose2(EE(1,1,itl),auxmat(1,1))
6612 call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
6613 vv(1)=pizda(1,1)+pizda(2,2)
6614 vv(2)=pizda(2,1)-pizda(1,2)
6615 eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
6616 & -0.5d0*scalar2(vv(1),Ctobr(1,l))
6618 C Explicit gradient in virtual-dihedral angles.
6619 g_corr5_loc(l-1)=g_corr5_loc(l-1)
6620 & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
6621 call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
6622 vv(1)=pizda(1,1)+pizda(2,2)
6623 vv(2)=pizda(2,1)-pizda(1,2)
6624 g_corr5_loc(k-1)=g_corr5_loc(k-1)
6625 & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
6626 & -0.5d0*scalar2(vv(1),Ctobr(1,l)))
6627 C Cartesian gradient
6631 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
6633 vv(1)=pizda(1,1)+pizda(2,2)
6634 vv(2)=pizda(2,1)-pizda(1,2)
6635 derx(lll,kkk,iii)=derx(lll,kkk,iii)
6636 & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
6637 & -0.5d0*scalar2(vv(1),Ctobr(1,l))
6643 C Antiparallel orientation
6644 C Contribution from graph III
6646 call transpose2(EUg(1,1,j),auxmat(1,1))
6647 call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
6648 vv(1)=pizda(1,1)-pizda(2,2)
6649 vv(2)=pizda(1,2)+pizda(2,1)
6650 eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
6651 & +0.5d0*scalar2(vv(1),Dtobr2(1,l))
6653 C Explicit gradient in virtual-dihedral angles.
6654 g_corr5_loc(l-1)=g_corr5_loc(l-1)
6655 & +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
6656 & +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
6657 call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
6658 vv(1)=pizda(1,1)-pizda(2,2)
6659 vv(2)=pizda(1,2)+pizda(2,1)
6660 g_corr5_loc(k-1)=g_corr5_loc(k-1)
6661 & +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
6662 & +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
6663 call transpose2(EUgder(1,1,j),auxmat1(1,1))
6664 call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
6665 vv(1)=pizda(1,1)-pizda(2,2)
6666 vv(2)=pizda(1,2)+pizda(2,1)
6667 g_corr5_loc(j-1)=g_corr5_loc(j-1)
6668 & +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
6669 & +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
6670 C Cartesian gradient
6674 call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
6676 vv(1)=pizda(1,1)-pizda(2,2)
6677 vv(2)=pizda(1,2)+pizda(2,1)
6678 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
6679 & +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
6680 & +0.5d0*scalar2(vv(1),Dtobr2(1,l))
6686 C Contribution from graph IV
6688 call transpose2(EE(1,1,itj),auxmat(1,1))
6689 call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
6690 vv(1)=pizda(1,1)+pizda(2,2)
6691 vv(2)=pizda(2,1)-pizda(1,2)
6692 eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
6693 & -0.5d0*scalar2(vv(1),Ctobr(1,j))
6695 C Explicit gradient in virtual-dihedral angles.
6696 g_corr5_loc(j-1)=g_corr5_loc(j-1)
6697 & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
6698 call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
6699 vv(1)=pizda(1,1)+pizda(2,2)
6700 vv(2)=pizda(2,1)-pizda(1,2)
6701 g_corr5_loc(k-1)=g_corr5_loc(k-1)
6702 & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
6703 & -0.5d0*scalar2(vv(1),Ctobr(1,j)))
6704 C Cartesian gradient
6708 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
6710 vv(1)=pizda(1,1)+pizda(2,2)
6711 vv(2)=pizda(2,1)-pizda(1,2)
6712 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
6713 & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
6714 & -0.5d0*scalar2(vv(1),Ctobr(1,j))
6721 eel5=eello5_1+eello5_2+eello5_3+eello5_4
6722 cd if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
6723 cd write (2,*) 'ijkl',i,j,k,l
6724 cd write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
6725 cd & ' eello5_3',eello5_3,' eello5_4',eello5_4
6727 cd write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
6728 cd write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
6729 cd write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
6730 cd write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
6732 if (j.lt.nres-1) then
6739 if (l.lt.nres-1) then
6749 cd write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
6751 ggg1(ll)=eel5*g_contij(ll,1)
6752 ggg2(ll)=eel5*g_contij(ll,2)
6753 cold ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
6754 ghalf=0.5d0*ggg1(ll)
6756 gradcorr5(ll,i)=gradcorr5(ll,i)+ghalf+ekont*derx(ll,2,1)
6757 gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
6758 gradcorr5(ll,j)=gradcorr5(ll,j)+ghalf+ekont*derx(ll,4,1)
6759 gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
6760 cold ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
6761 ghalf=0.5d0*ggg2(ll)
6763 gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
6764 gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
6765 gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
6766 gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
6771 cold gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
6772 gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
6777 cold gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
6778 gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
6784 gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
6789 gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
6793 cd write (2,*) iii,g_corr5_loc(iii)
6797 cd write (2,*) 'ekont',ekont
6798 cd write (iout,*) 'eello5',ekont*eel5
6801 c--------------------------------------------------------------------------
6802 double precision function eello6(i,j,k,l,jj,kk)
6803 implicit real*8 (a-h,o-z)
6804 include 'DIMENSIONS'
6805 include 'sizesclu.dat'
6806 include 'COMMON.IOUNITS'
6807 include 'COMMON.CHAIN'
6808 include 'COMMON.DERIV'
6809 include 'COMMON.INTERACT'
6810 include 'COMMON.CONTACTS'
6811 include 'COMMON.TORSION'
6812 include 'COMMON.VAR'
6813 include 'COMMON.GEO'
6814 include 'COMMON.FFIELD'
6815 double precision ggg1(3),ggg2(3)
6816 cd if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
6821 cd & 'EELLO6: Contacts have occurred for peptide groups',i,j,
6829 cd call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
6830 cd & eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
6834 derx(lll,kkk,iii)=0.0d0
6838 cd eij=facont_hb(jj,i)
6839 cd ekl=facont_hb(kk,k)
6845 eello6_1=eello6_graph1(i,j,k,l,1,.false.)
6846 eello6_2=eello6_graph1(j,i,l,k,2,.false.)
6847 eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
6848 eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
6849 eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
6850 eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
6852 eello6_1=eello6_graph1(i,j,k,l,1,.false.)
6853 eello6_2=eello6_graph1(l,k,j,i,2,.true.)
6854 eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
6855 eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
6856 if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
6857 eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
6861 eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
6863 C If turn contributions are considered, they will be handled separately.
6864 eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
6865 cd write(iout,*) 'eello6_1',eello6_1,' eel6_1_num',16*eel6_1_num
6866 cd write(iout,*) 'eello6_2',eello6_2,' eel6_2_num',16*eel6_2_num
6867 cd write(iout,*) 'eello6_3',eello6_3,' eel6_3_num',16*eel6_3_num
6868 cd write(iout,*) 'eello6_4',eello6_4,' eel6_4_num',16*eel6_4_num
6869 cd write(iout,*) 'eello6_5',eello6_5,' eel6_5_num',16*eel6_5_num
6870 cd write(iout,*) 'eello6_6',eello6_6,' eel6_6_num',16*eel6_6_num
6873 if (j.lt.nres-1) then
6880 if (l.lt.nres-1) then
6888 ggg1(ll)=eel6*g_contij(ll,1)
6889 ggg2(ll)=eel6*g_contij(ll,2)
6890 cold ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
6891 ghalf=0.5d0*ggg1(ll)
6893 gradcorr6(ll,i)=gradcorr6(ll,i)+ghalf+ekont*derx(ll,2,1)
6894 gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
6895 gradcorr6(ll,j)=gradcorr6(ll,j)+ghalf+ekont*derx(ll,4,1)
6896 gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
6897 ghalf=0.5d0*ggg2(ll)
6898 cold ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
6900 gradcorr6(ll,k)=gradcorr6(ll,k)+ghalf+ekont*derx(ll,2,2)
6901 gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
6902 gradcorr6(ll,l)=gradcorr6(ll,l)+ghalf+ekont*derx(ll,4,2)
6903 gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
6908 cold gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
6909 gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
6914 cold gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
6915 gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
6921 gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
6926 gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
6930 cd write (2,*) iii,g_corr6_loc(iii)
6934 cd write (2,*) 'ekont',ekont
6935 cd write (iout,*) 'eello6',ekont*eel6
6938 c--------------------------------------------------------------------------
6939 double precision function eello6_graph1(i,j,k,l,imat,swap)
6940 implicit real*8 (a-h,o-z)
6941 include 'DIMENSIONS'
6942 include 'sizesclu.dat'
6943 include 'COMMON.IOUNITS'
6944 include 'COMMON.CHAIN'
6945 include 'COMMON.DERIV'
6946 include 'COMMON.INTERACT'
6947 include 'COMMON.CONTACTS'
6948 include 'COMMON.TORSION'
6949 include 'COMMON.VAR'
6950 include 'COMMON.GEO'
6951 double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
6955 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6957 C Parallel Antiparallel C
6963 C \ j|/k\| / \ |/k\|l / C
6968 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6969 itk=itortyp(itype(k))
6970 s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
6971 s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
6972 s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
6973 call transpose2(EUgC(1,1,k),auxmat(1,1))
6974 call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
6975 vv1(1)=pizda1(1,1)-pizda1(2,2)
6976 vv1(2)=pizda1(1,2)+pizda1(2,1)
6977 s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
6978 vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
6979 vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
6980 s5=scalar2(vv(1),Dtobr2(1,i))
6981 cd write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
6982 eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
6983 if (.not. calc_grad) return
6984 if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
6985 & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
6986 & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
6987 & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
6988 & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
6989 & +scalar2(vv(1),Dtobr2der(1,i)))
6990 call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
6991 vv1(1)=pizda1(1,1)-pizda1(2,2)
6992 vv1(2)=pizda1(1,2)+pizda1(2,1)
6993 vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
6994 vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
6996 g_corr6_loc(l-1)=g_corr6_loc(l-1)
6997 & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
6998 & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
6999 & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
7000 & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
7002 g_corr6_loc(j-1)=g_corr6_loc(j-1)
7003 & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
7004 & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
7005 & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
7006 & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
7008 call transpose2(EUgCder(1,1,k),auxmat(1,1))
7009 call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
7010 vv1(1)=pizda1(1,1)-pizda1(2,2)
7011 vv1(2)=pizda1(1,2)+pizda1(2,1)
7012 if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
7013 & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
7014 & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
7015 & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
7024 s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
7025 s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
7026 s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
7027 call transpose2(EUgC(1,1,k),auxmat(1,1))
7028 call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
7030 vv1(1)=pizda1(1,1)-pizda1(2,2)
7031 vv1(2)=pizda1(1,2)+pizda1(2,1)
7032 s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
7033 vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
7034 & -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
7035 vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
7036 & +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
7037 s5=scalar2(vv(1),Dtobr2(1,i))
7038 derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
7044 c----------------------------------------------------------------------------
7045 double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
7046 implicit real*8 (a-h,o-z)
7047 include 'DIMENSIONS'
7048 include 'sizesclu.dat'
7049 include 'COMMON.IOUNITS'
7050 include 'COMMON.CHAIN'
7051 include 'COMMON.DERIV'
7052 include 'COMMON.INTERACT'
7053 include 'COMMON.CONTACTS'
7054 include 'COMMON.TORSION'
7055 include 'COMMON.VAR'
7056 include 'COMMON.GEO'
7058 double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
7059 & auxvec1(2),auxvec2(2),auxmat1(2,2)
7062 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7064 C Parallel Antiparallel C
7070 C \ j|/k\| \ |/k\|l C
7075 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7076 cd write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
7077 C AL 7/4/01 s1 would occur in the sixth-order moment,
7078 C but not in a cluster cumulant
7080 s1=dip(1,jj,i)*dip(1,kk,k)
7082 call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
7083 s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
7084 call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
7085 s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
7086 call transpose2(EUg(1,1,k),auxmat(1,1))
7087 call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
7088 vv(1)=pizda(1,1)-pizda(2,2)
7089 vv(2)=pizda(1,2)+pizda(2,1)
7090 s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
7091 cd write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
7093 eello6_graph2=-(s1+s2+s3+s4)
7095 eello6_graph2=-(s2+s3+s4)
7098 if (.not. calc_grad) return
7099 C Derivatives in gamma(i-1)
7102 s1=dipderg(1,jj,i)*dip(1,kk,k)
7104 s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
7105 call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
7106 s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
7107 s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
7109 g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
7111 g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
7113 c g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
7115 C Derivatives in gamma(k-1)
7117 s1=dip(1,jj,i)*dipderg(1,kk,k)
7119 call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
7120 s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
7121 call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
7122 s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
7123 call transpose2(EUgder(1,1,k),auxmat1(1,1))
7124 call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
7125 vv(1)=pizda(1,1)-pizda(2,2)
7126 vv(2)=pizda(1,2)+pizda(2,1)
7127 s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
7129 g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
7131 g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
7133 c g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
7134 C Derivatives in gamma(j-1) or gamma(l-1)
7137 s1=dipderg(3,jj,i)*dip(1,kk,k)
7139 call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
7140 s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
7141 s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
7142 call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
7143 vv(1)=pizda(1,1)-pizda(2,2)
7144 vv(2)=pizda(1,2)+pizda(2,1)
7145 s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
7148 g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
7150 g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
7153 g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
7154 c g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
7156 C Derivatives in gamma(l-1) or gamma(j-1)
7159 s1=dip(1,jj,i)*dipderg(3,kk,k)
7161 call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
7162 s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
7163 call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
7164 s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
7165 call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
7166 vv(1)=pizda(1,1)-pizda(2,2)
7167 vv(2)=pizda(1,2)+pizda(2,1)
7168 s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
7171 g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
7173 g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
7176 g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
7177 c g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
7179 C Cartesian derivatives.
7181 write (2,*) 'In eello6_graph2'
7183 write (2,*) 'iii=',iii
7185 write (2,*) 'kkk=',kkk
7187 write (2,'(3(2f10.5),5x)')
7188 & ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7198 s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
7200 s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
7203 call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
7205 s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
7206 call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
7208 s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
7209 call transpose2(EUg(1,1,k),auxmat(1,1))
7210 call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
7212 vv(1)=pizda(1,1)-pizda(2,2)
7213 vv(2)=pizda(1,2)+pizda(2,1)
7214 s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
7215 cd write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
7217 derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
7219 derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
7222 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
7224 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
7231 c----------------------------------------------------------------------------
7232 double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
7233 implicit real*8 (a-h,o-z)
7234 include 'DIMENSIONS'
7235 include 'sizesclu.dat'
7236 include 'COMMON.IOUNITS'
7237 include 'COMMON.CHAIN'
7238 include 'COMMON.DERIV'
7239 include 'COMMON.INTERACT'
7240 include 'COMMON.CONTACTS'
7241 include 'COMMON.TORSION'
7242 include 'COMMON.VAR'
7243 include 'COMMON.GEO'
7244 double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
7246 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7248 C Parallel Antiparallel C
7254 C j|/k\| / |/k\|l / C
7259 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7261 C 4/7/01 AL Component s1 was removed, because it pertains to the respective
7262 C energy moment and not to the cluster cumulant.
7263 iti=itortyp(itype(i))
7264 if (j.lt.nres-1) then
7265 itj1=itortyp(itype(j+1))
7269 itk=itortyp(itype(k))
7270 itk1=itortyp(itype(k+1))
7271 if (l.lt.nres-1) then
7272 itl1=itortyp(itype(l+1))
7277 s1=dip(4,jj,i)*dip(4,kk,k)
7279 call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
7280 s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
7281 call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
7282 s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
7283 call transpose2(EE(1,1,itk),auxmat(1,1))
7284 call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
7285 vv(1)=pizda(1,1)+pizda(2,2)
7286 vv(2)=pizda(2,1)-pizda(1,2)
7287 s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
7288 cd write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4
7290 eello6_graph3=-(s1+s2+s3+s4)
7292 eello6_graph3=-(s2+s3+s4)
7295 if (.not. calc_grad) return
7296 C Derivatives in gamma(k-1)
7297 call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
7298 s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
7299 s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
7300 g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
7301 C Derivatives in gamma(l-1)
7302 call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
7303 s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
7304 call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
7305 vv(1)=pizda(1,1)+pizda(2,2)
7306 vv(2)=pizda(2,1)-pizda(1,2)
7307 s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
7308 g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
7309 C Cartesian derivatives.
7315 s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
7317 s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
7320 call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7322 s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
7323 call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7325 s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
7326 call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
7328 vv(1)=pizda(1,1)+pizda(2,2)
7329 vv(2)=pizda(2,1)-pizda(1,2)
7330 s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
7332 derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
7334 derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
7337 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
7339 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
7341 c derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
7347 c----------------------------------------------------------------------------
7348 double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
7349 implicit real*8 (a-h,o-z)
7350 include 'DIMENSIONS'
7351 include 'sizesclu.dat'
7352 include 'COMMON.IOUNITS'
7353 include 'COMMON.CHAIN'
7354 include 'COMMON.DERIV'
7355 include 'COMMON.INTERACT'
7356 include 'COMMON.CONTACTS'
7357 include 'COMMON.TORSION'
7358 include 'COMMON.VAR'
7359 include 'COMMON.GEO'
7360 include 'COMMON.FFIELD'
7361 double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
7362 & auxvec1(2),auxmat1(2,2)
7364 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7366 C Parallel Antiparallel C
7372 C \ j|/k\| \ |/k\|l C
7377 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7379 C 4/7/01 AL Component s1 was removed, because it pertains to the respective
7380 C energy moment and not to the cluster cumulant.
7381 cd write (2,*) 'eello_graph4: wturn6',wturn6
7382 iti=itortyp(itype(i))
7383 itj=itortyp(itype(j))
7384 if (j.lt.nres-1) then
7385 itj1=itortyp(itype(j+1))
7389 itk=itortyp(itype(k))
7390 if (k.lt.nres-1) then
7391 itk1=itortyp(itype(k+1))
7395 itl=itortyp(itype(l))
7396 if (l.lt.nres-1) then
7397 itl1=itortyp(itype(l+1))
7401 cd write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
7402 cd write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
7403 cd & ' itl',itl,' itl1',itl1
7406 s1=dip(3,jj,i)*dip(3,kk,k)
7408 s1=dip(2,jj,j)*dip(2,kk,l)
7411 call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
7412 s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
7414 call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
7415 s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
7417 call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
7418 s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
7420 call transpose2(EUg(1,1,k),auxmat(1,1))
7421 call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
7422 vv(1)=pizda(1,1)-pizda(2,2)
7423 vv(2)=pizda(2,1)+pizda(1,2)
7424 s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
7425 cd write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
7427 eello6_graph4=-(s1+s2+s3+s4)
7429 eello6_graph4=-(s2+s3+s4)
7431 if (.not. calc_grad) return
7432 C Derivatives in gamma(i-1)
7436 s1=dipderg(2,jj,i)*dip(3,kk,k)
7438 s1=dipderg(4,jj,j)*dip(2,kk,l)
7441 s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
7443 call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
7444 s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
7446 call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
7447 s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
7449 s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
7450 if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
7451 cd write (2,*) 'turn6 derivatives'
7453 gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
7455 gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
7459 g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
7461 g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
7465 C Derivatives in gamma(k-1)
7468 s1=dip(3,jj,i)*dipderg(2,kk,k)
7470 s1=dip(2,jj,j)*dipderg(4,kk,l)
7473 call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
7474 s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
7476 call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
7477 s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
7479 call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
7480 s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
7482 call transpose2(EUgder(1,1,k),auxmat1(1,1))
7483 call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
7484 vv(1)=pizda(1,1)-pizda(2,2)
7485 vv(2)=pizda(2,1)+pizda(1,2)
7486 s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
7487 if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
7489 gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
7491 gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
7495 g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
7497 g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
7500 C Derivatives in gamma(j-1) or gamma(l-1)
7501 if (l.eq.j+1 .and. l.gt.1) then
7502 call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
7503 s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
7504 call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
7505 vv(1)=pizda(1,1)-pizda(2,2)
7506 vv(2)=pizda(2,1)+pizda(1,2)
7507 s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
7508 g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
7509 else if (j.gt.1) then
7510 call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
7511 s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
7512 call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
7513 vv(1)=pizda(1,1)-pizda(2,2)
7514 vv(2)=pizda(2,1)+pizda(1,2)
7515 s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
7516 if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
7517 gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
7519 g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
7522 C Cartesian derivatives.
7529 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
7531 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
7535 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
7537 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
7541 call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
7543 s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
7545 call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
7546 & b1(1,itj1),auxvec(1))
7547 s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
7549 call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
7550 & b1(1,itl1),auxvec(1))
7551 s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
7553 call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
7555 vv(1)=pizda(1,1)-pizda(2,2)
7556 vv(2)=pizda(2,1)+pizda(1,2)
7557 s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
7559 if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
7561 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
7564 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
7567 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
7570 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
7572 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
7574 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
7578 derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
7580 derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
7583 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
7585 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
7593 c----------------------------------------------------------------------------
7594 double precision function eello_turn6(i,jj,kk)
7595 implicit real*8 (a-h,o-z)
7596 include 'DIMENSIONS'
7597 include 'sizesclu.dat'
7598 include 'COMMON.IOUNITS'
7599 include 'COMMON.CHAIN'
7600 include 'COMMON.DERIV'
7601 include 'COMMON.INTERACT'
7602 include 'COMMON.CONTACTS'
7603 include 'COMMON.TORSION'
7604 include 'COMMON.VAR'
7605 include 'COMMON.GEO'
7606 double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
7607 & atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
7609 double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
7610 & atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
7611 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
7612 C the respective energy moment and not to the cluster cumulant.
7617 iti=itortyp(itype(i))
7618 itk=itortyp(itype(k))
7619 itk1=itortyp(itype(k+1))
7620 itl=itortyp(itype(l))
7621 itj=itortyp(itype(j))
7622 cd write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
7623 cd write (2,*) 'i',i,' k',k,' j',j,' l',l
7624 cd if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7629 cd & 'EELLO6: Contacts have occurred for peptide groups',i,j,
7631 cd call checkint_turn6(i,jj,kk,eel_turn6_num)
7635 derx_turn(lll,kkk,iii)=0.0d0
7642 eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
7644 cd write (2,*) 'eello6_5',eello6_5
7646 call transpose2(AEA(1,1,1),auxmat(1,1))
7647 call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
7648 ss1=scalar2(Ub2(1,i+2),b1(1,itl))
7649 s1 = (auxmat(1,1)+auxmat(2,2))*ss1
7653 call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
7654 call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
7655 s2 = scalar2(b1(1,itk),vtemp1(1))
7657 call transpose2(AEA(1,1,2),atemp(1,1))
7658 call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
7659 call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
7660 s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
7664 call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
7665 call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
7666 s12 = scalar2(Ub2(1,i+2),vtemp3(1))
7668 call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
7669 call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
7670 call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1))
7671 call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1))
7672 ss13 = scalar2(b1(1,itk),vtemp4(1))
7673 s13 = (gtemp(1,1)+gtemp(2,2))*ss13
7677 c write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
7683 eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
7685 C Derivatives in gamma(i+2)
7687 call transpose2(AEA(1,1,1),auxmatd(1,1))
7688 call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7689 s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
7690 call transpose2(AEAderg(1,1,2),atempd(1,1))
7691 call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
7692 s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
7696 call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
7697 call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
7698 s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7704 gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
7705 C Derivatives in gamma(i+3)
7707 call transpose2(AEA(1,1,1),auxmatd(1,1))
7708 call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7709 ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
7710 s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
7714 call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
7715 call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
7716 s2d = scalar2(b1(1,itk),vtemp1d(1))
7718 call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
7719 s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
7721 s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
7723 call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
7724 call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1))
7725 s13d = (gtempd(1,1)+gtempd(2,2))*ss13
7735 gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
7736 & -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
7738 gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
7739 & -0.5d0*ekont*(s2d+s12d)
7741 C Derivatives in gamma(i+4)
7742 call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
7743 call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
7744 s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7746 call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
7747 call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1))
7748 s13d = (gtempd(1,1)+gtempd(2,2))*ss13
7758 gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
7760 gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
7762 C Derivatives in gamma(i+5)
7764 call transpose2(AEAderg(1,1,1),auxmatd(1,1))
7765 call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7766 s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
7770 call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
7771 call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
7772 s2d = scalar2(b1(1,itk),vtemp1d(1))
7774 call transpose2(AEA(1,1,2),atempd(1,1))
7775 call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
7776 s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
7780 call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
7781 s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7783 call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1))
7784 ss13d = scalar2(b1(1,itk),vtemp4d(1))
7785 s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
7795 gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
7796 & -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
7798 gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
7799 & -0.5d0*ekont*(s2d+s12d)
7801 C Cartesian derivatives
7806 call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
7807 call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7808 s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
7812 call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
7813 call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
7815 s2d = scalar2(b1(1,itk),vtemp1d(1))
7817 call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
7818 call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
7819 s8d = -(atempd(1,1)+atempd(2,2))*
7820 & scalar2(cc(1,1,itl),vtemp2(1))
7824 call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
7826 call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
7827 s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7834 derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii)
7837 derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii)
7841 derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii)
7842 & - 0.5d0*(s8d+s12d)
7844 derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii)
7853 call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
7855 call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
7856 call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1))
7857 s13d=(gtempd(1,1)+gtempd(2,2))*ss13
7858 derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
7859 call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
7861 ss13d = scalar2(b1(1,itk),vtemp4d(1))
7862 s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
7863 derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
7867 cd write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
7868 cd & 16*eel_turn6_num
7870 if (j.lt.nres-1) then
7877 if (l.lt.nres-1) then
7885 ggg1(ll)=eel_turn6*g_contij(ll,1)
7886 ggg2(ll)=eel_turn6*g_contij(ll,2)
7887 ghalf=0.5d0*ggg1(ll)
7889 gcorr6_turn(ll,i)=gcorr6_turn(ll,i)+ghalf
7890 & +ekont*derx_turn(ll,2,1)
7891 gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
7892 gcorr6_turn(ll,j)=gcorr6_turn(ll,j)+ghalf
7893 & +ekont*derx_turn(ll,4,1)
7894 gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
7895 ghalf=0.5d0*ggg2(ll)
7897 gcorr6_turn(ll,k)=gcorr6_turn(ll,k)+ghalf
7898 & +ekont*derx_turn(ll,2,2)
7899 gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
7900 gcorr6_turn(ll,l)=gcorr6_turn(ll,l)+ghalf
7901 & +ekont*derx_turn(ll,4,2)
7902 gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
7907 gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
7912 gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
7918 gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
7923 gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
7927 cd write (2,*) iii,g_corr6_loc(iii)
7930 eello_turn6=ekont*eel_turn6
7931 cd write (2,*) 'ekont',ekont
7932 cd write (2,*) 'eel_turn6',ekont*eel_turn6
7935 crc-------------------------------------------------
7936 SUBROUTINE MATVEC2(A1,V1,V2)
7937 implicit real*8 (a-h,o-z)
7938 include 'DIMENSIONS'
7939 DIMENSION A1(2,2),V1(2),V2(2)
7943 c 3 VI=VI+A1(I,K)*V1(K)
7947 vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
7948 vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
7953 C---------------------------------------
7954 SUBROUTINE MATMAT2(A1,A2,A3)
7955 implicit real*8 (a-h,o-z)
7956 include 'DIMENSIONS'
7957 DIMENSION A1(2,2),A2(2,2),A3(2,2)
7958 c DIMENSION AI3(2,2)
7962 c A3IJ=A3IJ+A1(I,K)*A2(K,J)
7968 ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
7969 ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
7970 ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
7971 ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
7979 c-------------------------------------------------------------------------
7980 double precision function scalar2(u,v)
7982 double precision u(2),v(2)
7985 scalar2=u(1)*v(1)+u(2)*v(2)
7989 C-----------------------------------------------------------------------------
7991 subroutine transpose2(a,at)
7993 double precision a(2,2),at(2,2)
8000 c--------------------------------------------------------------------------
8001 subroutine transpose(n,a,at)
8004 double precision a(n,n),at(n,n)
8012 C---------------------------------------------------------------------------
8013 subroutine prodmat3(a1,a2,kk,transp,prod)
8016 double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
8018 crc double precision auxmat(2,2),prod_(2,2)
8021 crc call transpose2(kk(1,1),auxmat(1,1))
8022 crc call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
8023 crc call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
8025 prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
8026 & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
8027 prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
8028 & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
8029 prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
8030 & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
8031 prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
8032 & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
8035 crc call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
8036 crc call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
8038 prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
8039 & +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
8040 prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
8041 & +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
8042 prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
8043 & +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
8044 prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
8045 & +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
8048 c call transpose2(a2(1,1),a2t(1,1))
8051 crc print *,((prod_(i,j),i=1,2),j=1,2)
8052 crc print *,((prod(i,j),i=1,2),j=1,2)
8056 C-----------------------------------------------------------------------------
8057 double precision function scalar(u,v)
8059 double precision u(3),v(3)