From de4bc5453ea46e111d936cb85e1758ed21c08fcd Mon Sep 17 00:00:00 2001 From: Cezary Czaplewski Date: Fri, 5 Dec 2014 11:39:17 +0100 Subject: [PATCH] src_CSA_DiL removed from prerelease, current version in devel --- source/unres/src_CSA_DiL/CMakeLists.txt | 340 - source/unres/src_CSA_DiL/COMMON.BANK | 29 - source/unres/src_CSA_DiL/COMMON.BOUNDS | 2 - source/unres/src_CSA_DiL/COMMON.CALC | 15 - source/unres/src_CSA_DiL/COMMON.CHAIN | 12 - source/unres/src_CSA_DiL/COMMON.CONTACTS | 75 - source/unres/src_CSA_DiL/COMMON.CONTACTS.MOMENT | 7 - source/unres/src_CSA_DiL/COMMON.CONTROL | 13 - source/unres/src_CSA_DiL/COMMON.CSA | 11 - source/unres/src_CSA_DiL/COMMON.DERIV | 38 - source/unres/src_CSA_DiL/COMMON.DFA | 101 - source/unres/src_CSA_DiL/COMMON.DISTFIT | 14 - source/unres/src_CSA_DiL/COMMON.FFIELD | 26 - source/unres/src_CSA_DiL/COMMON.GEO | 2 - source/unres/src_CSA_DiL/COMMON.HAIRPIN | 5 - source/unres/src_CSA_DiL/COMMON.HEADER | 2 - source/unres/src_CSA_DiL/COMMON.INFO | 21 - source/unres/src_CSA_DiL/COMMON.INTERACT | 34 - source/unres/src_CSA_DiL/COMMON.IOUNITS | 69 - source/unres/src_CSA_DiL/COMMON.LOCAL | 55 - source/unres/src_CSA_DiL/COMMON.LOCMOVE | 19 - source/unres/src_CSA_DiL/COMMON.MAXGRAD | 12 - source/unres/src_CSA_DiL/COMMON.MCM | 70 - source/unres/src_CSA_DiL/COMMON.MD_ | 74 - source/unres/src_CSA_DiL/COMMON.MINIM | 5 - source/unres/src_CSA_DiL/COMMON.NAMES | 8 - source/unres/src_CSA_DiL/COMMON.SBRIDGE | 12 - source/unres/src_CSA_DiL/COMMON.SCCOR | 6 - source/unres/src_CSA_DiL/COMMON.SCROT | 3 - source/unres/src_CSA_DiL/COMMON.SETUP | 21 - source/unres/src_CSA_DiL/COMMON.SPLITELE | 2 - source/unres/src_CSA_DiL/COMMON.THREAD | 7 - source/unres/src_CSA_DiL/COMMON.TIME1 | 28 - source/unres/src_CSA_DiL/COMMON.TORCNSTR | 6 - source/unres/src_CSA_DiL/COMMON.TORSION | 35 - source/unres/src_CSA_DiL/COMMON.VAR | 20 - source/unres/src_CSA_DiL/COMMON.VECTORS | 3 - source/unres/src_CSA_DiL/DIMENSIONS | 139 - source/unres/src_CSA_DiL/MP.F | 516 -- source/unres/src_CSA_DiL/Makefile | 1 - source/unres/src_CSA_DiL/Makefile_MPICH_bluegene | 142 - source/unres/src_CSA_DiL/Makefile_MPICH_gfortran | 130 - source/unres/src_CSA_DiL/Makefile_MPICH_ifort | 132 - source/unres/src_CSA_DiL/README.Juyong | 13 - source/unres/src_CSA_DiL/TMscore_subroutine.f | 536 -- source/unres/src_CSA_DiL/arcos.f | 9 - source/unres/src_CSA_DiL/banach.f | 99 - source/unres/src_CSA_DiL/bank.F | 1353 ---- source/unres/src_CSA_DiL/cartder.F | 314 - source/unres/src_CSA_DiL/cartprint.f | 19 - source/unres/src_CSA_DiL/chainbuild.F | 274 - source/unres/src_CSA_DiL/checkder_p.F | 694 -- source/unres/src_CSA_DiL/cinfo.f | 34 - source/unres/src_CSA_DiL/compinfo.c | 82 - source/unres/src_CSA_DiL/contact.f | 195 - source/unres/src_CSA_DiL/convert.f | 196 - source/unres/src_CSA_DiL/cored.f | 3151 -------- source/unres/src_CSA_DiL/csa.F | 366 - source/unres/src_CSA_DiL/dfa.F | 3455 -------- source/unres/src_CSA_DiL/diff12.f | 82 - source/unres/src_CSA_DiL/distfit.f | 207 - source/unres/src_CSA_DiL/djacob.f | 107 - source/unres/src_CSA_DiL/econstr_local.F | 91 - source/unres/src_CSA_DiL/elecont.f | 509 -- source/unres/src_CSA_DiL/energy_p_new_barrier.F | 9192 ---------------------- source/unres/src_CSA_DiL/fitsq.f | 364 - source/unres/src_CSA_DiL/gen_rand_conf.F | 911 --- source/unres/src_CSA_DiL/geomout_min.F | 348 - source/unres/src_CSA_DiL/gradient_p.F | 408 - source/unres/src_CSA_DiL/indexx.f | 81 - source/unres/src_CSA_DiL/initialize_p.F | 1417 ---- source/unres/src_CSA_DiL/int_to_cart.f | 119 - source/unres/src_CSA_DiL/intcartderiv.F | 466 -- source/unres/src_CSA_DiL/intcor.f | 91 - source/unres/src_CSA_DiL/intlocal.f | 517 -- source/unres/src_CSA_DiL/local_move.f | 972 --- source/unres/src_CSA_DiL/matmult.f | 18 - source/unres/src_CSA_DiL/minim_jlee.F | 452 -- source/unres/src_CSA_DiL/minim_mult.F | 131 - source/unres/src_CSA_DiL/minimize_p.F | 641 -- source/unres/src_CSA_DiL/misc.f | 203 - source/unres/src_CSA_DiL/newconf.F | 2456 ------ source/unres/src_CSA_DiL/parmread.F | 1132 --- source/unres/src_CSA_DiL/pinorm.f | 17 - source/unres/src_CSA_DiL/printmat.f | 16 - source/unres/src_CSA_DiL/prng_32.F | 1077 --- source/unres/src_CSA_DiL/ran.f | 128 - source/unres/src_CSA_DiL/randgens.f | 99 - source/unres/src_CSA_DiL/readpdb.F | 428 - source/unres/src_CSA_DiL/readrtns_csa.F | 1917 ----- source/unres/src_CSA_DiL/refsys.f | 60 - source/unres/src_CSA_DiL/rescode.f | 33 - source/unres/src_CSA_DiL/rmdd.f | 159 - source/unres/src_CSA_DiL/rmsd.F | 184 - source/unres/src_CSA_DiL/sc_move.F | 823 -- source/unres/src_CSA_DiL/shift.F | 105 - source/unres/src_CSA_DiL/sumsld.f | 1446 ---- source/unres/src_CSA_DiL/test.F | 2800 ------- source/unres/src_CSA_DiL/timing.F | 340 - source/unres/src_CSA_DiL/together.F | 1294 --- source/unres/src_CSA_DiL/unres_csa.F | 556 -- 101 files changed, 45449 deletions(-) delete mode 100644 source/unres/src_CSA_DiL/CMakeLists.txt delete mode 100644 source/unres/src_CSA_DiL/COMMON.BANK delete mode 100644 source/unres/src_CSA_DiL/COMMON.BOUNDS delete mode 100644 source/unres/src_CSA_DiL/COMMON.CALC delete mode 100644 source/unres/src_CSA_DiL/COMMON.CHAIN delete mode 100644 source/unres/src_CSA_DiL/COMMON.CONTACTS delete mode 100644 source/unres/src_CSA_DiL/COMMON.CONTACTS.MOMENT delete mode 100644 source/unres/src_CSA_DiL/COMMON.CONTROL delete mode 100644 source/unres/src_CSA_DiL/COMMON.CSA delete mode 100644 source/unres/src_CSA_DiL/COMMON.DERIV delete mode 100644 source/unres/src_CSA_DiL/COMMON.DFA delete mode 100644 source/unres/src_CSA_DiL/COMMON.DISTFIT delete mode 100644 source/unres/src_CSA_DiL/COMMON.FFIELD delete mode 100644 source/unres/src_CSA_DiL/COMMON.GEO delete mode 100644 source/unres/src_CSA_DiL/COMMON.HAIRPIN delete mode 100644 source/unres/src_CSA_DiL/COMMON.HEADER delete mode 100644 source/unres/src_CSA_DiL/COMMON.INFO delete mode 100644 source/unres/src_CSA_DiL/COMMON.INTERACT delete mode 100644 source/unres/src_CSA_DiL/COMMON.IOUNITS delete mode 100644 source/unres/src_CSA_DiL/COMMON.LOCAL delete mode 100644 source/unres/src_CSA_DiL/COMMON.LOCMOVE delete mode 100644 source/unres/src_CSA_DiL/COMMON.MAXGRAD delete mode 100644 source/unres/src_CSA_DiL/COMMON.MCM delete mode 100644 source/unres/src_CSA_DiL/COMMON.MD_ delete mode 100644 source/unres/src_CSA_DiL/COMMON.MINIM delete mode 100644 source/unres/src_CSA_DiL/COMMON.NAMES delete mode 100644 source/unres/src_CSA_DiL/COMMON.SBRIDGE delete mode 100644 source/unres/src_CSA_DiL/COMMON.SCCOR delete mode 100644 source/unres/src_CSA_DiL/COMMON.SCROT delete mode 100644 source/unres/src_CSA_DiL/COMMON.SETUP delete mode 100644 source/unres/src_CSA_DiL/COMMON.SPLITELE delete mode 100644 source/unres/src_CSA_DiL/COMMON.THREAD delete mode 100644 source/unres/src_CSA_DiL/COMMON.TIME1 delete mode 100644 source/unres/src_CSA_DiL/COMMON.TORCNSTR delete mode 100644 source/unres/src_CSA_DiL/COMMON.TORSION delete mode 100644 source/unres/src_CSA_DiL/COMMON.VAR delete mode 100644 source/unres/src_CSA_DiL/COMMON.VECTORS delete mode 100644 source/unres/src_CSA_DiL/DIMENSIONS delete mode 100644 source/unres/src_CSA_DiL/MP.F delete mode 120000 source/unres/src_CSA_DiL/Makefile delete mode 100644 source/unres/src_CSA_DiL/Makefile_MPICH_bluegene delete mode 100644 source/unres/src_CSA_DiL/Makefile_MPICH_gfortran delete mode 100644 source/unres/src_CSA_DiL/Makefile_MPICH_ifort delete mode 100644 source/unres/src_CSA_DiL/README.Juyong delete mode 100644 source/unres/src_CSA_DiL/TMscore_subroutine.f delete mode 100644 source/unres/src_CSA_DiL/arcos.f delete mode 100644 source/unres/src_CSA_DiL/banach.f delete mode 100644 source/unres/src_CSA_DiL/bank.F delete mode 100644 source/unres/src_CSA_DiL/cartder.F delete mode 100644 source/unres/src_CSA_DiL/cartprint.f delete mode 100644 source/unres/src_CSA_DiL/chainbuild.F delete mode 100644 source/unres/src_CSA_DiL/checkder_p.F delete mode 100644 source/unres/src_CSA_DiL/cinfo.f delete mode 100644 source/unres/src_CSA_DiL/compinfo.c delete mode 100644 source/unres/src_CSA_DiL/contact.f delete mode 100644 source/unres/src_CSA_DiL/convert.f delete mode 100644 source/unres/src_CSA_DiL/cored.f delete mode 100644 source/unres/src_CSA_DiL/csa.F delete mode 100644 source/unres/src_CSA_DiL/dfa.F delete mode 100644 source/unres/src_CSA_DiL/diff12.f delete mode 100644 source/unres/src_CSA_DiL/distfit.f delete mode 100644 source/unres/src_CSA_DiL/djacob.f delete mode 100644 source/unres/src_CSA_DiL/econstr_local.F delete mode 100644 source/unres/src_CSA_DiL/elecont.f delete mode 100644 source/unres/src_CSA_DiL/energy_p_new_barrier.F delete mode 100644 source/unres/src_CSA_DiL/fitsq.f delete mode 100644 source/unres/src_CSA_DiL/gen_rand_conf.F delete mode 100644 source/unres/src_CSA_DiL/geomout_min.F delete mode 100644 source/unres/src_CSA_DiL/gradient_p.F delete mode 100644 source/unres/src_CSA_DiL/indexx.f delete mode 100644 source/unres/src_CSA_DiL/initialize_p.F delete mode 100644 source/unres/src_CSA_DiL/int_to_cart.f delete mode 100644 source/unres/src_CSA_DiL/intcartderiv.F delete mode 100644 source/unres/src_CSA_DiL/intcor.f delete mode 100644 source/unres/src_CSA_DiL/intlocal.f delete mode 100644 source/unres/src_CSA_DiL/local_move.f delete mode 100644 source/unres/src_CSA_DiL/matmult.f delete mode 100644 source/unres/src_CSA_DiL/minim_jlee.F delete mode 100644 source/unres/src_CSA_DiL/minim_mult.F delete mode 100644 source/unres/src_CSA_DiL/minimize_p.F delete mode 100644 source/unres/src_CSA_DiL/misc.f delete mode 100644 source/unres/src_CSA_DiL/newconf.F delete mode 100644 source/unres/src_CSA_DiL/parmread.F delete mode 100644 source/unres/src_CSA_DiL/pinorm.f delete mode 100644 source/unres/src_CSA_DiL/printmat.f delete mode 100644 source/unres/src_CSA_DiL/prng_32.F delete mode 100644 source/unres/src_CSA_DiL/ran.f delete mode 100644 source/unres/src_CSA_DiL/randgens.f delete mode 100644 source/unres/src_CSA_DiL/readpdb.F delete mode 100644 source/unres/src_CSA_DiL/readrtns_csa.F delete mode 100644 source/unres/src_CSA_DiL/refsys.f delete mode 100644 source/unres/src_CSA_DiL/rescode.f delete mode 100644 source/unres/src_CSA_DiL/rmdd.f delete mode 100644 source/unres/src_CSA_DiL/rmsd.F delete mode 100644 source/unres/src_CSA_DiL/sc_move.F delete mode 100644 source/unres/src_CSA_DiL/shift.F delete mode 100644 source/unres/src_CSA_DiL/sumsld.f delete mode 100644 source/unres/src_CSA_DiL/test.F delete mode 100644 source/unres/src_CSA_DiL/timing.F delete mode 100644 source/unres/src_CSA_DiL/together.F delete mode 100644 source/unres/src_CSA_DiL/unres_csa.F diff --git a/source/unres/src_CSA_DiL/CMakeLists.txt b/source/unres/src_CSA_DiL/CMakeLists.txt deleted file mode 100644 index 5ce2b00..0000000 --- a/source/unres/src_CSA_DiL/CMakeLists.txt +++ /dev/null @@ -1,340 +0,0 @@ -# -# CMake project file for UNRES CSA DiL version -# - -enable_language (Fortran) - -#================================ -# Set source file lists -#================================ -set(UNRES_CSA_DiL_SRC0 - arcos.f - banach.f - bank.F - cartder.F - cartprint.f - chainbuild.F - checkder_p.F - contact.f - convert.f - cored.f - csa.F - dfa.F - diff12.f - distfit.f - djacob.f - econstr_local.F - elecont.f - energy_p_new_barrier.F - fitsq.f - gen_rand_conf.F - geomout_min.F - gradient_p.F - indexx.f - initialize_p.F - intcartderiv.F - intcor.f - intlocal.f - int_to_cart.f - local_move.f - matmult.f - minimize_p.F - minim_jlee.F - minim_mult.F - misc.f - MP.F - newconf.F - parmread.F - pinorm.f - printmat.f - prng_32.F - randgens.f - ran.f - readpdb.F - readrtns_csa.F - refsys.f - rescode.f - rmdd.f - rmsd.F - sc_move.F - shift.F - sumsld.f - test.F - timing.F - TMscore_subroutine.f - together.F - unres_csa.F -) - -set(UNRES_CSA_DiL_SRC3 energy_p_new_barrier.F gradient_p.F ) - -set(UNRES_CSA_DiL_PP_SRC - bank.F - cartder.F - chainbuild.F - checkder_p.F - csa.F - dfa.F - econstr_local.F - energy_p_new_barrier.F - gen_rand_conf.F - geomout_min.F - gradient_p.F - initialize_p.F - intcartderiv.F - minimize_p.F - minim_jlee.F - minim_mult.F - MP.F - newconf.F - parmread.F - prng_32.F - readpdb.F - readrtns_csa.F - rmsd.F - sc_move.F - shift.F - test.F - timing.F - together.F - unres_csa.F -) - - -#================================================ -# Set comipiler flags for different sourcefiles -#================================================ -if (Fortran_COMPILER_NAME STREQUAL "ifort") - set(FFLAGS0 "-c -ip -w" ) - set(FFLAGS1 "-c -w -g -d2 -CA -CB" ) - set(FFLAGS2 "-c -w -g -00 ") - #set(FFLAGS3 "-c -w -O3 -ipo -ipo_obj -opt_report" ) - set(FFLAGS3 "-c -w -ipo " ) -elseif (Fortran_COMPILER_NAME STREQUAL "gfortran") - set(FFLAGS0 "-std=legacy -cpp -c -I. ") - set(FFLAGS1 "-std=legacy -cpp -c -g -I. " ) - set(FFLAGS2 "-std=legacy -cpp -c -I. ") - set(FFLAGS3 "-std=legacy -cpp -c -I. " ) -endif (Fortran_COMPILER_NAME STREQUAL "ifort") - - -# Add MPI compiler flags -if(UNRES_WITH_MPI) - set(FFLAGS0 "${FFLAGS0} -I${MPI_Fortran_INCLUDE_PATH}") - set(FFLAGS1 "${FFLAGS1} -I${MPI_Fortran_INCLUDE_PATH}") - set(FFLAGS2 "${FFLAGS2} -I${MPI_Fortran_INCLUDE_PATH}") - set(FFLAGS3 "${FFLAGS3} -I${MPI_Fortran_INCLUDE_PATH}") -endif(UNRES_WITH_MPI) - -set_property(SOURCE ${UNRES_CSA_DiL_SRC0} PROPERTY COMPILE_FLAGS ${FFLAGS0} ) -set_property(SOURCE ${UNRES_CSA_DiL_SRC1} PROPERTY COMPILE_FLAGS ${FFLAGS1} ) -set_property(SOURCE ${UNRES_CSA_DiL_SRC2} PROPERTY COMPILE_FLAGS ${FFLAGS2} ) -set_property(SOURCE ${UNRES_CSA_DiL_SRC3} PROPERTY COMPILE_FLAGS ${FFLAGS3} ) - -#========================================= -# Settings for CSA force fields -#========================================= - -if(UNRES_CSA_FF STREQUAL "CASP3" ) - set(CPPFLAGS "UNRES -DISNAN -DSPLITELE -DLANG0 -DMOMENT -DCRYST_BOND -DCRYST_THETA -DCRYST_SC -DCRYST_TOR" ) -elseif(UNRES_CSA_FF STREQUAL "ALPHA") - set(CPPFLAGS "UNRES -DISNAN -DSPLITELE -DLANG0 -DMOMENT -DCRYST_BOND -DCRYST_THETA -DCRYST_SC" ) -elseif(UNRES_CSA_FF STREQUAL "BETA") - set(CPPFLAGS "UNRES -DISNAN -DSPLITELE -DLANG0 -DMOMENT -DCRYST_BOND -DCRYST_THETA -DCRYST_SC" ) -elseif(UNRES_CSA_FF STREQUAL "ALPHABETA") - set(CPPFLAGS "UNRES -DISNAN -DSPLITELE -DLANG0 -DMOMENT -DCRYST_BOND -DCRYST_THETA -DCRYST_SC" ) -elseif(UNRES_CSA_FF STREQUAL "CASP5") - set(CPPFLAGS "UNRES -DISNAN -DSPLITELE -DLANG0 -DMOMENT -DCRYST_BOND -DCRYST_THETA -DCRYST_SC" ) -elseif(UNRES_CSA_FF STREQUAL "3P") - set(CPPFLAGS "UNRES -DISNAN -DSPLITELE -DLANG0 -DCRYST_BOND -DCRYST_THETA -DCRYST_SC" ) -elseif(UNRES_CSA_FF STREQUAL "4P") - set(CPPFLAGS "UNRES -DISNAN -DSPLITELE -DLANG0 -DCRYST_BOND -DCRYST_THETA -DCRYST_SC" ) -endif(UNRES_CSA_FF STREQUAL "CASP3") - -#========================================= -# System specific flags -#========================================= -if(${CMAKE_SYSTEM_NAME} MATCHES "Linux") - set(CPPFLAGS "${CPPFLAGS} -DLINUX") -endif(${CMAKE_SYSTEM_NAME} MATCHES "Linux") - -#========================================= -# Compiler specific flags -#========================================= - -if (Fortran_COMPILER_NAME STREQUAL "ifort") - # Add ifort preprocessor flags - set(CPPFLAGS "${CPPFLAGS} -DPGI") -elseif (Fortran_COMPILER_NAME STREQUAL "f95") - # Add new gfortran flags - set(CPPFLAGS "${CPPFLAGS} -DG77") -elseif (Fortran_COMPILER_NAME STREQUAL "gfortran") - # Add old gfortran flags - set(CPPFLAGS "${CPPFLAGS} -DG77") -endif (Fortran_COMPILER_NAME STREQUAL "ifort") - -#========================================= -# Add MPI preprocessor flags -#========================================= -set(CPPFLAGS "${CPPFLAGS} -DMP -DMPI") - -#========================================= -# add 64-bit specific preprocessor flags -#========================================= -if (architektura STREQUAL "64") - set(CPPFLAGS "${CPPFLAGS} -DAMD64") -endif (architektura STREQUAL "64") - - -#========================================= -# Apply preprocesor flags to *.F files -#========================================= -set_property(SOURCE ${UNRES_CSA_DiL_PP_SRC} PROPERTY COMPILE_DEFINITIONS ${CPPFLAGS} ) - - -#======================================== -# Setting binary name -#======================================== -set(UNRES_BIN "unresCSA_DiL_${Fortran_COMPILER_NAME}_${UNRES_CSA_FF}.exe") - -#========================================= -# cinfo.f workaround for CMake -#========================================= -# get the current date -TODAY(DATE) -# generate cinfo.f - -set(CINFO "${CMAKE_CURRENT_BINARY_DIR}/cinfo.f") -FILE(WRITE ${CINFO} -"C CMake generated file - subroutine cinfo - include 'COMMON.IOUNITS' - write(iout,*)'++++ Compile info ++++' - write(iout,*)'Version ${UNRES_MAJOR}.${UNRES_MINOR} build ${UNRES_PATCH}' -") - -CINFO_FORMAT(${CINFO} "Compiled" "${DATE}" ) -CINFO_FORMAT(${CINFO} "Compiled by" "$ENV{USER}@$ENV{HOST}" ) -CINFO_FORMAT(${CINFO} "OS name:" "${CMAKE_SYSTEM_NAME}" ) -CINFO_FORMAT(${CINFO} "OS release:" "${CMAKE_SYSTEM}" ) -CINFO_FORMAT(${CINFO} "Fortran Compiler:" "${CMAKE_Fortran_COMPILER}" ) -CINFO_FORMAT(${CINFO} "MD Force field:" "${UNRES_MD_FF}" ) -CINFO_FORMAT(${CINFO} "CPPFLAGS =" "${CPPFLAGS}") - -FILE(APPEND ${CINFO} -" write(iout,*)'++++ End of compile info ++++' - return - end ") - -## set include path -set_property(SOURCE ${CMAKE_CURRENT_BINARY_DIR}/cinfo.f PROPERTY COMPILE_FLAGS "${FFLAGS0} -I${CMAKE_CURRENT_SOURCE_DIR}" ) - -#========================================= -# Set full unres CSA sources -#========================================= -set(UNRES_CSA_DiL_SRCS ${UNRES_CSA_DiL_SRC0} ${UNRES_CSA_DiL_SRC3} ${CMAKE_CURRENT_BINARY_DIR}/cinfo.f ) - -#========================================= -# Build the binary -#========================================= -add_executable(UNRES_BIN-CSA-DIL ${UNRES_CSA_DiL_SRCS} ) -set_target_properties(UNRES_BIN-CSA-DIL PROPERTIES OUTPUT_NAME ${UNRES_BIN}) -set_property(TARGET UNRES_BIN-CSA-DIL PROPERTY RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin ) - -#========================================= -# Link libraries -#========================================= -# link MPI libraries -target_link_libraries( UNRES_BIN-CSA-DIL ${MPI_Fortran_LIBRARIES} ) - -#========================================= -# Install Path -#========================================= -install(TARGETS UNRES_BIN-CSA-DIL DESTINATION ${CMAKE_INSTALL_PREFIX}) - - -#========================================= -# TESTS -#========================================= - -#-- Copy all the data files from the test directory into the source directory -#SET(UNRES_TEST_FILES -# ala10.inp -# ) - -#FOREACH (UNRES_TEST_FILE ${UNRES_TEST_FILES}) -# SET (unres_test_dest "${CMAKE_CURRENT_BINARY_DIR}/${UNRES_TEST_FILE}") -# MESSAGE (STATUS " Copying ${UNRES_TEST_FILE} from ${CMAKE_SOURCE_DIR}/examples/unres/MD/ff_gab/${UNRES_TEST_FILE} to ${unres_test_dest}") -# ADD_CUSTOM_COMMAND ( -# TARGET ${UNRES_BIN} -# POST_BUILD -# COMMAND ${CMAKE_COMMAND} -E copy ${CMAKE_SOURCE_DIR}/examples/unres/MD/ff_gab/${UNRES_TEST_FILE} ${unres_test_dest} -# ) -#ENDFOREACH (UNRES_TEST_FILE ${UNRES_TEST_FILES}) - -#========================================= -# Generate data test files -#========================================= -# test_single_ala.sh -#========================================= - -#FILE(WRITE ${CMAKE_CURRENT_BINARY_DIR}/test_single_ala.sh -#"#!/bin/sh -#export POT=GB -#export PREFIX=ala10 -#----------------------------------------------------------------------------- -#UNRES_BIN=./${UNRES_BIN} -#----------------------------------------------------------------------------- -#DD=${CMAKE_SOURCE_DIR}/PARAM -#export BONDPAR=$DD/bond.parm -#export THETPAR=$DD/thetaml.5parm -#export ROTPAR=$DD/scgauss.parm -#export TORPAR=$DD/torsion_631Gdp.parm -#export TORDPAR=$DD/torsion_double_631Gdp.parm -#export ELEPAR=$DD/electr_631Gdp.parm -#export SIDEPAR=$DD/sc_GB_opt.1gab_3S_qclass5no310-shan2-sc-16-10-8k -#export FOURIER=$DD/fourier_opt.parm.1igd_hc_iter3_3 -#export SCPPAR=$DD/scp.parm -#export SCCORPAR=$DD/rotcorr_AM1.parm -#export PATTERN=$DD/patterns.cart -#----------------------------------------------------------------------------- -#$UNRES_BIN -#") - -#========================================= -# ala10.inp -#========================================= - -#file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/ala10.inp -#"ala10 unblocked -#SEED=-1111333 MD ONE_LETTER rescale_mode=2 PDBOUT -#nstep=15000 ntwe=100 ntwx=1000 dt=0.1 lang=0 tbf t_bath=300 damax=1.0 & -#reset_moment=1000 reset_vel=1000 MDPDB -#WLONG=1.35279 WSCP=1.59304 WELEC=0.71534 WBOND=1.00000 WANG=1.13873 & -#WSCLOC=0.16258 WTOR=1.98599 WTORD=1.57069 WCORRH=0.42887 WCORR5=0.00000 & -#WCORR6=0.00000 WEL_LOC=0.16036 WTURN3=1.68722 WTURN4=0.66230 WTURN6=0.00000 & -#WVDWPP=0.11371 WHPB=1.00000 & -#CUTOFF=7.00000 WCORR4=0.00000 -#12 -#XAAAAAAAAAAX -# 0 -# 0 -# 90.0000 90.0000 90.0000 90.000 90.000 90.000 90.000 90.000 -# 90.0000 90.0000 -# 180.0000 180.0000 180.0000 180.000 180.000 180.000 180.000 180.000 -# 180.0000 -# 110.0000 110.0000 110.0000 100.000 110.000 100.000 110.000 110.000 -# 110.0000 110.0000 -# -120.0000 -120.0000 -120.000 -120.000 -120.000 -120.000 -120.000 -120.000 -# -120.0000 -120.0000 -#") - - -# Add tests - -#if(NOT UNRES_WITH_MPI) - -# add_test(NAME UNRES_MD_Ala10 COMMAND sh ${CMAKE_CURRENT_BINARY_DIR}/test_single_ala.sh ) - -#endif(NOT UNRES_WITH_MPI) - diff --git a/source/unres/src_CSA_DiL/COMMON.BANK b/source/unres/src_CSA_DiL/COMMON.BANK deleted file mode 100644 index 5b0fb34..0000000 --- a/source/unres/src_CSA_DiL/COMMON.BANK +++ /dev/null @@ -1,29 +0,0 @@ - real*8 dihang,etot,bvar,bene,rene,rvar,avedif,difmin, - & ebmin,ebmax,ebmaxt,cutdif,dij,dihang_in - integer ibank,is,jbank,ibmin,ibmax,nbank,nconf,iuse,nstep,icycle, - & iseed,ntbank,ntbankm,iref,nconf_in,indb,ilastnstep, - & bvar_nss,bvar_ss,bvar_ns,bvar_s, - & nss_in,iss_in,jss_in,nadd - common/varin/dihang_in(mxang,maxres,mxch,mxio),nss_in(mxio), - & iss_in(maxss,mxio),jss_in(maxss,mxio) - common/minvar/dihang(mxang,maxres,mxch,mxio),etot(mxio),rmsn(mxio) - & ,pncn(mxio),nss_out(mxio), - & iss_out(maxss,mxio),jss_out(maxss,mxio) - common/bank/ - * bvar(mxang,maxres,mxch,mxio),bene(mxio),rene(mxio), - * brmsn(mxio),rrmsn(mxio), - * bpncn(mxio),rpncn(mxio), - * rvar(mxang,maxres,mxch,mxio),ibank(mxio),is(mxio), - * avedif,difmin,ebmin,ebmax,ebmaxt,dele,difcut,cutdif, - * rmscut,pnccut, - * jbank(mxio),dij(mxio,mxio),ibmin,ibmax, - * nbank,ntbank,ntbankm,nconf,iuse,nstep,icycle,iseed,iref, - * nconf_in,ilastnstep,nadd - common/bank_disulfid/ bvar_nss(mxio),bvar_ss(2,maxss,mxio), - * bvar_ns(mxio),bvar_s(maxss,mxio) - common/mvstat/ movenx(mxio),movernx(mxio), - & nstatnx(0:mxmv,3),nstatnx_tot(0:mxmv,3),indb(mxio,9), - & parent(3,mxio) - common/send2/isend2(mxio),iff_in(maxres,mxio2), - & dihang_in2(mxang,maxres,mxch,mxio2), - & idata(5,mxio) diff --git a/source/unres/src_CSA_DiL/COMMON.BOUNDS b/source/unres/src_CSA_DiL/COMMON.BOUNDS deleted file mode 100644 index f3859ae..0000000 --- a/source/unres/src_CSA_DiL/COMMON.BOUNDS +++ /dev/null @@ -1,2 +0,0 @@ - double precision phibound(2,maxres) - common /bounds/ phibound diff --git a/source/unres/src_CSA_DiL/COMMON.CALC b/source/unres/src_CSA_DiL/COMMON.CALC deleted file mode 100644 index 67b4bb9..0000000 --- a/source/unres/src_CSA_DiL/COMMON.CALC +++ /dev/null @@ -1,15 +0,0 @@ - integer i,j,k,l - double precision erij,rij,xj,yj,zj,dxi,dyi,dzi,dxj,dyj,dzj, - & chi1,chi2,chi12,chip1,chip2,chip12,alf1,alf2,alf12,om1,om2,om12, - & om1om2,chiom1,chiom2,chiom12,chipom1,chipom2,chipom12,eps1, - & faceps1,faceps1_inv,eps1_om12,facsig,sigsq,sigsq_om1,sigsq_om2, - & sigsq_om12,facp,facp_inv,facp1,eps2rt,eps2rt_om1,eps2rt_om2, - & eps2rt_om12,eps3rt,eom1,eom2,eom12,evdwij,eps2der,eps3der,sigder, - & dsci_inv,dscj_inv,gg - common /calc/ erij(3),rij,xj,yj,zj,dxi,dyi,dzi,dxj,dyj,dzj, - & chi1,chi2,chi12,chip1,chip2,chip12,alf1,alf2,alf12,om1,om2,om12, - & om1om2,chiom1,chiom2,chiom12,chipom1,chipom2,chipom12,eps1, - & faceps1,faceps1_inv,eps1_om12,facsig,sigsq,sigsq_om1,sigsq_om2, - & sigsq_om12,facp,facp_inv,facp1,eps2rt,eps2rt_om1,eps2rt_om2, - & eps2rt_om12,eps3rt,eom1,eom2,eom12,evdwij,eps2der,eps3der,sigder, - & dsci_inv,dscj_inv,gg(3),i,j diff --git a/source/unres/src_CSA_DiL/COMMON.CHAIN b/source/unres/src_CSA_DiL/COMMON.CHAIN deleted file mode 100644 index f7a8a1d..0000000 --- a/source/unres/src_CSA_DiL/COMMON.CHAIN +++ /dev/null @@ -1,12 +0,0 @@ - integer nres,nsup,nstart_sup,nz_start,nz_end,iz_sc, - & nres0,nstart_seq - double precision c,dc,dc_old,d_c_work,xloc,xrot,dc_norm,t,r, - & prod,rt,dc_work,cref,crefjlee - common /chain/ c(3,maxres2+2),dc(3,0:maxres2),dc_old(3,0:maxres2), - & xloc(3,maxres),xrot(3,maxres),dc_norm(3,0:maxres2), - & dc_work(MAXRES6),nres,nres0 - common /rotmat/ t(3,3,maxres),r(3,3,maxres),prod(3,3,maxres), - & rt(3,3,maxres) - common /refstruct/ cref(3,maxres2+2),crefjlee(3,maxres2+2), - & nsup,nstart_sup,nstart_seq - common /from_zscore/ nz_start,nz_end,iz_sc diff --git a/source/unres/src_CSA_DiL/COMMON.CONTACTS b/source/unres/src_CSA_DiL/COMMON.CONTACTS deleted file mode 100644 index dfc8da2..0000000 --- a/source/unres/src_CSA_DiL/COMMON.CONTACTS +++ /dev/null @@ -1,75 +0,0 @@ -C Change 12/1/95 - common block CONTACTS1 included. - integer ncont,ncont_ref,icont,icont_ref,num_cont,jcont - double precision facont,gacont - common /contacts/ ncont,ncont_ref,icont(2,maxcont), - & icont_ref(2,maxcont) - common /contacts1/ facont(maxconts,maxres), - & gacont(3,maxconts,maxres), - & num_cont(maxres),jcont(maxconts,maxres) -C 12/26/95 - H-bonding contacts - common /contacts_hb/ - & gacontp_hb1(3,maxconts,maxres),gacontp_hb2(3,maxconts,maxres), - & gacontp_hb3(3,maxconts,maxres), - & gacontm_hb1(3,maxconts,maxres),gacontm_hb2(3,maxconts,maxres), - & gacontm_hb3(3,maxconts,maxres), - & gacont_hbr(3,maxconts,maxres), - & grij_hb_cont(3,maxconts,maxres), - & facont_hb(maxconts,maxres),ees0p(maxconts,maxres), - & ees0m(maxconts,maxres),d_cont(maxconts,maxres), - & num_cont_hb(maxres),jcont_hb(maxconts,maxres) -C 10/30/99 Added other pre-computed vectors and matrices needed -C to calculate three - six-order el-loc correlation terms - double precision Ug,Ugder,Ug2,Ug2der,obrot,obrot2,obrot_der, - & obrot2_der,Ub2,Ub2der,mu,muder,EUg,EUgder,CUg,CUgder, - & DUg,DUgder,DtUg2,DtUg2der,Ctobr,Ctobrder,Dtobr2,Dtobr2der - common /rotat/ Ug(2,2,maxres),Ugder(2,2,maxres),Ug2(2,2,maxres), - & Ug2der(2,2,maxres),obrot(2,maxres),obrot2(2,maxres), - & obrot_der(2,maxres),obrot2_der(2,maxres) -C This common block contains vectors and matrices dependent on a single -C amino-acid residue. - common /precomp1/ mu(2,maxres),muder(2,maxres),Ub2(2,maxres), - & Ub2der(2,maxres),Ctobr(2,maxres),Ctobrder(2,maxres), - & Dtobr2(2,maxres),Dtobr2der(2,maxres), - & EUg(2,2,maxres),EUgder(2,2,maxres),CUg(2,2,maxres), - & CUgder(2,2,maxres),DUg(2,2,maxres),Dugder(2,2,maxres), - & DtUg2(2,2,maxres),DtUg2der(2,2,maxres) -C This common block contains vectors and matrices dependent on two -C consecutive amino-acid residues. - double precision Ug2Db1t,Ug2Db1tder,CUgb2,CUgb2der,EUgC, - & EUgCder,EUgD,EUgDder,DtUg2EUg,DtUg2EUgder - common /precomp2/ Ug2Db1t(2,maxres),Ug2Db1tder(2,maxres), - & CUgb2(2,maxres),CUgb2der(2,maxres),EUgC(2,2,maxres), - & EUgCder(2,2,maxres),EUgD(2,2,maxres),EUgDder(2,2,maxres), - & DtUg2EUg(2,2,maxres),Ug2DtEUg(2,2,maxres), - & Ug2DtEUgder(2,2,2,maxres),DtUg2EUgder(2,2,2,maxres) - double precision costab,sintab,costab2,sintab2 - common /rotat_old/ costab(maxres),sintab(maxres), - & costab2(maxres),sintab2(maxres) -C This common block contains dipole-interaction matrices and their -C Cartesian derivatives. - double precision a_chuj,a_chuj_der - common /dipmat/ a_chuj(2,2,maxconts,maxres), - & a_chuj_der(2,2,3,5,maxconts,maxres) - double precision AEA,AEAderg,AEAderx,AECA,AECAderg,AECAderx, - & ADtEA,ADtEAderg,ADtEAderx,AEAb1,AEAb1derg,AEAb1derx, - & AEAb2,AEAb2derg,AEAb2derx,g_contij,ekont - common /diploc/ AEA(2,2,2),AEAderg(2,2,2),AEAderx(2,2,3,5,2,2), - & EAEA(2,2,2), EAEAderg(2,2,2,2), EAEAderx(2,2,3,5,2,2), - & AECA(2,2,2),AECAderg(2,2,2),AECAderx(2,2,3,5,2,2), - & ADtEA(2,2,2),ADtEAderg(2,2,2,2),ADtEAderx(2,2,3,5,2,2), - & ADtEA1(2,2,2),ADtEA1derg(2,2,2,2),ADtEA1derx(2,2,3,5,2,2), - & AEAb1(2,2,2),AEAb1derg(2,2,2),AEAb1derx(2,3,5,2,2,2), - & AEAb2(2,2,2),AEAb2derg(2,2,2,2),AEAb2derx(2,3,5,2,2,2), - & g_contij(3,2),ekont -C 12/13/2008 (again Poland-Jaruzel war anniversary) -C RE: Parallelization of 4th and higher order loc-el correlations - integer ncont_sent,ncont_recv,iint_sent,iisent_local, - & itask_cont_from,itask_cont_to,ntask_cont_from,ntask_cont_to, - & nat_sent,iat_sent,iturn3_sent,iturn4_sent,iturn3_sent_local, - & iturn4_sent_local - common /contdistrib/ ncont_sent(maxres),ncont_recv(maxres), - & iint_sent(4,maxres,maxres),iint_sent_local(4,maxres,maxres), - & iturn3_sent(4,maxres),iturn4_sent(4,maxres), - & iturn3_sent_local(4,maxres),iturn4_sent_local(4,maxres), - & nat_sent,iat_sent(maxres),itask_cont_from(0:max_fg_procs-1), - & itask_cont_to(0:max_fg_procs-1),ntask_cont_from,ntask_cont_to diff --git a/source/unres/src_CSA_DiL/COMMON.CONTACTS.MOMENT b/source/unres/src_CSA_DiL/COMMON.CONTACTS.MOMENT deleted file mode 100644 index 16fae0e..0000000 --- a/source/unres/src_CSA_DiL/COMMON.CONTACTS.MOMENT +++ /dev/null @@ -1,7 +0,0 @@ -C 9/23/99 Added improper rotation matrices and matrices of dipole-dipole -C interactions -c 7/25/08 Commented out; not needed when cumulants used -C Interactions of pseudo-dipoles generated by loc-el interactions. - double precision dip,dipderg,dipderx - common /dipint/ dip(4,maxconts,maxres),dipderg(4,maxconts,maxres), - & dipderx(3,5,4,maxconts,maxres) diff --git a/source/unres/src_CSA_DiL/COMMON.CONTROL b/source/unres/src_CSA_DiL/COMMON.CONTROL deleted file mode 100644 index c12ef3a..0000000 --- a/source/unres/src_CSA_DiL/COMMON.CONTROL +++ /dev/null @@ -1,13 +0,0 @@ - integer modecalc,iscode,indpdb,indback,indphi,iranconf,icheckgrad, - & inprint,i2ndstr,mucadyn,constr_dist - logical minim,refstr,pdbref,outpdb,outmol2,overlapsc,energy_dec, - & sideadd,lsecondary,read_cart,unres_pdb, - & vdisulf,searchsc,lmuca,dccart,extconf,out1file, - & gnorm_check,gradout,split_ene - common /cntrl/ modecalc,iscode,indpdb,indback,indphi,iranconf, - & icheckgrad,minim,i2ndstr,refstr,pdbref,outpdb,outmol2,iprint, - & overlapsc,energy_dec,sideadd,lsecondary,read_cart,unres_pdb - & ,vdisulf,searchsc,lmuca,dccart,mucadyn,extconf,out1file, - & constr_dist,gnorm_check,gradout,split_ene -C... minim = .true. means DO minimization. -C... energy_dec = .true. means print energy decomposition matrix diff --git a/source/unres/src_CSA_DiL/COMMON.CSA b/source/unres/src_CSA_DiL/COMMON.CSA deleted file mode 100644 index 9c117c0..0000000 --- a/source/unres/src_CSA_DiL/COMMON.CSA +++ /dev/null @@ -1,11 +0,0 @@ - integer ngroup,igroup,ntotgr,numch,irestart,ndiff,nbankm,iucut - double precision diffcut - common/alphaa/ ngroup(mxgr),igroup(3,mxang,mxgr),ntotgr,numch - common/csa_input/cut1,cut2,eglob_csa,estop,jstart,jend, - & n1,n2,n3,n4,n5,n6,n7,n8,n9,n14,n15,n16,n17,n18,n0, - & is1,is2,nseed,ntotal,icmax,nstmax,irestart,nran0,nran1,irr, - & nglob_csa,nmin_csa,ndiff,nbankm,iucut - logical ldih_bias,tm_score - common/dih_control/rdih_bias,ldih_bias,tm_score - common/diffcuta/ diffcut - diff --git a/source/unres/src_CSA_DiL/COMMON.DERIV b/source/unres/src_CSA_DiL/COMMON.DERIV deleted file mode 100644 index 4cf9f16..0000000 --- a/source/unres/src_CSA_DiL/COMMON.DERIV +++ /dev/null @@ -1,38 +0,0 @@ - double precision dcdv,dxdv,dxds,gradx,gradc,gvdwc,gelc,gelc_long, - & gvdwpp,gel_loc,gel_loc_long,gvdwc_scpp, - & gradx_scp,gvdwc_scp,ghpbx,ghpbc,gloc,gloc_x,dtheta,dphi,dalpha, - & domega,gscloc,gsclocx,gradcorr,gradcorr_long,gradcorr5_long, - & gradcorr6_long,gcorr6_turn_long,gvdwcT,gvdwxT - integer nfl,icg - common /derivatT/ gvdwcT(3,maxres),gvdwxT(3,maxres) - common /derivat/ dcdv(6,maxdim),dxdv(6,maxdim),dxds(6,maxres), - & gradx(3,maxres,2),gradc(3,maxres,2),gvdwx(3,maxres), - & gvdwc(3,maxres),gelc(3,maxres),gelc_long(3,maxres), - & gvdwpp(3,maxres),gvdwc_scpp(3,maxres), - & gradx_scp(3,maxres),gvdwc_scp(3,maxres),ghpbx(3,maxres), - & ghpbc(3,maxres),gloc(maxvar,2),gradcorr(3,maxres), - & gradcorr_long(3,maxres),gradcorr5_long(3,maxres), - & gradcorr6_long(3,maxres),gcorr6_turn_long(3,maxres), - & gradxorr(3,maxres),gradcorr5(3,maxres),gradcorr6(3,maxres), - & gloc_x(maxvar,2),gel_loc(3,maxres),gel_loc_long(3,maxres), - & gcorr3_turn(3,maxres), - & gcorr4_turn(3,maxres),gcorr6_turn(3,maxres),gradb(3,maxres), - & gradbx(3,maxres),gel_loc_loc(maxvar),gel_loc_turn3(maxvar), - & gel_loc_turn4(maxvar),gel_loc_turn6(maxvar),gcorr_loc(maxvar), - & g_corr5_loc(maxvar),g_corr6_loc(maxvar),gsccorc(3,maxres), - & gsccorx(3,maxres),gsccor_loc(maxres),dtheta(3,2,maxres), - & gscloc(3,maxres),gsclocx(3,maxres), - & dphi(3,3,maxres),dalpha(3,3,maxres),domega(3,3,maxres),nfl,icg , - & gdfad(3,maxres),gdfat(3,maxres),gdfan(3,maxres),gdfab(3,maxres) - - double precision derx,derx_turn - common /deriv_loc/ derx(3,5,2),derx_turn(3,5,2) - double precision dXX_C1tab(3,maxres),dYY_C1tab(3,maxres), - & dZZ_C1tab(3,maxres),dXX_Ctab(3,maxres),dYY_Ctab(3,maxres), - & dZZ_Ctab(3,maxres),dXX_XYZtab(3,maxres),dYY_XYZtab(3,maxres), - & dZZ_XYZtab(3,maxres) - common /deriv_scloc/ dXX_C1tab,dYY_C1tab,dZZ_C1tab,dXX_Ctab, - & dYY_Ctab,dZZ_Ctab,dXX_XYZtab,dYY_XYZtab,dZZ_XYZtab - integer igrad_start,igrad_end,jgrad_start(maxres), - & jgrad_end(maxres) - common /mpgrad/ igrad_start,igrad_end,jgrad_start,jgrad_end diff --git a/source/unres/src_CSA_DiL/COMMON.DFA b/source/unres/src_CSA_DiL/COMMON.DFA deleted file mode 100644 index c6add4f..0000000 --- a/source/unres/src_CSA_DiL/COMMON.DFA +++ /dev/null @@ -1,101 +0,0 @@ -C ======= -C COMMON.DFA -C ======= -C 2010/12/20 By Juyong Lee -C -c parameter -C [ 8 * ( Nres - 8 ) ] distance restraints -C [ 2 * ( Nres - 8 ) ] angle restraints -C [ Nres ] neighbor restraints -C Total : ~ 11 * Nres restraints -C -C - INTEGER IDFAMAX,IDFAMX2,IDFACMD,IDMAXMIN, MAXN - PARAMETER(IDFAMAX=4000,IDFAMX2=1000,IDFACMD=500,IDMAXMIN=500) - PARAMETER(MAXN=4) - real*8 wwdist,wwangle,wwnei - parameter(wwdist=1.0d0,wwangle=1.0d0,wwnei=1.0d0) - -C IDFAMAX - maximum number of DFA restraint including distance, angle and -C number of neighbors ( Max of assign statement ) -C IDFAMX2 - maximum number of atoms which are targets of restraints -C IDFACMD - maximum number of 'DFA' command call -C IDMAXMIN - Maximum number of minima of dist, angle and neighbor info. from fragments -C MAXN - Maximum Number of shell, currently 4 -C MAXRES - Maximum number of CAs - -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc -C INTEGER -C DFANUM - Number of ALL DFA restrants -c IDFA[DIS, PHI, THE, NEI] - NUMBER of restraints -c IDISNUM - number of minima for a distance restraint -c IPHINUM - number of minima for a phi angle restraint -c ITHENUM - number of minima for a theta angle restraint -c INEINUM - number of minima for a number of neighbors restraint - -c IDISLIS - atom number of two atoms for distance restraint -c IPHILIS - atom numbers of four atoms for angle restraint -c ITHELIS - atom numbers of four atoms for angle restraint -c INEILIS - atom number of center of neighbor calculation -c JNEILIS - atom number of target of neighboring calculation -c JNEINUM - number of target atoms of neighboring term -C KSHELL - SHELL number - -C ishiftca - index shift for CA atoms in UNRES (1 if the 1st aa != GLY) -C ilastca - index of the last CA atom in UNRES (nres-1 if last aa != GLY) - -C old only for CHARMM -C STOAGDF - Store assign information ( How many assign within one command ) -C NMAP - mapping between dfanum and ndis, nphi, nthe, nnei - - INTEGER IDFADIS,IDFAPHI,IDFATHE,IDFANEI, - & IDISLIS,IPHILIS,ITHELIS,INEILIS, - & IDISNUM,IPHINUM,ITHENUM,INEINUM, - & FNEI,DFACMD, DFANUM, - & NCA,ICAIDX, - & STOAGDF, NMAP, IDFACAT, KDISNUM, KSHELL - & ishiftca,ilastca - COMMON /IDFA/ DFACMD, DFANUM, - & IDFADIS, IDFAPHI, IDFANEI, IDFATHE, - & IDISNUM(IDFAMAX), IPHINUM(IDFAMAX), - & ITHENUM(IDFAMAX), INEINUM(IDFAMAX), - & FNEI(IDFAMAX,IDMAXMIN), IDISLIS(2,IDFAMAX), - & IPHILIS(5,IDFAMAX), ITHELIS(5,IDFAMAX), - & INEILIS(IDFAMAX), - & KSHELL(IDFAMAX), - & IDFACAT(IDFACMD), - & KDISNUM(IDFAMAX), - & NCA, ICAIDX(MAXRES) - COMMON /IDFA2/ ishiftca,ilastca - -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC -C -C REAL VARIABLES -C -c SCC[DIST, PHI, THE] - weight of each calculations -c FDIST - distance minima -C FPHI - phi minima -c FTHE - theta minima -C DFAEXP : calculate expential function in advance -C - REAL*8 SCCDIST, SCCPHI, SCCTHE, SCCNEI, FDIST, FPHI1, FPHI2, - & FTHE1, FTHE2, - & DIS_INC, PHI_INC, THE_INC, NEI_INC, BETA_INC, - & WSHET, EDFABET, - & CK, SCK, S1, S2 -c & ,DFAEXP - - COMMON /RDFA/ SCCDIST(IDFAMAX,IDMAXMIN),FDIST(IDFAMAX,IDMAXMIN), - & SCCPHI(IDFAMAX,IDMAXMIN), SCCTHE(IDFAMAX,IDMAXMIN), - & SCCNEI(IDFAMAX,IDMAXMIN), - & FPHI1(IDFAMAX,IDMAXMIN), FPHI2(IDFAMAX,IDMAXMIN), - & FTHE1(IDFAMAX,IDMAXMIN), FTHE2(IDFAMAX,IDMAXMIN), - & DIS_INC, PHI_INC, THE_INC, NEI_INC, BETA_INC, - & WSHET(MAXRES,MAXRES), EDFABET, - & CK(4),SCK(4),S1(4),S2(4) -c & ,DFAEXP(15001), - - DATA CK/1.0D0,1.58740105197D0,2.08008382305D0,2.51984209979D0/ - DATA SCK/1.0D0,1.25992104989D0,1.44224957031D0,1.58740105197D0/ - DATA S1/3.75D0,5.75D0,7.75D0,9.75D0/ - DATA S2/4.25D0,6.25D0,8.25D0,10.25D0/ diff --git a/source/unres/src_CSA_DiL/COMMON.DISTFIT b/source/unres/src_CSA_DiL/COMMON.DISTFIT deleted file mode 100644 index 044225b..0000000 --- a/source/unres/src_CSA_DiL/COMMON.DISTFIT +++ /dev/null @@ -1,14 +0,0 @@ -c parameter (maxres22=maxres*(maxres+1)/2) - parameter (maxres22=1) - double precision w,d0,DRDG,DD,H,XX - integer nbfrag,bfrag,nhfrag,hfrag,bvar_frag,hvar_frag,nhpb0, - 1 lvar_frag,svar_frag,avar_frag - COMMON /c_frag/ nbfrag,bfrag(4,maxres/3),nhfrag,hfrag(2,maxres/3) - COMMON /frag/ bvar_frag(mxio,6),hvar_frag(mxio,3), - 1 lvar_frag(mxio,3),svar_frag(mxio,3), - 2 avar_frag(mxio,5) - COMMON /WAGI/ w(MAXRES22),d0(MAXRES22) - COMMON /POCHODNE/ NX,NY,DRDG(MAXRES22,MAXRES),DD(MAXRES22), - 1 H(MAXRES,MAXRES),XX(MAXRES) - COMMON /frozen/ mask(maxres) - COMMON /store0/ nhpb0 diff --git a/source/unres/src_CSA_DiL/COMMON.FFIELD b/source/unres/src_CSA_DiL/COMMON.FFIELD deleted file mode 100644 index 29c73f0..0000000 --- a/source/unres/src_CSA_DiL/COMMON.FFIELD +++ /dev/null @@ -1,26 +0,0 @@ -C----------------------------------------------------------------------- -C The following COMMON block selects the type of the force field used in -C calculations and defines weights of various energy terms. -C 12/1/95 wcorr added -C----------------------------------------------------------------------- - integer n_ene_comp,rescale_mode - common /ffield/ wsc,wscp,welec,wbond,wstrain,wtor,wtor_d,wang, - & wscloc,wcorr,wcorr4,wcorr5,wcorr6,wsccor,wel_loc,wturn3,wturn4, - & wturn6,wvdwpp,wsct,weights(n_ene),temp0, - & wdfa_dist,wdfa_tor,wdfa_nei,wdfa_beta, - & scal14,cutoff_corr,delt_corr,r0_corr,ipot,n_ene_comp, - & rescale_mode - common /potentials/ potname(5) - character*3 potname -C----------------------------------------------------------------------- -C wlong,welec,wtor,wang,wscloc are the weight of the energy terms -C corresponding to side-chain, electrostatic, torsional, valence-angle, -C and local side-chain terms. -C -C IPOT determines which SC...SC interaction potential will be used: -C 1 - LJ: 2n-n Lennard-Jones -C 2 - LJK: 2n-n Kihara type (shifted Lennard-Jones) -C 3 - BP; Berne-Pechukas (angular dependence) -C 4 - GB; Gay-Berne (angular dependence) -C 5 - GBV; Gay-Berne-Vorobjev; angularly-dependent Kihara potential -C------------------------------------------------------------------------ diff --git a/source/unres/src_CSA_DiL/COMMON.GEO b/source/unres/src_CSA_DiL/COMMON.GEO deleted file mode 100644 index 8cfbbde..0000000 --- a/source/unres/src_CSA_DiL/COMMON.GEO +++ /dev/null @@ -1,2 +0,0 @@ - double precision pi,dwapi,pipol,pi3,dwapi3,deg2rad,rad2deg,angmin - common /geo/ pi,dwapi,pipol,pi3,dwapi3,deg2rad,rad2deg,angmin diff --git a/source/unres/src_CSA_DiL/COMMON.HAIRPIN b/source/unres/src_CSA_DiL/COMMON.HAIRPIN deleted file mode 100644 index f103268..0000000 --- a/source/unres/src_CSA_DiL/COMMON.HAIRPIN +++ /dev/null @@ -1,5 +0,0 @@ - integer nharp_seed(max_seed),nharp_tot, - & iharp_seed(4,maxres/3,max_seed),iharp_use(0:4,maxres/3,max_seed), - & nharp_use(max_seed) - common /spinka/ nharp_seed,nharp_tot,iharp_seed,iharp_use, - & nharp_use diff --git a/source/unres/src_CSA_DiL/COMMON.HEADER b/source/unres/src_CSA_DiL/COMMON.HEADER deleted file mode 100644 index 7154812..0000000 --- a/source/unres/src_CSA_DiL/COMMON.HEADER +++ /dev/null @@ -1,2 +0,0 @@ - character*80 titel - common /header/ titel diff --git a/source/unres/src_CSA_DiL/COMMON.INFO b/source/unres/src_CSA_DiL/COMMON.INFO deleted file mode 100644 index 4f63708..0000000 --- a/source/unres/src_CSA_DiL/COMMON.INFO +++ /dev/null @@ -1,21 +0,0 @@ -c NPROCS - total number of processors; -c MyID - processor's ID; -c MasterID - master processor's ID. - integer MyId,AllGrp,DontCare,MasterId,WhatsUp,ifinish - logical koniec - integer tag,status(MPI_STATUS_SIZE) - common /info/ myid,masterid,allgrp,dontcare, - & koniec(0:maxprocs-1),WhatsUp,ifinish(maxprocs-1) -c... 5/12/96 - added variables for collective communication -c FGPROCS - Number of fine-grain processors per coarse-grain task; -c NCTASKS - Number of coarse-grain tasks; -c MYGROUP - label of the processor's FG group id; -c BOSSID - ID of group's master; -c FGLIST - list of group's FG processors. -c MSGLEN_VAR - length of the vector of variables passed to the fine-grain -c slave processors - integer fgprocs,nctasks,mygroup,bossid,cglabel, - & cglist(max_cg_procs),cgGroupID,fglist(max_fg_procs), - & fgGroupID,MyRank - common /info1/ fgprocs,nctasks,mygroup,bossid,cglabel,cglist, - & cgGroupID,fglist,fgGroupID,MyRank,msglen_var diff --git a/source/unres/src_CSA_DiL/COMMON.INTERACT b/source/unres/src_CSA_DiL/COMMON.INTERACT deleted file mode 100644 index fabad93..0000000 --- a/source/unres/src_CSA_DiL/COMMON.INTERACT +++ /dev/null @@ -1,34 +0,0 @@ - double precision aa,bb,augm,aad,bad,app,bpp,ale6,ael3,ael6 - integer expon,expon2 - integer nnt,nct,nint_gr,istart,iend,itype,itel,itypro, - & ielstart,ielend,ielstart_vdw,ielend_vdw,nscp_gr,iscpstart, - & iscpend,iatsc_s,iatsc_e, - & iatel_s,iatel_e,iatscp_s,iatscp_e,iatel_s_vdw,iatel_e_vdw, - & ispp,iscp - common /interact/aa(ntyp,ntyp),bb(ntyp,ntyp),augm(ntyp,ntyp), - & aad(ntyp,2),bad(ntyp,2),app(2,2),bpp(2,2),ael6(2,2),ael3(2,2), - & expon,expon2,nnt,nct,nint_gr(maxres),istart(maxres,maxint_gr), - & iend(maxres,maxint_gr),itype(maxres),itel(maxres),itypro, - & ielstart(maxres),ielend(maxres),ielstart_vdw(maxres), - & ielend_vdw(maxres),nscp_gr(maxres), - & iscpstart(maxres,maxint_gr),iscpend(maxres,maxint_gr), - & iatsc_s,iatsc_e,iatel_s,iatel_e,iatel_s_vdw,iatel_e_vdw, - & iatscp_s,iatscp_e,ispp,iscp -C 12/1/95 Array EPS included in the COMMON block. - double precision eps,sigma,sigmaii,rs0,chi,chip,alp,sigma0,sigii, - & rr0,r0,r0e,r0d,rpp,epp,elpp6,elpp3,eps_scp,rscp - common /body/eps(ntyp,ntyp),sigma(0:ntyp1,0:ntyp1), - & sigmaii(ntyp,ntyp), - & rs0(ntyp,ntyp),chi(ntyp,ntyp),chip(ntyp),alp(ntyp),sigma0(ntyp), - & sigii(ntyp),rr0(ntyp),r0(ntyp,ntyp),r0e(ntyp,ntyp),r0d(ntyp,2), - & rpp(2,2),epp(2,2),elpp6(2,2),elpp3(2,2),eps_scp(20,2),rscp(20,2) -c 12/5/03 modified 09/18/03 Bond stretching parameters. - double precision vbldp0,vbldsc0,akp,aksc,abond0 - integer nbondterm - common /stretch/ vbldp0,vbldsc0(maxbondterm,ntyp),akp, - & aksc(maxbondterm,ntyp),abond0(maxbondterm,ntyp),nbondterm(ntyp) - double precision wdti,wdti2,wdti4,wdti8, - & wdtii,wdtii2,wdtii4,wdtii8 - common /nosehoover_dt/ - & wdti(maxyosh),wdti2(maxyosh),wdti4(maxyosh),wdti8(maxyosh), - & wdtii(maxyosh),wdtii2(maxyosh),wdtii4(maxyosh),wdtii8(maxyosh) diff --git a/source/unres/src_CSA_DiL/COMMON.IOUNITS b/source/unres/src_CSA_DiL/COMMON.IOUNITS deleted file mode 100644 index 49b6db3..0000000 --- a/source/unres/src_CSA_DiL/COMMON.IOUNITS +++ /dev/null @@ -1,69 +0,0 @@ -C----------------------------------------------------------------------- -C I/O units used by the program -C----------------------------------------------------------------------- -C 9/18/99 - unit ifourier and filename fouriername included to identify -C the file from which the coefficients of second-order Fourier expansion -C of the local-interaction energy are read. -C 8/9/01 - file for SCP interaction constants named scpname (unit iscpp) -C included. -C----------------------------------------------------------------------- -C General I/O units & files - integer inp,iout,igeom,intin,ipdb,imol2,ipdbin,ithep,irotam, - & itorp,itordp,ifourier,ielep,isidep,iscpp,icbase,istat, - & ientin,ientout,izs1,isecpred,ibond,irest2,iifrag,icart, - & irest1,isccor,ithep_pdb,irotam_pdb - common /iounits/ inp,iout,igeom,intin,ipdb,imol2,ipdbin,ithep, - & irotam,itorp,itordp,ifourier,ielep,isidep,iscpp,icbase, - & istat,ientin,ientout,izs1,isecpred,ibond,irest2,iifrag, - & icart,irest1,isccor,ithep_pdb,irotam_pdb - character*256 outname,intname,pdbname,mol2name,statname,intinname, - & entname,prefix,secpred,rest2name,qname,cartname,tmpdir, - & mremd_rst_name,curdir,pref_orig - character*4 liczba - common /fnames/ outname,intname,pdbname,mol2name,statname, - & intinname,entname,prefix,pot,secpred,rest2name,qname, - & cartname,tmpdir,mremd_rst_name,curdir,pref_orig,liczba -C CSA I/O units & files - character*256 csa_rbank,csa_seed,csa_history,csa_bank, - & csa_bank1,csa_alpha,csa_alpha1,csa_bankt,csa_int, - & csa_bank_reminimized,csa_native_int,csa_in - common /csafiles/ csa_rbank,csa_seed,csa_history,csa_bank, - & csa_bank1,csa_alpha,csa_alpha1,csa_bankt,csa_int, - & csa_bank_reminimized,csa_native_int,csa_in - integer icsa_rbank,icsa_seed,icsa_history,icsa_bank, - & icsa_bank1,icsa_alpha,icsa_alpha1,icsa_bankt,icsa_int, - & icsa_bank_reminimized,icsa_native_int,icsa_in,icsa_pdb - common /csaunits/ icsa_rbank,icsa_seed,icsa_history,icsa_bank, - & icsa_bank1,icsa_alpha,icsa_alpha1,icsa_bankt,icsa_int, - & icsa_bank_reminimized,icsa_native_int,icsa_in,icsa_pdb -C Parameter files - character*256 bondname,thetname,rotname,torname,tordname, - & fouriername,elename,sidename,scpname,sccorname,patname, - & thetname_pdb,rotname_pdb - common /parfiles/ bondname,thetname,rotname,torname,tordname, - & fouriername,elename,sidename,scpname,sccorname,patname, - & thetname_pdb,rotname_pdb - character*3 pot -C----------------------------------------------------------------------- -C INP - main input file -C IOUT - list file -C IGEOM - geometry output in the form of virtual-chain internal coordinates -C INTIN - geometry input (for multiple conformation processing) in int. coords. -C IPDB - Cartesian-coordinate output in PDB format -C IMOL2 - Cartesian-coordinate output in Tripos mol2 format -C IPDBIN - PDB input file -C ITHEP - virtual-bond torsional angle parametrs -C IROTAM - side-chain geometry and local-interaction parameters -C ITORP - torsional parameters -C ITORDP - double torsional parameters -C IFOURIER - coefficients of the expansion of local-interaction energy -C IELEP - electrostatic-interaction parameters -C ISIDEP - side-chain interaction parameters. -C ISCPP - SCp interaction parameters. -C IBOND - virtual-bond constant parameters and moments of inertia. -C ISCCOR - parameters of the potential of SCCOR term -C ICBASE - data base with Cartesian coords of known structures. -C ISTAT - energies and other conf. characteristics from an MCM run. -C IENTIN - entropy from preceeding simulation(s) to be read in. -C SECPRED - SECONDARY STRUCTURE PREDICTION for dihedral constraint generation. -C----------------------------------------------------------------------- diff --git a/source/unres/src_CSA_DiL/COMMON.LOCAL b/source/unres/src_CSA_DiL/COMMON.LOCAL deleted file mode 100644 index 23413fb..0000000 --- a/source/unres/src_CSA_DiL/COMMON.LOCAL +++ /dev/null @@ -1,55 +0,0 @@ - double precision a0thet,athet,bthet,polthet,gthet,theta0,sig0, - & sigc0,dsc,dsc_inv,bsc,censc,gaussc,dsc0 - integer nlob -C Parameters of the virtual-bond-angle probability distribution - common /thetas/ a0thet(-ntyp:ntyp),athet(2,-ntyp:ntyp,-1:1,-1:1), - & bthet(2,-ntyp:ntyp,-1:1,-1:1),polthet(0:3,-ntyp:ntyp), - & gthet(3,-ntyp:ntyp),theta0(-ntyp:ntyp),sig0(-ntyp:ntyp), - & sigc0(-ntyp:ntyp) -C Parameters of the side-chain probability distribution - common /sclocal/ dsc(ntyp1),dsc_inv(ntyp1),bsc(maxlob,ntyp), - & censc(3,maxlob,-ntyp:ntyp),gaussc(3,3,maxlob,-ntyp:ntyp), - & dsc0(ntyp1), - & nlob(ntyp1) -C Parameters of ab initio-derived potential of virtual-bond-angle bending - integer nthetyp,ntheterm,ntheterm2,ntheterm3,nsingle,ndouble, - & ithetyp(ntyp1),nntheterm - double precision aa0thet(maxthetyp1,maxthetyp1,maxthetyp1), - & aathet(maxtheterm,maxthetyp1,maxthetyp1,maxthetyp1), - & bbthet(maxsingle,maxtheterm2,maxthetyp1,maxthetyp1,maxthetyp1), - & ccthet(maxsingle,maxtheterm2,maxthetyp1,maxthetyp1,maxthetyp1), - & ddthet(maxsingle,maxtheterm2,maxthetyp1,maxthetyp1,maxthetyp1), - & eethet(maxsingle,maxtheterm2,maxthetyp1,maxthetyp1,maxthetyp1), - & ffthet(maxdouble,maxdouble,maxtheterm3,maxthetyp1,maxthetyp1, - & maxthetyp1), - & ggthet(maxdouble,maxdouble,maxtheterm3,maxthetyp1,maxthetyp1, - & maxthetyp1) - common /theta_abinitio/aa0thet,aathet,bbthet,ccthet,ddthet,eethet, - & ffthet, - & ggthet,ithetyp,nthetyp,ntheterm,ntheterm2,ntheterm3,nsingle, - & ndouble,nntheterm -C Virtual-bond lenghts - double precision vbl,vblinv,vblinv2,vbl_cis,vbl0,vbld_inv - integer loc_start,loc_end,ithet_start,ithet_end,iphi_start, - & iphi_end,iphid_start,iphid_end,ibond_start,ibond_end, - & ibondp_start,ibondp_end,ivec_start,ivec_end,iset_start,iset_end, - & iturn3_start,iturn3_end,iturn4_start,iturn4_end,iint_start, - & iint_end,iphi1_start,iphi1_end, - & ibond_displ(0:max_fg_procs-1),ibond_count(0:max_fg_procs-1), - & ithet_displ(0:max_fg_procs-1),ithet_count(0:max_fg_procs-1), - & iphi_displ(0:max_fg_procs-1),iphi_count(0:max_fg_procs-1), - & iphi1_displ(0:max_fg_procs-1),iphi1_count(0:max_fg_procs-1), - & ivec_displ(0:max_fg_procs-1),ivec_count(0:max_fg_procs-1), - & iset_displ(0:max_fg_procs-1),iset_count(0:max_fg_procs-1), - & iint_count(0:max_fg_procs-1),iint_displ(0:max_fg_procs-1) - common /peptbond/ vbl,vblinv,vblinv2,vbl_cis,vbl0 - common /indices/ loc_start,loc_end,ithet_start,ithet_end, - & iphi_start,iphi_end,iphid_start,iphid_end,ibond_start,ibond_end, - & ibondp_start,ibondp_end,ivec_start,ivec_end,iset_start,iset_end, - & iturn3_start,iturn3_end,iturn4_start,iturn4_end,iint_start, - & iint_end,iphi1_start,iphi1_end,iint_count,iint_displ,ivec_displ, - & ivec_count,iset_displ, - & iset_count,ibond_displ,ibond_count,ithet_displ,ithet_count, - & iphi_displ,iphi_count,iphi1_displ,iphi1_count -C Inverses of the actual virtual bond lengths - common /invlen/ vbld_inv(maxres2) diff --git a/source/unres/src_CSA_DiL/COMMON.LOCMOVE b/source/unres/src_CSA_DiL/COMMON.LOCMOVE deleted file mode 100644 index 211516d..0000000 --- a/source/unres/src_CSA_DiL/COMMON.LOCMOVE +++ /dev/null @@ -1,19 +0,0 @@ -c Variables (set in init routine) never modified by local_move - integer init_called - logical locmove_output - double precision min_theta, max_theta - double precision dmin2,dmax2 - double precision flag,small,small2 - - common /loc_const/ init_called,locmove_output,min_theta, - + max_theta,dmin2,dmax2,flag,small,small2 - -c Workspace for local_move - integer a_n,b_n,res_n - double precision a_ang,b_ang,res_ang - logical a_tab,b_tab,res_tab - - common /loc_work/ res_ang(0:11),a_ang(0:7),b_ang(0:3), - + res_n,res_tab(0:2,0:2,0:11), - + a_n,a_tab(0:2,0:7), - + b_n,b_tab(0:2,0:3) diff --git a/source/unres/src_CSA_DiL/COMMON.MAXGRAD b/source/unres/src_CSA_DiL/COMMON.MAXGRAD deleted file mode 100644 index 285241a..0000000 --- a/source/unres/src_CSA_DiL/COMMON.MAXGRAD +++ /dev/null @@ -1,12 +0,0 @@ - double precision - & gvdwc_max,gvdwc_scp_max,gelc_max,gvdwpp_max,gradb_max,ghpbc_max, - & gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max, - & gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max, - & gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max, - & gsccorx_max,gsclocx_max - common /maxgrad/ - & gvdwc_max,gvdwc_scp_max,gelc_max,gvdwpp_max,gradb_max,ghpbc_max, - & gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max, - & gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max, - & gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max, - & gsccorx_max,gsclocx_max diff --git a/source/unres/src_CSA_DiL/COMMON.MCM b/source/unres/src_CSA_DiL/COMMON.MCM deleted file mode 100644 index 576f912..0000000 --- a/source/unres/src_CSA_DiL/COMMON.MCM +++ /dev/null @@ -1,70 +0,0 @@ -C... Following COMMON block contains general variables controlling the MC/MCM -C... procedure -c----------------------------------------------------------------------------- - double precision Tcur,Tmin,Tmax,TstepH,TstepC,RanFract, - & overlap_cut,e_up,delte - integer nstepH,nstepC,maxacc,maxgen,maxtrial,maxtrial_iter, - & maxrepm,ngen,ntrial,ntherm,nrepm,neneval,nsave,maxoverlap, - & nsave_part,max_mcm_it,nsweep,print_mc - logical print_stat,print_int - common /mcm/ Tcur,Tmin,Tmax,TstepH,TstepC,Rbol,betbol,RanFract, - & overlap_cut,e_up,delte, - & nstepH,nstepC,maxacc,maxgen,maxtrial,maxtrial_iter,maxrepm, - & maxoverlap,ntrial,max_mcm_it, - & ngen,ntherm,nrepm,neneval,nsave,nsave_part(max_cg_procs),nsweep, - & print_mc,print_stat,print_int -c----------------------------------------------------------------------------- -C... The meaning of the above variables is as follows: -C... Tcur,Tmin,Tmax - Current,minimum and maximum temperature, respectively; -C... NstepC,NStepH - Number of cooling and heating steps, respectively; -C... TstepH,TstepC - factors by which T is multiplied in order to be -C... increased or decreased. -C... betbol - Boltzmann's inverse temperature (1/(Rbol*Tcur)); -C... Rbol - the gas constant; -C... RanFract - the chance that a new conformation will be random-generated; -C... maxacc - maximum number of accepted conformations; -C... maxgen,ngen - Maximum and current number of generated conformations; -C... maxtrial,ntrial - maximum number of trials before temperature is increased -C... and current number of trials, respectively; -C... maxrepm,nrepm - maximum number of allowed minima repetition and current -C... number of minima repetitions, respectively; -C... maxoverlap - max. # of overlapping confs generated in a single iteration; -C... neneval - number of energy evaluations; -C... nsave - number of confs. in the backup array; -C... nsweep - the number of macroiterations in generating the distributions. -c------------------------------------------------------------------------------ -C... Following COMMON block contains variables controlling motion. -c------------------------------------------------------------------------------ - double precision sumpro_type,sumpro_bond - integer koniecl, Nbm,MaxSideMove,nmove,moves(-1:MaxMoveType+1), - & moves_acc(-1:MaxMoveType+1),nacc_tot,nacc_part(0:MaxProcs) - common /move/ sumpro_type(0:MaxMoveType),sumpro_bond(0:maxres), - & koniecl,Nbm,MaxSideMove,nmove,nbond_move(maxres), - & nbond_acc(maxres),moves,moves_acc - common /accept_stats/ nacc_tot,nacc_part - integer nwindow,winstart,winend,winlen - common /windows/ nwindow,winstart(maxres),winend(maxres), - & winlen(maxres) - character*16 MovTypID - common /moveID/ MovTypID(-1:MaxMoveType+1) -c------------------------------------------------------------------------------ -C... koniecl - the number of bonds to be considered "end bonds" subjected to -C... end moves; -C... Nbm - The maximum length of N-bond segment to be moved; -C... MaxSideMove - maximum number of side chains subjected to local moves -C... simultaneously; -C... nmove - the current number of attempted moves; -C... nbond_move(*) array that stores the total numbers of 2-bond,3-bond,... -C... moves; -C... nendmove - number of endmoves; -C... nbackmove - number of backbone moves; -C... nsidemove - number of local side chain moves; -C... sumpro_type(*) - array that stores the lower and upper boundary of the -C... random-number range that determines the type of move -C... (N-bond, backbone or side chain); -C... sumpro_bond(*) - array that stores the probabilities to perform bond -C... moves of consecutive segment length. -C... winstart(*) - the starting position of the perturbation window; -C... winend(*) - the end position of the perturbation window; -C... winlen(*) - length of the perturbation window; -C... nwindow - the number of perturbation windows (0 - entire chain). diff --git a/source/unres/src_CSA_DiL/COMMON.MD_ b/source/unres/src_CSA_DiL/COMMON.MD_ deleted file mode 100644 index 22dba7c..0000000 --- a/source/unres/src_CSA_DiL/COMMON.MD_ +++ /dev/null @@ -1,74 +0,0 @@ - double precision gcart, gxcart, gradcag,gradxag - common /mdgrad/ gcart(3,0:MAXRES), gxcart(3,0:MAXRES), - & gradcag(3,MAXRES),gradxag(3,MAXRES) - integer dimen,dimen1, dimen3, ifrag(2,50,maxprocs/20), - & ipair(2,100,maxprocs/20),iset, - & mset(maxprocs/20),nset - double precision IP,ISC(ntyp+1),mp, - & msc(ntyp+1),d_t_work(MAXRES6), - & d_t_work_new(MAXRES6),d_t(3,0:MAXRES2),d_t_new(3,0:MAXRES2), - & d_af_work(MAXRES6),d_as_work(MAXRES6), - & d_t_old(3,0:MAXRES2),d_a_old(3,0:MAXRES2),d_a_short(3,0:MAXRES2), - & Gmat(MAXRES2,MAXRES2),Ginv(MAXRES2,MAXRES2),A(MAXRES2,MAXRES2), - & d_a(3,0:MAXRES2),d_a_work(6*MAXRES),kinetic_force(MAXRES6), - & Gsqrp(MAXRES2,MAXRES2),Gsqrm(MAXRES2,MAXRES2), - & vtot(MAXRES2),Gvec(maxres2,maxres2),Geigen(maxres2) - double precision v_ini,d_time,d_time0,t_bath,tau_bath, - & EK,potE,potEcomp(0:n_ene+4),totE,totT,amax,kinetic_T,dvmax,damax, - & edriftmax, - & eq_time,wfrag(50,maxprocs/20),wpair(100,maxprocs/20), - & qfrag(50),qpair(100), - & qinfrag(50,maxprocs/20),qinpair(100,maxprocs/20), - & Ucdfrag,Ucdpair,dUdconst(3,0:MAXRES),Uconst, - & dUdxconst(3,0:MAXRES),dqwol(3,0:MAXRES),dxqwol(3,0:MAXRES), - & utheta(maxfrag_back),ugamma(maxfrag_back),uscdiff(maxfrag_back), - & dutheta(maxres),dugamma(maxres),duscdiff(3,maxres), - & duscdiffx(3,maxres),wfrag_back(3,maxfrag_back,maxprocs/20), - & uconst_back - integer n_timestep,ntwx,ntwe,lang,count_reset_moment, - & count_reset_vel,reset_fricmat,nfrag,npair,nfrag_back, - & ifrag_back(3,maxfrag_back,maxprocs/20),ntime_split,ntime_split0, - & maxtime_split - integer nresn,nyosh,nnos - double precision glogs,qmass,vlogs,xlogs - logical large,print_compon,tbf,rest,reset_moment,reset_vel, - & surfarea,rattle,usampl,mdpdb,RESPA,tnp,tnp1,tnh,xiresp - integer igmult_start,igmult_end,my_ng_count,ng_start,ng_counts, - & nginv_start,nginv_counts,myginv_ng_count - common /back_constr/ uconst_back,utheta,ugamma,uscdiff, - & dutheta,dugamma,duscdiff,duscdiffx, - & wfrag_back,nfrag_back,ifrag_back - common /qmeas/ qfrag,qpair,qinfrag,qinpair,wfrag,wpair,eq_time, - & Ucdfrag,Ucdpair,dUdconst,dUdxconst,dqwol,dxqwol,Uconst, - & iset,mset,nset,usampl,ifrag,ipair,npair,nfrag - common /mdpar/ v_ini,d_time,d_time0,scal_fric, - & t_bath,tau_bath,dvmax,damax,n_timestep,mdpdb, - & ntime_split,ntime_split0,maxtime_split, - & ntwx,ntwe,large,print_compon,tbf,rest,tnp,tnp1,tnh - common /MDcalc/ totT,totE,potE,potEcomp,EK,amax,edriftmax, - & kinetic_T - common /lagrange/ d_t,d_t_old,d_t_new,d_t_work, - & d_t_work_new,d_a,d_a_old,d_a_work,d_af_work,d_as_work,d_a_short, - & kinetic_force, - & A,Ginv,Gmat,Gvec,Geigen,Gsqrp,Gsqrm, - & vtot,dimen,dimen1,dimen3,lang, - & reset_moment,reset_vel,count_reset_moment,count_reset_vel, - & rattle,RESPA - common /inertia/ IP,ISC,MP,MSC - double precision scal_fric,rwat,etawat,gamp, - & gamsc(ntyp),stdfp,stdfsc(ntyp),stdforcp(MAXRES), - & stdforcsc(MAXRES),pstok,restok(ntyp+1),cPoise,Rb - common /langevin/ pstok,restok,gamp,gamsc, - & stdfp,stdfsc,stdforcp,stdforcsc,rwat,etawat,cPoise,Rb,surfarea, - & reset_fricmat - common /mdpmpi/ igmult_start,igmult_end,my_ng_count, - & myginv_ng_count, - & ng_start(0:MaxProcs-1),ng_counts(0:MaxProcs-1), - & nginv_start(0:MaxProcs),nginv_counts(0:MaxProcs-1) - double precision pi_np,pistar,s_np,s12_np,Q_np,E_old,H0,E_long, - & sold_np,d_t_half,Csplit - common /nosepoincare/ pi_np,pistar,s_np,s12_np,Q_np,E_old,H0, - & E_long,sold_np,d_t_half(3,0:MAXRES2),Csplit - common /nosehoover/ glogs(maxmnh),qmass(maxmnh), - & vlogs(maxmnh),xlogs(maxmnh), - & nresn,nyosh,nnos,xiresp diff --git a/source/unres/src_CSA_DiL/COMMON.MINIM b/source/unres/src_CSA_DiL/COMMON.MINIM deleted file mode 100644 index e44f9cd..0000000 --- a/source/unres/src_CSA_DiL/COMMON.MINIM +++ /dev/null @@ -1,5 +0,0 @@ - double precision tolf,rtolf - integer maxfun,maxmin,minfun,minmin, - & print_min_ini,print_min_stat,print_min_res - common /minimm/ tolf,rtolf,maxfun,maxmin,minfun,minmin, - & print_min_ini,print_min_stat,print_min_res diff --git a/source/unres/src_CSA_DiL/COMMON.NAMES b/source/unres/src_CSA_DiL/COMMON.NAMES deleted file mode 100644 index 13dde91..0000000 --- a/source/unres/src_CSA_DiL/COMMON.NAMES +++ /dev/null @@ -1,8 +0,0 @@ - character*3 restyp - character*1 onelet - common /names/ restyp(-ntyp1:ntyp1), - & onelet(-ntyp1:ntyp1) - character*10 ename,wname - integer nprint_ene,print_order - common /namterm/ ename(n_ene),wname(n_ene),nprint_ene, - & print_order(n_ene) diff --git a/source/unres/src_CSA_DiL/COMMON.SBRIDGE b/source/unres/src_CSA_DiL/COMMON.SBRIDGE deleted file mode 100644 index 4cc80c8..0000000 --- a/source/unres/src_CSA_DiL/COMMON.SBRIDGE +++ /dev/null @@ -1,12 +0,0 @@ - double precision ebr,d0cm,akcm,akth,akct,v1ss,v2ss,v3ss - integer ns,nss,nfree,iss - common /sbridge/ ebr,d0cm,akcm,akth,akct,v1ss,v2ss,v3ss, - & ns,nss,nfree,iss(maxss) - double precision dhpb,forcon - integer ihpb,jhpb,nhpb - common /links/ dhpb(maxdim),forcon(maxdim),ihpb(maxdim), - & jhpb(maxdim),nhpb - double precision weidis - common /restraints/ weidis - integer link_start,link_end - common /links_split/ link_start,link_end diff --git a/source/unres/src_CSA_DiL/COMMON.SCCOR b/source/unres/src_CSA_DiL/COMMON.SCCOR deleted file mode 100644 index d3f512a..0000000 --- a/source/unres/src_CSA_DiL/COMMON.SCCOR +++ /dev/null @@ -1,6 +0,0 @@ -C Parameters of the SCCOR term - double precision v1sccor,v2sccor - integer nterm_sccor - common/torsionsc/v1sccor(maxterm_sccor,20,20), - & v2sccor(maxterm_sccor,20,20), - & nterm_sccor diff --git a/source/unres/src_CSA_DiL/COMMON.SCROT b/source/unres/src_CSA_DiL/COMMON.SCROT deleted file mode 100644 index 2da7b8f..0000000 --- a/source/unres/src_CSA_DiL/COMMON.SCROT +++ /dev/null @@ -1,3 +0,0 @@ -C Parameters of the SC rotamers (local) term - double precision sc_parmin - common/scrot/sc_parmin(maxsccoef,20) diff --git a/source/unres/src_CSA_DiL/COMMON.SETUP b/source/unres/src_CSA_DiL/COMMON.SETUP deleted file mode 100644 index 5039116..0000000 --- a/source/unres/src_CSA_DiL/COMMON.SETUP +++ /dev/null @@ -1,21 +0,0 @@ - integer king,idint,idreal,idchar,is_done - parameter (king=0,idint=1105,idreal=1729,idchar=1597,is_done=1) - integer me,cg_rank,fg_rank,fg_rank1,nodes,Nprocs,nfgtasks,kolor, - & koniec(0:maxprocs-1),WhatsUp,ifinish(maxprocs-1),CG_COMM,FG_COMM, - & FG_COMM1,CONT_FROM_COMM,CONT_TO_COMM,lentyp(0:maxprocs-1), - & kolor1,key1,nfgtasks1,MyRank, - & max_gs_size - logical yourjob, finished, cgdone - common/setup/me,MyRank,cg_rank,fg_rank,fg_rank1,nodes,Nprocs, - & nfgtasks,nfgtasks1, - & max_gs_size,kolor,koniec,WhatsUp,ifinish,CG_COMM,FG_COMM, - & FG_COMM1,CONT_FROM_COMM,CONT_TO_COMM,lentyp - integer MPI_UYZ,MPI_UYZGRAD,MPI_MU,MPI_MAT1,MPI_MAT2, - & MPI_THET,MPI_GAM, - & MPI_ROTAT1(0:1),MPI_ROTAT2(0:1),MPI_ROTAT_OLD(0:1), - & MPI_PRECOMP11(0:1),MPI_PRECOMP12(0:1),MPI_PRECOMP22(0:1), - & MPI_PRECOMP23(0:1) - common /types/ MPI_UYZ,MPI_UYZGRAD,MPI_MU,MPI_MAT1,MPI_MAT2, - & MPI_THET,MPI_GAM, - & MPI_ROTAT1,MPI_ROTAT2,MPI_ROTAT_OLD,MPI_PRECOMP11,MPI_PRECOMP12, - & MPI_PRECOMP22,MPI_PRECOMP23 diff --git a/source/unres/src_CSA_DiL/COMMON.SPLITELE b/source/unres/src_CSA_DiL/COMMON.SPLITELE deleted file mode 100644 index a2f0447..0000000 --- a/source/unres/src_CSA_DiL/COMMON.SPLITELE +++ /dev/null @@ -1,2 +0,0 @@ - double precision r_cut,rlamb - common /splitele/ r_cut,rlamb diff --git a/source/unres/src_CSA_DiL/COMMON.THREAD b/source/unres/src_CSA_DiL/COMMON.THREAD deleted file mode 100644 index 5c814cc..0000000 --- a/source/unres/src_CSA_DiL/COMMON.THREAD +++ /dev/null @@ -1,7 +0,0 @@ - integer nthread,nexcl,iexam,ipatt - double precision ener0,ener,max_time_for_thread, - & ave_time_for_thread - common /thread/ nthread,nexcl,iexam(2,maxthread), - & ipatt(2,maxthread) - common /thread1/ ener0(n_ene+2,maxthread),ener(n_ene+2,maxthread), - & max_time_for_thread,ave_time_for_thread diff --git a/source/unres/src_CSA_DiL/COMMON.TIME1 b/source/unres/src_CSA_DiL/COMMON.TIME1 deleted file mode 100644 index d6203a6..0000000 --- a/source/unres/src_CSA_DiL/COMMON.TIME1 +++ /dev/null @@ -1,28 +0,0 @@ - DOUBLE PRECISION BATIME,TIMLIM,STIME,PREVTIM,SAFETY - DOUBLE PRECISION WALLTIME - INTEGER ISTOP -c FOUND_NAN - set by calcf to stop sumsl via stopx - logical FOUND_NAN - COMMON/TIME1/STIME,TIMLIM,BATIME,PREVTIM,SAFETY,WALLTIME - COMMON/STOPTIM/ISTOP - common /sumsl_flag/ FOUND_NAN - double precision t_init,t_MDsetup,t_langsetup,t_MD, - & t_enegrad,t_sdsetup,time_bcast,time_reduce,time_gather, - & time_sendrecv,time_barrier_e,time_barrier_g,time_scatter, - & t_eelecij,time_bcast7,time_bcastc,time_bcastw,time_allreduce, - & time_enecalc,time_sumene,time_lagrangian,time_cartgrad, - & time_sumgradient,time_intcartderiv,time_inttocart,time_intfcart, - & time_vec,time_mat,time_ginvmult,time_fricmatmult,time_fric, - & time_scatter_fmat,time_scatter_ginv, - & time_fsample,time_scatter_fmatmult,time_scatter_ginvmult, - & time_stoch,t_eshort,t_elong,t_etotal - common /timing/ t_init,t_MDsetup,t_langsetup, - & t_MD,t_enegrad,t_sdsetup,time_bcast,time_reduce,time_gather, - & time_sendrecv,time_scatter,time_barrier_e,time_barrier_g, - & time_bcast7,time_bcastc,time_bcastw,time_allreduce, - & t_eelecij,time_enecalc,time_sumene,time_lagrangian,time_cartgrad, - & time_sumgradient,time_intcartderiv,time_inttocart,time_intfcart, - & time_vec,time_mat,time_ginvmult,time_fricmatmult,time_fric, - & time_fsample,time_scatter_fmatmult,time_scatter_ginvmult, - & time_scatter_fmat,time_scatter_ginv, - & time_stoch,t_eshort,t_elong,t_etotal diff --git a/source/unres/src_CSA_DiL/COMMON.TORCNSTR b/source/unres/src_CSA_DiL/COMMON.TORCNSTR deleted file mode 100644 index e4af17c..0000000 --- a/source/unres/src_CSA_DiL/COMMON.TORCNSTR +++ /dev/null @@ -1,6 +0,0 @@ - integer ndih_constr,idih_constr(maxdih_constr) - integer ndih_nconstr,idih_nconstr(maxdih_constr) - integer idihconstr_start,idihconstr_end - double precision phi0(maxdih_constr),drange(maxdih_constr),ftors - common /torcnstr/ phi0,drange,ftors,ndih_constr,idih_constr, - & ndih_nconstr,idih_nconstr,idihconstr_start,idihconstr_end diff --git a/source/unres/src_CSA_DiL/COMMON.TORSION b/source/unres/src_CSA_DiL/COMMON.TORSION deleted file mode 100644 index 8c12a50..0000000 --- a/source/unres/src_CSA_DiL/COMMON.TORSION +++ /dev/null @@ -1,35 +0,0 @@ -C Torsional constants of the rotation about virtual-bond dihedral angles - double precision v1,v2,vlor1,vlor2,vlor3,v0 - integer itortyp,ntortyp,nterm,nlor,nterm_old - common/torsion/ v0(-maxtor:maxtor,-maxtor:maxtor,2), - & v1(maxterm,-maxtor:maxtor,-maxtor:maxtor,2), - & v2(maxterm,-maxtor:maxtor,-maxtor:maxtor,2), - & vlor1(maxlor,maxtor,maxtor), - & vlor2(maxlor,maxtor,maxtor), - & vlor3(maxlor,maxtor,maxtor), - & nterm(-maxtor:maxtor,-maxtor:maxtor,2), - & nlor(-maxtor:maxtor,-maxtor:maxtor,2), - & itortyp(-ntyp:ntyp), - & ntortyp, - & nterm_old -C 6/23/01 - constants for double torsionals - double precision v1c,v1s,v2c,v2s - integer ntermd_1,ntermd_2 - common /torsiond/ - &v1c(2,maxtermd_1,-maxtor:maxtor,-maxtor:maxtor,-maxtor:maxtor,2), - &v1s(2,maxtermd_1,-maxtor:maxtor,-maxtor:maxtor,-maxtor:maxtor,2), - &v2c(maxtermd_2,maxtermd_2,-maxtor:maxtor,-maxtor:maxtor, - & -maxtor:maxtor,2), - &v2s(maxtermd_2,maxtermd_2,-maxtor:maxtor,-maxtor:maxtor, - & -maxtor:maxtor,2), - & ntermd_1(-maxtor:maxtor,-maxtor:maxtor,-maxtor:maxtor,2), - & ntermd_2(-maxtor:maxtor,-maxtor:maxtor,-maxtor:maxtor,2) -C 9/18/99 - added Fourier coeffficients of the expansion of local energy -C surface - double precision b1,b2,cc,dd,ee,ctilde,dtilde,b2tilde - integer nloctyp - common/fourier/ b1(2,-maxtor:maxtor),b2(2,-maxtor:maxtor) - & ,cc(2,2,-maxtor:maxtor), - & dd(2,2,-maxtor:maxtor),ee(2,2,-maxtor:maxtor), - & ctilde(2,2,-maxtor:maxtor), - & dtilde(2,2,-maxtor:maxtor),b1tilde(2,-maxtor:maxtor),nloctyp diff --git a/source/unres/src_CSA_DiL/COMMON.VAR b/source/unres/src_CSA_DiL/COMMON.VAR deleted file mode 100644 index 71158b8..0000000 --- a/source/unres/src_CSA_DiL/COMMON.VAR +++ /dev/null @@ -1,20 +0,0 @@ -C Store the geometric variables in the following COMMON block. - integer ntheta,nphi,nside,nvar,Origin,nstore,ialph,ivar, - & mask_theta,mask_phi,mask_side - double precision theta,phi,alph,omeg,varsave,esave,varall,vbld, - & thetaref,phiref,costtab,sinttab,cost2tab,sint2tab, - & xxtab,yytab,zztab,xxref,yyref,zzref - common /var/ theta(maxres),phi(maxres),alph(maxres),omeg(maxres), - & vbld(2*maxres),thetaref(maxres),phiref(maxres), - & costtab(maxres), sinttab(maxres), cost2tab(maxres), - & sint2tab(maxres),xxtab(maxres),yytab(maxres), - & zztab(maxres),xxref(maxres),yyref(maxres),zzref(maxres), - & ialph(maxres,2),ivar(4*maxres2),ntheta,nphi,nside,nvar -C Store the angles and variables corresponding to old conformations (for use -C in MCM). - common /oldgeo/ varsave(maxvar,maxsave),esave(maxsave), - & Origin(maxsave),nstore -C freeze some variables - logical mask_r - common /restr/ varall(maxvar),mask_r,mask_theta(maxres), - & mask_phi(maxres),mask_side(maxres) diff --git a/source/unres/src_CSA_DiL/COMMON.VECTORS b/source/unres/src_CSA_DiL/COMMON.VECTORS deleted file mode 100644 index d880c24..0000000 --- a/source/unres/src_CSA_DiL/COMMON.VECTORS +++ /dev/null @@ -1,3 +0,0 @@ - common /vectors/ uy(3,maxres),uz(3,maxres), - & uygrad(3,3,2,maxres),uzgrad(3,3,2,maxres) - diff --git a/source/unres/src_CSA_DiL/DIMENSIONS b/source/unres/src_CSA_DiL/DIMENSIONS deleted file mode 100644 index 3225a09..0000000 --- a/source/unres/src_CSA_DiL/DIMENSIONS +++ /dev/null @@ -1,139 +0,0 @@ -******************************************************************************** -* Settings for the program of united-residue peptide simulation in real space * -* * -* ------- As of 6/23/01 ----------- * -* * -******************************************************************************** -C Max. number of processors. - integer maxprocs - parameter (maxprocs=2048) -C Max. number of fine-grain processors - integer max_fg_procs -c parameter (max_fg_procs=maxprocs) - parameter (max_fg_procs=512) -C Max. number of coarse-grain processors - integer max_cg_procs - parameter (max_cg_procs=maxprocs) -C Max. number of AA residues - integer maxres - parameter (maxres=800) -C Appr. max. number of interaction sites - integer maxres2,maxres6,mmaxres2 - parameter (maxres2=2*maxres,maxres6=6*maxres) - parameter (mmaxres2=(maxres2*(maxres2+1)/2)) -C Max. number of variables - integer maxvar - parameter (maxvar=6*maxres) -C Max. number of groups of interactions that a given SC is involved in - integer maxint_gr - parameter (maxint_gr=2) -C Max. number of derivatives of virtual-bond and side-chain vectors in theta -C or phi. - integer maxdim - parameter (maxdim=(maxres-1)*(maxres-2)/2) -C Max. number of SC contacts - integer maxcont - parameter (maxcont=12*maxres) -C Max. number of contacts per residue - integer maxconts - parameter (maxconts=maxres/4) -c parameter (maxconts=50) -C Number of AA types (at present only natural AA's will be handled - integer ntyp,ntyp1 - parameter (ntyp=20,ntyp1=ntyp+1) -C Max. number of types of dihedral angles & multiplicity of torsional barriers -C and the number of terms in double torsionals - integer maxtor,maxterm,maxlor,maxtermd_1,maxtermd_2 - parameter (maxtor=4,maxterm=10,maxlor=3,maxtermd_1=8,maxtermd_2=8) -C Max. number of residue types and parameters in expressions for -C virtual-bond angle bending potentials - integer maxthetyp,maxthetyp1,maxtheterm,maxtheterm2,maxtheterm3, - & maxsingle,maxdouble,mmaxtheterm - parameter (maxthetyp=3,maxthetyp1=maxthetyp+1,maxtheterm=20, - & maxtheterm2=6,maxtheterm3=4,maxsingle=6,maxdouble=4, - & mmaxtheterm=maxtheterm) -c Max number of torsional terms in SCCOR - integer maxterm_sccor - parameter (maxterm_sccor=3) -C Max. number of lobes in SC distribution - integer maxlob - parameter (maxlob=4) -C Max. number of S-S bridges - integer maxss - parameter (maxss=20) -C Max. number of dihedral angle constraints - integer maxdih_constr - parameter (maxdih_constr=maxres) -C Max. number of patterns in the pattern database - integer maxseq - parameter (maxseq=10) -C Max. number of residues in a peptide in the database - integer maxres_base - parameter (maxres_base=10) -C Max. number of threading attempts - integer maxthread - parameter (maxthread=20) -C Max. number of move types in MCM - integer maxmovetype - parameter (maxmovetype=4) -C Max. number of stored confs. in MC/MCM simulation - integer maxsave - parameter (maxsave=20) -C Max. number of energy intervals - integer max_ene - parameter (max_ene=10) -C Max. number of conformations in Master's cache array - integer max_cache - parameter (max_cache=10) -C Max. number of conformations in the pool - integer max_pool - parameter (max_pool=10) -C Number of energy components - integer n_ene,n_ene2 - parameter (n_ene=27,n_ene2=2*n_ene) -C Number of threads in deformation - integer max_thread,max_thread2 - parameter (max_thread=4,max_thread2=2*max_thread) -C Number of structures to compare at t=0 - integer max_threadss,max_threadss2 - parameter (max_threadss=8,max_threadss2=2*max_threadss) -C Maxmimum number of angles per residue - integer mxang - parameter (mxang=4) -C Maximum number of groups of angles - integer mxgr - parameter (mxgr=2*maxres) -C Maximum number of chains - integer mxch - parameter (mxch=1) -C Maximum number of generated conformations - integer mxio - parameter (mxio=1000) -C Maximum number of n7 generated conformations - integer mxio2 - parameter (mxio2=100) -C Maximum number of moves (n1-n8) - integer mxmv - parameter (mxmv=18) -C Maximum number of seed - integer max_seed - parameter (max_seed=200) -C Maximum number of timesteps for which stochastic MD matrices can be stored - integer maxflag_stoch - parameter (maxflag_stoch=0) -C Maximum number of backbone fragments in restraining - integer maxfrag_back - parameter (maxfrag_back=4) -C Maximum number of SC local term fitting function coefficiants - integer maxsccoef - parameter (maxsccoef=65) -C Maximum number of terms in SC bond-stretching potential - integer maxbondterm - parameter (maxbondterm=3) -C Maximum number of conformation stored in cache on each CPU before sending -C to master; depends on nstex / ntwx ratio - integer max_cache_traj - parameter (max_cache_traj=10) -C Nose-Hoover chain - chain length and order of Yoshida algorithm - integer maxmnh,maxyosh - parameter(maxmnh=10,maxyosh=5) diff --git a/source/unres/src_CSA_DiL/MP.F b/source/unres/src_CSA_DiL/MP.F deleted file mode 100644 index 3b4bc70..0000000 --- a/source/unres/src_CSA_DiL/MP.F +++ /dev/null @@ -1,516 +0,0 @@ -#ifdef MPI - subroutine init_task - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - include 'COMMON.SETUP' - include 'COMMON.CONTROL' - include 'COMMON.IOUNITS' - logical lprn /.false./ -c real*8 text1 /'group_i '/,text2/'group_f '/, -c & text3/'initialb'/,text4/'initiale'/, -c & text5/'openb'/,text6/'opene'/ - integer cgtasks(0:max_cg_procs) - character*3 cfgprocs - integer cg_size,fg_size,fg_size1 -c start parallel processing -c print *,'Initializing MPI' - call mpi_init(ierr) - if (ierr.ne.0) then - print *, ' cannot initialize MPI' - stop - endif -c determine # of nodes and current node - call MPI_Comm_rank( MPI_COMM_WORLD, me, ierr ) - if (ierr.ne.0) then - print *, ' cannot determine rank of all processes' - call MPI_Finalize( MPI_COMM_WORLD, IERR ) - stop - endif - call MPI_Comm_size( MPI_Comm_world, nodes, ierr ) - if (ierr.ne.0) then - print *, ' cannot determine number of processes' - stop - endif - Nprocs=nodes - MyRank=me -C Determine the number of "fine-grain" tasks - call getenv_loc("FGPROCS",cfgprocs) - read (cfgprocs,'(i3)') nfgtasks - if (nfgtasks.eq.0) nfgtasks=1 - call getenv_loc("MAXGSPROCS",cfgprocs) - read (cfgprocs,'(i3)') max_gs_size - if (max_gs_size.eq.0) max_gs_size=2 - if (lprn) - & print *,"Processor",me," nfgtasks",nfgtasks, - & " max_gs_size",max_gs_size - if (nfgtasks.eq.1) then - CG_COMM = MPI_COMM_WORLD - fg_size=1 - fg_rank=0 - nfgtasks1=1 - fg_rank1=0 - else - nodes=nprocs/nfgtasks - if (nfgtasks*nodes.ne.nprocs) then - write (*,'(a)') 'ERROR: Number of processors assigned', - & ' to coarse-grained tasks must be divisor', - & ' of the total number of processors.' - call MPI_Finalize( MPI_COMM_WORLD, IERR ) - stop - endif -C Put the ranks of coarse-grain processes in one table and create -C the respective communicator. The processes with ranks "in between" -C the ranks of CG processes will perform fine graining for the CG -C process with the next lower rank. - do i=0,nprocs-1,nfgtasks - cgtasks(i/nfgtasks)=i - enddo - if (lprn) then - print*,"Processor",me," cgtasks",(cgtasks(i),i=0,nodes-1) -c print "(a,i5,a)","Processor",myrank," Before MPI_Comm_group" - endif -c call memmon_print_usage() - call MPI_Comm_group(MPI_COMM_WORLD,world_group,IERR) - call MPI_Group_incl(world_group,nodes,cgtasks,cg_group,IERR) - call MPI_Comm_create(MPI_COMM_WORLD,cg_group,CG_COMM,IERR) - call MPI_Group_rank(cg_group,me,ierr) - call MPI_Group_free(world_group,ierr) - call MPI_Group_free(cg_group,ierr) -c print "(a,i5,a)","Processor",myrank," After MPI_Comm_group" -c call memmon_print_usage() - if (me.ne.MPI_UNDEFINED) call MPI_Comm_Rank(CG_COMM,me,ierr) - if (lprn) print *," Processor",myrank," CG rank",me -C Create communicators containig processes doing "fine grain" tasks. -C The processes within each FG_COMM should have fast communication. - kolor=MyRank/nfgtasks - key=mod(MyRank,nfgtasks) - call MPI_Comm_split(MPI_COMM_WORLD,kolor,key,FG_COMM,ierr) - call MPI_Comm_size(FG_COMM,fg_size,ierr) - if (fg_size.ne.nfgtasks) then - write (*,*) "OOOOps... the number of fg tasks is",fg_size, - & " but",nfgtasks," was requested. MyRank=",MyRank - endif - call MPI_Comm_rank(FG_COMM,fg_rank,ierr) - if (fg_size.gt.max_gs_size) then - kolor1=fg_rank/max_gs_size - key1=mod(fg_rank,max_gs_size) - call MPI_Comm_split(FG_COMM,kolor1,key1,FG_COMM1,ierr) - call MPI_Comm_size(FG_COMM1,nfgtasks1,ierr) - call MPI_Comm_rank(FG_COMM1,fg_rank1,ierr) - else - FG_COMM1=FG_COMM - nfgtasks1=nfgtasks - fg_rank1=fg_rank - endif - endif - if (fg_rank.eq.0) then - write (*,*) "Processor",MyRank," out of",nprocs, - & " rank in CG_COMM",me," size of CG_COMM",nodes, - & " size of FG_COMM",fg_size, - & " rank in FG_COMM1",fg_rank1," size of FG_COMM1",nfgtasks1 - else - write (*,*) "Processor",MyRank," out of",nprocs, - & " rank in FG_COMM",fg_rank," size of FG_COMM",fg_size, - & " rank in FG_COMM1",fg_rank1," size of FG_COMM1",nfgtasks1 - endif -C Initialize other variables. -c print '(a)','Before initialize' -c call memmon_print_usage() - call initialize -c print '(a,i5,a)','Processor',myrank,' After initialize' -c call memmon_print_usage() -C Open task-dependent files. -c print '(a,i5,a)','Processor',myrank,' Before openunits' -c call memmon_print_usage() - call openunits -c print '(a,i5,a)','Processor',myrank,' After openunits' -c call memmon_print_usage() - if (me.eq.king .or. fg_rank.eq.0 .and. .not. out1file) - & write (iout,'(80(1h*)/a/80(1h*))') - & 'United-residue force field calculation - parallel job.' -c print *,"Processor",myrank," exited OPENUNITS" - return - end -C----------------------------------------------------------------------------- - subroutine finish_task - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - include 'COMMON.SETUP' - include 'COMMON.CONTROL' -c include 'COMMON.REMD' - include 'COMMON.IOUNITS' - include 'COMMON.FFIELD' - include 'COMMON.TIME1' - include 'COMMON.MD_' - integer ilen - external ilen -c - call MPI_Barrier(CG_COMM,ierr) - if (nfgtasks.gt.1) - & call MPI_Bcast(-1,1,MPI_INTEGER,king,FG_COMM,IERROR) - time1=MPI_WTIME() - if (me.eq.king .or. .not. out1file) then - write (iout,'(a,i4,a)') 'CG processor',me,' is finishing work.' - write (iout,*) 'Total wall clock time',time1-walltime,' sec' - if (nfgtasks.gt.1) then - write (iout,'(80(1h=)/a/(80(1h=)))') - & "Details of FG communication time" - write (iout,'(7(a40,1pe15.5/),40(1h-)/a40,1pe15.5/80(1h=))') - & "BROADCAST:",time_bcast,"REDUCE:",time_reduce, - & "GATHER:",time_gather, - & "SCATTER:",time_scatter,"SENDRECV:",time_sendrecv, - & "BARRIER ene",time_barrier_e, - & "BARRIER grad",time_barrier_g,"TOTAL:", - & time_bcast+time_reduce+time_gather+time_scatter+time_sendrecv - & +time_barrier_e+time_barrier_g - write (*,*) 'Total wall clock time',time1-walltime,' sec' - write (*,*) "Processor",me," BROADCAST time",time_bcast, - & " REDUCE time", - & time_reduce," GATHER time",time_gather," SCATTER time", - & time_scatter," SENDRECV",time_sendrecv, - & " BARRIER ene",time_barrier_e," BARRIER grad",time_barrier_g - endif - endif - write (*,'(a,i4,a)') 'CG processor',me,' is finishing work.' - if (ilen(tmpdir).gt.0) then - write (*,*) "Processor",me, - & ": moving output files to the parent directory..." - close(inp) - close(istat,status='keep') - if (ntwe.gt.0) call move_from_tmp(statname) - close(irest2,status='keep') -cremd if (modecalc.eq.12.or. -cremd & (modecalc.eq.14 .and. .not.restart1file)) then -cremd call move_from_tmp(rest2name) -cremd else if (modecalc.eq.14.and. me.eq.king) then -cremd call move_from_tmp(mremd_rst_name) -cremd endif -cmd if (mdpdb) then -cmd close(ipdb,status='keep') -cmd call move_from_tmp(pdbname) -cmd else if (me.eq.king .or. .not.traj1file) then -cmd close(icart,status='keep') -cmd call move_from_tmp(cartname) -cmd endif - if (me.eq.king .or. .not. out1file) then - close (iout,status='keep') - call move_from_tmp(outname) - endif - endif - return - end -c------------------------------------------------------------------------- - subroutine pattern_receive - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - include 'COMMON.SETUP' - include 'COMMON.THREAD' - include 'COMMON.IOUNITS' - integer tag,status(MPI_STATUS_SIZE) - integer source,ThreadType - logical flag - ThreadType=45 - source=mpi_any_source - call mpi_iprobe(source,ThreadType, - & CG_COMM,flag,status,ierr) - do while (flag) - write (iout,*) 'Processor ',Me,' is receiving threading', - & ' pattern from processor',status(mpi_source) - write (*,*) 'Processor ',Me,' is receiving threading', - & ' pattern from processor',status(mpi_source) - nexcl=nexcl+1 - call mpi_irecv(iexam(1,nexcl),2,mpi_integer,status(mpi_source), - & ThreadType, CG_COMM,ireq,ierr) - write (iout,*) 'Received pattern:',nexcl,iexam(1,nexcl), - & iexam(2,nexcl) - source=mpi_any_source - call mpi_iprobe(source,ThreadType, - & CG_COMM,flag,status,ierr) - enddo - return - end -c---------------------------------------------------------------------------- - subroutine pattern_send - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - include 'COMMON.INFO' - include 'COMMON.THREAD' - include 'COMMON.IOUNITS' - integer source,ThreadType,ireq - ThreadType=45 - do iproc=0,nprocs-1 - if (iproc.ne.me .and. .not.Koniec(iproc) ) then - call mpi_isend(iexam(1,nexcl),2,mpi_integer,iproc, - & ThreadType, CG_COMM, ireq, ierr) - write (iout,*) 'CG processor ',me,' has sent pattern ', - & 'to processor',iproc - write (*,*) 'CG processor ',me,' has sent pattern ', - & 'to processor',iproc - write (iout,*) 'Pattern:',nexcl,iexam(1,nexcl),iexam(2,nexcl) - endif - enddo - return - end -c----------------------------------------------------------------------------- - subroutine send_stop_sig(Kwita) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - include 'COMMON.INFO' - include 'COMMON.IOUNITS' - integer StopType,StopId,iproc,Kwita,NBytes - StopType=66 -c Kwita=-1 -C print *,'CG processor',me,' StopType=',StopType - Koniec(me)=.true. - if (me.eq.king) then -C Master sends the STOP signal to everybody. - write (iout,'(a,a)') - & 'Master is sending STOP signal to other processors.' - do iproc=1,nprocs-1 - print *,'Koniec(',iproc,')=',Koniec(iproc) - if (.not. Koniec(iproc)) then - call mpi_send(Kwita,1,mpi_integer,iproc,StopType, - & mpi_comm_world,ierr) - write (iout,*) 'Iproc=',iproc,' StopID=',StopID - write (*,*) 'Iproc=',iproc,' StopID=',StopID - endif - enddo - else -C Else send the STOP signal to Master. - call mpi_send(Kwita,1,mpi_integer,MasterID,StopType, - & mpi_comm_world,ierr) - write (iout,*) 'CG processor=',me,' StopID=',StopID - write (*,*) 'CG processor=',me,' StopID=',StopID - endif - return - end -c----------------------------------------------------------------------------- - subroutine recv_stop_sig(Kwita) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - include 'COMMON.INFO' - include 'COMMON.IOUNITS' - integer source,StopType,StopId,iproc,Kwita - logical flag - StopType=66 - Kwita=0 - source=mpi_any_source -c print *,'CG processor:',me,' StopType=',StopType - call mpi_iprobe(source,StopType, - & mpi_comm_world,flag,status,ierr) - do while (flag) - Koniec(status(mpi_source))=.true. - write (iout,*) 'CG processor ',me,' is receiving STOP signal', - & ' from processor',status(mpi_source) - write (*,*) 'CG processor ',me,' is receiving STOP signal', - & ' from processor',status(mpi_source) - call mpi_irecv(Kwita,1,mpi_integer,status(mpi_source),StopType, - & mpi_comm_world,ireq,ierr) - call mpi_iprobe(source,StopType, - & mpi_comm_world,flag,status,ierr) - enddo - return - end -c----------------------------------------------------------------------------- - subroutine send_MCM_info(ione) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - include 'COMMON.SETUP' - include 'COMMON.MCM' - include 'COMMON.IOUNITS' - integer tag,status(MPI_STATUS_SIZE) - integer MCM_info_Type,MCM_info_ID,iproc,one,NBytes - common /aaaa/ isend,irecv - integer nsend - save nsend - nsend=nsend+1 - MCM_info_Type=77 -cd write (iout,'(a,i4,a)') 'CG Processor',me, -cd & ' is sending MCM info to Master.' - write (*,'(a,i4,a,i8)') 'CG processor',me, - & ' is sending MCM info to Master, MCM_info_ID=',MCM_info_ID - call mpi_isend(ione,1,mpi_integer,MasterID, - & MCM_info_Type,mpi_comm_world, MCM_info_ID, ierr) -cd write (iout,*) 'CG processor',me,' has sent info to the master;', -cd & ' MCM_info_ID=',MCM_info_ID - write (*,*) 'CG processor',me,' has sent info to the master;', - & ' MCM_info_ID=',MCM_info_ID,' ierr ',ierr - isend=0 - irecv=0 - return - end -c---------------------------------------------------------------------------- - subroutine receive_MCM_info - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - include 'COMMON.SETUP' - include 'COMMON.MCM' - include 'COMMON.IOUNITS' - integer tag,status(MPI_STATUS_SIZE) - integer source,MCM_info_Type,MCM_info_ID,iproc,ione - logical flag - MCM_info_Type=77 - source=mpi_any_source -c print *,'source=',source,' dontcare=',dontcare - call mpi_iprobe(source,MCM_info_Type, - & mpi_comm_world,flag,status,ierr) - do while (flag) - source=status(mpi_source) - itask=source/fgProcs+1 -cd write (iout,*) 'Master is receiving MCM info from processor ', -cd & source,' itask',itask - write (*,*) 'Master is receiving MCM info from processor ', - & source,' itask',itask - call mpi_irecv(ione,1,mpi_integer,source,MCM_info_type, - & mpi_comm_world,MCM_info_ID,ierr) -cd write (iout,*) 'Received from processor',source,' IONE=',ione - write (*,*) 'Received from processor',source,' IONE=',ione - nacc_tot=nacc_tot+1 - if (ione.eq.2) nsave_part(itask)=nsave_part(itask)+1 -cd print *,'nsave_part(',itask,')=',nsave_part(itask) -cd write (iout,*) 'Nacc_tot=',Nacc_tot -cd write (*,*) 'Nacc_tot=',Nacc_tot - source=mpi_any_source - call mpi_iprobe(source,MCM_info_Type, - & mpi_comm_world,flag,status,ierr) - enddo - return - end -c--------------------------------------------------------------------------- - subroutine send_thread_results - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - include 'COMMON.SETUP' - include 'COMMON.THREAD' - include 'COMMON.IOUNITS' - integer tag,status(MPI_STATUS_SIZE) - integer ibuffer(2*maxthread+2),ThreadType,ThreadID,EnerType, - & EnerID,msglen,nbytes - double precision buffer(20*maxthread+2) - ThreadType=444 - EnerType=555 - ipatt(1,nthread+1)=nthread - ipatt(2,nthread+1)=nexcl - do i=1,nthread - do j=1,n_ene - ener(j,i+nthread)=ener0(j,i) - enddo - enddo - ener(1,2*nthread+1)=max_time_for_thread - ener(2,2*nthread+1)=ave_time_for_thread -C Send the IPATT array - write (iout,*) 'CG processor',me, - & ' is sending IPATT array to master: NTHREAD=',nthread - write (*,*) 'CG processor',me, - & ' is sending IPATT array to master: NTHREAD=',nthread - msglen=2*nthread+2 - call mpi_send(ipatt(1,1),msglen,MPI_INTEGER,MasterID, - & ThreadType,mpi_comm_world,ierror) - write (iout,*) 'CG processor',me, - & ' has sent IPATT array to master MSGLEN',msglen - write (*,*) 'CG processor',me, - & ' has sent IPATT array to master MSGLEN',msglen -C Send the energies. - msglen=n_ene2*nthread+2 - write (iout,*) 'CG processor',me,' is sending energies to master.' - write (*,*) 'CG processor',me,' is sending energies to master.' - call mpi_send(ener(1,1),msglen,MPI_DOUBLE_PRECISION,MasterID, - & EnerType,mpi_comm_world,ierror) - write (iout,*) 'CG processor',me,' has sent energies to master.' - write (*,*) 'CG processor',me,' has sent energies to master.' - return - end -c---------------------------------------------------------------------------- - subroutine receive_thread_results(iproc) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - include 'COMMON.INFO' - include 'COMMON.THREAD' - include 'COMMON.IOUNITS' - integer ibuffer(2*maxthread+2),ThreadType,ThreadID,EnerType, - & EnerID,ReadyType,ReadyID,Ready,msglen,nbytes,nthread_temp - double precision buffer(20*maxthread+2),max_time_for_thread_t, - & ave_time_for_thread_t - logical flag - ThreadType=444 - EnerType=555 -C Receive the IPATT array - call mpi_probe(iproc,ThreadType, - & mpi_comm_world,status,ierr) - call MPI_GET_COUNT(STATUS, MPI_INTEGER, MSGLEN, IERROR) - write (iout,*) 'Master is receiving IPATT array from processor:', - & iproc,' MSGLEN',msglen - write (*,*) 'Master is receiving IPATT array from processor:', - & iproc,' MSGLEN',msglen - call mpi_recv(ipatt(1,nthread+1),msglen,mpi_integer,iproc, - & ThreadType, - & mpi_comm_world,status,ierror) - write (iout,*) 'Master has received IPATT array from processor:', - & iproc,' MSGLEN=',msglen - write (*,*) 'Master has received IPATT array from processor:', - & iproc,' MSGLEN=',msglen - nthread_temp=ipatt(1,nthread+msglen/2) - nexcl_temp=ipatt(2,nthread+msglen/2) -C Receive the energies. - call mpi_probe(iproc,EnerType, - & mpi_comm_world,status,ierr) - call MPI_GET_COUNT(STATUS, MPI_DOUBLE_PRECISION, MSGLEN, IERROR) - write (iout,*) 'Master is receiving energies from processor:', - & iproc,' MSGLEN=',MSGLEN - write (*,*) 'Master is receiving energies from processor:', - & iproc,' MSGLEN=',MSGLEN - call mpi_recv(ener(1,nthread+1),msglen, - & MPI_DOUBLE_PRECISION,iproc, - & EnerType,MPI_COMM_WORLD,status,ierror) - write (iout,*) 'Msglen=',Msglen - write (*,*) 'Msglen=',Msglen - write (iout,*) 'Master has received energies from processor',iproc - write (*,*) 'Master has received energies from processor',iproc - write (iout,*) 'NTHREAD_TEMP=',nthread_temp,' NEXCL=',nexcl_temp - write (*,*) 'NTHREAD_TEMP=',nthread_temp,' NEXCL=',nexcl_temp - do i=1,nthread_temp - do j=1,n_ene - ener0(j,nthread+i)=ener(j,nthread+nthread_temp+i) - enddo - enddo - max_time_for_thread_t=ener(1,nthread+2*nthread_temp+1) - ave_time_for_thread_t=ener(2,nthread+2*nthread_temp+1) - write (iout,*) 'MAX_TIME_FOR_THREAD:',max_time_for_thread_t - write (iout,*) 'AVE_TIME_FOR_THREAD:',ave_time_for_thread_t - write (*,*) 'MAX_TIME_FOR_THREAD:',max_time_for_thread_t - write (*,*) 'AVE_TIME_FOR_THREAD:',ave_time_for_thread_t - if (max_time_for_thread_t.gt.max_time_for_thread) - & max_time_for_thread=max_time_for_thread_t - ave_time_for_thread=(nthread*ave_time_for_thread+ - & nthread_temp*ave_time_for_thread_t)/(nthread+nthread_temp) - nthread=nthread+nthread_temp - return - end -#else - subroutine init_task - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.SETUP' - me=0 - myrank=0 - fg_rank=0 - fg_size=1 - nodes=1 - nprocs=1 - call initialize - call openunits - write (iout,'(80(1h*)/a/80(1h*))') - & 'United-residue force field calculation - serial job.' - return - end -#endif diff --git a/source/unres/src_CSA_DiL/Makefile b/source/unres/src_CSA_DiL/Makefile deleted file mode 120000 index 8453cdd..0000000 --- a/source/unres/src_CSA_DiL/Makefile +++ /dev/null @@ -1 +0,0 @@ -Makefile_MPICH_ifort \ No newline at end of file diff --git a/source/unres/src_CSA_DiL/Makefile_MPICH_bluegene b/source/unres/src_CSA_DiL/Makefile_MPICH_bluegene deleted file mode 100644 index 1575096..0000000 --- a/source/unres/src_CSA_DiL/Makefile_MPICH_bluegene +++ /dev/null @@ -1,142 +0,0 @@ -################################################################################# -FC = mpixlf77 -OPT = -O4 -qarch=qp -qtune=qp -qnocr -#OPT = -O3 -qarch=qp -qtune=qp -qdebug=function_trace -#OPT = -O -qarch=qp -qtune=qp -#OPT = -O0 -C -g -qarch=qp -qtune=qp #-qdebug=function_trace -#-Minline=name:scalar2,scalar,transpose2,matvec2,prodmat3 \ -#-Mprefetch=distance:8,nta - -#OPT1 = -O -g -qarch=qp -qtune=qp -#OPT1 = -O -g -qarch=qp -qtune=qp -qdebug=function_trace -OPT1 = ${OPT} -#OPT2 = -O2 -qarch=qp -qtune=qp -#OPT2 = -O2 -qarch=qp -qtune=qp -qdebug=function_trace -OPT2 = ${OPT} -#OPTE = -O4 -qarch=qp -qtune=qp -#OPTE = -O4 -qarch=qp -qtune=qp -OPTE=${OPT} - -CFLAGS = -c -FFLAGS = -c ${OPT} -I$(INSTALL_DIR)/include -FFLAGS1 = -c ${OPT1} -I$(INSTALL_DIR)/include -FFLAGS2 = -c ${OPT2} -I$(INSTALL_DIR)/include -FFLAGSE = -c ${OPTE} -I$(INSTALL_DIR)/include - -LIBS = xdrf/libxdrf.a - -ARCH = LINUX -PP = /lib/cpp -P - -all: no_option - @echo "Specify force field: GAB, E0LL2Y, 4P or CASP3" - -.SUFFIXES: .F -.F.o: - ${FC} ${FFLAGS} ${CPPFLAGS} $*.F - - -object = unres_csa.o arcos.o cartprint.o chainbuild.o initialize_p.o \ - matmult.o readrtns_csa.o parmread.o \ - pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \ - cartder.o checkder_p.o econstr_local.o energy_p_new_barrier.o \ - gradient_p.o minimize_p.o sumsld.o \ - cored.o rmdd.o geomout_min.o readpdb.o \ - intcartderiv.o \ - MP.o printmat.o convert.o int_to_cart.o \ - dfa.o \ - together.o csa.o minim_jlee.o shift.o diff12.o bank.o newconf.o ran.o \ - indexx.o prng_32.o contact.o gen_rand_conf.o \ - sc_move.o test.o local_move.o rmsd.o fitsq.o elecont.o djacob.o \ - distfit.o banach.o TMscore_subroutine.o minim_mult.o refsys.o - -no_option: - -GAB: CPPFLAGS = -DPROCOR -DLINUX -DPGI -DAMD64 -DUNRES -DISNAN -DMP -DMPI \ - -DSPLITELE -DLANG0 -DCRYST_BOND -DCRYST_THETA -DCRYST_SC -GAB: BIN = ../../../bin/unres/CSA/unres_csa-DL_xlf77_MPICH_GAB.exe -LIBS = -lpthread -L$(INSTALL_DIR)/lib -lmpich -GAB: ${object} - cc -o compinfo compinfo.c - ./compinfo | true - ${FC} ${FFLAGS} cinfo.f - ${FC} ${OPT} ${object} cinfo.o ${LIBS} -o ${BIN} - -E0LL2Y: CPPFLAGS = -DPROCOR -DLINUX -DPGI -DAMD64 -DUNRES -DISNAN -DMP -DMPI \ - -DSPLITELE -DLANG0 -E0LL2Y: BIN = ../../../bin/unres/CSA/unres_csa-DL_xlf77_MPICH_E0LL2Y.exe -E0LL2Y: ${object} - cc -o compinfo compinfo.c - ./compinfo | true - ${FC} ${FFLAGS} cinfo.f - ${FC} ${OPT} ${object} cinfo.o ${LIBS} -o ${BIN} - -4P: CPPFLAGS = -DLINUX -DPGI -DISNAN -DMP -DMPI -DUNRES \ - -DSPLITELE -DAMD64 -DLANG0 \ - -DCRYST_BOND -DCRYST_THETA -DCRYST_SC -4P: BIN = ../../../bin/unres/CSA/unres_csa-DL_xlf77_MPICH_4P.exe -4P: ${object} - cc -o compinfo compinfo.c - ./compinfo | true - ${FC} ${FFLAGS} cinfo.f - ${FC} ${OPT} ${object} cinfo.o ${LIBS} -o ${BIN} - -clean: - /bin/rm -f *.o && /bin/rm -f compinfo - -test.o: test.F - ${FC} ${FFLAGS} ${CPPFLAGS} test.F - -chainbuild.o: chainbuild.F - ${FC} ${FFLAGS} ${CPPFLAGS} chainbuild.F - -matmult.o: matmult.f - ${FC} ${FFLAGS} ${CPPFLAGS} matmult.f - -parmread.o : parmread.F - ${FC} ${FFLAGS} ${CPPFLAGS} parmread.F - -intcor.o : intcor.f - ${FC} ${FFLAGS} ${CPPFLAGS} intcor.f - -cartder.o : cartder.F - ${FC} ${FFLAGS} ${CPPFLAGS} cartder.F - -readpdb.o : readpdb.F - ${FC} ${FFLAGS2} ${CPPFLAGS} readpdb.F - -sumsld.o : sumsld.f - ${FC} ${FFLAGS} ${CPPFLAGS} sumsld.f - -cored.o : cored.f - ${FC} ${FFLAGS1} ${CPPFLAGS} cored.f - -rmdd.o : rmdd.f - ${FC} ${FFLAGS} ${CPPFLAGS} rmdd.f - -energy_p_new_barrier.o : energy_p_new_barrier.F - ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new_barrier.F - -gradient_p.o : gradient_p.F - ${FC} ${FFLAGSE} ${CPPFLAGS} gradient_p.F - -energy_p_new-sep_barrier.o : energy_p_new-sep_barrier.F - ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new-sep_barrier.F - -lagrangian_lesyng.o : lagrangian_lesyng.F - ${FC} ${FFLAGSE} ${CPPFLAGS} lagrangian_lesyng.F - -MD_A-MTS.o : MD_A-MTS.F - ${FC} ${FFLAGSE} ${CPPFLAGS} MD_A-MTS.F - -blas.o : blas.f - ${FC} ${FFLAGS1} blas.f - -add.o : add.f - ${FC} ${FFLAGS1} add.f - -eigen.o : eigen.f - ${FC} ${FFLAGS2} eigen.f - -proc_proc.o: proc_proc.c - ${CC} ${CFLAGS} proc_proc.c diff --git a/source/unres/src_CSA_DiL/Makefile_MPICH_gfortran b/source/unres/src_CSA_DiL/Makefile_MPICH_gfortran deleted file mode 100644 index c6cca6c..0000000 --- a/source/unres/src_CSA_DiL/Makefile_MPICH_gfortran +++ /dev/null @@ -1,130 +0,0 @@ -################################################################### -INSTALL_DIR = /users/software/mpich2-1.0.7 - -FC= gfortran - -OPT = -O - -FFLAGS = -c ${OPT} -I$(INSTALL_DIR)/include -FFLAGS1 = -c -I$(INSTALL_DIR)/include -FFLAGS2 = -c -O0 -I$(INSTALL_DIR)/include -FFLAGS3 = -c -O -I$(INSTALL_DIR)/include -FFLAGSE = -c -O3 -I$(INSTALL_DIR)/include - -LIBS = -L$(INSTALL_DIR)/lib -lmpich -lpthread - -ARCH = LINUX -PP = /lib/cpp -P - - -all: no_option - @echo "Specify force field: GAB, E0LL2Y, 4P or CASP3" - -.SUFFIXES: .F -.F.o: - ${FC} ${FFLAGS} ${CPPFLAGS} $*.F - - -object = unres_csa.o arcos.o cartprint.o chainbuild.o initialize_p.o \ - matmult.o readrtns_csa.o parmread.o \ - pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \ - cartder.o checkder_p.o econstr_local.o energy_p_new_barrier.o \ - gradient_p.o minimize_p.o sumsld.o \ - cored.o rmdd.o geomout_min.o readpdb.o \ - intcartderiv.o \ - MP.o printmat.o convert.o int_to_cart.o \ - dfa.o \ - together.o csa.o minim_jlee.o shift.o diff12.o bank.o newconf.o ran.o \ - indexx.o prng_32.o contact.o gen_rand_conf.o \ - sc_move.o test.o local_move.o rmsd.o fitsq.o elecont.o djacob.o \ - distfit.o banach.o TMscore_subroutine.o minim_mult.o refsys.o - -no_option: - -GAB: CPPFLAGS = -DPROCOR -DLINUX -DG77 -DAMD64 -DUNRES -DISNAN -DMP -DMPI \ - -DSPLITELE -DLANG0 -DCRYST_BOND -DCRYST_THETA -DCRYST_SC -GAB: BIN = ../../../bin/unres/CSA/unres_csa-DL_gfort_MPICH_GAB.exe -GAB: ${object} - cc -o compinfo compinfo.c - ./compinfo | true - ${FC} ${FFLAGS} cinfo.f - ${FC} ${OPT} ${object} cinfo.o ${LIBS} -o ${BIN} - -E0LL2Y: CPPFLAGS = -DPROCOR -DLINUX -DG77 -DAMD64 -DUNRES -DISNAN -DMP -DMPI \ - -DSPLITELE -DLANG0 -E0LL2Y: BIN = ../../../bin/unres/CSA/unres_csa-DL_gfort_MPICH_E0LL2Y.exe -E0LL2Y: ${object} - cc -o compinfo compinfo.c - ./compinfo | true - ${FC} ${FFLAGS} cinfo.f - ${FC} ${OPT} ${object} cinfo.o ${LIBS} -o ${BIN} - -4P: CPPFLAGS = -DLINUX -DG77 -DISNAN -DMP -DMPI -DUNRES \ - -DSPLITELE -DAMD64 -DLANG0 \ - -DCRYST_BOND -DCRYST_THETA -DCRYST_SC -4P: BIN = ../../../bin/unres/CSA/unres_csa-DL_gfort_MPICH_4P.exe -4P: ${object} - cc -o compinfo compinfo.c - ./compinfo | true - ${FC} ${FFLAGS} cinfo.f - ${FC} ${OPT} ${object} cinfo.o ${LIBS} -o ${BIN} - -clean: - /bin/rm -f *.o && /bin/rm -f compinfo - -test.o: test.F - ${FC} ${FFLAGS} ${CPPFLAGS} test.F - -chainbuild.o: chainbuild.F - ${FC} ${FFLAGS} ${CPPFLAGS} chainbuild.F - -matmult.o: matmult.f - ${FC} ${FFLAGS} ${CPPFLAGS} matmult.f - -parmread.o : parmread.F - ${FC} ${FFLAGS} ${CPPFLAGS} parmread.F - -intcor.o : intcor.f - ${FC} ${FFLAGS} ${CPPFLAGS} intcor.f - -cartder.o : cartder.F - ${FC} ${FFLAGS} ${CPPFLAGS} cartder.F - -readpdb.o : readpdb.F - ${FC} ${FFLAGS2} ${CPPFLAGS} readpdb.F - -sumsld.o : sumsld.f - ${FC} ${FFLAGS} ${CPPFLAGS} sumsld.f - -cored.o : cored.f - ${FC} ${FFLAGS1} ${CPPFLAGS} cored.f - -rmdd.o : rmdd.f - ${FC} ${FFLAGS} ${CPPFLAGS} rmdd.f - -energy_p_new_barrier.o : energy_p_new_barrier.F - ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new_barrier.F - -gradient_p.o : gradient_p.F - ${FC} ${FFLAGSE} ${CPPFLAGS} gradient_p.F - -energy_p_new-sep_barrier.o : energy_p_new-sep_barrier.F - ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new-sep_barrier.F - -lagrangian_lesyng.o : lagrangian_lesyng.F - ${FC} ${FFLAGSE} ${CPPFLAGS} lagrangian_lesyng.F - -MD_A-MTS.o : MD_A-MTS.F - ${FC} ${FFLAGSE} ${CPPFLAGS} MD_A-MTS.F - -blas.o : blas.f - ${FC} ${FFLAGS1} blas.f - -add.o : add.f - ${FC} ${FFLAGS1} add.f - -eigen.o : eigen.f - ${FC} ${FFLAGS2} eigen.f - -proc_proc.o: proc_proc.c - ${CC} ${CFLAGS} proc_proc.c diff --git a/source/unres/src_CSA_DiL/Makefile_MPICH_ifort b/source/unres/src_CSA_DiL/Makefile_MPICH_ifort deleted file mode 100644 index 7e2c69c..0000000 --- a/source/unres/src_CSA_DiL/Makefile_MPICH_ifort +++ /dev/null @@ -1,132 +0,0 @@ -################################################################### -INSTALL_DIR = /users/software/mpich-1.2.7p1_intel-10.1_em64_ssh - - -FC= ifort - -OPT = -O3 -ip - -FFLAGS = -c ${OPT} -I$(INSTALL_DIR)/include -FFLAGS1 = -c -g -CA -CB -I$(INSTALL_DIR)/include -FFLAGS2 = -c -g -O0 -I$(INSTALL_DIR)/include -FFLAGSE = -c -O3 -ipo -opt_report -I$(INSTALL_DIR)/include - - -LIBS = -L$(INSTALL_DIR)/lib -lmpich - -ARCH = LINUX -PP = /lib/cpp -P - - -all: no_option - @echo "Specify force field: GAB, E0LL2Y, 4P or CASP3" - -.SUFFIXES: .F -.F.o: - ${FC} ${FFLAGS} ${CPPFLAGS} $*.F - - -object = unres_csa.o arcos.o cartprint.o chainbuild.o initialize_p.o \ - matmult.o readrtns_csa.o parmread.o \ - pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \ - cartder.o checkder_p.o econstr_local.o energy_p_new_barrier.o \ - gradient_p.o minimize_p.o sumsld.o \ - cored.o rmdd.o geomout_min.o readpdb.o \ - intcartderiv.o \ - MP.o printmat.o convert.o int_to_cart.o \ - dfa.o \ - together.o csa.o minim_jlee.o shift.o diff12.o bank.o newconf.o ran.o \ - indexx.o prng_32.o contact.o gen_rand_conf.o \ - sc_move.o test.o local_move.o rmsd.o fitsq.o elecont.o djacob.o \ - distfit.o banach.o TMscore_subroutine.o minim_mult.o refsys.o - -no_option: - -GAB: CPPFLAGS = -DPROCOR -DLINUX -DPGI -DAMD64 -DUNRES -DISNAN -DMP -DMPI \ - -DSPLITELE -DLANG0 -DCRYST_BOND -DCRYST_THETA -DCRYST_SC -GAB: BIN = ../../../bin/unres/CSA/unres_csa-DL_ifort_MPICH_GAB.exe -LIBS = -lpthread -L$(INSTALL_DIR)/lib -lmpich -GAB: ${object} - cc -o compinfo compinfo.c - ./compinfo | true - ${FC} ${FFLAGS} cinfo.f - ${FC} ${OPT} ${object} cinfo.o ${LIBS} -o ${BIN} - -E0LL2Y: CPPFLAGS = -DPROCOR -DLINUX -DPGI -DAMD64 -DUNRES -DISNAN -DMP -DMPI \ - -DSPLITELE -DLANG0 -E0LL2Y: BIN = ../../../bin/unres/CSA/unres_csa-DL_ifort_MPICH_E0LL2Y.exe -E0LL2Y: ${object} - cc -o compinfo compinfo.c - ./compinfo | true - ${FC} ${FFLAGS} cinfo.f - ${FC} ${OPT} ${object} cinfo.o ${LIBS} -o ${BIN} - -4P: CPPFLAGS = -DLINUX -DPGI -DISNAN -DMP -DMPI -DUNRES \ - -DSPLITELE -DAMD64 -DLANG0 \ - -DCRYST_BOND -DCRYST_THETA -DCRYST_SC -4P: BIN = ../../../bin/unres/CSA/unres_csa-DL_ifort_MPICH_4P.exe -4P: ${object} - cc -o compinfo compinfo.c - ./compinfo | true - ${FC} ${FFLAGS} cinfo.f - ${FC} ${OPT} ${object} cinfo.o ${LIBS} -o ${BIN} - -clean: - /bin/rm -f *.o && /bin/rm -f compinfo - -test.o: test.F - ${FC} ${FFLAGS} ${CPPFLAGS} test.F - -chainbuild.o: chainbuild.F - ${FC} ${FFLAGS} ${CPPFLAGS} chainbuild.F - -matmult.o: matmult.f - ${FC} ${FFLAGS} ${CPPFLAGS} matmult.f - -parmread.o : parmread.F - ${FC} ${FFLAGS} ${CPPFLAGS} parmread.F - -intcor.o : intcor.f - ${FC} ${FFLAGS} ${CPPFLAGS} intcor.f - -cartder.o : cartder.F - ${FC} ${FFLAGS} ${CPPFLAGS} cartder.F - -readpdb.o : readpdb.F - ${FC} ${FFLAGS2} ${CPPFLAGS} readpdb.F - -sumsld.o : sumsld.f - ${FC} ${FFLAGS} ${CPPFLAGS} sumsld.f - -cored.o : cored.f - ${FC} ${FFLAGS1} ${CPPFLAGS} cored.f - -rmdd.o : rmdd.f - ${FC} ${FFLAGS} ${CPPFLAGS} rmdd.f - -energy_p_new_barrier.o : energy_p_new_barrier.F - ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new_barrier.F - -gradient_p.o : gradient_p.F - ${FC} ${FFLAGSE} ${CPPFLAGS} gradient_p.F - -energy_p_new-sep_barrier.o : energy_p_new-sep_barrier.F - ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new-sep_barrier.F - -lagrangian_lesyng.o : lagrangian_lesyng.F - ${FC} ${FFLAGSE} ${CPPFLAGS} lagrangian_lesyng.F - -MD_A-MTS.o : MD_A-MTS.F - ${FC} ${FFLAGSE} ${CPPFLAGS} MD_A-MTS.F - -blas.o : blas.f - ${FC} ${FFLAGS1} blas.f - -add.o : add.f - ${FC} ${FFLAGS1} add.f - -eigen.o : eigen.f - ${FC} ${FFLAGS2} eigen.f - -proc_proc.o: proc_proc.c - ${CC} ${CFLAGS} proc_proc.c diff --git a/source/unres/src_CSA_DiL/README.Juyong b/source/unres/src_CSA_DiL/README.Juyong deleted file mode 100644 index b2dbf30..0000000 --- a/source/unres/src_CSA_DiL/README.Juyong +++ /dev/null @@ -1,13 +0,0 @@ -2010/12/20 - -0. added lines in the molread subroutine in readrtns_min.F file - to read dfa_weight functions, WDFA, "wdfa" variable is added in COMMON.FFIELD - -0-1. added lines in readrtns_min.F to print out dfa weights! -0-2. add subroutines to setup DFA variables & "READ fragment info" - -> init_dfa_vars - -> read_dfa_info - -1. added "gdfa_dist, gdfa_tor, gdfa_nei, gdfa_beta" to COMMON.DERIV - -2. changed n_ene in DIMENSIONS from 23 to 27, since DFA has four terms...... diff --git a/source/unres/src_CSA_DiL/TMscore_subroutine.f b/source/unres/src_CSA_DiL/TMscore_subroutine.f deleted file mode 100644 index 8e6ee9a..0000000 --- a/source/unres/src_CSA_DiL/TMscore_subroutine.f +++ /dev/null @@ -1,536 +0,0 @@ -************************************************************************* -************************************************************************* -* This is a subroutine to compare two structures and find the -* superposition that has the maximum TM-score. -* Reference: Yang Zhang, Jeffrey Skolnick, Proteins 2004 57:702-10. -* -* Explanations: -* L1--Length of the first structure -* (x1(i),y1(i),z1(i))--coordinates of i'th residue at the first structure -* n1(i)--Residue sequence number of i'th residue at the first structure -* L2--Length of the second structure -* (x2(i),y2(i),z2(i))--coordinates of i'th residue at the second structure -* n2(i)--Residue sequence number of i'th residue at the second structure -* TM--TM-score of the comparison -* Rcomm--RMSD of two structures in the common aligned residues -* Lcomm--Length of the common aligned regions -* -* Note: -* 1, Always put native as the second structure, by which TM-score -* is normalized. -* 2, The returned (x1(i),y1(i),z1(i)) are the rotated structure after -* TM-score superposition. -************************************************************************* -************************************************************************* - subroutine TMscore(L1,x1,y1,z1,n1,L2,x2,y2,z2,n2,TM,Rcomm,Lcomm) - include 'DIMENSIONS' - PARAMETER(nmax=maxres) - common/stru/xt(nmax),yt(nmax),zt(nmax),xb(nmax),yb(nmax),zb(nmax) - common/nres/nresA(nmax),nresB(nmax),nseqA,nseqB - common/para/d,d0 - common/align/n_ali,iA(nmax),iB(nmax) - common/nscore/i_ali(nmax),n_cut ![1,n_ali],align residues for the score - dimension k_ali(nmax),k_ali0(nmax) - dimension L_ini(100),iq(nmax) - common/scores/score - double precision score,score_max - dimension xa(nmax),ya(nmax),za(nmax) - - dimension x1(nmax),y1(nmax),z1(nmax),n1(nmax) - dimension x2(nmax),y2(nmax),z2(nmax),n2(nmax) - -ccc RMSD: - double precision r_1(3,nmax),r_2(3,nmax),r_3(3,nmax),w(nmax) - double precision u(3,3),t(3),rms,drms !armsd is real - data w /nmax*1.0/ -ccc - -********* convert input data **************** - nseqA=L1 - do i=1,nseqA - xa(i)=x1(i) - ya(i)=y1(i) - za(i)=z1(i) - nresA(i)=n1(i) - enddo - nseqB=L2 - do i=1,L2 - xb(i)=x2(i) - yb(i)=y2(i) - zb(i)=z2(i) - nresB(i)=n2(i) - enddo - -****************************************************************** -* pickup the aligned residues: -****************************************************************** - k=0 - do i=1,nseqA - do j=1,nseqB - if(nresA(i).eq.nresB(j))then - k=k+1 - iA(k)=i - iB(k)=j - goto 205 - endif - enddo - 205 continue - enddo - n_ali=k !number of aligned residues - Lcomm=n_ali - if(n_ali.lt.1)then -c write(*,*)'There is no common residues in the input structures' - TM=0 - Rcomm=0 - return - endif - -************///// -* parameters: -***************** -*** d0-------------> - d0=1.24*(nseqB-15)**(1.0/3.0)-1.8 - if(d0.lt.0.5)d0=0.5 -*** d0_search -----> - d0_search=d0 - if(d0_search.gt.8)d0_search=8 - if(d0_search.lt.4.5)d0_search=4.5 -*** iterative parameters -----> - n_it=20 !maximum number of iterations - d_output=5 !for output alignment - n_init_max=6 !maximum number of L_init - n_init=0 - L_ini_min=4 - if(n_ali.lt.4)L_ini_min=n_ali - do i=1,n_init_max-1 - n_init=n_init+1 - L_ini(n_init)=n_ali/2**(n_init-1) - if(L_ini(n_init).le.L_ini_min)then - L_ini(n_init)=L_ini_min - goto 402 - endif - enddo - n_init=n_init+1 - L_ini(n_init)=L_ini_min - 402 continue - -****************************************************************** -* find the maximum score starting from local structures superposition -****************************************************************** - score_max=-1 !TM-score - do 333 i_init=1,n_init - L_init=L_ini(i_init) - iL_max=n_ali-L_init+1 - do 300 iL=1,iL_max !on aligned residues, [1,nseqA] - LL=0 - ka=0 - do i=1,L_init - k=iL+i-1 ![1,n_ali] common aligned - r_1(1,i)=xa(iA(k)) - r_1(2,i)=ya(iA(k)) - r_1(3,i)=za(iA(k)) - r_2(1,i)=xb(iB(k)) - r_2(2,i)=yb(iB(k)) - r_2(3,i)=zb(iB(k)) - LL=LL+1 - ka=ka+1 - k_ali(ka)=k - enddo - call u3b(w,r_1,r_2,LL,1,rms,u,t,ier) !u rotate r_1 to r_2 - if(i_init.eq.1)then !global superposition - armsd=dsqrt(rms/LL) - Rcomm=armsd - endif - do j=1,nseqA - xt(j)=t(1)+u(1,1)*xa(j)+u(1,2)*ya(j)+u(1,3)*za(j) - yt(j)=t(2)+u(2,1)*xa(j)+u(2,2)*ya(j)+u(2,3)*za(j) - zt(j)=t(3)+u(3,1)*xa(j)+u(3,2)*ya(j)+u(3,3)*za(j) - enddo - d=d0_search-1 - call score_fun !init, get scores, n_cut+i_ali(i) for iteration - if(score_max.lt.score)then - score_max=score - ka0=ka - do i=1,ka0 - k_ali0(i)=k_ali(i) - enddo - endif -*** iteration for extending ----------------------------------> - d=d0_search+1 - do 301 it=1,n_it - LL=0 - ka=0 - do i=1,n_cut - m=i_ali(i) ![1,n_ali] - r_1(1,i)=xa(iA(m)) - r_1(2,i)=ya(iA(m)) - r_1(3,i)=za(iA(m)) - r_2(1,i)=xb(iB(m)) - r_2(2,i)=yb(iB(m)) - r_2(3,i)=zb(iB(m)) - ka=ka+1 - k_ali(ka)=m - LL=LL+1 - enddo - call u3b(w,r_1,r_2,LL,1,rms,u,t,ier) !u rotate r_1 to r_2 - do j=1,nseqA - xt(j)=t(1)+u(1,1)*xa(j)+u(1,2)*ya(j)+u(1,3)*za(j) - yt(j)=t(2)+u(2,1)*xa(j)+u(2,2)*ya(j)+u(2,3)*za(j) - zt(j)=t(3)+u(3,1)*xa(j)+u(3,2)*ya(j)+u(3,3)*za(j) - enddo - call score_fun !get scores, n_cut+i_ali(i) for iteration - if(score_max.lt.score)then - score_max=score - ka0=ka - do i=1,ka - k_ali0(i)=k_ali(i) - enddo - endif - if(it.eq.n_it)goto 302 - if(n_cut.eq.ka)then - neq=0 - do i=1,n_cut - if(i_ali(i).eq.k_ali(i))neq=neq+1 - enddo - if(n_cut.eq.neq)goto 302 - endif - 301 continue !for iteration - 302 continue - 300 continue !for shift - 333 continue !for initial length, L_ali/M - -******** return the final rotation **************** - LL=0 - do i=1,ka0 - m=k_ali0(i) !record of the best alignment - r_1(1,i)=xa(iA(m)) - r_1(2,i)=ya(iA(m)) - r_1(3,i)=za(iA(m)) - r_2(1,i)=xb(iB(m)) - r_2(2,i)=yb(iB(m)) - r_2(3,i)=zb(iB(m)) - LL=LL+1 - enddo - call u3b(w,r_1,r_2,LL,1,rms,u,t,ier) !u rotate r_1 to r_2 - do j=1,nseqA - x1(j)=t(1)+u(1,1)*xa(j)+u(1,2)*ya(j)+u(1,3)*za(j) - y1(j)=t(2)+u(2,1)*xa(j)+u(2,2)*ya(j)+u(2,3)*za(j) - z1(j)=t(3)+u(3,1)*xa(j)+u(3,2)*ya(j)+u(3,3)*za(j) - enddo - TM=score_max - -c^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - return - END - -ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc -c 1, collect those residues with dis -#include -#include -#include -#include - -main() -{ -FILE *in, *in1, *out; -int i,j,k,iv1,iv2,iv3; -char *p1,buf[500],buf1[500],buf2[100],buf3[100]; -struct utsname Name; -time_t Tp; - -in=fopen("cinfo.f","r"); -out=fopen("cinfo.f.new","w"); -if (fgets(buf,498,in) != NULL) - fprintf(out,"C DO NOT EDIT THIS FILE - IT HAS BEEN GENERATED BY COMPINFO.C\n"); -if (fgets(buf,498,in) != NULL) - sscanf(&buf[1],"%d %d %d",&iv1,&iv2,&iv3); -iv3++; -fprintf(out,"C %d %d %d\n",iv1,iv2,iv3); -fprintf(out," subroutine cinfo\n"); -fprintf(out," include 'COMMON.IOUNITS'\n"); -fprintf(out," write(iout,*)'++++ Compile info ++++'\n"); -fprintf(out," write(iout,*)'Version %d.%-d build %d'\n",iv1,iv2,iv3); -uname(&Name); -time(&Tp); -system("whoami > tmptmp"); -in1=fopen("tmptmp","r"); -if (fscanf(in1,"%s",buf1) != EOF) -{ -p1=ctime(&Tp); -p1[strlen(p1)-1]='\0'; -fprintf(out," write(iout,*)'compiled %s'\n",p1); -fprintf(out," write(iout,*)'compiled by %s@%s'\n",buf1,Name.nodename); -fprintf(out," write(iout,*)'OS name: %s '\n",Name.sysname); -fprintf(out," write(iout,*)'OS release: %s '\n",Name.release); -fprintf(out," write(iout,*)'OS version:',\n"); -fprintf(out," & ' %s '\n",Name.version); -fprintf(out," write(iout,*)'flags:'\n"); -} -system("rm tmptmp"); -fclose(in1); -in1=fopen("Makefile","r"); -while(fgets(buf,498,in1) != NULL) - { - if((p1=strchr(buf,'=')) != NULL && buf[0] != '#') - { - buf[strlen(buf)-1]='\0'; - if(strlen(buf) > 49) - { - buf[47]='\0'; - strcat(buf,"..."); - } - else - { - while(buf[strlen(buf)-1]=='\\') - { - strcat(buf,"\\"); - fprintf(out," write(iout,*)'%s'\n",buf); - if (fgets(buf,498,in1) != NULL) - buf[strlen(buf)-1]='\0'; - if(strlen(buf) > 49) - { - buf[47]='\0'; - strcat(buf,"..."); - } - } - } - - fprintf(out," write(iout,*)'%s'\n",buf); - } - } -fprintf(out," write(iout,*)'++++ End of compile info ++++'\n"); -fprintf(out," return\n"); -fprintf(out," end\n"); -fclose(out); -fclose(in1); -fclose(in); -system("mv cinfo.f.new cinfo.f"); -} diff --git a/source/unres/src_CSA_DiL/contact.f b/source/unres/src_CSA_DiL/contact.f deleted file mode 100644 index 24b11d6..0000000 --- a/source/unres/src_CSA_DiL/contact.f +++ /dev/null @@ -1,195 +0,0 @@ - subroutine contact(lprint,ncont,icont,co) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.FFIELD' - include 'COMMON.NAMES' - real*8 facont /1.569D0/ ! facont = (2/(1-sqrt(1-1/4)))**(1/6) - integer ncont,icont(2,maxcont) - logical lprint - ncont=0 - kkk=3 - do i=nnt+kkk,nct - iti=iabs(itype(i)) - do j=nnt,i-kkk - itj=iabs(itype(j)) - if (ipot.ne.4) then -c rcomp=sigmaii(iti,itj)+1.0D0 - rcomp=facont*sigmaii(iti,itj) - else -c rcomp=sigma(iti,itj)+1.0D0 - rcomp=facont*sigma(iti,itj) - endif -c rcomp=6.5D0 -c print *,'rcomp=',rcomp,' dist=',dist(nres+i,nres+j) - if (dist(nres+i,nres+j).lt.rcomp) then - ncont=ncont+1 - icont(1,ncont)=i - icont(2,ncont)=j - endif - enddo - enddo - if (lprint) then - write (iout,'(a)') 'Contact map:' - do i=1,ncont - i1=icont(1,i) - i2=icont(2,i) - it1=itype(i1) - it2=itype(i2) - write (iout,'(i3,2x,a,i4,2x,a,i4)') - & i,restyp(it1),i1,restyp(it2),i2 - enddo - endif - co = 0.0d0 - do i=1,ncont - co = co + dfloat(iabs(icont(1,i)-icont(2,i))) - enddo - co = co / (nres*ncont) - return - end -c---------------------------------------------------------------------------- - double precision function contact_fract(ncont,ncont_ref, - & icont,icont_ref) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - integer ncont,ncont_ref,icont(2,maxcont),icont_ref(2,maxcont) - nmatch=0 -c print *,'ncont=',ncont,' ncont_ref=',ncont_ref -c write (iout,'(20i4)') (icont_ref(1,i),i=1,ncont_ref) -c write (iout,'(20i4)') (icont_ref(2,i),i=1,ncont_ref) -c write (iout,'(20i4)') (icont(1,i),i=1,ncont) -c write (iout,'(20i4)') (icont(2,i),i=1,ncont) - do i=1,ncont - do j=1,ncont_ref - if (icont(1,i).eq.icont_ref(1,j) .and. - & icont(2,i).eq.icont_ref(2,j)) nmatch=nmatch+1 - enddo - enddo -c print *,' nmatch=',nmatch -c contact_fract=dfloat(nmatch)/dfloat(max0(ncont,ncont_ref)) - contact_fract=dfloat(nmatch)/dfloat(ncont_ref) - return - end -c---------------------------------------------------------------------------- - double precision function contact_fract_nn(ncont,ncont_ref, - & icont,icont_ref) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - integer ncont,ncont_ref,icont(2,maxcont),icont_ref(2,maxcont) - nmatch=0 -c print *,'ncont=',ncont,' ncont_ref=',ncont_ref -c write (iout,'(20i4)') (icont_ref(1,i),i=1,ncont_ref) -c write (iout,'(20i4)') (icont_ref(2,i),i=1,ncont_ref) -c write (iout,'(20i4)') (icont(1,i),i=1,ncont) -c write (iout,'(20i4)') (icont(2,i),i=1,ncont) - do i=1,ncont - do j=1,ncont_ref - if (icont(1,i).eq.icont_ref(1,j) .and. - & icont(2,i).eq.icont_ref(2,j)) nmatch=nmatch+1 - enddo - enddo -c print *,' nmatch=',nmatch -c contact_fract=dfloat(nmatch)/dfloat(max0(ncont,ncont_ref)) - contact_fract_nn=dfloat(ncont-nmatch)/dfloat(ncont) - return - end -c---------------------------------------------------------------------------- - subroutine hairpin(lprint,nharp,iharp) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.FFIELD' - include 'COMMON.NAMES' - integer ncont,icont(2,maxcont) - integer nharp,iharp(4,maxres/3) - logical lprint,not_done - real*8 rcomp /6.0d0/ - ncont=0 - kkk=0 -c print *,'nnt=',nnt,' nct=',nct - do i=nnt,nct-3 - do k=1,3 - c(k,2*nres+1)=0.5d0*(c(k,i)+c(k,i+1)) - enddo - do j=i+2,nct-1 - do k=1,3 - c(k,2*nres+2)=0.5d0*(c(k,j)+c(k,j+1)) - enddo - if (dist(2*nres+1,2*nres+2).lt.rcomp) then - ncont=ncont+1 - icont(1,ncont)=i - icont(2,ncont)=j - endif - enddo - enddo - if (lprint) then - write (iout,'(a)') 'PP contact map:' - do i=1,ncont - i1=icont(1,i) - i2=icont(2,i) - it1=itype(i1) - it2=itype(i2) - write (iout,'(i3,2x,a,i4,2x,a,i4)') - & i,restyp(it1),i1,restyp(it2),i2 - enddo - endif -c finding hairpins - nharp=0 - do i=1,ncont - i1=icont(1,i) - j1=icont(2,i) - if (j1.eq.i1+2 .and. i1.gt.nnt .and. j1.lt.nct) then -c write (iout,*) "found turn at ",i1,j1 - ii1=i1 - jj1=j1 - not_done=.true. - do while (not_done) - i1=i1-1 - j1=j1+1 - do j=1,ncont - if (i1.eq.icont(1,j) .and. j1.eq.icont(2,j)) goto 10 - enddo - not_done=.false. - 10 continue -c write (iout,*) i1,j1,not_done - enddo - i1=i1+1 - j1=j1-1 - if (j1-i1.gt.4) then - nharp=nharp+1 - iharp(1,nharp)=i1 - iharp(2,nharp)=j1 - iharp(3,nharp)=ii1 - iharp(4,nharp)=jj1 -c write (iout,*)'nharp',nharp,' iharp',(iharp(k,nharp),k=1,4) - endif - endif - enddo -c do i=1,nharp -c write (iout,*)'i',i,' iharp',(iharp(k,i),k=1,4) -c enddo - if (lprint) then - write (iout,*) "Hairpins:" - do i=1,nharp - i1=iharp(1,i) - j1=iharp(2,i) - ii1=iharp(3,i) - jj1=iharp(4,i) - write (iout,*) - write (iout,'(20(a,i3,1x))') (restyp(itype(k)),k,k=i1,ii1) - write (iout,'(20(a,i3,1x))') (restyp(itype(k)),k,k=j1,jj1,-1) -c do k=jj1,j1,-1 -c write (iout,'(a,i3,$)') restyp(itype(k)),k -c enddo - enddo - endif - return - end -c---------------------------------------------------------------------------- - diff --git a/source/unres/src_CSA_DiL/convert.f b/source/unres/src_CSA_DiL/convert.f deleted file mode 100644 index dc0cccd..0000000 --- a/source/unres/src_CSA_DiL/convert.f +++ /dev/null @@ -1,196 +0,0 @@ - subroutine geom_to_var(n,x) -C -C Transfer the geometry parameters to the variable array. -C The positions of variables are as follows: -C 1. Virtual-bond torsional angles: 1 thru nres-3 -C 2. Virtual-bond valence angles: nres-2 thru 2*nres-5 -C 3. The polar angles alpha of local SC orientation: 2*nres-4 thru -C 2*nres-4+nside -C 4. The torsional angles omega of SC orientation: 2*nres-4+nside+1 -C thru 2*nre-4+2*nside -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.CHAIN' - double precision x(n) -cd print *,'nres',nres,' nphi',nphi,' ntheta',ntheta,' nvar',nvar - do i=4,nres - x(i-3)=phi(i) -cd print *,i,i-3,phi(i) - enddo - if (n.eq.nphi) return - do i=3,nres - x(i-2+nphi)=theta(i) -cd print *,i,i-2+nphi,theta(i) - enddo - if (n.eq.nphi+ntheta) return - do i=2,nres-1 - if (ialph(i,1).gt.0) then - x(ialph(i,1))=alph(i) - x(ialph(i,1)+nside)=omeg(i) -cd print *,i,ialph(i,1),ialph(i,1)+nside,alph(i),omeg(i) - endif - enddo - return - end -C-------------------------------------------------------------------- - subroutine var_to_geom(n,x) -C -C Update geometry parameters according to the variable array. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - include 'COMMON.IOUNITS' - dimension x(n) - logical change,reduce - change=reduce(x) - if (n.gt.nphi+ntheta) then - do i=1,nside - ii=ialph(i,2) - alph(ii)=x(nphi+ntheta+i) - omeg(ii)=pinorm(x(nphi+ntheta+nside+i)) - enddo - endif - do i=4,nres - phi(i)=x(i-3) - enddo - if (n.eq.nphi) return - do i=3,nres - theta(i)=x(i-2+nphi) - if (theta(i).eq.pi) theta(i)=0.99d0*pi - x(i-2+nphi)=theta(i) - enddo - return - end -c------------------------------------------------------------------------- - logical function convert_side(alphi,omegi) - implicit none - double precision alphi,omegi - double precision pinorm - include 'COMMON.GEO' - convert_side=.false. -C Apply periodicity restrictions. - if (alphi.gt.pi) then - alphi=dwapi-alphi - omegi=pinorm(omegi+pi) - convert_side=.true. - endif - return - end -c------------------------------------------------------------------------- - logical function reduce(x) -C -C Apply periodic restrictions to variables. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - logical zm,zmiana,convert_side - dimension x(nvar) - zmiana=.false. - do i=4,nres - x(i-3)=pinorm(x(i-3)) - enddo - if (nvar.gt.nphi+ntheta) then - do i=1,nside - ii=nphi+ntheta+i - iii=ii+nside - x(ii)=thetnorm(x(ii)) - x(iii)=pinorm(x(iii)) -C Apply periodic restrictions. - zm=convert_side(x(ii),x(iii)) - zmiana=zmiana.or.zm - enddo - endif - if (nvar.eq.nphi) return - do i=3,nres - ii=i-2+nphi - iii=i-3 - x(ii)=dmod(x(ii),dwapi) -C Apply periodic restrictions. - if (x(ii).gt.pi) then - zmiana=.true. - x(ii)=dwapi-x(ii) - if (iii.gt.0) x(iii)=pinorm(x(iii)+pi) - if (i.lt.nres) x(iii+1)=pinorm(x(iii+1)+pi) - ii=ialph(i-1,1) - if (ii.gt.0) then - x(ii)=dmod(pi-x(ii),dwapi) - x(ii+nside)=pinorm(-x(ii+nside)) - zm=convert_side(x(ii),x(ii+nside)) - endif - else if (x(ii).lt.-pi) then - zmiana=.true. - x(ii)=dwapi+x(ii) - ii=ialph(i-1,1) - if (ii.gt.0) then - x(ii)=dmod(pi-x(ii),dwapi) - x(ii+nside)=pinorm(-pi-x(ii+nside)) - zm=convert_side(x(ii),x(ii+nside)) - endif - else if (x(ii).lt.0.0d0) then - zmiana=.true. - x(ii)=-x(ii) - if (iii.gt.0) x(iii)=pinorm(x(iii)+pi) - if (i.lt.nres) x(iii+1)=pinorm(x(iii+1)+pi) - ii=ialph(i-1,1) - if (ii.gt.0) then - x(ii+nside)=pinorm(-x(ii+nside)) - zm=convert_side(x(ii),x(ii+nside)) - endif - endif - enddo - reduce=zmiana - return - end -c-------------------------------------------------------------------------- - double precision function thetnorm(x) -C This function puts x within [0,2Pi]. - implicit none - double precision x,xx - include 'COMMON.GEO' - xx=dmod(x,dwapi) - if (xx.lt.0.0d0) xx=xx+dwapi - if (xx.gt.0.9999d0*pi) xx=0.9999d0*pi - thetnorm=xx - return - end -C-------------------------------------------------------------------- - subroutine var_to_geom_restr(n,xx) -C -C Update geometry parameters according to the variable array. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - include 'COMMON.IOUNITS' - dimension x(maxvar),xx(maxvar) - logical change,reduce - - call xx2x(x,xx) - change=reduce(x) - do i=1,nside - ii=ialph(i,2) - alph(ii)=x(nphi+ntheta+i) - omeg(ii)=pinorm(x(nphi+ntheta+nside+i)) - enddo - do i=4,nres - phi(i)=x(i-3) - enddo - do i=3,nres - theta(i)=x(i-2+nphi) - if (theta(i).eq.pi) theta(i)=0.99d0*pi - x(i-2+nphi)=theta(i) - enddo - return - end -c------------------------------------------------------------------------- diff --git a/source/unres/src_CSA_DiL/cored.f b/source/unres/src_CSA_DiL/cored.f deleted file mode 100644 index 1cf25e5..0000000 --- a/source/unres/src_CSA_DiL/cored.f +++ /dev/null @@ -1,3151 +0,0 @@ - subroutine assst(iv, liv, lv, v) -c -c *** assess candidate step (***sol version 2.3) *** -c - integer liv, l - integer iv(liv) - double precision v(lv) -c -c *** purpose *** -c -c this subroutine is called by an unconstrained minimization -c routine to assess the next candidate step. it may recommend one -c of several courses of action, such as accepting the step, recom- -c puting it using the same or a new quadratic model, or halting due -c to convergence or false convergence. see the return code listing -c below. -c -c-------------------------- parameter usage -------------------------- -c -c iv (i/o) integer parameter and scratch vector -- see description -c below of iv values referenced. -c liv (in) length of iv array. -c lv (in) length of v array. -c v (i/o) real parameter and scratch vector -- see description -c below of v values referenced. -c -c *** iv values referenced *** -c -c iv(irc) (i/o) on input for the first step tried in a new iteration, -c iv(irc) should be set to 3 or 4 (the value to which it is -c set when step is definitely to be accepted). on input -c after step has been recomputed, iv(irc) should be -c unchanged since the previous return of assst. -c on output, iv(irc) is a return code having one of the -c following values... -c 1 = switch models or try smaller step. -c 2 = switch models or accept step. -c 3 = accept step and determine v(radfac) by gradient -c tests. -c 4 = accept step, v(radfac) has been determined. -c 5 = recompute step (using the same model). -c 6 = recompute step with radius = v(lmaxs) but do not -c evaulate the objective function. -c 7 = x-convergence (see v(xctol)). -c 8 = relative function convergence (see v(rfctol)). -c 9 = both x- and relative function convergence. -c 10 = absolute function convergence (see v(afctol)). -c 11 = singular convergence (see v(lmaxs)). -c 12 = false convergence (see v(xftol)). -c 13 = iv(irc) was out of range on input. -c return code i has precdence over i+1 for i = 9, 10, 11. -c iv(mlstgd) (i/o) saved value of iv(model). -c iv(model) (i/o) on input, iv(model) should be an integer identifying -c the current quadratic model of the objective function. -c if a previous step yielded a better function reduction, -c then iv(model) will be set to iv(mlstgd) on output. -c iv(nfcall) (in) invocation count for the objective function. -c iv(nfgcal) (i/o) value of iv(nfcall) at step that gave the biggest -c function reduction this iteration. iv(nfgcal) remains -c unchanged until a function reduction is obtained. -c iv(radinc) (i/o) the number of radius increases (or minus the number -c of decreases) so far this iteration. -c iv(restor) (out) set to 1 if v(f) has been restored and x should be -c restored to its initial value, to 2 if x should be saved, -c to 3 if x should be restored from the saved value, and to -c 0 otherwise. -c iv(stage) (i/o) count of the number of models tried so far in the -c current iteration. -c iv(stglim) (in) maximum number of models to consider. -c iv(switch) (out) set to 0 unless a new model is being tried and it -c gives a smaller function value than the previous model, -c in which case assst sets iv(switch) = 1. -c iv(toobig) (in) is nonzero if step was too big (e.g. if it caused -c overflow). -c iv(xirc) (i/o) value that iv(irc) would have in the absence of -c convergence, false convergence, and oversized steps. -c -c *** v values referenced *** -c -c v(afctol) (in) absolute function convergence tolerance. if the -c absolute value of the current function value v(f) is less -c than v(afctol), then assst returns with iv(irc) = 10. -c v(decfac) (in) factor by which to decrease radius when iv(toobig) is -c nonzero. -c v(dstnrm) (in) the 2-norm of d*step. -c v(dstsav) (i/o) value of v(dstnrm) on saved step. -c v(dst0) (in) the 2-norm of d times the newton step (when defined, -c i.e., for v(nreduc) .ge. 0). -c v(f) (i/o) on both input and output, v(f) is the objective func- -c tion value at x. if x is restored to a previous value, -c then v(f) is restored to the corresponding value. -c v(fdif) (out) the function reduction v(f0) - v(f) (for the output -c value of v(f) if an earlier step gave a bigger function -c decrease, and for the input value of v(f) otherwise). -c v(flstgd) (i/o) saved value of v(f). -c v(f0) (in) objective function value at start of iteration. -c v(gtslst) (i/o) value of v(gtstep) on saved step. -c v(gtstep) (in) inner product between step and gradient. -c v(incfac) (in) minimum factor by which to increase radius. -c v(lmaxs) (in) maximum reasonable step size (and initial step bound). -c if the actual function decrease is no more than twice -c what was predicted, if a return with iv(irc) = 7, 8, 9, -c or 10 does not occur, if v(dstnrm) .gt. v(lmaxs), and if -c v(preduc) .le. v(sctol) * abs(v(f0)), then assst re- -c turns with iv(irc) = 11. if so doing appears worthwhile, -c then assst repeats this test with v(preduc) computed for -c a step of length v(lmaxs) (by a return with iv(irc) = 6). -c v(nreduc) (i/o) function reduction predicted by quadratic model for -c newton step. if assst is called with iv(irc) = 6, i.e., -c if v(preduc) has been computed with radius = v(lmaxs) for -c use in the singular convervence test, then v(nreduc) is -c set to -v(preduc) before the latter is restored. -c v(plstgd) (i/o) value of v(preduc) on saved step. -c v(preduc) (i/o) function reduction predicted by quadratic model for -c current step. -c v(radfac) (out) factor to be used in determining the new radius, -c which should be v(radfac)*dst, where dst is either the -c output value of v(dstnrm) or the 2-norm of -c diag(newd)*step for the output value of step and the -c updated version, newd, of the scale vector d. for -c iv(irc) = 3, v(radfac) = 1.0 is returned. -c v(rdfcmn) (in) minimum value for v(radfac) in terms of the input -c value of v(dstnrm) -- suggested value = 0.1. -c v(rdfcmx) (in) maximum value for v(radfac) -- suggested value = 4.0. -c v(reldx) (in) scaled relative change in x caused by step, computed -c (e.g.) by function reldst as -c max (d(i)*abs(x(i)-x0(i)), 1 .le. i .le. p) / -c max (d(i)*(abs(x(i))+abs(x0(i))), 1 .le. i .le. p). -c v(rfctol) (in) relative function convergence tolerance. if the -c actual function reduction is at most twice what was pre- -c dicted and v(nreduc) .le. v(rfctol)*abs(v(f0)), then -c assst returns with iv(irc) = 8 or 9. -c v(stppar) (in) marquardt parameter -- 0 means full newton step. -c v(tuner1) (in) tuning constant used to decide if the function -c reduction was much less than expected. suggested -c value = 0.1. -c v(tuner2) (in) tuning constant used to decide if the function -c reduction was large enough to accept step. suggested -c value = 10**-4. -c v(tuner3) (in) tuning constant used to decide if the radius -c should be increased. suggested value = 0.75. -c v(xctol) (in) x-convergence criterion. if step is a newton step -c (v(stppar) = 0) having v(reldx) .le. v(xctol) and giving -c at most twice the predicted function decrease, then -c assst returns iv(irc) = 7 or 9. -c v(xftol) (in) false convergence tolerance. if step gave no or only -c a small function decrease and v(reldx) .le. v(xftol), -c then assst returns with iv(irc) = 12. -c -c------------------------------- notes ------------------------------- -c -c *** application and usage restrictions *** -c -c this routine is called as part of the nl2sol (nonlinear -c least-squares) package. it may be used in any unconstrained -c minimization solver that uses dogleg, goldfeld-quandt-trotter, -c or levenberg-marquardt steps. -c -c *** algorithm notes *** -c -c see (1) for further discussion of the assessing and model -c switching strategies. while nl2sol considers only two models, -c assst is designed to handle any number of models. -c -c *** usage notes *** -c -c on the first call of an iteration, only the i/o variables -c step, x, iv(irc), iv(model), v(f), v(dstnrm), v(gtstep), and -c v(preduc) need have been initialized. between calls, no i/o -c values execpt step, x, iv(model), v(f) and the stopping toler- -c ances should be changed. -c after a return for convergence or false convergence, one can -c change the stopping tolerances and call assst again, in which -c case the stopping tests will be repeated. -c -c *** references *** -c -c (1) dennis, j.e., jr., gay, d.m., and welsch, r.e. (1981), -c an adaptive nonlinear least-squares algorithm, -c acm trans. math. software, vol. 7, no. 3. -c -c (2) powell, m.j.d. (1970) a fortran subroutine for solving -c systems of nonlinear algebraic equations, in numerical -c methods for nonlinear algebraic equations, edited by -c p. rabinowitz, gordon and breach, london. -c -c *** history *** -c -c john dennis designed much of this routine, starting with -c ideas in (2). roy welsch suggested the model switching strategy. -c david gay and stephen peters cast this subroutine into a more -c portable form (winter 1977), and david gay cast it into its -c present form (fall 1978). -c -c *** general *** -c -c this subroutine was written in connection with research -c supported by the national science foundation under grants -c mcs-7600324, dcr75-10143, 76-14311dss, mcs76-11989, and -c mcs-7906671. -c -c------------------------ external quantities ------------------------ -c -c *** no external functions and subroutines *** -c -c *** intrinsic functions *** -c/+ - double precision dabs, dmax1 -c/ -c *** no common blocks *** -c -c-------------------------- local variables -------------------------- -c - logical goodx - integer i, nfc - double precision emax, emaxs, gts, rfac1, xmax - double precision half, one, onep2, two, zero -c -c *** subscripts for iv and v *** -c - integer afctol, decfac, dstnrm, dstsav, dst0, f, fdif, flstgd, f0, - 1 gtslst, gtstep, incfac, irc, lmaxs, mlstgd, model, nfcall, - 2 nfgcal, nreduc, plstgd, preduc, radfac, radinc, rdfcmn, - 3 rdfcmx, reldx, restor, rfctol, sctol, stage, stglim, - 4 stppar, switch, toobig, tuner1, tuner2, tuner3, xctol, - 5 xftol, xirc -c -c *** data initializations *** -c -c/6 -c data half/0.5d+0/, one/1.d+0/, onep2/1.2d+0/, two/2.d+0/, -c 1 zero/0.d+0/ -c/7 - parameter (half=0.5d+0, one=1.d+0, onep2=1.2d+0, two=2.d+0, - 1 zero=0.d+0) -c/ -c -c/6 -c data irc/29/, mlstgd/32/, model/5/, nfcall/6/, nfgcal/7/, -c 1 radinc/8/, restor/9/, stage/10/, stglim/11/, switch/12/, -c 2 toobig/2/, xirc/13/ -c/7 - parameter (irc=29, mlstgd=32, model=5, nfcall=6, nfgcal=7, - 1 radinc=8, restor=9, stage=10, stglim=11, switch=12, - 2 toobig=2, xirc=13) -c/ -c/6 -c data afctol/31/, decfac/22/, dstnrm/2/, dst0/3/, dstsav/18/, -c 1 f/10/, fdif/11/, flstgd/12/, f0/13/, gtslst/14/, gtstep/4/, -c 2 incfac/23/, lmaxs/36/, nreduc/6/, plstgd/15/, preduc/7/, -c 3 radfac/16/, rdfcmn/24/, rdfcmx/25/, reldx/17/, rfctol/32/, -c 4 sctol/37/, stppar/5/, tuner1/26/, tuner2/27/, tuner3/28/, -c 5 xctol/33/, xftol/34/ -c/7 - parameter (afctol=31, decfac=22, dstnrm=2, dst0=3, dstsav=18, - 1 f=10, fdif=11, flstgd=12, f0=13, gtslst=14, gtstep=4, - 2 incfac=23, lmaxs=36, nreduc=6, plstgd=15, preduc=7, - 3 radfac=16, rdfcmn=24, rdfcmx=25, reldx=17, rfctol=32, - 4 sctol=37, stppar=5, tuner1=26, tuner2=27, tuner3=28, - 5 xctol=33, xftol=34) -c/ -c -c+++++++++++++++++++++++++++++++ body ++++++++++++++++++++++++++++++++ -c - nfc = iv(nfcall) - iv(switch) = 0 - iv(restor) = 0 - rfac1 = one - goodx = .true. - i = iv(irc) - if (i .ge. 1 .and. i .le. 12) - 1 go to (20,30,10,10,40,280,220,220,220,220,220,170), i - iv(irc) = 13 - go to 999 -c -c *** initialize for new iteration *** -c - 10 iv(stage) = 1 - iv(radinc) = 0 - v(flstgd) = v(f0) - if (iv(toobig) .eq. 0) go to 110 - iv(stage) = -1 - iv(xirc) = i - go to 60 -c -c *** step was recomputed with new model or smaller radius *** -c *** first decide which *** -c - 20 if (iv(model) .ne. iv(mlstgd)) go to 30 -c *** old model retained, smaller radius tried *** -c *** do not consider any more new models this iteration *** - iv(stage) = iv(stglim) - iv(radinc) = -1 - go to 110 -c -c *** a new model is being tried. decide whether to keep it. *** -c - 30 iv(stage) = iv(stage) + 1 -c -c *** now we add the possibiltiy that step was recomputed with *** -c *** the same model, perhaps because of an oversized step. *** -c - 40 if (iv(stage) .gt. 0) go to 50 -c -c *** step was recomputed because it was too big. *** -c - if (iv(toobig) .ne. 0) go to 60 -c -c *** restore iv(stage) and pick up where we left off. *** -c - iv(stage) = -iv(stage) - i = iv(xirc) - go to (20, 30, 110, 110, 70), i -c - 50 if (iv(toobig) .eq. 0) go to 70 -c -c *** handle oversize step *** -c - if (iv(radinc) .gt. 0) go to 80 - iv(stage) = -iv(stage) - iv(xirc) = iv(irc) -c - 60 v(radfac) = v(decfac) - iv(radinc) = iv(radinc) - 1 - iv(irc) = 5 - iv(restor) = 1 - go to 999 -c - 70 if (v(f) .lt. v(flstgd)) go to 110 -c -c *** the new step is a loser. restore old model. *** -c - if (iv(model) .eq. iv(mlstgd)) go to 80 - iv(model) = iv(mlstgd) - iv(switch) = 1 -c -c *** restore step, etc. only if a previous step decreased v(f). -c - 80 if (v(flstgd) .ge. v(f0)) go to 110 - iv(restor) = 1 - v(f) = v(flstgd) - v(preduc) = v(plstgd) - v(gtstep) = v(gtslst) - if (iv(switch) .eq. 0) rfac1 = v(dstnrm) / v(dstsav) - v(dstnrm) = v(dstsav) - nfc = iv(nfgcal) - goodx = .false. -c - 110 v(fdif) = v(f0) - v(f) - if (v(fdif) .gt. v(tuner2) * v(preduc)) go to 140 - if(iv(radinc).gt.0) go to 140 -c -c *** no (or only a trivial) function decrease -c *** -- so try new model or smaller radius -c - if (v(f) .lt. v(f0)) go to 120 - iv(mlstgd) = iv(model) - v(flstgd) = v(f) - v(f) = v(f0) - iv(restor) = 1 - go to 130 - 120 iv(nfgcal) = nfc - 130 iv(irc) = 1 - if (iv(stage) .lt. iv(stglim)) go to 160 - iv(irc) = 5 - iv(radinc) = iv(radinc) - 1 - go to 160 -c -c *** nontrivial function decrease achieved *** -c - 140 iv(nfgcal) = nfc - rfac1 = one - v(dstsav) = v(dstnrm) - if (v(fdif) .gt. v(preduc)*v(tuner1)) go to 190 -c -c *** decrease was much less than predicted -- either change models -c *** or accept step with decreased radius. -c - if (iv(stage) .ge. iv(stglim)) go to 150 -c *** consider switching models *** - iv(irc) = 2 - go to 160 -c -c *** accept step with decreased radius *** -c - 150 iv(irc) = 4 -c -c *** set v(radfac) to fletcher*s decrease factor *** -c - 160 iv(xirc) = iv(irc) - emax = v(gtstep) + v(fdif) - v(radfac) = half * rfac1 - if (emax .lt. v(gtstep)) v(radfac) = rfac1 * dmax1(v(rdfcmn), - 1 half * v(gtstep)/emax) -c -c *** do false convergence test *** -c - 170 if (v(reldx) .le. v(xftol)) go to 180 - iv(irc) = iv(xirc) - if (v(f) .lt. v(f0)) go to 200 - go to 230 -c - 180 iv(irc) = 12 - go to 240 -c -c *** handle good function decrease *** -c - 190 if (v(fdif) .lt. (-v(tuner3) * v(gtstep))) go to 210 -c -c *** increasing radius looks worthwhile. see if we just -c *** recomputed step with a decreased radius or restored step -c *** after recomputing it with a larger radius. -c - if (iv(radinc) .lt. 0) go to 210 - if (iv(restor) .eq. 1) go to 210 -c -c *** we did not. try a longer step unless this was a newton -c *** step. -c - v(radfac) = v(rdfcmx) - gts = v(gtstep) - if (v(fdif) .lt. (half/v(radfac) - one) * gts) - 1 v(radfac) = dmax1(v(incfac), half*gts/(gts + v(fdif))) - iv(irc) = 4 - if (v(stppar) .eq. zero) go to 230 - if (v(dst0) .ge. zero .and. (v(dst0) .lt. two*v(dstnrm) - 1 .or. v(nreduc) .lt. onep2*v(fdif))) go to 230 -c *** step was not a newton step. recompute it with -c *** a larger radius. - iv(irc) = 5 - iv(radinc) = iv(radinc) + 1 -c -c *** save values corresponding to good step *** -c - 200 v(flstgd) = v(f) - iv(mlstgd) = iv(model) - if (iv(restor) .ne. 1) iv(restor) = 2 - v(dstsav) = v(dstnrm) - iv(nfgcal) = nfc - v(plstgd) = v(preduc) - v(gtslst) = v(gtstep) - go to 230 -c -c *** accept step with radius unchanged *** -c - 210 v(radfac) = one - iv(irc) = 3 - go to 230 -c -c *** come here for a restart after convergence *** -c - 220 iv(irc) = iv(xirc) - if (v(dstsav) .ge. zero) go to 240 - iv(irc) = 12 - go to 240 -c -c *** perform convergence tests *** -c - 230 iv(xirc) = iv(irc) - 240 if (iv(restor) .eq. 1 .and. v(flstgd) .lt. v(f0)) iv(restor) = 3 - if (half * v(fdif) .gt. v(preduc)) go to 999 - emax = v(rfctol) * dabs(v(f0)) - emaxs = v(sctol) * dabs(v(f0)) - if (v(dstnrm) .gt. v(lmaxs) .and. v(preduc) .le. emaxs) - 1 iv(irc) = 11 - if (v(dst0) .lt. zero) go to 250 - i = 0 - if ((v(nreduc) .gt. zero .and. v(nreduc) .le. emax) .or. - 1 (v(nreduc) .eq. zero. and. v(preduc) .eq. zero)) i = 2 - if (v(stppar) .eq. zero .and. v(reldx) .le. v(xctol) - 1 .and. goodx) i = i + 1 - if (i .gt. 0) iv(irc) = i + 6 -c -c *** consider recomputing step of length v(lmaxs) for singular -c *** convergence test. -c - 250 if (iv(irc) .gt. 5 .and. iv(irc) .ne. 12) go to 999 - if (v(dstnrm) .gt. v(lmaxs)) go to 260 - if (v(preduc) .ge. emaxs) go to 999 - if (v(dst0) .le. zero) go to 270 - if (half * v(dst0) .le. v(lmaxs)) go to 999 - go to 270 - 260 if (half * v(dstnrm) .le. v(lmaxs)) go to 999 - xmax = v(lmaxs) / v(dstnrm) - if (xmax * (two - xmax) * v(preduc) .ge. emaxs) go to 999 - 270 if (v(nreduc) .lt. zero) go to 290 -c -c *** recompute v(preduc) for use in singular convergence test *** -c - v(gtslst) = v(gtstep) - v(dstsav) = v(dstnrm) - if (iv(irc) .eq. 12) v(dstsav) = -v(dstsav) - v(plstgd) = v(preduc) - i = iv(restor) - iv(restor) = 2 - if (i .eq. 3) iv(restor) = 0 - iv(irc) = 6 - go to 999 -c -c *** perform singular convergence test with recomputed v(preduc) *** -c - 280 v(gtstep) = v(gtslst) - v(dstnrm) = dabs(v(dstsav)) - iv(irc) = iv(xirc) - if (v(dstsav) .le. zero) iv(irc) = 12 - v(nreduc) = -v(preduc) - v(preduc) = v(plstgd) - iv(restor) = 3 - 290 if (-v(nreduc) .le. v(sctol) * dabs(v(f0))) iv(irc) = 11 -c - 999 return -c -c *** last card of assst follows *** - end - subroutine deflt(alg, iv, liv, lv, v) -c -c *** supply ***sol (version 2.3) default values to iv and v *** -c -c *** alg = 1 means regression constants. -c *** alg = 2 means general unconstrained optimization constants. -c - integer liv, l - integer alg, iv(liv) - double precision v(lv) -c - external imdcon, vdflt - integer imdcon -c imdcon... returns machine-dependent integer constants. -c vdflt.... provides default values to v. -c - integer miv, m - integer miniv(2), minv(2) -c -c *** subscripts for iv *** -c - integer algsav, covprt, covreq, dtype, hc, ierr, inith, inits, - 1 ipivot, ivneed, lastiv, lastv, lmat, mxfcal, mxiter, - 2 nfcov, ngcov, nvdflt, outlev, parprt, parsav, perm, - 3 prunit, qrtyp, rdreq, rmat, solprt, statpr, vneed, - 4 vsave, x0prt -c -c *** iv subscript values *** -c -c/6 -c data algsav/51/, covprt/14/, covreq/15/, dtype/16/, hc/71/, -c 1 ierr/75/, inith/25/, inits/25/, ipivot/76/, ivneed/3/, -c 2 lastiv/44/, lastv/45/, lmat/42/, mxfcal/17/, mxiter/18/, -c 3 nfcov/52/, ngcov/53/, nvdflt/50/, outlev/19/, parprt/20/, -c 4 parsav/49/, perm/58/, prunit/21/, qrtyp/80/, rdreq/57/, -c 5 rmat/78/, solprt/22/, statpr/23/, vneed/4/, vsave/60/, -c 6 x0prt/24/ -c/7 - parameter (algsav=51, covprt=14, covreq=15, dtype=16, hc=71, - 1 ierr=75, inith=25, inits=25, ipivot=76, ivneed=3, - 2 lastiv=44, lastv=45, lmat=42, mxfcal=17, mxiter=18, - 3 nfcov=52, ngcov=53, nvdflt=50, outlev=19, parprt=20, - 4 parsav=49, perm=58, prunit=21, qrtyp=80, rdreq=57, - 5 rmat=78, solprt=22, statpr=23, vneed=4, vsave=60, - 6 x0prt=24) -c/ - data miniv(1)/80/, miniv(2)/59/, minv(1)/98/, minv(2)/71/ -c -c------------------------------- body -------------------------------- -c - if (alg .lt. 1 .or. alg .gt. 2) go to 40 - miv = miniv(alg) - if (liv .lt. miv) go to 20 - mv = minv(alg) - if (lv .lt. mv) go to 30 - call vdflt(alg, lv, v) - iv(1) = 12 - iv(algsav) = alg - iv(ivneed) = 0 - iv(lastiv) = miv - iv(lastv) = mv - iv(lmat) = mv + 1 - iv(mxfcal) = 200 - iv(mxiter) = 150 - iv(outlev) = 1 - iv(parprt) = 1 - iv(perm) = miv + 1 - iv(prunit) = imdcon(1) - iv(solprt) = 1 - iv(statpr) = 1 - iv(vneed) = 0 - iv(x0prt) = 1 -c - if (alg .ge. 2) go to 10 -c -c *** regression values -c - iv(covprt) = 3 - iv(covreq) = 1 - iv(dtype) = 1 - iv(hc) = 0 - iv(ierr) = 0 - iv(inits) = 0 - iv(ipivot) = 0 - iv(nvdflt) = 32 - iv(parsav) = 67 - iv(qrtyp) = 1 - iv(rdreq) = 3 - iv(rmat) = 0 - iv(vsave) = 58 - go to 999 -c -c *** general optimization values -c - 10 iv(dtype) = 0 - iv(inith) = 1 - iv(nfcov) = 0 - iv(ngcov) = 0 - iv(nvdflt) = 25 - iv(parsav) = 47 - go to 999 -c - 20 iv(1) = 15 - go to 999 -c - 30 iv(1) = 16 - go to 999 -c - 40 iv(1) = 67 -c - 999 return -c *** last card of deflt follows *** - end - double precision function dotprd(p, x, y) -c -c *** return the inner product of the p-vectors x and y. *** -c - integer p - double precision x(p), y(p) -c - integer i - double precision one, sqteta, t, zero -c/+ - double precision dmax1, dabs -c/ - external rmdcon - double precision rmdcon -c -c *** rmdcon(2) returns a machine-dependent constant, sqteta, which -c *** is slightly larger than the smallest positive number that -c *** can be squared without underflowing. -c -c/6 -c data one/1.d+0/, sqteta/0.d+0/, zero/0.d+0/ -c/7 - parameter (one=1.d+0, zero=0.d+0) - data sqteta/0.d+0/ -c/ -c - dotprd = zero - if (p .le. 0) go to 999 -crc if (sqteta .eq. zero) sqteta = rmdcon(2) - do 20 i = 1, p -crc t = dmax1(dabs(x(i)), dabs(y(i))) -crc if (t .gt. one) go to 10 -crc if (t .lt. sqteta) go to 20 -crc t = (x(i)/sqteta)*y(i) -crc if (dabs(t) .lt. sqteta) go to 20 - 10 dotprd = dotprd + x(i)*y(i) - 20 continue -c - 999 return -c *** last card of dotprd follows *** - end - subroutine itsum(d, g, iv, liv, lv, p, v, x) -c -c *** print iteration summary for ***sol (version 2.3) *** -c -c *** parameter declarations *** -c - integer liv, lv, p - integer iv(liv) - double precision d(p), g(p), v(lv), x(p) -c -c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -c -c *** local variables *** -c - integer alg, i, iv1, m, nf, ng, ol, pu -c/6 -c real model1(6), model2(6) -c/7 - character*4 model1(6), model2(6) -c/ - double precision nreldf, oldf, preldf, reldf, zero -c -c *** intrinsic functions *** -c/+ - integer iabs - double precision dabs, dmax1 -c/ -c *** no external functions or subroutines *** -c -c *** subscripts for iv and v *** -c - integer algsav, dstnrm, f, fdif, f0, needhd, nfcall, nfcov, ngcov, - 1 ngcall, niter, nreduc, outlev, preduc, prntit, prunit, - 2 reldx, solprt, statpr, stppar, sused, x0prt -c -c *** iv subscript values *** -c -c/6 -c data algsav/51/, needhd/36/, nfcall/6/, nfcov/52/, ngcall/30/, -c 1 ngcov/53/, niter/31/, outlev/19/, prntit/39/, prunit/21/, -c 2 solprt/22/, statpr/23/, sused/64/, x0prt/24/ -c/7 - parameter (algsav=51, needhd=36, nfcall=6, nfcov=52, ngcall=30, - 1 ngcov=53, niter=31, outlev=19, prntit=39, prunit=21, - 2 solprt=22, statpr=23, sused=64, x0prt=24) -c/ -c -c *** v subscript values *** -c -c/6 -c data dstnrm/2/, f/10/, f0/13/, fdif/11/, nreduc/6/, preduc/7/, -c 1 reldx/17/, stppar/5/ -c/7 - parameter (dstnrm=2, f=10, f0=13, fdif=11, nreduc=6, preduc=7, - 1 reldx=17, stppar=5) -c/ -c -c/6 -c data zero/0.d+0/ -c/7 - parameter (zero=0.d+0) -c/ -c/6 -c data model1(1)/4h /, model1(2)/4h /, model1(3)/4h /, -c 1 model1(4)/4h /, model1(5)/4h g /, model1(6)/4h s /, -c 2 model2(1)/4h g /, model2(2)/4h s /, model2(3)/4hg-s /, -c 3 model2(4)/4hs-g /, model2(5)/4h-s-g/, model2(6)/4h-g-s/ -c/7 - data model1/' ',' ',' ',' ',' g ',' s '/, - 1 model2/' g ',' s ','g-s ','s-g ','-s-g','-g-s'/ -c/ -c -c------------------------------- body -------------------------------- -c - pu = iv(prunit) - if (pu .eq. 0) go to 999 - iv1 = iv(1) - if (iv1 .gt. 62) iv1 = iv1 - 51 - ol = iv(outlev) - alg = iv(algsav) - if (iv1 .lt. 2 .or. iv1 .gt. 15) go to 370 - if (iv1 .ge. 12) go to 120 - if (iv1 .eq. 2 .and. iv(niter) .eq. 0) go to 390 - if (ol .eq. 0) go to 120 - if (iv1 .ge. 10 .and. iv(prntit) .eq. 0) go to 120 - if (iv1 .gt. 2) go to 10 - iv(prntit) = iv(prntit) + 1 - if (iv(prntit) .lt. iabs(ol)) go to 999 - 10 nf = iv(nfcall) - iabs(iv(nfcov)) - iv(prntit) = 0 - reldf = zero - preldf = zero - oldf = dmax1(dabs(v(f0)), dabs(v(f))) - if (oldf .le. zero) go to 20 - reldf = v(fdif) / oldf - preldf = v(preduc) / oldf - 20 if (ol .gt. 0) go to 60 -c -c *** print short summary line *** -c - if (iv(needhd) .eq. 1 .and. alg .eq. 1) write(pu,30) - 30 format(/10h it nf,6x,1hf,7x,5hreldf,3x,6hpreldf,3x,5hreldx, - 1 2x,13hmodel stppar) - if (iv(needhd) .eq. 1 .and. alg .eq. 2) write(pu,40) - 40 format(/11h it nf,7x,1hf,8x,5hreldf,4x,6hpreldf,4x,5hreldx, - 1 3x,6hstppar) - iv(needhd) = 0 - if (alg .eq. 2) go to 50 - m = iv(sused) - write(pu,100) iv(niter), nf, v(f), reldf, preldf, v(reldx), - 1 model1(m), model2(m), v(stppar) - go to 120 -c - 50 write(pu,110) iv(niter), nf, v(f), reldf, preldf, v(reldx), - 1 v(stppar) - go to 120 -c -c *** print long summary line *** -c - 60 if (iv(needhd) .eq. 1 .and. alg .eq. 1) write(pu,70) - 70 format(/11h it nf,6x,1hf,7x,5hreldf,3x,6hpreldf,3x,5hreldx, - 1 2x,13hmodel stppar,2x,6hd*step,2x,7hnpreldf) - if (iv(needhd) .eq. 1 .and. alg .eq. 2) write(pu,80) - 80 format(/11h it nf,7x,1hf,8x,5hreldf,4x,6hpreldf,4x,5hreldx, - 1 3x,6hstppar,3x,6hd*step,3x,7hnpreldf) - iv(needhd) = 0 - nreldf = zero - if (oldf .gt. zero) nreldf = v(nreduc) / oldf - if (alg .eq. 2) go to 90 - m = iv(sused) - write(pu,100) iv(niter), nf, v(f), reldf, preldf, v(reldx), - 1 model1(m), model2(m), v(stppar), v(dstnrm), nreldf - go to 120 -c - 90 write(pu,110) iv(niter), nf, v(f), reldf, preldf, - 1 v(reldx), v(stppar), v(dstnrm), nreldf - 100 format(i6,i5,d10.3,2d9.2,d8.1,a3,a4,2d8.1,d9.2) - 110 format(i6,i5,d11.3,2d10.2,3d9.1,d10.2) -c - 120 if (iv(statpr) .lt. 0) go to 430 - go to (999, 999, 130, 150, 170, 190, 210, 230, 250, 270, 290, 310, - 1 330, 350, 520), iv1 -c - 130 write(pu,140) - 140 format(/26h ***** x-convergence *****) - go to 430 -c - 150 write(pu,160) - 160 format(/42h ***** relative function convergence *****) - go to 430 -c - 170 write(pu,180) - 180 format(/49h ***** x- and relative function convergence *****) - go to 430 -c - 190 write(pu,200) - 200 format(/42h ***** absolute function convergence *****) - go to 430 -c - 210 write(pu,220) - 220 format(/33h ***** singular convergence *****) - go to 430 -c - 230 write(pu,240) - 240 format(/30h ***** false convergence *****) - go to 430 -c - 250 write(pu,260) - 260 format(/38h ***** function evaluation limit *****) - go to 430 -c - 270 write(pu,280) - 280 format(/28h ***** iteration limit *****) - go to 430 -c - 290 write(pu,300) - 300 format(/18h ***** stopx *****) - go to 430 -c - 310 write(pu,320) - 320 format(/44h ***** initial f(x) cannot be computed *****) -c - go to 390 -c - 330 write(pu,340) - 340 format(/37h ***** bad parameters to assess *****) - go to 999 -c - 350 write(pu,360) - 360 format(/43h ***** gradient could not be computed *****) - if (iv(niter) .gt. 0) go to 480 - go to 390 -c - 370 write(pu,380) iv(1) - 380 format(/14h ***** iv(1) =,i5,6h *****) - go to 999 -c -c *** initial call on itsum *** -c - 390 if (iv(x0prt) .ne. 0) write(pu,400) (i, x(i), d(i), i = 1, p) - 400 format(/23h i initial x(i),8x,4hd(i)//(1x,i5,d17.6,d14.3)) -c *** the following are to avoid undefined variables when the -c *** function evaluation limit is 1... - v(dstnrm) = zero - v(fdif) = zero - v(nreduc) = zero - v(preduc) = zero - v(reldx) = zero - if (iv1 .ge. 12) go to 999 - iv(needhd) = 0 - iv(prntit) = 0 - if (ol .eq. 0) go to 999 - if (ol .lt. 0 .and. alg .eq. 1) write(pu,30) - if (ol .lt. 0 .and. alg .eq. 2) write(pu,40) - if (ol .gt. 0 .and. alg .eq. 1) write(pu,70) - if (ol .gt. 0 .and. alg .eq. 2) write(pu,80) - if (alg .eq. 1) write(pu,410) v(f) - if (alg .eq. 2) write(pu,420) v(f) - 410 format(/11h 0 1,d10.3) -c365 format(/11h 0 1,e11.3) - 420 format(/11h 0 1,d11.3) - go to 999 -c -c *** print various information requested on solution *** -c - 430 iv(needhd) = 1 - if (iv(statpr) .eq. 0) go to 480 - oldf = dmax1(dabs(v(f0)), dabs(v(f))) - preldf = zero - nreldf = zero - if (oldf .le. zero) go to 440 - preldf = v(preduc) / oldf - nreldf = v(nreduc) / oldf - 440 nf = iv(nfcall) - iv(nfcov) - ng = iv(ngcall) - iv(ngcov) - write(pu,450) v(f), v(reldx), nf, ng, preldf, nreldf - 450 format(/9h function,d17.6,8h reldx,d17.3/12h func. evals, - 1 i8,9x,11hgrad. evals,i8/7h preldf,d16.3,6x,7hnpreldf,d15.3) -c - if (iv(nfcov) .gt. 0) write(pu,460) iv(nfcov) - 460 format(/1x,i4,50h extra func. evals for covariance and diagnost - 1ics.) - if (iv(ngcov) .gt. 0) write(pu,470) iv(ngcov) - 470 format(1x,i4,50h extra grad. evals for covariance and diagnosti - 1cs.) -c - 480 if (iv(solprt) .eq. 0) go to 999 - iv(needhd) = 1 - write(pu,490) - 490 format(/22h i final x(i),8x,4hd(i),10x,4hg(i)/) - do 500 i = 1, p - write(pu,510) i, x(i), d(i), g(i) - 500 continue - 510 format(1x,i5,d16.6,2d14.3) - go to 999 -c - 520 write(pu,530) - 530 format(/24h inconsistent dimensions) - 999 return -c *** last card of itsum follows *** - end - subroutine litvmu(n, x, l, y) -c -c *** solve (l**t)*x = y, where l is an n x n lower triangular -c *** matrix stored compactly by rows. x and y may occupy the same -c *** storage. *** -c - integer n -cal double precision x(n), l(1), y(n) - double precision x(n), l(n*(n+1)/2), y(n) - integer i, ii, ij, im1, i0, j, np1 - double precision xi, zero -c/6 -c data zero/0.d+0/ -c/7 - parameter (zero=0.d+0) -c/ -c - do 10 i = 1, n - 10 x(i) = y(i) - np1 = n + 1 - i0 = n*(n+1)/2 - do 30 ii = 1, n - i = np1 - ii - xi = x(i)/l(i0) - x(i) = xi - if (i .le. 1) go to 999 - i0 = i0 - i - if (xi .eq. zero) go to 30 - im1 = i - 1 - do 20 j = 1, im1 - ij = i0 + j - x(j) = x(j) - xi*l(ij) - 20 continue - 30 continue - 999 return -c *** last card of litvmu follows *** - end - subroutine livmul(n, x, l, y) -c -c *** solve l*x = y, where l is an n x n lower triangular -c *** matrix stored compactly by rows. x and y may occupy the same -c *** storage. *** -c - integer n -cal double precision x(n), l(1), y(n) - double precision x(n), l(n*(n+1)/2), y(n) - external dotprd - double precision dotprd - integer i, j, k - double precision t, zero -c/6 -c data zero/0.d+0/ -c/7 - parameter (zero=0.d+0) -c/ -c - do 10 k = 1, n - if (y(k) .ne. zero) go to 20 - x(k) = zero - 10 continue - go to 999 - 20 j = k*(k+1)/2 - x(k) = y(k) / l(j) - if (k .ge. n) go to 999 - k = k + 1 - do 30 i = k, n - t = dotprd(i-1, l(j+1), x) - j = j + i - x(i) = (y(i) - t)/l(j) - 30 continue - 999 return -c *** last card of livmul follows *** - end - subroutine parck(alg, d, iv, liv, lv, n, v) -c -c *** check ***sol (version 2.3) parameters, print changed values *** -c -c *** alg = 1 for regression, alg = 2 for general unconstrained opt. -c - integer alg, liv, lv, n - integer iv(liv) - double precision d(n), v(lv) -c - external rmdcon, vcopy, vdflt - double precision rmdcon -c rmdcon -- returns machine-dependent constants. -c vcopy -- copies one vector to another. -c vdflt -- supplies default parameter values to v alone. -c/+ - integer max0 -c/ -c -c *** local variables *** -c - integer i, ii, iv1, j, k, l, m, miv1, miv2, ndfalt, parsv1, pu - integer ijmp, jlim(2), miniv(2), ndflt(2) -c/6 -c integer varnm(2), sh(2) -c real cngd(3), dflt(3), vn(2,34), which(3) -c/7 - character*1 varnm(2), sh(2) - character*4 cngd(3), dflt(3), vn(2,34), which(3) -c/ - double precision big, machep, tiny, vk, vm(34), vx(34), zero -c -c *** iv and v subscripts *** -c - integer algsav, dinit, dtype, dtype0, epslon, inits, ivneed, - 1 lastiv, lastv, lmat, nextiv, nextv, nvdflt, oldn, - 2 parprt, parsav, perm, prunit, vneed -c -c -c/6 -c data algsav/51/, dinit/38/, dtype/16/, dtype0/54/, epslon/19/, -c 1 inits/25/, ivneed/3/, lastiv/44/, lastv/45/, lmat/42/, -c 2 nextiv/46/, nextv/47/, nvdflt/50/, oldn/38/, parprt/20/, -c 3 parsav/49/, perm/58/, prunit/21/, vneed/4/ -c/7 - parameter (algsav=51, dinit=38, dtype=16, dtype0=54, epslon=19, - 1 inits=25, ivneed=3, lastiv=44, lastv=45, lmat=42, - 2 nextiv=46, nextv=47, nvdflt=50, oldn=38, parprt=20, - 3 parsav=49, perm=58, prunit=21, vneed=4) - save big, machep, tiny -c/ -c - data big/0.d+0/, machep/-1.d+0/, tiny/1.d+0/, zero/0.d+0/ -c/6 -c data vn(1,1),vn(2,1)/4hepsl,4hon../ -c data vn(1,2),vn(2,2)/4hphmn,4hfc../ -c data vn(1,3),vn(2,3)/4hphmx,4hfc../ -c data vn(1,4),vn(2,4)/4hdecf,4hac../ -c data vn(1,5),vn(2,5)/4hincf,4hac../ -c data vn(1,6),vn(2,6)/4hrdfc,4hmn../ -c data vn(1,7),vn(2,7)/4hrdfc,4hmx../ -c data vn(1,8),vn(2,8)/4htune,4hr1../ -c data vn(1,9),vn(2,9)/4htune,4hr2../ -c data vn(1,10),vn(2,10)/4htune,4hr3../ -c data vn(1,11),vn(2,11)/4htune,4hr4../ -c data vn(1,12),vn(2,12)/4htune,4hr5../ -c data vn(1,13),vn(2,13)/4hafct,4hol../ -c data vn(1,14),vn(2,14)/4hrfct,4hol../ -c data vn(1,15),vn(2,15)/4hxcto,4hl.../ -c data vn(1,16),vn(2,16)/4hxfto,4hl.../ -c data vn(1,17),vn(2,17)/4hlmax,4h0.../ -c data vn(1,18),vn(2,18)/4hlmax,4hs.../ -c data vn(1,19),vn(2,19)/4hscto,4hl.../ -c data vn(1,20),vn(2,20)/4hdini,4ht.../ -c data vn(1,21),vn(2,21)/4hdtin,4hit../ -c data vn(1,22),vn(2,22)/4hd0in,4hit../ -c data vn(1,23),vn(2,23)/4hdfac,4h..../ -c data vn(1,24),vn(2,24)/4hdltf,4hdc../ -c data vn(1,25),vn(2,25)/4hdltf,4hdj../ -c data vn(1,26),vn(2,26)/4hdelt,4ha0../ -c data vn(1,27),vn(2,27)/4hfuzz,4h..../ -c data vn(1,28),vn(2,28)/4hrlim,4hit../ -c data vn(1,29),vn(2,29)/4hcosm,4hin../ -c data vn(1,30),vn(2,30)/4hhube,4hrc../ -c data vn(1,31),vn(2,31)/4hrspt,4hol../ -c data vn(1,32),vn(2,32)/4hsigm,4hin../ -c data vn(1,33),vn(2,33)/4heta0,4h..../ -c data vn(1,34),vn(2,34)/4hbias,4h..../ -c/7 - data vn(1,1),vn(2,1)/'epsl','on..'/ - data vn(1,2),vn(2,2)/'phmn','fc..'/ - data vn(1,3),vn(2,3)/'phmx','fc..'/ - data vn(1,4),vn(2,4)/'decf','ac..'/ - data vn(1,5),vn(2,5)/'incf','ac..'/ - data vn(1,6),vn(2,6)/'rdfc','mn..'/ - data vn(1,7),vn(2,7)/'rdfc','mx..'/ - data vn(1,8),vn(2,8)/'tune','r1..'/ - data vn(1,9),vn(2,9)/'tune','r2..'/ - data vn(1,10),vn(2,10)/'tune','r3..'/ - data vn(1,11),vn(2,11)/'tune','r4..'/ - data vn(1,12),vn(2,12)/'tune','r5..'/ - data vn(1,13),vn(2,13)/'afct','ol..'/ - data vn(1,14),vn(2,14)/'rfct','ol..'/ - data vn(1,15),vn(2,15)/'xcto','l...'/ - data vn(1,16),vn(2,16)/'xfto','l...'/ - data vn(1,17),vn(2,17)/'lmax','0...'/ - data vn(1,18),vn(2,18)/'lmax','s...'/ - data vn(1,19),vn(2,19)/'scto','l...'/ - data vn(1,20),vn(2,20)/'dini','t...'/ - data vn(1,21),vn(2,21)/'dtin','it..'/ - data vn(1,22),vn(2,22)/'d0in','it..'/ - data vn(1,23),vn(2,23)/'dfac','....'/ - data vn(1,24),vn(2,24)/'dltf','dc..'/ - data vn(1,25),vn(2,25)/'dltf','dj..'/ - data vn(1,26),vn(2,26)/'delt','a0..'/ - data vn(1,27),vn(2,27)/'fuzz','....'/ - data vn(1,28),vn(2,28)/'rlim','it..'/ - data vn(1,29),vn(2,29)/'cosm','in..'/ - data vn(1,30),vn(2,30)/'hube','rc..'/ - data vn(1,31),vn(2,31)/'rspt','ol..'/ - data vn(1,32),vn(2,32)/'sigm','in..'/ - data vn(1,33),vn(2,33)/'eta0','....'/ - data vn(1,34),vn(2,34)/'bias','....'/ -c/ -c - data vm(1)/1.0d-3/, vm(2)/-0.99d+0/, vm(3)/1.0d-3/, vm(4)/1.0d-2/, - 1 vm(5)/1.2d+0/, vm(6)/1.d-2/, vm(7)/1.2d+0/, vm(8)/0.d+0/, - 2 vm(9)/0.d+0/, vm(10)/1.d-3/, vm(11)/-1.d+0/, vm(13)/0.d+0/, - 3 vm(15)/0.d+0/, vm(16)/0.d+0/, vm(19)/0.d+0/, vm(20)/-10.d+0/, - 4 vm(21)/0.d+0/, vm(22)/0.d+0/, vm(23)/0.d+0/, vm(27)/1.01d+0/, - 5 vm(28)/1.d+10/, vm(30)/0.d+0/, vm(31)/0.d+0/, vm(32)/0.d+0/, - 6 vm(34)/0.d+0/ - data vx(1)/0.9d+0/, vx(2)/-1.d-3/, vx(3)/1.d+1/, vx(4)/0.8d+0/, - 1 vx(5)/1.d+2/, vx(6)/0.8d+0/, vx(7)/1.d+2/, vx(8)/0.5d+0/, - 2 vx(9)/0.5d+0/, vx(10)/1.d+0/, vx(11)/1.d+0/, vx(14)/0.1d+0/, - 3 vx(15)/1.d+0/, vx(16)/1.d+0/, vx(19)/1.d+0/, vx(23)/1.d+0/, - 4 vx(24)/1.d+0/, vx(25)/1.d+0/, vx(26)/1.d+0/, vx(27)/1.d+10/, - 5 vx(29)/1.d+0/, vx(31)/1.d+0/, vx(32)/1.d+0/, vx(33)/1.d+0/, - 6 vx(34)/1.d+0/ -c -c/6 -c data varnm(1)/1hp/, varnm(2)/1hn/, sh(1)/1hs/, sh(2)/1hh/ -c data cngd(1),cngd(2),cngd(3)/4h---c,4hhang,4hed v/, -c 1 dflt(1),dflt(2),dflt(3)/4hnond,4hefau,4hlt v/ -c/7 - data varnm(1)/'p'/, varnm(2)/'n'/, sh(1)/'s'/, sh(2)/'h'/ - data cngd(1),cngd(2),cngd(3)/'---c','hang','ed v'/, - 1 dflt(1),dflt(2),dflt(3)/'nond','efau','lt v'/ -c/ - data ijmp/33/, jlim(1)/0/, jlim(2)/24/, ndflt(1)/32/, ndflt(2)/25/ - data miniv(1)/80/, miniv(2)/59/ -c -c............................... body ................................ -c - pu = 0 - if (prunit .le. liv) pu = iv(prunit) - if (alg .lt. 1 .or. alg .gt. 2) go to 340 - if (iv(1) .eq. 0) call deflt(alg, iv, liv, lv, v) - iv1 = iv(1) - if (iv1 .ne. 13 .and. iv1 .ne. 12) go to 10 - miv1 = miniv(alg) - if (perm .le. liv) miv1 = max0(miv1, iv(perm) - 1) - if (ivneed .le. liv) miv2 = miv1 + max0(iv(ivneed), 0) - if (lastiv .le. liv) iv(lastiv) = miv2 - if (liv .lt. miv1) go to 300 - iv(ivneed) = 0 - iv(lastv) = max0(iv(vneed), 0) + iv(lmat) - 1 - iv(vneed) = 0 - if (liv .lt. miv2) go to 300 - if (lv .lt. iv(lastv)) go to 320 - 10 if (alg .eq. iv(algsav)) go to 30 - if (pu .ne. 0) write(pu,20) alg, iv(algsav) - 20 format(/39h the first parameter to deflt should be,i3, - 1 12h rather than,i3) - iv(1) = 82 - go to 999 - 30 if (iv1 .lt. 12 .or. iv1 .gt. 14) go to 60 - if (n .ge. 1) go to 50 - iv(1) = 81 - if (pu .eq. 0) go to 999 - write(pu,40) varnm(alg), n - 40 format(/8h /// bad,a1,2h =,i5) - go to 999 - 50 if (iv1 .ne. 14) iv(nextiv) = iv(perm) - if (iv1 .ne. 14) iv(nextv) = iv(lmat) - if (iv1 .eq. 13) go to 999 - k = iv(parsav) - epslon - call vdflt(alg, lv-k, v(k+1)) - iv(dtype0) = 2 - alg - iv(oldn) = n - which(1) = dflt(1) - which(2) = dflt(2) - which(3) = dflt(3) - go to 110 - 60 if (n .eq. iv(oldn)) go to 80 - iv(1) = 17 - if (pu .eq. 0) go to 999 - write(pu,70) varnm(alg), iv(oldn), n - 70 format(/5h /// ,1a1,14h changed from ,i5,4h to ,i5) - go to 999 -c - 80 if (iv1 .le. 11 .and. iv1 .ge. 1) go to 100 - iv(1) = 80 - if (pu .ne. 0) write(pu,90) iv1 - 90 format(/13h /// iv(1) =,i5,28h should be between 0 and 14.) - go to 999 -c - 100 which(1) = cngd(1) - which(2) = cngd(2) - which(3) = cngd(3) -c - 110 if (iv1 .eq. 14) iv1 = 12 - if (big .gt. tiny) go to 120 - tiny = rmdcon(1) - machep = rmdcon(3) - big = rmdcon(6) - vm(12) = machep - vx(12) = big - vx(13) = big - vm(14) = machep - vm(17) = tiny - vx(17) = big - vm(18) = tiny - vx(18) = big - vx(20) = big - vx(21) = big - vx(22) = big - vm(24) = machep - vm(25) = machep - vm(26) = machep - vx(28) = rmdcon(5) - vm(29) = machep - vx(30) = big - vm(33) = machep - 120 m = 0 - i = 1 - j = jlim(alg) - k = epslon - ndfalt = ndflt(alg) - do 150 l = 1, ndfalt - vk = v(k) - if (vk .ge. vm(i) .and. vk .le. vx(i)) go to 140 - m = k - if (pu .ne. 0) write(pu,130) vn(1,i), vn(2,i), k, vk, - 1 vm(i), vx(i) - 130 format(/6h /// ,2a4,5h.. v(,i2,3h) =,d11.3,7h should, - 1 11h be between,d11.3,4h and,d11.3) - 140 k = k + 1 - i = i + 1 - if (i .eq. j) i = ijmp - 150 continue -c - if (iv(nvdflt) .eq. ndfalt) go to 170 - iv(1) = 51 - if (pu .eq. 0) go to 999 - write(pu,160) iv(nvdflt), ndfalt - 160 format(/13h iv(nvdflt) =,i5,13h rather than ,i5) - go to 999 - 170 if ((iv(dtype) .gt. 0 .or. v(dinit) .gt. zero) .and. iv1 .eq. 12) - 1 go to 200 - do 190 i = 1, n - if (d(i) .gt. zero) go to 190 - m = 18 - if (pu .ne. 0) write(pu,180) i, d(i) - 180 format(/8h /// d(,i3,3h) =,d11.3,19h should be positive) - 190 continue - 200 if (m .eq. 0) go to 210 - iv(1) = m - go to 999 -c - 210 if (pu .eq. 0 .or. iv(parprt) .eq. 0) go to 999 - if (iv1 .ne. 12 .or. iv(inits) .eq. alg-1) go to 230 - m = 1 - write(pu,220) sh(alg), iv(inits) - 220 format(/22h nondefault values..../5h init,a1,14h..... iv(25) =, - 1 i3) - 230 if (iv(dtype) .eq. iv(dtype0)) go to 250 - if (m .eq. 0) write(pu,260) which - m = 1 - write(pu,240) iv(dtype) - 240 format(20h dtype..... iv(16) =,i3) - 250 i = 1 - j = jlim(alg) - k = epslon - l = iv(parsav) - ndfalt = ndflt(alg) - do 290 ii = 1, ndfalt - if (v(k) .eq. v(l)) go to 280 - if (m .eq. 0) write(pu,260) which - 260 format(/1h ,3a4,9halues..../) - m = 1 - write(pu,270) vn(1,i), vn(2,i), k, v(k) - 270 format(1x,2a4,5h.. v(,i2,3h) =,d15.7) - 280 k = k + 1 - l = l + 1 - i = i + 1 - if (i .eq. j) i = ijmp - 290 continue -c - iv(dtype0) = iv(dtype) - parsv1 = iv(parsav) - call vcopy(iv(nvdflt), v(parsv1), v(epslon)) - go to 999 -c - 300 iv(1) = 15 - if (pu .eq. 0) go to 999 - write(pu,310) liv, miv2 - 310 format(/10h /// liv =,i5,17h must be at least,i5) - if (liv .lt. miv1) go to 999 - if (lv .lt. iv(lastv)) go to 320 - go to 999 -c - 320 iv(1) = 16 - if (pu .eq. 0) go to 999 - write(pu,330) lv, iv(lastv) - 330 format(/9h /// lv =,i5,17h must be at least,i5) - go to 999 -c - 340 iv(1) = 67 - if (pu .eq. 0) go to 999 - write(pu,350) alg - 350 format(/10h /// alg =,i5,15h must be 1 or 2) -c - 999 return -c *** last card of parck follows *** - end - double precision function reldst(p, d, x, x0) -c -c *** compute and return relative difference between x and x0 *** -c *** nl2sol version 2.2 *** -c - integer p - double precision d(p), x(p), x0(p) -c/+ - double precision dabs -c/ - integer i - double precision emax, t, xmax, zero -c/6 -c data zero/0.d+0/ -c/7 - parameter (zero=0.d+0) -c/ -c - emax = zero - xmax = zero - do 10 i = 1, p - t = dabs(d(i) * (x(i) - x0(i))) - if (emax .lt. t) emax = t - t = d(i) * (dabs(x(i)) + dabs(x0(i))) - if (xmax .lt. t) xmax = t - 10 continue - reldst = zero - if (xmax .gt. zero) reldst = emax / xmax - 999 return -c *** last card of reldst follows *** - end -c logical function stopx(idummy) -c *****parameters... -c integer idummy -c -c .................................................................. -c -c *****purpose... -c this function may serve as the stopx (asynchronous interruption) -c function for the nl2sol (nonlinear least-squares) package at -c those installations which do not wish to implement a -c dynamic stopx. -c -c *****algorithm notes... -c at installations where the nl2sol system is used -c interactively, this dummy stopx should be replaced by a -c function that returns .true. if and only if the interrupt -c (break) key has been pressed since the last call on stopx. -c -c .................................................................. -c -c stopx = .false. -c return -c end - subroutine vaxpy(p, w, a, x, y) -c -c *** set w = a*x + y -- w, x, y = p-vectors, a = scalar *** -c - integer p - double precision a, w(p), x(p), y(p) -c - integer i -c - do 10 i = 1, p - 10 w(i) = a*x(i) + y(i) - return - end - subroutine vcopy(p, y, x) -c -c *** set y = x, where x and y are p-vectors *** -c - integer p - double precision x(p), y(p) -c - integer i -c - do 10 i = 1, p - 10 y(i) = x(i) - return - end - subroutine vdflt(alg, lv, v) -c -c *** supply ***sol (version 2.3) default values to v *** -c -c *** alg = 1 means regression constants. -c *** alg = 2 means general unconstrained optimization constants. -c - integer alg, l - double precision v(lv) -c/+ - double precision dmax1 -c/ - external rmdcon - double precision rmdcon -c rmdcon... returns machine-dependent constants -c - double precision machep, mepcrt, one, sqteps, three -c -c *** subscripts for v *** -c - integer afctol, bias, cosmin, decfac, delta0, dfac, dinit, dltfdc, - 1 dltfdj, dtinit, d0init, epslon, eta0, fuzz, huberc, - 2 incfac, lmax0, lmaxs, phmnfc, phmxfc, rdfcmn, rdfcmx, - 3 rfctol, rlimit, rsptol, sctol, sigmin, tuner1, tuner2, - 4 tuner3, tuner4, tuner5, xctol, xftol -c -c/6 -c data one/1.d+0/, three/3.d+0/ -c/7 - parameter (one=1.d+0, three=3.d+0) -c/ -c -c *** v subscript values *** -c -c/6 -c data afctol/31/, bias/43/, cosmin/47/, decfac/22/, delta0/44/, -c 1 dfac/41/, dinit/38/, dltfdc/42/, dltfdj/43/, dtinit/39/, -c 2 d0init/40/, epslon/19/, eta0/42/, fuzz/45/, huberc/48/, -c 3 incfac/23/, lmax0/35/, lmaxs/36/, phmnfc/20/, phmxfc/21/, -c 4 rdfcmn/24/, rdfcmx/25/, rfctol/32/, rlimit/46/, rsptol/49/, -c 5 sctol/37/, sigmin/50/, tuner1/26/, tuner2/27/, tuner3/28/, -c 6 tuner4/29/, tuner5/30/, xctol/33/, xftol/34/ -c/7 - parameter (afctol=31, bias=43, cosmin=47, decfac=22, delta0=44, - 1 dfac=41, dinit=38, dltfdc=42, dltfdj=43, dtinit=39, - 2 d0init=40, epslon=19, eta0=42, fuzz=45, huberc=48, - 3 incfac=23, lmax0=35, lmaxs=36, phmnfc=20, phmxfc=21, - 4 rdfcmn=24, rdfcmx=25, rfctol=32, rlimit=46, rsptol=49, - 5 sctol=37, sigmin=50, tuner1=26, tuner2=27, tuner3=28, - 6 tuner4=29, tuner5=30, xctol=33, xftol=34) -c/ -c -c------------------------------- body -------------------------------- -c - machep = rmdcon(3) - v(afctol) = 1.d-20 - if (machep .gt. 1.d-10) v(afctol) = machep**2 - v(decfac) = 0.5d+0 - sqteps = rmdcon(4) - v(dfac) = 0.6d+0 - v(delta0) = sqteps - v(dtinit) = 1.d-6 - mepcrt = machep ** (one/three) - v(d0init) = 1.d+0 - v(epslon) = 0.1d+0 - v(incfac) = 2.d+0 - v(lmax0) = 1.d+0 - v(lmaxs) = 1.d+0 - v(phmnfc) = -0.1d+0 - v(phmxfc) = 0.1d+0 - v(rdfcmn) = 0.1d+0 - v(rdfcmx) = 4.d+0 - v(rfctol) = dmax1(1.d-10, mepcrt**2) - v(sctol) = v(rfctol) - v(tuner1) = 0.1d+0 - v(tuner2) = 1.d-4 - v(tuner3) = 0.75d+0 - v(tuner4) = 0.5d+0 - v(tuner5) = 0.75d+0 - v(xctol) = sqteps - v(xftol) = 1.d+2 * machep -c - if (alg .ge. 2) go to 10 -c -c *** regression values -c - v(cosmin) = dmax1(1.d-6, 1.d+2 * machep) - v(dinit) = 0.d+0 - v(dltfdc) = mepcrt - v(dltfdj) = sqteps - v(fuzz) = 1.5d+0 - v(huberc) = 0.7d+0 - v(rlimit) = rmdcon(5) - v(rsptol) = 1.d-3 - v(sigmin) = 1.d-4 - go to 999 -c -c *** general optimization values -c - 10 v(bias) = 0.8d+0 - v(dinit) = -1.0d+0 - v(eta0) = 1.0d+3 * machep -c - 999 return -c *** last card of vdflt follows *** - end - subroutine vscopy(p, y, s) -c -c *** set p-vector y to scalar s *** -c - integer p - double precision s, y(p) -c - integer i -c - do 10 i = 1, p - 10 y(i) = s - return - end - double precision function v2norm(p, x) -c -c *** return the 2-norm of the p-vector x, taking *** -c *** care to avoid the most likely underflows. *** -c - integer p - double precision x(p) -c - integer i, j - double precision one, r, scale, sqteta, t, xi, zero -c/+ - double precision dabs, dsqrt -c/ - external rmdcon - double precision rmdcon -c -c/6 -c data one/1.d+0/, zero/0.d+0/ -c/7 - parameter (one=1.d+0, zero=0.d+0) - save sqteta -c/ - data sqteta/0.d+0/ -c - if (p .gt. 0) go to 10 - v2norm = zero - go to 999 - 10 do 20 i = 1, p - if (x(i) .ne. zero) go to 30 - 20 continue - v2norm = zero - go to 999 -c - 30 scale = dabs(x(i)) - if (i .lt. p) go to 40 - v2norm = scale - go to 999 - 40 t = one - if (sqteta .eq. zero) sqteta = rmdcon(2) -c -c *** sqteta is (slightly larger than) the square root of the -c *** smallest positive floating point number on the machine. -c *** the tests involving sqteta are done to prevent underflows. -c - j = i + 1 - do 60 i = j, p - xi = dabs(x(i)) - if (xi .gt. scale) go to 50 - r = xi / scale - if (r .gt. sqteta) t = t + r*r - go to 60 - 50 r = scale / xi - if (r .le. sqteta) r = zero - t = one + t * r*r - scale = xi - 60 continue -c - v2norm = scale * dsqrt(t) - 999 return -c *** last card of v2norm follows *** - end - subroutine humsl(n, d, x, calcf, calcgh, iv, liv, lv, v, - 1 uiparm, urparm, ufparm) -c -c *** minimize general unconstrained objective function using *** -c *** (analytic) gradient and hessian provided by the caller. *** -c - integer liv, lv, n - integer iv(liv), uiparm(1) - double precision d(n), x(n), v(lv), urparm(1) -c dimension v(78 + n*(n+12)), uiparm(*), urparm(*) - external calcf, calcgh, ufparm -c -c------------------------------ discussion --------------------------- -c -c this routine is like sumsl, except that the subroutine para- -c meter calcg of sumsl (which computes the gradient of the objec- -c tive function) is replaced by the subroutine parameter calcgh, -c which computes both the gradient and (lower triangle of the) -c hessian of the objective function. the calling sequence is... -c call calcgh(n, x, nf, g, h, uiparm, urparm, ufparm) -c parameters n, x, nf, g, uiparm, urparm, and ufparm are the same -c as for sumsl, while h is an array of length n*(n+1)/2 in which -c calcgh must store the lower triangle of the hessian at x. start- -c ing at h(1), calcgh must store the hessian entries in the order -c (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), ... -c the value printed (by itsum) in the column labelled stppar -c is the levenberg-marquardt used in computing the current step. -c zero means a full newton step. if the special case described in -c ref. 1 is detected, then stppar is negated. the value printed -c in the column labelled npreldf is zero if the current hessian -c is not positive definite. -c it sometimes proves worthwhile to let d be determined from the -c diagonal of the hessian matrix by setting iv(dtype) = 1 and -c v(dinit) = 0. the following iv and v components are relevant... -c -c iv(dtol)..... iv(59) gives the starting subscript in v of the dtol -c array used when d is updated. (iv(dtol) can be -c initialized by calling humsl with iv(1) = 13.) -c iv(dtype).... iv(16) tells how the scale vector d should be chosen. -c iv(dtype) .le. 0 means that d should not be updated, and -c iv(dtype) .ge. 1 means that d should be updated as -c described below with v(dfac). default = 0. -c v(dfac)..... v(41) and the dtol and d0 arrays (see v(dtinit) and -c v(d0init)) are used in updating the scale vector d when -c iv(dtype) .gt. 0. (d is initialized according to -c v(dinit), described in sumsl.) let -c d1(i) = max(sqrt(abs(h(i,i))), v(dfac)*d(i)), -c where h(i,i) is the i-th diagonal element of the current -c hessian. if iv(dtype) = 1, then d(i) is set to d1(i) -c unless d1(i) .lt. dtol(i), in which case d(i) is set to -c max(d0(i), dtol(i)). -c if iv(dtype) .ge. 2, then d is updated during the first -c iteration as for iv(dtype) = 1 (after any initialization -c due to v(dinit)) and is left unchanged thereafter. -c default = 0.6. -c v(dtinit)... v(39), if positive, is the value to which all components -c of the dtol array (see v(dfac)) are initialized. if -c v(dtinit) = 0, then it is assumed that the caller has -c stored dtol in v starting at v(iv(dtol)). -c default = 10**-6. -c v(d0init)... v(40), if positive, is the value to which all components -c of the d0 vector (see v(dfac)) are initialized. if -c v(dfac) = 0, then it is assumed that the caller has -c stored d0 in v starting at v(iv(dtol)+n). default = 1.0. -c -c *** reference *** -c -c 1. gay, d.m. (1981), computing optimal locally constrained steps, -c siam j. sci. statist. comput. 2, pp. 186-197. -c. -c *** general *** -c -c coded by david m. gay (winter 1980). revised sept. 1982. -c this subroutine was written in connection with research supported -c in part by the national science foundation under grants -c mcs-7600324 and mcs-7906671. -c -c---------------------------- declarations --------------------------- -c - external deflt, humit -c -c deflt... provides default input values for iv and v. -c humit... reverse-communication routine that does humsl algorithm. -c - integer g1, h1, iv1, lh, nf - double precision f -c -c *** subscripts for iv *** -c - integer g, h, nextv, nfcall, nfgcal, toobig, vneed -c -c/6 -c data nextv/47/, nfcall/6/, nfgcal/7/, g/28/, h/56/, toobig/2/, -c 1 vneed/4/ -c/7 - parameter (nextv=47, nfcall=6, nfgcal=7, g=28, h=56, toobig=2, - 1 vneed=4) -c/ -c -c+++++++++++++++++++++++++++++++ body ++++++++++++++++++++++++++++++++ -c - lh = n * (n + 1) / 2 - if (iv(1) .eq. 0) call deflt(2, iv, liv, lv, v) - if (iv(1) .eq. 12 .or. iv(1) .eq. 13) - 1 iv(vneed) = iv(vneed) + n*(n+3)/2 - iv1 = iv(1) - if (iv1 .eq. 14) go to 10 - if (iv1 .gt. 2 .and. iv1 .lt. 12) go to 10 - g1 = 1 - h1 = 1 - if (iv1 .eq. 12) iv(1) = 13 - go to 20 -c - 10 g1 = iv(g) - h1 = iv(h) -c - 20 call humit(d, f, v(g1), v(h1), iv, lh, liv, lv, n, v, x) - if (iv(1) - 2) 30, 40, 50 -c - 30 nf = iv(nfcall) - call calcf(n, x, nf, f, uiparm, urparm, ufparm) - if (nf .le. 0) iv(toobig) = 1 - go to 20 -c - 40 call calcgh(n, x, iv(nfgcal), v(g1), v(h1), uiparm, urparm, - 1 ufparm) - go to 20 -c - 50 if (iv(1) .ne. 14) go to 999 -c -c *** storage allocation -c - iv(g) = iv(nextv) - iv(h) = iv(g) + n - iv(nextv) = iv(h) + n*(n+1)/2 - if (iv1 .ne. 13) go to 10 -c - 999 return -c *** last card of humsl follows *** - end - subroutine humit(d, fx, g, h, iv, lh, liv, lv, n, v, x) -c -c *** carry out humsl (unconstrained minimization) iterations, using -c *** hessian matrix provided by the caller. -c -c *** parameter declarations *** -c - integer lh, liv, lv, n - integer iv(liv) - double precision d(n), fx, g(n), h(lh), v(lv), x(n) -c -c-------------------------- parameter usage -------------------------- -c -c d.... scale vector. -c fx... function value. -c g.... gradient vector. -c h.... lower triangle of the hessian, stored rowwise. -c iv... integer value array. -c lh... length of h = p*(p+1)/2. -c liv.. length of iv (at least 60). -c lv... length of v (at least 78 + n*(n+21)/2). -c n.... number of variables (components in x and g). -c v.... floating-point value array. -c x.... parameter vector. -c -c *** discussion *** -c -c parameters iv, n, v, and x are the same as the corresponding -c ones to humsl (which see), except that v can be shorter (since -c the part of v that humsl uses for storing g and h is not needed). -c moreover, compared with humsl, iv(1) may have the two additional -c output values 1 and 2, which are explained below, as is the use -c of iv(toobig) and iv(nfgcal). the value iv(g), which is an -c output value from humsl, is not referenced by humit or the -c subroutines it calls. -c -c iv(1) = 1 means the caller should set fx to f(x), the function value -c at x, and call humit again, having changed none of the -c other parameters. an exception occurs if f(x) cannot be -c computed (e.g. if overflow would occur), which may happen -c because of an oversized step. in this case the caller -c should set iv(toobig) = iv(2) to 1, which will cause -c humit to ignore fx and try a smaller step. the para- -c meter nf that humsl passes to calcf (for possible use by -c calcgh) is a copy of iv(nfcall) = iv(6). -c iv(1) = 2 means the caller should set g to g(x), the gradient of f at -c x, and h to the lower triangle of h(x), the hessian of f -c at x, and call humit again, having changed none of the -c other parameters except perhaps the scale vector d. -c the parameter nf that humsl passes to calcg is -c iv(nfgcal) = iv(7). if g(x) and h(x) cannot be evaluated, -c then the caller may set iv(nfgcal) to 0, in which case -c humit will return with iv(1) = 65. -c note -- humit overwrites h with the lower triangle -c of diag(d)**-1 * h(x) * diag(d)**-1. -c. -c *** general *** -c -c coded by david m. gay (winter 1980). revised sept. 1982. -c this subroutine was written in connection with research supported -c in part by the national science foundation under grants -c mcs-7600324 and mcs-7906671. -c -c (see sumsl and humsl for references.) -c -c+++++++++++++++++++++++++++ declarations ++++++++++++++++++++++++++++ -c -c *** local variables *** -c - integer dg1, dummy, i, j, k, l, lstgst, nn1o2, step1, - 1 temp1, w1, x01 - double precision t -c -c *** constants *** -c - double precision one, onep2, zero -c -c *** no intrinsic functions *** -c -c *** external functions and subroutines *** -c - external assst, deflt, dotprd, dupdu, gqtst, itsum, parck, - 1 reldst, slvmul, stopx, vaxpy, vcopy, vscopy, v2norm - logical stopx - double precision dotprd, reldst, v2norm -c -c assst.... assesses candidate step. -c deflt.... provides default iv and v input values. -c dotprd... returns inner product of two vectors. -c dupdu.... updates scale vector d. -c gqtst.... computes optimally locally constrained step. -c itsum.... prints iteration summary and info on initial and final x. -c parck.... checks validity of input iv and v values. -c reldst... computes v(reldx) = relative step size. -c slvmul... multiplies symmetric matrix times vector, given the lower -c triangle of the matrix. -c stopx.... returns .true. if the break key has been pressed. -c vaxpy.... computes scalar times one vector plus another. -c vcopy.... copies one vector to another. -c vscopy... sets all elements of a vector to a scalar. -c v2norm... returns the 2-norm of a vector. -c -c *** subscripts for iv and v *** -c - integer cnvcod, dg, dgnorm, dinit, dstnrm, dtinit, dtol, - 1 dtype, d0init, f, f0, fdif, gtstep, incfac, irc, kagqt, - 2 lmat, lmax0, lmaxs, mode, model, mxfcal, mxiter, nextv, - 3 nfcall, nfgcal, ngcall, niter, preduc, radfac, radinc, - 4 radius, rad0, reldx, restor, step, stglim, stlstg, stppar, - 5 toobig, tuner4, tuner5, vneed, w, xirc, x0 -c -c *** iv subscript values *** -c -c/6 -c data cnvcod/55/, dg/37/, dtol/59/, dtype/16/, irc/29/, kagqt/33/, -c 1 lmat/42/, mode/35/, model/5/, mxfcal/17/, mxiter/18/, -c 2 nextv/47/, nfcall/6/, nfgcal/7/, ngcall/30/, niter/31/, -c 3 radinc/8/, restor/9/, step/40/, stglim/11/, stlstg/41/, -c 4 toobig/2/, vneed/4/, w/34/, xirc/13/, x0/43/ -c/7 - parameter (cnvcod=55, dg=37, dtol=59, dtype=16, irc=29, kagqt=33, - 1 lmat=42, mode=35, model=5, mxfcal=17, mxiter=18, - 2 nextv=47, nfcall=6, nfgcal=7, ngcall=30, niter=31, - 3 radinc=8, restor=9, step=40, stglim=11, stlstg=41, - 4 toobig=2, vneed=4, w=34, xirc=13, x0=43) -c/ -c -c *** v subscript values *** -c -c/6 -c data dgnorm/1/, dinit/38/, dstnrm/2/, dtinit/39/, d0init/40/, -c 1 f/10/, f0/13/, fdif/11/, gtstep/4/, incfac/23/, lmax0/35/, -c 2 lmaxs/36/, preduc/7/, radfac/16/, radius/8/, rad0/9/, -c 3 reldx/17/, stppar/5/, tuner4/29/, tuner5/30/ -c/7 - parameter (dgnorm=1, dinit=38, dstnrm=2, dtinit=39, d0init=40, - 1 f=10, f0=13, fdif=11, gtstep=4, incfac=23, lmax0=35, - 2 lmaxs=36, preduc=7, radfac=16, radius=8, rad0=9, - 3 reldx=17, stppar=5, tuner4=29, tuner5=30) -c/ -c -c/6 -c data one/1.d+0/, onep2/1.2d+0/, zero/0.d+0/ -c/7 - parameter (one=1.d+0, onep2=1.2d+0, zero=0.d+0) -c/ -c -c+++++++++++++++++++++++++++++++ body ++++++++++++++++++++++++++++++++ -c - i = iv(1) - if (i .eq. 1) go to 30 - if (i .eq. 2) go to 40 -c -c *** check validity of iv and v input values *** -c - if (iv(1) .eq. 0) call deflt(2, iv, liv, lv, v) - if (iv(1) .eq. 12 .or. iv(1) .eq. 13) - 1 iv(vneed) = iv(vneed) + n*(n+21)/2 + 7 - call parck(2, d, iv, liv, lv, n, v) - i = iv(1) - 2 - if (i .gt. 12) go to 999 - nn1o2 = n * (n + 1) / 2 - if (lh .ge. nn1o2) go to (210,210,210,210,210,210,160,120,160, - 1 10,10,20), i - iv(1) = 66 - go to 350 -c -c *** storage allocation *** -c - 10 iv(dtol) = iv(lmat) + nn1o2 - iv(x0) = iv(dtol) + 2*n - iv(step) = iv(x0) + n - iv(stlstg) = iv(step) + n - iv(dg) = iv(stlstg) + n - iv(w) = iv(dg) + n - iv(nextv) = iv(w) + 4*n + 7 - if (iv(1) .ne. 13) go to 20 - iv(1) = 14 - go to 999 -c -c *** initialization *** -c - 20 iv(niter) = 0 - iv(nfcall) = 1 - iv(ngcall) = 1 - iv(nfgcal) = 1 - iv(mode) = -1 - iv(model) = 1 - iv(stglim) = 1 - iv(toobig) = 0 - iv(cnvcod) = 0 - iv(radinc) = 0 - v(rad0) = zero - v(stppar) = zero - if (v(dinit) .ge. zero) call vscopy(n, d, v(dinit)) - k = iv(dtol) - if (v(dtinit) .gt. zero) call vscopy(n, v(k), v(dtinit)) - k = k + n - if (v(d0init) .gt. zero) call vscopy(n, v(k), v(d0init)) - iv(1) = 1 - go to 999 -c - 30 v(f) = fx - if (iv(mode) .ge. 0) go to 210 - iv(1) = 2 - if (iv(toobig) .eq. 0) go to 999 - iv(1) = 63 - go to 350 -c -c *** make sure gradient could be computed *** -c - 40 if (iv(nfgcal) .ne. 0) go to 50 - iv(1) = 65 - go to 350 -c -c *** update the scale vector d *** -c - 50 dg1 = iv(dg) - if (iv(dtype) .le. 0) go to 70 - k = dg1 - j = 0 - do 60 i = 1, n - j = j + i - v(k) = h(j) - k = k + 1 - 60 continue - call dupdu(d, v(dg1), iv, liv, lv, n, v) -c -c *** compute scaled gradient and its norm *** -c - 70 dg1 = iv(dg) - k = dg1 - do 80 i = 1, n - v(k) = g(i) / d(i) - k = k + 1 - 80 continue - v(dgnorm) = v2norm(n, v(dg1)) -c -c *** compute scaled hessian *** -c - k = 1 - do 100 i = 1, n - t = one / d(i) - do 90 j = 1, i - h(k) = t * h(k) / d(j) - k = k + 1 - 90 continue - 100 continue -c - if (iv(cnvcod) .ne. 0) go to 340 - if (iv(mode) .eq. 0) go to 300 -c -c *** allow first step to have scaled 2-norm at most v(lmax0) *** -c - v(radius) = v(lmax0) -c - iv(mode) = 0 -c -c -c----------------------------- main loop ----------------------------- -c -c -c *** print iteration summary, check iteration limit *** -c - 110 call itsum(d, g, iv, liv, lv, n, v, x) - 120 k = iv(niter) - if (k .lt. iv(mxiter)) go to 130 - iv(1) = 10 - go to 350 -c - 130 iv(niter) = k + 1 -c -c *** initialize for start of next iteration *** -c - dg1 = iv(dg) - x01 = iv(x0) - v(f0) = v(f) - iv(irc) = 4 - iv(kagqt) = -1 -c -c *** copy x to x0 *** -c - call vcopy(n, v(x01), x) -c -c *** update radius *** -c - if (k .eq. 0) go to 150 - step1 = iv(step) - k = step1 - do 140 i = 1, n - v(k) = d(i) * v(k) - k = k + 1 - 140 continue - v(radius) = v(radfac) * v2norm(n, v(step1)) -c -c *** check stopx and function evaluation limit *** -c -C AL 4/30/95 - dummy=iv(nfcall) - 150 if (.not. stopx(dummy)) go to 170 - iv(1) = 11 - go to 180 -c -c *** come here when restarting after func. eval. limit or stopx. -c - 160 if (v(f) .ge. v(f0)) go to 170 - v(radfac) = one - k = iv(niter) - go to 130 -c - 170 if (iv(nfcall) .lt. iv(mxfcal)) go to 190 - iv(1) = 9 - 180 if (v(f) .ge. v(f0)) go to 350 -c -c *** in case of stopx or function evaluation limit with -c *** improved v(f), evaluate the gradient at x. -c - iv(cnvcod) = iv(1) - go to 290 -c -c. . . . . . . . . . . . . compute candidate step . . . . . . . . . . -c - 190 step1 = iv(step) - dg1 = iv(dg) - l = iv(lmat) - w1 = iv(w) - call gqtst(d, v(dg1), h, iv(kagqt), v(l), n, v(step1), v, v(w1)) - if (iv(irc) .eq. 6) go to 210 -c -c *** check whether evaluating f(x0 + step) looks worthwhile *** -c - if (v(dstnrm) .le. zero) go to 210 - if (iv(irc) .ne. 5) go to 200 - if (v(radfac) .le. one) go to 200 - if (v(preduc) .le. onep2 * v(fdif)) go to 210 -c -c *** compute f(x0 + step) *** -c - 200 x01 = iv(x0) - step1 = iv(step) - call vaxpy(n, x, one, v(step1), v(x01)) - iv(nfcall) = iv(nfcall) + 1 - iv(1) = 1 - iv(toobig) = 0 - go to 999 -c -c. . . . . . . . . . . . . assess candidate step . . . . . . . . . . . -c - 210 x01 = iv(x0) - v(reldx) = reldst(n, d, x, v(x01)) - call assst(iv, liv, lv, v) - step1 = iv(step) - lstgst = iv(stlstg) - if (iv(restor) .eq. 1) call vcopy(n, x, v(x01)) - if (iv(restor) .eq. 2) call vcopy(n, v(lstgst), v(step1)) - if (iv(restor) .ne. 3) go to 220 - call vcopy(n, v(step1), v(lstgst)) - call vaxpy(n, x, one, v(step1), v(x01)) - v(reldx) = reldst(n, d, x, v(x01)) -c - 220 k = iv(irc) - go to (230,260,260,260,230,240,250,250,250,250,250,250,330,300), k -c -c *** recompute step with new radius *** -c - 230 v(radius) = v(radfac) * v(dstnrm) - go to 150 -c -c *** compute step of length v(lmaxs) for singular convergence test. -c - 240 v(radius) = v(lmaxs) - go to 190 -c -c *** convergence or false convergence *** -c - 250 iv(cnvcod) = k - 4 - if (v(f) .ge. v(f0)) go to 340 - if (iv(xirc) .eq. 14) go to 340 - iv(xirc) = 14 -c -c. . . . . . . . . . . . process acceptable step . . . . . . . . . . . -c - 260 if (iv(irc) .ne. 3) go to 290 - temp1 = lstgst -c -c *** prepare for gradient tests *** -c *** set temp1 = hessian * step + g(x0) -c *** = diag(d) * (h * step + g(x0)) -c -c use x0 vector as temporary. - k = x01 - do 270 i = 1, n - v(k) = d(i) * v(step1) - k = k + 1 - step1 = step1 + 1 - 270 continue - call slvmul(n, v(temp1), h, v(x01)) - do 280 i = 1, n - v(temp1) = d(i) * v(temp1) + g(i) - temp1 = temp1 + 1 - 280 continue -c -c *** compute gradient and hessian *** -c - 290 iv(ngcall) = iv(ngcall) + 1 - iv(1) = 2 - go to 999 -c - 300 iv(1) = 2 - if (iv(irc) .ne. 3) go to 110 -c -c *** set v(radfac) by gradient tests *** -c - temp1 = iv(stlstg) - step1 = iv(step) -c -c *** set temp1 = diag(d)**-1 * (hessian*step + (g(x0)-g(x))) *** -c - k = temp1 - do 310 i = 1, n - v(k) = (v(k) - g(i)) / d(i) - k = k + 1 - 310 continue -c -c *** do gradient tests *** -c - if (v2norm(n, v(temp1)) .le. v(dgnorm) * v(tuner4)) go to 320 - if (dotprd(n, g, v(step1)) - 1 .ge. v(gtstep) * v(tuner5)) go to 110 - 320 v(radfac) = v(incfac) - go to 110 -c -c. . . . . . . . . . . . . . misc. details . . . . . . . . . . . . . . -c -c *** bad parameters to assess *** -c - 330 iv(1) = 64 - go to 350 -c -c *** print summary of final iteration and other requested items *** -c - 340 iv(1) = iv(cnvcod) - iv(cnvcod) = 0 - 350 call itsum(d, g, iv, liv, lv, n, v, x) -c - 999 return -c -c *** last card of humit follows *** - end - subroutine dupdu(d, hdiag, iv, liv, lv, n, v) -c -c *** update scale vector d for humsl *** -c -c *** parameter declarations *** -c - integer liv, lv, n - integer iv(liv) - double precision d(n), hdiag(n), v(lv) -c -c *** local variables *** -c - integer dtoli, d0i, i - double precision t, vdfac -c -c *** intrinsic functions *** -c/+ - double precision dabs, dmax1, dsqrt -c/ -c *** subscripts for iv and v *** -c - integer dfac, dtol, dtype, niter -c/6 -c data dfac/41/, dtol/59/, dtype/16/, niter/31/ -c/7 - parameter (dfac=41, dtol=59, dtype=16, niter=31) -c/ -c -c------------------------------- body -------------------------------- -c - i = iv(dtype) - if (i .eq. 1) go to 10 - if (iv(niter) .gt. 0) go to 999 -c - 10 dtoli = iv(dtol) - d0i = dtoli + n - vdfac = v(dfac) - do 20 i = 1, n - t = dmax1(dsqrt(dabs(hdiag(i))), vdfac*d(i)) - if (t .lt. v(dtoli)) t = dmax1(v(dtoli), v(d0i)) - d(i) = t - dtoli = dtoli + 1 - d0i = d0i + 1 - 20 continue -c - 999 return -c *** last card of dupdu follows *** - end - subroutine gqtst(d, dig, dihdi, ka, l, p, step, v, w) -c -c *** compute goldfeld-quandt-trotter step by more-hebden technique *** -c *** (nl2sol version 2.2), modified a la more and sorensen *** -c -c *** parameter declarations *** -c - integer ka, p -cal double precision d(p), dig(p), dihdi(1), l(1), v(21), step(p), -cal 1 w(1) - double precision d(p), dig(p), dihdi(p*(p+1)/2), l(p*(p+1)/2), - 1 v(21), step(p),w(4*p+7) -c dimension dihdi(p*(p+1)/2), l(p*(p+1)/2), w(4*p+7) -c -c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -c -c *** purpose *** -c -c given the (compactly stored) lower triangle of a scaled -c hessian (approximation) and a nonzero scaled gradient vector, -c this subroutine computes a goldfeld-quandt-trotter step of -c approximate length v(radius) by the more-hebden technique. in -c other words, step is computed to (approximately) minimize -c psi(step) = (g**t)*step + 0.5*(step**t)*h*step such that the -c 2-norm of d*step is at most (approximately) v(radius), where -c g is the gradient, h is the hessian, and d is a diagonal -c scale matrix whose diagonal is stored in the parameter d. -c (gqtst assumes dig = d**-1 * g and dihdi = d**-1 * h * d**-1.) -c -c *** parameter description *** -c -c d (in) = the scale vector, i.e. the diagonal of the scale -c matrix d mentioned above under purpose. -c dig (in) = the scaled gradient vector, d**-1 * g. if g = 0, then -c step = 0 and v(stppar) = 0 are returned. -c dihdi (in) = lower triangle of the scaled hessian (approximation), -c i.e., d**-1 * h * d**-1, stored compactly by rows., i.e., -c in the order (1,1), (2,1), (2,2), (3,1), (3,2), etc. -c ka (i/o) = the number of hebden iterations (so far) taken to deter- -c mine step. ka .lt. 0 on input means this is the first -c attempt to determine step (for the present dig and dihdi) -c -- ka is initialized to 0 in this case. output with -c ka = 0 (or v(stppar) = 0) means step = -(h**-1)*g. -c l (i/o) = workspace of length p*(p+1)/2 for cholesky factors. -c p (in) = number of parameters -- the hessian is a p x p matrix. -c step (i/o) = the step computed. -c v (i/o) contains various constants and variables described below. -c w (i/o) = workspace of length 4*p + 6. -c -c *** entries in v *** -c -c v(dgnorm) (i/o) = 2-norm of (d**-1)*g. -c v(dstnrm) (output) = 2-norm of d*step. -c v(dst0) (i/o) = 2-norm of d*(h**-1)*g (for pos. def. h only), or -c overestimate of smallest eigenvalue of (d**-1)*h*(d**-1). -c v(epslon) (in) = max. rel. error allowed for psi(step). for the -c step returned, psi(step) will exceed its optimal value -c by less than -v(epslon)*psi(step). suggested value = 0.1. -c v(gtstep) (out) = inner product between g and step. -c v(nreduc) (out) = psi(-(h**-1)*g) = psi(newton step) (for pos. def. -c h only -- v(nreduc) is set to zero otherwise). -c v(phmnfc) (in) = tol. (together with v(phmxfc)) for accepting step -c (more*s sigma). the error v(dstnrm) - v(radius) must lie -c between v(phmnfc)*v(radius) and v(phmxfc)*v(radius). -c v(phmxfc) (in) (see v(phmnfc).) -c suggested values -- v(phmnfc) = -0.25, v(phmxfc) = 0.5. -c v(preduc) (out) = psi(step) = predicted obj. func. reduction for step. -c v(radius) (in) = radius of current (scaled) trust region. -c v(rad0) (i/o) = value of v(radius) from previous call. -c v(stppar) (i/o) is normally the marquardt parameter, i.e. the alpha -c described below under algorithm notes. if h + alpha*d**2 -c (see algorithm notes) is (nearly) singular, however, -c then v(stppar) = -alpha. -c -c *** usage notes *** -c -c if it is desired to recompute step using a different value of -c v(radius), then this routine may be restarted by calling it -c with all parameters unchanged except v(radius). (this explains -c why step and w are listed as i/o). on an initial call (one with -c ka .lt. 0), step and w need not be initialized and only compo- -c nents v(epslon), v(stppar), v(phmnfc), v(phmxfc), v(radius), and -c v(rad0) of v must be initialized. -c -c *** algorithm notes *** -c -c the desired g-q-t step (ref. 2, 3, 4, 6) satisfies -c (h + alpha*d**2)*step = -g for some nonnegative alpha such that -c h + alpha*d**2 is positive semidefinite. alpha and step are -c computed by a scheme analogous to the one described in ref. 5. -c estimates of the smallest and largest eigenvalues of the hessian -c are obtained from the gerschgorin circle theorem enhanced by a -c simple form of the scaling described in ref. 7. cases in which -c h + alpha*d**2 is nearly (or exactly) singular are handled by -c the technique discussed in ref. 2. in these cases, a step of -c (exact) length v(radius) is returned for which psi(step) exceeds -c its optimal value by less than -v(epslon)*psi(step). the test -c suggested in ref. 6 for detecting the special case is performed -c once two matrix factorizations have been done -- doing so sooner -c seems to degrade the performance of optimization routines that -c call this routine. -c -c *** functions and subroutines called *** -c -c dotprd - returns inner product of two vectors. -c litvmu - applies inverse-transpose of compact lower triang. matrix. -c livmul - applies inverse of compact lower triang. matrix. -c lsqrt - finds cholesky factor (of compactly stored lower triang.). -c lsvmin - returns approx. to min. sing. value of lower triang. matrix. -c rmdcon - returns machine-dependent constants. -c v2norm - returns 2-norm of a vector. -c -c *** references *** -c -c 1. dennis, j.e., gay, d.m., and welsch, r.e. (1981), an adaptive -c nonlinear least-squares algorithm, acm trans. math. -c software, vol. 7, no. 3. -c 2. gay, d.m. (1981), computing optimal locally constrained steps, -c siam j. sci. statist. computing, vol. 2, no. 2, pp. -c 186-197. -c 3. goldfeld, s.m., quandt, r.e., and trotter, h.f. (1966), -c maximization by quadratic hill-climbing, econometrica 34, -c pp. 541-551. -c 4. hebden, m.d. (1973), an algorithm for minimization using exact -c second derivatives, report t.p. 515, theoretical physics -c div., a.e.r.e. harwell, oxon., england. -c 5. more, j.j. (1978), the levenberg-marquardt algorithm, implemen- -c tation and theory, pp.105-116 of springer lecture notes -c in mathematics no. 630, edited by g.a. watson, springer- -c verlag, berlin and new york. -c 6. more, j.j., and sorensen, d.c. (1981), computing a trust region -c step, technical report anl-81-83, argonne national lab. -c 7. varga, r.s. (1965), minimal gerschgorin sets, pacific j. math. 15, -c pp. 719-729. -c -c *** general *** -c -c coded by david m. gay. -c this subroutine was written in connection with research -c supported by the national science foundation under grants -c mcs-7600324, dcr75-10143, 76-14311dss, mcs76-11989, and -c mcs-7906671. -c -c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -c -c *** local variables *** -c - logical restrt - integer dggdmx, diag, diag0, dstsav, emax, emin, i, im1, inc, irc, - 1 j, k, kalim, kamin, k1, lk0, phipin, q, q0, uk0, x - double precision alphak, aki, akk, delta, dst, eps, gtsta, lk, - 1 oldphi, phi, phimax, phimin, psifac, rad, radsq, - 2 root, si, sk, sw, t, twopsi, t1, t2, uk, wi -c -c *** constants *** - double precision big, dgxfac, epsfac, four, half, kappa, negone, - 1 one, p001, six, three, two, zero -c -c *** intrinsic functions *** -c/+ - double precision dabs, dmax1, dmin1, dsqrt -c/ -c *** external functions and subroutines *** -c - external dotprd, litvmu, livmul, lsqrt, lsvmin, rmdcon, v2norm - double precision dotprd, lsvmin, rmdcon, v2norm -c -c *** subscripts for v *** -c - integer dgnorm, dstnrm, dst0, epslon, gtstep, stppar, nreduc, - 1 phmnfc, phmxfc, preduc, radius, rad0 -c/6 -c data dgnorm/1/, dstnrm/2/, dst0/3/, epslon/19/, gtstep/4/, -c 1 nreduc/6/, phmnfc/20/, phmxfc/21/, preduc/7/, radius/8/, -c 2 rad0/9/, stppar/5/ -c/7 - parameter (dgnorm=1, dstnrm=2, dst0=3, epslon=19, gtstep=4, - 1 nreduc=6, phmnfc=20, phmxfc=21, preduc=7, radius=8, - 2 rad0=9, stppar=5) -c/ -c -c/6 -c data epsfac/50.0d+0/, four/4.0d+0/, half/0.5d+0/, -c 1 kappa/2.0d+0/, negone/-1.0d+0/, one/1.0d+0/, p001/1.0d-3/, -c 2 six/6.0d+0/, three/3.0d+0/, two/2.0d+0/, zero/0.0d+0/ -c/7 - parameter (epsfac=50.0d+0, four=4.0d+0, half=0.5d+0, - 1 kappa=2.0d+0, negone=-1.0d+0, one=1.0d+0, p001=1.0d-3, - 2 six=6.0d+0, three=3.0d+0, two=2.0d+0, zero=0.0d+0) - save dgxfac -c/ - data big/0.d+0/, dgxfac/0.d+0/ -c -c *** body *** -c -c *** store largest abs. entry in (d**-1)*h*(d**-1) at w(dggdmx). - dggdmx = p + 1 -c *** store gerschgorin over- and underestimates of the largest -c *** and smallest eigenvalues of (d**-1)*h*(d**-1) at w(emax) -c *** and w(emin) respectively. - emax = dggdmx + 1 - emin = emax + 1 -c *** for use in recomputing step, the final values of lk, uk, dst, -c *** and the inverse derivative of more*s phi at 0 (for pos. def. -c *** h) are stored in w(lk0), w(uk0), w(dstsav), and w(phipin) -c *** respectively. - lk0 = emin + 1 - phipin = lk0 + 1 - uk0 = phipin + 1 - dstsav = uk0 + 1 -c *** store diag of (d**-1)*h*(d**-1) in w(diag),...,w(diag0+p). - diag0 = dstsav - diag = diag0 + 1 -c *** store -d*step in w(q),...,w(q0+p). - q0 = diag0 + p - q = q0 + 1 -c *** allocate storage for scratch vector x *** - x = q + p - rad = v(radius) - radsq = rad**2 -c *** phitol = max. error allowed in dst = v(dstnrm) = 2-norm of -c *** d*step. - phimax = v(phmxfc) * rad - phimin = v(phmnfc) * rad - psifac = two * v(epslon) / (three * (four * (v(phmnfc) + one) * - 1 (kappa + one) + kappa + two) * rad**2) -c *** oldphi is used to detect limits of numerical accuracy. if -c *** we recompute step and it does not change, then we accept it. - oldphi = zero - eps = v(epslon) - irc = 0 - restrt = .false. - kalim = ka + 50 -c -c *** start or restart, depending on ka *** -c - if (ka .ge. 0) go to 290 -c -c *** fresh start *** -c - k = 0 - uk = negone - ka = 0 - kalim = 50 - v(dgnorm) = v2norm(p, dig) - v(nreduc) = zero - v(dst0) = zero - kamin = 3 - if (v(dgnorm) .eq. zero) kamin = 0 -c -c *** store diag(dihdi) in w(diag0+1),...,w(diag0+p) *** -c - j = 0 - do 10 i = 1, p - j = j + i - k1 = diag0 + i - w(k1) = dihdi(j) - 10 continue -c -c *** determine w(dggdmx), the largest element of dihdi *** -c - t1 = zero - j = p * (p + 1) / 2 - do 20 i = 1, j - t = dabs(dihdi(i)) - if (t1 .lt. t) t1 = t - 20 continue - w(dggdmx) = t1 -c -c *** try alpha = 0 *** -c - 30 call lsqrt(1, p, l, dihdi, irc) - if (irc .eq. 0) go to 50 -c *** indef. h -- underestimate smallest eigenvalue, use this -c *** estimate to initialize lower bound lk on alpha. - j = irc*(irc+1)/2 - t = l(j) - l(j) = one - do 40 i = 1, irc - 40 w(i) = zero - w(irc) = one - call litvmu(irc, w, l, w) - t1 = v2norm(irc, w) - lk = -t / t1 / t1 - v(dst0) = -lk - if (restrt) go to 210 - go to 70 -c -c *** positive definite h -- compute unmodified newton step. *** - 50 lk = zero - t = lsvmin(p, l, w(q), w(q)) - if (t .ge. one) go to 60 - if (big .le. zero) big = rmdcon(6) - if (v(dgnorm) .ge. t*t*big) go to 70 - 60 call livmul(p, w(q), l, dig) - gtsta = dotprd(p, w(q), w(q)) - v(nreduc) = half * gtsta - call litvmu(p, w(q), l, w(q)) - dst = v2norm(p, w(q)) - v(dst0) = dst - phi = dst - rad - if (phi .le. phimax) go to 260 - if (restrt) go to 210 -c -c *** prepare to compute gerschgorin estimates of largest (and -c *** smallest) eigenvalues. *** -c - 70 k = 0 - do 100 i = 1, p - wi = zero - if (i .eq. 1) go to 90 - im1 = i - 1 - do 80 j = 1, im1 - k = k + 1 - t = dabs(dihdi(k)) - wi = wi + t - w(j) = w(j) + t - 80 continue - 90 w(i) = wi - k = k + 1 - 100 continue -c -c *** (under-)estimate smallest eigenvalue of (d**-1)*h*(d**-1) *** -c - k = 1 - t1 = w(diag) - w(1) - if (p .le. 1) go to 120 - do 110 i = 2, p - j = diag0 + i - t = w(j) - w(i) - if (t .ge. t1) go to 110 - t1 = t - k = i - 110 continue -c - 120 sk = w(k) - j = diag0 + k - akk = w(j) - k1 = k*(k-1)/2 + 1 - inc = 1 - t = zero - do 150 i = 1, p - if (i .eq. k) go to 130 - aki = dabs(dihdi(k1)) - si = w(i) - j = diag0 + i - t1 = half * (akk - w(j) + si - aki) - t1 = t1 + dsqrt(t1*t1 + sk*aki) - if (t .lt. t1) t = t1 - if (i .lt. k) go to 140 - 130 inc = i - 140 k1 = k1 + inc - 150 continue -c - w(emin) = akk - t - uk = v(dgnorm)/rad - w(emin) - if (v(dgnorm) .eq. zero) uk = uk + p001 + p001*uk - if (uk .le. zero) uk = p001 -c -c *** compute gerschgorin (over-)estimate of largest eigenvalue *** -c - k = 1 - t1 = w(diag) + w(1) - if (p .le. 1) go to 170 - do 160 i = 2, p - j = diag0 + i - t = w(j) + w(i) - if (t .le. t1) go to 160 - t1 = t - k = i - 160 continue -c - 170 sk = w(k) - j = diag0 + k - akk = w(j) - k1 = k*(k-1)/2 + 1 - inc = 1 - t = zero - do 200 i = 1, p - if (i .eq. k) go to 180 - aki = dabs(dihdi(k1)) - si = w(i) - j = diag0 + i - t1 = half * (w(j) + si - aki - akk) - t1 = t1 + dsqrt(t1*t1 + sk*aki) - if (t .lt. t1) t = t1 - if (i .lt. k) go to 190 - 180 inc = i - 190 k1 = k1 + inc - 200 continue -c - w(emax) = akk + t - lk = dmax1(lk, v(dgnorm)/rad - w(emax)) -c -c *** alphak = current value of alpha (see alg. notes above). we -c *** use more*s scheme for initializing it. - alphak = dabs(v(stppar)) * v(rad0)/rad -c - if (irc .ne. 0) go to 210 -c -c *** compute l0 for positive definite h *** -c - call livmul(p, w, l, w(q)) - t = v2norm(p, w) - w(phipin) = dst / t / t - lk = dmax1(lk, phi*w(phipin)) -c -c *** safeguard alphak and add alphak*i to (d**-1)*h*(d**-1) *** -c - 210 ka = ka + 1 - if (-v(dst0) .ge. alphak .or. alphak .lt. lk .or. alphak .ge. uk) - 1 alphak = uk * dmax1(p001, dsqrt(lk/uk)) - if (alphak .le. zero) alphak = half * uk - if (alphak .le. zero) alphak = uk - k = 0 - do 220 i = 1, p - k = k + i - j = diag0 + i - dihdi(k) = w(j) + alphak - 220 continue -c -c *** try computing cholesky decomposition *** -c - call lsqrt(1, p, l, dihdi, irc) - if (irc .eq. 0) go to 240 -c -c *** (d**-1)*h*(d**-1) + alphak*i is indefinite -- overestimate -c *** smallest eigenvalue for use in updating lk *** -c - j = (irc*(irc+1))/2 - t = l(j) - l(j) = one - do 230 i = 1, irc - 230 w(i) = zero - w(irc) = one - call litvmu(irc, w, l, w) - t1 = v2norm(irc, w) - lk = alphak - t/t1/t1 - v(dst0) = -lk - go to 210 -c -c *** alphak makes (d**-1)*h*(d**-1) positive definite. -c *** compute q = -d*step, check for convergence. *** -c - 240 call livmul(p, w(q), l, dig) - gtsta = dotprd(p, w(q), w(q)) - call litvmu(p, w(q), l, w(q)) - dst = v2norm(p, w(q)) - phi = dst - rad - if (phi .le. phimax .and. phi .ge. phimin) go to 270 - if (phi .eq. oldphi) go to 270 - oldphi = phi - if (phi .lt. zero) go to 330 -c -c *** unacceptable alphak -- update lk, uk, alphak *** -c - 250 if (ka .ge. kalim) go to 270 -c *** the following dmin1 is necessary because of restarts *** - if (phi .lt. zero) uk = dmin1(uk, alphak) -c *** kamin = 0 only iff the gradient vanishes *** - if (kamin .eq. 0) go to 210 - call livmul(p, w, l, w(q)) - t1 = v2norm(p, w) - alphak = alphak + (phi/t1) * (dst/t1) * (dst/rad) - lk = dmax1(lk, alphak) - go to 210 -c -c *** acceptable step on first try *** -c - 260 alphak = zero -c -c *** successful step in general. compute step = -(d**-1)*q *** -c - 270 do 280 i = 1, p - j = q0 + i - step(i) = -w(j)/d(i) - 280 continue - v(gtstep) = -gtsta - v(preduc) = half * (dabs(alphak)*dst*dst + gtsta) - go to 410 -c -c -c *** restart with new radius *** -c - 290 if (v(dst0) .le. zero .or. v(dst0) - rad .gt. phimax) go to 310 -c -c *** prepare to return newton step *** -c - restrt = .true. - ka = ka + 1 - k = 0 - do 300 i = 1, p - k = k + i - j = diag0 + i - dihdi(k) = w(j) - 300 continue - uk = negone - go to 30 -c - 310 kamin = ka + 3 - if (v(dgnorm) .eq. zero) kamin = 0 - if (ka .eq. 0) go to 50 -c - dst = w(dstsav) - alphak = dabs(v(stppar)) - phi = dst - rad - t = v(dgnorm)/rad - uk = t - w(emin) - if (v(dgnorm) .eq. zero) uk = uk + p001 + p001*uk - if (uk .le. zero) uk = p001 - if (rad .gt. v(rad0)) go to 320 -c -c *** smaller radius *** - lk = zero - if (alphak .gt. zero) lk = w(lk0) - lk = dmax1(lk, t - w(emax)) - if (v(dst0) .gt. zero) lk = dmax1(lk, (v(dst0)-rad)*w(phipin)) - go to 250 -c -c *** bigger radius *** - 320 if (alphak .gt. zero) uk = dmin1(uk, w(uk0)) - lk = dmax1(zero, -v(dst0), t - w(emax)) - if (v(dst0) .gt. zero) lk = dmax1(lk, (v(dst0)-rad)*w(phipin)) - go to 250 -c -c *** decide whether to check for special case... in practice (from -c *** the standpoint of the calling optimization code) it seems best -c *** not to check until a few iterations have failed -- hence the -c *** test on kamin below. -c - 330 delta = alphak + dmin1(zero, v(dst0)) - twopsi = alphak*dst*dst + gtsta - if (ka .ge. kamin) go to 340 -c *** if the test in ref. 2 is satisfied, fall through to handle -c *** the special case (as soon as the more-sorensen test detects -c *** it). - if (delta .ge. psifac*twopsi) go to 370 -c -c *** check for the special case of h + alpha*d**2 (nearly) -c *** singular. use one step of inverse power method with start -c *** from lsvmin to obtain approximate eigenvector corresponding -c *** to smallest eigenvalue of (d**-1)*h*(d**-1). lsvmin returns -c *** x and w with l*w = x. -c - 340 t = lsvmin(p, l, w(x), w) -c -c *** normalize w *** - do 350 i = 1, p - 350 w(i) = t*w(i) -c *** complete current inv. power iter. -- replace w by (l**-t)*w. - call litvmu(p, w, l, w) - t2 = one/v2norm(p, w) - do 360 i = 1, p - 360 w(i) = t2*w(i) - t = t2 * t -c -c *** now w is the desired approximate (unit) eigenvector and -c *** t*x = ((d**-1)*h*(d**-1) + alphak*i)*w. -c - sw = dotprd(p, w(q), w) - t1 = (rad + dst) * (rad - dst) - root = dsqrt(sw*sw + t1) - if (sw .lt. zero) root = -root - si = t1 / (sw + root) -c -c *** the actual test for the special case... -c - if ((t2*si)**2 .le. eps*(dst**2 + alphak*radsq)) go to 380 -c -c *** update upper bound on smallest eigenvalue (when not positive) -c *** (as recommended by more and sorensen) and continue... -c - if (v(dst0) .le. zero) v(dst0) = dmin1(v(dst0), t2**2 - alphak) - lk = dmax1(lk, -v(dst0)) -c -c *** check whether we can hope to detect the special case in -c *** the available arithmetic. accept step as it is if not. -c -c *** if not yet available, obtain machine dependent value dgxfac. - 370 if (dgxfac .eq. zero) dgxfac = epsfac * rmdcon(3) -c - if (delta .gt. dgxfac*w(dggdmx)) go to 250 - go to 270 -c -c *** special case detected... negate alphak to indicate special case -c - 380 alphak = -alphak - v(preduc) = half * twopsi -c -c *** accept current step if adding si*w would lead to a -c *** further relative reduction in psi of less than v(epslon)/3. -c - t1 = zero - t = si*(alphak*sw - half*si*(alphak + t*dotprd(p,w(x),w))) - if (t .lt. eps*twopsi/six) go to 390 - v(preduc) = v(preduc) + t - dst = rad - t1 = -si - 390 do 400 i = 1, p - j = q0 + i - w(j) = t1*w(i) - w(j) - step(i) = w(j) / d(i) - 400 continue - v(gtstep) = dotprd(p, dig, w(q)) -c -c *** save values for use in a possible restart *** -c - 410 v(dstnrm) = dst - v(stppar) = alphak - w(lk0) = lk - w(uk0) = uk - v(rad0) = rad - w(dstsav) = dst -c -c *** restore diagonal of dihdi *** -c - j = 0 - do 420 i = 1, p - j = j + i - k = diag0 + i - dihdi(j) = w(k) - 420 continue -c - 999 return -c -c *** last card of gqtst follows *** - end - subroutine lsqrt(n1, n, l, a, irc) -c -c *** compute rows n1 through n of the cholesky factor l of -c *** a = l*(l**t), where l and the lower triangle of a are both -c *** stored compactly by rows (and may occupy the same storage). -c *** irc = 0 means all went well. irc = j means the leading -c *** principal j x j submatrix of a is not positive definite -- -c *** and l(j*(j+1)/2) contains the (nonpos.) reduced j-th diagonal. -c -c *** parameters *** -c - integer n1, n, irc -cal double precision l(1), a(1) - double precision l(n*(n+1)/2), a(n*(n+1)/2) -c dimension l(n*(n+1)/2), a(n*(n+1)/2) -c -c *** local variables *** -c - integer i, ij, ik, im1, i0, j, jk, jm1, j0, k - double precision t, td, zero -c -c *** intrinsic functions *** -c/+ - double precision dsqrt -c/ -c/6 -c data zero/0.d+0/ -c/7 - parameter (zero=0.d+0) -c/ -c -c *** body *** -c - i0 = n1 * (n1 - 1) / 2 - do 50 i = n1, n - td = zero - if (i .eq. 1) go to 40 - j0 = 0 - im1 = i - 1 - do 30 j = 1, im1 - t = zero - if (j .eq. 1) go to 20 - jm1 = j - 1 - do 10 k = 1, jm1 - ik = i0 + k - jk = j0 + k - t = t + l(ik)*l(jk) - 10 continue - 20 ij = i0 + j - j0 = j0 + j - t = (a(ij) - t) / l(j0) - l(ij) = t - td = td + t*t - 30 continue - 40 i0 = i0 + i - t = a(i0) - td - if (t .le. zero) go to 60 - l(i0) = dsqrt(t) - 50 continue -c - irc = 0 - go to 999 -c - 60 l(i0) = t - irc = i -c - 999 return -c -c *** last card of lsqrt *** - end - double precision function lsvmin(p, l, x, y) -c -c *** estimate smallest sing. value of packed lower triang. matrix l -c -c *** parameter declarations *** -c - integer p -cal double precision l(1), x(p), y(p) - double precision l(p*(p+1)/2), x(p), y(p) -c dimension l(p*(p+1)/2) -c -c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -c -c *** purpose *** -c -c this function returns a good over-estimate of the smallest -c singular value of the packed lower triangular matrix l. -c -c *** parameter description *** -c -c p (in) = the order of l. l is a p x p lower triangular matrix. -c l (in) = array holding the elements of l in row order, i.e. -c l(1,1), l(2,1), l(2,2), l(3,1), l(3,2), l(3,3), etc. -c x (out) if lsvmin returns a positive value, then x is a normalized -c approximate left singular vector corresponding to the -c smallest singular value. this approximation may be very -c crude. if lsvmin returns zero, then some components of x -c are zero and the rest retain their input values. -c y (out) if lsvmin returns a positive value, then y = (l**-1)*x is an -c unnormalized approximate right singular vector correspond- -c ing to the smallest singular value. this approximation -c may be crude. if lsvmin returns zero, then y retains its -c input value. the caller may pass the same vector for x -c and y (nonstandard fortran usage), in which case y over- -c writes x (for nonzero lsvmin returns). -c -c *** algorithm notes *** -c -c the algorithm is based on (1), with the additional provision that -c lsvmin = 0 is returned if the smallest diagonal element of l -c (in magnitude) is not more than the unit roundoff times the -c largest. the algorithm uses a random number generator proposed -c in (4), which passes the spectral test with flying colors -- see -c (2) and (3). -c -c *** subroutines and functions called *** -c -c v2norm - function, returns the 2-norm of a vector. -c -c *** references *** -c -c (1) cline, a., moler, c., stewart, g., and wilkinson, j.h.(1977), -c an estimate for the condition number of a matrix, report -c tm-310, applied math. div., argonne national laboratory. -c -c (2) hoaglin, d.c. (1976), theoretical properties of congruential -c random-number generators -- an empirical view, -c memorandum ns-340, dept. of statistics, harvard univ. -c -c (3) knuth, d.e. (1969), the art of computer programming, vol. 2 -c (seminumerical algorithms), addison-wesley, reading, mass. -c -c (4) smith, c.s. (1971), multiplicative pseudo-random number -c generators with prime modulus, j. assoc. comput. mach. 18, -c pp. 586-593. -c -c *** history *** -c -c designed and coded by david m. gay (winter 1977/summer 1978). -c -c *** general *** -c -c this subroutine was written in connection with research -c supported by the national science foundation under grants -c mcs-7600324, dcr75-10143, 76-14311dss, and mcs76-11989. -c -c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -c -c *** local variables *** -c - integer i, ii, ix, j, ji, jj, jjj, jm1, j0, pm1 - double precision b, sminus, splus, t, xminus, xplus -c -c *** constants *** -c - double precision half, one, r9973, zero -c -c *** intrinsic functions *** -c/+ - integer mod - real float - double precision dabs -c/ -c *** external functions and subroutines *** -c - external dotprd, v2norm, vaxpy - double precision dotprd, v2norm -c -c/6 -c data half/0.5d+0/, one/1.d+0/, r9973/9973.d+0/, zero/0.d+0/ -c/7 - parameter (half=0.5d+0, one=1.d+0, r9973=9973.d+0, zero=0.d+0) -c/ -c -c *** body *** -c - ix = 2 - pm1 = p - 1 -c -c *** first check whether to return lsvmin = 0 and initialize x *** -c - ii = 0 - j0 = p*pm1/2 - jj = j0 + p - if (l(jj) .eq. zero) go to 110 - ix = mod(3432*ix, 9973) - b = half*(one + float(ix)/r9973) - xplus = b / l(jj) - x(p) = xplus - if (p .le. 1) go to 60 - do 10 i = 1, pm1 - ii = ii + i - if (l(ii) .eq. zero) go to 110 - ji = j0 + i - x(i) = xplus * l(ji) - 10 continue -c -c *** solve (l**t)*x = b, where the components of b have randomly -c *** chosen magnitudes in (.5,1) with signs chosen to make x large. -c -c do j = p-1 to 1 by -1... - do 50 jjj = 1, pm1 - j = p - jjj -c *** determine x(j) in this iteration. note for i = 1,2,...,j -c *** that x(i) holds the current partial sum for row i. - ix = mod(3432*ix, 9973) - b = half*(one + float(ix)/r9973) - xplus = (b - x(j)) - xminus = (-b - x(j)) - splus = dabs(xplus) - sminus = dabs(xminus) - jm1 = j - 1 - j0 = j*jm1/2 - jj = j0 + j - xplus = xplus/l(jj) - xminus = xminus/l(jj) - if (jm1 .eq. 0) go to 30 - do 20 i = 1, jm1 - ji = j0 + i - splus = splus + dabs(x(i) + l(ji)*xplus) - sminus = sminus + dabs(x(i) + l(ji)*xminus) - 20 continue - 30 if (sminus .gt. splus) xplus = xminus - x(j) = xplus -c *** update partial sums *** - if (jm1 .gt. 0) call vaxpy(jm1, x, xplus, l(j0+1), x) - 50 continue -c -c *** normalize x *** -c - 60 t = one/v2norm(p, x) - do 70 i = 1, p - 70 x(i) = t*x(i) -c -c *** solve l*y = x and return lsvmin = 1/twonorm(y) *** -c - do 100 j = 1, p - jm1 = j - 1 - j0 = j*jm1/2 - jj = j0 + j - t = zero - if (jm1 .gt. 0) t = dotprd(jm1, l(j0+1), y) - y(j) = (x(j) - t) / l(jj) - 100 continue -c - lsvmin = one/v2norm(p, y) - go to 999 -c - 110 lsvmin = zero - 999 return -c *** last card of lsvmin follows *** - end - subroutine slvmul(p, y, s, x) -c -c *** set y = s * x, s = p x p symmetric matrix. *** -c *** lower triangle of s stored rowwise. *** -c -c *** parameter declarations *** -c - integer p -cal double precision s(1), x(p), y(p) - double precision s(p*(p+1)/2), x(p), y(p) -c dimension s(p*(p+1)/2) -c -c *** local variables *** -c - integer i, im1, j, k - double precision xi -c -c *** no intrinsic functions *** -c -c *** external function *** -c - external dotprd - double precision dotprd -c -c----------------------------------------------------------------------- -c - j = 1 - do 10 i = 1, p - y(i) = dotprd(i, s(j), x) - j = j + i - 10 continue -c - if (p .le. 1) go to 999 - j = 1 - do 40 i = 2, p - xi = x(i) - im1 = i - 1 - j = j + 1 - do 30 k = 1, im1 - y(k) = y(k) + s(j)*xi - j = j + 1 - 30 continue - 40 continue -c - 999 return -c *** last card of slvmul follows *** - end diff --git a/source/unres/src_CSA_DiL/csa.F b/source/unres/src_CSA_DiL/csa.F deleted file mode 100644 index a5149f2..0000000 --- a/source/unres/src_CSA_DiL/csa.F +++ /dev/null @@ -1,366 +0,0 @@ - subroutine make_array - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.CSA' - -ccccccccccccccccccccccccc -c Level-2: group -ccccccccccccccccccccccccc - - indg=0 - do k=1,numch -ccccccccccccccccccccccccccccccccccccccccc -! Groups the THETAs and the GAMMAs - do j=2,nres-1 - indg=indg+1 - if (j.lt.nres-1) then - ngroup(indg)=2 - else - ngroup(indg)=1 - endif - do i=1,ngroup(indg) - igroup(1,i,indg)=i - igroup(2,i,indg)=j - igroup(3,i,indg)=k - enddo - enddo -ccccccccccccccccccccccccccccccccccccccccc - enddo -! Groups the ALPHAs and the BETAs - do k=1,numch - do j=2,nres-1 - if(itype(j).ne.10) then - indg=indg+1 - ngroup(indg)=2 - do i=1,ngroup(indg) - igroup(1,i,indg)=i+2 - igroup(2,i,indg)=j - igroup(3,i,indg)=k - enddo - endif - enddo - enddo - - ntotgr=indg - write(iout,*) - write(iout,*) "# of groups: ",ntotgr - do i=1,ntotgr - write(iout,41) i,ngroup(i),((igroup(k,j,i),k=1,3),j=1,ngroup(i)) - enddo -! close(iout) - - 40 format(i3,3x,3i3) - 41 format(2i3,3x,6(3i3,2x)) - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine make_ranvar(n,m,idum) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.BANK' -c al m=0 - print *,'HOHOHOHO Make_RanVar!!!!!',n,m - itrial=0 - do while(m.lt.n .and. itrial.le.10000) - itrial=itrial+1 - jeden=1 - call gen_rand_conf(jeden,*10) - call intout - m=m+1 - do j=2,nres-1 - dihang_in(1,j,1,m)=theta(j+1) - dihang_in(2,j,1,m)=phi(j+2) - dihang_in(3,j,1,m)=alph(j) - dihang_in(4,j,1,m)=omeg(j) - enddo - dihang_in(2,nres-1,1,m)=0.0d0 - goto 20 - 10 write (iout,*) 'Failed to generate conformation #',m+1, - & ' itrial=',itrial - 20 continue - enddo - print *,'Make_RanVar!!!!! m=',m,' itrial=',itrial - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine make_ranvar_reg(n,idum) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.BANK' - include 'COMMON.GEO' - m=0 - print *,'HOHOHOHO Make_RanVar_reg!!!!!' - itrial=0 - do while(m.lt.n .and. itrial.le.10000) - itrial=itrial+1 - jeden=1 - call gen_rand_conf(jeden,*10) -! call intout - m=m+1 - do j=2,nres-1 - dihang_in(1,j,1,m)=theta(j+1) - dihang_in(2,j,1,m)=phi(j+2) - dihang_in(3,j,1,m)=alph(j) - dihang_in(4,j,1,m)=omeg(j) - if(m.le.n*0.1) then - dihang_in(1,j,1,m)=90.0*deg2rad - dihang_in(2,j,1,m)=50.0*deg2rad - endif - enddo - dihang_in(2,nres-1,1,m)=0.0d0 - goto 20 - 10 write (iout,*) 'Failed to generate conformation #',m+1, - & ' itrial=',itrial - 20 continue - enddo - print *,'Make_RanVar!!!!! m=',m,' itrial=',itrial - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine from_pdb(n,idum) -c This subroutine stores the UNRES int variables generated from -c subroutine readpdb into the 1st conformation of in dihang_in. -c Subsequent n-1 conformations of dihang_in have identical values -c of theta and phi as the 1st conformation but random values for -c alph and omeg. -c The array cref (also generated from subroutine readpdb) is stored -c to crefjlee to be used for rmsd calculation in CSA, if necessary. - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.BANK' - include 'COMMON.GEO' - - m=1 - do j=2,nres-1 - dihang_in(1,j,1,m)=theta(j+1) - dihang_in(2,j,1,m)=phi(j+2) - dihang_in(3,j,1,m)=alph(j) - dihang_in(4,j,1,m)=omeg(j) - enddo - dihang_in(2,nres-1,1,k)=0.0d0 - - do m=2,n - do k=2,nres-1 - dihang_in(1,k,1,m)=dihang_in(1,k,1,1) - dihang_in(2,k,1,m)=dihang_in(2,k,1,1) - if(dabs(dihang_in(3,k,1,1)).gt.1.d-6) then - dihang_in(3,k,1,m)=90.d0*ran1(idum)+90.d0 - dihang_in(3,k,1,m)=dihang_in(3,k,1,m)*deg2rad - endif - if(dabs(dihang_in(4,k,1,1)).gt.1.d-6) then - dihang_in(4,k,1,m)=360.d0*ran1(idum)-180.d0 - dihang_in(4,k,1,m)=dihang_in(4,k,1,m)*deg2rad - endif - enddo - enddo - -c Store cref to crefjlee (they are in COMMON.CHAIN). - do k=1,2*nres - do kk=1,3 - crefjlee(kk,k)=cref(kk,k) - enddo - enddo - - open(icsa_native_int,file=csa_native_int,status="old") - do m=1,n - write(icsa_native_int,*) m,e - write(icsa_native_int,200) - & (dihang_in(1,k,1,m)*rad2deg,k=2,nres-1) - write(icsa_native_int,200) - & (dihang_in(2,k,1,m)*rad2deg,k=2,nres-2) - write(icsa_native_int,200) - & (dihang_in(3,k,1,m)*rad2deg,k=2,nres-1) - write(icsa_native_int,200) - & (dihang_in(4,k,1,m)*rad2deg,k=2,nres-1) - enddo - - do k=1,nres - write(icsa_native_int,200) (crefjlee(i,k),i=1,3) - enddo - close(icsa_native_int) - - 200 format (8f10.4) - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine from_int(n,mm,idum) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.BANK' - include 'COMMON.GEO' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - integer ilen - external ilen - logical fail - double precision energia(0:n_ene) - - open(icsa_native_int,file=csa_native_int,status="old") - read (icsa_native_int,*) - call read_angles(icsa_native_int,*10) - goto 11 - 10 write (iout,'(2a)') "CHUJ NASTAPIL - error in ", - & csa_native_int(:ilen(csa_native_int)) - 11 continue - call intout - do j=2,nres-1 - dihang_in(1,j,1,1)=theta(j+1) - dihang_in(2,j,1,1)=phi(j+2) - dihang_in(3,j,1,1)=alph(j) - dihang_in(4,j,1,1)=omeg(j) - enddo - dihang_in(2,nres-1,1,1)=0.0d0 - -c read(icsa_native_int,*) ind,e -c read(icsa_native_int,200) (dihang_in(1,k,1,1),k=2,nres-1) -c read(icsa_native_int,200) (dihang_in(2,k,1,1),k=2,nres-2) -c read(icsa_native_int,200) (dihang_in(3,k,1,1),k=2,nres-1) -c read(icsa_native_int,200) (dihang_in(4,k,1,1),k=2,nres-1) -c dihang_in(2,nres-1,1,1)=0.d0 - - maxsi=100 - maxcount_fail=100 - - do m=mm+2,n -c do k=2,nres-1 -c dihang_in(1,k,1,m)=dihang_in(1,k,1,1) -c dihang_in(2,k,1,m)=dihang_in(2,k,1,1) -c if(abs(dihang_in(3,k,1,1)).gt.1.d-3) then -c dihang_in(3,k,1,m)=90.d0*ran1(idum)+90.d0 -c endif -c if(abs(dihang_in(4,k,1,1)).gt.1.d-3) then -c dihang_in(4,k,1,m)=360.d0*ran1(idum)-180.d0 -c endif -c enddo -c call intout - fail=.true. - - icount_fail=0 - - DO WHILE (FAIL .AND. ICOUNT_FAIL .LE. MAXCOUNT_FAIL) - - do i=nnt,nct - if (itype(i).ne.10) then -cd print *,'i=',i,' itype=',itype(i),' theta=',theta(i+1) - fail=.true. - ii=0 - do while (fail .and. ii .le. maxsi) - call gen_side(itype(i),theta(i+1),alph(i),omeg(i),fail) - ii = ii+1 - enddo - endif - enddo - call chainbuild - call etotal(energia(0)) - fail = (energia(0).ge.1.0d20) - icount_fail=icount_fail+1 - - ENDDO - - if (icount_fail.gt.maxcount_fail) then - write (iout,*) - & 'Failed to generate non-overlaping near-native conf.', - & m - endif - - do j=2,nres-1 - dihang_in(1,j,1,m)=theta(j+1) - dihang_in(2,j,1,m)=phi(j+2) - dihang_in(3,j,1,m)=alph(j) - dihang_in(4,j,1,m)=omeg(j) - enddo - dihang_in(2,nres-1,1,m)=0.0d0 - enddo - -c do m=1,n -c write(icsa_native_int,*) m,e -c write(icsa_native_int,200) (dihang_in(1,k,1,m),k=2,nres-1) -c write(icsa_native_int,200) (dihang_in(2,k,1,m),k=2,nres-2) -c write(icsa_native_int,200) (dihang_in(3,k,1,m),k=2,nres-1) -c write(icsa_native_int,200) (dihang_in(4,k,1,m),k=2,nres-1) -c enddo -c close(icsa_native_int) - -c do m=mm+2,n -c do i=1,4 -c do j=2,nres-1 -c dihang_in(i,j,1,m)=dihang_in(i,j,1,m)*deg2rad -c enddo -c enddo -c enddo - - call dihang_to_c(dihang_in(1,1,1,1)) - -c Store c to cref (they are in COMMON.CHAIN). - do k=1,2*nres - do kk=1,3 - crefjlee(kk,k)=c(kk,k) - enddo - enddo - - call contact(.true.,ncont_ref,icont_ref,co) - -c do k=1,nres -c write(icsa_native_int,200) (crefjlee(i,k),i=1,3) -c enddo - close(icsa_native_int) - - 200 format (8f10.4) - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine dihang_to_c(aarray) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - include 'COMMON.VAR' - - dimension aarray(mxang,maxres,mxch) - -c do i=4,nres -c phi(i)=dihang_in(1,i-2,1,1) -c enddo - do i=2,nres-1 - theta(i+1)=aarray(1,i,1) - phi(i+2)=aarray(2,i,1) - alph(i)=aarray(3,i,1) - omeg(i)=aarray(4,i,1) - enddo - - call chainbuild - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc diff --git a/source/unres/src_CSA_DiL/dfa.F b/source/unres/src_CSA_DiL/dfa.F deleted file mode 100644 index 576910c..0000000 --- a/source/unres/src_CSA_DiL/dfa.F +++ /dev/null @@ -1,3455 +0,0 @@ - subroutine init_dfa_vars - - include 'DIMENSIONS' - include 'COMMON.INTERACT' - include 'COMMON.DFA' - - integer ii - -C Number of restraints - idisnum = 0 - iphinum = 0 - ithenum = 0 - ineinum = 0 - - idislis = 0 - iphilis = 0 - ithelis = 0 - ineilis = 0 - jneilis = 0 - jneinum = 0 - kshell = 0 - fnei = 0 -C For beta - nca = 0 - icaidx = 0 - -C real variables -CC WEIGHTS for each min - sccdist = 0.0d0 - fdist = 0.0d0 - sccphi = 0.0d0 - sccthe = 0.0d0 - sccnei = 0.0d0 - fphi1 = 0.0d0 - fphi2 = 0.0d0 - fthe1 = 0.0d0 - fthe2 = 0.0d0 -C energies - edfatot = 0.0d0 - edfadis = 0.0d0 - edfaphi = 0.0d0 - edfathe = 0.0d0 - edfanei = 0.0d0 - edfabet = 0.0d0 -C weights for each E term -C these should be identical with - dis_inc = 0.0d0 - phi_inc = 0.0d0 - the_inc = 0.0d0 - nei_inc = 0.0d0 - beta_inc = 0.0d0 - wshet = 0.0d0 -C precalculate exp table! -c dfaexp = 0.0d0 -c do ii = 1, 15001 -c dfaexp(ii) = exp(-ii*0.001d0 + 0.0005d0) -c end do - - ishiftca=nnt-1 - ilastca=nct - - print *,'ishiftca=',ishiftca,'ilastca=',ilastca - - return - end - - - subroutine read_dfa_info -C -C read fragment informations -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.DFA' - - -C NOTE THAT FILENAMES are FIXED, CURRENTLY!! -C THIS SHOULD BE MODIFIED!! - - character*320 buffer - integer iodfa - parameter(iodfa=89) - - integer i, j, nval - integer ica1, ica2,ica3,ica4,ica5 - integer ishell, inca, itmp,iitmp - double precision wtmp -C -C READ DISTANCE -C - open(iodfa, file = 'dist_dfa.dat', status = 'old', err=33) - goto 34 - 33 write(iout,'(a)') 'Error opening dist_dfa.dat file' - stop - 34 continue - write(iout,'(a)') 'dist_dfa.dat is opened!' -C read title - read(iodfa, '(a)') buffer -C read number of restraints - read(iodfa, *) IDFADIS - read(iodfa, *) dis_inc - do i=1, idfadis - read(iodfa, '(i10,1x,i10,1x,i10)') ica1, ica2, nval - - idisnum(i)=nval - idislis(1,i)=ica1 - idislis(2,i)=ica2 - - do j=1, nval - read(iodfa,*) tmp - fdist(i,j) = tmp - enddo - - do j=1, nval - read(iodfa,*) tmp - sccdist(i,j) = tmp - enddo - - enddo - close(iodfa) - -C READ ANGLE RESTRAINTS -C PHI RESTRAINTS - open(iodfa, file='phi_dfa.dat',status='old',err=35) - goto 36 - 35 write(iout,'(a)') 'Error opening dist_dfa.dat file' - stop - - 36 continue - write(iout,'(a)') 'phi_dfa.dat is opened!' - -C READ TITLE - read(iodfa, '(a)') buffer -C READ NUMBER OF RESTRAINTS - READ(iodfa, *) IDFAPHI - read(iodfa,*) phi_inc - do i=1, idfaphi - read(iodfa,'(5(i10,1x),1x,i10)')ica1,ica2,ica3,ica4,ica5,nval - - iphinum(i)=nval - - iphilis(1,i)=ica1 - iphilis(2,i)=ica2 - iphilis(3,i)=ica3 - iphilis(4,i)=ica4 - iphilis(5,i)=ica5 - - do j=1, nval - read(iodfa,*) tmp1,tmp2 - fphi1(i,j) = tmp1 - fphi2(i,j) = tmp2 - enddo - - do j=1, nval - read(iodfa,*) tmp - sccphi(i,j) = tmp - enddo - - enddo - close(iodfa) - -C THETA RESTRAINTS - open(iodfa, file='theta_dfa.dat',status='old',err=41) - goto 42 - 41 write(iout,'(a)') 'Error opening dist_dfa.dat file' - stop - 42 continue - write(iout,'(a)') 'theta_dfa.dat is opened!' -C READ TITLE - read(iodfa, '(a)') buffer -C READ NUMBER OF RESTRAINTS - READ(iodfa, *) IDFATHE - read(iodfa,*) the_inc - - do i=1, idfathe - read(iodfa, '(5(i10,1x),1x,i10)')ica1,ica2,ica3,ica4,ica5,nval - - ithenum(i)=nval - - ithelis(1,i)=ica1 - ithelis(2,i)=ica2 - ithelis(3,i)=ica3 - ithelis(4,i)=ica4 - ithelis(5,i)=ica5 - - do j=1, nval - read(iodfa,*) tmp1,tmp2 - fthe1(i,j) = tmp1 - fthe2(i,j) = tmp2 - enddo - - do j=1, nval - read(iodfa,*) tmp - sccthe(i,j) = tmp - enddo - - enddo - close(iodfa) -C END of READING ANGLE RESTRAINT! - -C NUMBER OF NEIGHBOR CAs - open(iodfa,file='nei_dfa.dat',status='old',err=37) - goto 38 - 37 write(iout,'(a)') 'Error opening nei_dfa.dat file' - stop - 38 continue - write(iout,'(a)') 'nei_dfa.dat is opened!' -C READ TITLE - read(iodfa, '(a)') buffer -C READ NUMBER OF RESTRAINTS - READ(iodfa, *) idfanei - read(iodfa,*) nei_inc - - do i=1, idfanei - read(iodfa,'(2(i10,1x),i10)')ica1,ishell,nval - - ineilis(i)=ica1 - kshell(i)=ishell - ineinum(i)=nval - - do j=1, nval - read(iodfa,*) inca - fnei(i,j) = inca -C write(*,*) 'READ NEI:',i,j,fnei(i,j) - enddo - - do j=1, nval - read(iodfa,*) tmp - sccnei(i,j) = tmp - enddo - - enddo - close(iodfa) -C END OF NEIGHBORING CA - -C READ BETA RESTRAINT - open(iodfa, file='beta_dfa.dat',status='old',err=39) - goto 40 - 39 write(iout,'(a)') 'Error opening beta_dfa.dat file' - stop - 40 continue - write(iout,'(a)') 'beta_dfa.dat is opened!' - - read(iodfa,'(a)') buffer - read(iodfa,*) itmp - read(iodfa,*) beta_inc - - do i=1,itmp - read(iodfa,*) ica1, iitmp - do j=1,itmp - read(iodfa,*) wtmp - wshet(i,j) = wtmp -c write(*,*) 'BETA:',i,j,wtmp,wshet(i,j) - enddo - enddo - - close(iodfa) -C END OF BETA RESTRAINT - - return - END - - subroutine edfad(edfadis) - - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.DFA' - - double precision edfadis - integer i, iatm1, iatm2,idiff - double precision ckk, sckk,dist,texp - double precision jix,jiy,jiz,ep,fp,scc - - edfadis=0 - gdfad=0.0d0 - - do i=1, idfadis - - iatm1=idislis(1,i)+ishiftca - iatm2=idislis(2,i)+ishiftca - idiff = abs(iatm1-iatm2) - - JIX=c(1,iatm2)-c(1,iatm1) - JIY=c(2,iatm2)-c(2,iatm1) - JIZ=c(3,iatm2)-c(3,iatm1) - DIST=SQRT(JIX*JIX+JIY*JIY+JIZ*JIZ) - - ckk=ck(idiff) - sckk=sck(idiff) - - scc = 0.0d0 - ep = 0.0d0 - fp = 0.0d0 - - do j=1,idisnum(i) - - dd = dist-fdist(i,j) - dtmp = dd*dd/ckk - if (dtmp.ge.15.0d0) then - texp = 0.0d0 - else -c texp = dfaexp( idint(dtmp*1000)+1 )/sckk - texp = exp(-dtmp)/sckk - endif - - ep=ep+sccdist(i,j)*texp - fp=fp+sccdist(i,j)*texp*dd*2.0d0/ckk - scc=scc+sccdist(i,j) -C write(*,'(2i8,6f12.5)') i, j, dist, -C & fdist(i,j), ep, fp, sccdist(i,j), scc - - enddo - - ep = -ep/scc - fp = fp/scc - - -c IF(ABS(EP).lt.1.0d-20)THEN -c EP=0.0D0 -c ENDIF -c IF (ABS(FP).lt.1.0d-20) THEN -c FP=0.0D0 -c ENDIF - - edfadis=edfadis+ep*dis_inc*wwdist - - gdfad(1,iatm1) = gdfad(1,iatm1)-jix/dist*fp*dis_inc*wwdist - gdfad(2,iatm1) = gdfad(2,iatm1)-jiy/dist*fp*dis_inc*wwdist - gdfad(3,iatm1) = gdfad(3,iatm1)-jiz/dist*fp*dis_inc*wwdist - - gdfad(1,iatm2) = gdfad(1,iatm2)+jix/dist*fp*dis_inc*wwdist - gdfad(2,iatm2) = gdfad(2,iatm2)+jiy/dist*fp*dis_inc*wwdist - gdfad(3,iatm2) = gdfad(3,iatm2)+jiz/dist*fp*dis_inc*wwdist - - enddo - - return - end - - subroutine edfat(edfator) -C DFA torsion angle - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.DFA' - - integer i,j,ii,iii - integer iatom(5) - double precision aphi(2),athe(2),tdx(5),tdy(5),tdz(5) - double precision cwidth, cwidth2 - PARAMETER(CWIDTH=0.1D0,CWIDTH2=0.2D0,PAI=3.14159265358979323846D0) - - edfator= 0.0d0 - enephi = 0.0d0 - enethe = 0.0d0 - gdfat(:,:) = 0.0d0 - -C START OF PHI ANGLE - do i=1, idfaphi - - aphi = 0.0d0 - do iii=1,5 - iatom(iii)=iphilis(iii,i)+ishiftca - enddo - -C ANGLE VECTOR CALCULTION - RIX=C(1,IATOM(2))-C(1,IATOM(1)) - RIY=C(2,IATOM(2))-C(2,IATOM(1)) - RIZ=C(3,IATOM(2))-C(3,IATOM(1)) - - RIPX=C(1,IATOM(3))-C(1,IATOM(2)) - RIPY=C(2,IATOM(3))-C(2,IATOM(2)) - RIPZ=C(3,IATOM(3))-C(3,IATOM(2)) - - RIPPX=C(1,IATOM(4))-C(1,IATOM(3)) - RIPPY=C(2,IATOM(4))-C(2,IATOM(3)) - RIPPZ=C(3,IATOM(4))-C(3,IATOM(3)) - - RIP3X=C(1,IATOM(5))-C(1,IATOM(4)) - RIP3Y=C(2,IATOM(5))-C(2,IATOM(4)) - RIP3Z=C(3,IATOM(5))-C(3,IATOM(4)) - - GIX=RIY*RIPZ-RIZ*RIPY - GIY=RIZ*RIPX-RIX*RIPZ - GIZ=RIX*RIPY-RIY*RIPX - - GIPX=RIPY*RIPPZ-RIPZ*RIPPY - GIPY=RIPZ*RIPPX-RIPX*RIPPZ - GIPZ=RIPX*RIPPY-RIPY*RIPPX - - CIPX=C(1,IATOM(3))-C(1,IATOM(1)) - CIPY=C(2,IATOM(3))-C(2,IATOM(1)) - CIPZ=C(3,IATOM(3))-C(3,IATOM(1)) - - CIPPX=C(1,IATOM(4))-C(1,IATOM(2)) - CIPPY=C(2,IATOM(4))-C(2,IATOM(2)) - CIPPZ=C(3,IATOM(4))-C(3,IATOM(2)) - - CIP3X=C(1,IATOM(5))-C(1,IATOM(3)) - CIP3Y=C(2,IATOM(5))-C(2,IATOM(3)) - CIP3Z=C(3,IATOM(5))-C(3,IATOM(3)) - - DGI=SQRT(GIX*GIX+GIY*GIY+GIZ*GIZ) - DGIP=SQRT(GIPX*GIPX+GIPY*GIPY+GIPZ*GIPZ) - DRIPP=SQRT(RIPPX*RIPPX+RIPPY*RIPPY+RIPPZ*RIPPZ) - DRIP3=SQRT(RIP3X*RIP3X+RIP3Y*RIP3Y+RIP3Z*RIP3Z) - -C END OF ANGLE VECTOR CALCULTION - - TDOT=GIX*RIPPX+GIY*RIPPY+GIZ*RIPPZ - APHI(1)=TDOT/(DGI*DRIPP) - TDOT=GIPX*RIP3X+GIPY*RIP3Y+GIPZ*RIP3Z - APHI(2)=TDOT/(DGIP*DRIP3) - - ephi = 0.0d0 - tfphi1=0.0d0 - tfphi2=0.0d0 - scc=0.0d0 - - do j=1, iphinum(i) - DDPS1=APHI(1)-FPHI1(i,j) - DDPS2=APHI(2)-FPHI2(i,j) - - DTMP = (DDPS1**2+DDPS2**2)/CWIDTH2 - - if (dtmp.ge.15.0d0) then - ps_tmp = 0.0d0 - else -c ps_tmp = dfaexp(idint(dtmp*1000)+1) - ps_tmp = exp(-dtmp) - endif - - ephi=ephi+sccphi(i,j)*ps_tmp - - tfphi1=tfphi1+sccphi(i,j)*ddps1/cwidth*ps_tmp - tfphi2=tfphi2+sccphi(i,j)*ddps2/cwidth*ps_tmp - - scc=scc+sccphi(i,j) -C write(*,'(2i8,8f12.6)')i,j,aphi(1),fphi1(i,j), -C & aphi(2),fphi2(i,j),tfphi1,tfphi2,ephi,sccphi(i,j) - ENDDO - - ephi=-ephi/scc*phi_inc*wwangle - tfphi1=tfphi1/scc*phi_inc*wwangle - tfphi2=tfphi2/scc*phi_inc*wwangle - - IF (ABS(EPHI).LT.1d-20) THEN - EPHI=0.0D0 - ENDIF - IF (ABS(TFPHI1).LT.1d-20) THEN - TFPHI1=0.0D0 - ENDIF - IF (ABS(TFPHI2).LT.1d-20) THEN - TFPHI2=0.0D0 - ENDIF - -C FORCE DIRECTION CALCULATION - TDX(1:5)=0.0D0 - TDY(1:5)=0.0D0 - TDZ(1:5)=0.0D0 - - DM1=1.0d0/(DGI*DRIPP) - - GIRPP=GIX*RIPPX+GIY*RIPPY+GIZ*RIPPZ - DM2=GIRPP/(DGI**3*DRIPP) - DM3=GIRPP/(DGI*DRIPP**3) - - DM4=1.0d0/(DGIP*DRIP3) - - GIRP3=GIPX*RIP3X+GIPY*RIP3Y+GIPZ*RIP3Z - DM5=GIRP3/(DGIP**3*DRIP3) - DM6=GIRP3/(DGIP*DRIP3**3) -C FIRST ATOM BY PHI1 - TDX(1)=(RIPZ*RIPPY-RIPY*RIPPZ)*DM1 - & +( GIZ* RIPY- GIY* RIPZ)*DM2 - TDY(1)=(RIPX*RIPPZ-RIPZ*RIPPX)*DM1 - & +( GIX* RIPZ- GIZ* RIPX)*DM2 - TDZ(1)=(RIPY*RIPPX-RIPX*RIPPY)*DM1 - & +( GIY* RIPX- GIX* RIPY)*DM2 - TDX(1)=TDX(1)*TFPHI1 - TDY(1)=TDY(1)*TFPHI1 - TDZ(1)=TDZ(1)*TFPHI1 -C SECOND ATOM BY PHI1 - TDX(2)=(CIPY*RIPPZ-CIPZ*RIPPY)*DM1 - & -(CIPY*GIZ-CIPZ*GIY)*DM2 - TDY(2)=(CIPZ*RIPPX-CIPX*RIPPZ)*DM1 - & -(CIPZ*GIX-CIPX*GIZ)*DM2 - TDZ(2)=(CIPX*RIPPY-CIPY*RIPPX)*DM1 - & -(CIPX*GIY-CIPY*GIX)*DM2 - TDX(2)=TDX(2)*TFPHI1 - TDY(2)=TDY(2)*TFPHI1 - TDZ(2)=TDZ(2)*TFPHI1 -C SECOND ATOM BY PHI2 - TDX(2)=TDX(2)+ - & ((RIPPZ*RIP3Y-RIPPY*RIP3Z)*DM4 - & +( GIPZ*RIPPY- GIPY*RIPPZ)*DM5)*TFPHI2 - TDY(2)=TDY(2)+ - & ((RIPPX*RIP3Z-RIPPZ*RIP3X)*DM4 - & +( GIPX*RIPPZ- GIPZ*RIPPX)*DM5)*TFPHI2 - TDZ(2)=TDZ(2)+ - & ((RIPPY*RIP3X-RIPPX*RIP3Y)*DM4 - & +( GIPY*RIPPX- GIPX*RIPPY)*DM5)*TFPHI2 -C THIRD ATOM BY PHI1 - TDX(3)=(-GIX+RIPPY*RIZ-RIPPZ*RIY)*DM1 - & -(GIY*RIZ-RIY*GIZ)*DM2+RIPPX*DM3 - TDY(3)=(-GIY+RIPPZ*RIX-RIPPX*RIZ)*DM1 - & -(GIZ*RIX-RIZ*GIX)*DM2+RIPPY*DM3 - TDZ(3)=(-GIZ+RIPPX*RIY-RIPPY*RIX)*DM1 - & -(GIX*RIY-RIX*GIY)*DM2+RIPPZ*DM3 - TDX(3)=TDX(3)*TFPHI1 - TDY(3)=TDY(3)*TFPHI1 - TDZ(3)=TDZ(3)*TFPHI1 -C THIRD ATOM BY PHI2 - TDX(3)=TDX(3)+ - & ((CIPPY*RIP3Z-CIPPZ*RIP3Y)*DM4 - & -(CIPPY*GIPZ-CIPPZ*GIPY)*DM5)*TFPHI2 - TDY(3)=TDY(3)+ - & ((CIPPZ*RIP3X-CIPPX*RIP3Z)*DM4 - & -(CIPPZ*GIPX-CIPPX*GIPZ)*DM5)*TFPHI2 - TDZ(3)=TDZ(3)+ - & ((CIPPX*RIP3Y-CIPPY*RIP3X)*DM4 - & -(CIPPX*GIPY-CIPPY*GIPX)*DM5)*TFPHI2 -C FOURTH ATOM BY PHI1 - TDX(4)=(GIX*DM1-RIPPX*DM3)*TFPHI1 - TDY(4)=(GIY*DM1-RIPPY*DM3)*TFPHI1 - TDZ(4)=(GIZ*DM1-RIPPZ*DM3)*TFPHI1 -C FOURTH ATOM BY PHI2 - TDX(4)=TDX(4)+ - & ((-GIPX+RIP3Y*RIPZ-RIP3Z*RIPY)*DM4 - & -( GIPY*RIPZ-RIPY*GIPZ)*DM5 - & + RIP3X*DM6)*TFPHI2 - TDY(4)=TDY(4)+ - & ((-GIPY+RIP3Z*RIPX-RIP3X*RIPZ)*DM4 - & -( GIPZ*RIPX-RIPZ*GIPX)*DM5 - & + RIP3Y*DM6)*TFPHI2 - TDZ(4)=TDZ(4)+ - & ((-GIPZ+RIP3X*RIPY-RIP3Y*RIPX)*DM4 - & -( GIPX*RIPY-RIPX*GIPY)*DM5 - & + RIP3Z*DM6)*TFPHI2 -C FIFTH ATOM BY PHI2 - TDX(5)=(GIPX*DM4-RIP3X*DM6)*TFPHI2 - TDY(5)=(GIPY*DM4-RIP3Y*DM6)*TFPHI2 - TDZ(5)=(GIPZ*DM4-RIP3Z*DM6)*TFPHI2 -C END OF FORCE DIRECTION -c force calcuation - DO II=1,5 - gdfat(1,IATOM(II))=gdfat(1,IATOM(II))+TDX(II) - gdfat(2,IATOM(II))=gdfat(2,IATOM(II))+TDY(II) - gdfat(3,IATOM(II))=gdfat(3,IATOM(II))+TDZ(II) - ENDDO -c energy calculation - enephi = enephi + ephi -c end of single assignment statement - ENDDO -C END OF PHI RESTRAINT - -C START OF THETA ANGLE - do i=1, idfathe - - athe = 0.0d0 - do iii=1,5 - iatom(iii)=ithelis(iii,i)+ishiftca - enddo - - -C ANGLE VECTOR CALCULTION - RIX=C(1,IATOM(2))-C(1,IATOM(1)) - RIY=C(2,IATOM(2))-C(2,IATOM(1)) - RIZ=C(3,IATOM(2))-C(3,IATOM(1)) - - RIPX=C(1,IATOM(3))-C(1,IATOM(2)) - RIPY=C(2,IATOM(3))-C(2,IATOM(2)) - RIPZ=C(3,IATOM(3))-C(3,IATOM(2)) - - RIPPX=C(1,IATOM(4))-C(1,IATOM(3)) - RIPPY=C(2,IATOM(4))-C(2,IATOM(3)) - RIPPZ=C(3,IATOM(4))-C(3,IATOM(3)) - - RIP3X=C(1,IATOM(5))-C(1,IATOM(4)) - RIP3Y=C(2,IATOM(5))-C(2,IATOM(4)) - RIP3Z=C(3,IATOM(5))-C(3,IATOM(4)) - - GIX=RIY*RIPZ-RIZ*RIPY - GIY=RIZ*RIPX-RIX*RIPZ - GIZ=RIX*RIPY-RIY*RIPX - - GIPX=RIPY*RIPPZ-RIPZ*RIPPY - GIPY=RIPZ*RIPPX-RIPX*RIPPZ - GIPZ=RIPX*RIPPY-RIPY*RIPPX - - GIPPX=RIPPY*RIP3Z-RIPPZ*RIP3Y - GIPPY=RIPPZ*RIP3X-RIPPX*RIP3Z - GIPPZ=RIPPX*RIP3Y-RIPPY*RIP3X - - CIPX=C(1,IATOM(3))-C(1,IATOM(1)) - CIPY=C(2,IATOM(3))-C(2,IATOM(1)) - CIPZ=C(3,IATOM(3))-C(3,IATOM(1)) - - CIPPX=C(1,IATOM(4))-C(1,IATOM(2)) - CIPPY=C(2,IATOM(4))-C(2,IATOM(2)) - CIPPZ=C(3,IATOM(4))-C(3,IATOM(2)) - - CIP3X=C(1,IATOM(5))-C(1,IATOM(3)) - CIP3Y=C(2,IATOM(5))-C(2,IATOM(3)) - CIP3Z=C(3,IATOM(5))-C(3,IATOM(3)) - - DGI=SQRT(GIX*GIX+GIY*GIY+GIZ*GIZ) - DGIP=SQRT(GIPX*GIPX+GIPY*GIPY+GIPZ*GIPZ) - DGIPP=SQRT(GIPPX*GIPPX+GIPPY*GIPPY+GIPPZ*GIPPZ) - DRIPP=SQRT(RIPPX*RIPPX+RIPPY*RIPPY+RIPPZ*RIPPZ) - DRIP3=SQRT(RIP3X*RIP3X+RIP3Y*RIP3Y+RIP3Z*RIP3Z) -C END OF ANGLE VECTOR CALCULTION - - TDOT=GIX*GIPX+GIY*GIPY+GIZ*GIPZ - ATHE(1)=TDOT/(DGI*DGIP) - TDOT=GIPX*GIPPX+GIPY*GIPPY+GIPZ*GIPPZ - ATHE(2)=TDOT/(DGIP*DGIPP) - - ETHE=0.0D0 - TFTHE1=0.0D0 - TFTHE2=0.0D0 - SCC=0.0D0 - TH_TMP=0.0d0 - - do j=1,ithenum(i) - ddth1=athe(1)-fthe1(i,j) !cos(the1)-cos(the1_ref) - ddth2=athe(2)-fthe2(i,j) !cos(the2)-cos(the2_ref) - dtmp= (ddth1**2+ddth2**2)/cwidth2 - if ( dtmp .ge. 15.0d0) then - th_tmp = 0.0d0 - else -c th_tmp = dfaexp ( idint(dtmp*1000)+1 ) - th_tmp = exp(-dtmp) - end if - - ethe=ethe+sccthe(i,j)*th_tmp - - tfthe1=tfthe1+sccthe(i,j)*ddth1/cwidth*th_tmp !-dv/dcos(the1) - tfthe2=tfthe2+sccthe(i,j)*ddth2/cwidth*th_tmp !-dv/dcos(the2) - scc=scc+sccthe(i,j) -C write(*,'(2i8,8f12.6)')i,j,athe(1),fthe1(i,j), -C & athe(2),fthe2(i,j),tfthe1,tfthe2,ethe,sccthe(i,j) - enddo - - ethe=-ethe/scc*the_inc*wwangle - tfthe1=tfthe1/scc*the_inc*wwangle - tfthe2=tfthe2/scc*the_inc*wwangle - - IF (ABS(ETHE).LT.TENM20) THEN - ETHE=0.0D0 - ENDIF - IF (ABS(TFTHE1).LT.TENM20) THEN - TFTHE1=0.0D0 - ENDIF - IF (ABS(TFTHE2).LT.TENM20) THEN - TFTHE2=0.0D0 - ENDIF - - TDX(1:5)=0.0D0 - TDY(1:5)=0.0D0 - TDZ(1:5)=0.0D0 - - DM1=1.0d0/(DGI*DGIP) - DM2=(GIX*GIPX+GIY*GIPY+GIZ*GIPZ)/(DGI**3*DGIP) - DM3=(GIX*GIPX+GIY*GIPY+GIZ*GIPZ)/(DGI*DGIP**3) - - DM4=1.0d0/(DGIP*DGIPP) - DM5=(GIPX*GIPPX+GIPY*GIPPY+GIPZ*GIPPZ)/(DGIP**3*DGIPP) - DM6=(GIPX*GIPPX+GIPY*GIPPY+GIPZ*GIPPZ)/(DGIP*DGIPP**3) - -C FIRST ATOM BY THETA1 - TDX(1)=((RIPZ*GIPY-RIPY*GIPZ)*DM1 - & -(GIY*RIPZ-GIZ*RIPY)*DM2)*TFTHE1 - TDY(1)=((-RIPZ*GIPX+RIPX*GIPZ)*DM1 - & -(-GIX*RIPZ+GIZ*RIPX)*DM2)*TFTHE1 - TDZ(1)=((RIPY*GIPX-RIPX*GIPY)*DM1 - & -(GIX*RIPY-GIY*RIPX)*DM2)*TFTHE1 -C SECOND ATOM BY THETA1 - TDX(2)=((CIPY*GIPZ-CIPZ*GIPY-RIPPY*GIZ+RIPPZ*GIY)*DM1 - & -(CIPY*GIZ-CIPZ*GIY)*DM2 - & +(RIPPY*GIPZ-RIPPZ*GIPY)*DM3)*TFTHE1 - TDY(2)=((CIPZ*GIPX-CIPX*GIPZ-RIPPZ*GIX+RIPPX*GIZ)*DM1 - & -(CIPZ*GIX-CIPX*GIZ)*DM2 - & +(RIPPZ*GIPX-RIPPX*GIPZ)*DM3)*TFTHE1 - TDZ(2)=((CIPX*GIPY-CIPY*GIPX-RIPPX*GIY+RIPPY*GIX)*DM1 - & -(CIPX*GIY-CIPY*GIX)*DM2 - & +(RIPPX*GIPY-RIPPY*GIPX)*DM3)*TFTHE1 -C SECOND ATOM BY THETA2 - TDX(2)=TDX(2)+ - & ((RIPPZ*GIPPY-RIPPY*GIPPZ)*DM4 - & -(GIPY*RIPPZ-GIPZ*RIPPY)*DM5)*TFTHE2 - TDY(2)=TDY(2)+ - & ((-RIPPZ*GIPPX+RIPPX*GIPPZ)*DM4 - & -(-GIPX*RIPPZ+GIPZ*RIPPX)*DM5)*TFTHE2 - TDZ(2)=TDZ(2)+ - & ((RIPPY*GIPPX-RIPPX*GIPPY)*DM4 - & -(GIPX*RIPPY-GIPY*RIPPX)*DM5)*TFTHE2 -C THIRD ATOM BY THETA1 - TDX(3)=((GIPY*RIZ-GIPZ*RIY-GIY*CIPPZ+GIZ*CIPPY)*DM1 - & -(GIY*RIZ-GIZ*RIY)*DM2 - & -(CIPPY*GIPZ-CIPPZ*GIPY)*DM3) *TFTHE1 - TDY(3)=((GIPZ*RIX-GIPX*RIZ-GIZ*CIPPX+GIX*CIPPZ)*DM1 - & -(GIZ*RIX-GIX*RIZ)*DM2 - & -(CIPPZ*GIPX-CIPPX*GIPZ)*DM3) *TFTHE1 - TDZ(3)=((GIPX*RIY-GIPY*RIX-GIX*CIPPY+GIY*CIPPX)*DM1 - & -(GIX*RIY-GIY*RIX)*DM2 - & -(CIPPX*GIPY-CIPPY*GIPX)*DM3) *TFTHE1 -C THIRD ATOM BY THETA2 - TDX(3)=TDX(3)+ - & ((CIPPY*GIPPZ-CIPPZ*GIPPY-RIP3Y*GIPZ+RIP3Z*GIPY)*DM4 - & -(CIPPY*GIPZ-CIPPZ*GIPY)*DM5 - & +(RIP3Y*GIPpZ-RIP3Z*GIPpY)*DM6) *TFTHE2 - TDY(3)=TDY(3)+ - & ((CIPPZ*GIPPX-CIPPX*GIPPZ-RIP3Z*GIPX+RIP3X*GIPZ)*DM4 - & -(CIPPZ*GIPX-CIPPX*GIPZ)*DM5 - & +(RIP3Z*GIPpX-RIP3X*GIPpZ)*DM6) *TFTHE2 - TDZ(3)=TDZ(3)+ - & ((CIPPX*GIPPY-CIPPY*GIPPX-RIP3X*GIPY+RIP3Y*GIPX)*DM4 - & -(CIPPX*GIPY-CIPPY*GIPX)*DM5 - & +(RIP3X*GIPpY-RIP3Y*GIPpX)*DM6) *TFTHE2 -C FOURTH ATOM BY THETA1 - TDX(4)=-((GIZ*RIPY-GIY*RIPZ)*DM1 - & -(GIPZ*RIPY-GIPY*RIPZ)*DM3) *TFTHE1 - TDY(4)=-((GIX*RIPZ-GIZ*RIPX)*DM1 - & -(GIPX*RIPZ-GIPZ*RIPX)*DM3) *TFTHE1 - TDZ(4)=-((GIY*RIPX-GIX*RIPY)*DM1 - & -(GIPY*RIPX-GIPX*RIPY)*DM3) *TFTHE1 -C FOURTH ATOM BY THETA2 - TDX(4)=TDX(4)+ - & ((GIPPY*RIPZ-GIPPZ*RIPY-GIPY*CIP3Z+GIPZ*CIP3Y)*DM4 - & -(GIPY*RIPZ-GIPZ*RIPY)*DM5 - & -(CIP3Y*GIPPZ-CIP3Z*GIPPY)*DM6)*TFTHE2 - TDY(4)=TDY(4)+ - & ((GIPPZ*RIPX-GIPPX*RIPZ-GIPZ*CIP3X+GIPX*CIP3Z)*DM4 - & -(GIPZ*RIPX-GIPX*RIPZ)*DM5 - & -(CIP3Z*GIPPX-CIP3X*GIPPZ)*DM6)*TFTHE2 - TDZ(4)=TDZ(4)+ - & ((GIPPX*RIPY-GIPPY*RIPX-GIPX*CIP3Y+GIPY*CIP3X)*DM4 - & -(GIPX*RIPY-GIPY*RIPX)*DM5 - & -(CIP3X*GIPPY-CIP3Y*GIPPX)*DM6)*TFTHE2 -C FIFTH ATOM BY THETA2 - TDX(5)=-((GIPZ*RIPPY-GIPY*RIPPZ)*DM4 - & -(GIPPZ*RIPPY-GIPPY*RIPPZ)*DM6)*TFTHE2 - TDY(5)=-((GIPX*RIPPZ-GIPZ*RIPPX)*DM4 - & -(GIPPX*RIPPZ-GIPPZ*RIPPX)*DM6)*TFTHE2 - TDZ(5)=-((GIPY*RIPPX-GIPX*RIPPY)*DM4 - & -(GIPPY*RIPPX-GIPPX*RIPPY)*DM6)*TFTHE2 -C !! END OF FORCE DIRECTION!!!! - DO II=1,5 - gdfat(1,iatom(II))=gdfat(1,iatom(II))+TDX(II) - gdfat(2,iatom(II))=gdfat(2,iatom(II))+TDY(II) - gdfat(3,iatom(II))=gdfat(3,iatom(II))+TDZ(II) - ENDDO -C energy calculation - enethe = enethe + ethe - ENDDO - - edfator = enephi + enethe - - RETURN - END - - subroutine edfan(edfanei) -C DFA neighboring CA restraint - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.DFA' - - integer i,j,imin - integer kshnum, n1atom - - double precision enenei,tmp_n - double precision pai,hpai - double precision jix,jiy,jiz,ndiff,snorm_nei - double precision t2dx(maxres),t2dy(maxres),t2dz(maxres) - double precision dr,dr2,half,ntmp,dtmp - - parameter(dr=0.25d0,dr2=0.50d0,half=0.50d0) - parameter(pai=3.14159265358979323846D0) - parameter(hpai=1.5707963267948966D0) - parameter(snorm_nei=0.886226925452758D0) - - edfanei = 0.0d0 - enenei = 0.0d0 - gdfan = 0.0d0 - -c print*, 's1:', s1(:) -c print*, 's2:', s2(:) - - do i=1, idfanei - - kshnum=kshell(i) - n1atom=ineilis(i)+ishiftca -C write(*,*) 'kshnum,n1atom:', kshnum, n1atom - - tmp_n=0.0d0 - ftmp=0.0d0 - dnei=0.0d0 - dist=0.0d0 - t1dx=0.0d0 - t1dy=0.0d0 - t1dz=0.0d0 - t2dx=0.0d0 - t2dy=0.0d0 - t2dz=0.0d0 - - do j = ishiftca+1, ilastca - - if (n1atom.eq.j) cycle - - jix=c(1,j)-c(1,n1atom) - jiy=c(2,j)-c(2,n1atom) - jiz=c(3,j)-c(3,n1atom) - dist=sqrt(jix*jix+jiy*jiy+jiz*jiz) - -c write(*,*) n1atom, j, dist - - if(kshnum.ne.1)then - if (dist.lt.s1(kshnum).and. - & dist.gt.s2(kshnum-1)) then - - tmp_n=tmp_n+1.0d0 - -c write(*,*) 'case1:',tmp_n - - t1dx=t1dx+0.0d0 - t1dy=t1dy+0.0d0 - t1dz=t1dz+0.0d0 - t2dx(j)=0.0d0 - t2dy(j)=0.0d0 - t2dz(j)=0.0d0 - - elseif(dist.ge.s1(kshnum).and. - & dist.le.s2(kshnum)) then - - dnei=(dist-s1(kshnum))/dr2*pai - tmp_n=tmp_n + half*(1+cos(dnei)) -c write(*,*) 'case2:',tmp_n - ftmp=-pai*sin(dnei)/dr2/dist/2.0d0 -c center atom - t1dx=t1dx+jix*ftmp - t1dy=t1dy+jiy*ftmp - t1dz=t1dz+jiz*ftmp -c neighbor atoms - t2dx(j)=-jix*ftmp - t2dy(j)=-jiy*ftmp - t2dz(j)=-jiz*ftmp -c - elseif(dist.ge.s1(kshnum-1).and. - & dist.le.s2(kshnum-1)) then - dnei=(dist-s1(kshnum-1))/dr2*pai - tmp_n=tmp_n + 1.0d0 - half*(1+cos(dnei)) -c write(*,*) 'case3:',tmp_n - ftmp = hpai*sin(dnei)/dr2/dist -c center atom - t1dx=t1dx+jix*ftmp - t1dy=t1dy+jiy*ftmp - t1dz=t1dz+jiz*ftmp -c neighbor atoms - t2dx(j)=-jix*ftmp - t2dy(j)=-jiy*ftmp - t2dz(j)=-jiz*ftmp - - endif - - elseif(kshnum.eq.1) then - - if(dist.lt.s1(kshnum))then - - tmp_n=tmp_n+1.0d0 -c write(*,*) 'case4:',tmp_n - t1dx=t1dx+0.0d0 - t1dy=t1dy+0.0d0 - t1dz=t1dz+0.0d0 - t2dx(j)=0.0d0 - t2dy(j)=0.0d0 - t2dz(j)=0.0d0 - - elseif(dist.ge.s1(kshnum).and. - & dist.le.s2(kshnum))then - - dnei=(dist-s1(kshnum))/dr2*pai - tmp_n=tmp_n + half*(1+cos(dnei)) -c write(*,*) 'case5:',tmp_n - ftmp = -hpai*sin(dnei)/dr2/dist -c center atom - t1dx=t1dx+jix*ftmp - t1dy=t1dy+jiy*ftmp - t1dz=t1dz+jiz*ftmp -c neighbor atoms - t2dx(j)=-jix*ftmp - t2dy(j)=-jiy*ftmp - t2dz(j)=-jiz*ftmp - - endif - endif - enddo - - scc=0.0d0 - enei=0.0d0 - tmp_fnei=0.0d0 - ndiff=0.0d0 - - do imin=1,ineinum(i) - - ndiff = tmp_n-fnei(i,imin) - dtmp = ndiff*ndiff - - if (dtmp.ge.15.0d0) then - ntmp = 0.0d0 - else -c ntmp = dfaexp( idint(dtmp*1000) + 1 ) - ntmp = exp(-dtmp) - end if - - enei=enei+sccnei(i,imin)*ntmp - tmp_fnei=tmp_fnei- - & sccnei(i,imin)*ntmp*ndiff*2.0d0 - scc=scc+sccnei(i,imin) - -c write(*,'(a,1x,2i8,f12.7,i8,3f12.7)')'NEI:',i,imin,tmp_n, -c & fnei(i,imin),sccnei(i,imin),enei,scc - enddo - - enei=-enei/scc*snorm_nei*nei_inc*wwnei - tmp_fnei=tmp_fnei/scc*snorm_nei*nei_inc*wwnei - -c if (abs(enei).lt.1.0d-20)then -c enei=0.0d0 -c endif -c if (abs(tmp_fnei).lt.1.0d-20) then -c tmp_fnei=0.0d0 -c endif - -c force calculation - t1dx=t1dx*tmp_fnei - t1dy=t1dy*tmp_fnei - t1dz=t1dz*tmp_fnei - - do j=ishiftca+1,ilastca - t2dx(j)=t2dx(j)*tmp_fnei - t2dy(j)=t2dy(j)*tmp_fnei - t2dz(j)=t2dz(j)*tmp_fnei - enddo - - gdfan(1,n1atom)=gdfan(1,n1atom)+t1dx - gdfan(2,n1atom)=gdfan(2,n1atom)+t1dy - gdfan(3,n1atom)=gdfan(3,n1atom)+t1dz - - do j=ishiftca+1,ilastca - gdfan(1,j)=gdfan(1,j)+t2dx(j) - gdfan(2,j)=gdfan(2,j)+t2dy(j) - gdfan(3,j)=gdfan(3,j)+t2dz(j) - enddo -c energy calculation - - enenei=enenei+enei - - enddo - - edfanei=enenei - - return - end - - subroutine edfab(edfabeta) - - implicit real*8 (a-h,o-z) - - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.DFA' - - real*8 PAI - parameter(PAI=3.14159265358979323846D0) - parameter (maxca=800) -C sheet variables - real*8 bx(maxres),by(maxres),bz(maxres) - real*8 vbet(maxres,maxres) - real*8 shetfx(maxres),shetfy(maxres),shetfz(maxres) - real*8 shefx(maxres,12),shefy(maxres,12),shefz(maxres,12) - real*8 vbeta,vbetp,vbetm - real*8 dca,dlhb,ulhb,dshe,dldhb,uldhb, - & c00,s00,ulnex,dnex - real*8 dp45,dm45,w_beta - - real*8 cph(maxca),cth(maxca) - real*8 atx(maxca),aty(maxca),atz(maxca) - real*8 atmx(maxca),atmy(maxca),atmz(maxca) - real*8 atmmx(maxca),atmmy(maxca),atmmz(maxca) - real*8 atm3x(maxca),atm3y(maxca),atm3z(maxca) - real*8 sth(maxca) - real*8 astx(maxca),asty(maxca),astz(maxca) - real*8 astmx(maxca),astmy(maxca),astmz(maxca) - real*8 astmmx(maxca),astmmy(maxca),astmmz(maxca) - real*8 astm3x(maxca),astm3y(maxca),astm3z(maxca) - - real*8 atxnum(maxca),atynum(maxca),atznum(maxca), - & astxnum(maxca),astynum(maxca),astznum(maxca), - & atmxnum(maxca),atmynum(maxca),atmznum(maxca), - & astmxnum(maxca),astmynum(maxca),astmznum(maxca), - & atmmxnum(maxca),atmmynum(maxca),atmmznum(maxca), - & astmmxnum(maxca),astmmynum(maxca),astmmznum(maxca), - & atm3xnum(maxca),atm3ynum(maxca),atm3znum(maxca), - & astm3xnum(maxca),astm3ynum(maxca),astm3znum(maxca), - & cth_orig(maxca),sth_orig(maxca) - - common /sheca/ bx,by,bz - common /shee/ vbeta,vbet,vbetp,vbetm - common /shetf/ shetfx,shetfy,shetfz - common /shef/ shefx, shefy, shefz - common /sheparm/ dca,dlhb,ulhb,dshe,dldhb,uldhb, - & c00,s00,ulnex,dnex - common /sheconst/ dp45,dm45,w_beta - - common /angvt/ atx,aty,atz,atmx,atmy,atmz,atmmx,atmmy, - $ atmmz,atm3x,atm3y,atm3z - common /angvt2/ astx,asty,astz,astmx,astmy,astmz,astmmx,astmmy, - $ astmmz,astm3x,astm3y,astm3z - - common /coscos/ cph,cth - common /sinsin/ sth - -C End of sheet variables - - integer i,j - double precision enebet - - enebet=0.0d0 - bx=0.0d0;by=0.0d0;bz=0.0d0 - shetfx=0.0d0;shetfy=0.0d0;shetfz=0.0d0 - - gdfab=0.0d0 - - do i=ishiftca+1,ilastca - bx(i-ishiftca)=c(1,i) - by(i-ishiftca)=c(2,i) - bz(i-ishiftca)=c(3,i) - enddo - -c do i=1,ilastca-ishiftca -c read(99,*) bx(i),by(i),bz(i) -c enddo -c close(99) - - dca=0.25d0**2 - dshe=0.3d0**2 - ULHB=5.0D0 - ULDHB=5.0D0 - ULNEX=COS(60.0D0/180.0D0*PAI) - - DLHB=1.0D0 - DLDHB=1.0D0 - - DNEX=0.3D0**2 - - C00=COS((1.0D0+10.0D0/180.0D0)*PAI) - S00=SIN((1.0D0+10.0D0/180.0D0)*PAI) - - W_BETA=0.5D0 - DP45=W_BETA - DM45=W_BETA - -C END OF INITIALIZATION - - nca=ilastca-ishiftca - - call angvectors(nca) - call sheetforce(nca,wshet) - -c end of sheet energy and force - - do j=1,nca - shetfx(j)=shetfx(j)*beta_inc - shetfy(j)=shetfy(j)*beta_inc - shetfz(j)=shetfz(j)*beta_inc -c write(*,*)'SHETF:',shetfx(j),shetfy(j),shetfz(j) - enddo - - vbeta=vbeta*beta_inc - enebet=vbeta - edfabeta=enebet - - do j=1,nca - gdfab(1,j+ishiftca)=gdfab(1,j+ishiftca)-shetfx(j) - gdfab(2,j+ishiftca)=gdfab(2,j+ishiftca)-shetfy(j) - gdfab(3,j+ishiftca)=gdfab(3,j+ishiftca)-shetfz(j) - enddo - -#ifdef DEBUG1 - do j=1,nca - write(*,'(5x,i5,10x,3f10.5)') j,bx(j),by(j),bz(j) - enddo - - - gdfab=0 - dinc=0.001 - do j=1,nca - cth_orig(j)=cth(j) - sth_orig(j)=sth(j) - enddo - - do j=1,nca - - bx(j)=bx(j)+dinc - call angvectors(nca) - bx(j)=bx(j)-2*dinc - call angvectors(nca) - atxnum(j)=0.5*(cth(j)-cth_orig(j))/dinc - astxnum(j)=0.5*(sth(j)-sth_orig(j))/dinc - if (j.gt.1) then - atmxnum(j)=0.5*(cth(j-1)-cth_orig(j-1))/dinc - astmxnum(j)=0.5*(sth(j-1)-sth_orig(j-1))/dinc - endif - if (j.gt.2) then - atmmxnum(j)=0.5*(cth(j-2)-cth_orig(j-2))/dinc - astmmxnum(j)=0.5*(sth(j-2)-sth_orig(j-2))/dinc - endif - if (j.gt.3) then - atm3xnum(j)=0.5*(cth(j-3)-cth_orig(j-3))/dinc - astm3xnum(j)=0.5*(sth(j-3)-sth_orig(j-3))/dinc - endif - bx(j)=bx(j)+dinc - by(j)=by(j)+dinc - call angvectors(nca) - by(j)=by(j)-2*dinc - call angvectors(nca) - by(j)=by(j)+dinc - atynum(j)=0.5*(cth(j)-cth_orig(j))/dinc - astynum(j)=0.5*(sth(j)-sth_orig(j))/dinc - if (j.gt.1) then - atmynum(j)=0.5*(cth(j-1)-cth_orig(j-1))/dinc - astmynum(j)=0.5*(sth(j-1)-sth_orig(j-1))/dinc - endif - if (j.gt.2) then - atmmynum(j)=0.5*(cth(j-2)-cth_orig(j-2))/dinc - astmmynum(j)=0.5*(sth(j-2)-sth_orig(j-2))/dinc - endif - if (j.gt.3) then - atm3ynum(j)=0.5*(cth(j-3)-cth_orig(j-3))/dinc - astm3ynum(j)=0.5*(sth(j-3)-sth_orig(j-3))/dinc - endif - - bz(j)=bz(j)+dinc - call angvectors(nca) - bz(j)=bz(j)-2*dinc - call angvectors(nca) - bz(j)=bz(j)+dinc - - atznum(j)=0.5*(cth(j)-cth_orig(j))/dinc - astznum(j)=0.5*(sth(j)-sth_orig(j))/dinc - if (j.gt.1) then - atmznum(j)=0.5*(cth(j-1)-cth_orig(j-1))/dinc - astmznum(j)=0.5*(sth(j-1)-sth_orig(j-1))/dinc - endif - if (j.gt.2) then - atmmznum(j)=0.5*(cth(j-2)-cth_orig(j-2))/dinc - astmmznum(j)=0.5*(sth(j-2)-sth_orig(j-2))/dinc - endif - if (j.gt.3) then - atm3znum(j)=0.5*(cth(j-3)-cth_orig(j-3))/dinc - astm3znum(j)=0.5*(sth(j-3)-sth_orig(j-3))/dinc - endif - - enddo - - do i=1,nca - write (*,'(2i5,a2,6f10.5)') - & i,1,"x",atxnum(i),atx(i),atxnum(i)/atx(i), - & astxnum(i),astx(i),astxnum(i)/astx(i), - & i,1,"y",atynum(i),aty(i),atynum(i)/aty(i), - & astynum(i),asty(i),astynum(i)/asty(i), - & i,1,"z",atznum(i),atz(i),atznum(i)/atz(i), - & astznum(i),astz(i),astznum(i)/astz(i), - & i,2,"x",atmxnum(i),atmx(i),atmxnum(i)/atmx(i), - & astmxnum(i),astmx(i),astmxnum(i)/astmx(i), - & i,2,"y",atmynum(i),atmy(i),atmynum(i)/atmy(i), - & astmynum(i),astmy(i),astmynum(i)/astmy(i), - & i,2,"z",atmznum(i),atmz(i),atmznum(i)/atmz(i), - & astmznum(i),astmz(i),astmznum(i)/astmz(i), - & i,3,"x",atmmxnum(i),atmmx(i),atmmxnum(i)/atmmx(i), - & astmmxnum(i),astmmx(i),astmmxnum(i)/astmmx(i), - & i,3,"y",atmmynum(i),atmmy(i),atmmynum(i)/atmmy(i), - & astmmynum(i),astmmy(i),astmmynum(i)/astmmy(i), - & i,3,"z",atmmznum(i),atmmz(i),atmmznum(i)/atmmz(i), - & astmmznum(i),astmmz(i),astmmznum(i)/astmmz(i), - & i,4,"x",atm3xnum(i),atm3x(i),atm3xnum(i)/atm3x(i), - & astm3xnum(i),astm3x(i),astm3xnum(i)/astm3x(i), - & i,4,"y",atm3ynum(i),atm3y(i),atm3ynum(i)/atm3y(i), - & astm3ynum(i),astm3y(i),astm3ynum(i)/astm3y(i), - & i,4,"z",atm3znum(i),atm3z(i),atm3znum(i)/atm3z(i), - & astm3znum(i),astm3z(i),astm3znum(i)/astm3z(i), - & i,0," ",cth_orig(i),sth_orig(i) - enddo - - - gdfab=0 - dinc=0.001 - - do j=1,nca - - bx(j)=bx(j)+dinc - call angvectors(nca) - call sheetforce(nca,wshet) - vbeta1=vbeta*beta_inc - bx(j)=bx(j)-2*dinc - call angvectors(nca) - call sheetforce(nca,wshet) - vbeta2=vbeta*beta_inc - gdfab(1,j)=(vbeta2-vbeta1)/dinc/2 - bx(j)=bx(j)+dinc - - by(j)=by(j)+dinc - call angvectors(nca) - call sheetforce(nca,wshet) - vbeta1=vbeta*beta_inc - by(j)=by(j)-2*dinc - call angvectors(nca) - call sheetforce(nca,wshet) - vbeta2=vbeta*beta_inc - gdfab(2,j)=(vbeta2-vbeta1)/dinc/2 - by(j)=by(j)+dinc - - bz(j)=bz(j)+dinc - call angvectors(nca) - call sheetforce(nca,wshet) - vbeta1=vbeta*beta_inc - bz(j)=bz(j)-2*dinc - call angvectors(nca) - call sheetforce(nca,wshet) - vbeta2=vbeta*beta_inc - gdfab(3,j)=(vbeta2-vbeta1)/dinc/2 - bz(j)=bz(j)+dinc - - - enddo - - - call angvectors(nca) - call sheetforce(nca,wshet) - do j=1,nca - shetfx(j)=shetfx(j)*beta_inc - shetfy(j)=shetfy(j)*beta_inc - shetfz(j)=shetfz(j)*beta_inc - enddo - - - write(*,*) 'xyz analytical and numerical gradient' - do j=1,nca - write(*,'(5x,i5,10x,6f10.5)') j,-shetfx(j),-shetfy(j),-shetfz(j) - & ,(-gdfab(i,j),i=1,3) - enddo - - do j=1,nca - write(*,'(5x,i5,10x,3f10.2)') j,shetfx(j)/gdfab(1,j), - & shetfy(j)/gdfab(2,j), - & shetfz(j)/gdfab(3,j) - enddo - - stop -#endif - - return - end -C------------------------------------------------------------------------------- - subroutine angvectors(nca) -c implicit real*4(a-h,o-z) - implicit none - integer nca - integer maxca - parameter(maxca=800) - real*8 pai,zero - parameter(PAI=3.14159265358979323846D0,zero=0.0d0) - - real*8 bx(maxca),by(maxca),bz(maxca) - real*8 dis(maxca,maxca) - real*8 apx(maxca),apy(maxca),apz(maxca) - real*8 apmx(maxca),apmy(maxca),apmz(maxca) - real*8 apmmx(maxca),apmmy(maxca),apmmz(maxca) - real*8 apm3x(maxca),apm3y(maxca),apm3z(maxca) - real*8 atx(maxca),aty(maxca),atz(maxca) - real*8 atmx(maxca),atmy(maxca),atmz(maxca) - real*8 atmmx(maxca),atmmy(maxca),atmmz(maxca) - real*8 atm3x(maxca),atm3y(maxca),atm3z(maxca) - real*8 astx(maxca),asty(maxca),astz(maxca) - real*8 astmx(maxca),astmy(maxca),astmz(maxca) - real*8 astmmx(maxca),astmmy(maxca),astmmz(maxca) - real*8 astm3x(maxca),astm3y(maxca),astm3z(maxca) - real*8 sth(maxca) - real*8 cph(maxca),cth(maxca) - real*8 ulcos(maxca) - real*8 p,c - integer i, ip, ipp, ip3, j - real*8 rx(maxca, maxca), ry(maxca, maxca), rz(maxca, maxca) - real*8 rix, riy, riz, ripx, ripy, ripz, rippx, rippy, rippz - real*8 gix, giy, giz, gipx, gipy, gipz, gippx, gippy, gippz - real*8 cix, ciy, ciz, cipx, cipy, cipz - real*8 gpcrp_x, gpcrp_y, gpcrp_z, d_gpcrp, gpcrp__g - real*8 d10, d11, d12, d13, d20, d21, d22, d23, d24 - real*8 d30, d31, d32, d33, d34, d35, d40, d41, d42, d43 - real*8 d_gcr, d_gcr3, d_gmcrim,d_gmcrim3,dgmmcrimm,d_gmmcrimm3 - real*8 dg, dg3, dg30, dgm, dgm3, dgmm, dgmm3, dgp, dri - real*8 dri3, drim, drim3, drimm, drip, dripp, g3gmm, g3rim - real*8 g3x, g3y, g3z, d_gmmcrimm, g3rim_,gcr__gm - real*8 gcr_x,gcr_y,gcr_z,ggm,ggp,gmcrim__gmm - real*8 gmcrim_x,gmcrim_y,gmcrim_z,gmmcrimm__gmmm - real*8 gmmcrimm_x,gmmcrimm_y,gmmcrimm_z,gmmgm,gmmr - real*8 gmmx,gmmy,gmmz,gmrp,gmx,gmy,gmz,gpx,gpy,gpz - real*8 grpp,gx,gy,gz - real*8 rim3x,rim3y,rim3z,rimmx,rimmy,rimmz,rimx,rimy,rimz - real*8 sd10,sd11,sd20,sd21,sd22,sd30,sd31,sd32,sd40,sd41 - integer inb,nmax,iselect - - common /sheca/ bx,by,bz - common /difvec/ rx, ry, rz - common /ulang/ ulcos - common /phys1/ inb,nmax,iselect - common /phys4/ p,c - common /kyori2/ dis - common /angvp/ apx,apy,apz,apmx,apmy,apmz,apmmx,apmmy, - & apmmz,apm3x,apm3y,apm3z - common /angvt/ atx,aty,atz,atmx,atmy,atmz,atmmx,atmmy, - & atmmz,atm3x,atm3y,atm3z - common /coscos/ cph,cth - common /angvt2/ astx,asty,astz,astmx,astmy,astmz,astmmx,astmmy, - & astmmz,astm3x,astm3y,astm3z - common /sinsin/ sth -C------------------------------------------------------------------------------- -c write(*,*) 'inside angvectors' -C initialize - p=0.1d0 - c=1.0d0 - inb=nca - cph=zero; cth=zero; sth=zero - apx=zero;apy=zero;apz=zero;apmx=zero;apmy=zero;apmz=zero - apmmx=zero;apmmy=zero;apmmz=zero;apm3x=zero;apm3y=zero;apm3z=zero - atx=zero;aty=zero;atz=zero;atmx=zero;atmy=zero;atmz=zero - atmmx=zero;atmmy=zero;atmmz=zero;atm3x=zero;atm3y=zero;atm3z=zero - astx=zero;asty=zero;astz=zero;astmx=zero;astmy=zero;astmz=zero - astmmx=zero;astmmy=zero;astmmz=zero;astm3x=zero;astm3y=zero - astm3z=zero -C end of initialize -C r[x,y,z] calc and distance calculation - rx=zero;ry=zero;rz=zero - - do i=1,inb - do j=1,inb - rx(i,j)=bx(j)-bx(i) - ry(i,j)=by(j)-by(i) - rz(i,j)=bz(j)-bz(i) - dis(i,j)=sqrt(rx(i,j)**2+ry(i,j)**2+rz(i,j)**2) -c write(*,*) 'rx(i,j):',i,j,rx(i,j),bx(j),bx(i) -c write(*,*) 'ry(i,j):',i,j,ry(i,j),by(j),by(i) -c write(*,*) 'rz(i,j):',i,j,rz(i,j),bz(j),bz(i) -c write(*,*) 'dis(i,j):',i,j,dis(i,j) - enddo - enddo -c end of r[x,y,z] calc -C cos calc - do i=1,inb-2 - ip=i+1 - ipp=i+2 - - if(dis(i,ip).ge.1.0e-8.and.dis(ip,ipp).ge.1.0e-8) then - ulcos(i)=rx(i,ip)*rx(ip,ipp)+ry(i,ip)*ry(ip,ipp) - $ +rz(i,ip)*rz(ip,ipp) - ulcos(i)=ulcos(i)/(dis(i,ip)*dis(ip,ipp)) - endif - enddo -c end of virtual bond angle -c write(*,*) 'inside angvectors1' -crc do i=1,inb-3 - do i=1,inb - ip=i+1 - ipp=i+2 - ip3=i+3 - rix=bx(ip)-bx(i) - riy=by(ip)-by(i) - riz=bz(ip)-bz(i) - ripx=bx(ipp)-bx(ip) - ripy=by(ipp)-by(ip) - ripz=bz(ipp)-bz(ip) - rippx=bx(ip3)-bx(ipp) - rippy=by(ip3)-by(ipp) - rippz=bz(ip3)-bz(ipp) - - gx=riy*ripz-riz*ripy - gy=riz*ripx-rix*ripz - gz=rix*ripy-riy*ripx - gpx=ripy*rippz-ripz*rippy - gpy=ripz*rippx-ripx*rippz - gpz=ripx*rippy-ripy*rippx - gpcrp_x=gpy*ripz-gpz*ripy - gpcrp_y=gpz*ripx-gpx*ripz - gpcrp_z=gpx*ripy-gpy*ripx - d_gpcrp=sqrt(gpcrp_x**2+gpcrp_y**2+gpcrp_z**2) - gpcrp__g=gx*gpy*ripz+gpx*ripy*gz+ripx*gpz*gy - & -gz*gpy*ripx-gpz*ripy*gx-ripz*gpx*gy - - if(i.ge.2) then - rimx=bx(i)-bx(i-1) - rimy=by(i)-by(i-1) - rimz=bz(i)-bz(i-1) - gmx=rimy*riz-rimz*riy - gmy=rimz*rix-rimx*riz - gmz=rimx*riy-rimy*rix - dgm=sqrt(gmx**2+gmy**2+gmz**2) - dgm3=dgm**3 - ggm=gmx*gx+gmy*gy+gmz*gz - gmrp=gmx*ripx+gmy*ripy+gmz*ripz - drim=dis(i-1,i) - drim3=drim**3 - gcr_x=gy*riz-gz*riy - gcr_y=gz*rix-gx*riz - gcr_z=gx*riy-gy*rix - d_gcr=sqrt(gcr_x**2+gcr_y**2+gcr_z**2) - d_gcr3=d_gcr**3 - gcr__gm=gmx*gy*riz+gx*riy*gmz+rix*gz*gmy - & -gmz*gy*rix-gz*riy*gmx-riz*gx*gmy - endif -c write(*,*) 'inside angvectors2' - if(i.ge.3) then - rimmx=bx(i-1)-bx(i-2) - rimmy=by(i-1)-by(i-2) - rimmz=bz(i-1)-bz(i-2) - drimm=dis(i-2,i-1) - gmmx=rimmy*rimz-rimmz*rimy - gmmy=rimmz*rimx-rimmx*rimz - gmmz=rimmx*rimy-rimmy*rimx - dgmm=sqrt(gmmx**2+gmmy**2+gmmz**2) - dgmm3=dgmm**3 - gmmgm=gmmx*gmx+gmmy*gmy+gmmz*gmz - gmmr=gmmx*rix+gmmy*riy+gmmz*riz - gmcrim_x=gmy*rimz-gmz*rimy - gmcrim_y=gmz*rimx-gmx*rimz - gmcrim_z=gmx*rimy-gmy*rimx - d_gmcrim=sqrt(gmcrim_x**2+gmcrim_y**2+gmcrim_z**2) - d_gmcrim3=d_gmcrim**3 - gmcrim__gmm=gmmx*gmy*rimz+gmx*rimy*gmmz+rimx*gmz*gmmy - & -gmmz*gmy*rimx-gmz*rimy*gmmx-rimz*gmx*gmmy - endif - - if(i.ge.4) then - rim3x=bx(i-2)-bx(i-3) - rim3y=by(i-2)-by(i-3) - rim3z=bz(i-2)-bz(i-3) - g3x=rim3y*rimmz-rim3z*rimmy - g3y=rim3z*rimmx-rim3x*rimmz - g3z=rim3x*rimmy-rim3y*rimmx - dg30=sqrt(g3x**2+g3y**2+g3z**2) - g3gmm=g3x*gmmx+g3y*gmmy+g3z*gmmz - g3rim_=g3x*rimx+g3y*rimy+g3z*rimz -cc********************************************************************** - gmmcrimm_x=gmmy*rimmz-gmmz*rimmy - gmmcrimm_y=gmmz*rimmx-gmmx*rimmz - gmmcrimm_z=gmmx*rimmy-gmmy*rimmx - d_gmmcrimm=sqrt(gmmcrimm_x**2+gmmcrimm_y**2+gmmcrimm_z**2) - d_gmmcrimm3=d_gmmcrimm**3 - gmmcrimm__gmmm=g3x*gmmy*rimmz+gmmx*rimmy*g3z+rimmx*gmmz*g3y - & -g3z*gmmy*rimmx-gmmz*rimmy*g3x-rimmz*gmmx*g3y - endif - - dri=dis(i,i+1) - drip=dis(i+1,i+2) - dripp=dis(i+2,i+3) - dri3=dri**3 - dg=sqrt(gx**2+gy**2+gz**2) - dgp=sqrt(gpx**2+gpy**2+gpz**2) - dg3=dg**3 - - ggp=gx*gpx+gy*gpy+gz*gpz - grpp=gx*rippx+gy*rippy+gz*rippz - - if(dg.gt.0.0D0.and.dripp.gt.0.0D0.and.dgp.gt.0.0D0 - & .and.d_gpcrp.gt.0.0D0) then - cph(i)=grpp/dg/dripp - cth(i)=ggp/dg/dgp - sth(i)=gpcrp__g/d_gpcrp/dg - else -c - cph(i)=1.0D0 - cth(i)=1.0D0 - sth(i)=0.0D0 - endif - -c write(*,*) 'inside angvectors3' - - if(dgp.gt.0.0D0.and.dg3.gt.0.0D0 - & .and.dripp.gt.0.0D0.and.d_gpcrp.gt.0.0D0) then - d10=1.0D0/(dg*dgp) - d11=ggp/(dg3*dgp) - d12=1.0D0/(dg*dripp) - d13=grpp/(dg3*dripp) - sd10=1.0D0/(d_gpcrp*dg) - sd11=gpcrp__g/(d_gpcrp*dg3) - else - d10=0.0D0 - d11=0.0D0 - d12=0.0D0 - d13=0.0D0 - sd10=0.0D0 - sd11=0.0D0 - endif - - atx(i)=(ripz*gpy-ripy*gpz)*d10 - & -(gy*ripz-gz*ripy)*d11 - aty(i)=(ripx*gpz-ripz*gpx)*d10 - & -(gz*ripx-gx*ripz)*d11 - atz(i)=(ripy*gpx-ripx*gpy)*d10 - & -(gx*ripy-gy*ripx)*d11 - astx(i)=sd10*(-gpx*ripy**2+ripx*gpz*ripz - & +ripy*gpy*ripx-gpx*ripz**2) - & -sd11*(gy*ripz-gz*ripy) - asty(i)=sd10*(-gpy*ripz**2+gpx*ripy*ripx - & -gpy*ripx**2+gpz*ripy*ripz) - & -sd11*(-gx*ripz+gz*ripx) - astz(i)=sd10*(ripy*gpy*ripz-gpz*ripx**2 - & -gpz*ripy**2+ripz*gpx*ripx) - & -sd11*(gx*ripy-gy*ripx) - apx(i)=(ripz*rippy-ripy*rippz)*d12 - & -(gy*ripz-gz*ripy)*d13 - apy(i)=(ripx*rippz-ripz*rippx)*d12 - & -(gz*ripx-gx*ripz)*d13 - apz(i)=(ripy*rippx-ripx*rippy)*d12 - & -(gx*ripy-gy*ripx)*d13 - - if(i.ge.2) then - cix=bx(ip)-bx(i-1) - ciy=by(ip)-by(i-1) - ciz=bz(ip)-bz(i-1) - cipx=bx(ipp)-bx(i) - cipy=by(ipp)-by(i) - cipz=bz(ipp)-bz(i) - ripx=bx(ipp)-bx(ip) - ripy=by(ipp)-by(ip) - ripz=bz(ipp)-bz(ip) - if(dgm3.gt.0.0D0.and.dg3.gt.0.0D0.and.drip.gt.0.0D0 - & .and.d_gcr3.gt.0.0D0) then - d20=1.0D0/(dg*dgm) - d21=ggm/(dgm3*dg) - d22=ggm/(dgm*dg3) - d23=1.0D0/(dgm*drip) - d24=gmrp/(dgm3*drip) - sd20=1.0D0/(d_gcr*dgm) - sd21=gcr__gm/(d_gcr3*dgm) - sd22=gcr__gm/(d_gcr*dgm3) - else - d20=0.0D0 - d21=0.0D0 - d22=0.0D0 - d23=0.0D0 - d24=0.0D0 - sd20=0.0D0 - sd21=0.0D0 - sd22=0.0D0 - endif - atmx(i)=(ciy*gz-ciz*gy-ripy*gmz+ripz*gmy)*d20 - & -(ciy*gmz-ciz*gmy)*d21 - & +(ripy*gz-ripz*gy)*d22 - atmy(i)=(ciz*gx-cix*gz-ripz*gmx+ripx*gmz)*d20 - & -(ciz*gmx-cix*gmz)*d21 - & +(ripz*gx-ripx*gz)*d22 - atmz(i)=(cix*gy-ciy*gx-ripx*gmy+ripy*gmx)*d20 - & -(cix*gmy-ciy*gmx)*d21 - & +(ripx*gy-ripy*gx)*d22 -cc********************************************************************** - astmx(i)=sd20*(gmx*ripz*riz+gx*riy*ciy-gz*gmy - & -rix*ripy*gmy-rix*gz*ciz-ciy*gy*rix-gmz*ripz*rix - & +gmz*gy+ripy*riy*gmx+riz*gx*ciz) - & -sd21*(gcr_x*(ripz*riz+ripy*riy)+gcr_y*(-ripy*rix-gz) - & +gcr_z*(-ripz*rix+gy)) - & -sd22*(-gmy*ciz+gmz*ciy) - - astmy(i)=sd20*(ciz*gy*riz-ripz*riy*gmz-gx*gmz-gx*riy*cix - & +rix*ripx*gmy+cix*gy*rix-ripx*riy*gmx+gz*gmx-gz*riy*ciz - & +riz*ripz*gmy) - & -sd21*(gcr_x*(-ripx*riy+gz)+gcr_y*(ripx*rix+ripz*riz) - & -gcr_z*(ripz*riy+gx)) - & -sd22*(gmx*ciz-gmz*cix) - - astmz(i)=sd20*(-ciy*gy*riz-gmx*ripx*riz-gmx*gy+ripy*riy*gmz - & +rix*gz*cix+gmz*ripx*rix+gz*riy*ciy+gx*gmy-riz*ripy*gmy - & -riz*gx*cix) - & -sd21*(gcr_x*(-ripx*riz-gy)+gcr_y*(-ripy*riz+gx) - & +gcr_z*(ripy*riy+ripx*rix)) - & -sd22*(-gmx*ciy+gmy*cix) -cc********************************************************************** - apmx(i)=(ciy*ripz-ripy*ciz)*d23 - & -(ciy*gmz-ciz*gmy)*d24 - apmy(i)=(ciz*ripx-ripz*cix)*d23 - & -(ciz*gmx-cix*gmz)*d24 - apmz(i)=(cix*ripy-ripx*ciy)*d23 - & -(cix*gmy-ciy*gmx)*d24 - endif - - if(i.ge.3) then - if(dgm3.gt.0.0D0.and.dgmm3.gt.0.0D0.and.dri3.gt.0.0D0 - & .and.d_gmcrim3.gt.0.0D0) then - d30=1.0D0/(dgm*dgmm) - d31=gmmgm/(dgm3*dgmm) - d32=gmmgm/(dgm*dgmm3) - d33=1.0D0/(dgmm*dri) - d34=gmmr/(dgmm3*dri) - d35=gmmr/(dgmm*dri3) - sd30=1.0D0/(d_gmcrim*dgmm) - sd31=gmcrim__gmm/(d_gmcrim3*dgmm) - sd32=gmcrim__gmm/(d_gmcrim*dgmm3) - else - d30=0.0D0 - d31=0.0D0 - d32=0.0D0 - d33=0.0D0 - d34=0.0D0 - d35=0.0D0 - sd30=0.0D0 - sd31=0.0D0 - sd32=0.0D0 - endif - -c write(*,*) 'inside angvectors4' - -cc********************************************************************** - atmmx(i)=(ciy*gmmz-ciz*gmmy-rimmy*gmz+rimmz*gmy)*d30 - & -(ciy*gmz-ciz*gmy)*d31 - & -(gmmy*rimmz-gmmz*rimmy)*d32 - atmmy(i)=(ciz*gmmx-cix*gmmz-rimmz*gmx+rimmx*gmz)*d30 - & -(ciz*gmx-cix*gmz)*d31 - & -(gmmz*rimmx-gmmx*rimmz)*d32 - atmmz(i)=(cix*gmmy-ciy*gmmx-rimmx*gmy+rimmy*gmx)*d30 - & -(cix*gmy-ciy*gmx)*d31 - & -(gmmx*rimmy-gmmy*rimmx)*d32 -cc********************************************************************** - astmmx(i)=sd30*(-gmmx*ciz*rimz-gmx*rimy*rimmy - & +gmz*gmmy+rimx*ciy*gmmy+rimx*gmz*rimmz - & +rimmy*gmy*rimx+gmmz*ciz*rimx-gmmz*gmy - & -ciy*rimy*gmmx-rimz*gmx*rimmz) - & -sd31*(gmcrim_x*(-ciz*rimz-ciy*rimy) - & +gmcrim_y*(ciy*rimx+gmz)+gmcrim_z*(ciz*rimx-gmy)) - & -sd32*(gmmy*rimmz-rimmy*gmmz) - - astmmy(i)=sd30*(-rimmz*gmy*rimz+ciz*rimy*gmmz - & +gmx*gmmz+gmx*rimy*rimmx-rimx*cix*gmmy - & -rimmx*gmy*rimx+cix*rimy*gmmx-gmz*gmmx - & +gmz*rimy*rimmz-rimz*ciz*gmmy) - & -sd31*(gmcrim_x*(cix*rimy-gmz) - & +gmcrim_y*(-cix*rimx-ciz*rimz)+gmcrim_z*(ciz*rimy+gmx)) - & -sd32*(-gmmx*rimmz+rimmx*gmmz) - - astmmz(i)=sd30*(rimmy*gmy*rimz+gmmx*cix*rimz - & +gmmx*gmy-ciy*rimy*gmmz-rimx*gmz*rimmx - & -gmmz*cix*rimx-gmz*rimy*rimmy-gmx*gmmy - & +rimz*ciy*gmmy+rimz*gmx*rimmx) - & -sd31*(gmcrim_x*(cix*rimz+gmy) - & +gmcrim_y*(ciy*rimz-gmx)+gmcrim_z*(-ciy*rimy-cix*rimx)) - & -sd32*(gmmx*rimmy-rimmx*gmmy) -c********************************************************************** - apmmx(i)=(riy*rimmz-riz*rimmy-gmmx)*d33 - & -(gmmy*rimmz-gmmz*rimmy)*d34 - & +rix*d35 - apmmy(i)=(riz*rimmx-rix*rimmz-gmmy)*d33 - & -(gmmz*rimmx-gmmx*rimmz)*d34 - & +riy*d35 - apmmz(i)=(rix*rimmy-riy*rimmx-gmmz)*d33 - & -(gmmx*rimmy-gmmy*rimmx)*d34 - & +riz*d35 - endif - - if(i.ge.4) then - if(dg30.gt.0.0D0.and.dgmm3.gt.0.0D0 - & .and.drim3.gt.0.0D0 - & .and.d_gmmcrimm3.gt.0.0D0) then - d40=1.0D0/(dg30*dgmm) - d41=g3gmm/(dg30*dgmm3) - d42=1.0D0/(dg30*drim) - d43=g3rim_/(dg30*drim3) - sd40=1.0D0/(dg30*d_gmmcrimm) - sd41=gmmcrimm__gmmm/(d_gmmcrimm3*dg30) - else - d40=0.0D0 - d41=0.0D0 - d42=0.0D0 - d43=0.0D0 - sd40=0.0D0 - sd41=0.0D0 - endif - atm3x(i)=(g3y*rimmz-g3z*rimmy)*d40 - & -(gmmy*rimmz-gmmz*rimmy)*d41 - atm3y(i)=(g3z*rimmx-g3x*rimmz)*d40 - & -(gmmz*rimmx-gmmx*rimmz)*d41 - atm3z(i)=(g3x*rimmy-g3y*rimmx)*d40 - & -(gmmx*rimmy-gmmy*rimmx)*d41 -cc********************************************************************** - astm3x(i)=sd40*(g3x*rimmz**2-rimmx*rimmy*g3y - & -g3z*rimmz*rimmx+rimmy**2*g3x) - & -sd41*(gmmcrimm_x*(rimmz**2+rimmy**2) - & -gmmcrimm_y*rimmy*rimmx-gmmcrimm_z*rimmz*rimmx) - - astm3y(i)=sd40*(-rimmz*rimmy*g3z+rimmx**2*g3y - & -rimmx*rimmy*g3x+rimmz**2*g3y) - & -sd41*(-gmmcrimm_x*rimmx*rimmy - & +gmmcrimm_y*(rimmx**2+rimmz**2)-gmmcrimm_z*rimmz*rimmy) - -c & +gmmcrimm_y*(rimmx**2+rimmz**2)-gmmcrimm_z*rimmz*rimmx) - - astm3z(i)=sd40*(-g3x*rimmx*rimmz+rimmy**2*g3z - & +g3z*rimmx**2-rimmz*rimmy*g3y) - & -sd41*(-gmmcrimm_x*rimmx*rimmz-gmmcrimm_y*rimmy*rimmz - & +gmmcrimm_z*(rimmy**2+rimmx**2)) -c********************************************************************** - apm3x(i)=g3x*d42-rimx*d43 - apm3y(i)=g3y*d42-rimy*d43 - apm3z(i)=g3z*d42-rimz*d43 - endif - enddo -c******************************************************************************* - -c write(*,*) 'inside angvectors5' - -c do i=inb-2,inb - do i=1,0 - rimx=bx(i)-bx(i-1) - rimy=by(i)-by(i-1) - rimz=bz(i)-bz(i-1) - rimmx=bx(i-1)-bx(i-2) - rimmy=by(i-1)-by(i-2) - rimmz=bz(i-1)-bz(i-2) - rim3x=bx(i-2)-bx(i-3) - rim3y=by(i-2)-by(i-3) - rim3z=bz(i-2)-bz(i-3) - gmmx=rimmy*rimz-rimmz*rimy - gmmy=rimmz*rimx-rimmx*rimz - gmmz=rimmx*rimy-rimmy*rimx - g3x=rim3y*rimmz-rim3z*rimmy - g3y=rim3z*rimmx-rim3x*rimmz - g3z=rim3x*rimmy-rim3y*rimmx - - dg30=sqrt(g3x**2+g3y**2+g3z**2) - g3gmm=g3x*gmmx+g3y*gmmy+g3z*gmmz - dgmm=sqrt(gmmx**2+gmmy**2+gmmz**2) - dgmm3=dgmm**3 - drim=dis(i-1,i) - drimm=dis(i-2,i-1) - drim3=drim**3 - g3rim_=g3x*rimx+g3y*rimy+g3z*rimz -cc********************************************************************** - gmmcrimm_x=gmmy*rimmz-gmmz*rimmy - gmmcrimm_y=gmmz*rimmx-gmmx*rimmz - gmmcrimm_z=gmmx*rimmy-gmmy*rimmx - d_gmmcrimm=sqrt(gmmcrimm_x**2+gmmcrimm_y**2+gmmcrimm_z**2) - d_gmmcrimm3=d_gmmcrimm**3 - gmmcrimm__gmmm=g3x*gmmy*rimmz+gmmx*rimmy*g3z+rimmx*gmmz*g3y - & -g3z*gmmy*rimmx-gmmz*rimmy*g3x-rimmz*gmmx*g3y - - if(dg30.gt.0.0D0.and.dgmm3.gt.0.0D0 - & .and.drim3.gt.0.0D0 - & .and.d_gmmcrimm3.gt.0.0D0) then - d40=1.0D0/(dg30*dgmm) - d41=g3gmm/(dg30*dgmm3) - d42=1.0D0/(dg30*drim) - d43=g3rim_/(dg30*drim3) - sd40=1.0D0/(dg30*d_gmmcrimm) - sd41=gmmcrimm__gmmm/(d_gmmcrimm3*dg30) - else - d40=0.0D0 - d41=0.0D0 - d42=0.0D0 - d43=0.0D0 - sd40=0.0D0 - sd41=0.0D0 - endif - atm3x(i)=(g3y*rimmz-g3z*rimmy)*d40 - & -(gmmy*rimmz-gmmz*rimmy)*d41 - atm3y(i)=(g3z*rimmx-g3x*rimmz)*d40 - & -(gmmz*rimmx-gmmx*rimmz)*d41 - atm3z(i)=(g3x*rimmy-g3y*rimmx)*d40 - & -(gmmx*rimmy-gmmy*rimmx)*d41 -cc********************************************************************** - astm3x(i)=sd40*(g3x*rimmz**2-rimmx*rimmy*g3y - & -g3z*rimmz*rimmx+rimmy**2*g3x) - & -sd41*(gmmcrimm_x*(rimmz**2+rimmy**2) - & -gmmcrimm_y*rimmy*rimmx-gmmcrimm_z*rimmz*rimmx) - - astm3y(i)=sd40*(-rimmz*rimmy*g3z+rimmx**2*g3y - & -rimmx*rimmy*g3x+rimmz**2*g3y) - & -sd41*(-gmmcrimm_x*rimmx*rimmy - & +gmmcrimm_y*(rimmx**2+rimmz**2)-gmmcrimm_z*rimmz*rimmx) - - astm3z(i)=sd40*(-g3x*rimmx*rimmz+rimmy**2*g3z - & +g3z*rimmx**2-rimmz*rimmy*g3y) - & -sd41*(-gmmcrimm_x*rimmx*rimmz-gmmcrimm_y*rimmy*rimmz - & +gmmcrimm_z*(rimmy**2+rimmx**2)) -cc********************************************************************** - apm3x(i)=g3x*d42-rimx*d43 - apm3y(i)=g3y*d42-rimy*d43 - apm3z(i)=g3z*d42-rimz*d43 - - if(i.le.inb-1) then - ip=i+1 - rix=bx(ip)-bx(i) - riy=by(ip)-by(i) - riz=bz(ip)-bz(i) - cix=bx(ip)-bx(i-1) - ciy=by(ip)-by(i-1) - ciz=bz(ip)-bz(i-1) - gmx=rimy*riz-rimz*riy - gmy=rimz*rix-rimx*riz - gmz=rimx*riy-rimy*rix - dgm=sqrt(gmx**2+gmy**2+gmz**2) - dgm3=dgm**3 - dri=dis(i,i+1) - dri3=dri**3 - gmmgm=gmmx*gmx+gmmy*gmy+gmmz+gmz - gmmr=gmmx*rix+gmmy*riy+gmmz*riz - gmcrim_x=gmy*rimz-gmz*rimy - gmcrim_y=gmz*rimx-gmx*rimz - gmcrim_z=gmx*rimy-gmy*rimx - d_gmcrim=sqrt(gmcrim_x**2+gmcrim_y**2+gmcrim_z**2) - d_gmcrim3=d_gmcrim**3 - gmcrim__gmm=gmmx*gmy*rimz+gmx*rimy*gmmz+rimx*gmz*gmmy - & -gmmz*gmy*rimx-gmz*rimy*gmmx-rimz*gmx*gmmy - - if(dgm3.gt.0.0D0.and. - & dgmm3.gt.0.0D0.and.dri3.gt.0.0D0 - & .and.d_gmcrim3.gt.0.0D0) then - d30=1.0D0/(dgm*dgmm) - d31=gmmgm/(dgm3*dgmm) - d32=gmmgm/(dgm*dgmm3) - d33=1.0D0/(dgmm*dri) - d34=gmmr/(dgmm3*dri) - d35=gmmr/(dgmm*dri3) - sd30=1.0D0/(d_gmcrim*dgmm) - sd31=gmcrim__gmm/(d_gmcrim3*dgmm) - sd32=gmcrim__gmm/(d_gmcrim*dgmm3) - - else - d30=0.0D0 - d31=0.0D0 - d32=0.0D0 - d33=0.0D0 - d34=0.0D0 - d35=0.0D0 - sd30=0.0D0 - sd31=0.0D0 - sd32=0.0D0 - endif -cc********************************************************************** - atmmx(i)=(ciy*gmmz-ciz*gmmy-rimmy*gmz+rimmz*gmy)*d30 - & -(ciy*gmz-ciz*gmy)*d31 - & -(gmmy*rimmz-gmmz*rimmy)*d32 - atmmy(i)=(ciz*gmmx-cix*gmmz-rimmz*gmx+rimmx*gmz)*d30 - & -(ciz*gmx-cix*gmz)*d31 - & -(gmmz*rimmx-gmmx*rimmz)*d32 - atmmz(i)=(cix*gmmy-ciy*gmmx-rimmx*gmy+rimmy*gmx)*d30 - & -(cix*gmy-ciy*gmx)*d31 - & -(gmmx*rimmy-gmmy*rimmx)*d32 -cc********************************************************************** - astmmx(i)=sd30*(-gmmx*ciz*rimz-gmx*rimy*rimmy - & +gmz*gmmy+rimx*ciy*gmmy+rimx*gmz*rimmz - & +rimmy*gmy*rimx+gmmz*ciz*rimx-gmmz*gmy - & -ciy*rimy*gmmx-rimz*gmx*rimmz) - & -sd31*(gmcrim_x*(-ciz*rimz-ciy*rimy) - & +gmcrim_y*(ciy*rimx+gmz)+gmcrim_z*(ciz*rimx-gmy)) - & -sd32*(gmmy*rimmz-rimmy*gmmz) - - astmmy(i)=sd30*(-rimmz*gmy*rimz+ciz*rimy*gmmz - & +gmx*gmmz+gmx*rimy*rimmx-rimx*cix*gmmy - & -rimmx*gmy*rimx+cix*rimy*gmmx-gmz*gmmx - & +gmz*rimy*rimmz-rimz*ciz*gmmy) - & -sd31*(gmcrim_x*(cix*rimy-gmz) - & +gmcrim_y*(-cix*rimx-ciz*rimz)+gmcrim_z*(ciz*rimy+gmx)) - & -sd32*(-gmmx*rimmz+rimmx*gmmz) - - astmmz(i)=sd30*(rimmy*gmy*rimz+gmmx*cix*rimz - & +gmmx*gmy-ciy*rimy*gmmz-rimx*gmz*rimmx - & -gmmz*cix*rimx-gmz*rimy*rimmy-gmx*gmmy - & +rimz*ciy*gmmy+rimz*gmx*rimmx) - & -sd31*(gmcrim_x*(cix*rimz+gmy) - & +gmcrim_y*(ciy*rimz-gmx)+gmcrim_z*(-ciy*rimy-cix*rimx)) - & -sd32*(gmmx*rimmy-rimmx*gmmy) -cc********************************************************************** - apmmx(i)=(riy*rimmz-riz*rimmy-gmmx)*d33 - & -(gmmy*rimmz-gmmz*rimmy)*d34 - & +rix*d35 - apmmy(i)=(riz*rimmx-rix*rimmz-gmmy)*d33 - & -(gmmz*rimmx-gmmx*rimmz)*d34 - & +riy*d35 - apmmz(i)=(rix*rimmy-riy*rimmx-gmmz)*d33 - & -(gmmx*rimmy-gmmy*rimmx)*d34 - & +riz*d35 - endif - -c write(*,*) 'inside angvectors6' - - if(i.eq.inb-2) then - ipp=i+2 - ripx=bx(ipp)-bx(ip) - ripy=by(ipp)-by(ip) - ripz=bz(ipp)-bz(ip) - cipx=bx(ipp)-bx(i) - cipy=by(ipp)-by(i) - cipz=bz(ipp)-bz(i) - gx=riy*ripz-riz*ripy - gy=riz*ripx-rix*ripz - gz=rix*ripy-riy*ripx - ggm=gmx*gx+gmy*gy+gmz*gz - gmrp=gmx*ripx+gmy*ripy+gmz*ripz - dg=sqrt(gx**2+gy**2+gz**2) - dg3=dg**3 - drip=dis(i+1,i+2) - gcr_x=gy*riz-gz*riy - gcr_y=gz*rix-gx*riz - gcr_z=gx*riy-gy*rix - d_gcr=sqrt(gcr_x**2+gcr_y**2+gcr_z**2) - d_gcr3=d_gcr**3 - gcr__gm=gmx*gy*riz+gx*riy*gmz+rix*gz*gmy - & -gmz*gy*rix-gz*riy*gmx-riz*gx*gmy - if(dgm3.gt.0.0D0.and. - & dg3.gt.0.0D0.and.drip.gt.0.0D0.and.d_gcr3.gt.0.0D0 - & ) then - d20=1.0D0/(dg*dgm) - d21=ggm/(dgm3*dg) - d22=ggm/(dgm*dg3) - d23=1.0D0/(dgm*drip) - d24=gmrp/(dgm3*drip) - sd20=1.0D0/(d_gcr*dgm) - sd21=gcr__gm/(d_gcr3*dgm) - sd22=gcr__gm/(d_gcr*dgm3) - else - d20=0.0D0 - d21=0.0D0 - d22=0.0D0 - d23=0.0D0 - d24=0.0D0 - sd20=0.0D0 - sd21=0.0D0 - sd22=0.0D0 - endif - atmx(i)=(ciy*gz-ciz*gy-ripy*gmz+ripz*gmy)*d20 - & -(ciy*gmz-ciz*gmy)*d21 - & +(ripy*gz-ripz*gy)*d22 - atmy(i)=(ciz*gx-cix*gz-ripz*gmx+ripx*gmz)*d20 - & -(ciz*gmx-cix*gmz)*d21 - & +(ripz*gx-ripx*gz)*d22 - atmz(i)=(cix*gy-ciy*gx-ripx*gmy+ripy*gmx)*d20 - & -(cix*gmy-ciy*gmx)*d21 - & +(ripx*gy-ripy*gx)*d22 -cc********************************************************************** - astmx(i)=sd20*(gmx*ripz*riz+gx*riy*ciy-gz*gmy - & -rix*ripy*gmy-rix*gz*ciz-ciy*gy*rix-gmz*ripz*rix - & +gmz*gy+ripy*riy*gmx+riz*gx*ciz) - & -sd21*(gcr_x*(ripz*riz+ripy*riy)+gcr_y*(-ripy*rix-gz) - & +gcr_z*(-ripz*rix+gy)) - & -sd22*(-gmy*ciz+gmz*ciy) - - astmy(i)=sd20*(ciz*gy*riz-ripz*riy*gmz-gx*gmz-gx*riy*cix - & +rix*ripx*gmy+cix*gy*rix-ripx*riy*gmx+gz*gmx-gz*riy*ciz - & +riz*ripz*gmy) - & -sd21*(gcr_x*(-ripx*riy+gz)+gcr_y*(ripx*rix+ripz*riz) - & -gcr_z*(ripz*riy+gx)) - & -sd22*(gmx*ciz-gmz*cix) - - astmz(i)=sd20*(-ciy*gy*riz-gmx*ripx*riz-gmx*gy+ripy*riy*gmz - & +rix*gz*cix+gmz*ripx*rix+gz*riy*ciy+gx*gmy-riz*ripy*gmy - & -riz*gx*cix) - & -sd21*(gcr_x*(-ripx*riz-gy)+gcr_y*(-ripy*riz+gx) - & +gcr_z*(ripy*riy+ripx*rix)) - & -sd22*(-gmx*ciy+gmy*cix) -cc********************************************************************** -c - apmx(i)=(ciy*ripz-ripy*ciz)*d23 - & -(ciy*gmz-ciz*gmy)*d24 - apmy(i)=(ciz*ripx-ripz*cix)*d23 - & -(ciz*gmx-cix*gmz)*d24 - apmz(i)=(cix*ripy-ripx*ciy)*d23 - & -(cix*gmy-ciy*gmx)*d24 - - endif - enddo - - return - end -c END of angvectors -c------------------------------------------------------------------------------- -C--------------------------------------------------------------------------------- - subroutine sheetforce(nca,wshet) - implicit none -C JYLEE -c this should be matched with dfa.fcm - integer maxca - parameter(maxca=800) -cc********************************************************************** - integer nca - integer i,k - integer inb,nmax,iselect - -c real*8 dfaexp(15001) - - real*8 vbeta,vbetp,vbetm - real*8 shefx(maxca,12) - real*8 shefy(maxca,12),shefz(maxca,12) - real*8 shetfx(maxca),shetfy(maxca),shetfz(maxca) - real*8 vbet(maxca,maxca) - real*8 wshet(maxca,maxca) - real*8 bx(maxca),by(maxca),bz(maxca) - - common /sheca/ bx,by,bz - common /phys1/ inb,nmax,iselect - common /shef/ shefx,shefy,shefz - common /shee/ vbeta,vbet,vbetp,vbetm - common /shetf/ shetfx,shetfy,shetfz - - inb=nca - do i=1,inb - shetfx(i)=0.0D0 - shetfy(i)=0.0D0 - shetfz(i)=0.0D0 - enddo - - do k=1,12 - do i=1,inb - shefx(i,k)=0.0D0 - shefy(i,k)=0.0D0 - shefz(i,k)=0.0D0 - enddo - enddo - - call sheetene(nca,wshet) - call sheetforce1 - - 887 format(a,1x,i6,3x,f12.8) - 888 format(a,1x,i4,1x,i4,3x,f12.8) - 889 format(a,1x,i4,3x,f12.8) - !write(2,*) 'coord : ' - do i=1,inb - !write(2,887) 'bx:',i,bx(i) - !write(2,887) 'by:',i,by(i) - !write(2,887) 'bz:',i,bz(i) - enddo - !write(2,*) 'After sheetforce1' - do i=1,inb - do k=1,12 - !write(2,888) 'shefx :',i,k,shefx(i,k) - !write(2,888) 'shefy :',i,k,shefy(i,k) - !write(2,888) 'shefz :',i,k,shefz(i,k) - enddo - enddo - - call sheetforce5 - - !write(2,*) 'After sheetforce5' - do i=1,inb - do k=1,12 - !write(2,888) 'shefx :',i,k,shefx(i,k) - !write(2,888) 'shefy :',i,k,shefy(i,k) - !write(2,888) 'shefz :',i,k,shefz(i,k) - enddo - enddo - - call sheetforce6 - - !write(2,*) 'After sheetforce6' - do i=1,inb - do k=1,12 - !write(2,888) 'shefx :',i,k,shefx(i,k) - !write(2,888) 'shefy :',i,k,shefy(i,k) - !write(2,888) 'shefz :',i,k,shefz(i,k) - enddo - enddo - - call sheetforce11 - - !write(2,*) 'After sheetforce11' - do i=1,inb - do k=1,12 - !write(2,888) 'shefx :',i,k,shefx(i,k) - !write(2,888) 'shefy :',i,k,shefy(i,k) - !write(2,888) 'shefz :',i,k,shefz(i,k) - enddo - enddo - - call sheetforce12 - - !write(2,*) 'After sheetforce12' - do i=1,inb - do k=1,12 - !write(2,888) 'shefx :',i,k,shefx(i,k) - !write(2,888) 'shefy :',i,k,shefy(i,k) - !write(2,888) 'shefz :',i,k,shefz(i,k) - enddo - enddo - - do i=1,inb - do k=1,12 - shetfx(i)=shetfx(i)+shefx(i,k) - shetfy(i)=shetfy(i)+shefy(i,k) - shetfz(i)=shetfz(i)+shefz(i,k) - enddo - enddo - !write(2,*) 'Beta Finished' - do i=1,inb - !write(2,889) 'shetfx : ',i,shetfx(i) - !write(2,889) 'shetfy : ',i,shetfy(i) - !write(2,889) 'shetfz : ',i,shetfz(i) - enddo - - return - end -C end sheetforce -c------------------------------------------------------------------------------- - subroutine sheetene(nca,wshet) - implicit none - integer maxca - parameter(maxca=800) -cc****************************************************************************** - -c real*8 dfaexp(15001) - real*8 dtmp1, dtmp2, dtmp3 - - real*8 vbet(maxca,maxca) - real*8 vbetap(maxca,maxca),vbetam(maxca,maxca) - real*8 vbetap1(maxca,maxca),vbetam1(maxca,maxca) - real*8 vbetap2(maxca,maxca),vbetam2(maxca,maxca) - real*8 pin1(maxca,maxca),pin2(maxca,maxca) - real*8 pin3(maxca,maxca),pin4(maxca,maxca) - real*8 pina1(maxca,maxca),pina2(maxca,maxca) - real*8 pina3(maxca,maxca),pina4(maxca,maxca) - real*8 cph(maxca),cth(maxca) - real*8 rx(maxca,maxca) - real*8 ry(maxca,maxca),rz(maxca,maxca) - real*8 bx(maxca),by(maxca),bz(maxca) - real*8 dis(maxca,maxca) - real*8 ulcos(maxca) -cc********************************************************************** - real*8 astx(maxca),asty(maxca),astz(maxca) - real*8 astmx(maxca),astmy(maxca),astmz(maxca) - real*8 astmmx(maxca),astmmy(maxca),astmmz(maxca) - real*8 astm3x(maxca),astm3y(maxca),astm3z(maxca) - real*8 sth(maxca) - real*8 wshet(maxca,maxca) - real*8 dp45, dm45, w_beta - real*8 c00, s00, ulnex, dnex, dca,dlhb,ulhb,dshe,dldhb,uldhb - integer nca - integer i,ip,ipp,j,jp,jpp,inb,nmax,iselect - real*8 uum, uup - real*8 vbeta,vbetp,vbetm,y,y1,y2,yshe1,yshe2,yy1,yy2 - - common /sheca/ bx,by,bz - common /phys1/ inb,nmax,iselect - common /kyori2/ dis - common /difvec/ rx,ry,rz - common /coscos/ cph,cth - common /sheparm/ dca,dlhb,ulhb,dshe,dldhb,uldhb, - & c00,s00,ulnex,dnex - common /sheconst/ dp45,dm45,w_beta - common /she/ vbetap,vbetam,vbetap1,vbetap2,vbetam1,vbetam2 - common /shepin/ pin1,pin2,pin3,pin4,pina1,pina2,pina3,pina4 - common /shee/ vbeta,vbet,vbetp,vbetm - common /ulang/ ulcos -cc********************************************************************** - common /angvt2/ astx,asty,astz,astmx,astmy,astmz,astmmx,astmmy, - & astmmz,astm3x,astm3y,astm3z - common /sinsin/ sth - - real*8 r_pair_mat(maxca,maxca) -ci integer istrand(maxca,maxca) -ci integer istrand_p(maxca,maxca),istrand_m(maxca,maxca) -ci common /shetest/ istrand,istrand_p,istrand_m - common /beta_p/ r_pair_mat -C------------------------------------------------------------------------------- - r_pair_mat = 0.0d0 - do i=1,inb - do j=1,inb - r_pair_mat(i,j)=wshet(i,j) -c write(*,*) 'r_pair_mat :',i,j,r_pair_mat(i,j) - enddo - enddo -c stop -c - vbeta=0.0D0 - vbetp=0.0D0 - vbetm=0.0D0 - - do i=1,inb-7 - do j=i+4,inb-3 - ip=i+1 - ipp=i+2 - jp=j+1 - jpp=j+2 -cc********************************************************************** - y1=(cth(i)*c00+sth(i)*s00-1.0D0)**2 - & +(cth(j)*c00+sth(j)*s00-1.0D0)**2 - y1=-0.5d0*y1/dca - y2=(ulcos(i)-ulnex)**2+(ulcos(ip)-ulnex)**2 - & +(ulcos(j)-ulnex)**2+(ulcos(jp)-ulnex)**2 - y2=-0.5d0*y2/dnex - -cdebug y2=0 - - y=y1+y2 - -ci if(y.ge.-4) then -ci istrand(i,j)=1 -ci else -ci istrand(i,j)=0 -ci endif - -ci if(istrand(i,j).eq.1) then - - yy1=-0.5d0*(dis(ip,jp)-ulhb)**2/dlhb - yy2=-0.5d0*(dis(ipp,jpp)-ulhb)**2/dlhb - - - pin1(i,j)=(rx(ip,jp)*rx(ip,ipp)+ry(ip,jp)*ry(ip,ipp) - $ +rz(ip,jp)*rz(ip,ipp))/(dis(ip,jp)*dis(ip,ipp)) - pin2(i,j)=(rx(ip,jp)*rx(jp,jpp)+ry(ip,jp)*ry(jp,jpp) - $ +rz(ip,jp)*rz(jp,jpp))/(dis(ip,jp)*dis(jp,jpp)) - pin3(i,j)=(rx(ipp,jpp)*rx(ip,ipp)+ry(ipp,jpp)*ry(ip,ipp) - $ +rz(ipp,jpp)*rz(ip,ipp))/(dis(ipp,jpp)*dis(ip,ipp)) - pin4(i,j)=(rx(ipp,jpp)*rx(jp,jpp)+ry(ipp,jpp)*ry(jp,jpp) - $ +rz(ipp,jpp)*rz(jp,jpp))/(dis(ipp,jpp)*dis(jp,jpp)) - - yshe1=pin1(i,j)**2+pin2(i,j)**2 - yshe1=-0.5d0*yshe1/dshe - yshe2=pin3(i,j)**2+pin4(i,j)**2 - yshe2=-0.5d0*yshe2/dshe - -ci if((yshe1+yshe2).ge.-4) then -ci istrand_p(i,j)=1 -ci else -ci istrand_p(i,j)=0 -ci endif - - -C write(*,*) 'rx(i,j):',i,j,rx(i,j),bx(j),bx(i) -C write(*,*) 'ry(i,j):',i,j,ry(i,j),by(j),by(i) -C write(*,*) 'rz(i,j):',i,j,rz(i,j),bz(j),bz(i) -C write(*,*) 'dis(i,j):',i,j,dis(i,j) -C write(*,*) 'rx(ip,jp):',ip,jp,bx(ip),bx(jp),rx(ip,jp) -C write(*,*) 'rx(ip,ipp):',ip,ipp,bx(ip),bx(ipp),rx(ip,ipp) -C write(*,*) 'pin1:',pin1(i,j) -C write(*,*) 'pin2:',pin2(i,j) -C write(*,*) 'pin3:',pin3(i,j) -C write(*,*) 'pin4:',pin4(i,j) - -C write(*,*) 'y:',y -C write(*,*) 'yy1:',yy1 -C write(*,*) 'yy2:',yy2 -C write(*,*) 'yshe1:',yshe1 -C write(*,*) 'yshe2:',yshe2 -c - -ci if (istrand_p(i,j).eq.1) then - -cd yy1=0 -cd yy2=0 -cd yshe1=0 -cd yshe2=0 - dtmp1 = y+yy1+yshe1 - dtmp2 = y+yy2+yshe2 - dtmp3 = y+yy1+yy2+yshe1+yshe2 - -C write(*,*)'1', i,j,dtmp1,dtmp2,dtmp3 -C write(*,*)'2', y,yy1,yy2 -C write(*,*)'3', yshe1,yshe2 - -cc if (dtmp3.le.-35.0d0) then -c vbetap(i,j)=-dp45*exp(dtmp3) -cc vbetap(i,j)=0.0d0 -cc else -c vbetap(i,j)=-dp45*dfaexp(idint(-dtmp3*1000)+1) - vbetap(i,j)=-dp45*exp(dtmp3) -cc end if - -cc if (dtmp1.le.-35.0d0) then -c vbetap1(i,j)=-r_pair_mat(i+1,j+1)*exp(dtmp1) -cc vbetap1(i,j)=0.0d0 -cc else -c vbetap1(i,j)=-r_pair_mat(i+1,j+1) -c $ *dfaexp(idint(-dtmp1*1000)+1) - vbetap1(i,j)=-r_pair_mat(i+1,j+1)*exp(dtmp1) -cc end if - -cc if (dtmp2.le.-35.0d0) then -C vbetap2(i,j)=-r_pair_mat(i+2,j+2)*exp(dtmp2) -cc vbetap2(i,j)=0.0d0 -cc else -c vbetap2(i,j)=-r_pair_mat(i+2,j+2) -c $ *dfaexp(idint(-dtmp2*1000)+1) - vbetap2(i,j)=-r_pair_mat(i+2,j+2)*exp(dtmp2) -cc end if - -c vbetap(i,j)=-dp45*exp(y+yy1+yy2+yshe1+yshe2) -c vbetap1(i,j)=-r_pair_mat(i+1,j+1)*exp(y+yy1+yshe1) -c vbetap2(i,j)=-r_pair_mat(i+2,j+2)*exp(y+yy2+yshe2) - -! write(*,*) 'r_pair_mat>',i+1,j+1,r_pair_mat(i+1,j+1) -! write(*,*) 'r_pair_mat>',i+2,j+2,r_pair_mat(i+2,j+2) - -ci elseif (istrand_p(i,j).eq.0)then -ci vbetap(i,j)=0 -ci vbetap1(i,j)=0 -ci vbetap2(i,j)=0 -ci endif - - yy1=-0.5d0*(dis(ip,jpp)-ulhb)**2/dlhb - yy2=-0.5d0*(dis(ipp,jp)-ulhb)**2/dlhb - - pina1(i,j)=(rx(ip,jpp)*rx(ip,ipp)+ry(ip,jpp)*ry(ip,ipp) - $ +rz(ip,jpp)*rz(ip,ipp))/(dis(ip,jpp)*dis(ip,ipp)) - pina2(i,j)=(rx(ip,jpp)*rx(jp,jpp)+ry(ip,jpp)*ry(jp,jpp) - $ +rz(ip,jpp)*rz(jp,jpp))/(dis(ip,jpp)*dis(jp,jpp)) - pina3(i,j)=(rx(jp,ipp)*rx(ip,ipp)+ry(jp,ipp)*ry(ip,ipp) - $ +rz(jp,ipp)*rz(ip,ipp))/(dis(jp,ipp)*dis(ip,ipp)) - pina4(i,j)=(rx(jp,ipp)*rx(jp,jpp)+ry(jp,ipp)*ry(jp,jpp) - $ +rz(jp,ipp)*rz(jp,jpp))/(dis(jp,ipp)*dis(jp,jpp)) - - yshe1=pina1(i,j)**2+pina2(i,j)**2 - yshe1=-0.5d0*yshe1/dshe - yshe2=pina3(i,j)**2+pina4(i,j)**2 - yshe2=-0.5d0*yshe2/dshe - -ci if((yshe1+yshe2).ge.-4) then -ci istrand_m(i,j)=1 -ci else -ci istrand_m(i,j)=0 -ci endif - - -C write(*,*) 'pina1:',pina1(i,j) -C write(*,*) 'pina2:',pina2(i,j) -C write(*,*) 'pina3:',pina3(i,j) -C write(*,*) 'pina4:',pina4(i,j) -C write(*,*) 'yshe1:',yshe1 -C write(*,*) 'yshe2:',yshe2 -C write(*,*) 'dshe:',dshe - -ci if (istrand_m(i,j).eq.1) then - -cd yy1=0 -cd yy2=0 -cd yshe1=0 -cd yshe2=0 - - dtmp3=y+yy1+yy2+yshe1+yshe2 - dtmp1=y+yy1+yshe1 - dtmp2=y+yy2+yshe2 - -cc if(dtmp3 .le. -35.0d0) then -c vbetam(i,j)=-dm45*exp(dtmp3) -cc vbetam(i,j)=0.0d0 -cc else -c vbetam(i,j)=-dm45*dfaexp(idint(-dtmp3*1000)+1) - vbetam(i,j)=-dm45*exp(dtmp3) -cc end if - -cc if(dtmp1 .le. -35.0d0) then -c vbetam1(i,j)=-r_pair_mat(i+1,j+2)*exp(dtmp1) -cc vbetam1(i,j)=0.0d0 -cc else -c vbetam1(i,j)=-r_pair_mat(i+1,j+2) -c $ *dfaexp(idint(-dtmp1*1000)+1) - vbetam1(i,j)=-r_pair_mat(i+1,j+2)*exp(dtmp1) -cc end if - -cc if(dtmp2.le.-35.0d0) then -c vbetam2(i,j)=-r_pair_mat(i+2,j+1)*exp(dtmp2) -cc vbetam2(i,j)=0.0d0 -cc else -c vbetam2(i,j)=-r_pair_mat(i+2,j+1) -c $ *dfaexp(idint(-dtmp2*1000)+1) - vbetam2(i,j)=-r_pair_mat(i+2,j+1)*exp(dtmp2) -cc end if - -ci elseif (istrand_m(i,j).eq.0)then -ci vbetam(i,j)=0 -ci vbetam1(i,j)=0 -ci vbetam2(i,j)=0 -ci endif - - -c vbetam(i,j)=-dm45*exp(y+yy1+yy2+yshe1+yshe2) -c vbetam1(i,j)=-r_pair_mat(i+1,j+2)*exp(y+yy1+yshe1) -c vbetam2(i,j)=-r_pair_mat(i+2,j+1)*exp(y+yy2+yshe2) - -! write(*,*) 'r_pair_mat>',i+1,j+2,r_pair_mat(i+1,j+2) -! write(*,*) 'r_pair_mat>',i+2,j+1,r_pair_mat(i+2,j+1) - - uup = vbetap(i,j)+vbetap1(i,j)+vbetap2(i,j) - uum = vbetam(i,j)+vbetam1(i,j)+vbetam2(i,j) - -c write(*,*) 'uup,uum:', uup, uum - -c uup=vbetap1(i,j)+vbetap2(i,j) -c uum=vbetam1(i,j)+vbetam2(i,j) - - vbet(i,j)=uup+uum - vbetp=vbetp+uup - vbetm=vbetm+uum - vbeta=vbeta+vbet(i,j) - -ci elseif(istrand(i,j).eq.0)then -ci vbet(i,j)=0 -ci endif - -c write(*,*) 'uup,uum:',uup,uum -c write(*,*) 'vbetap(i,j):',vbetap(i,j) -c write(*,*) 'vbetap1(i,j):',vbetap1(i,j) -c write(*,*) 'vbetap2(i,j):',vbetap2(i,j) -c write(*,*) 'vbetam(i,j):',vbetam(i,j) -c write(*,*) 'vbetam1(i,j):',vbetam1(i,j) -c write(*,*) 'vbetam2(i,j):',vbetam2(i,j) -c write(*,*) 'uup:',uup -c write(*,*) 'uum:',uum -c write(*,*) 'vbetp:',vbetp -c write(*,*) 'vbetm:',vbetm -c write(*,*) 'vbet(i,j):',vbet(i,j) -c stop - - enddo - enddo - -! do i=1,inb-7 -! do j=i+4,inb-3 -! write(*,*) 'I,J:', i,j -! write(*,*) 'vbetap(i,j):',vbetap(i,j) -! write(*,*) 'vbetap1(i,j):',vbetap1(i,j) -! write(*,*) 'vbetap2(i,j):',vbetap2(i,j) -! write(*,*) 'vbetam(i,j):',vbetam(i,j) -! write(*,*) 'vbetam1(i,j):',vbetam1(i,j) -! write(*,*) 'vbetam2(i,j):',vbetam2(i,j) -! write(*,*) 'vbet(i,j):',vbet(i,j) -! enddo -! enddo - - return - end -c------------------------------------------------------------------------------- - subroutine sheetforce1 - implicit none - integer maxca - parameter(maxca=800) -cc********************************************************************** - real*8 vbet(maxca,maxca) - real*8 vbetap(maxca,maxca),vbetam(maxca,maxca) - real*8 vbetap1(maxca,maxca),vbetam1(maxca,maxca) - real*8 vbetap2(maxca,maxca),vbetam2(maxca,maxca) - real*8 cph(maxca),cth(maxca) - real*8 rx(maxca,maxca) - real*8 ry(maxca,maxca),rz(maxca,maxca) - real*8 bx(maxca),by(maxca),bz(maxca) - real*8 dis(maxca,maxca) - real*8 shefx(maxca,12) - real*8 shefy(maxca,12),shefz(maxca,12) - real*8 atx(maxca),aty(maxca),atz(maxca) - real*8 atmx(maxca),atmy(maxca),atmz(maxca) - real*8 atmmx(maxca),atmmy(maxca),atmmz(maxca) - real*8 atm3x(maxca),atm3y(maxca),atm3z(maxca) - real*8 apx(maxca),apy(maxca),apz(maxca) - real*8 apmx(maxca),apmy(maxca),apmz(maxca) - real*8 apmmx(maxca),apmmy(maxca),apmmz(maxca) - real*8 apm3x(maxca),apm3y(maxca),apm3z(maxca) - real*8 ulcos(maxca) - real*8 astx(maxca),asty(maxca),astz(maxca) - real*8 astmx(maxca),astmy(maxca),astmz(maxca) - real*8 astmmx(maxca),astmmy(maxca),astmmz(maxca) - real*8 astm3x(maxca),astm3y(maxca),astm3z(maxca) - real*8 sth(maxca) - real*8 w_beta,dp45, dm45 - real*8 vbeta, vbetp, vbetm - real*8 dca,dlhb,ulhb,dshe,dldhb,uldhb, - $ c00,s00,ulnex,dnex - integer inb,nmax,iselect - - common /phys1/ inb,nmax,iselect - common /kyori2/ dis - common /difvec/ rx,ry,rz - common /coscos/ cph,cth - common /sheparm/ dca,dlhb,ulhb,dshe,dldhb,uldhb, - $ c00,s00,ulnex,dnex - common /sheconst/ dp45,dm45,w_beta - common /she/ vbetap,vbetam,vbetap1,vbetap2,vbetam1,vbetam2 - common /angvt/ atx,aty,atz,atmx,atmy,atmz,atmmx,atmmy, - $ atmmz,atm3x,atm3y,atm3z - common /angvp/ apx,apy,apz,apmx,apmy,apmz,apmmx,apmmy, - $ apmmz,apm3x,apm3y,apm3z - common /shef/ shefx,shefy,shefz - common /shee/ vbeta,vbet,vbetp,vbetm - common /ulang/ ulcos -c c********************************************************************** - common /angvt2/ astx,asty,astz,astmx,astmy,astmz,astmmx,astmmy, - $ astmmz,astm3x,astm3y,astm3z - common /sinsin/ sth -C-------------------------------------------------------------------------------- -c local variables - integer i,j,im3,imm,im,ip,ipp,jm,jmm,jm3,jp,jpp - real*8 c1,v1,cc1,dmm,dmm__,fx,fy,fz,c2,v2,dmm1 - real*8 c3,v3,cc2,cc3,dmm3,dmm3__,c4,v4,c7,v7,cc7,c8,v8,cc8 - real*8 c9,v9,cc9,dmm9,dmm9__,c10,v10,dmm2,dmm1__,dmm2_1,dmm2_2 - real*8 dmm7,dmm8,dmm7__,dmm8_1,dmm8_2 -C-------------------------------------------------------------------------------- - do i=4,inb-4 - im3=i-3 - imm=i-2 - im=i-1 - c1=(cth(im3)*c00+sth(im3)*s00-1)/dca - v1=0.0D0 - do j=i+1,inb-3 - v1=v1+vbet(im3,j) - enddo - cc1=(ulcos(imm)-ulnex)/dnex - dmm=cc1/(dis(imm,im)*dis(im,i)) - dmm__=cc1*ulcos(imm)/dis(im,i)**2 - fx=rx(imm,im)*dmm-rx(im,i)*dmm__ - fy=ry(imm,im)*dmm-ry(im,i)*dmm__ - fz=rz(imm,im)*dmm-rz(im,i)*dmm__ -cd fx=0 -cd fy=0 -cd fz=0 - fx=fx+(atm3x(i)*c00+astm3x(i)*s00)*c1 - fy=fy+(atm3y(i)*c00+astm3y(i)*s00)*c1 - fz=fz+(atm3z(i)*c00+astm3z(i)*s00)*c1 - shefx(i,1)=fx*v1 - shefy(i,1)=fy*v1 - shefz(i,1)=fz*v1 - enddo - - do i=3,inb-5 - imm=i-2 - im=i-1 - ip=i+1 - c2=(cth(imm)*c00+sth(imm)*s00-1)/dca - v2=0.0D0 - do j=i+2,inb-3 - v2=v2+vbet(imm,j) - enddo - cc1=(ulcos(imm)-ulnex)/dnex - cc2=(ulcos(im)-ulnex)/dnex - dmm1=cc1/(dis(imm,im)*dis(im,i)) - dmm2=cc2/(dis(im,i)*dis(i,ip)) - dmm1__=cc1*ulcos(imm)/dis(im,i)**2 - dmm2_1=cc2*ulcos(im)/dis(im,i)**2 - dmm2_2=cc2*ulcos(im)/dis(i,ip)**2 -cc********************************************************************** - fx=rx(imm,im)*dmm1-rx(im,i)*dmm1__+rx(i,ip)*dmm2-rx(im,i)*dmm2 - $ -rx(im,i)*dmm2_1+rx(i,ip)*dmm2_2 - fy=ry(imm,im)*dmm1-ry(im,i)*dmm1__+ry(i,ip)*dmm2-ry(im,i)*dmm2 - $ -ry(im,i)*dmm2_1+ry(i,ip)*dmm2_2 - fz=rz(imm,im)*dmm1-rz(im,i)*dmm1__+rz(i,ip)*dmm2-rz(im,i)*dmm2 - $ -rz(im,i)*dmm2_1+rz(i,ip)*dmm2_2 -cd fx=0 -cd fy=0 -cd fz=0 - fx=fx+(atmmx(i)*c00+astmmx(i)*s00)*c2 - fy=fy+(atmmy(i)*c00+astmmy(i)*s00)*c2 - fz=fz+(atmmz(i)*c00+astmmz(i)*s00)*c2 - shefx(i,2)=fx*v2 - shefy(i,2)=fy*v2 - shefz(i,2)=fz*v2 - enddo - do i=2,inb-6 - im=i-1 - ip=i+1 - ipp=i+2 - c3=(cth(im)*c00+sth(im)*s00-1)/dca - v3=0.0D0 - do j=i+3,inb-3 - v3=v3+vbet(im,j) - enddo - cc2=(ulcos(im)-ulnex)/dnex - cc3=(ulcos(i)-ulnex)/dnex - dmm2=cc2/(dis(im,i)*dis(i,ip)) - dmm3=cc3/(dis(i,ip)*dis(ip,ipp)) - dmm2_1=cc2*ulcos(im)/dis(im,i)**2 - dmm2_2=cc2*ulcos(im)/dis(i,ip)**2 - dmm3__=cc3*ulcos(i)/dis(i,ip)**2 - fx=-rx(ip,ipp)*dmm3+rx(i,ip)*dmm2-rx(im,i)*dmm2 - $ -rx(im,i)*dmm2_1+rx(i,ip)*dmm2_2+rx(i,ip)*dmm3__ - fy=-ry(ip,ipp)*dmm3+ry(i,ip)*dmm2-ry(im,i)*dmm2 - $ -ry(im,i)*dmm2_1+ry(i,ip)*dmm2_2+ry(i,ip)*dmm3__ - fz=-rz(ip,ipp)*dmm3+rz(i,ip)*dmm2-rz(im,i)*dmm2 - $ -rz(im,i)*dmm2_1+rz(i,ip)*dmm2_2+rz(i,ip)*dmm3__ -cd fx=0 -cd fy=0 -cd fz=0 - fx=fx+(atmx(i)*c00+astmx(i)*s00)*c3 - fy=fy+(atmy(i)*c00+astmy(i)*s00)*c3 - fz=fz+(atmz(i)*c00+astmz(i)*s00)*c3 - shefx(i,3)=fx*v3 - shefy(i,3)=fy*v3 - shefz(i,3)=fz*v3 - enddo - do i=1,inb-7 - ip=i+1 - ipp=i+2 - c4=(cth(i)*c00+sth(i)*s00-1)/dca - v4=0.0D0 - do j=i+4,inb-3 - v4=v4+vbet(i,j) - enddo - cc3=(ulcos(i)-ulnex)/dnex - dmm3=cc3/(dis(i,ip)*dis(ip,ipp)) - dmm3__=cc3*ulcos(i)/dis(i,ip)**2 - fx=-rx(ip,ipp)*dmm3+rx(i,ip)*dmm3__ - fy=-ry(ip,ipp)*dmm3+ry(i,ip)*dmm3__ - fz=-rz(ip,ipp)*dmm3+rz(i,ip)*dmm3__ -cd fx=0 -cd fy=0 -cd fz=0 - fx=fx+(atx(i)*c00+astx(i)*s00)*c4 - fy=fy+(aty(i)*c00+asty(i)*s00)*c4 - fz=fz+(atz(i)*c00+astz(i)*s00)*c4 - shefx(i,4)=fx*v4 - shefy(i,4)=fy*v4 - shefz(i,4)=fz*v4 - enddo - do j=8,inb - jm3=j-3 - jmm=j-2 - jm=j-1 - c7=(cth(jm3)*c00+sth(jm3)*s00-1)/dca - v7=0.0D0 - do i=1,j-7 - v7=v7+vbet(i,jm3) - enddo - cc7=(ulcos(jmm)-ulnex)/dnex - dmm=cc7/(dis(jmm,jm)*dis(jm,j)) - dmm__=cc7*ulcos(jmm)/dis(jm,j)**2 - fx=rx(jmm,jm)*dmm-rx(jm,j)*dmm__ - fy=ry(jmm,jm)*dmm-ry(jm,j)*dmm__ - fz=rz(jmm,jm)*dmm-rz(jm,j)*dmm__ -cd fx=0 -cd fy=0 -cd fz=0 - fx=fx+(atm3x(j)*c00+astm3x(j)*s00)*c7 - fy=fy+(atm3y(j)*c00+astm3y(j)*s00)*c7 - fz=fz+(atm3z(j)*c00+astm3z(j)*s00)*c7 - shefx(j,7)=fx*v7 - shefy(j,7)=fy*v7 - shefz(j,7)=fz*v7 - enddo - do j=7,inb-1 - jm=j-1 - jmm=j-2 - jp=j+1 - c8=(cth(jmm)*c00+sth(jmm)*s00-1)/dca - v8=0.0D0 - do i=1,j-6 - v8=v8+vbet(i,jmm) - enddo - cc7=(ulcos(jmm)-ulnex)/dnex - cc8=(ulcos(jm)-ulnex)/dnex - dmm7=cc7/(dis(jmm,jm)*dis(jm,j)) - dmm8=cc8/(dis(jm,j)*dis(j,jp)) - dmm7__=cc7*ulcos(jmm)/dis(jm,j)**2 - dmm8_1=cc8*ulcos(jm)/dis(jm,j)**2 - dmm8_2=cc8*ulcos(jm)/dis(j,jp)**2 - fx=rx(jmm,jm)*dmm7+rx(j,jp)*dmm8-rx(jm,j)*dmm8 - $ -rx(jm,j)*dmm7__-rx(jm,j)*dmm8_1+rx(j,jp)*dmm8_2 - fy=ry(jmm,jm)*dmm7+ry(j,jp)*dmm8-ry(jm,j)*dmm8 - $ -ry(jm,j)*dmm7__-ry(jm,j)*dmm8_1+ry(j,jp)*dmm8_2 - fz=rz(jmm,jm)*dmm7+rz(j,jp)*dmm8-rz(jm,j)*dmm8 - $ -rz(jm,j)*dmm7__-rz(jm,j)*dmm8_1+rz(j,jp)*dmm8_2 -cd fx=0 -cd fy=0 -cd fz=0 - fx=fx+(atmmx(j)*c00+astmmx(j)*s00)*c8 - fy=fy+(atmmy(j)*c00+astmmy(j)*s00)*c8 - fz=fz+(atmmz(j)*c00+astmmz(j)*s00)*c8 - shefx(j,8)=fx*v8 - shefy(j,8)=fy*v8 - shefz(j,8)=fz*v8 - enddo - - do j=6,inb-2 - jm=j-1 - jp=j+1 - jpp=j+2 - c9=(cth(jm)*c00+sth(jm)*s00-1)/dca - v9=0.0D0 - do i=1,j-5 - v9=v9+vbet(i,jm) - enddo - cc8=(ulcos(jm)-ulnex)/dnex - cc9=(ulcos(j)-ulnex)/dnex - dmm8=cc8/(dis(jm,j)*dis(j,jp)) - dmm9=cc9/(dis(j,jp)*dis(jp,jpp)) - dmm8_1=cc8*ulcos(jm)/dis(jm,j)**2 - dmm8_2=cc8*ulcos(jm)/dis(j,jp)**2 - dmm9__=cc9*ulcos(j)/dis(j,jp)**2 - fx=-rx(jp,jpp)*dmm9+rx(j,jp)*dmm8-rx(jm,j)*dmm8 - $ -rx(jm,j)*dmm8_1+rx(j,jp)*dmm8_2+rx(j,jp)*dmm9__ - fy=-ry(jp,jpp)*dmm9+ry(j,jp)*dmm8-ry(jm,j)*dmm8 - $ -ry(jm,j)*dmm8_1+ry(j,jp)*dmm8_2+ry(j,jp)*dmm9__ - fz=-rz(jp,jpp)*dmm9+rz(j,jp)*dmm8-rz(jm,j)*dmm8 - $ -rz(jm,j)*dmm8_1+rz(j,jp)*dmm8_2+rz(j,jp)*dmm9__ -cd fx=0 -cd fy=0 -cd fz=0 - fx=fx+(atmx(j)*c00+astmx(j)*s00)*c9 - fy=fy+(atmy(j)*c00+astmy(j)*s00)*c9 - fz=fz+(atmz(j)*c00+astmz(j)*s00)*c9 - shefx(j,9)=fx*v9 - shefy(j,9)=fy*v9 - shefz(j,9)=fz*v9 - enddo - - do j=5,inb-3 - jp=j+1 - jpp=j+2 - c10=(cth(j)*c00+sth(j)*s00-1)/dca - v10=0.0D0 - do i=1,j-4 - v10=v10+vbet(i,j) - enddo - cc9=(ulcos(j)-ulnex)/dnex - dmm9=cc9/(dis(j,jp)*dis(jp,jpp)) - dmm9__=cc9*ulcos(j)/dis(j,jp)**2 - fx=-rx(jp,jpp)*dmm9+rx(j,jp)*dmm9__ - fy=-ry(jp,jpp)*dmm9+ry(j,jp)*dmm9__ - fz=-rz(jp,jpp)*dmm9+rz(j,jp)*dmm9__ -cd fx=0 -cd fy=0 -cd fz=0 - fx=fx+(atx(j)*c00+astx(j)*s00)*c10 - fy=fy+(aty(j)*c00+asty(j)*s00)*c10 - fz=fz+(atz(j)*c00+astz(j)*s00)*c10 - shefx(j,10)=fx*v10 - shefy(j,10)=fy*v10 - shefz(j,10)=fz*v10 - enddo - - return - end -c---------------------------------------------------------------------------- - subroutine sheetforce5 - implicit none - integer maxca - parameter(maxca=800) -cc********************************************************************** - real*8 vbetap(maxca,maxca),vbetam(maxca,maxca) - real*8 vbetap1(maxca,maxca),vbetam1(maxca,maxca) - real*8 vbetap2(maxca,maxca),vbetam2(maxca,maxca) - real*8 pin1(maxca,maxca),pin2(maxca,maxca) - real*8 pin3(maxca,maxca),pin4(maxca,maxca) - real*8 pina1(maxca,maxca),pina2(maxca,maxca) - real*8 pina3(maxca,maxca),pina4(maxca,maxca) - real*8 rx(maxca,maxca) - real*8 ry(maxca,maxca),rz(maxca,maxca) - real*8 bx(maxca),by(maxca),bz(maxca) - real*8 dis(maxca,maxca) - real*8 shefx(maxca,12),shefy(maxca,12) - real*8 shefz(maxca,12) - real*8 dp45,dm45,w_beta - real*8 dca,dlhb,ulhb,dshe,dldhb,uldhb, - $ c00,s00,ulnex,dnex - integer inb,nmax,iselect -cc********************************************************************** - common /phys1/ inb,nmax,iselect - common /kyori2/ dis - common /difvec/ rx,ry,rz - common /sheparm/ dca,dlhb,ulhb,dshe,dldhb,uldhb, - $ c00,s00,ulnex,dnex - common /sheconst/ dp45,dm45,w_beta - common /she/ vbetap,vbetam,vbetap1,vbetap2,vbetam1,vbetam2 - common /shepin/ pin1,pin2,pin3,pin4,pina1,pina2,pina3,pina4 - common /shef/ shefx,shefy,shefz -ci integer istrand(maxca,maxca) -ci integer istrand_p(maxca,maxca),istrand_m(maxca,maxca) -ci common /shetest/ istrand,istrand_p,istrand_m -c******************************************************************************** -c local variables - integer i,imm,im,jp,jpp,j - real*8 yy1,y1x,y1y,y1z,y11x,y11y,y11z,yy33,yyy3,yy3,y3x,y3y,y3z - real*8 yy44,yyy4a,yyy4b,yy4,y4x,y4y,y4z,yy55,yyy5,yy5,y5x,y5y,y5z - real*8 sx,sy,sz,sx1,sy1,sz1,sx2,sy2,sz2,y6x,y6y,y6z - real*8 y66x,y66y,y66z,yy6,yyy4,yyy5a,yyy5b - real*8 yy88,yyy8a,yyy8b,yy8,y8x,y8y,y8z,yy99,yyy9,yy9,y9x,y9y,y9z - real*8 yy1010,yyy10,yy10,y10x,y10y,y10z,yyy8,yyy9a,yyy9b -c******************************************************************************** - do i=3,inb-5 - imm=i-2 - im=i-1 - do j=i+2,inb-3 - jp=j+1 - jpp=j+2 - -ci if(istrand(imm,j).eq.1 -ci & .and.(istrand_p(imm,j)+istrand_m(imm,j)).ge.1) then - - - yy1=-(dis(i,jpp)-ulhb)/dlhb - y1x=rx(jpp,i)/dis(i,jpp) - y1y=ry(jpp,i)/dis(i,jpp) - y1z=rz(jpp,i)/dis(i,jpp) - y11x=yy1*y1x - y11y=yy1*y1y - y11z=yy1*y1z - - yy33=1.0D0/(dis(im,jp)*dis(im,i)) - yyy3=pin1(imm,j)/(dis(im,i)**2) - yy3=-pin1(imm,j)/dshe - y3x=(yy33*rx(im,jp)-yyy3*rx(im,i))*yy3 - y3y=(yy33*ry(im,jp)-yyy3*ry(im,i))*yy3 - y3z=(yy33*rz(im,jp)-yyy3*rz(im,i))*yy3 - - yy44=1.0D0/(dis(i,jpp)*dis(im,i)) - yyy4a=pin3(imm,j)/(dis(i,jpp)**2) - yyy4b=pin3(imm,j)/(dis(im,i)**2) - yy4=-pin3(imm,j)/dshe - y4x=(yy44*(rx(i,jpp)-rx(im,i))+yyy4a*rx(i,jpp) - $ -yyy4b*rx(im,i))*yy4 - y4y=(yy44*(ry(i,jpp)-ry(im,i))+yyy4a*ry(i,jpp) - $ -yyy4b*ry(im,i))*yy4 - y4z=(yy44*(rz(i,jpp)-rz(im,i))+yyy4a*rz(i,jpp) - $ -yyy4b*rz(im,i))*yy4 - - - yy55=1.0D0/(dis(i,jpp)*dis(jp,jpp)) - yyy5=pin4(imm,j)/(dis(i,jpp)**2) - yy5=-pin4(imm,j)/dshe - y5x=(-yy55*rx(jp,jpp)+yyy5*rx(i,jpp))*yy5 - y5y=(-yy55*ry(jp,jpp)+yyy5*ry(i,jpp))*yy5 - y5z=(-yy55*rz(jp,jpp)+yyy5*rz(i,jpp))*yy5 - - sx=y11x+y3x+y4x+y5x - sy=y11y+y3y+y4y+y5y - sz=y11z+y3z+y4z+y5z - - sx1=y3x - sy1=y3y - sz1=y3z - sx2=y11x+y4x+y5x - sy2=y11y+y4y+y5y - sz2=y11z+y4z+y5z - - shefx(i,5)=shefx(i,5)-sx*vbetap(imm,j) - $ -sx1*vbetap1(imm,j)-sx2*vbetap2(imm,j) - shefy(i,5)=shefy(i,5)-sy*vbetap(imm,j) - $ -sy1*vbetap1(imm,j)-sy2*vbetap2(imm,j) - shefz(i,5)=shefz(i,5)-sz*vbetap(imm,j) - $ -sz1*vbetap1(imm,j)-sz2*vbetap2(imm,j) - -! shefx(i,5)=shefx(i,5) -! $ -sx1*vbetap1(imm,j)-sx2*vbetap2(imm,j) -! shefy(i,5)=shefy(i,5) -! $ -sy1*vbetap1(imm,j)-sy2*vbetap2(imm,j) -! shefz(i,5)=shefz(i,5) -! $ -sz1*vbetap1(imm,j)-sz2*vbetap2(imm,j) - - yy6=-(dis(i,jp)-uldhb)/dldhb - y6x=rx(jp,i)/dis(i,jp) - y6y=ry(jp,i)/dis(i,jp) - y6z=rz(jp,i)/dis(i,jp) - y66x=yy6*y6x - y66y=yy6*y6y - y66z=yy6*y6z - - yy88=1.0D0/(dis(im,jpp)*dis(im,i)) - yyy8=pina1(imm,j)/(dis(im,i)**2) - yy8=-pina1(imm,j)/dshe - y8x=(yy88*rx(im,jpp)-yyy8*rx(im,i))*yy8 - y8y=(yy88*ry(im,jpp)-yyy8*ry(im,i))*yy8 - y8z=(yy88*rz(im,jpp)-yyy8*rz(im,i))*yy8 - - yy99=1.0D0/(dis(jp,i)*dis(im,i)) - yyy9a=pina3(imm,j)/(dis(jp,i)**2) - yyy9b=pina3(imm,j)/(dis(im,i)**2) - yy9=-pina3(imm,j)/dshe - y9x=(yy99*(rx(jp,i)+rx(im,i))-yyy9a*rx(jp,i) - $ -yyy9b*rx(im,i))*yy9 - y9y=(yy99*(ry(jp,i)+ry(im,i))-yyy9a*ry(jp,i) - $ -yyy9b*ry(im,i))*yy9 - y9z=(yy99*(rz(jp,i)+rz(im,i))-yyy9a*rz(jp,i) - $ -yyy9b*rz(im,i))*yy9 - - yy1010=1.0D0/(dis(jp,i)*dis(jp,jpp)) - yyy10=pina4(imm,j)/(dis(jp,i)**2) - yy10=-pina4(imm,j)/dshe - y10x=(yy1010*rx(jp,jpp)-yyy10*rx(jp,i))*yy10 - y10y=(yy1010*ry(jp,jpp)-yyy10*ry(jp,i))*yy10 - y10z=(yy1010*rz(jp,jpp)-yyy10*rz(jp,i))*yy10 - - sx=y66x+y8x+y9x+y10x - sy=y66y+y8y+y9y+y10y - sz=y66z+y8z+y9z+y10z - - sx1=y8x - sy1=y8y - sz1=y8z - sx2=y66x+y9x+y10x - sy2=y66y+y9y+y10y - sz2=y66z+y9z+y10z - - shefx(i,5)=shefx(i,5)-sx*vbetam(imm,j) - $ -sx1*vbetam1(imm,j)-sx2*vbetam2(imm,j) - shefy(i,5)=shefy(i,5)-sy*vbetam(imm,j) - $ -sy1*vbetam1(imm,j)-sy2*vbetam2(imm,j) - shefz(i,5)=shefz(i,5)-sz*vbetam(imm,j) - $ -sz1*vbetam1(imm,j)-sz2*vbetam2(imm,j) - -! shefx(i,5)=shefx(i,5) -! $ -sx1*vbetam1(imm,j)-sx2*vbetam2(imm,j) -! shefy(i,5)=shefy(i,5) -! $ -sy1*vbetam1(imm,j)-sy2*vbetam2(imm,j) -! shefz(i,5)=shefz(i,5) -! $ -sz1*vbetam1(imm,j)-sz2*vbetam2(imm,j) - -ci endif - - enddo - enddo - - return - end -c--------------------------------------------------------------------------c - subroutine sheetforce6 - implicit none - integer maxca - parameter(maxca=800) -cc********************************************************************** - real*8 vbetap(maxca,maxca),vbetam(maxca,maxca) - real*8 vbetap1(maxca,maxca),vbetam1(maxca,maxca) - real*8 vbetap2(maxca,maxca),vbetam2(maxca,maxca) - real*8 pin1(maxca,maxca),pin2(maxca,maxca) - real*8 pin3(maxca,maxca),pin4(maxca,maxca) - real*8 pina1(maxca,maxca),pina2(maxca,maxca) - real*8 pina3(maxca,maxca),pina4(maxca,maxca) - real*8 rx(maxca,maxca) - real*8 ry(maxca,maxca),rz(maxca,maxca) - real*8 bx(maxca),by(maxca),bz(maxca) - real*8 dis(maxca,maxca) - real*8 shefx(maxca,12),shefy(maxca,12) - real*8 shefz(maxca,12) - real*8 dp45,dm45,w_beta - real*8 dca,dlhb,ulhb,dshe,dldhb,uldhb, - $ c00,s00,ulnex,dnex - integer inb,nmax,iselect -cc********************************************************************** - common /phys1/ inb,nmax,iselect - common /kyori2/ dis - common /difvec/ rx,ry,rz - common /sheparm/ dca,dlhb,ulhb,dshe,dldhb,uldhb, - $ c00,s00,ulnex,dnex - common /sheconst/ dp45,dm45,w_beta - common /she/ vbetap,vbetam,vbetap1,vbetap2,vbetam1,vbetam2 - common /shepin/ pin1,pin2,pin3,pin4,pina1,pina2,pina3,pina4 - common /shef/ shefx,shefy,shefz -ci integer istrand(maxca,maxca) -ci integer istrand_p(maxca,maxca),istrand_m(maxca,maxca) -ci common /shetest/ istrand,istrand_p,istrand_m -cc********************************************************************** -C local variables - integer i,imm,im,jp,jpp,j,ip - real*8 yy1,y1x,y1y,y1z,y11x,y11y,y11z,yy33,yyy3,yy3,y3x,y3y,y3z - real*8 yy44,yyy4a,yyy4b,yy4,y4x,y4y,y4z,yy55,yyy5,yy5,y5x,y5y,y5z - real*8 sx,sy,sz,sx1,sy1,sz1,sx2,sy2,sz2,y6x,y6y,y6z,y66x,y66y - real*8 yy88,yyy8a,yyy8b,yy8,y8x,y8y,y8z,yy99,yyy9,yy9,y9x,y9y,y9z - real*8 yy1010,yyy10,yy10,y10x,y10y,y10z,yyy8,yyy9a,yyy9b,yyy4 - real*8 yyy3a,yyy3b,y66z,yy6,yyy5a,yyy5b -C******************************************************************************** - do i=2,inb-6 - ip=i+1 - im=i-1 - do j=i+3,inb-3 - jp=j+1 - jpp=j+2 - -ci if(istrand(im,j).eq.1 -ci & .and.(istrand_p(im,j)+istrand_m(im,j)).ge.1) then - - - yy1=-(dis(i,jp)-ulhb)/dlhb - y1x=rx(jp,i)/dis(i,jp) - y1y=ry(jp,i)/dis(i,jp) - y1z=rz(jp,i)/dis(i,jp) - y11x=yy1*y1x - y11y=yy1*y1y - y11z=yy1*y1z - - yy33=1.0D0/(dis(i,jp)*dis(i,ip)) - yyy3a=pin1(im,j)/(dis(i,jp)**2) - yyy3b=pin1(im,j)/(dis(i,ip)**2) - yy3=-pin1(im,j)/dshe - y3x=(-yy33*(rx(i,ip)+rx(i,jp))+yyy3a*rx(i,jp) - $ +yyy3b*rx(i,ip))*yy3 - y3y=(-yy33*(ry(i,ip)+ry(i,jp))+yyy3a*ry(i,jp) - $ +yyy3b*ry(i,ip))*yy3 - y3z=(-yy33*(rz(i,ip)+rz(i,jp))+yyy3a*rz(i,jp) - $ +yyy3b*rz(i,ip))*yy3 - - yy44=1.0D0/(dis(i,jp)*dis(jp,jpp)) - yyy4=pin2(im,j)/(dis(i,jp)**2) - yy4=-pin2(im,j)/dshe - y4x=(-yy44*rx(jp,jpp)+yyy4*rx(i,jp))*yy4 - y4y=(-yy44*ry(jp,jpp)+yyy4*ry(i,jp))*yy4 - y4z=(-yy44*rz(jp,jpp)+yyy4*rz(i,jp))*yy4 - - yy55=1.0D0/(dis(ip,jpp)*dis(i,ip)) - yyy5=pin3(im,j)/(dis(i,ip)**2) - yy5=-pin3(im,j)/dshe - y5x=(-yy55*rx(ip,jpp)+yyy5*rx(i,ip))*yy5 - y5y=(-yy55*ry(ip,jpp)+yyy5*ry(i,ip))*yy5 - y5z=(-yy55*rz(ip,jpp)+yyy5*rz(i,ip))*yy5 - - sx=y11x+y3x+y4x+y5x - sy=y11y+y3y+y4y+y5y - sz=y11z+y3z+y4z+y5z - - sx1=y11x+y3x+y4x - sy1=y11y+y3y+y4y - sz1=y11z+y3z+y4z - sx2=y5x - sy2=y5y - sz2=y5z - - shefx(i,6)=shefx(i,6)-sx*vbetap(im,j) - $ -sx1*vbetap1(im,j)-sx2*vbetap2(im,j) - shefy(i,6)=shefy(i,6)-sy*vbetap(im,j) - $ -sy1*vbetap1(im,j)-sy2*vbetap2(im,j) - shefz(i,6)=shefz(i,6)-sz*vbetap(im,j) - $ -sz1*vbetap1(im,j)-sz2*vbetap2(im,j) -! shefx(i,6)=shefx(i,6) -! $ -sx1*vbetap1(im,j)-sx2*vbetap2(im,j) -! shefy(i,6)=shefy(i,6) -! $ -sy1*vbetap1(im,j)-sy2*vbetap2(im,j) -! shefz(i,6)=shefz(i,6) -! $ -sz1*vbetap1(im,j)-sz2*vbetap2(im,j) - - yy6=-(dis(jpp,i)-uldhb)/dldhb - y6x=rx(jpp,i)/dis(jpp,i) - y6y=ry(jpp,i)/dis(jpp,i) - y6z=rz(jpp,i)/dis(jpp,i) - y66x=yy6*y6x - y66y=yy6*y6y - y66z=yy6*y6z - - yy88=1.0D0/(dis(i,jpp)*dis(i,ip)) - yyy8a=pina1(im,j)/(dis(i,jpp)**2) - yyy8b=pina1(im,j)/(dis(i,ip)**2) - yy8=-pina1(im,j)/dshe - y8x=(-yy88*(rx(i,jpp)+rx(i,ip))+yyy8a*rx(i,jpp) - $ +yyy8b*rx(i,ip))*yy8 - y8y=(-yy88*(ry(i,jpp)+ry(i,ip))+yyy8a*ry(i,jpp) - $ +yyy8b*ry(i,ip))*yy8 - y8z=(-yy88*(rz(i,jpp)+rz(i,ip))+yyy8a*rz(i,jpp) - $ +yyy8b*rz(i,ip))*yy8 - - yy99=1.0D0/(dis(i,jpp)*dis(jp,jpp)) - yyy9=pina2(im,j)/(dis(i,jpp)**2) - yy9=-pina2(im,j)/dshe - y9x=(-yy99*rx(jp,jpp)+yyy9*rx(i,jpp))*yy9 - y9y=(-yy99*ry(jp,jpp)+yyy9*ry(i,jpp))*yy9 - y9z=(-yy99*rz(jp,jpp)+yyy9*rz(i,jpp))*yy9 - - yy1010=1.0D0/(dis(jp,ip)*dis(i,ip)) - yyy10=pina3(im,j)/(dis(i,ip)**2) - yy10=-pina3(im,j)/dshe - y10x=(-yy1010*rx(jp,ip)+yyy10*rx(i,ip))*yy10 - y10y=(-yy1010*ry(jp,ip)+yyy10*ry(i,ip))*yy10 - y10z=(-yy1010*rz(jp,ip)+yyy10*rz(i,ip))*yy10 - - sx=y66x+y8x+y9x+y10x - sy=y66y+y8y+y9y+y10y - sz=y66z+y8z+y9z+y10z - - sx1=y66x+y8x+y9x - sy1=y66y+y8y+y9y - sz1=y66z+y8z+y9z - sx2=y10x - sy2=y10y - sz2=y10z - - shefx(i,6)=shefx(i,6)-sx*vbetam(im,j) - $ -sx1*vbetam1(im,j)-sx2*vbetam2(im,j) - shefy(i,6)=shefy(i,6)-sy*vbetam(im,j) - $ -sy1*vbetam1(im,j)-sy2*vbetam2(im,j) - shefz(i,6)=shefz(i,6)-sz*vbetam(im,j) - $ -sz1*vbetam1(im,j)-sz2*vbetam2(im,j) - -! shefx(i,6)=shefx(i,6) -! $ -sx1*vbetam1(im,j)-sx2*vbetam2(im,j) -! shefy(i,6)=shefy(i,6) -! $ -sy1*vbetam1(im,j)-sy2*vbetam2(im,j) -! shefz(i,6)=shefz(i,6) -! $ -sz1*vbetam1(im,j)-sz2*vbetam2(im,j) - -ci endif - - enddo - enddo - - return - end -c----------------------------------------------------------------------- - subroutine sheetforce11 - implicit none - integer maxca - parameter(maxca=800) -cc********************************************************************** - real*8 vbetap(maxca,maxca),vbetam(maxca,maxca) - real*8 vbetap1(maxca,maxca),vbetam1(maxca,maxca) - real*8 vbetap2(maxca,maxca),vbetam2(maxca,maxca) - real*8 pin1(maxca,maxca),pin2(maxca,maxca) - real*8 pin3(maxca,maxca),pin4(maxca,maxca) - real*8 pina1(maxca,maxca),pina2(maxca,maxca) - real*8 pina3(maxca,maxca),pina4(maxca,maxca) - real*8 rx(maxca,maxca) - real*8 ry(maxca,maxca),rz(maxca,maxca) - real*8 bx(maxca),by(maxca),bz(maxca) - real*8 dis(maxca,maxca) - real*8 shefx(maxca,12),shefy(maxca,12) - real*8 shefz(maxca,12) - real*8 dp45,dm45,w_beta - real*8 dca,dlhb,ulhb,dshe,dldhb,uldhb, - $ c00,s00,ulnex,dnex - integer inb,nmax,iselect -cc********************************************************************** - common /phys1/ inb,nmax,iselect - common /kyori2/ dis - common /difvec/ rx,ry,rz - common /sheparm/ dca,dlhb,ulhb,dshe,dldhb,uldhb, - $ c00,s00,ulnex,dnex - common /sheconst/ dp45,dm45,w_beta - common /she/ vbetap,vbetam,vbetap1,vbetap2,vbetam1,vbetam2 - common /shepin/ pin1,pin2,pin3,pin4,pina1,pina2,pina3,pina4 - common /shef/ shefx,shefy,shefz -ci integer istrand(maxca,maxca) -ci integer istrand_p(maxca,maxca),istrand_m(maxca,maxca) -ci common /shetest/ istrand,istrand_p,istrand_m -C******************************************************************************** -C local variables - integer j,jm,jmm,ip,i,ipp - real*8 yy1,y1x,y1y,y1z,y11x,y11y,y11z,yy33,yyy3,yy3,y3x,y3y,y3z - real*8 yy44,yyy4a,yyy4b,yy4,y4x,y4y,y4z,yy55,yyy5,yy5,y5x,y5y - real*8 sx,sy,sz,sx1,sy1,sz1,sx2,sy2,sz2,y6x,y6y,y6z,y66x,y66y - real*8 yy88,yyy8a,yyy8b,yy8,y8x,y8y,y8z,yy99,yyy9,yy9,y9x,y9y - real*8 yy1010,yyy10,yy10,y10x,y10y,y10z,yyy4,yyy5a,yyy5b,yy6 - real*8 yyy9a,yyy9b,y5z,y66z,y9z,yyy8 -C******************************************************************************** - - do j=7,inb-1 - jm=j-1 - jmm=j-2 - do i=1,j-6 - ip=i+1 - ipp=i+2 - -ci if(istrand(i,jmm).eq.1 -ci & .and.(istrand_p(i,jmm)+istrand_m(i,jmm)).ge.1) then - - - yy1=-(dis(ipp,j)-ulhb)/dlhb - y1x=rx(ipp,j)/dis(ipp,j) - y1y=ry(ipp,j)/dis(ipp,j) - y1z=rz(ipp,j)/dis(ipp,j) - y11x=yy1*y1x - y11y=yy1*y1y - y11z=yy1*y1z - - yy33=1.0D0/(dis(ip,jm)*dis(jm,j)) - yyy3=pin2(i,jmm)/(dis(jm,j)**2) - yy3=-pin2(i,jmm)/dshe - y3x=(yy33*rx(ip,jm)-yyy3*rx(jm,j))*yy3 - y3y=(yy33*ry(ip,jm)-yyy3*ry(jm,j))*yy3 - y3z=(yy33*rz(ip,jm)-yyy3*rz(jm,j))*yy3 - - yy44=1.0D0/(dis(ipp,j)*dis(ip,ipp)) - yyy4=pin3(i,jmm)/(dis(ipp,j)**2) - yy4=-pin3(i,jmm)/dshe - y4x=(yy44*rx(ip,ipp)-yyy4*rx(ipp,j))*yy4 - y4y=(yy44*ry(ip,ipp)-yyy4*ry(ipp,j))*yy4 - y4z=(yy44*rz(ip,ipp)-yyy4*rz(ipp,j))*yy4 - - yy55=1.0D0/(dis(ipp,j)*dis(jm,j)) - yyy5a=pin4(i,jmm)/(dis(ipp,j)**2) - yyy5b=pin4(i,jmm)/(dis(jm,j)**2) - yy5=-pin4(i,jmm)/dshe - y5x=(yy55*(rx(jm,j)+rx(ipp,j))-yyy5a*rx(ipp,j) - $ -yyy5b*rx(jm,j))*yy5 - y5y=(yy55*(ry(jm,j)+ry(ipp,j))-yyy5a*ry(ipp,j) - $ -yyy5b*ry(jm,j))*yy5 - y5z=(yy55*(rz(jm,j)+rz(ipp,j))-yyy5a*rz(ipp,j) - $ -yyy5b*rz(jm,j))*yy5 - - sx=y11x+y3x+y4x+y5x - sy=y11y+y3y+y4y+y5y - sz=y11z+y3z+y4z+y5z - - sx1=y3x - sy1=y3y - sz1=y3z - sx2=y11x+y4x+y5x - sy2=y11y+y4y+y5y - sz2=y11z+y4z+y5z - - shefx(j,11)=shefx(j,11)-sx*vbetap(i,jmm) - $ -sx1*vbetap1(i,jmm)-sx2*vbetap2(i,jmm) - shefy(j,11)=shefy(j,11)-sy*vbetap(i,jmm) - $ -sy1*vbetap1(i,jmm)-sy2*vbetap2(i,jmm) - shefz(j,11)=shefz(j,11)-sz*vbetap(i,jmm) - $ -sz1*vbetap1(i,jmm)-sz2*vbetap2(i,jmm) - -! shefx(j,11)=shefx(j,11) -! $ -sx1*vbetap1(i,jmm)-sx2*vbetap2(i,jmm) -! shefy(j,11)=shefy(j,11) -! $ -sy1*vbetap1(i,jmm)-sy2*vbetap2(i,jmm) -! shefz(j,11)=shefz(j,11) -! $ -sz1*vbetap1(i,jmm)-sz2*vbetap2(i,jmm) - - yy6=-(dis(ip,j)-uldhb)/dldhb - y6x=rx(ip,j)/dis(ip,j) - y6y=ry(ip,j)/dis(ip,j) - y6z=rz(ip,j)/dis(ip,j) - y66x=yy6*y6x - y66y=yy6*y6y - y66z=yy6*y6z - - yy88=1.0D0/(dis(ip,j)*dis(ip,ipp)) - yyy8=pina1(i,jmm)/(dis(ip,j)**2) - yy8=-pina1(i,jmm)/dshe - y8x=(yy88*rx(ip,ipp)-yyy8*rx(ip,j))*yy8 - y8y=(yy88*ry(ip,ipp)-yyy8*ry(ip,j))*yy8 - y8z=(yy88*rz(ip,ipp)-yyy8*rz(ip,j))*yy8 - - yy99=1.0D0/(dis(ip,j)*dis(jm,j)) - yyy9a=pina2(i,jmm)/(dis(ip,j)**2) - yyy9b=pina2(i,jmm)/(dis(jm,j)**2) - yy9=-pina2(i,jmm)/dshe - y9x=(yy99*(rx(jm,j)+rx(ip,j))-yyy9a*rx(ip,j) - $ -yyy9b*rx(jm,j))*yy9 - y9y=(yy99*(ry(jm,j)+ry(ip,j))-yyy9a*ry(ip,j) - $ -yyy9b*ry(jm,j))*yy9 - y9z=(yy99*(rz(jm,j)+rz(ip,j))-yyy9a*rz(ip,j) - $ -yyy9b*rz(jm,j))*yy9 - - yy1010=1.0D0/(dis(jm,ipp)*dis(jm,j)) - yyy10=pina4(i,jmm)/(dis(jm,j)**2) - yy10=-pina4(i,jmm)/dshe - y10x=(yy1010*rx(jm,ipp)-yyy10*rx(jm,j))*yy10 - y10y=(yy1010*ry(jm,ipp)-yyy10*ry(jm,j))*yy10 - y10z=(yy1010*rz(jm,ipp)-yyy10*rz(jm,j))*yy10 - - sx=y66x+y8x+y9x+y10x - sy=y66y+y8y+y9y+y10y - sz=y66z+y8z+y9z+y10z - - sx1=y66x+y8x+y9x - sy1=y66y+y8y+y9y - sz1=y66z+y8z+y9z - sx2=y10x - sy2=y10y - sz2=y10z - - shefx(j,11)=shefx(j,11)-sx*vbetam(i,jmm) - $ -sx1*vbetam1(i,jmm)-sx2*vbetam2(i,jmm) - shefy(j,11)=shefy(j,11)-sy*vbetam(i,jmm) - $ -sy1*vbetam1(i,jmm)-sy2*vbetam2(i,jmm) - shefz(j,11)=shefz(j,11)-sz*vbetam(i,jmm) - $ -sz1*vbetam1(i,jmm)-sz2*vbetam2(i,jmm) - -! shefx(j,11)=shefx(j,11) -! $ -sx1*vbetam1(i,jmm)-sx2*vbetam2(i,jmm) -! shefy(j,11)=shefy(j,11) -! $ -sy1*vbetam1(i,jmm)-sy2*vbetam2(i,jmm) -! shefz(j,11)=shefz(j,11) -! $ -sz1*vbetam1(i,jmm)-sz2*vbetam2(i,jmm) - -ci endif - - enddo - enddo - - return - end -c----------------------------------------------------------------------- - subroutine sheetforce12 - implicit none - integer maxca - parameter(maxca=800) -cc********************************************************************** - real*8 vbetap(maxca,maxca),vbetam(maxca,maxca) - real*8 vbetap1(maxca,maxca),vbetam1(maxca,maxca) - real*8 vbetap2(maxca,maxca),vbetam2(maxca,maxca) - real*8 pin1(maxca,maxca),pin2(maxca,maxca) - real*8 pin3(maxca,maxca),pin4(maxca,maxca) - real*8 pina1(maxca,maxca),pina2(maxca,maxca) - real*8 pina3(maxca,maxca),pina4(maxca,maxca) - real*8 rx(maxca,maxca) - real*8 ry(maxca,maxca),rz(maxca,maxca) - real*8 bx(maxca),by(maxca),bz(maxca) - real*8 dis(maxca,maxca) - real*8 shefx(maxca,12),shefy(maxca,12) - real*8 shefz(maxca,12) - real*8 dp45,dm45,w_beta - real*8 dca,dlhb,ulhb,dshe,dldhb,uldhb, - $ c00,s00,ulnex,dnex - integer inb,nmax,iselect -cc********************************************************************** - common /phys1/ inb,nmax,iselect - common /kyori2/ dis - common /difvec/ rx,ry,rz - common /sheparm/ dca,dlhb,ulhb,dshe,dldhb,uldhb, - $ c00,s00,ulnex,dnex - common /sheconst/ dp45,dm45,w_beta - common /she/ vbetap,vbetam,vbetap1,vbetap2,vbetam1,vbetam2 - common /shepin/ pin1,pin2,pin3,pin4,pina1,pina2,pina3,pina4 - common /shef/ shefx,shefy,shefz -ci integer istrand(maxca,maxca) -ci integer istrand_p(maxca,maxca),istrand_m(maxca,maxca) -ci common /shetest/ istrand,istrand_p,istrand_m -cc********************************************************************** -C local variables - integer j,jm,jmm,ip,i,ipp,jp - real*8 yy1,y1x,y1y,y1z,y11x,y11y,y11z,yy33,yyy3,yy3,y3x,y3y,y3z - real*8 yy44,yyy4a,yyy4b,yy4,y4x,y4y,y4z,yy55,yyy5,yy5,y5x,y5y,y5z - real*8 sx,sy,sz,sx1,sy1,sz1,sx2,sy2,sz2,y6x,y6y,y6z,y66x,y66y,y66z - real*8 yy88,yyy8a,yyy8b,yy8,y8x,y8y,y8z,yy99,yyy9,yy9,y9x,y9y,y9z - real*8 yy1010,yyy10,yy10,y10x,y10y,y10z,yyy10a,yyy10b,yy6,yyy8 -!c*************************************************************************c - do j=6,inb-2 - jp=j+1 - jm=j-1 - do i=1,j-5 - ip=i+1 - ipp=i+2 - -ci if(istrand(i,jm).eq.1 -ci & .and.(istrand_p(i,jm)+istrand_m(i,jm)).ge.1) then - - - yy1=-(dis(ip,j)-ulhb)/dlhb - y1x=rx(ip,j)/dis(ip,j) - y1y=ry(ip,j)/dis(ip,j) - y1z=rz(ip,j)/dis(ip,j) - y11x=y1x*yy1 - y11y=y1y*yy1 - y11z=y1z*yy1 - - yy33=1.0D0/(dis(ip,j)*dis(ip,ipp)) - yyy3=pin1(i,jm)/(dis(ip,j)**2) - yy3=-pin1(i,jm)/dshe - y3x=(yy33*rx(ip,ipp)-yyy3*rx(ip,j))*yy3 - y3y=(yy33*ry(ip,ipp)-yyy3*ry(ip,j))*yy3 - y3z=(yy33*rz(ip,ipp)-yyy3*rz(ip,j))*yy3 - yy44=1.0D0/(dis(ip,j)*dis(j,jp)) - - yyy4a=pin2(i,jm)/(dis(ip,j)**2) - yyy4b=pin2(i,jm)/(dis(j,jp)**2) - yy4=-pin2(i,jm)/dshe - y4x=(yy44*(rx(j,jp)-rx(ip,j))-yyy4a*rx(ip,j) - $ +yyy4b*rx(j,jp))*yy4 - y4y=(yy44*(ry(j,jp)-ry(ip,j))-yyy4a*ry(ip,j) - $ +yyy4b*ry(j,jp))*yy4 - y4z=(yy44*(rz(j,jp)-rz(ip,j))-yyy4a*rz(ip,j) - $ +yyy4b*rz(j,jp))*yy4 - - yy55=1.0D0/(dis(ipp,jp)*dis(j,jp)) - yyy5=pin4(i,jm)/(dis(j,jp)**2) - yy5=-pin4(i,jm)/dshe - y5x=(-yy55*rx(ipp,jp)+yyy5*rx(j,jp))*yy5 - y5y=(-yy55*ry(ipp,jp)+yyy5*ry(j,jp))*yy5 - y5z=(-yy55*rz(ipp,jp)+yyy5*rz(j,jp))*yy5 - - sx=y11x+y3x+y4x+y5x - sy=y11y+y3y+y4y+y5y - sz=y11z+y3z+y4z+y5z - - sx1=y11x+y3x+y4x - sy1=y11y+y3y+y4y - sz1=y11z+y3z+y4z - sx2=y5x - sy2=y5y - sz2=y5z - - shefx(j,12)=shefx(j,12)-sx*vbetap(i,jm) - $ -sx1*vbetap1(i,jm)-sx2*vbetap2(i,jm) - shefy(j,12)=shefy(j,12)-sy*vbetap(i,jm) - $ -sy1*vbetap1(i,jm)-sy2*vbetap2(i,jm) - shefz(j,12)=shefz(j,12)-sz*vbetap(i,jm) - $ -sz1*vbetap1(i,jm)-sz2*vbetap2(i,jm) - -! shefx(j,12)=shefx(j,12) -! $ -sx1*vbetap1(i,jm)-sx2*vbetap2(i,jm) -! shefy(j,12)=shefy(j,12) -! $ -sy1*vbetap1(i,jm)-sy2*vbetap2(i,jm) -! shefz(j,12)=shefz(j,12) -! $ -sz1*vbetap1(i,jm)-sz2*vbetap2(i,jm) - - yy6=-(dis(ipp,j)-uldhb)/dldhb - y6x=rx(ipp,j)/dis(ipp,j) - y6y=ry(ipp,j)/dis(ipp,j) - y6z=rz(ipp,j)/dis(ipp,j) - y66x=yy6*y6x - y66y=yy6*y6y - y66z=yy6*y6z - - yy88=1.0D0/(dis(ip,jp)*dis(j,jp)) - yyy8=pina2(i,jm)/(dis(j,jp)**2) - yy8=-pina2(i,jm)/dshe - y8x=(-yy88*rx(ip,jp)+yyy8*rx(j,jp))*yy8 - y8y=(-yy88*ry(ip,jp)+yyy8*ry(j,jp))*yy8 - y8z=(-yy88*rz(ip,jp)+yyy8*rz(j,jp))*yy8 - - yy99=1.0D0/(dis(j,ipp)*dis(ip,ipp)) - yyy9=pina3(i,jm)/(dis(j,ipp)**2) - yy9=-pina3(i,jm)/dshe - y9x=(-yy99*rx(ip,ipp)+yyy9*rx(j,ipp))*yy9 - y9y=(-yy99*ry(ip,ipp)+yyy9*ry(j,ipp))*yy9 - y9z=(-yy99*rz(ip,ipp)+yyy9*rz(j,ipp))*yy9 - - yy1010=1.0D0/(dis(j,ipp)*dis(j,jp)) - yyy10a=pina4(i,jm)/(dis(j,ipp)**2) - yyy10b=pina4(i,jm)/(dis(j,jp)**2) - yy10=-pina4(i,jm)/dshe - y10x=(-yy1010*(rx(j,ipp)+rx(j,jp))+yyy10a*rx(j,ipp) - $ +yyy10b*rx(j,jp))*yy10 - y10y=(-yy1010*(ry(j,ipp)+ry(j,jp))+yyy10a*ry(j,ipp) - $ +yyy10b*ry(j,jp))*yy10 - y10z=(-yy1010*(rz(j,ipp)+rz(j,jp))+yyy10a*rz(j,ipp) - $ +yyy10b*rz(j,jp))*yy10 - - sx=y66x+y8x+y9x+y10x - sy=y66y+y8y+y9y+y10y - sz=y66z+y8z+y9z+y10z - - sx1=y8x - sy1=y8y - sz1=y8z - sx2=y66x+y9x+y10x - sy2=y66y+y9y+y10y - sz2=y66z+y9z+y10z - - shefx(j,12)=shefx(j,12)-sx*vbetam(i,jm) - $ -sx1*vbetam1(i,jm)-sx2*vbetam2(i,jm) - shefy(j,12)=shefy(j,12)-sy*vbetam(i,jm) - $ -sy1*vbetam1(i,jm)-sy2*vbetam2(i,jm) - shefz(j,12)=shefz(j,12)-sz*vbetam(i,jm) - $ -sz1*vbetam1(i,jm)-sz2*vbetam2(i,jm) - -ci endif - - ENDDO - ENDDO - - RETURN - END -C=============================================================================== diff --git a/source/unres/src_CSA_DiL/diff12.f b/source/unres/src_CSA_DiL/diff12.f deleted file mode 100644 index 13de22e..0000000 --- a/source/unres/src_CSA_DiL/diff12.f +++ /dev/null @@ -1,82 +0,0 @@ -cccccccccccccccccccccccccccccccccc - subroutine get_diff12(aarray,barray,diff) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - include 'COMMON.INTERACT' - include 'COMMON.VAR' - dimension aarray(mxang,maxres,mxch), - & barray(mxang,maxres,mxch) - real x1(maxres),y1(maxres),z1(maxres) - integer n_1(maxres),L1 - real x2(maxres),y2(maxres),z2(maxres) - integer n_2(maxres),L2 - real TM,Rcomm - integer Lcomm - - - IF(tm_score) THEN - - do k=1,numch - do j=2,nres-1 - theta(j+1)=barray(1,j,k) - phi(j+2)=barray(2,j,k) - alph(j)=barray(3,j,k) - omeg(j)=barray(4,j,k) - enddo - enddo - call chainbuild - L1=0 - do i=nnt,nct - L1=L1+1 - n_1(L1)=L1 - x1(L1)=c(1,i) - y1(L1)=c(2,i) - z1(L1)=c(3,i) - enddo - - do k=1,numch - do j=2,nres-1 - theta(j+1)=aarray(1,j,k) - phi(j+2)=aarray(2,j,k) - alph(j)=aarray(3,j,k) - omeg(j)=aarray(4,j,k) - enddo - enddo - call chainbuild - L2=0 - do i=nnt,nct - L2=L2+1 - n_2(L2)=L2 - x2(L2)=c(1,i) - y2(L2)=c(2,i) - z2(L2)=c(3,i) - enddo - - call TMscore(L1,x1,y1,z1,n_1,L2,x2,y2,z2,n_2,TM,Rcomm,Lcomm) - diff=1.0d0-TM - -cd write(*,*)'TMscore=',TM,diff -cd write(*,*)'Number of residues in common=',Lcomm -cd write(*,*)'RMSD of the common residues=',Rcomm - - ELSE - diff=0.d0 - do k=1,numch - do j=2,nres-1 -c do i=1,4 -c do i=1,2 - do i=1,ndiff - dif=rad2deg*dabs(aarray(i,j,k)-barray(i,j,k)) - if(dif.gt.180.) dif=360.-dif - if (dif.gt.diffcut) diff=diff+dif - enddo - enddo - enddo - ENDIF - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc diff --git a/source/unres/src_CSA_DiL/distfit.f b/source/unres/src_CSA_DiL/distfit.f deleted file mode 100644 index 80e8fe4..0000000 --- a/source/unres/src_CSA_DiL/distfit.f +++ /dev/null @@ -1,207 +0,0 @@ - subroutine distfit(debug,maxit) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.DISTFIT' - DIMENSION X(MAXRES),DIAGH(MAXRES),phiold(maxres) - logical debug,sing - -cinput------------------------------------ -c NX=NRES-3 -c NY=((NRES-4)*(NRES-5))/2 -cinput------------------------------------ -ctest MAXIT=20 - TOL=0.5 - MAXMAR=10 - RL=100.0 - - CALL TRANSFER(NRES,phi,phiold) - - F0=RDIF() - -cd WRITE (IOUT,*) 'DISTFIT: F0=',F0 - - - DO IT=1,MAXIT - CALL RDERIV - CALL HEVAL - - DO I=1,NX - DIAGH(I)=H(I,I) - ENDDO - RL=RL*0.1 - - DO IMAR=1,MAXMAR - DO I=1,NX - H(I,I)=DIAGH(I)+RL - ENDDO - CALL TRANSFER(NX,XX,X) - CALL BANACH(NX,MAXRES,H,X,sing) - AIN=0.0 - DO I=1,NX - AIN=AIN+DABS(X(I)) - ENDDO - IF (AIN.LT.0.1*TOL .AND. RL.LT.1.0E-4) THEN - if (debug) then - WRITE (IOUT,*) 'DISTFIT: CONVERGENCE HAS BEEN ACHIEVED' - WRITE (IOUT,*) 'IT=',it,'F=',F0 - endif - RETURN - ENDIF - DO I=4,NRES - phi(I)=phiold(I)+mask(i)*X(I-3) -c print *,X(I-3) - ENDDO - - F1=RDIF() -cd WRITE (IOUT,*) 'IMAR=',IMAR,' RL=',RL,' F1=',F1 - IF (F1.LT.F0) THEN - CALL TRANSFER(NRES,phi,phiold) - F0=F1 - GOTO 1 - ELSE IF (DABS(F1-F0).LT.1.0E-5) THEN - if (debug) then - WRITE (IOUT,*) 'DISTFIT: CANNOT IMPROVE DISTANCE FIT' - WRITE (IOUT,*) 'IT=',it,'F=',F1 - endif - RETURN - ENDIF - RL=RL*10.0 - ENDDO - WRITE (IOUT,*) 'DISTFIT: MARQUARDT PROCEDURE HAS FAILED' - WRITE (IOUT,*) 'IT=',it,'F=',F0 - CALL TRANSFER(NRES,phiold,phi) - RETURN - 1 continue -cd write (iout,*) "it",it," imar",imar," f0",f0 - enddo - WRITE (IOUT,*) 'DISTFIT: FINAL F=',F0,'after MAXIT=',maxit - return - END - - double precision FUNCTION RDIF() - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.DISTFIT' - -c print *,'in rdif' - - suma=0.0 - ind=0 - call chainbuild - do i=1,nres-3 - do j=i+3,nres - ind=ind+1 - if (w(ind).ne.0.0) then - DIJ=DIST(i,j) - suma=suma+w(ind)*(DIJ-d0(ind))*(DIJ-d0(ind)) - DD(ind)=DIJ -c print '(2i3,i4,4f12.2)',i,j,ind,dij,d0(ind),w(ind),suma - endif - enddo - enddo - - RDIF=suma - RETURN - END - - SUBROUTINE RDERIV - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.DISTFIT' - include 'COMMON.GEO' - DIMENSION E12(3),R13(3),R24(3),PRODU(3) - - DO I=1,NY - DO J=1,NX - DRDG(I,J)=0.0 - ENDDO - ENDDO - DO I=1,NX - I1=I+1 - I2=I+2 - CALL VEC(I1,I2,E12) - DO J=1,I - DO K=1,3 - R13(K)=C(K,J)-C(K,I1) - ENDDO - DO K=I2+1,NRES - DO L=1,3 - R24(L)=C(L,K)-C(L,I2) - ENDDO - IND=((J-1)*(2*NRES-J-6))/2+K-3 - PRODU(1)=R13(2)*R24(3)-R13(3)*R24(2) - PRODU(2)=R13(3)*R24(1)-R13(1)*R24(3) - PRODU(3)=R13(1)*R24(2)-R13(2)*R24(1) - DRDG(IND,I)=SCALAR(E12,PRODU)/DIST(J,K) - ENDDO - ENDDO - ENDDO - RETURN - END - - SUBROUTINE HEVAL - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.DISTFIT' - - DO I=1,NX - XI=0.0 - HII=0.0 - DO K=1,NY - BKI=DRDG(K,I) - BKIWK=w(K)*BKI - XI=XI+BKIWK*(D0(K)-DD(K)) - HII=HII+BKI*BKIWK - ENDDO - H(I,I)=HII - XX(I)=XI - DO J=I+1,NX - HIJ=0.0 - DO K=1,NY - HIJ=HIJ+DRDG(K,I)*DRDG(K,J)*w(K) - ENDDO - H(I,J)=HIJ - H(J,I)=HIJ - ENDDO - ENDDO - RETURN - END - - - SUBROUTINE VEC(I,J,U) -* -* Find the unit vector from atom (I) to atom (J). Store in U. -* - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - DIMENSION U(3) - - ANORM=0.0 - DO K=1,3 - UK=C(K,J)-C(K,I) - ANORM=ANORM+UK*UK - U(K)=UK - ENDDO - ANORM=SQRT(ANORM) - DO K=1,3 - U(K)=U(K)/ANORM - ENDDO - RETURN - END - - SUBROUTINE TRANSFER(N,X1,X2) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - DIMENSION X1(N),X2(N) - DO 1 I=1,N - 1 X2(I)=X1(I) - RETURN - END - diff --git a/source/unres/src_CSA_DiL/djacob.f b/source/unres/src_CSA_DiL/djacob.f deleted file mode 100644 index e3f46bc..0000000 --- a/source/unres/src_CSA_DiL/djacob.f +++ /dev/null @@ -1,107 +0,0 @@ - SUBROUTINE DJACOB(N,NMAX,MAXJAC,E,A,C,AII) - IMPLICIT REAL*8 (A-H,O-Z) -C THE JACOBI DIAGONALIZATION PROCEDURE - COMMON INP,IOUT,IPN - DIMENSION A(NMAX,N),C(NMAX,N),AII(150),AJJ(150) - SIN45 = .70710678 - COS45 = .70710678 - S45SQ = 0.50 - C45SQ = 0.50 -C UNIT EIGENVECTOR MATRIX - DO 70 I = 1,N - DO 7 J = I,N - A(J,I)=A(I,J) - C(I,J) = 0.0 - 7 C(J,I) = 0.0 - 70 C(I,I) = 1.0 -C DETERMINATION OF SEARCH ARGUMENT, TEST - AMAX = 0.0 - DO 1 I = 1,N - DO 1 J = 1,I - TEMPA=DABS(A(I,J)) - IF (AMAX-TEMPA) 2,1,1 - 2 AMAX = TEMPA - 1 CONTINUE - TEST = AMAX*E -C SEARCH FOR LARGEST OFF DIAGONAL ELEMENT - DO 72 IJAC=1,MAXJAC - AIJMAX = 0.0 - DO 3 I = 2,N - LIM = I-1 - DO 3 J = 1,LIM - TAIJ=DABS(A(I,J)) - IF (AIJMAX-TAIJ) 4,3,3 - 4 AIJMAX = TAIJ - IPIV = I - JPIV = J - 3 CONTINUE - IF(AIJMAX-TEST)300,300,5 -C PARAMETERS FOR ROTATION - 5 TAII = A(IPIV,IPIV) - TAJJ = A(JPIV,JPIV) - TAIJ = A(IPIV,JPIV) - TMT = TAII-TAJJ - IF(DABS(TMT/TAIJ)-1.0D-12) 60,60,6 - 60 IF(TAIJ) 10,10,11 - 6 ZAMMA=TAIJ/(2.0*TMT) - 90 IF(DABS(ZAMMA)-0.38268)8,8,9 - 9 IF(ZAMMA)10,10,11 - 10 SINT = -SIN45 - GO TO 12 - 11 SINT = SIN45 - 12 COST = COS45 - SINSQ = S45SQ - COSSQ = C45SQ - GO TO 120 - 8 GAMSQ=ZAMMA*ZAMMA - SINT=2.0*ZAMMA/(1.0+GAMSQ) - COST = (1.0-GAMSQ)/(1.0+GAMSQ) - SINSQ=SINT*SINT - COSSQ=COST*COST -C ROTATION - 120 DO 13 K = 1,N - TAIK = A(IPIV,K) - TAJK = A(JPIV,K) - A(IPIV,K) = TAIK*COST+TAJK*SINT - A(JPIV,K) = TAJK*COST-TAIK*SINT - TCIK = C(IPIV,K) - TCJK = C(JPIV,K) - C(IPIV,K) = TCIK*COST+TCJK*SINT - 13 C(JPIV,K) = TCJK*COST-TCIK*SINT - A(IPIV,IPIV) = TAII*COSSQ+TAJJ*SINSQ+2.0*TAIJ*SINT*COST - A(JPIV,JPIV) = TAII*SINSQ+TAJJ*COSSQ-2.0*TAIJ*SINT*COST - A(IPIV,JPIV) = TAIJ*(COSSQ-SINSQ)-SINT*COST*TMT - A(JPIV,IPIV) = A(IPIV,JPIV) - DO 30 K = 1,N - A(K,IPIV) = A(IPIV,K) - 30 A(K,JPIV) = A(JPIV,K) - 72 CONTINUE - WRITE (IOUT,1000) AIJMAX - 1000 FORMAT (/1X,'NONCONVERGENT JACOBI. LARGEST OFF-DIAGONAL ELE', - 1 'MENT = ',1PE14.7) -C ARRANGEMENT OF EIGENVALUES IN ASCENDING ORDER - 300 DO 14 I=1,N - 14 AJJ(I)=A(I,I) - LT=N+1 - DO15 L=1,N - LT=LT-1 - AIIMIN=1.0E+30 - DO16 I=1,N - IF(AJJ(I)-AIIMIN)17,16,16 - 17 AIIMIN=AJJ(I) - IT=I - 16 CONTINUE - IN=L - AII(IN)=AIIMIN - AJJ(IT)=1.0E+30 - DO15 K=1,N - 15 A(IN,K)=C(IT,K) - DO 18 I=1,N - IF(A(I,1))19,22,22 - 19 T=-1.0 - GO TO 91 - 22 T=1.0 - 91 DO 18 J=1,N - 18 C(J,I)=T*A(I,J) - RETURN - END diff --git a/source/unres/src_CSA_DiL/econstr_local.F b/source/unres/src_CSA_DiL/econstr_local.F deleted file mode 100644 index e6e54f7..0000000 --- a/source/unres/src_CSA_DiL/econstr_local.F +++ /dev/null @@ -1,91 +0,0 @@ - subroutine Econstr_back -c MD with umbrella_sampling using Wolyne's distance measure as a constraint - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CONTROL' - include 'COMMON.VAR' - include 'COMMON.MD_' -c#ifndef LANG0 -c include 'COMMON.LANGEVIN' -c#else -c include 'COMMON.LANGEVIN.lang0' -c#endif - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.INTERACT' - include 'COMMON.IOUNITS' - include 'COMMON.NAMES' - include 'COMMON.TIME1' - Uconst_back=0.0d0 - do i=1,nres - dutheta(i)=0.0d0 - dugamma(i)=0.0d0 - do j=1,3 - duscdiff(j,i)=0.0d0 - duscdiffx(j,i)=0.0d0 - enddo - enddo - do i=1,nfrag_back - ii = ifrag_back(2,i,iset)-ifrag_back(1,i,iset) -c -c Deviations from theta angles -c - utheta_i=0.0d0 - do j=ifrag_back(1,i,iset)+2,ifrag_back(2,i,iset) - dtheta_i=theta(j)-thetaref(j) - utheta_i=utheta_i+0.5d0*dtheta_i*dtheta_i - dutheta(j-2)=dutheta(j-2)+wfrag_back(1,i,iset)*dtheta_i/(ii-1) - enddo - utheta(i)=utheta_i/(ii-1) -c -c Deviations from gamma angles -c - ugamma_i=0.0d0 - do j=ifrag_back(1,i,iset)+3,ifrag_back(2,i,iset) - dgamma_i=pinorm(phi(j)-phiref(j)) -c write (iout,*) j,phi(j),phi(j)-phiref(j) - ugamma_i=ugamma_i+0.5d0*dgamma_i*dgamma_i - dugamma(j-3)=dugamma(j-3)+wfrag_back(2,i,iset)*dgamma_i/(ii-2) -c write (iout,*) i,j,dgamma_i,wfrag_back(2,i,iset),dugamma(j-3) - enddo - ugamma(i)=ugamma_i/(ii-2) -c -c Deviations from local SC geometry -c - uscdiff(i)=0.0d0 - do j=ifrag_back(1,i,iset)+1,ifrag_back(2,i,iset)-1 - dxx=xxtab(j)-xxref(j) - dyy=yytab(j)-yyref(j) - dzz=zztab(j)-zzref(j) - uscdiff(i)=uscdiff(i)+dxx*dxx+dyy*dyy+dzz*dzz - do k=1,3 - duscdiff(k,j-1)=duscdiff(k,j-1)+wfrag_back(3,i,iset)* - & (dXX_C1tab(k,j)*dxx+dYY_C1tab(k,j)*dyy+dZZ_C1tab(k,j)*dzz)/ - & (ii-1) - duscdiff(k,j)=duscdiff(k,j)+wfrag_back(3,i,iset)* - & (dXX_Ctab(k,j)*dxx+dYY_Ctab(k,j)*dyy+dZZ_Ctab(k,j)*dzz)/ - & (ii-1) - duscdiffx(k,j)=duscdiffx(k,j)+wfrag_back(3,i,iset)* - & (dXX_XYZtab(k,j)*dxx+dYY_XYZtab(k,j)*dyy+dZZ_XYZtab(k,j)*dzz) - & /(ii-1) - enddo -c write (iout,'(i5,6f10.5)') j,xxtab(j),yytab(j),zztab(j), -c & xxref(j),yyref(j),zzref(j) - enddo - uscdiff(i)=0.5d0*uscdiff(i)/(ii-1) -c write (iout,*) i," uscdiff",uscdiff(i) -c -c Put together deviations from local geometry -c - Uconst_back=Uconst_back+wfrag_back(1,i,iset)*utheta(i)+ - & wfrag_back(2,i,iset)*ugamma(i)+wfrag_back(3,i,iset)*uscdiff(i) -c write(iout,*) "i",i," utheta",utheta(i)," ugamma",ugamma(i), -c & " uconst_back",uconst_back - utheta(i)=dsqrt(utheta(i)) - ugamma(i)=dsqrt(ugamma(i)) - uscdiff(i)=dsqrt(uscdiff(i)) - enddo - return - end diff --git a/source/unres/src_CSA_DiL/elecont.f b/source/unres/src_CSA_DiL/elecont.f deleted file mode 100644 index e9ed067..0000000 --- a/source/unres/src_CSA_DiL/elecont.f +++ /dev/null @@ -1,509 +0,0 @@ - subroutine elecont(lprint,ncont,icont) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.LOCAL' - include 'COMMON.FFIELD' - include 'COMMON.NAMES' - logical lprint - double precision elpp_6(2,2),elpp_3(2,2),ael6_(2,2),ael3_(2,2) - double precision app_(2,2),bpp_(2,2),rpp_(2,2) - integer ncont,icont(2,maxcont) - double precision econt(maxcont) -* -* Load the constants of peptide bond - peptide bond interactions. -* Type 1 - ordinary peptide bond, type 2 - alkylated peptide bond (e.g. -* proline) - determined by averaging ECEPP energy. -* -* as of 7/06/91. -* -c data epp / 0.3045d0, 0.3649d0, 0.3649d0, 0.5743d0/ - data rpp_ / 4.5088d0, 4.5395d0, 4.5395d0, 4.4846d0/ - data elpp_6 /-0.2379d0,-0.2056d0,-0.2056d0,-0.0610d0/ - data elpp_3 / 0.0503d0, 0.0000d0, 0.0000d0, 0.0692d0/ - data elcutoff /-0.3d0/,elecutoff_14 /-0.5d0/ - if (lprint) write (iout,'(a)') - & "Constants of electrostatic interaction energy expression." - do i=1,2 - do j=1,2 - rri=rpp_(i,j)**6 - app_(i,j)=epp(i,j)*rri*rri - bpp_(i,j)=-2.0*epp(i,j)*rri - ael6_(i,j)=elpp_6(i,j)*4.2**6 - ael3_(i,j)=elpp_3(i,j)*4.2**3 - if (lprint) - & write (iout,'(2i2,4e15.4)') i,j,app_(i,j),bpp_(i,j),ael6_(i,j), - & ael3_(i,j) - enddo - enddo - ncont=0 - ees=0.0 - evdw=0.0 - do 1 i=nnt,nct-2 - xi=c(1,i) - yi=c(2,i) - zi=c(3,i) - dxi=c(1,i+1)-c(1,i) - dyi=c(2,i+1)-c(2,i) - dzi=c(3,i+1)-c(3,i) - xmedi=xi+0.5*dxi - ymedi=yi+0.5*dyi - zmedi=zi+0.5*dzi - do 4 j=i+2,nct-1 - ind=ind+1 - iteli=itel(i) - itelj=itel(j) - if (j.eq.i+2 .and. itelj.eq.2) iteli=2 - if (iteli.eq.2 .and. itelj.eq.2) goto 4 - aaa=app_(iteli,itelj) - bbb=bpp_(iteli,itelj) - ael6_i=ael6_(iteli,itelj) - ael3_i=ael3_(iteli,itelj) - dxj=c(1,j+1)-c(1,j) - dyj=c(2,j+1)-c(2,j) - dzj=c(3,j+1)-c(3,j) - xj=c(1,j)+0.5*dxj-xmedi - yj=c(2,j)+0.5*dyj-ymedi - zj=c(3,j)+0.5*dzj-zmedi - rrmij=1.0/(xj*xj+yj*yj+zj*zj) - rmij=sqrt(rrmij) - r3ij=rrmij*rmij - r6ij=r3ij*r3ij - vrmij=vblinv*rmij - cosa=(dxi*dxj+dyi*dyj+dzi*dzj)*vblinv2 - cosb=(xj*dxi+yj*dyi+zj*dzi)*vrmij - cosg=(xj*dxj+yj*dyj+zj*dzj)*vrmij - fac=cosa-3.0*cosb*cosg - ev1=aaa*r6ij*r6ij - ev2=bbb*r6ij - fac3=ael6_i*r6ij - fac4=ael3_i*r3ij - evdwij=ev1+ev2 - el1=fac3*(4.0+fac*fac-3.0*(cosb*cosb+cosg*cosg)) - el2=fac4*fac - eesij=el1+el2 - if (j.gt.i+2 .and. eesij.le.elcutoff .or. - & j.eq.i+2 .and. eesij.le.elecutoff_14) then - ncont=ncont+1 - icont(1,ncont)=i - icont(2,ncont)=j - econt(ncont)=eesij - endif - ees=ees+eesij - evdw=evdw+evdwij - 4 continue - 1 continue - if (lprint) then - write (iout,*) 'Total average electrostatic energy: ',ees - write (iout,*) 'VDW energy between peptide-group centers: ',evdw - write (iout,*) - write (iout,*) 'Electrostatic contacts before pruning: ' - do i=1,ncont - i1=icont(1,i) - i2=icont(2,i) - it1=itype(i1) - it2=itype(i2) - write (iout,'(i3,2x,a,i4,2x,a,i4,f10.5)') - & i,restyp(it1),i1,restyp(it2),i2,econt(i) - enddo - endif -c For given residues keep only the contacts with the greatest energy. - i=0 - do while (i.lt.ncont) - i=i+1 - ene=econt(i) - ic1=icont(1,i) - ic2=icont(2,i) - j=i - do while (j.lt.ncont) - j=j+1 - if (ic1.eq.icont(1,j).and.iabs(icont(2,j)-ic2).le.2 .or. - & ic2.eq.icont(2,j).and.iabs(icont(1,j)-ic1).le.2) then -c write (iout,*) "i",i," j",j," ic1",ic1," ic2",ic2, -c & " jc1",icont(1,j)," jc2",icont(2,j)," ncont",ncont - if (econt(j).lt.ene .and. icont(2,j).ne.icont(1,j)+2) then - if (ic1.eq.icont(1,j)) then - do k=1,ncont - if (k.ne.i .and. k.ne.j .and. icont(2,k).eq.icont(2,j) - & .and. iabs(icont(1,k)-ic1).le.2 .and. - & econt(k).lt.econt(j) ) goto 21 - enddo - else if (ic2.eq.icont(2,j) ) then - do k=1,ncont - if (k.ne.i .and. k.ne.j .and. icont(1,k).eq.icont(1,j) - & .and. iabs(icont(2,k)-ic2).le.2 .and. - & econt(k).lt.econt(j) ) goto 21 - enddo - endif -c Remove ith contact - do k=i+1,ncont - icont(1,k-1)=icont(1,k) - icont(2,k-1)=icont(2,k) - econt(k-1)=econt(k) - enddo - i=i-1 - ncont=ncont-1 -c write (iout,*) "ncont",ncont -c do k=1,ncont -c write (iout,*) icont(1,k),icont(2,k) -c enddo - goto 20 - else if (econt(j).gt.ene .and. ic2.ne.ic1+2) - & then - if (ic1.eq.icont(1,j)) then - do k=1,ncont - if (k.ne.i .and. k.ne.j .and. icont(2,k).eq.ic2 - & .and. iabs(icont(1,k)-icont(1,j)).le.2 .and. - & econt(k).lt.econt(i) ) goto 21 - enddo - else if (ic2.eq.icont(2,j) ) then - do k=1,ncont - if (k.ne.i .and. k.ne.j .and. icont(1,k).eq.ic1 - & .and. iabs(icont(2,k)-icont(2,j)).le.2 .and. - & econt(k).lt.econt(i) ) goto 21 - enddo - endif -c Remove jth contact - do k=j+1,ncont - icont(1,k-1)=icont(1,k) - icont(2,k-1)=icont(2,k) - econt(k-1)=econt(k) - enddo - ncont=ncont-1 -c write (iout,*) "ncont",ncont -c do k=1,ncont -c write (iout,*) icont(1,k),icont(2,k) -c enddo - j=j-1 - endif - endif - 21 continue - enddo - 20 continue - enddo - if (lprint) then - write (iout,*) - write (iout,*) 'Electrostatic contacts after pruning: ' - do i=1,ncont - i1=icont(1,i) - i2=icont(2,i) - it1=itype(i1) - it2=itype(i2) - write (iout,'(i3,2x,a,i4,2x,a,i4,f10.5)') - & i,restyp(it1),i1,restyp(it2),i2,econt(i) - enddo - endif - return - end -c-------------------------------------------- - subroutine secondary2(lprint) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.DISTFIT' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.CONTROL' - integer ncont,icont(2,maxcont),isec(maxres,4),nsec(maxres) - logical lprint,not_done,freeres - double precision p1,p2 - external freeres - - if(.not.dccart) call chainbuild -cd call write_pdb(99,'sec structure',0d0) - ncont=0 - nbfrag=0 - nhfrag=0 - do i=1,nres - isec(i,1)=0 - isec(i,2)=0 - nsec(i)=0 - enddo - - call elecont(lprint,ncont,icont) - -c finding parallel beta -cd write (iout,*) '------- looking for parallel beta -----------' - nbeta=0 - nstrand=0 - do i=1,ncont - i1=icont(1,i) - j1=icont(2,i) - if(j1-i1.gt.5 .and. freeres(i1,j1,nsec,isec)) then - ii1=i1 - jj1=j1 -cd write (iout,*) i1,j1 - not_done=.true. - do while (not_done) - i1=i1+1 - j1=j1+1 - do j=1,ncont - if (i1.eq.icont(1,j) .and. j1.eq.icont(2,j) .and. - & freeres(i1,j1,nsec,isec)) goto 5 - enddo - not_done=.false. - 5 continue -cd write (iout,*) i1,j1,not_done - enddo - j1=j1-1 - i1=i1-1 - if (i1-ii1.gt.1) then - ii1=max0(ii1-1,1) - jj1=max0(jj1-1,1) - nbeta=nbeta+1 - if(lprint)write(iout,'(a,i3,4i4)')'parallel beta', - & nbeta,ii1,i1,jj1,j1 - - nbfrag=nbfrag+1 - bfrag(1,nbfrag)=ii1+1 - bfrag(2,nbfrag)=i1+1 - bfrag(3,nbfrag)=jj1+1 - bfrag(4,nbfrag)=min0(j1+1,nres) - - do ij=ii1,i1 - nsec(ij)=nsec(ij)+1 - isec(ij,nsec(ij))=nbeta - enddo - do ij=jj1,j1 - nsec(ij)=nsec(ij)+1 - isec(ij,nsec(ij))=nbeta - enddo - - if(lprint) then - nstrand=nstrand+1 - if (nbeta.le.9) then - write(12,'(a18,i1,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",ii1-1,"..",i1-1,"'" - else - write(12,'(a18,i2,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",ii1-1,"..",i1-1,"'" - endif - nstrand=nstrand+1 - if (nbeta.le.9) then - write(12,'(a18,i1,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",jj1-1,"..",j1-1,"'" - else - write(12,'(a18,i2,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",jj1-1,"..",j1-1,"'" - endif - write(12,'(a8,4i4)') - & "SetNeigh",ii1-1,i1-1,jj1-1,j1-1 - endif - endif - endif - enddo - -c finding alpha or 310 helix - - nhelix=0 - do i=1,ncont - i1=icont(1,i) - j1=icont(2,i) - p1=phi(i1+2)*rad2deg - p2=0.0 - if (j1+2.le.nres) p2=phi(j1+2)*rad2deg - - - if (j1.eq.i1+3 .and. - & ((p1.ge.10.and.p1.le.80).or.i1.le.2).and. - & ((p2.ge.10.and.p2.le.80).or.j1.le.2.or.j1.ge.nres-3) )then -cd if (j1.eq.i1+3) write (iout,*) "found 1-4 ",i1,j1,p1,p2 -co if (j1.eq.i1+4) write (iout,*) "found 1-5 ",i1,j1,p1,p2 - ii1=i1 - jj1=j1 - if (nsec(ii1).eq.0) then - not_done=.true. - else - not_done=.false. - endif - do while (not_done) - i1=i1+1 - j1=j1+1 - do j=1,ncont - if (i1.eq.icont(1,j) .and. j1.eq.icont(2,j)) goto 10 - enddo - not_done=.false. - 10 continue - p1=phi(i1+2)*rad2deg - p2=phi(j1+2)*rad2deg - if (p1.lt.10.or.p1.gt.80.or.p2.lt.10.or.p2.gt.80) - & not_done=.false. -cd write (iout,*) i1,j1,not_done,p1,p2 - enddo - j1=j1+1 - if (j1-ii1.gt.5) then - nhelix=nhelix+1 -cd write (iout,*)'helix',nhelix,ii1,j1 - - nhfrag=nhfrag+1 - hfrag(1,nhfrag)=ii1 - hfrag(2,nhfrag)=j1 - - do ij=ii1,j1 - nsec(ij)=-1 - enddo - if (lprint) then - write (iout,'(a,i3,2i4)') "Helix",nhelix,ii1-1,j1-1 - if (nhelix.le.9) then - write(12,'(a17,i1,a9,i3,a2,i3,a1)') - & "DefPropRes 'helix",nhelix, - & "' 'num = ",ii1-1,"..",j1-2,"'" - else - write(12,'(a17,i2,a9,i3,a2,i3,a1)') - & "DefPropRes 'helix",nhelix, - & "' 'num = ",ii1-1,"..",j1-2,"'" - endif - endif - endif - endif - enddo - - if (nhelix.gt.0.and.lprint) then - write(12,'(a26,$)') "DefPropRes 'helix' 'helix1" - do i=2,nhelix - if (nhelix.le.9) then - write(12,'(a8,i1,$)') " | helix",i - else - write(12,'(a8,i2,$)') " | helix",i - endif - enddo - write(12,'(a1)') "'" - endif - - -c finding antiparallel beta -cd write (iout,*) '--------- looking for antiparallel beta ---------' - - do i=1,ncont - i1=icont(1,i) - j1=icont(2,i) - if (freeres(i1,j1,nsec,isec)) then - ii1=i1 - jj1=j1 -cd write (iout,*) i1,j1 - - not_done=.true. - do while (not_done) - i1=i1+1 - j1=j1-1 - do j=1,ncont - if (i1.eq.icont(1,j).and.j1.eq.icont(2,j) .and. - & freeres(i1,j1,nsec,isec)) goto 6 - enddo - not_done=.false. - 6 continue -cd write (iout,*) i1,j1,not_done - enddo - i1=i1-1 - j1=j1+1 - if (i1-ii1.gt.1) then - - nbfrag=nbfrag+1 - bfrag(1,nbfrag)=ii1 - bfrag(2,nbfrag)=min0(i1+1,nres) - bfrag(3,nbfrag)=min0(jj1+1,nres) - bfrag(4,nbfrag)=j1 - - nbeta=nbeta+1 - iii1=max0(ii1-1,1) - do ij=iii1,i1 - nsec(ij)=nsec(ij)+1 - if (nsec(ij).le.2) then - isec(ij,nsec(ij))=nbeta - endif - enddo - jjj1=max0(j1-1,1) - do ij=jjj1,jj1 - nsec(ij)=nsec(ij)+1 - if (nsec(ij).le.2 .and. nsec(ij).gt.0) then - isec(ij,nsec(ij))=nbeta - endif - enddo - - - if (lprint) then - write (iout,'(a,i3,4i4)')'antiparallel beta', - & nbeta,ii1-1,i1,jj1,j1-1 - nstrand=nstrand+1 - if (nstrand.le.9) then - write(12,'(a18,i1,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",ii1-2,"..",i1-1,"'" - else - write(12,'(a18,i2,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",ii1-2,"..",i1-1,"'" - endif - nstrand=nstrand+1 - if (nstrand.le.9) then - write(12,'(a18,i1,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",j1-2,"..",jj1-1,"'" - else - write(12,'(a18,i2,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",j1-2,"..",jj1-1,"'" - endif - write(12,'(a8,4i4)') - & "SetNeigh",ii1-2,i1-1,jj1-1,j1-2 - endif - endif - endif - enddo - - if (nstrand.gt.0.and.lprint) then - write(12,'(a27,$)') "DefPropRes 'sheet' 'strand1" - do i=2,nstrand - if (i.le.9) then - write(12,'(a9,i1,$)') " | strand",i - else - write(12,'(a9,i2,$)') " | strand",i - endif - enddo - write(12,'(a1)') "'" - endif - - - - if (lprint) then - write(12,'(a37)') "DefPropRes 'coil' '! (helix | sheet)'" - write(12,'(a20)') "XMacStand ribbon.mac" - - - write(iout,*) 'UNRES seq:' - do j=1,nbfrag - write(iout,*) 'beta ',(bfrag(i,j),i=1,4) - enddo - - do j=1,nhfrag - write(iout,*) 'helix ',(hfrag(i,j),i=1,2) - enddo - endif - - return - end -c------------------------------------------------- - logical function freeres(i,j,nsec,isec) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - integer isec(maxres,4),nsec(maxres) - freeres=.false. - - if (nsec(i).lt.0.or.nsec(j).lt.0) return - if (nsec(i).gt.1.or.nsec(j).gt.1) return - do k=1,nsec(i) - do l=1,nsec(j) - if (isec(i,k).eq.isec(j,l)) return - enddo - enddo - freeres=.true. - return - end - diff --git a/source/unres/src_CSA_DiL/energy_p_new_barrier.F b/source/unres/src_CSA_DiL/energy_p_new_barrier.F deleted file mode 100644 index 44de1a8..0000000 --- a/source/unres/src_CSA_DiL/energy_p_new_barrier.F +++ /dev/null @@ -1,9192 +0,0 @@ - subroutine etotal(energia) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifndef ISNAN - external proc_proc -#ifdef WINPGI -cMS$ATTRIBUTES C :: proc_proc -#endif -#endif -#ifdef MPI - include "mpif.h" - double precision weights_(n_ene) -#endif - include 'COMMON.SETUP' - include 'COMMON.IOUNITS' - double precision energia(0:n_ene) - include 'COMMON.LOCAL' - include 'COMMON.FFIELD' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.SBRIDGE' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.MD_' - include 'COMMON.CONTROL' - include 'COMMON.TIME1' -#ifdef MPI -c print*,"ETOTAL Processor",fg_rank," absolute rank",myrank, -c & " nfgtasks",nfgtasks - if (nfgtasks.gt.1) then - time00=MPI_Wtime() -C FG slaves call the following matching MPI_Bcast in ERGASTULUM - if (fg_rank.eq.0) then - call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR) -c print *,"Processor",myrank," BROADCAST iorder" -C FG master sets up the WEIGHTS_ array which will be broadcast to the -C FG slaves as WEIGHTS array. - weights_(1)=wsc - weights_(2)=wscp - weights_(3)=welec - weights_(4)=wcorr - weights_(5)=wcorr5 - weights_(6)=wcorr6 - weights_(7)=wel_loc - weights_(8)=wturn3 - weights_(9)=wturn4 - weights_(10)=wturn6 - weights_(11)=wang - weights_(12)=wscloc - weights_(13)=wtor - weights_(14)=wtor_d - weights_(15)=wstrain - weights_(16)=wvdwpp - weights_(17)=wbond - weights_(18)=scal14 - weights_(21)=wsccor - weights_(22)=wsct -C FG Master broadcasts the WEIGHTS_ array - call MPI_Bcast(weights_(1),n_ene, - & MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR) - else -C FG slaves receive the WEIGHTS array - call MPI_Bcast(weights(1),n_ene, - & MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR) - wsc=weights(1) - wscp=weights(2) - welec=weights(3) - wcorr=weights(4) - wcorr5=weights(5) - wcorr6=weights(6) - wel_loc=weights(7) - wturn3=weights(8) - wturn4=weights(9) - wturn6=weights(10) - wang=weights(11) - wscloc=weights(12) - wtor=weights(13) - wtor_d=weights(14) - wstrain=weights(15) - wvdwpp=weights(16) - wbond=weights(17) - scal14=weights(18) - wsccor=weights(21) - wsct=weights(22) - endif - time_Bcast=time_Bcast+MPI_Wtime()-time00 - time_Bcastw=time_Bcastw+MPI_Wtime()-time00 -c call chainbuild_cart - endif -c print *,'Processor',myrank,' calling etotal ipot=',ipot -c print *,'Processor',myrank,' nnt=',nnt,' nct=',nct -#else -c if (modecalc.eq.12.or.modecalc.eq.14) then -c call int_from_cart1(.false.) -c endif -#endif -#ifdef TIMING - time00=MPI_Wtime() -#endif -C -C Compute the side-chain and electrostatic interaction energy -C - goto (101,102,103,104,105,106) ipot -C Lennard-Jones potential. - 101 call elj(evdw,evdw_p,evdw_m) -cd print '(a)','Exit ELJ' - goto 107 -C Lennard-Jones-Kihara potential (shifted). - 102 call eljk(evdw,evdw_p,evdw_m) - goto 107 -C Berne-Pechukas potential (dilated LJ, angular dependence). - 103 call ebp(evdw,evdw_p,evdw_m) - goto 107 -C Gay-Berne potential (shifted LJ, angular dependence). - 104 call egb(evdw,evdw_p,evdw_m) - goto 107 -C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence). - 105 call egbv(evdw,evdw_p,evdw_m) - goto 107 -C Soft-sphere potential - 106 call e_softsphere(evdw) -C -C Calculate electrostatic (H-bonding) energy of the main chain. -C - 107 continue - -C JUYONG for dfa test! - if (wdfa_dist.gt.0) call edfad(edfadis) -c print*, 'edfad is finished!', edfadis - if (wdfa_tor.gt.0) call edfat(edfator) -c print*, 'edfat is finished!', edfator - if (wdfa_nei.gt.0) call edfan(edfanei) -c print*, 'edfan is finished!', edfanei - if (wdfa_beta.gt.0) call edfab(edfabet) -c print*, 'edfab is finished!', edfabet -C stop -C JUYONG - -c print *,"Processor",myrank," computed USCSC" -#ifdef TIMING - time01=MPI_Wtime() -#endif - call vec_and_deriv -#ifdef TIMING - time_vec=time_vec+MPI_Wtime()-time01 -#endif -c print *,"Processor",myrank," left VEC_AND_DERIV" - if (ipot.lt.6) then -#ifdef SPLITELE - if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or. - & wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0 - & .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 - & .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then -#else - if (welec.gt.0d0.or.wel_loc.gt.0d0.or. - & wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0 - & .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 - & .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then -#endif - call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4) - else - ees=0.0d0 - evdw1=0.0d0 - eel_loc=0.0d0 - eello_turn3=0.0d0 - eello_turn4=0.0d0 - endif - else -c write (iout,*) "Soft-spheer ELEC potential" - call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3, - & eello_turn4) - endif -c print *,"Processor",myrank," computed UELEC" -C -C Calculate excluded-volume interaction energy between peptide groups -C and side chains. -C - if (ipot.lt.6) then - if(wscp.gt.0d0) then - call escp(evdw2,evdw2_14) - else - evdw2=0 - evdw2_14=0 - endif - else -c write (iout,*) "Soft-sphere SCP potential" - call escp_soft_sphere(evdw2,evdw2_14) - endif -c -c Calculate the bond-stretching energy -c - call ebond(estr) -C -C Calculate the disulfide-bridge and other energy and the contributions -C from other distance constraints. -cd print *,'Calling EHPB' - call edis(ehpb) -cd print *,'EHPB exitted succesfully.' -C -C Calculate the virtual-bond-angle energy. -C - if (wang.gt.0d0) then - call ebend(ebe) - else - ebe=0 - endif -c print *,"Processor",myrank," computed UB" -C -C Calculate the SC local energy. -C - call esc(escloc) -c print *,"Processor",myrank," computed USC" -C -C Calculate the virtual-bond torsional energy. -C -cd print *,'nterm=',nterm - if (wtor.gt.0) then - call etor(etors,edihcnstr) - else - etors=0 - edihcnstr=0 - endif -c print *,"Processor",myrank," computed Utor" -C -C 6/23/01 Calculate double-torsional energy -C - if (wtor_d.gt.0) then - call etor_d(etors_d) - else - etors_d=0 - endif -c print *,"Processor",myrank," computed Utord" -C -C 21/5/07 Calculate local sicdechain correlation energy -C - if (wsccor.gt.0.0d0) then - call eback_sc_corr(esccor) - else - esccor=0.0d0 - endif -c print *,"Processor",myrank," computed Usccorr" -C -C 12/1/95 Multi-body terms -C - n_corr=0 - n_corr1=0 - if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 - & .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then - call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1) -cd write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1, -cd &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6 - else - ecorr=0.0d0 - ecorr5=0.0d0 - ecorr6=0.0d0 - eturn6=0.0d0 - endif - if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then - call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1) -cd write (iout,*) "multibody_hb ecorr",ecorr - endif -c print *,"Processor",myrank," computed Ucorr" -C -C If performing constraint dynamics, call the constraint energy -C after the equilibration time - if(usampl.and.totT.gt.eq_time) then -c call EconstrQ - call Econstr_back - else - Uconst=0.0d0 - Uconst_back=0.0d0 - endif -#ifdef TIMING - time_enecalc=time_enecalc+MPI_Wtime()-time00 -#endif -c print *,"Processor",myrank," computed Uconstr" -#ifdef TIMING - time00=MPI_Wtime() -#endif -c -C Sum the energies -C - energia(1)=evdw -#ifdef SCP14 - energia(2)=evdw2-evdw2_14 - energia(18)=evdw2_14 -#else - energia(2)=evdw2 - energia(18)=0.0d0 -#endif -#ifdef SPLITELE - energia(3)=ees - energia(16)=evdw1 -#else - energia(3)=ees+evdw1 - energia(16)=0.0d0 -#endif - energia(4)=ecorr - energia(5)=ecorr5 - energia(6)=ecorr6 - energia(7)=eel_loc - energia(8)=eello_turn3 - energia(9)=eello_turn4 - energia(10)=eturn6 - energia(11)=ebe - energia(12)=escloc - energia(13)=etors - energia(14)=etors_d - energia(15)=ehpb - energia(19)=edihcnstr - energia(17)=estr - energia(20)=Uconst+Uconst_back - energia(21)=esccor - energia(22)=evdw_p - energia(23)=evdw_m - energia(24)=edfadis - energia(25)=edfator - energia(26)=edfanei - energia(27)=edfabet -c print *," Processor",myrank," calls SUM_ENERGY" - call sum_energy(energia,.true.) -c print *," Processor",myrank," left SUM_ENERGY" -#ifdef TIMING - time_sumene=time_sumene+MPI_Wtime()-time00 -#endif - -c print*, 'etot:',energia(0) - - return - end -c------------------------------------------------------------------------------- - subroutine sum_energy(energia,reduce) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifndef ISNAN - external proc_proc -#ifdef WINPGI -cMS$ATTRIBUTES C :: proc_proc -#endif -#endif -#ifdef MPI - include "mpif.h" -#endif - include 'COMMON.SETUP' - include 'COMMON.IOUNITS' - double precision energia(0:n_ene),enebuff(0:n_ene+1) - include 'COMMON.FFIELD' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.SBRIDGE' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.CONTROL' - include 'COMMON.TIME1' - logical reduce -#ifdef MPI - if (nfgtasks.gt.1 .and. reduce) then -#ifdef DEBUG - write (iout,*) "energies before REDUCE" - call enerprint(energia) - call flush(iout) -#endif - do i=0,n_ene - enebuff(i)=energia(i) - enddo - time00=MPI_Wtime() - call MPI_Barrier(FG_COMM,IERR) - time_barrier_e=time_barrier_e+MPI_Wtime()-time00 - time00=MPI_Wtime() - call MPI_Reduce(enebuff(0),energia(0),n_ene+1, - & MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR) -#ifdef DEBUG - write (iout,*) "energies after REDUCE" - call enerprint(energia) - call flush(iout) -#endif - time_Reduce=time_Reduce+MPI_Wtime()-time00 - endif - if (fg_rank.eq.0) then -#endif -#ifdef TSCSC - evdw=energia(22)+wsct*energia(23) -#else - evdw=energia(1) -#endif -#ifdef SCP14 - evdw2=energia(2)+energia(18) - evdw2_14=energia(18) -#else - evdw2=energia(2) -#endif -#ifdef SPLITELE - ees=energia(3) - evdw1=energia(16) -#else - ees=energia(3) - evdw1=0.0d0 -#endif - ecorr=energia(4) - ecorr5=energia(5) - ecorr6=energia(6) - eel_loc=energia(7) - eello_turn3=energia(8) - eello_turn4=energia(9) - eturn6=energia(10) - ebe=energia(11) - escloc=energia(12) - etors=energia(13) - etors_d=energia(14) - ehpb=energia(15) - edihcnstr=energia(19) - estr=energia(17) - Uconst=energia(20) - esccor=energia(21) - edfadis=energia(24) - edfator=energia(25) - edfanei=energia(26) - edfabet=energia(27) -#ifdef SPLITELE - etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1 - & +wang*ebe+wtor*etors+wscloc*escloc - & +wstrain*ehpb+nss*ebr+wcorr*ecorr+wcorr5*ecorr5 - & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3 - & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d - & +wbond*estr+Uconst+wsccor*esccor - & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei - & +wdfa_beta*edfabet -#else - etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1) - & +wang*ebe+wtor*etors+wscloc*escloc - & +wstrain*ehpb+nss*ebr+wcorr*ecorr+wcorr5*ecorr5 - & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3 - & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d - & +wbond*estr+Uconst+wsccor*esccor - & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei - & +wdfa_beta*edfabet - -#endif - energia(0)=etot -c detecting NaNQ -#ifdef ISNAN -#ifdef AIX - if (isnan(etot).ne.0) energia(0)=1.0d+99 -#else - if (isnan(etot)) energia(0)=1.0d+99 -#endif -#else - i=0 -#ifdef WINPGI - idumm=proc_proc(etot,i) -#else - call proc_proc(etot,i) -#endif - if(i.eq.1)energia(0)=1.0d+99 -#endif -#ifdef MPI - endif -#endif - return - end -c------------------------------------------------------------------------------- - subroutine sum_gradient - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifndef ISNAN - external proc_proc -#ifdef WINPGI -cMS$ATTRIBUTES C :: proc_proc -#endif -#endif -#ifdef MPI - include 'mpif.h' - double precision gradbufc(3,maxres),gradbufx(3,maxres), - & glocbuf(4*maxres),gradbufc_sum(3,maxres) -#else - double precision gradbufc(3,maxres),gradbufx(3,maxres), - & glocbuf(4*maxres),gradbufc_sum(3,maxres) -#endif - include 'COMMON.SETUP' - include 'COMMON.IOUNITS' - include 'COMMON.FFIELD' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.SBRIDGE' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.CONTROL' - include 'COMMON.TIME1' - include 'COMMON.MAXGRAD' -#ifdef TIMING - time01=MPI_Wtime() -#endif -#ifdef DEBUG - write (iout,*) "sum_gradient gvdwc, gvdwx" - do i=1,nres - write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') - & i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3), - & (gvdwcT(j,i),j=1,3) - enddo - call flush(iout) -#endif -#ifdef MPI -C FG slaves call the following matching MPI_Bcast in ERGASTULUM - if (nfgtasks.gt.1 .and. fg_rank.eq.0) - & call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR) -#endif -C -C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient -C in virtual-bond-vector coordinates -C -#ifdef DEBUG -c write (iout,*) "gel_loc gel_loc_long and gel_loc_loc" -c do i=1,nres-1 -c write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') -c & i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i) -c enddo -c write (iout,*) "gel_loc_tur3 gel_loc_turn4" -c do i=1,nres-1 -c write (iout,'(i5,3f10.5,2x,f10.5)') -c & i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i) -c enddo - write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc" - do i=1,nres - write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') - & i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3), - & g_corr5_loc(i) - enddo - call flush(iout) -#endif -#ifdef SPLITELE -#ifdef TSCSC - do i=1,nct - do j=1,3 - gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+ - & wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+ - & welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+ - & wel_loc*gel_loc_long(j,i)+ - & wcorr*gradcorr_long(j,i)+ - & wcorr5*gradcorr5_long(j,i)+ - & wcorr6*gradcorr6_long(j,i)+ - & wturn6*gcorr6_turn_long(j,i)+ - & wstrain*ghpbc(j,i)+ - & wdfa_dist*gdfad(j,i)+ - & wdfa_tor*gdfat(j,i)+ - & wdfa_nei*gdfan(j,i)+ - & wdfa_beta*gdfab(j,i) - - enddo - enddo -#else - do i=1,nct - do j=1,3 - gradbufc(j,i)=wsc*gvdwc(j,i)+ - & wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+ - & welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+ - & wel_loc*gel_loc_long(j,i)+ - & wcorr*gradcorr_long(j,i)+ - & wcorr5*gradcorr5_long(j,i)+ - & wcorr6*gradcorr6_long(j,i)+ - & wturn6*gcorr6_turn_long(j,i)+ - & wstrain*ghpbc(j,i)+ - & wdfa_dist*gdfad(j,i)+ - & wdfa_tor*gdfat(j,i)+ - & wdfa_nei*gdfan(j,i)+ - & wdfa_beta*gdfab(j,i) - - enddo - enddo -#endif -#else - do i=1,nct - do j=1,3 - gradbufc(j,i)=wsc*gvdwc(j,i)+ - & wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+ - & welec*gelc_long(j,i)+ - & wbond*gradb(j,i)+ - & wel_loc*gel_loc_long(j,i)+ - & wcorr*gradcorr_long(j,i)+ - & wcorr5*gradcorr5_long(j,i)+ - & wcorr6*gradcorr6_long(j,i)+ - & wturn6*gcorr6_turn_long(j,i)+ - & wstrain*ghpbc(j,i)+ - & wdfa_dist*gdfad(j,i)+ - & wdfa_tor*gdfat(j,i)+ - & wdfa_nei*gdfan(j,i)+ - & wdfa_beta*gdfab(j,i) - - - enddo - enddo -#endif -#ifdef MPI - if (nfgtasks.gt.1) then - time00=MPI_Wtime() -#ifdef DEBUG - write (iout,*) "gradbufc before allreduce" - do i=1,nres - write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3) - enddo - call flush(iout) -#endif - call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres, - & MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR) - time_reduce=time_reduce+MPI_Wtime()-time00 -#ifdef DEBUG - write (iout,*) "gradbufc_sum after allreduce" - do i=1,nres - write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3) - enddo - call flush(iout) -#endif -#ifdef TIMING - time_allreduce=time_allreduce+MPI_Wtime()-time00 -#endif - do i=nnt,nres - do k=1,3 - gradbufc(k,i)=0.0d0 - enddo - enddo - do i=igrad_start,igrad_end - do j=jgrad_start(i),jgrad_end(i) - do k=1,3 - gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j) - enddo - enddo - enddo - else -#endif -#ifdef DEBUG - write (iout,*) "gradbufc" - do i=1,nres - write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3) - enddo - call flush(iout) -#endif - do i=nnt,nres-1 - do k=1,3 - gradbufc(k,i)=0.0d0 - enddo - do j=i+1,nres - do k=1,3 - gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j) - enddo - enddo - enddo -#ifdef MPI - endif -#endif - do k=1,3 - gradbufc(k,nres)=0.0d0 - enddo - do i=1,nct - do j=1,3 -#ifdef SPLITELE - gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+ - & wel_loc*gel_loc(j,i)+ - & 0.5d0*(wscp*gvdwc_scpp(j,i)+ - & welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+ - & wel_loc*gel_loc_long(j,i)+ - & wcorr*gradcorr_long(j,i)+ - & wcorr5*gradcorr5_long(j,i)+ - & wcorr6*gradcorr6_long(j,i)+ - & wturn6*gcorr6_turn_long(j,i))+ - & wbond*gradb(j,i)+ - & wcorr*gradcorr(j,i)+ - & wturn3*gcorr3_turn(j,i)+ - & wturn4*gcorr4_turn(j,i)+ - & wcorr5*gradcorr5(j,i)+ - & wcorr6*gradcorr6(j,i)+ - & wturn6*gcorr6_turn(j,i)+ - & wsccor*gsccorc(j,i) - & +wscloc*gscloc(j,i) -#else - gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+ - & wel_loc*gel_loc(j,i)+ - & 0.5d0*(wscp*gvdwc_scpp(j,i)+ - & welec*gelc_long(j,i) - & wel_loc*gel_loc_long(j,i)+ - & wcorr*gcorr_long(j,i)+ - & wcorr5*gradcorr5_long(j,i)+ - & wcorr6*gradcorr6_long(j,i)+ - & wturn6*gcorr6_turn_long(j,i))+ - & wbond*gradb(j,i)+ - & wcorr*gradcorr(j,i)+ - & wturn3*gcorr3_turn(j,i)+ - & wturn4*gcorr4_turn(j,i)+ - & wcorr5*gradcorr5(j,i)+ - & wcorr6*gradcorr6(j,i)+ - & wturn6*gcorr6_turn(j,i)+ - & wsccor*gsccorc(j,i) - & +wscloc*gscloc(j,i) -#endif -#ifdef TSCSC - gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+ - & wscp*gradx_scp(j,i)+ - & wbond*gradbx(j,i)+ - & wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+ - & wsccor*gsccorx(j,i) - & +wscloc*gsclocx(j,i) -#else - gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+ - & wbond*gradbx(j,i)+ - & wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+ - & wsccor*gsccorx(j,i) - & +wscloc*gsclocx(j,i) -#endif - enddo - enddo -#ifdef DEBUG - write (iout,*) "gloc before adding corr" - do i=1,4*nres - write (iout,*) i,gloc(i,icg) - enddo -#endif - do i=1,nres-3 - gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i) - & +wcorr5*g_corr5_loc(i) - & +wcorr6*g_corr6_loc(i) - & +wturn4*gel_loc_turn4(i) - & +wturn3*gel_loc_turn3(i) - & +wturn6*gel_loc_turn6(i) - & +wel_loc*gel_loc_loc(i) - & +wsccor*gsccor_loc(i) - enddo -#ifdef DEBUG - write (iout,*) "gloc after adding corr" - do i=1,4*nres - write (iout,*) i,gloc(i,icg) - enddo -#endif -#ifdef MPI - if (nfgtasks.gt.1) then - do j=1,3 - do i=1,nres - gradbufc(j,i)=gradc(j,i,icg) - gradbufx(j,i)=gradx(j,i,icg) - enddo - enddo - do i=1,4*nres - glocbuf(i)=gloc(i,icg) - enddo - time00=MPI_Wtime() - call MPI_Barrier(FG_COMM,IERR) - time_barrier_g=time_barrier_g+MPI_Wtime()-time00 - time00=MPI_Wtime() - call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres, - & MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR) - call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres, - & MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR) - call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres, - & MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR) - time_reduce=time_reduce+MPI_Wtime()-time00 -#ifdef DEBUG - write (iout,*) "gloc after reduce" - do i=1,4*nres - write (iout,*) i,gloc(i,icg) - enddo -#endif - endif -#endif - if (gnorm_check) then -c -c Compute the maximum elements of the gradient -c - gvdwc_max=0.0d0 - gvdwc_scp_max=0.0d0 - gelc_max=0.0d0 - gvdwpp_max=0.0d0 - gradb_max=0.0d0 - ghpbc_max=0.0d0 - gradcorr_max=0.0d0 - gel_loc_max=0.0d0 - gcorr3_turn_max=0.0d0 - gcorr4_turn_max=0.0d0 - gradcorr5_max=0.0d0 - gradcorr6_max=0.0d0 - gcorr6_turn_max=0.0d0 - gsccorc_max=0.0d0 - gscloc_max=0.0d0 - gvdwx_max=0.0d0 - gradx_scp_max=0.0d0 - ghpbx_max=0.0d0 - gradxorr_max=0.0d0 - gsccorx_max=0.0d0 - gsclocx_max=0.0d0 - do i=1,nct - gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i))) - if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm -#ifdef TSCSC - gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i))) - if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm -#endif - gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i))) - if (gvdwc_scp_norm.gt.gvdwc_scp_max) - & gvdwc_scp_max=gvdwc_scp_norm - gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i))) - if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm - gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i))) - if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm - gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i))) - if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm - ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i))) - if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm - gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i))) - if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm - gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i))) - if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm - gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i), - & gcorr3_turn(1,i))) - if (gcorr3_turn_norm.gt.gcorr3_turn_max) - & gcorr3_turn_max=gcorr3_turn_norm - gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i), - & gcorr4_turn(1,i))) - if (gcorr4_turn_norm.gt.gcorr4_turn_max) - & gcorr4_turn_max=gcorr4_turn_norm - gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i))) - if (gradcorr5_norm.gt.gradcorr5_max) - & gradcorr5_max=gradcorr5_norm - gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i))) - if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm - gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i), - & gcorr6_turn(1,i))) - if (gcorr6_turn_norm.gt.gcorr6_turn_max) - & gcorr6_turn_max=gcorr6_turn_norm - gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i))) - if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm - gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i))) - if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm - gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i))) - if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm -#ifdef TSCSC - gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i))) - if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm -#endif - gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i))) - if (gradx_scp_norm.gt.gradx_scp_max) - & gradx_scp_max=gradx_scp_norm - ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i))) - if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm - gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i))) - if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm - gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i))) - if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm - gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i))) - if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm - enddo - if (gradout) then -#ifdef AIX - open(istat,file=statname,position="append") -#else - open(istat,file=statname,access="append") -#endif - write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max, - & gelc_max,gvdwpp_max,gradb_max,ghpbc_max, - & gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max, - & gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max, - & gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max, - & gsccorx_max,gsclocx_max - close(istat) - if (gvdwc_max.gt.1.0d4) then - write (iout,*) "gvdwc gvdwx gradb gradbx" - do i=nnt,nct - write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i), - & gradb(j,i),gradbx(j,i),j=1,3) - enddo - call pdbout(0.0d0,'cipiszcze',iout) - call flush(iout) - endif - endif - endif -#ifdef DEBUG - write (iout,*) "gradc gradx gloc" - do i=1,nres - write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') - & i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg) - enddo -#endif -#ifdef TIMING - time_sumgradient=time_sumgradient+MPI_Wtime()-time01 -#endif - return - end -c------------------------------------------------------------------------------- - subroutine rescale_weights(t_bath) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.FFIELD' - include 'COMMON.SBRIDGE' - double precision kfac /2.4d0/ - double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/ -c facT=temp0/t_bath -c facT=2*temp0/(t_bath+temp0) - if (rescale_mode.eq.0) then - facT=1.0d0 - facT2=1.0d0 - facT3=1.0d0 - facT4=1.0d0 - facT5=1.0d0 - else if (rescale_mode.eq.1) then - facT=kfac/(kfac-1.0d0+t_bath/temp0) - facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2) - facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3) - facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4) - facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5) - else if (rescale_mode.eq.2) then - x=t_bath/temp0 - x2=x*x - x3=x2*x - x4=x3*x - x5=x4*x - facT=licznik/dlog(dexp(x)+dexp(-x)) - facT2=licznik/dlog(dexp(x2)+dexp(-x2)) - facT3=licznik/dlog(dexp(x3)+dexp(-x3)) - facT4=licznik/dlog(dexp(x4)+dexp(-x4)) - facT5=licznik/dlog(dexp(x5)+dexp(-x5)) - else - write (iout,*) "Wrong RESCALE_MODE",rescale_mode - write (*,*) "Wrong RESCALE_MODE",rescale_mode -#ifdef MPI - call MPI_Finalize(MPI_COMM_WORLD,IERROR) -#endif - stop 555 - endif - welec=weights(3)*fact - wcorr=weights(4)*fact3 - wcorr5=weights(5)*fact4 - wcorr6=weights(6)*fact5 - wel_loc=weights(7)*fact2 - wturn3=weights(8)*fact2 - wturn4=weights(9)*fact3 - wturn6=weights(10)*fact5 - wtor=weights(13)*fact - wtor_d=weights(14)*fact2 - wsccor=weights(21)*fact -#ifdef TSCSC -c wsct=t_bath/temp0 - wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0 -#endif - return - end -C------------------------------------------------------------------------ - subroutine enerprint(energia) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.FFIELD' - include 'COMMON.SBRIDGE' - include 'COMMON.MD_' - double precision energia(0:n_ene) - etot=energia(0) -#ifdef TSCSC - evdw=energia(22)+wsct*energia(23) -#else - evdw=energia(1) -#endif - evdw2=energia(2) -#ifdef SCP14 - evdw2=energia(2)+energia(18) -#else - evdw2=energia(2) -#endif - ees=energia(3) -#ifdef SPLITELE - evdw1=energia(16) -#endif - ecorr=energia(4) - ecorr5=energia(5) - ecorr6=energia(6) - eel_loc=energia(7) - eello_turn3=energia(8) - eello_turn4=energia(9) - eello_turn6=energia(10) - ebe=energia(11) - escloc=energia(12) - etors=energia(13) - etors_d=energia(14) - ehpb=energia(15) - edihcnstr=energia(19) - estr=energia(17) - Uconst=energia(20) - esccor=energia(21) -C Juyong - edfadis = energia(24) - edfator = energia(25) - edfanei = energia(26) - edfabet = energia(27) -C -#ifdef SPLITELE - write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp, - & estr,wbond,ebe,wang, - & escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain, - & ecorr,wcorr, - & ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3, - & eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor, - & edihcnstr,ebr*nss, - & Uconst,edfadis,edfator,edfanei,edfabet,etot - 10 format (/'Virtual-chain energies:'// - & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ - & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ - & 'EES= ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/ - & 'EVDWPP=',1pE16.6,' WEIGHT=',1pD16.6,' (p-p VDW)'/ - & 'ESTR= ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/ - & 'EBE= ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/ - & 'ESC= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/ - & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/ - & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/ - & 'EHBP= ',1pE16.6,' WEIGHT=',1pD16.6, - & ' (SS bridges & dist. cnstr.)'/ - & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/ - & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/ - & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/ - & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/ - & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/ - & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/ - & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/ - & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/ - & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/ - & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ - & 'UCONST= ',1pE16.6,' (Constraint energy)'/ - & 'EDFAD= ',1pE16.6,' (DFA distance energy)'/ - & 'EDFAT= ',1pE16.6,' (DFA torsion energy)'/ - & 'EDFAN= ',1pE16.6,' (DFA NCa energy)'/ - & 'EDFAB= ',1pE16.6,' (DFA Beta energy)'/ - & 'ETOT= ',1pE16.6,' (total)') -#else - write (iout,10) evdw,wsc,evdw2,wscp,ees,welec, - & estr,wbond,ebe,wang, - & escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain, - & ecorr,wcorr, - & ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3, - & eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr, - & ebr*nss, - & Uconst,edfadis,edfator,edfanei,edfabet,etot - 10 format (/'Virtual-chain energies:'// - & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ - & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ - & 'EES= ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/ - & 'ESTR= ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/ - & 'EBE= ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/ - & 'ESC= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/ - & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/ - & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/ - & 'EHBP= ',1pE16.6,' WEIGHT=',1pD16.6, - & ' (SS bridges & dist. cnstr.)'/ - & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/ - & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/ - & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/ - & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/ - & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/ - & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/ - & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/ - & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/ - & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/ - & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ - & 'UCONST=',1pE16.6,' (Constraint energy)'/ - & 'EDFAD= ',1pE16.6,' (DFA distance energy)'/ - & 'EDFAT= ',1pE16.6,' (DFA torsion energy)'/ - & 'EDFAN= ',1pE16.6,' (DFA NCa energy)'/ - & 'EDFAB= ',1pE16.6,' (DFA Beta energy)'/ - & 'ETOT= ',1pE16.6,' (total)') -#endif - return - end -C----------------------------------------------------------------------- - subroutine elj(evdw,evdw_p,evdw_m) -C -C This subroutine calculates the interaction energy of nonbonded side chains -C assuming the LJ potential of interaction. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - parameter (accur=1.0d-10) - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.LOCAL' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.TORSION' - include 'COMMON.SBRIDGE' - include 'COMMON.NAMES' - include 'COMMON.IOUNITS' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - dimension gg(3) -c write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon - evdw=0.0D0 - do i=iatsc_s,iatsc_e - itypi=iabs(itype(i)) - itypi1=iabs(itype(i+1)) - xi=c(1,nres+i) - yi=c(2,nres+i) - zi=c(3,nres+i) -C Change 12/1/95 - num_conti=0 -C -C Calculate SC interaction energy. -C - do iint=1,nint_gr(i) -cd write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint), -cd & 'iend=',iend(i,iint) - do j=istart(i,iint),iend(i,iint) - itypj=iabs(itype(j)) - xj=c(1,nres+j)-xi - yj=c(2,nres+j)-yi - zj=c(3,nres+j)-zi -C Change 12/1/95 to calculate four-body interactions - rij=xj*xj+yj*yj+zj*zj - rrij=1.0D0/rij -c write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj - eps0ij=eps(itypi,itypj) - fac=rrij**expon2 - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) - evdwij=e1+e2 -cd sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) -cd epsi=bb(itypi,itypj)**2/aa(itypi,itypj) -cd write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)') -cd & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj), -cd & bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm, -cd & (c(k,i),k=1,3),(c(k,j),k=1,3) -#ifdef TSCSC - if (bb(itypi,itypj).gt.0) then - evdw_p=evdw_p+evdwij - else - evdw_m=evdw_m+evdwij - endif -#else - evdw=evdw+evdwij -#endif -C -C Calculate the components of the gradient in DC and X -C - fac=-rrij*(e1+evdwij) - gg(1)=xj*fac - gg(2)=yj*fac - gg(3)=zj*fac -#ifdef TSCSC - if (bb(itypi,itypj).gt.0.0d0) then - do k=1,3 - gvdwx(k,i)=gvdwx(k,i)-gg(k) - gvdwx(k,j)=gvdwx(k,j)+gg(k) - gvdwc(k,i)=gvdwc(k,i)-gg(k) - gvdwc(k,j)=gvdwc(k,j)+gg(k) - enddo - else - do k=1,3 - gvdwxT(k,i)=gvdwxT(k,i)-gg(k) - gvdwxT(k,j)=gvdwxT(k,j)+gg(k) - gvdwcT(k,i)=gvdwcT(k,i)-gg(k) - gvdwcT(k,j)=gvdwcT(k,j)+gg(k) - enddo - endif -#else - do k=1,3 - gvdwx(k,i)=gvdwx(k,i)-gg(k) - gvdwx(k,j)=gvdwx(k,j)+gg(k) - gvdwc(k,i)=gvdwc(k,i)-gg(k) - gvdwc(k,j)=gvdwc(k,j)+gg(k) - enddo -#endif -cgrad do k=i,j-1 -cgrad do l=1,3 -cgrad gvdwc(l,k)=gvdwc(l,k)+gg(l) -cgrad enddo -cgrad enddo -C -C 12/1/95, revised on 5/20/97 -C -C Calculate the contact function. The ith column of the array JCONT will -C contain the numbers of atoms that make contacts with the atom I (of numbers -C greater than I). The arrays FACONT and GACONT will contain the values of -C the contact function and its derivative. -C -C Uncomment next line, if the correlation interactions include EVDW explicitly. -c if (j.gt.i+1 .and. evdwij.le.0.0D0) then -C Uncomment next line, if the correlation interactions are contact function only - if (j.gt.i+1.and. eps0ij.gt.0.0D0) then - rij=dsqrt(rij) - sigij=sigma(itypi,itypj) - r0ij=rs0(itypi,itypj) -C -C Check whether the SC's are not too far to make a contact. -C - rcut=1.5d0*r0ij - call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont) -C Add a new contact, if the SC's are close enough, but not too close (ri' -cgrad do k=1,3 -cgrad ggg(k)=-ggg(k) -C Uncomment following line for SC-p interactions -c gradx_scp(k,j)=gradx_scp(k,j)-ggg(k) -cgrad enddo -cgrad endif -cgrad do k=1,3 -cgrad gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k) -cgrad enddo -cgrad kstart=min0(i+1,j) -cgrad kend=max0(i-1,j-1) -cd write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend -cd write (iout,*) ggg(1),ggg(2),ggg(3) -cgrad do k=kstart,kend -cgrad do l=1,3 -cgrad gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l) -cgrad enddo -cgrad enddo - do k=1,3 - gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k) - gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k) - enddo - enddo - - enddo ! iint - enddo ! i - return - end -C----------------------------------------------------------------------------- - subroutine escp(evdw2,evdw2_14) -C -C This subroutine calculates the excluded-volume interaction energy between -C peptide-group centers and side chains and its gradient in virtual-bond and -C side-chain vectors. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.LOCAL' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.FFIELD' - include 'COMMON.IOUNITS' - include 'COMMON.CONTROL' - dimension ggg(3) - evdw2=0.0D0 - evdw2_14=0.0d0 -cd print '(a)','Enter ESCP' -cd write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e - do i=iatscp_s,iatscp_e - iteli=itel(i) - xi=0.5D0*(c(1,i)+c(1,i+1)) - yi=0.5D0*(c(2,i)+c(2,i+1)) - zi=0.5D0*(c(3,i)+c(3,i+1)) - - do iint=1,nscp_gr(i) - - do j=iscpstart(i,iint),iscpend(i,iint) - itypj=iabs(itype(j)) -C Uncomment following three lines for SC-p interactions -c xj=c(1,nres+j)-xi -c yj=c(2,nres+j)-yi -c zj=c(3,nres+j)-zi -C Uncomment following three lines for Ca-p interactions - xj=c(1,j)-xi - yj=c(2,j)-yi - zj=c(3,j)-zi - rrij=1.0D0/(xj*xj+yj*yj+zj*zj) - fac=rrij**expon2 - e1=fac*fac*aad(itypj,iteli) - e2=fac*bad(itypj,iteli) - if (iabs(j-i) .le. 2) then - e1=scal14*e1 - e2=scal14*e2 - evdw2_14=evdw2_14+e1+e2 - endif - evdwij=e1+e2 - evdw2=evdw2+evdwij - if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') - & 'evdw2',i,j,evdwij -C -C Calculate contributions to the gradient in the virtual-bond and SC vectors. -C - fac=-(evdwij+e1)*rrij - ggg(1)=xj*fac - ggg(2)=yj*fac - ggg(3)=zj*fac -cgrad if (j.lt.i) then -cd write (iout,*) 'ji' -cgrad do k=1,3 -cgrad ggg(k)=-ggg(k) -C Uncomment following line for SC-p interactions -ccgrad gradx_scp(k,j)=gradx_scp(k,j)-ggg(k) -c gradx_scp(k,j)=gradx_scp(k,j)+ggg(k) -cgrad enddo -cgrad endif -cgrad do k=1,3 -cgrad gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k) -cgrad enddo -cgrad kstart=min0(i+1,j) -cgrad kend=max0(i-1,j-1) -cd write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend -cd write (iout,*) ggg(1),ggg(2),ggg(3) -cgrad do k=kstart,kend -cgrad do l=1,3 -cgrad gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l) -cgrad enddo -cgrad enddo - do k=1,3 - gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k) - gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k) - enddo - enddo - - enddo ! iint - enddo ! i - do i=1,nct - do j=1,3 - gvdwc_scp(j,i)=expon*gvdwc_scp(j,i) - gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i) - gradx_scp(j,i)=expon*gradx_scp(j,i) - enddo - enddo -C****************************************************************************** -C -C N O T E !!! -C -C To save time the factor EXPON has been extracted from ALL components -C of GVDWC and GRADX. Remember to multiply them by this factor before further -C use! -C -C****************************************************************************** - return - end -C-------------------------------------------------------------------------- - subroutine edis(ehpb) -C -C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.SBRIDGE' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.IOUNITS' - dimension ggg(3) - ehpb=0.0D0 -cd write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr -cd write(iout,*)'link_start=',link_start,' link_end=',link_end - if (link_end.eq.0) return - do i=link_start,link_end -C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a -C CA-CA distance used in regularization of structure. - ii=ihpb(i) - jj=jhpb(i) -C iii and jjj point to the residues for which the distance is assigned. - if (ii.gt.nres) then - iii=ii-nres - jjj=jj-nres - else - iii=ii - jjj=jj - endif -cd write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj -C 24/11/03 AL: SS bridges handled separately because of introducing a specific -C distance and angle dependent SS bond potential. - if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and. iabs(itype(jjj - &)).eq.1) then - call ssbond_ene(iii,jjj,eij) - ehpb=ehpb+2*eij -cd write (iout,*) "eij",eij - else -C Calculate the distance between the two points and its difference from the -C target distance. - dd=dist(ii,jj) - rdis=dd-dhpb(i) -C Get the force constant corresponding to this distance. - waga=forcon(i) -C Calculate the contribution to energy. - ehpb=ehpb+waga*rdis*rdis -C -C Evaluate gradient. -C - fac=waga*rdis/dd -cd print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd, -cd & ' waga=',waga,' fac=',fac - do j=1,3 - ggg(j)=fac*(c(j,jj)-c(j,ii)) - enddo -cd print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3) -C If this is a SC-SC distance, we need to calculate the contributions to the -C Cartesian gradient in the SC vectors (ghpbx). - if (iii.lt.ii) then - do j=1,3 - ghpbx(j,iii)=ghpbx(j,iii)-ggg(j) - ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j) - enddo - endif -cgrad do j=iii,jjj-1 -cgrad do k=1,3 -cgrad ghpbc(k,j)=ghpbc(k,j)+ggg(k) -cgrad enddo -cgrad enddo - do k=1,3 - ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k) - ghpbc(k,iii)=ghpbc(k,iii)-ggg(k) - enddo - endif - enddo - ehpb=0.5D0*ehpb - return - end -C-------------------------------------------------------------------------- - subroutine ssbond_ene(i,j,eij) -C -C Calculate the distance and angle dependent SS-bond potential energy -C using a free-energy function derived based on RHF/6-31G** ab initio -C calculations of diethyl disulfide. -C -C A. Liwo and U. Kozlowska, 11/24/03 -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.SBRIDGE' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.LOCAL' - include 'COMMON.INTERACT' - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - double precision erij(3),dcosom1(3),dcosom2(3),gg(3) - itypi=iabs(itype(i)) - xi=c(1,nres+i) - yi=c(2,nres+i) - zi=c(3,nres+i) - dxi=dc_norm(1,nres+i) - dyi=dc_norm(2,nres+i) - dzi=dc_norm(3,nres+i) -c dsci_inv=dsc_inv(itypi) - dsci_inv=vbld_inv(nres+i) - itypj=iabs(itype(j)) -c dscj_inv=dsc_inv(itypj) - dscj_inv=vbld_inv(nres+j) - xj=c(1,nres+j)-xi - yj=c(2,nres+j)-yi - zj=c(3,nres+j)-zi - dxj=dc_norm(1,nres+j) - dyj=dc_norm(2,nres+j) - dzj=dc_norm(3,nres+j) - rrij=1.0D0/(xj*xj+yj*yj+zj*zj) - rij=dsqrt(rrij) - erij(1)=xj*rij - erij(2)=yj*rij - erij(3)=zj*rij - om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3) - om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3) - om12=dxi*dxj+dyi*dyj+dzi*dzj - do k=1,3 - dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k)) - dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k)) - enddo - rij=1.0d0/rij - deltad=rij-d0cm - deltat1=1.0d0-om1 - deltat2=1.0d0+om2 - deltat12=om2-om1+2.0d0 - cosphi=om12-om1*om2 - eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2) - & +akct*deltad*deltat12 - & +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi -c write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth, -c & " akct",akct," deltad",deltad," deltat",deltat1,deltat2, -c & " deltat12",deltat12," eij",eij - ed=2*akcm*deltad+akct*deltat12 - pom1=akct*deltad - pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi - eom1=-2*akth*deltat1-pom1-om2*pom2 - eom2= 2*akth*deltat2+pom1-om1*pom2 - eom12=pom2 - do k=1,3 - ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k) - ghpbx(k,i)=ghpbx(k,i)-ggk - & +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i)) - & +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv - ghpbx(k,j)=ghpbx(k,j)+ggk - & +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j)) - & +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv - ghpbc(k,i)=ghpbc(k,i)-ggk - ghpbc(k,j)=ghpbc(k,j)+ggk - enddo -C -C Calculate the components of the gradient in DC and X -C -cgrad do k=i,j-1 -cgrad do l=1,3 -cgrad ghpbc(l,k)=ghpbc(l,k)+gg(l) -cgrad enddo -cgrad enddo - return - end -C-------------------------------------------------------------------------- - subroutine ebond(estr) -c -c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds -c - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.LOCAL' - include 'COMMON.GEO' - include 'COMMON.INTERACT' - include 'COMMON.DERIV' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.NAMES' - include 'COMMON.FFIELD' - include 'COMMON.CONTROL' - include 'COMMON.SETUP' - double precision u(3),ud(3) - estr=0.0d0 - do i=ibondp_start,ibondp_end - diff = vbld(i)-vbldp0 -c write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff - estr=estr+diff*diff - do j=1,3 - gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i) - enddo -c write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3) - enddo - estr=0.5d0*AKP*estr -c -c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included -c - do i=ibond_start,ibond_end - iti=iabs(itype(i)) - if (iti.ne.10) then - nbi=nbondterm(iti) - if (nbi.eq.1) then - diff=vbld(i+nres)-vbldsc0(1,iti) -c write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff, -c & AKSC(1,iti),AKSC(1,iti)*diff*diff - estr=estr+0.5d0*AKSC(1,iti)*diff*diff - do j=1,3 - gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres) - enddo - else - do j=1,nbi - diff=vbld(i+nres)-vbldsc0(j,iti) - ud(j)=aksc(j,iti)*diff - u(j)=abond0(j,iti)+0.5d0*ud(j)*diff - enddo - uprod=u(1) - do j=2,nbi - uprod=uprod*u(j) - enddo - usum=0.0d0 - usumsqder=0.0d0 - do j=1,nbi - uprod1=1.0d0 - uprod2=1.0d0 - do k=1,nbi - if (k.ne.j) then - uprod1=uprod1*u(k) - uprod2=uprod2*u(k)*u(k) - endif - enddo - usum=usum+uprod1 - usumsqder=usumsqder+ud(j)*uprod2 - enddo - estr=estr+uprod/usum - do j=1,3 - gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres) - enddo - endif - endif - enddo - return - end -#ifdef CRYST_THETA -C-------------------------------------------------------------------------- - subroutine ebend(etheta) -C -C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral -C angles gamma and its derivatives in consecutive thetas and gammas. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.LOCAL' - include 'COMMON.GEO' - include 'COMMON.INTERACT' - include 'COMMON.DERIV' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.NAMES' - include 'COMMON.FFIELD' - include 'COMMON.CONTROL' - common /calcthet/ term1,term2,termm,diffak,ratak, - & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq, - & delthe0,sig0inv,sigtc,sigsqtc,delthec,it - double precision y(2),z(2) - delta=0.02d0*pi -c time11=dexp(-2*time) -c time12=1.0d0 - etheta=0.0D0 -c write (*,'(a,i2)') 'EBEND ICG=',icg - do i=ithet_start,ithet_end -C Zero the energy function and its derivative at 0 or pi. - call splinthet(theta(i),0.5d0*delta,ss,ssd) - it=itype(i-1) - ichir1=isign(1,itype(i-2)) - ichir2=isign(1,itype(i)) - if (itype(i-2).eq.10) ichir1=isign(1,itype(i-1)) - if (itype(i).eq.10) ichir2=isign(1,itype(i-1)) - if (itype(i-1).eq.10) then - itype1=isign(10,itype(i-2)) - ichir11=isign(1,itype(i-2)) - ichir12=isign(1,itype(i-2)) - itype2=isign(10,itype(i)) - ichir21=isign(1,itype(i)) - ichir22=isign(1,itype(i)) - endif - if (i.gt.3) then -#ifdef OSF - phii=phi(i) - if (phii.ne.phii) phii=150.0 -#else - phii=phi(i) -#endif - y(1)=dcos(phii) - y(2)=dsin(phii) - else - y(1)=0.0D0 - y(2)=0.0D0 - endif - if (i.lt.nres) then -#ifdef OSF - phii1=phi(i+1) - if (phii1.ne.phii1) phii1=150.0 - phii1=pinorm(phii1) - z(1)=cos(phii1) -#else - phii1=phi(i+1) - z(1)=dcos(phii1) -#endif - z(2)=dsin(phii1) - else - z(1)=0.0D0 - z(2)=0.0D0 - endif -C Calculate the "mean" value of theta from the part of the distribution -C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2). -C In following comments this theta will be referred to as t_c. - thet_pred_mean=0.0d0 - do k=1,2 - athetk=athet(k,it,ichir1,ichir2) - bthetk=bthet(k,it,ichir1,ichir2) - if (it.eq.10) then - athetk=athet(k,itype1,ichir11,ichir12) - bthetk=bthet(k,itype2,ichir21,ichir22) - endif - thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k) - enddo - dthett=thet_pred_mean*ssd - thet_pred_mean=thet_pred_mean*ss+a0thet(it) -C Derivatives of the "mean" values in gamma1 and gamma2. - dthetg1=(-athet(1,it,ichir1,ichir2)*y(2) - &+athet(2,it,ichir1,ichir2)*y(1))*ss - dthetg2=(-bthet(1,it,ichir1,ichir2)*z(2) - & +bthet(2,it,ichir1,ichir2)*z(1))*ss - if (it.eq.10) then - dthetg1=(-athet(1,itype1,ichir11,ichir12)*y(2) - &+athet(2,itype1,ichir11,ichir12)*y(1))*ss - dthetg2=(-bthet(1,itype2,ichir21,ichir22)*z(2) - & +bthet(2,itype2,ichir21,ichir22)*z(1))*ss - endif - if (theta(i).gt.pi-delta) then - call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0, - & E_tc0) - call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0) - call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1) - call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai, - & E_theta) - call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0, - & E_tc) - else if (theta(i).lt.delta) then - call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0) - call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1) - call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai, - & E_theta) - call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0) - call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0, - & E_tc) - else - call theteng(theta(i),thet_pred_mean,theta0(it),ethetai, - & E_theta,E_tc) - endif - etheta=etheta+ethetai - if (energy_dec) write (iout,'(a6,i5,0pf7.3)') - & 'ebend',i,ethetai - if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1 - if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2 - gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett) - enddo -C Ufff.... We've done all this!!! - return - end -C--------------------------------------------------------------------------- - subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta, - & E_tc) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.LOCAL' - include 'COMMON.IOUNITS' - common /calcthet/ term1,term2,termm,diffak,ratak, - & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq, - & delthe0,sig0inv,sigtc,sigsqtc,delthec,it -C Calculate the contributions to both Gaussian lobes. -C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time) -C The "polynomial part" of the "standard deviation" of this part of -C the distribution. - sig=polthet(3,it) - do j=2,0,-1 - sig=sig*thet_pred_mean+polthet(j,it) - enddo -C Derivative of the "interior part" of the "standard deviation of the" -C gamma-dependent Gaussian lobe in t_c. - sigtc=3*polthet(3,it) - do j=2,1,-1 - sigtc=sigtc*thet_pred_mean+j*polthet(j,it) - enddo - sigtc=sig*sigtc -C Set the parameters of both Gaussian lobes of the distribution. -C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc) - fac=sig*sig+sigc0(it) - sigcsq=fac+fac - sigc=1.0D0/sigcsq -C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c - sigsqtc=-4.0D0*sigcsq*sigtc -c print *,i,sig,sigtc,sigsqtc -C Following variable (sigtc) is d[sigma(t_c)]/dt_c - sigtc=-sigtc/(fac*fac) -C Following variable is sigma(t_c)**(-2) - sigcsq=sigcsq*sigcsq - sig0i=sig0(it) - sig0inv=1.0D0/sig0i**2 - delthec=thetai-thet_pred_mean - delthe0=thetai-theta0i - term1=-0.5D0*sigcsq*delthec*delthec - term2=-0.5D0*sig0inv*delthe0*delthe0 -C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and -C NaNs in taking the logarithm. We extract the largest exponent which is added -C to the energy (this being the log of the distribution) at the end of energy -C term evaluation for this virtual-bond angle. - if (term1.gt.term2) then - termm=term1 - term2=dexp(term2-termm) - term1=1.0d0 - else - termm=term2 - term1=dexp(term1-termm) - term2=1.0d0 - endif -C The ratio between the gamma-independent and gamma-dependent lobes of -C the distribution is a Gaussian function of thet_pred_mean too. - diffak=gthet(2,it)-thet_pred_mean - ratak=diffak/gthet(3,it)**2 - ak=dexp(gthet(1,it)-0.5D0*diffak*ratak) -C Let's differentiate it in thet_pred_mean NOW. - aktc=ak*ratak -C Now put together the distribution terms to make complete distribution. - termexp=term1+ak*term2 - termpre=sigc+ak*sig0i -C Contribution of the bending energy from this theta is just the -log of -C the sum of the contributions from the two lobes and the pre-exponential -C factor. Simple enough, isn't it? - ethetai=(-dlog(termexp)-termm+dlog(termpre)) -C NOW the derivatives!!! -C 6/6/97 Take into account the deformation. - E_theta=(delthec*sigcsq*term1 - & +ak*delthe0*sig0inv*term2)/termexp - E_tc=((sigtc+aktc*sig0i)/termpre - & -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+ - & aktc*term2)/termexp) - return - end -c----------------------------------------------------------------------------- - subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.LOCAL' - include 'COMMON.IOUNITS' - common /calcthet/ term1,term2,termm,diffak,ratak, - & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq, - & delthe0,sig0inv,sigtc,sigsqtc,delthec,it - delthec=thetai-thet_pred_mean - delthe0=thetai-theta0i -C "Thank you" to MAPLE (probably spared one day of hand-differentiation). - t3 = thetai-thet_pred_mean - t6 = t3**2 - t9 = term1 - t12 = t3*sigcsq - t14 = t12+t6*sigsqtc - t16 = 1.0d0 - t21 = thetai-theta0i - t23 = t21**2 - t26 = term2 - t27 = t21*t26 - t32 = termexp - t40 = t32**2 - E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9 - & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40 - & *(-t12*t9-ak*sig0inv*t27) - return - end -#else -C-------------------------------------------------------------------------- - subroutine ebend(etheta) -C -C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral -C angles gamma and its derivatives in consecutive thetas and gammas. -C ab initio-derived potentials from -c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203 -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.LOCAL' - include 'COMMON.GEO' - include 'COMMON.INTERACT' - include 'COMMON.DERIV' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.NAMES' - include 'COMMON.FFIELD' - include 'COMMON.CONTROL' - double precision coskt(mmaxtheterm),sinkt(mmaxtheterm), - & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle), - & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble), - & sinph1ph2(maxdouble,maxdouble) - logical lprn /.false./, lprn1 /.false./ - etheta=0.0D0 - do i=ithet_start,ithet_end - dethetai=0.0d0 - dephii=0.0d0 - dephii1=0.0d0 - theti2=0.5d0*theta(i) - ityp2=ithetyp(iabs(itype(i-1))) - do k=1,nntheterm - coskt(k)=dcos(k*theti2) - sinkt(k)=dsin(k*theti2) - enddo - if (i.gt.3) then -#ifdef OSF - phii=phi(i) - if (phii.ne.phii) phii=150.0 -#else - phii=phi(i) -#endif - ityp1=ithetyp(iabs(itype(i-2))) - do k=1,nsingle - cosph1(k)=dcos(k*phii) - sinph1(k)=dsin(k*phii) - enddo - else - phii=0.0d0 - ityp1=nthetyp+1 - do k=1,nsingle - cosph1(k)=0.0d0 - sinph1(k)=0.0d0 - enddo - endif - if (i.lt.nres) then -#ifdef OSF - phii1=phi(i+1) - if (phii1.ne.phii1) phii1=150.0 - phii1=pinorm(phii1) -#else - phii1=phi(i+1) -#endif - ityp3=ithetyp(iabs(itype(i))) - do k=1,nsingle - cosph2(k)=dcos(k*phii1) - sinph2(k)=dsin(k*phii1) - enddo - else - phii1=0.0d0 - ityp3=nthetyp+1 - do k=1,nsingle - cosph2(k)=0.0d0 - sinph2(k)=0.0d0 - enddo - endif - ethetai=aa0thet(ityp1,ityp2,ityp3) - do k=1,ndouble - do l=1,k-1 - ccl=cosph1(l)*cosph2(k-l) - ssl=sinph1(l)*sinph2(k-l) - scl=sinph1(l)*cosph2(k-l) - csl=cosph1(l)*sinph2(k-l) - cosph1ph2(l,k)=ccl-ssl - cosph1ph2(k,l)=ccl+ssl - sinph1ph2(l,k)=scl+csl - sinph1ph2(k,l)=scl-csl - enddo - enddo - if (lprn) then - write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2, - & " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1 - write (iout,*) "coskt and sinkt" - do k=1,nntheterm - write (iout,*) k,coskt(k),sinkt(k) - enddo - endif - do k=1,ntheterm - ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k) - dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3) - & *coskt(k) - if (lprn) - & write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3), - & " ethetai",ethetai - enddo - if (lprn) then - write (iout,*) "cosph and sinph" - do k=1,nsingle - write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k) - enddo - write (iout,*) "cosph1ph2 and sinph2ph2" - do k=2,ndouble - do l=1,k-1 - write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l), - & sinph1ph2(l,k),sinph1ph2(k,l) - enddo - enddo - write(iout,*) "ethetai",ethetai - endif - do m=1,ntheterm2 - do k=1,nsingle - aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k) - & +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k) - & +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k) - & +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k) - ethetai=ethetai+sinkt(m)*aux - dethetai=dethetai+0.5d0*m*aux*coskt(m) - dephii=dephii+k*sinkt(m)*( - & ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)- - & bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)) - dephii1=dephii1+k*sinkt(m)*( - & eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)- - & ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k)) - if (lprn) - & write (iout,*) "m",m," k",k," bbthet", - & bbthet(k,m,ityp1,ityp2,ityp3)," ccthet", - & ccthet(k,m,ityp1,ityp2,ityp3)," ddthet", - & ddthet(k,m,ityp1,ityp2,ityp3)," eethet", - & eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai - enddo - enddo - if (lprn) - & write(iout,*) "ethetai",ethetai - do m=1,ntheterm3 - do k=2,ndouble - do l=1,k-1 - aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+ - & ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+ - & ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+ - & ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l) - ethetai=ethetai+sinkt(m)*aux - dethetai=dethetai+0.5d0*m*coskt(m)*aux - dephii=dephii+l*sinkt(m)*( - & -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)- - & ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+ - & ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+ - & ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)) - dephii1=dephii1+(k-l)*sinkt(m)*( - & -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+ - & ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+ - & ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)- - & ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)) - if (lprn) then - write (iout,*) "m",m," k",k," l",l," ffthet", - & ffthet(l,k,m,ityp1,ityp2,ityp3), - & ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet", - & ggthet(l,k,m,ityp1,ityp2,ityp3), - & ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai - write (iout,*) cosph1ph2(l,k)*sinkt(m), - & cosph1ph2(k,l)*sinkt(m), - & sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m) - endif - enddo - enddo - enddo -10 continue - if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') - & i,theta(i)*rad2deg,phii*rad2deg, - & phii1*rad2deg,ethetai - etheta=etheta+ethetai - if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii - if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1 - gloc(nphi+i-2,icg)=wang*dethetai - enddo - return - end -#endif -#ifdef CRYST_SC -c----------------------------------------------------------------------------- - subroutine esc(escloc) -C Calculate the local energy of a side chain and its derivatives in the -C corresponding virtual-bond valence angles THETA and the spherical angles -C ALPHA and OMEGA. - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.DERIV' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.NAMES' - include 'COMMON.FFIELD' - include 'COMMON.CONTROL' - double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3), - & ddersc0(3),ddummy(3),xtemp(3),temp(3) - common /sccalc/ time11,time12,time112,theti,it,nlobit - delta=0.02d0*pi - escloc=0.0D0 -c write (iout,'(a)') 'ESC' - do i=loc_start,loc_end - it=itype(i) - if (it.eq.10) goto 1 - nlobit=nlob(iabs(it)) -c print *,'i=',i,' it=',it,' nlobit=',nlobit -c write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad - theti=theta(i+1)-pipol - x(1)=dtan(theti) - x(2)=alph(i) - x(3)=omeg(i) - - if (x(2).gt.pi-delta) then - xtemp(1)=x(1) - xtemp(2)=pi-delta - xtemp(3)=x(3) - call enesc(xtemp,escloci0,dersc0,ddersc0,.true.) - xtemp(2)=pi - call enesc(xtemp,escloci1,dersc1,ddummy,.false.) - call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2), - & escloci,dersc(2)) - call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1), - & ddersc0(1),dersc(1)) - call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3), - & ddersc0(3),dersc(3)) - xtemp(2)=pi-delta - call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.) - xtemp(2)=pi - call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.) - call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1, - & dersc0(2),esclocbi,dersc02) - call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1), - & dersc12,dersc01) - call splinthet(x(2),0.5d0*delta,ss,ssd) - dersc0(1)=dersc01 - dersc0(2)=dersc02 - dersc0(3)=0.0d0 - do k=1,3 - dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k) - enddo - dersc(2)=dersc(2)+ssd*(escloci-esclocbi) -c write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci, -c & esclocbi,ss,ssd - escloci=ss*escloci+(1.0d0-ss)*esclocbi -c escloci=esclocbi -c write (iout,*) escloci - else if (x(2).lt.delta) then - xtemp(1)=x(1) - xtemp(2)=delta - xtemp(3)=x(3) - call enesc(xtemp,escloci0,dersc0,ddersc0,.true.) - xtemp(2)=0.0d0 - call enesc(xtemp,escloci1,dersc1,ddummy,.false.) - call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2), - & escloci,dersc(2)) - call spline2(x(2),delta,-delta,dersc0(1),dersc1(1), - & ddersc0(1),dersc(1)) - call spline2(x(2),delta,-delta,dersc0(3),dersc1(3), - & ddersc0(3),dersc(3)) - xtemp(2)=delta - call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.) - xtemp(2)=0.0d0 - call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.) - call spline1(x(2),delta,-delta,esclocbi0,esclocbi1, - & dersc0(2),esclocbi,dersc02) - call spline2(x(2),delta,-delta,dersc0(1),dersc1(1), - & dersc12,dersc01) - dersc0(1)=dersc01 - dersc0(2)=dersc02 - dersc0(3)=0.0d0 - call splinthet(x(2),0.5d0*delta,ss,ssd) - do k=1,3 - dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k) - enddo - dersc(2)=dersc(2)+ssd*(escloci-esclocbi) -c write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci, -c & esclocbi,ss,ssd - escloci=ss*escloci+(1.0d0-ss)*esclocbi -c write (iout,*) escloci - else - call enesc(x,escloci,dersc,ddummy,.false.) - endif - - escloc=escloc+escloci - if (energy_dec) write (iout,'(a6,i5,0pf7.3)') - & 'escloc',i,escloci -c write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc - - gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+ - & wscloc*dersc(1) - gloc(ialph(i,1),icg)=wscloc*dersc(2) - gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3) - 1 continue - enddo - return - end -C--------------------------------------------------------------------------- - subroutine enesc(x,escloci,dersc,ddersc,mixed) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.IOUNITS' - common /sccalc/ time11,time12,time112,theti,it,nlobit - double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3) - double precision contr(maxlob,-1:1) - logical mixed -c write (iout,*) 'it=',it,' nlobit=',nlobit - escloc_i=0.0D0 - do j=1,3 - dersc(j)=0.0D0 - if (mixed) ddersc(j)=0.0d0 - enddo - x3=x(3) - -C Because of periodicity of the dependence of the SC energy in omega we have -C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi). -C To avoid underflows, first compute & store the exponents. - - do iii=-1,1 - - x(3)=x3+iii*dwapi - - do j=1,nlobit - do k=1,3 - z(k)=x(k)-censc(k,j,it) - enddo - do k=1,3 - Axk=0.0D0 - do l=1,3 - Axk=Axk+gaussc(l,k,j,it)*z(l) - enddo - Ax(k,j,iii)=Axk - enddo - expfac=0.0D0 - do k=1,3 - expfac=expfac+Ax(k,j,iii)*z(k) - enddo - contr(j,iii)=expfac - enddo ! j - - enddo ! iii - - x(3)=x3 -C As in the case of ebend, we want to avoid underflows in exponentiation and -C subsequent NaNs and INFs in energy calculation. -C Find the largest exponent - emin=contr(1,-1) - do iii=-1,1 - do j=1,nlobit - if (emin.gt.contr(j,iii)) emin=contr(j,iii) - enddo - enddo - emin=0.5D0*emin -cd print *,'it=',it,' emin=',emin - -C Compute the contribution to SC energy and derivatives - do iii=-1,1 - - do j=1,nlobit -#ifdef OSF - adexp=bsc(j,iabs(it))-0.5D0*contr(j,iii)+emin - if(adexp.ne.adexp) adexp=1.0 - expfac=dexp(adexp) -#else - expfac=dexp(bsc(j,iabs(it))-0.5D0*contr(j,iii)+emin) -#endif -cd print *,'j=',j,' expfac=',expfac - escloc_i=escloc_i+expfac - do k=1,3 - dersc(k)=dersc(k)+Ax(k,j,iii)*expfac - enddo - if (mixed) then - do k=1,3,2 - ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii) - & +gaussc(k,2,j,it))*expfac - enddo - endif - enddo - - enddo ! iii - - dersc(1)=dersc(1)/cos(theti)**2 - ddersc(1)=ddersc(1)/cos(theti)**2 - ddersc(3)=ddersc(3) - - escloci=-(dlog(escloc_i)-emin) - do j=1,3 - dersc(j)=dersc(j)/escloc_i - enddo - if (mixed) then - do j=1,3,2 - ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j)) - enddo - endif - return - end -C------------------------------------------------------------------------------ - subroutine enesc_bound(x,escloci,dersc,dersc12,mixed) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.IOUNITS' - common /sccalc/ time11,time12,time112,theti,it,nlobit - double precision x(3),z(3),Ax(3,maxlob),dersc(3) - double precision contr(maxlob) - logical mixed - - escloc_i=0.0D0 - - do j=1,3 - dersc(j)=0.0D0 - enddo - - do j=1,nlobit - do k=1,2 - z(k)=x(k)-censc(k,j,it) - enddo - z(3)=dwapi - do k=1,3 - Axk=0.0D0 - do l=1,3 - Axk=Axk+gaussc(l,k,j,it)*z(l) - enddo - Ax(k,j)=Axk - enddo - expfac=0.0D0 - do k=1,3 - expfac=expfac+Ax(k,j)*z(k) - enddo - contr(j)=expfac - enddo ! j - -C As in the case of ebend, we want to avoid underflows in exponentiation and -C subsequent NaNs and INFs in energy calculation. -C Find the largest exponent - emin=contr(1) - do j=1,nlobit - if (emin.gt.contr(j)) emin=contr(j) - enddo - emin=0.5D0*emin - -C Compute the contribution to SC energy and derivatives - - dersc12=0.0d0 - do j=1,nlobit - expfac=dexp(bsc(j,iabs(it))-0.5D0*contr(j)+emin) - escloc_i=escloc_i+expfac - do k=1,2 - dersc(k)=dersc(k)+Ax(k,j)*expfac - enddo - if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j) - & +gaussc(1,2,j,it))*expfac - dersc(3)=0.0d0 - enddo - - dersc(1)=dersc(1)/cos(theti)**2 - dersc12=dersc12/cos(theti)**2 - escloci=-(dlog(escloc_i)-emin) - do j=1,2 - dersc(j)=dersc(j)/escloc_i - enddo - if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1)) - return - end -#else -c---------------------------------------------------------------------------------- - subroutine esc(escloc) -C Calculate the local energy of a side chain and its derivatives in the -C corresponding virtual-bond valence angles THETA and the spherical angles -C ALPHA and OMEGA derived from AM1 all-atom calculations. -C added by Urszula Kozlowska. 07/11/2007 -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.VAR' - include 'COMMON.SCROT' - include 'COMMON.INTERACT' - include 'COMMON.DERIV' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.NAMES' - include 'COMMON.FFIELD' - include 'COMMON.CONTROL' - include 'COMMON.VECTORS' - double precision x_prime(3),y_prime(3),z_prime(3) - & , sumene,dsc_i,dp2_i,x(65), - & xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6, - & de_dxx,de_dyy,de_dzz,de_dt - double precision s1_t,s1_6_t,s2_t,s2_6_t - double precision - & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3), - & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3), - & dt_dCi(3),dt_dCi1(3) - common /sccalc/ time11,time12,time112,theti,it,nlobit - delta=0.02d0*pi - escloc=0.0D0 - do i=loc_start,loc_end - costtab(i+1) =dcos(theta(i+1)) - sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1)) - cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1))) - sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1))) - cosfac2=0.5d0/(1.0d0+costtab(i+1)) - cosfac=dsqrt(cosfac2) - sinfac2=0.5d0/(1.0d0-costtab(i+1)) - sinfac=dsqrt(sinfac2) - it=itype(i) - if (it.eq.10) goto 1 -c -C Compute the axes of tghe local cartesian coordinates system; store in -c x_prime, y_prime and z_prime -c - do j=1,3 - x_prime(j) = 0.00 - y_prime(j) = 0.00 - z_prime(j) = 0.00 - enddo -C write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres), -C & dc_norm(3,i+nres) - do j = 1,3 - x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac - y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac - enddo - do j = 1,3 - z_prime(j) = -uz(j,i-1) - enddo -c write (2,*) "i",i -c write (2,*) "x_prime",(x_prime(j),j=1,3) -c write (2,*) "y_prime",(y_prime(j),j=1,3) -c write (2,*) "z_prime",(z_prime(j),j=1,3) -c write (2,*) "xx",scalar(x_prime(1),x_prime(1)), -c & " xy",scalar(x_prime(1),y_prime(1)), -c & " xz",scalar(x_prime(1),z_prime(1)), -c & " yy",scalar(y_prime(1),y_prime(1)), -c & " yz",scalar(y_prime(1),z_prime(1)), -c & " zz",scalar(z_prime(1),z_prime(1)) -c -C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i), -C to local coordinate system. Store in xx, yy, zz. -c - xx=0.0d0 - yy=0.0d0 - zz=0.0d0 - do j = 1,3 - xx = xx + x_prime(j)*dc_norm(j,i+nres) - yy = yy + y_prime(j)*dc_norm(j,i+nres) - zz = zz + z_prime(j)*dc_norm(j,i+nres) - enddo - - xxtab(i)=xx - yytab(i)=yy - zztab(i)=zz -C -C Compute the energy of the ith side cbain -C -c write (2,*) "xx",xx," yy",yy," zz",zz - it=itype(i) - do j = 1,65 - x(j) = sc_parmin(j,it) - enddo -#ifdef CHECK_COORD -Cc diagnostics - remove later - xx1 = dcos(alph(2)) - yy1 = dsin(alph(2))*dcos(omeg(2)) - zz1 = -dsin(alph(2))*dsin(omeg(2)) - write(2,'(3f8.1,3f9.3,1x,3f9.3)') - & alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz, - & xx1,yy1,zz1 -C," --- ", xx_w,yy_w,zz_w -c end diagnostics -#endif - sumene1= x(1)+ x(2)*xx+ x(3)*yy+ x(4)*zz+ x(5)*xx**2 - & + x(6)*yy**2+ x(7)*zz**2+ x(8)*xx*zz+ x(9)*xx*yy - & + x(10)*yy*zz - sumene2= x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2 - & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy - & + x(20)*yy*zz - sumene3= x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2 - & +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy - & +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3 - & +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx - & +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy - & +x(40)*xx*yy*zz - sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2 - & +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy - & +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3 - & +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx - & +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy - & +x(60)*xx*yy*zz - dsc_i = 0.743d0+x(61) - dp2_i = 1.9d0+x(62) - dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i - & *(xx*cost2tab(i+1)+yy*sint2tab(i+1))) - dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i - & *(xx*cost2tab(i+1)-yy*sint2tab(i+1))) - s1=(1+x(63))/(0.1d0 + dscp1) - s1_6=(1+x(64))/(0.1d0 + dscp1**6) - s2=(1+x(65))/(0.1d0 + dscp2) - s2_6=(1+x(65))/(0.1d0 + dscp2**6) - sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6) - & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6) -c write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3, -c & sumene4, -c & dscp1,dscp2,sumene -c sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) - escloc = escloc + sumene -c write (2,*) "i",i," escloc",sumene,escloc -#ifdef DEBUG -C -C This section to check the numerical derivatives of the energy of ith side -C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert -C #define DEBUG in the code to turn it on. -C - write (2,*) "sumene =",sumene - aincr=1.0d-7 - xxsave=xx - xx=xx+aincr - write (2,*) xx,yy,zz - sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) - de_dxx_num=(sumenep-sumene)/aincr - xx=xxsave - write (2,*) "xx+ sumene from enesc=",sumenep - yysave=yy - yy=yy+aincr - write (2,*) xx,yy,zz - sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) - de_dyy_num=(sumenep-sumene)/aincr - yy=yysave - write (2,*) "yy+ sumene from enesc=",sumenep - zzsave=zz - zz=zz+aincr - write (2,*) xx,yy,zz - sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) - de_dzz_num=(sumenep-sumene)/aincr - zz=zzsave - write (2,*) "zz+ sumene from enesc=",sumenep - costsave=cost2tab(i+1) - sintsave=sint2tab(i+1) - cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr)) - sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr)) - sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) - de_dt_num=(sumenep-sumene)/aincr - write (2,*) " t+ sumene from enesc=",sumenep - cost2tab(i+1)=costsave - sint2tab(i+1)=sintsave -C End of diagnostics section. -#endif -C -C Compute the gradient of esc -C - pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2 - pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2 - pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2 - pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2 - pom_dx=dsc_i*dp2_i*cost2tab(i+1) - pom_dy=dsc_i*dp2_i*sint2tab(i+1) - pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1)) - pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1)) - pom1=(sumene3*sint2tab(i+1)+sumene1) - & *(pom_s1/dscp1+pom_s16*dscp1**4) - pom2=(sumene4*cost2tab(i+1)+sumene2) - & *(pom_s2/dscp2+pom_s26*dscp2**4) - sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy - sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2 - & +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2) - & +x(40)*yy*zz - sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy - sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2 - & +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2) - & +x(60)*yy*zz - de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6) - & +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6) - & +(pom1+pom2)*pom_dx -#ifdef DEBUG - write(2,*), "de_dxx = ", de_dxx,de_dxx_num -#endif -C - sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz - sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2 - & +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2) - & +x(40)*xx*zz - sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz - sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz - & +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz - & +x(59)*zz**2 +x(60)*xx*zz - de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6) - & +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6) - & +(pom1-pom2)*pom_dy -#ifdef DEBUG - write(2,*), "de_dyy = ", de_dyy,de_dyy_num -#endif -C - de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy - & +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx - & +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) - & +(x(4) + 2*x(7)*zz+ x(8)*xx + x(10)*yy)*(s1+s1_6) - & +(x(44)+2*x(47)*zz +x(48)*xx +x(50)*yy +3*x(53)*zz**2 - & +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy - & +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6) - & + ( x(14) + 2*x(17)*zz+ x(18)*xx + x(20)*yy)*(s2+s2_6) -#ifdef DEBUG - write(2,*), "de_dzz = ", de_dzz,de_dzz_num -#endif -C - de_dt = 0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) - & -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6) - & +pom1*pom_dt1+pom2*pom_dt2 -#ifdef DEBUG - write(2,*), "de_dt = ", de_dt,de_dt_num -#endif -c -C - cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres)) - cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres)) - cosfac2xx=cosfac2*xx - sinfac2yy=sinfac2*yy - do k = 1,3 - dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))* - & vbld_inv(i+1) - dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))* - & vbld_inv(i) - pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1) - pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i) -c write (iout,*) "i",i," k",k," pom",pom," pom1",pom1, -c & " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k) -c write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3), -c & (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i) - dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx - dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx - dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy - dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy - dZZ_Ci1(k)=0.0d0 - dZZ_Ci(k)=0.0d0 - do j=1,3 - dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres) - dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres) - enddo - - dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres)) - dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres)) - dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres)) -c - dt_dCi(k) = -dt_dCi(k)/sinttab(i+1) - dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1) - enddo - - do k=1,3 - dXX_Ctab(k,i)=dXX_Ci(k) - dXX_C1tab(k,i)=dXX_Ci1(k) - dYY_Ctab(k,i)=dYY_Ci(k) - dYY_C1tab(k,i)=dYY_Ci1(k) - dZZ_Ctab(k,i)=dZZ_Ci(k) - dZZ_C1tab(k,i)=dZZ_Ci1(k) - dXX_XYZtab(k,i)=dXX_XYZ(k) - dYY_XYZtab(k,i)=dYY_XYZ(k) - dZZ_XYZtab(k,i)=dZZ_XYZ(k) - enddo - - do k = 1,3 -c write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1", -c & dyy_ci1(k)," dzz_ci1",dzz_ci1(k) -c write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci", -c & dyy_ci(k)," dzz_ci",dzz_ci(k) -c write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci", -c & dt_dci(k) -c write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ", -c & dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) - gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k) - & +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k) - gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k) - & +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k) - gsclocx(k,i)= de_dxx*dxx_XYZ(k) - & +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k) - enddo -c write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3), -c & (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3) - -C to check gradient call subroutine check_grad - - 1 continue - enddo - return - end -c------------------------------------------------------------------------------ - double precision function enesc(x,xx,yy,zz,cost2,sint2) - implicit none - double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2, - & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6 - sumene1= x(1)+ x(2)*xx+ x(3)*yy+ x(4)*zz+ x(5)*xx**2 - & + x(6)*yy**2+ x(7)*zz**2+ x(8)*xx*zz+ x(9)*xx*yy - & + x(10)*yy*zz - sumene2= x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2 - & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy - & + x(20)*yy*zz - sumene3= x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2 - & +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy - & +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3 - & +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx - & +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy - & +x(40)*xx*yy*zz - sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2 - & +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy - & +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3 - & +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx - & +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy - & +x(60)*xx*yy*zz - dsc_i = 0.743d0+x(61) - dp2_i = 1.9d0+x(62) - dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i - & *(xx*cost2+yy*sint2)) - dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i - & *(xx*cost2-yy*sint2)) - s1=(1+x(63))/(0.1d0 + dscp1) - s1_6=(1+x(64))/(0.1d0 + dscp1**6) - s2=(1+x(65))/(0.1d0 + dscp2) - s2_6=(1+x(65))/(0.1d0 + dscp2**6) - sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6) - & + (sumene4*cost2 +sumene2)*(s2+s2_6) - enesc=sumene - return - end -#endif -c------------------------------------------------------------------------------ - subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont) -C -C This procedure calculates two-body contact function g(rij) and its derivative: -C -C eps0ij ! x < -1 -C g(rij) = esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5) ! -1 =< x =< 1 -C 0 ! x > 1 -C -C where x=(rij-r0ij)/delta -C -C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy -C - implicit none - double precision rij,r0ij,eps0ij,fcont,fprimcont - double precision x,x2,x4,delta -c delta=0.02D0*r0ij -c delta=0.2D0*r0ij - x=(rij-r0ij)/delta - if (x.lt.-1.0D0) then - fcont=eps0ij - fprimcont=0.0D0 - else if (x.le.1.0D0) then - x2=x*x - x4=x2*x2 - fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0) - fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta - else - fcont=0.0D0 - fprimcont=0.0D0 - endif - return - end -c------------------------------------------------------------------------------ - subroutine splinthet(theti,delta,ss,ssder) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.GEO' - thetup=pi-delta - thetlow=delta - if (theti.gt.pipol) then - call gcont(theti,thetup,1.0d0,delta,ss,ssder) - else - call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder) - ssder=-ssder - endif - return - end -c------------------------------------------------------------------------------ - subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim) - implicit none - double precision x,x0,delta,f0,f1,fprim0,f,fprim - double precision ksi,ksi2,ksi3,a1,a2,a3 - a1=fprim0*delta/(f1-f0) - a2=3.0d0-2.0d0*a1 - a3=a1-2.0d0 - ksi=(x-x0)/delta - ksi2=ksi*ksi - ksi3=ksi2*ksi - f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi)) - fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3)) - return - end -c------------------------------------------------------------------------------ - subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx) - implicit none - double precision x,x0,delta,f0x,f1x,fprim0x,fx - double precision ksi,ksi2,ksi3,a1,a2,a3 - ksi=(x-x0)/delta - ksi2=ksi*ksi - ksi3=ksi2*ksi - a1=fprim0x*delta - a2=3*(f1x-f0x)-2*fprim0x*delta - a3=fprim0x*delta-2*(f1x-f0x) - fx=f0x+a1*ksi+a2*ksi2+a3*ksi3 - return - end -C----------------------------------------------------------------------------- -#ifdef CRYST_TOR -C----------------------------------------------------------------------------- - subroutine etor(etors,edihcnstr) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.TORSION' - include 'COMMON.INTERACT' - include 'COMMON.DERIV' - include 'COMMON.CHAIN' - include 'COMMON.NAMES' - include 'COMMON.IOUNITS' - include 'COMMON.FFIELD' - include 'COMMON.TORCNSTR' - include 'COMMON.CONTROL' - logical lprn -C Set lprn=.true. for debugging - lprn=.false. -c lprn=.true. - etors=0.0D0 - do i=iphi_start,iphi_end - etors_ii=0.0D0 - itori=itortyp(itype(i-2)) - itori1=itortyp(itype(i-1)) - if (iabs(itype(i)).eq.20) then - iblock=2 - else - iblock=1 - endif - phii=phi(i) - gloci=0.0D0 -C Proline-Proline pair is a special case... - if (itori.eq.3 .and. itori1.eq.3) then - if (phii.gt.-dwapi3) then - cosphi=dcos(3*phii) - fac=1.0D0/(1.0D0-cosphi) - etorsi=v1(1,3,3)*fac - etorsi=etorsi+etorsi - etors=etors+etorsi-v1(1,3,3) - if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3) - gloci=gloci-3*fac*etorsi*dsin(3*phii) - endif - do j=1,3 - v1ij=v1(j+1,itori,itori1) - v2ij=v2(j+1,itori,itori1) - cosphi=dcos(j*phii) - sinphi=dsin(j*phii) - etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij) - if (energy_dec) etors_ii=etors_ii+ - & v2ij*sinphi+dabs(v1ij)+dabs(v2ij) - gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi) - enddo - else - do j=1,nterm_old - v1ij=v1(j,itori,itori1) - v2ij=v2(j,itori,itori1) - cosphi=dcos(j*phii) - sinphi=dsin(j*phii) - etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij) - if (energy_dec) etors_ii=etors_ii+ - & v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij) - gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi) - enddo - endif - if (energy_dec) write (iout,'(a6,i5,0pf7.3)') - & 'etor',i,etors_ii - if (lprn) - & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') - & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1, - & (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6) - gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci -c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg) - enddo -! 6/20/98 - dihedral angle constraints - edihcnstr=0.0d0 - do i=1,ndih_constr - itori=idih_constr(i) - phii=phi(itori) - difi=phii-phi0(i) - if (difi.gt.drange(i)) then - difi=difi-drange(i) - edihcnstr=edihcnstr+0.25d0*ftors*difi**4 - gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3 - else if (difi.lt.-drange(i)) then - difi=difi+drange(i) - edihcnstr=edihcnstr+0.25d0*ftors*difi**4 - gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3 - endif -! write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii, -! & rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg) - enddo -! write (iout,*) 'edihcnstr',edihcnstr - return - end -c------------------------------------------------------------------------------ - subroutine etor_d(etors_d) - etors_d=0.0d0 - return - end -c---------------------------------------------------------------------------- -#else - subroutine etor(etors,edihcnstr) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.TORSION' - include 'COMMON.INTERACT' - include 'COMMON.DERIV' - include 'COMMON.CHAIN' - include 'COMMON.NAMES' - include 'COMMON.IOUNITS' - include 'COMMON.FFIELD' - include 'COMMON.TORCNSTR' - include 'COMMON.CONTROL' - logical lprn -C Set lprn=.true. for debugging - lprn=.false. -c lprn=.true. - etors=0.0D0 - do i=iphi_start,iphi_end - etors_ii=0.0D0 - itori=itortyp(itype(i-2)) - itori1=itortyp(itype(i-1)) - phii=phi(i) - gloci=0.0D0 -C Regular cosine and sine terms - do j=1,nterm(itori,itori1,iblock) - v1ij=v1(j,itori,itori1,iblock) - v2ij=v2(j,itori,itori1,iblock) - cosphi=dcos(j*phii) - sinphi=dsin(j*phii) - etors=etors+v1ij*cosphi+v2ij*sinphi - if (energy_dec) etors_ii=etors_ii+ - & v1ij*cosphi+v2ij*sinphi - gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi) - enddo -C Lorentz terms -C v1 -C E = SUM ----------------------------------- - v1 -C [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1 -C - cosphi=dcos(0.5d0*phii) - sinphi=dsin(0.5d0*phii) - do j=1,nlor(itori,itori1,iblock) - vl1ij=vlor1(j,itori,itori1) - vl2ij=vlor2(j,itori,itori1) - vl3ij=vlor3(j,itori,itori1) - pom=vl2ij*cosphi+vl3ij*sinphi - pom1=1.0d0/(pom*pom+1.0d0) - etors=etors+vl1ij*pom1 - if (energy_dec) etors_ii=etors_ii+ - & vl1ij*pom1 - pom=-pom*pom1*pom1 - gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom - enddo -C Subtract the constant term - etors=etors-v0(itori,itori1,iblock) - if (energy_dec) write (iout,'(a6,i5,0pf7.3)') - & 'etor',i,etors_ii-v0(itori,itori1,iblock) - if (lprn) - & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') - & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1, - & (v1(j,itori,itori1,iblock),j=1,6), - & (v2(j,itori,itori1,iblock),j=1,6) - gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci -c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg) - enddo -! 6/20/98 - dihedral angle constraints - edihcnstr=0.0d0 -c do i=1,ndih_constr - do i=idihconstr_start,idihconstr_end - itori=idih_constr(i) - phii=phi(itori) - difi=pinorm(phii-phi0(i)) - if (difi.gt.drange(i)) then - difi=difi-drange(i) - edihcnstr=edihcnstr+0.25d0*ftors*difi**4 - gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3 - else if (difi.lt.-drange(i)) then - difi=difi+drange(i) - edihcnstr=edihcnstr+0.25d0*ftors*difi**4 - gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3 - else - difi=0.0 - endif -cd write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii, -cd & rad2deg*phi0(i), rad2deg*drange(i), -cd & rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg) - enddo -cd write (iout,*) 'edihcnstr',edihcnstr - return - end -c---------------------------------------------------------------------------- - subroutine etor_d(etors_d) -C 6/23/01 Compute double torsional energy - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.TORSION' - include 'COMMON.INTERACT' - include 'COMMON.DERIV' - include 'COMMON.CHAIN' - include 'COMMON.NAMES' - include 'COMMON.IOUNITS' - include 'COMMON.FFIELD' - include 'COMMON.TORCNSTR' - logical lprn -C Set lprn=.true. for debugging - lprn=.false. -c lprn=.true. - etors_d=0.0D0 - do i=iphid_start,iphid_end - itori=itortyp(itype(i-2)) - itori1=itortyp(itype(i-1)) - itori2=itortyp(itype(i)) - iblock=1 - if (iabs(itype(i+1)).eq.20) iblock=2 - phii=phi(i) - phii1=phi(i+1) - gloci1=0.0D0 - gloci2=0.0D0 -C Regular cosine and sine terms - do j=1,ntermd_1(itori,itori1,itori2,iblock) - v1cij=v1c(1,j,itori,itori1,itori2,iblock) - v1sij=v1s(1,j,itori,itori1,itori2,iblock) - v2cij=v1c(2,j,itori,itori1,itori2,iblock) - v2sij=v1s(2,j,itori,itori1,itori2,iblock) - cosphi1=dcos(j*phii) - sinphi1=dsin(j*phii) - cosphi2=dcos(j*phii1) - sinphi2=dsin(j*phii1) - etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+ - & v2cij*cosphi2+v2sij*sinphi2 - gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1) - gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2) - enddo - do k=2,ntermd_2(itori,itori1,itori2,iblock) - do l=1,k-1 - v1cdij = v2c(k,l,itori,itori1,itori2,iblock) - v2cdij = v2c(l,k,itori,itori1,itori2,iblock) - v1sdij = v2s(k,l,itori,itori1,itori2,iblock) - v2sdij = v2s(l,k,itori,itori1,itori2,iblock) - cosphi1p2=dcos(l*phii+(k-l)*phii1) - cosphi1m2=dcos(l*phii-(k-l)*phii1) - sinphi1p2=dsin(l*phii+(k-l)*phii1) - sinphi1m2=dsin(l*phii-(k-l)*phii1) - etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+ - & v1sdij*sinphi1p2+v2sdij*sinphi1m2 - gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2 - & -v1cdij*sinphi1p2-v2cdij*sinphi1m2) - gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2 - & -v1cdij*sinphi1p2+v2cdij*sinphi1m2) - enddo - enddo - gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1 - gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2 - enddo - return - end -#endif -c------------------------------------------------------------------------------ - subroutine eback_sc_corr(esccor) -c 7/21/2007 Correlations between the backbone-local and side-chain-local -c conformational states; temporarily implemented as differences -c between UNRES torsional potentials (dependent on three types of -c residues) and the torsional potentials dependent on all 20 types -c of residues computed from AM1 energy surfaces of terminally-blocked -c amino-acid residues. - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.TORSION' - include 'COMMON.SCCOR' - include 'COMMON.INTERACT' - include 'COMMON.DERIV' - include 'COMMON.CHAIN' - include 'COMMON.NAMES' - include 'COMMON.IOUNITS' - include 'COMMON.FFIELD' - include 'COMMON.CONTROL' - logical lprn -C Set lprn=.true. for debugging - lprn=.false. -c lprn=.true. -c write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor - esccor=0.0D0 - do i=iphi_start,iphi_end - esccor_ii=0.0D0 - itori=itype(i-2) - itori1=itype(i-1) - phii=phi(i) - gloci=0.0D0 - do j=1,nterm_sccor - v1ij=v1sccor(j,itori,itori1) - v2ij=v2sccor(j,itori,itori1) - cosphi=dcos(j*phii) - sinphi=dsin(j*phii) - esccor=esccor+v1ij*cosphi+v2ij*sinphi - gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi) - enddo - if (lprn) - & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') - & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1, - & (v1sccor(j,itori,itori1),j=1,6),(v2sccor(j,itori,itori1),j=1,6) - gsccor_loc(i-3)=gsccor_loc(i-3)+gloci - enddo - return - end -c---------------------------------------------------------------------------- - subroutine multibody(ecorr) -C This subroutine calculates multi-body contributions to energy following -C the idea of Skolnick et al. If side chains I and J make a contact and -C at the same time side chains I+1 and J+1 make a contact, an extra -C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added. - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - double precision gx(3),gx1(3) - logical lprn - -C Set lprn=.true. for debugging - lprn=.false. - - if (lprn) then - write (iout,'(a)') 'Contact function values:' - do i=nnt,nct-2 - write (iout,'(i2,20(1x,i2,f10.5))') - & i,(jcont(j,i),facont(j,i),j=1,num_cont(i)) - enddo - endif - ecorr=0.0D0 - do i=nnt,nct - do j=1,3 - gradcorr(j,i)=0.0D0 - gradxorr(j,i)=0.0D0 - enddo - enddo - do i=nnt,nct-2 - - DO ISHIFT = 3,4 - - i1=i+ishift - num_conti=num_cont(i) - num_conti1=num_cont(i1) - do jj=1,num_conti - j=jcont(jj,i) - do kk=1,num_conti1 - j1=jcont(kk,i1) - if (j1.eq.j+ishift .or. j1.eq.j-ishift) then -cd write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1, -cd & ' ishift=',ishift -C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. -C The system gains extra energy. - ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk) - endif ! j1==j+-ishift - enddo ! kk - enddo ! jj - - ENDDO ! ISHIFT - - enddo ! i - return - end -c------------------------------------------------------------------------------ - double precision function esccorr(i,j,k,l,jj,kk) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - double precision gx(3),gx1(3) - logical lprn - lprn=.false. - eij=facont(jj,i) - ekl=facont(kk,k) -cd write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl -C Calculate the multi-body contribution to energy. -C Calculate multi-body contributions to the gradient. -cd write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3), -cd & k,l,(gacont(m,kk,k),m=1,3) - do m=1,3 - gx(m) =ekl*gacont(m,jj,i) - gx1(m)=eij*gacont(m,kk,k) - gradxorr(m,i)=gradxorr(m,i)-gx(m) - gradxorr(m,j)=gradxorr(m,j)+gx(m) - gradxorr(m,k)=gradxorr(m,k)-gx1(m) - gradxorr(m,l)=gradxorr(m,l)+gx1(m) - enddo - do m=i,j-1 - do ll=1,3 - gradcorr(ll,m)=gradcorr(ll,m)+gx(ll) - enddo - enddo - do m=k,l-1 - do ll=1,3 - gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll) - enddo - enddo - esccorr=-eij*ekl - return - end -c------------------------------------------------------------------------------ - subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1) -C This subroutine calculates multi-body contributions to hydrogen-bonding - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' -#ifdef MPI - include "mpif.h" - parameter (max_cont=maxconts) - parameter (max_dim=26) - integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error - double precision zapas(max_dim,maxconts,max_fg_procs), - & zapas_recv(max_dim,maxconts,max_fg_procs) - common /przechowalnia/ zapas - integer status(MPI_STATUS_SIZE),req(maxconts*2), - & status_array(MPI_STATUS_SIZE,maxconts*2) -#endif - include 'COMMON.SETUP' - include 'COMMON.FFIELD' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - include 'COMMON.CONTROL' - include 'COMMON.LOCAL' - double precision gx(3),gx1(3),time00 - logical lprn,ldone - -C Set lprn=.true. for debugging - lprn=.false. -#ifdef MPI - n_corr=0 - n_corr1=0 - if (nfgtasks.le.1) goto 30 - if (lprn) then - write (iout,'(a)') 'Contact function values before RECEIVE:' - do i=nnt,nct-2 - write (iout,'(2i3,50(1x,i2,f5.2))') - & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i), - & j=1,num_cont_hb(i)) - enddo - endif - call flush(iout) - do i=1,ntask_cont_from - ncont_recv(i)=0 - enddo - do i=1,ntask_cont_to - ncont_sent(i)=0 - enddo -c write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to", -c & ntask_cont_to -C Make the list of contacts to send to send to other procesors -c write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end -c call flush(iout) - do i=iturn3_start,iturn3_end -c write (iout,*) "make contact list turn3",i," num_cont", -c & num_cont_hb(i) - call add_hb_contact(i,i+2,iturn3_sent_local(1,i)) - enddo - do i=iturn4_start,iturn4_end -c write (iout,*) "make contact list turn4",i," num_cont", -c & num_cont_hb(i) - call add_hb_contact(i,i+3,iturn4_sent_local(1,i)) - enddo - do ii=1,nat_sent - i=iat_sent(ii) -c write (iout,*) "make contact list longrange",i,ii," num_cont", -c & num_cont_hb(i) - do j=1,num_cont_hb(i) - do k=1,4 - jjc=jcont_hb(j,i) - iproc=iint_sent_local(k,jjc,ii) -c write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc - if (iproc.gt.0) then - ncont_sent(iproc)=ncont_sent(iproc)+1 - nn=ncont_sent(iproc) - zapas(1,nn,iproc)=i - zapas(2,nn,iproc)=jjc - zapas(3,nn,iproc)=facont_hb(j,i) - zapas(4,nn,iproc)=ees0p(j,i) - zapas(5,nn,iproc)=ees0m(j,i) - zapas(6,nn,iproc)=gacont_hbr(1,j,i) - zapas(7,nn,iproc)=gacont_hbr(2,j,i) - zapas(8,nn,iproc)=gacont_hbr(3,j,i) - zapas(9,nn,iproc)=gacontm_hb1(1,j,i) - zapas(10,nn,iproc)=gacontm_hb1(2,j,i) - zapas(11,nn,iproc)=gacontm_hb1(3,j,i) - zapas(12,nn,iproc)=gacontp_hb1(1,j,i) - zapas(13,nn,iproc)=gacontp_hb1(2,j,i) - zapas(14,nn,iproc)=gacontp_hb1(3,j,i) - zapas(15,nn,iproc)=gacontm_hb2(1,j,i) - zapas(16,nn,iproc)=gacontm_hb2(2,j,i) - zapas(17,nn,iproc)=gacontm_hb2(3,j,i) - zapas(18,nn,iproc)=gacontp_hb2(1,j,i) - zapas(19,nn,iproc)=gacontp_hb2(2,j,i) - zapas(20,nn,iproc)=gacontp_hb2(3,j,i) - zapas(21,nn,iproc)=gacontm_hb3(1,j,i) - zapas(22,nn,iproc)=gacontm_hb3(2,j,i) - zapas(23,nn,iproc)=gacontm_hb3(3,j,i) - zapas(24,nn,iproc)=gacontp_hb3(1,j,i) - zapas(25,nn,iproc)=gacontp_hb3(2,j,i) - zapas(26,nn,iproc)=gacontp_hb3(3,j,i) - endif - enddo - enddo - enddo - if (lprn) then - write (iout,*) - & "Numbers of contacts to be sent to other processors", - & (ncont_sent(i),i=1,ntask_cont_to) - write (iout,*) "Contacts sent" - do ii=1,ntask_cont_to - nn=ncont_sent(ii) - iproc=itask_cont_to(ii) - write (iout,*) nn," contacts to processor",iproc, - & " of CONT_TO_COMM group" - do i=1,nn - write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5) - enddo - enddo - call flush(iout) - endif - CorrelType=477 - CorrelID=fg_rank+1 - CorrelType1=478 - CorrelID1=nfgtasks+fg_rank+1 - ireq=0 -C Receive the numbers of needed contacts from other processors - do ii=1,ntask_cont_from - iproc=itask_cont_from(ii) - ireq=ireq+1 - call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType, - & FG_COMM,req(ireq),IERR) - enddo -c write (iout,*) "IRECV ended" -c call flush(iout) -C Send the number of contacts needed by other processors - do ii=1,ntask_cont_to - iproc=itask_cont_to(ii) - ireq=ireq+1 - call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType, - & FG_COMM,req(ireq),IERR) - enddo -c write (iout,*) "ISEND ended" -c write (iout,*) "number of requests (nn)",ireq - call flush(iout) - if (ireq.gt.0) - & call MPI_Waitall(ireq,req,status_array,ierr) -c write (iout,*) -c & "Numbers of contacts to be received from other processors", -c & (ncont_recv(i),i=1,ntask_cont_from) -c call flush(iout) -C Receive contacts - ireq=0 - do ii=1,ntask_cont_from - iproc=itask_cont_from(ii) - nn=ncont_recv(ii) -c write (iout,*) "Receiving",nn," contacts from processor",iproc, -c & " of CONT_TO_COMM group" - call flush(iout) - if (nn.gt.0) then - ireq=ireq+1 - call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim, - & MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR) -c write (iout,*) "ireq,req",ireq,req(ireq) - endif - enddo -C Send the contacts to processors that need them - do ii=1,ntask_cont_to - iproc=itask_cont_to(ii) - nn=ncont_sent(ii) -c write (iout,*) nn," contacts to processor",iproc, -c & " of CONT_TO_COMM group" - if (nn.gt.0) then - ireq=ireq+1 - call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION, - & iproc,CorrelType1,FG_COMM,req(ireq),IERR) -c write (iout,*) "ireq,req",ireq,req(ireq) -c do i=1,nn -c write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5) -c enddo - endif - enddo -c write (iout,*) "number of requests (contacts)",ireq -c write (iout,*) "req",(req(i),i=1,4) -c call flush(iout) - if (ireq.gt.0) - & call MPI_Waitall(ireq,req,status_array,ierr) - do iii=1,ntask_cont_from - iproc=itask_cont_from(iii) - nn=ncont_recv(iii) - if (lprn) then - write (iout,*) "Received",nn," contacts from processor",iproc, - & " of CONT_FROM_COMM group" - call flush(iout) - do i=1,nn - write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5) - enddo - call flush(iout) - endif - do i=1,nn - ii=zapas_recv(1,i,iii) -c Flag the received contacts to prevent double-counting - jj=-zapas_recv(2,i,iii) -c write (iout,*) "iii",iii," i",i," ii",ii," jj",jj -c call flush(iout) - nnn=num_cont_hb(ii)+1 - num_cont_hb(ii)=nnn - jcont_hb(nnn,ii)=jj - facont_hb(nnn,ii)=zapas_recv(3,i,iii) - ees0p(nnn,ii)=zapas_recv(4,i,iii) - ees0m(nnn,ii)=zapas_recv(5,i,iii) - gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii) - gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii) - gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii) - gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii) - gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii) - gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii) - gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii) - gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii) - gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii) - gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii) - gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii) - gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii) - gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii) - gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii) - gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii) - gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii) - gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii) - gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii) - gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii) - gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii) - gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii) - enddo - enddo - call flush(iout) - if (lprn) then - write (iout,'(a)') 'Contact function values after receive:' - do i=nnt,nct-2 - write (iout,'(2i3,50(1x,i3,f5.2))') - & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i), - & j=1,num_cont_hb(i)) - enddo - call flush(iout) - endif - 30 continue -#endif - if (lprn) then - write (iout,'(a)') 'Contact function values:' - do i=nnt,nct-2 - write (iout,'(2i3,50(1x,i3,f5.2))') - & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i), - & j=1,num_cont_hb(i)) - enddo - endif - ecorr=0.0D0 -C Remove the loop below after debugging !!! - do i=nnt,nct - do j=1,3 - gradcorr(j,i)=0.0D0 - gradxorr(j,i)=0.0D0 - enddo - enddo -C Calculate the local-electrostatic correlation terms - do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end) - i1=i+1 - num_conti=num_cont_hb(i) - num_conti1=num_cont_hb(i+1) - do jj=1,num_conti - j=jcont_hb(jj,i) - jp=iabs(j) - do kk=1,num_conti1 - j1=jcont_hb(kk,i1) - jp1=iabs(j1) -c write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1, -c & ' jj=',jj,' kk=',kk - if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 - & .or. j.lt.0 .and. j1.gt.0) .and. - & (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then -C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. -C The system gains extra energy. - ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0) - if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') - & 'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0) - n_corr=n_corr+1 - else if (j1.eq.j) then -C Contacts I-J and I-(J+1) occur simultaneously. -C The system loses extra energy. -c ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) - endif - enddo ! kk - do kk=1,num_conti - j1=jcont_hb(kk,i) -c write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1, -c & ' jj=',jj,' kk=',kk - if (j1.eq.j+1) then -C Contacts I-J and (I+1)-J occur simultaneously. -C The system loses extra energy. -c ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0) - endif ! j1==j+1 - enddo ! kk - enddo ! jj - enddo ! i - return - end -c------------------------------------------------------------------------------ - subroutine add_hb_contact(ii,jj,itask) - implicit real*8 (a-h,o-z) - include "DIMENSIONS" - include "COMMON.IOUNITS" - integer max_cont - integer max_dim - parameter (max_cont=maxconts) - parameter (max_dim=26) - include "COMMON.CONTACTS" -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - double precision zapas(max_dim,maxconts,max_fg_procs), - & zapas_recv(max_dim,maxconts,max_fg_procs) - common /przechowalnia/ zapas - integer i,j,ii,jj,iproc,itask(4),nn -c write (iout,*) "itask",itask - do i=1,2 - iproc=itask(i) - if (iproc.gt.0) then - do j=1,num_cont_hb(ii) - jjc=jcont_hb(j,ii) -c write (iout,*) "i",ii," j",jj," jjc",jjc - if (jjc.eq.jj) then - ncont_sent(iproc)=ncont_sent(iproc)+1 - nn=ncont_sent(iproc) - zapas(1,nn,iproc)=ii - zapas(2,nn,iproc)=jjc - zapas(3,nn,iproc)=facont_hb(j,ii) - zapas(4,nn,iproc)=ees0p(j,ii) - zapas(5,nn,iproc)=ees0m(j,ii) - zapas(6,nn,iproc)=gacont_hbr(1,j,ii) - zapas(7,nn,iproc)=gacont_hbr(2,j,ii) - zapas(8,nn,iproc)=gacont_hbr(3,j,ii) - zapas(9,nn,iproc)=gacontm_hb1(1,j,ii) - zapas(10,nn,iproc)=gacontm_hb1(2,j,ii) - zapas(11,nn,iproc)=gacontm_hb1(3,j,ii) - zapas(12,nn,iproc)=gacontp_hb1(1,j,ii) - zapas(13,nn,iproc)=gacontp_hb1(2,j,ii) - zapas(14,nn,iproc)=gacontp_hb1(3,j,ii) - zapas(15,nn,iproc)=gacontm_hb2(1,j,ii) - zapas(16,nn,iproc)=gacontm_hb2(2,j,ii) - zapas(17,nn,iproc)=gacontm_hb2(3,j,ii) - zapas(18,nn,iproc)=gacontp_hb2(1,j,ii) - zapas(19,nn,iproc)=gacontp_hb2(2,j,ii) - zapas(20,nn,iproc)=gacontp_hb2(3,j,ii) - zapas(21,nn,iproc)=gacontm_hb3(1,j,ii) - zapas(22,nn,iproc)=gacontm_hb3(2,j,ii) - zapas(23,nn,iproc)=gacontm_hb3(3,j,ii) - zapas(24,nn,iproc)=gacontp_hb3(1,j,ii) - zapas(25,nn,iproc)=gacontp_hb3(2,j,ii) - zapas(26,nn,iproc)=gacontp_hb3(3,j,ii) - exit - endif - enddo - endif - enddo - return - end -c------------------------------------------------------------------------------ - subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr, - & n_corr1) -C This subroutine calculates multi-body contributions to hydrogen-bonding - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' -#ifdef MPI - include "mpif.h" - parameter (max_cont=maxconts) - parameter (max_dim=70) - integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error - double precision zapas(max_dim,maxconts,max_fg_procs), - & zapas_recv(max_dim,maxconts,max_fg_procs) - common /przechowalnia/ zapas - integer status(MPI_STATUS_SIZE),req(maxconts*2), - & status_array(MPI_STATUS_SIZE,maxconts*2) -#endif - include 'COMMON.SETUP' - include 'COMMON.FFIELD' - include 'COMMON.DERIV' - include 'COMMON.LOCAL' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - include 'COMMON.CHAIN' - include 'COMMON.CONTROL' - double precision gx(3),gx1(3) - integer num_cont_hb_old(maxres) - logical lprn,ldone - double precision eello4,eello5,eelo6,eello_turn6 - external eello4,eello5,eello6,eello_turn6 -C Set lprn=.true. for debugging - lprn=.false. - eturn6=0.0d0 -#ifdef MPI - do i=1,nres - num_cont_hb_old(i)=num_cont_hb(i) - enddo - n_corr=0 - n_corr1=0 - if (nfgtasks.le.1) goto 30 - if (lprn) then - write (iout,'(a)') 'Contact function values before RECEIVE:' - do i=nnt,nct-2 - write (iout,'(2i3,50(1x,i2,f5.2))') - & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i), - & j=1,num_cont_hb(i)) - enddo - endif - call flush(iout) - do i=1,ntask_cont_from - ncont_recv(i)=0 - enddo - do i=1,ntask_cont_to - ncont_sent(i)=0 - enddo -c write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to", -c & ntask_cont_to -C Make the list of contacts to send to send to other procesors - do i=iturn3_start,iturn3_end -c write (iout,*) "make contact list turn3",i," num_cont", -c & num_cont_hb(i) - call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i)) - enddo - do i=iturn4_start,iturn4_end -c write (iout,*) "make contact list turn4",i," num_cont", -c & num_cont_hb(i) - call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i)) - enddo - do ii=1,nat_sent - i=iat_sent(ii) -c write (iout,*) "make contact list longrange",i,ii," num_cont", -c & num_cont_hb(i) - do j=1,num_cont_hb(i) - do k=1,4 - jjc=jcont_hb(j,i) - iproc=iint_sent_local(k,jjc,ii) -c write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc - if (iproc.ne.0) then - ncont_sent(iproc)=ncont_sent(iproc)+1 - nn=ncont_sent(iproc) - zapas(1,nn,iproc)=i - zapas(2,nn,iproc)=jjc - zapas(3,nn,iproc)=d_cont(j,i) - ind=3 - do kk=1,3 - ind=ind+1 - zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i) - enddo - do kk=1,2 - do ll=1,2 - ind=ind+1 - zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i) - enddo - enddo - do jj=1,5 - do kk=1,3 - do ll=1,2 - do mm=1,2 - ind=ind+1 - zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i) - enddo - enddo - enddo - enddo - endif - enddo - enddo - enddo - if (lprn) then - write (iout,*) - & "Numbers of contacts to be sent to other processors", - & (ncont_sent(i),i=1,ntask_cont_to) - write (iout,*) "Contacts sent" - do ii=1,ntask_cont_to - nn=ncont_sent(ii) - iproc=itask_cont_to(ii) - write (iout,*) nn," contacts to processor",iproc, - & " of CONT_TO_COMM group" - do i=1,nn - write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10) - enddo - enddo - call flush(iout) - endif - CorrelType=477 - CorrelID=fg_rank+1 - CorrelType1=478 - CorrelID1=nfgtasks+fg_rank+1 - ireq=0 -C Receive the numbers of needed contacts from other processors - do ii=1,ntask_cont_from - iproc=itask_cont_from(ii) - ireq=ireq+1 - call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType, - & FG_COMM,req(ireq),IERR) - enddo -c write (iout,*) "IRECV ended" -c call flush(iout) -C Send the number of contacts needed by other processors - do ii=1,ntask_cont_to - iproc=itask_cont_to(ii) - ireq=ireq+1 - call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType, - & FG_COMM,req(ireq),IERR) - enddo -c write (iout,*) "ISEND ended" -c write (iout,*) "number of requests (nn)",ireq - call flush(iout) - if (ireq.gt.0) - & call MPI_Waitall(ireq,req,status_array,ierr) -c write (iout,*) -c & "Numbers of contacts to be received from other processors", -c & (ncont_recv(i),i=1,ntask_cont_from) -c call flush(iout) -C Receive contacts - ireq=0 - do ii=1,ntask_cont_from - iproc=itask_cont_from(ii) - nn=ncont_recv(ii) -c write (iout,*) "Receiving",nn," contacts from processor",iproc, -c & " of CONT_TO_COMM group" - call flush(iout) - if (nn.gt.0) then - ireq=ireq+1 - call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim, - & MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR) -c write (iout,*) "ireq,req",ireq,req(ireq) - endif - enddo -C Send the contacts to processors that need them - do ii=1,ntask_cont_to - iproc=itask_cont_to(ii) - nn=ncont_sent(ii) -c write (iout,*) nn," contacts to processor",iproc, -c & " of CONT_TO_COMM group" - if (nn.gt.0) then - ireq=ireq+1 - call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION, - & iproc,CorrelType1,FG_COMM,req(ireq),IERR) -c write (iout,*) "ireq,req",ireq,req(ireq) -c do i=1,nn -c write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5) -c enddo - endif - enddo -c write (iout,*) "number of requests (contacts)",ireq -c write (iout,*) "req",(req(i),i=1,4) -c call flush(iout) - if (ireq.gt.0) - & call MPI_Waitall(ireq,req,status_array,ierr) - do iii=1,ntask_cont_from - iproc=itask_cont_from(iii) - nn=ncont_recv(iii) - if (lprn) then - write (iout,*) "Received",nn," contacts from processor",iproc, - & " of CONT_FROM_COMM group" - call flush(iout) - do i=1,nn - write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10) - enddo - call flush(iout) - endif - do i=1,nn - ii=zapas_recv(1,i,iii) -c Flag the received contacts to prevent double-counting - jj=-zapas_recv(2,i,iii) -c write (iout,*) "iii",iii," i",i," ii",ii," jj",jj -c call flush(iout) - nnn=num_cont_hb(ii)+1 - num_cont_hb(ii)=nnn - jcont_hb(nnn,ii)=jj - d_cont(nnn,ii)=zapas_recv(3,i,iii) - ind=3 - do kk=1,3 - ind=ind+1 - grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii) - enddo - do kk=1,2 - do ll=1,2 - ind=ind+1 - a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii) - enddo - enddo - do jj=1,5 - do kk=1,3 - do ll=1,2 - do mm=1,2 - ind=ind+1 - a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii) - enddo - enddo - enddo - enddo - enddo - enddo - call flush(iout) - if (lprn) then - write (iout,'(a)') 'Contact function values after receive:' - do i=nnt,nct-2 - write (iout,'(2i3,50(1x,i3,5f6.3))') - & i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i), - & ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i)) - enddo - call flush(iout) - endif - 30 continue -#endif - if (lprn) then - write (iout,'(a)') 'Contact function values:' - do i=nnt,nct-2 - write (iout,'(2i3,50(1x,i2,5f6.3))') - & i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i), - & ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i)) - enddo - endif - ecorr=0.0D0 - ecorr5=0.0d0 - ecorr6=0.0d0 -C Remove the loop below after debugging !!! - do i=nnt,nct - do j=1,3 - gradcorr(j,i)=0.0D0 - gradxorr(j,i)=0.0D0 - enddo - enddo -C Calculate the dipole-dipole interaction energies - if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then - do i=iatel_s,iatel_e+1 - num_conti=num_cont_hb(i) - do jj=1,num_conti - j=jcont_hb(jj,i) -#ifdef MOMENT - call dipole(i,j,jj) -#endif - enddo - enddo - endif -C Calculate the local-electrostatic correlation terms -c write (iout,*) "gradcorr5 in eello5 before loop" -c do iii=1,nres -c write (iout,'(i5,3f10.5)') -c & iii,(gradcorr5(jjj,iii),jjj=1,3) -c enddo - do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1) -c write (iout,*) "corr loop i",i - i1=i+1 - num_conti=num_cont_hb(i) - num_conti1=num_cont_hb(i+1) - do jj=1,num_conti - j=jcont_hb(jj,i) - jp=iabs(j) - do kk=1,num_conti1 - j1=jcont_hb(kk,i1) - jp1=iabs(j1) -c write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1, -c & ' jj=',jj,' kk=',kk -c if (j1.eq.j+1 .or. j1.eq.j-1) then - if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 - & .or. j.lt.0 .and. j1.gt.0) .and. - & (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then -C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. -C The system gains extra energy. - n_corr=n_corr+1 - sqd1=dsqrt(d_cont(jj,i)) - sqd2=dsqrt(d_cont(kk,i1)) - sred_geom = sqd1*sqd2 - IF (sred_geom.lt.cutoff_corr) THEN - call gcont(sred_geom,r0_corr,1.0D0,delt_corr, - & ekont,fprimcont) -cd write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1, -cd & ' jj=',jj,' kk=',kk - fac_prim1=0.5d0*sqd2/sqd1*fprimcont - fac_prim2=0.5d0*sqd1/sqd2*fprimcont - do l=1,3 - g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i) - g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1) - enddo - n_corr1=n_corr1+1 -cd write (iout,*) 'sred_geom=',sred_geom, -cd & ' ekont=',ekont,' fprim=',fprimcont, -cd & ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2 -cd write (iout,*) "g_contij",g_contij -cd write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i) -cd write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1) - call calc_eello(i,jp,i+1,jp1,jj,kk) - if (wcorr4.gt.0.0d0) - & ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk) - if (energy_dec.and.wcorr4.gt.0.0d0) - 1 write (iout,'(a6,4i5,0pf7.3)') - 2 'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk) -c write (iout,*) "gradcorr5 before eello5" -c do iii=1,nres -c write (iout,'(i5,3f10.5)') -c & iii,(gradcorr5(jjj,iii),jjj=1,3) -c enddo - if (wcorr5.gt.0.0d0) - & ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk) -c write (iout,*) "gradcorr5 after eello5" -c do iii=1,nres -c write (iout,'(i5,3f10.5)') -c & iii,(gradcorr5(jjj,iii),jjj=1,3) -c enddo - if (energy_dec.and.wcorr5.gt.0.0d0) - 1 write (iout,'(a6,4i5,0pf7.3)') - 2 'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk) -cd write(2,*)'wcorr6',wcorr6,' wturn6',wturn6 -cd write(2,*)'ijkl',i,jp,i+1,jp1 - if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3 - & .or. wturn6.eq.0.0d0))then -cd write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1 - ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk) - if (energy_dec) write (iout,'(a6,4i5,0pf7.3)') - 1 'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk) -cd write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5, -cd & 'ecorr6=',ecorr6 -cd write (iout,'(4e15.5)') sred_geom, -cd & dabs(eello4(i,jp,i+1,jp1,jj,kk)), -cd & dabs(eello5(i,jp,i+1,jp1,jj,kk)), -cd & dabs(eello6(i,jp,i+1,jp1,jj,kk)) - else if (wturn6.gt.0.0d0 - & .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then -cd write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1 - eturn6=eturn6+eello_turn6(i,jj,kk) - if (energy_dec) write (iout,'(a6,4i5,0pf7.3)') - 1 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk) -cd write (2,*) 'multibody_eello:eturn6',eturn6 - endif - ENDIF -1111 continue - endif - enddo ! kk - enddo ! jj - enddo ! i - do i=1,nres - num_cont_hb(i)=num_cont_hb_old(i) - enddo -c write (iout,*) "gradcorr5 in eello5" -c do iii=1,nres -c write (iout,'(i5,3f10.5)') -c & iii,(gradcorr5(jjj,iii),jjj=1,3) -c enddo - return - end -c------------------------------------------------------------------------------ - subroutine add_hb_contact_eello(ii,jj,itask) - implicit real*8 (a-h,o-z) - include "DIMENSIONS" - include "COMMON.IOUNITS" - integer max_cont - integer max_dim - parameter (max_cont=maxconts) - parameter (max_dim=70) - include "COMMON.CONTACTS" -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - double precision zapas(max_dim,maxconts,max_fg_procs), - & zapas_recv(max_dim,maxconts,max_fg_procs) - common /przechowalnia/ zapas - integer i,j,ii,jj,iproc,itask(4),nn -c write (iout,*) "itask",itask - do i=1,2 - iproc=itask(i) - if (iproc.gt.0) then - do j=1,num_cont_hb(ii) - jjc=jcont_hb(j,ii) -c write (iout,*) "send turns i",ii," j",jj," jjc",jjc - if (jjc.eq.jj) then - ncont_sent(iproc)=ncont_sent(iproc)+1 - nn=ncont_sent(iproc) - zapas(1,nn,iproc)=ii - zapas(2,nn,iproc)=jjc - zapas(3,nn,iproc)=d_cont(j,ii) - ind=3 - do kk=1,3 - ind=ind+1 - zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii) - enddo - do kk=1,2 - do ll=1,2 - ind=ind+1 - zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii) - enddo - enddo - do jj=1,5 - do kk=1,3 - do ll=1,2 - do mm=1,2 - ind=ind+1 - zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii) - enddo - enddo - enddo - enddo - exit - endif - enddo - endif - enddo - return - end -c------------------------------------------------------------------------------ - double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - double precision gx(3),gx1(3) - logical lprn - lprn=.false. - eij=facont_hb(jj,i) - ekl=facont_hb(kk,k) - ees0pij=ees0p(jj,i) - ees0pkl=ees0p(kk,k) - ees0mij=ees0m(jj,i) - ees0mkl=ees0m(kk,k) - ekont=eij*ekl - ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl) -cd ees=-(coeffp*ees0pkl+coeffm*ees0mkl) -C Following 4 lines for diagnostics. -cd ees0pkl=0.0D0 -cd ees0pij=1.0D0 -cd ees0mkl=0.0D0 -cd ees0mij=1.0D0 -c write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)') -c & 'Contacts ',i,j, -c & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l -c & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees, -c & 'gradcorr_long' -C Calculate the multi-body contribution to energy. -c ecorr=ecorr+ekont*ees -C Calculate multi-body contributions to the gradient. - coeffpees0pij=coeffp*ees0pij - coeffmees0mij=coeffm*ees0mij - coeffpees0pkl=coeffp*ees0pkl - coeffmees0mkl=coeffm*ees0mkl - do ll=1,3 -cgrad ghalfi=ees*ekl*gacont_hbr(ll,jj,i) - gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi - & -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+ - & coeffmees0mkl*gacontm_hb1(ll,jj,i)) - gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi - & -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+ - & coeffmees0mkl*gacontm_hb2(ll,jj,i)) -cgrad ghalfk=ees*eij*gacont_hbr(ll,kk,k) - gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk - & -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+ - & coeffmees0mij*gacontm_hb1(ll,kk,k)) - gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk - & -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+ - & coeffmees0mij*gacontm_hb2(ll,kk,k)) - gradlongij=ees*ekl*gacont_hbr(ll,jj,i)- - & ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+ - & coeffmees0mkl*gacontm_hb3(ll,jj,i)) - gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij - gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij - gradlongkl=ees*eij*gacont_hbr(ll,kk,k)- - & ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+ - & coeffmees0mij*gacontm_hb3(ll,kk,k)) - gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl - gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl -c write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl - enddo -c write (iout,*) -cgrad do m=i+1,j-1 -cgrad do ll=1,3 -cgrad gradcorr(ll,m)=gradcorr(ll,m)+ -cgrad & ees*ekl*gacont_hbr(ll,jj,i)- -cgrad & ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+ -cgrad & coeffm*ees0mkl*gacontm_hb3(ll,jj,i)) -cgrad enddo -cgrad enddo -cgrad do m=k+1,l-1 -cgrad do ll=1,3 -cgrad gradcorr(ll,m)=gradcorr(ll,m)+ -cgrad & ees*eij*gacont_hbr(ll,kk,k)- -cgrad & ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+ -cgrad & coeffm*ees0mij*gacontm_hb3(ll,kk,k)) -cgrad enddo -cgrad enddo -c write (iout,*) "ehbcorr",ekont*ees - ehbcorr=ekont*ees - return - end -#ifdef MOMENT -C--------------------------------------------------------------------------- - subroutine dipole(i,j,jj) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.FFIELD' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - include 'COMMON.TORSION' - include 'COMMON.VAR' - include 'COMMON.GEO' - dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2), - & auxmat(2,2) - iti1 = itortyp(itype(i+1)) - if (j.lt.nres-1) then - itj1 = itortyp(itype(j+1)) - else - itj1=ntortyp+1 - endif - do iii=1,2 - dipi(iii,1)=Ub2(iii,i) - dipderi(iii)=Ub2der(iii,i) - dipi(iii,2)=b1(iii,iti1) - dipj(iii,1)=Ub2(iii,j) - dipderj(iii)=Ub2der(iii,j) - dipj(iii,2)=b1(iii,itj1) - enddo - kkk=0 - do iii=1,2 - call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) - do jjj=1,2 - kkk=kkk+1 - dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1)) - enddo - enddo - do kkk=1,5 - do lll=1,3 - mmm=0 - do iii=1,2 - call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii), - & auxvec(1)) - do jjj=1,2 - mmm=mmm+1 - dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1)) - enddo - enddo - enddo - enddo - call transpose2(a_chuj(1,1,jj,i),auxmat(1,1)) - call matvec2(auxmat(1,1),dipderi(1),auxvec(1)) - do iii=1,2 - dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii)) - enddo - call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1)) - do iii=1,2 - dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii)) - enddo - return - end -#endif -C--------------------------------------------------------------------------- - subroutine calc_eello(i,j,k,l,jj,kk) -C -C This subroutine computes matrices and vectors needed to calculate -C the fourth-, fifth-, and sixth-order local-electrostatic terms. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - include 'COMMON.TORSION' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.FFIELD' - double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2), - & aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2) - logical lprn - common /kutas/ lprn -cd write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l, -cd & ' jj=',jj,' kk=',kk -cd if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return -cd write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2) -cd write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2) - do iii=1,2 - do jjj=1,2 - aa1(iii,jjj)=a_chuj(iii,jjj,jj,i) - aa2(iii,jjj)=a_chuj(iii,jjj,kk,k) - enddo - enddo - call transpose2(aa1(1,1),aa1t(1,1)) - call transpose2(aa2(1,1),aa2t(1,1)) - do kkk=1,5 - do lll=1,3 - call transpose2(a_chuj_der(1,1,lll,kkk,jj,i), - & aa1tder(1,1,lll,kkk)) - call transpose2(a_chuj_der(1,1,lll,kkk,kk,k), - & aa2tder(1,1,lll,kkk)) - enddo - enddo - if (l.eq.j+1) then -C parallel orientation of the two CA-CA-CA frames. - if (i.gt.1) then - iti=itortyp(itype(i)) - else - iti=ntortyp+1 - endif - itk1=itortyp(itype(k+1)) - itj=itortyp(itype(j)) - if (l.lt.nres-1) then - itl1=itortyp(itype(l+1)) - else - itl1=ntortyp+1 - endif -C A1 kernel(j+1) A2T -cd do iii=1,2 -cd write (iout,'(3f10.5,5x,3f10.5)') -cd & (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2) -cd enddo - call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), - & aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l), - & AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1)) -C Following matrices are needed only for 6-th order cumulants - IF (wcorr6.gt.0.0d0) THEN - call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), - & aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l), - & AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1)) - call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), - & aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l), - & Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1), - & ADtEAderx(1,1,1,1,1,1)) - lprn=.false. - call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), - & aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l), - & DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1), - & ADtEA1derx(1,1,1,1,1,1)) - ENDIF -C End 6-th order cumulants -cd lprn=.false. -cd if (lprn) then -cd write (2,*) 'In calc_eello6' -cd do iii=1,2 -cd write (2,*) 'iii=',iii -cd do kkk=1,5 -cd write (2,*) 'kkk=',kkk -cd do jjj=1,2 -cd write (2,'(3(2f10.5),5x)') -cd & ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3) -cd enddo -cd enddo -cd enddo -cd endif - call transpose2(EUgder(1,1,k),auxmat(1,1)) - call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1)) - call transpose2(EUg(1,1,k),auxmat(1,1)) - call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1)) - call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1)) - do iii=1,2 - do kkk=1,5 - do lll=1,3 - call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1), - & EAEAderx(1,1,lll,kkk,iii,1)) - enddo - enddo - enddo -C A1T kernel(i+1) A2 - call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1), - & a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k), - & AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2)) -C Following matrices are needed only for 6-th order cumulants - IF (wcorr6.gt.0.0d0) THEN - call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1), - & a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k), - & AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2)) - call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1), - & a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k), - & Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2), - & ADtEAderx(1,1,1,1,1,2)) - call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1), - & a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k), - & DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2), - & ADtEA1derx(1,1,1,1,1,2)) - ENDIF -C End 6-th order cumulants - call transpose2(EUgder(1,1,l),auxmat(1,1)) - call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2)) - call transpose2(EUg(1,1,l),auxmat(1,1)) - call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2)) - call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2)) - do iii=1,2 - do kkk=1,5 - do lll=1,3 - call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2), - & EAEAderx(1,1,lll,kkk,iii,2)) - enddo - enddo - enddo -C AEAb1 and AEAb2 -C Calculate the vectors and their derivatives in virtual-bond dihedral angles. -C They are needed only when the fifth- or the sixth-order cumulants are -C indluded. - IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN - call transpose2(AEA(1,1,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1)) - call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1)) - call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1)) - call transpose2(AEAderg(1,1,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1)) - call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1)) - call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1)) - call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1)) - call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1)) - call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1)) - call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1)) - call transpose2(AEA(1,1,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2)) - call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2)) - call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2)) - call transpose2(AEAderg(1,1,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2)) - call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2)) - call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2)) - call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2)) - call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2)) - call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2)) - call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2)) -C Calculate the Cartesian derivatives of the vectors. - do iii=1,2 - do kkk=1,5 - do lll=1,3 - call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti), - & AEAb1derx(1,lll,kkk,iii,1,1)) - call matvec2(auxmat(1,1),Ub2(1,i), - & AEAb2derx(1,lll,kkk,iii,1,1)) - call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1), - & AEAb1derx(1,lll,kkk,iii,2,1)) - call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1), - & AEAb2derx(1,lll,kkk,iii,2,1)) - call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itj), - & AEAb1derx(1,lll,kkk,iii,1,2)) - call matvec2(auxmat(1,1),Ub2(1,j), - & AEAb2derx(1,lll,kkk,iii,1,2)) - call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1), - & AEAb1derx(1,lll,kkk,iii,2,2)) - call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1), - & AEAb2derx(1,lll,kkk,iii,2,2)) - enddo - enddo - enddo - ENDIF -C End vectors - else -C Antiparallel orientation of the two CA-CA-CA frames. - if (i.gt.1) then - iti=itortyp(itype(i)) - else - iti=ntortyp+1 - endif - itk1=itortyp(itype(k+1)) - itl=itortyp(itype(l)) - itj=itortyp(itype(j)) - if (j.lt.nres-1) then - itj1=itortyp(itype(j+1)) - else - itj1=ntortyp+1 - endif -C A2 kernel(j-1)T A1T - call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), - & aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j), - & AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1)) -C Following matrices are needed only for 6-th order cumulants - IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and. - & j.eq.i+4 .and. l.eq.i+3)) THEN - call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), - & aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j), - & AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1)) - call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), - & aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j), - & Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1), - & ADtEAderx(1,1,1,1,1,1)) - call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), - & aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j), - & DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1), - & ADtEA1derx(1,1,1,1,1,1)) - ENDIF -C End 6-th order cumulants - call transpose2(EUgder(1,1,k),auxmat(1,1)) - call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1)) - call transpose2(EUg(1,1,k),auxmat(1,1)) - call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1)) - call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1)) - do iii=1,2 - do kkk=1,5 - do lll=1,3 - call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1), - & EAEAderx(1,1,lll,kkk,iii,1)) - enddo - enddo - enddo -C A2T kernel(i+1)T A1 - call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1), - & a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k), - & AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2)) -C Following matrices are needed only for 6-th order cumulants - IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and. - & j.eq.i+4 .and. l.eq.i+3)) THEN - call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1), - & a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k), - & AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2)) - call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1), - & a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k), - & Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2), - & ADtEAderx(1,1,1,1,1,2)) - call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1), - & a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k), - & DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2), - & ADtEA1derx(1,1,1,1,1,2)) - ENDIF -C End 6-th order cumulants - call transpose2(EUgder(1,1,j),auxmat(1,1)) - call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2)) - call transpose2(EUg(1,1,j),auxmat(1,1)) - call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2)) - call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2)) - do iii=1,2 - do kkk=1,5 - do lll=1,3 - call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2), - & EAEAderx(1,1,lll,kkk,iii,2)) - enddo - enddo - enddo -C AEAb1 and AEAb2 -C Calculate the vectors and their derivatives in virtual-bond dihedral angles. -C They are needed only when the fifth- or the sixth-order cumulants are -C indluded. - IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or. - & (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN - call transpose2(AEA(1,1,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1)) - call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1)) - call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1)) - call transpose2(AEAderg(1,1,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1)) - call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1)) - call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1)) - call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1)) - call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1)) - call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1)) - call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1)) - call transpose2(AEA(1,1,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2)) - call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2)) - call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2)) - call transpose2(AEAderg(1,1,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2)) - call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2)) - call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2)) - call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2)) - call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2)) - call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2)) - call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2)) -C Calculate the Cartesian derivatives of the vectors. - do iii=1,2 - do kkk=1,5 - do lll=1,3 - call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti), - & AEAb1derx(1,lll,kkk,iii,1,1)) - call matvec2(auxmat(1,1),Ub2(1,i), - & AEAb2derx(1,lll,kkk,iii,1,1)) - call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1), - & AEAb1derx(1,lll,kkk,iii,2,1)) - call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1), - & AEAb2derx(1,lll,kkk,iii,2,1)) - call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itl), - & AEAb1derx(1,lll,kkk,iii,1,2)) - call matvec2(auxmat(1,1),Ub2(1,l), - & AEAb2derx(1,lll,kkk,iii,1,2)) - call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1), - & AEAb1derx(1,lll,kkk,iii,2,2)) - call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j), - & AEAb2derx(1,lll,kkk,iii,2,2)) - enddo - enddo - enddo - ENDIF -C End vectors - endif - return - end -C--------------------------------------------------------------------------- - subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp, - & KK,KKderg,AKA,AKAderg,AKAderx) - implicit none - integer nderg - logical transp - double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5), - & aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2), - & AKAderg(2,2,nderg),AKAderx(2,2,3,5,2) - integer iii,kkk,lll - integer jjj,mmm - logical lprn - common /kutas/ lprn - call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1)) - do iii=1,nderg - call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp, - & AKAderg(1,1,iii)) - enddo -cd if (lprn) write (2,*) 'In kernel' - do kkk=1,5 -cd if (lprn) write (2,*) 'kkk=',kkk - do lll=1,3 - call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1), - & KK(1,1),transp,AKAderx(1,1,lll,kkk,1)) -cd if (lprn) then -cd write (2,*) 'lll=',lll -cd write (2,*) 'iii=1' -cd do jjj=1,2 -cd write (2,'(3(2f10.5),5x)') -cd & (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2) -cd enddo -cd endif - call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk), - & KK(1,1),transp,AKAderx(1,1,lll,kkk,2)) -cd if (lprn) then -cd write (2,*) 'lll=',lll -cd write (2,*) 'iii=2' -cd do jjj=1,2 -cd write (2,'(3(2f10.5),5x)') -cd & (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2) -cd enddo -cd endif - enddo - enddo - return - end -C--------------------------------------------------------------------------- - double precision function eello4(i,j,k,l,jj,kk) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - include 'COMMON.TORSION' - include 'COMMON.VAR' - include 'COMMON.GEO' - double precision pizda(2,2),ggg1(3),ggg2(3) -cd if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then -cd eello4=0.0d0 -cd return -cd endif -cd print *,'eello4:',i,j,k,l,jj,kk -cd write (2,*) 'i',i,' j',j,' k',k,' l',l -cd call checkint4(i,j,k,l,jj,kk,eel4_num) -cold eij=facont_hb(jj,i) -cold ekl=facont_hb(kk,k) -cold ekont=eij*ekl - eel4=-EAEA(1,1,1)-EAEA(2,2,1) -cd eel41=-EAEA(1,1,2)-EAEA(2,2,2) - gcorr_loc(k-1)=gcorr_loc(k-1) - & -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1)) - if (l.eq.j+1) then - gcorr_loc(l-1)=gcorr_loc(l-1) - & -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1)) - else - gcorr_loc(j-1)=gcorr_loc(j-1) - & -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1)) - endif - do iii=1,2 - do kkk=1,5 - do lll=1,3 - derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1) - & -EAEAderx(2,2,lll,kkk,iii,1) -cd derx(lll,kkk,iii)=0.0d0 - enddo - enddo - enddo -cd gcorr_loc(l-1)=0.0d0 -cd gcorr_loc(j-1)=0.0d0 -cd gcorr_loc(k-1)=0.0d0 -cd eel4=1.0d0 -cd write (iout,*)'Contacts have occurred for peptide groups', -cd & i,j,' fcont:',eij,' eij',' and ',k,l, -cd & ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num - if (j.lt.nres-1) then - j1=j+1 - j2=j-1 - else - j1=j-1 - j2=j-2 - endif - if (l.lt.nres-1) then - l1=l+1 - l2=l-1 - else - l1=l-1 - l2=l-2 - endif - do ll=1,3 -cgrad ggg1(ll)=eel4*g_contij(ll,1) -cgrad ggg2(ll)=eel4*g_contij(ll,2) - glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1) - glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2) -cgrad ghalf=0.5d0*ggg1(ll) - gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1) - gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1) - gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1) - gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1) - gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij - gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij -cgrad ghalf=0.5d0*ggg2(ll) - gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2) - gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2) - gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2) - gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2) - gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl - gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl - enddo -cgrad do m=i+1,j-1 -cgrad do ll=1,3 -cgrad gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll) -cgrad enddo -cgrad enddo -cgrad do m=k+1,l-1 -cgrad do ll=1,3 -cgrad gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll) -cgrad enddo -cgrad enddo -cgrad do m=i+2,j2 -cgrad do ll=1,3 -cgrad gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1) -cgrad enddo -cgrad enddo -cgrad do m=k+2,l2 -cgrad do ll=1,3 -cgrad gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2) -cgrad enddo -cgrad enddo -cd do iii=1,nres-3 -cd write (2,*) iii,gcorr_loc(iii) -cd enddo - eello4=ekont*eel4 -cd write (2,*) 'ekont',ekont -cd write (iout,*) 'eello4',ekont*eel4 - return - end -C--------------------------------------------------------------------------- - double precision function eello5(i,j,k,l,jj,kk) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - include 'COMMON.TORSION' - include 'COMMON.VAR' - include 'COMMON.GEO' - double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2) - double precision ggg1(3),ggg2(3) -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC -C C -C Parallel chains C -C C -C o o o o C -C /l\ / \ \ / \ / \ / C -C / \ / \ \ / \ / \ / C -C j| o |l1 | o | o| o | | o |o C -C \ |/k\| |/ \| / |/ \| |/ \| C -C \i/ \ / \ / / \ / \ C -C o k1 o C -C (I) (II) (III) (IV) C -C C -C eello5_1 eello5_2 eello5_3 eello5_4 C -C C -C Antiparallel chains C -C C -C o o o o C -C /j\ / \ \ / \ / \ / C -C / \ / \ \ / \ / \ / C -C j1| o |l | o | o| o | | o |o C -C \ |/k\| |/ \| / |/ \| |/ \| C -C \i/ \ / \ / / \ / \ C -C o k1 o C -C (I) (II) (III) (IV) C -C C -C eello5_1 eello5_2 eello5_3 eello5_4 C -C C -C o denotes a local interaction, vertical lines an electrostatic interaction. C -C C -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC -cd if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then -cd eello5=0.0d0 -cd return -cd endif -cd write (iout,*) -cd & 'EELLO5: Contacts have occurred for peptide groups',i,j, -cd & ' and',k,l - itk=itortyp(itype(k)) - itl=itortyp(itype(l)) - itj=itortyp(itype(j)) - eello5_1=0.0d0 - eello5_2=0.0d0 - eello5_3=0.0d0 - eello5_4=0.0d0 -cd call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num, -cd & eel5_3_num,eel5_4_num) - do iii=1,2 - do kkk=1,5 - do lll=1,3 - derx(lll,kkk,iii)=0.0d0 - enddo - enddo - enddo -cd eij=facont_hb(jj,i) -cd ekl=facont_hb(kk,k) -cd ekont=eij*ekl -cd write (iout,*)'Contacts have occurred for peptide groups', -cd & i,j,' fcont:',eij,' eij',' and ',k,l -cd goto 1111 -C Contribution from the graph I. -cd write (2,*) 'AEA ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1) -cd write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1) - call transpose2(EUg(1,1,k),auxmat(1,1)) - call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k)) - & +0.5d0*scalar2(vv(1),Dtobr2(1,i)) -C Explicit gradient in virtual-dihedral angles. - if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1) - & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k)) - & +0.5d0*scalar2(vv(1),Dtobr2der(1,i))) - call transpose2(EUgder(1,1,k),auxmat1(1,1)) - call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - g_corr5_loc(k-1)=g_corr5_loc(k-1) - & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k)) - & +0.5d0*scalar2(vv(1),Dtobr2(1,i))) - call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - if (l.eq.j+1) then - if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1) - & +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k)) - & +0.5d0*scalar2(vv(1),Dtobr2(1,i))) - else - if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1) - & +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k)) - & +0.5d0*scalar2(vv(1),Dtobr2(1,i))) - endif -C Cartesian gradient - do iii=1,2 - do kkk=1,5 - do lll=1,3 - call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1), - & pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - derx(lll,kkk,iii)=derx(lll,kkk,iii) - & +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k)) - & +0.5d0*scalar2(vv(1),Dtobr2(1,i)) - enddo - enddo - enddo -c goto 1112 -c1111 continue -C Contribution from graph II - call transpose2(EE(1,1,itk),auxmat(1,1)) - call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1)) - vv(1)=pizda(1,1)+pizda(2,2) - vv(2)=pizda(2,1)-pizda(1,2) - eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk)) - & -0.5d0*scalar2(vv(1),Ctobr(1,k)) -C Explicit gradient in virtual-dihedral angles. - g_corr5_loc(k-1)=g_corr5_loc(k-1) - & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k)) - call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1)) - vv(1)=pizda(1,1)+pizda(2,2) - vv(2)=pizda(2,1)-pizda(1,2) - if (l.eq.j+1) then - g_corr5_loc(l-1)=g_corr5_loc(l-1) - & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk)) - & -0.5d0*scalar2(vv(1),Ctobr(1,k))) - else - g_corr5_loc(j-1)=g_corr5_loc(j-1) - & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk)) - & -0.5d0*scalar2(vv(1),Ctobr(1,k))) - endif -C Cartesian gradient - do iii=1,2 - do kkk=1,5 - do lll=1,3 - call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1), - & pizda(1,1)) - vv(1)=pizda(1,1)+pizda(2,2) - vv(2)=pizda(2,1)-pizda(1,2) - derx(lll,kkk,iii)=derx(lll,kkk,iii) - & +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk)) - & -0.5d0*scalar2(vv(1),Ctobr(1,k)) - enddo - enddo - enddo -cd goto 1112 -cd1111 continue - if (l.eq.j+1) then -cd goto 1110 -C Parallel orientation -C Contribution from graph III - call transpose2(EUg(1,1,l),auxmat(1,1)) - call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l)) - & +0.5d0*scalar2(vv(1),Dtobr2(1,j)) -C Explicit gradient in virtual-dihedral angles. - g_corr5_loc(j-1)=g_corr5_loc(j-1) - & +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l)) - & +0.5d0*scalar2(vv(1),Dtobr2der(1,j))) - call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - g_corr5_loc(k-1)=g_corr5_loc(k-1) - & +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l)) - & +0.5d0*scalar2(vv(1),Dtobr2(1,j))) - call transpose2(EUgder(1,1,l),auxmat1(1,1)) - call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - g_corr5_loc(l-1)=g_corr5_loc(l-1) - & +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l)) - & +0.5d0*scalar2(vv(1),Dtobr2(1,j))) -C Cartesian gradient - do iii=1,2 - do kkk=1,5 - do lll=1,3 - call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1), - & pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - derx(lll,kkk,iii)=derx(lll,kkk,iii) - & +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l)) - & +0.5d0*scalar2(vv(1),Dtobr2(1,j)) - enddo - enddo - enddo -cd goto 1112 -C Contribution from graph IV -cd1110 continue - call transpose2(EE(1,1,itl),auxmat(1,1)) - call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1)) - vv(1)=pizda(1,1)+pizda(2,2) - vv(2)=pizda(2,1)-pizda(1,2) - eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl)) - & -0.5d0*scalar2(vv(1),Ctobr(1,l)) -C Explicit gradient in virtual-dihedral angles. - g_corr5_loc(l-1)=g_corr5_loc(l-1) - & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l)) - call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1)) - vv(1)=pizda(1,1)+pizda(2,2) - vv(2)=pizda(2,1)-pizda(1,2) - g_corr5_loc(k-1)=g_corr5_loc(k-1) - & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl)) - & -0.5d0*scalar2(vv(1),Ctobr(1,l))) -C Cartesian gradient - do iii=1,2 - do kkk=1,5 - do lll=1,3 - call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2), - & pizda(1,1)) - vv(1)=pizda(1,1)+pizda(2,2) - vv(2)=pizda(2,1)-pizda(1,2) - derx(lll,kkk,iii)=derx(lll,kkk,iii) - & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl)) - & -0.5d0*scalar2(vv(1),Ctobr(1,l)) - enddo - enddo - enddo - else -C Antiparallel orientation -C Contribution from graph III -c goto 1110 - call transpose2(EUg(1,1,j),auxmat(1,1)) - call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j)) - & +0.5d0*scalar2(vv(1),Dtobr2(1,l)) -C Explicit gradient in virtual-dihedral angles. - g_corr5_loc(l-1)=g_corr5_loc(l-1) - & +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j)) - & +0.5d0*scalar2(vv(1),Dtobr2der(1,l))) - call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - g_corr5_loc(k-1)=g_corr5_loc(k-1) - & +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j)) - & +0.5d0*scalar2(vv(1),Dtobr2(1,l))) - call transpose2(EUgder(1,1,j),auxmat1(1,1)) - call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - g_corr5_loc(j-1)=g_corr5_loc(j-1) - & +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j)) - & +0.5d0*scalar2(vv(1),Dtobr2(1,l))) -C Cartesian gradient - do iii=1,2 - do kkk=1,5 - do lll=1,3 - call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1), - & pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii) - & +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j)) - & +0.5d0*scalar2(vv(1),Dtobr2(1,l)) - enddo - enddo - enddo -cd goto 1112 -C Contribution from graph IV -1110 continue - call transpose2(EE(1,1,itj),auxmat(1,1)) - call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1)) - vv(1)=pizda(1,1)+pizda(2,2) - vv(2)=pizda(2,1)-pizda(1,2) - eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj)) - & -0.5d0*scalar2(vv(1),Ctobr(1,j)) -C Explicit gradient in virtual-dihedral angles. - g_corr5_loc(j-1)=g_corr5_loc(j-1) - & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j)) - call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1)) - vv(1)=pizda(1,1)+pizda(2,2) - vv(2)=pizda(2,1)-pizda(1,2) - g_corr5_loc(k-1)=g_corr5_loc(k-1) - & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj)) - & -0.5d0*scalar2(vv(1),Ctobr(1,j))) -C Cartesian gradient - do iii=1,2 - do kkk=1,5 - do lll=1,3 - call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2), - & pizda(1,1)) - vv(1)=pizda(1,1)+pizda(2,2) - vv(2)=pizda(2,1)-pizda(1,2) - derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii) - & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj)) - & -0.5d0*scalar2(vv(1),Ctobr(1,j)) - enddo - enddo - enddo - endif -1112 continue - eel5=eello5_1+eello5_2+eello5_3+eello5_4 -cd if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then -cd write (2,*) 'ijkl',i,j,k,l -cd write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2, -cd & ' eello5_3',eello5_3,' eello5_4',eello5_4 -cd endif -cd write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num -cd write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num -cd write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num -cd write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num - if (j.lt.nres-1) then - j1=j+1 - j2=j-1 - else - j1=j-1 - j2=j-2 - endif - if (l.lt.nres-1) then - l1=l+1 - l2=l-1 - else - l1=l-1 - l2=l-2 - endif -cd eij=1.0d0 -cd ekl=1.0d0 -cd ekont=1.0d0 -cd write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont -C 2/11/08 AL Gradients over DC's connecting interacting sites will be -C summed up outside the subrouine as for the other subroutines -C handling long-range interactions. The old code is commented out -C with "cgrad" to keep track of changes. - do ll=1,3 -cgrad ggg1(ll)=eel5*g_contij(ll,1) -cgrad ggg2(ll)=eel5*g_contij(ll,2) - gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1) - gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2) -c write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') -c & "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1), -c & derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2), -c & derx(ll,4,2),derx(ll,5,2)," ekont",ekont -c write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') -c & "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1), -c & gradcorr5ij, -c & k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl -cold ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i) -cgrad ghalf=0.5d0*ggg1(ll) -cd ghalf=0.0d0 - gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1) - gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1) - gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1) - gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1) - gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij - gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij -cold ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k) -cgrad ghalf=0.5d0*ggg2(ll) -cd ghalf=0.0d0 - gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2) - gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2) - gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2) - gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2) - gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl - gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl - enddo -cd goto 1112 -cgrad do m=i+1,j-1 -cgrad do ll=1,3 -cold gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i) -cgrad gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll) -cgrad enddo -cgrad enddo -cgrad do m=k+1,l-1 -cgrad do ll=1,3 -cold gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k) -cgrad gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll) -cgrad enddo -cgrad enddo -c1112 continue -cgrad do m=i+2,j2 -cgrad do ll=1,3 -cgrad gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1) -cgrad enddo -cgrad enddo -cgrad do m=k+2,l2 -cgrad do ll=1,3 -cgrad gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2) -cgrad enddo -cgrad enddo -cd do iii=1,nres-3 -cd write (2,*) iii,g_corr5_loc(iii) -cd enddo - eello5=ekont*eel5 -cd write (2,*) 'ekont',ekont -cd write (iout,*) 'eello5',ekont*eel5 - return - end -c-------------------------------------------------------------------------- - double precision function eello6(i,j,k,l,jj,kk) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - include 'COMMON.TORSION' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.FFIELD' - double precision ggg1(3),ggg2(3) -cd if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then -cd eello6=0.0d0 -cd return -cd endif -cd write (iout,*) -cd & 'EELLO6: Contacts have occurred for peptide groups',i,j, -cd & ' and',k,l - eello6_1=0.0d0 - eello6_2=0.0d0 - eello6_3=0.0d0 - eello6_4=0.0d0 - eello6_5=0.0d0 - eello6_6=0.0d0 -cd call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num, -cd & eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num) - do iii=1,2 - do kkk=1,5 - do lll=1,3 - derx(lll,kkk,iii)=0.0d0 - enddo - enddo - enddo -cd eij=facont_hb(jj,i) -cd ekl=facont_hb(kk,k) -cd ekont=eij*ekl -cd eij=1.0d0 -cd ekl=1.0d0 -cd ekont=1.0d0 - if (l.eq.j+1) then - eello6_1=eello6_graph1(i,j,k,l,1,.false.) - eello6_2=eello6_graph1(j,i,l,k,2,.false.) - eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.) - eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.) - eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.) - eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.) - else - eello6_1=eello6_graph1(i,j,k,l,1,.false.) - eello6_2=eello6_graph1(l,k,j,i,2,.true.) - eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.) - eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.) - if (wturn6.eq.0.0d0 .or. j.ne.i+4) then - eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.) - else - eello6_5=0.0d0 - endif - eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.) - endif -C If turn contributions are considered, they will be handled separately. - eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6 -cd write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num -cd write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num -cd write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num -cd write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num -cd write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num -cd write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num -cd goto 1112 - if (j.lt.nres-1) then - j1=j+1 - j2=j-1 - else - j1=j-1 - j2=j-2 - endif - if (l.lt.nres-1) then - l1=l+1 - l2=l-1 - else - l1=l-1 - l2=l-2 - endif - do ll=1,3 -cgrad ggg1(ll)=eel6*g_contij(ll,1) -cgrad ggg2(ll)=eel6*g_contij(ll,2) -cold ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i) -cgrad ghalf=0.5d0*ggg1(ll) -cd ghalf=0.0d0 - gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1) - gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2) - gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1) - gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1) - gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1) - gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1) - gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij - gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij -cgrad ghalf=0.5d0*ggg2(ll) -cold ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k) -cd ghalf=0.0d0 - gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2) - gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2) - gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2) - gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2) - gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl - gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl - enddo -cd goto 1112 -cgrad do m=i+1,j-1 -cgrad do ll=1,3 -cold gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i) -cgrad gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll) -cgrad enddo -cgrad enddo -cgrad do m=k+1,l-1 -cgrad do ll=1,3 -cold gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k) -cgrad gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll) -cgrad enddo -cgrad enddo -cgrad1112 continue -cgrad do m=i+2,j2 -cgrad do ll=1,3 -cgrad gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1) -cgrad enddo -cgrad enddo -cgrad do m=k+2,l2 -cgrad do ll=1,3 -cgrad gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2) -cgrad enddo -cgrad enddo -cd do iii=1,nres-3 -cd write (2,*) iii,g_corr6_loc(iii) -cd enddo - eello6=ekont*eel6 -cd write (2,*) 'ekont',ekont -cd write (iout,*) 'eello6',ekont*eel6 - return - end -c-------------------------------------------------------------------------- - double precision function eello6_graph1(i,j,k,l,imat,swap) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - include 'COMMON.TORSION' - include 'COMMON.VAR' - include 'COMMON.GEO' - double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2) - logical swap - logical lprn - common /kutas/ lprn -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC -C C -C Parallel Antiparallel C -C C -C o o C -C /l\ /j\ C -C / \ / \ C -C /| o | | o |\ C -C \ j|/k\| / \ |/k\|l / C -C \ / \ / \ / \ / C -C o o o o C -C i i C -C C -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC - itk=itortyp(itype(k)) - s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i)) - s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k)) - s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k)) - call transpose2(EUgC(1,1,k),auxmat(1,1)) - call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1)) - vv1(1)=pizda1(1,1)-pizda1(2,2) - vv1(2)=pizda1(1,2)+pizda1(2,1) - s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i)) - vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk) - vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk) - s5=scalar2(vv(1),Dtobr2(1,i)) -cd write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5 - eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5) - if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1) - & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i)) - & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k)) - & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k)) - & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i)) - & +scalar2(vv(1),Dtobr2der(1,i))) - call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1)) - vv1(1)=pizda1(1,1)-pizda1(2,2) - vv1(2)=pizda1(1,2)+pizda1(2,1) - vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk) - vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk) - if (l.eq.j+1) then - g_corr6_loc(l-1)=g_corr6_loc(l-1) - & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i)) - & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k)) - & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k)) - & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i)))) - else - g_corr6_loc(j-1)=g_corr6_loc(j-1) - & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i)) - & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k)) - & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k)) - & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i)))) - endif - call transpose2(EUgCder(1,1,k),auxmat(1,1)) - call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1)) - vv1(1)=pizda1(1,1)-pizda1(2,2) - vv1(2)=pizda1(1,2)+pizda1(2,1) - if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1) - & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k)) - & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k)) - & +0.5d0*scalar2(vv1(1),Dtobr2(1,i)))) - do iii=1,2 - if (swap) then - ind=3-iii - else - ind=iii - endif - do kkk=1,5 - do lll=1,3 - s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i)) - s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k)) - s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k)) - call transpose2(EUgC(1,1,k),auxmat(1,1)) - call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1), - & pizda1(1,1)) - vv1(1)=pizda1(1,1)-pizda1(2,2) - vv1(2)=pizda1(1,2)+pizda1(2,1) - s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i)) - vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk) - & -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk) - vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk) - & +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk) - s5=scalar2(vv(1),Dtobr2(1,i)) - derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5) - enddo - enddo - enddo - return - end -c---------------------------------------------------------------------------- - double precision function eello6_graph2(i,j,k,l,jj,kk,swap) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - include 'COMMON.TORSION' - include 'COMMON.VAR' - include 'COMMON.GEO' - logical swap - double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2), - & auxvec1(2),auxvec2(2),auxmat1(2,2) - logical lprn - common /kutas/ lprn -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC -C C -C Parallel Antiparallel C -C C -C o o C -C \ /l\ /j\ / C -C \ / \ / \ / C -C o| o | | o |o C -C \ j|/k\| \ |/k\|l C -C \ / \ \ / \ C -C o o C -C i i C -C C -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC -cd write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l -C AL 7/4/01 s1 would occur in the sixth-order moment, -C but not in a cluster cumulant -#ifdef MOMENT - s1=dip(1,jj,i)*dip(1,kk,k) -#endif - call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1)) - s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1)) - call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1)) - s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1)) - call transpose2(EUg(1,1,k),auxmat(1,1)) - call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i)) -cd write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4 -#ifdef MOMENT - eello6_graph2=-(s1+s2+s3+s4) -#else - eello6_graph2=-(s2+s3+s4) -#endif -c eello6_graph2=-s3 -C Derivatives in gamma(i-1) - if (i.gt.1) then -#ifdef MOMENT - s1=dipderg(1,jj,i)*dip(1,kk,k) -#endif - s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1)) - call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1)) - s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1)) - s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i)) -#ifdef MOMENT - g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4) -#else - g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4) -#endif -c g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3 - endif -C Derivatives in gamma(k-1) -#ifdef MOMENT - s1=dip(1,jj,i)*dipderg(1,kk,k) -#endif - call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1)) - s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1)) - call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1)) - s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1)) - call transpose2(EUgder(1,1,k),auxmat1(1,1)) - call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i)) -#ifdef MOMENT - g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4) -#else - g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4) -#endif -c g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3 -C Derivatives in gamma(j-1) or gamma(l-1) - if (j.gt.1) then -#ifdef MOMENT - s1=dipderg(3,jj,i)*dip(1,kk,k) -#endif - call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1)) - s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1)) - s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1)) - call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i)) -#ifdef MOMENT - if (swap) then - g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1 - else - g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1 - endif -#endif - g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4) -c g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3 - endif -C Derivatives in gamma(l-1) or gamma(j-1) - if (l.gt.1) then -#ifdef MOMENT - s1=dip(1,jj,i)*dipderg(3,kk,k) -#endif - call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1)) - s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1)) - call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1)) - s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1)) - call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i)) -#ifdef MOMENT - if (swap) then - g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1 - else - g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1 - endif -#endif - g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4) -c g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3 - endif -C Cartesian derivatives. - if (lprn) then - write (2,*) 'In eello6_graph2' - do iii=1,2 - write (2,*) 'iii=',iii - do kkk=1,5 - write (2,*) 'kkk=',kkk - do jjj=1,2 - write (2,'(3(2f10.5),5x)') - & ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3) - enddo - enddo - enddo - endif - do iii=1,2 - do kkk=1,5 - do lll=1,3 -#ifdef MOMENT - if (iii.eq.1) then - s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k) - else - s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k) - endif -#endif - call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k), - & auxvec(1)) - s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1)) - call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l), - & auxvec(1)) - s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1)) - call transpose2(EUg(1,1,k),auxmat(1,1)) - call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1), - & pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(1,2)+pizda(2,1) - s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i)) -cd write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4 -#ifdef MOMENT - derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4) -#else - derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4) -#endif - if (swap) then - derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3 - else - derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3 - endif - enddo - enddo - enddo - return - end -c---------------------------------------------------------------------------- - double precision function eello6_graph3(i,j,k,l,jj,kk,swap) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - include 'COMMON.TORSION' - include 'COMMON.VAR' - include 'COMMON.GEO' - double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2) - logical swap -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC -C C -C Parallel Antiparallel C -C C -C o o C -C /l\ / \ /j\ C -C / \ / \ / \ C -C /| o |o o| o |\ C -C j|/k\| / |/k\|l / C -C / \ / / \ / C -C / o / o C -C i i C -C C -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC -C -C 4/7/01 AL Component s1 was removed, because it pertains to the respective -C energy moment and not to the cluster cumulant. - iti=itortyp(itype(i)) - if (j.lt.nres-1) then - itj1=itortyp(itype(j+1)) - else - itj1=ntortyp+1 - endif - itk=itortyp(itype(k)) - itk1=itortyp(itype(k+1)) - if (l.lt.nres-1) then - itl1=itortyp(itype(l+1)) - else - itl1=ntortyp+1 - endif -#ifdef MOMENT - s1=dip(4,jj,i)*dip(4,kk,k) -#endif - call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1)) - s2=0.5d0*scalar2(b1(1,itk),auxvec(1)) - call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1)) - s3=0.5d0*scalar2(b1(1,itj1),auxvec(1)) - call transpose2(EE(1,1,itk),auxmat(1,1)) - call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1)) - vv(1)=pizda(1,1)+pizda(2,2) - vv(2)=pizda(2,1)-pizda(1,2) - s4=-0.25d0*scalar2(vv(1),Ctobr(1,k)) -cd write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4, -cd & "sum",-(s2+s3+s4) -#ifdef MOMENT - eello6_graph3=-(s1+s2+s3+s4) -#else - eello6_graph3=-(s2+s3+s4) -#endif -c eello6_graph3=-s4 -C Derivatives in gamma(k-1) - call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1)) - s3=0.5d0*scalar2(b1(1,itj1),auxvec(1)) - s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k)) - g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4) -C Derivatives in gamma(l-1) - call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1)) - s2=0.5d0*scalar2(b1(1,itk),auxvec(1)) - call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1)) - vv(1)=pizda(1,1)+pizda(2,2) - vv(2)=pizda(2,1)-pizda(1,2) - s4=-0.25d0*scalar2(vv(1),Ctobr(1,k)) - g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) -C Cartesian derivatives. - do iii=1,2 - do kkk=1,5 - do lll=1,3 -#ifdef MOMENT - if (iii.eq.1) then - s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k) - else - s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k) - endif -#endif - call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1), - & auxvec(1)) - s2=0.5d0*scalar2(b1(1,itk),auxvec(1)) - call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1), - & auxvec(1)) - s3=0.5d0*scalar2(b1(1,itj1),auxvec(1)) - call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1), - & pizda(1,1)) - vv(1)=pizda(1,1)+pizda(2,2) - vv(2)=pizda(2,1)-pizda(1,2) - s4=-0.25d0*scalar2(vv(1),Ctobr(1,k)) -#ifdef MOMENT - derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4) -#else - derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4) -#endif - if (swap) then - derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3 - else - derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3 - endif -c derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4 - enddo - enddo - enddo - return - end -c---------------------------------------------------------------------------- - double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - include 'COMMON.TORSION' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.FFIELD' - double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2), - & auxvec1(2),auxmat1(2,2) - logical swap -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC -C C -C Parallel Antiparallel C -C C -C o o C -C /l\ / \ /j\ C -C / \ / \ / \ C -C /| o |o o| o |\ C -C \ j|/k\| \ |/k\|l C -C \ / \ \ / \ C -C o \ o \ C -C i i C -C C -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC -C -C 4/7/01 AL Component s1 was removed, because it pertains to the respective -C energy moment and not to the cluster cumulant. -cd write (2,*) 'eello_graph4: wturn6',wturn6 - iti=itortyp(itype(i)) - itj=itortyp(itype(j)) - if (j.lt.nres-1) then - itj1=itortyp(itype(j+1)) - else - itj1=ntortyp+1 - endif - itk=itortyp(itype(k)) - if (k.lt.nres-1) then - itk1=itortyp(itype(k+1)) - else - itk1=ntortyp+1 - endif - itl=itortyp(itype(l)) - if (l.lt.nres-1) then - itl1=itortyp(itype(l+1)) - else - itl1=ntortyp+1 - endif -cd write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l -cd write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk, -cd & ' itl',itl,' itl1',itl1 -#ifdef MOMENT - if (imat.eq.1) then - s1=dip(3,jj,i)*dip(3,kk,k) - else - s1=dip(2,jj,j)*dip(2,kk,l) - endif -#endif - call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1)) - s2=0.5d0*scalar2(Ub2(1,i),auxvec(1)) - if (j.eq.l+1) then - call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1)) - else - call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1)) - endif - call transpose2(EUg(1,1,k),auxmat(1,1)) - call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(2,1)+pizda(1,2) - s4=0.25d0*scalar2(vv(1),Dtobr2(1,i)) -cd write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4 -#ifdef MOMENT - eello6_graph4=-(s1+s2+s3+s4) -#else - eello6_graph4=-(s2+s3+s4) -#endif -C Derivatives in gamma(i-1) - if (i.gt.1) then -#ifdef MOMENT - if (imat.eq.1) then - s1=dipderg(2,jj,i)*dip(3,kk,k) - else - s1=dipderg(4,jj,j)*dip(2,kk,l) - endif -#endif - s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1)) - if (j.eq.l+1) then - call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1)) - else - call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1)) - endif - s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i)) - if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then -cd write (2,*) 'turn6 derivatives' -#ifdef MOMENT - gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4) -#else - gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4) -#endif - else -#ifdef MOMENT - g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4) -#else - g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4) -#endif - endif - endif -C Derivatives in gamma(k-1) -#ifdef MOMENT - if (imat.eq.1) then - s1=dip(3,jj,i)*dipderg(2,kk,k) - else - s1=dip(2,jj,j)*dipderg(4,kk,l) - endif -#endif - call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1)) - s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1)) - if (j.eq.l+1) then - call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1)) - else - call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1)) - endif - call transpose2(EUgder(1,1,k),auxmat1(1,1)) - call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(2,1)+pizda(1,2) - s4=0.25d0*scalar2(vv(1),Dtobr2(1,i)) - if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then -#ifdef MOMENT - gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4) -#else - gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4) -#endif - else -#ifdef MOMENT - g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4) -#else - g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4) -#endif - endif -C Derivatives in gamma(j-1) or gamma(l-1) - if (l.eq.j+1 .and. l.gt.1) then - call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1)) - s2=0.5d0*scalar2(Ub2(1,i),auxvec(1)) - call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(2,1)+pizda(1,2) - s4=0.25d0*scalar2(vv(1),Dtobr2(1,i)) - g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) - else if (j.gt.1) then - call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1)) - s2=0.5d0*scalar2(Ub2(1,i),auxvec(1)) - call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(2,1)+pizda(1,2) - s4=0.25d0*scalar2(vv(1),Dtobr2(1,i)) - if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then - gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4) - else - g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4) - endif - endif -C Cartesian derivatives. - do iii=1,2 - do kkk=1,5 - do lll=1,3 -#ifdef MOMENT - if (iii.eq.1) then - if (imat.eq.1) then - s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k) - else - s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l) - endif - else - if (imat.eq.1) then - s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k) - else - s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l) - endif - endif -#endif - call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k), - & auxvec(1)) - s2=0.5d0*scalar2(Ub2(1,i),auxvec(1)) - if (j.eq.l+1) then - call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat), - & b1(1,itj1),auxvec(1)) - s3=-0.5d0*scalar2(b1(1,itj),auxvec(1)) - else - call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat), - & b1(1,itl1),auxvec(1)) - s3=-0.5d0*scalar2(b1(1,itl),auxvec(1)) - endif - call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1), - & pizda(1,1)) - vv(1)=pizda(1,1)-pizda(2,2) - vv(2)=pizda(2,1)+pizda(1,2) - s4=0.25d0*scalar2(vv(1),Dtobr2(1,i)) - if (swap) then - if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then -#ifdef MOMENT - derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii) - & -(s1+s2+s4) -#else - derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii) - & -(s2+s4) -#endif - derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3 - else -#ifdef MOMENT - derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4) -#else - derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4) -#endif - derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3 - endif - else -#ifdef MOMENT - derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4) -#else - derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4) -#endif - if (l.eq.j+1) then - derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3 - else - derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3 - endif - endif - enddo - enddo - enddo - return - end -c---------------------------------------------------------------------------- - double precision function eello_turn6(i,jj,kk) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' -#ifdef MOMENT - include 'COMMON.CONTACTS.MOMENT' -#endif - include 'COMMON.TORSION' - include 'COMMON.VAR' - include 'COMMON.GEO' - double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2), - & atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2), - & ggg1(3),ggg2(3) - double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2), - & atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2) -C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to -C the respective energy moment and not to the cluster cumulant. - s1=0.0d0 - s8=0.0d0 - s13=0.0d0 -c - eello_turn6=0.0d0 - j=i+4 - k=i+1 - l=i+3 - iti=itortyp(itype(i)) - itk=itortyp(itype(k)) - itk1=itortyp(itype(k+1)) - itl=itortyp(itype(l)) - itj=itortyp(itype(j)) -cd write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj -cd write (2,*) 'i',i,' k',k,' j',j,' l',l -cd if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then -cd eello6=0.0d0 -cd return -cd endif -cd write (iout,*) -cd & 'EELLO6: Contacts have occurred for peptide groups',i,j, -cd & ' and',k,l -cd call checkint_turn6(i,jj,kk,eel_turn6_num) - do iii=1,2 - do kkk=1,5 - do lll=1,3 - derx_turn(lll,kkk,iii)=0.0d0 - enddo - enddo - enddo -cd eij=1.0d0 -cd ekl=1.0d0 -cd ekont=1.0d0 - eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.) -cd eello6_5=0.0d0 -cd write (2,*) 'eello6_5',eello6_5 -#ifdef MOMENT - call transpose2(AEA(1,1,1),auxmat(1,1)) - call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1)) - ss1=scalar2(Ub2(1,i+2),b1(1,itl)) - s1 = (auxmat(1,1)+auxmat(2,2))*ss1 -#endif - call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1)) - call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1)) - s2 = scalar2(b1(1,itk),vtemp1(1)) -#ifdef MOMENT - call transpose2(AEA(1,1,2),atemp(1,1)) - call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1)) - call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1)) - s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1)) -#endif - call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1)) - call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1)) - s12 = scalar2(Ub2(1,i+2),vtemp3(1)) -#ifdef MOMENT - call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1)) - call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1)) - call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) - call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) - ss13 = scalar2(b1(1,itk),vtemp4(1)) - s13 = (gtemp(1,1)+gtemp(2,2))*ss13 -#endif -c write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13 -c s1=0.0d0 -c s2=0.0d0 -c s8=0.0d0 -c s12=0.0d0 -c s13=0.0d0 - eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13) -C Derivatives in gamma(i+2) - s1d =0.0d0 - s8d =0.0d0 -#ifdef MOMENT - call transpose2(AEA(1,1,1),auxmatd(1,1)) - call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1)) - s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1 - call transpose2(AEAderg(1,1,2),atempd(1,1)) - call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1)) - s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1)) -#endif - call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1)) - call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1)) - s12d = scalar2(Ub2(1,i+2),vtemp3d(1)) -c s1d=0.0d0 -c s2d=0.0d0 -c s8d=0.0d0 -c s12d=0.0d0 -c s13d=0.0d0 - gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d) -C Derivatives in gamma(i+3) -#ifdef MOMENT - call transpose2(AEA(1,1,1),auxmatd(1,1)) - call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1)) - ss1d=scalar2(Ub2der(1,i+2),b1(1,itl)) - s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d -#endif - call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1)) - call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1)) - s2d = scalar2(b1(1,itk),vtemp1d(1)) -#ifdef MOMENT - call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1)) - s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1)) -#endif - s12d = scalar2(Ub2der(1,i+2),vtemp3(1)) -#ifdef MOMENT - call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1)) - call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) - s13d = (gtempd(1,1)+gtempd(2,2))*ss13 -#endif -c s1d=0.0d0 -c s2d=0.0d0 -c s8d=0.0d0 -c s12d=0.0d0 -c s13d=0.0d0 -#ifdef MOMENT - gel_loc_turn6(i+1)=gel_loc_turn6(i+1) - & -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d) -#else - gel_loc_turn6(i+1)=gel_loc_turn6(i+1) - & -0.5d0*ekont*(s2d+s12d) -#endif -C Derivatives in gamma(i+4) - call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1)) - call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1)) - s12d = scalar2(Ub2(1,i+2),vtemp3d(1)) -#ifdef MOMENT - call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1)) - call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) - s13d = (gtempd(1,1)+gtempd(2,2))*ss13 -#endif -c s1d=0.0d0 -c s2d=0.0d0 -c s8d=0.0d0 -C s12d=0.0d0 -c s13d=0.0d0 -#ifdef MOMENT - gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d) -#else - gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d) -#endif -C Derivatives in gamma(i+5) -#ifdef MOMENT - call transpose2(AEAderg(1,1,1),auxmatd(1,1)) - call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1)) - s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1 -#endif - call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1)) - call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1)) - s2d = scalar2(b1(1,itk),vtemp1d(1)) -#ifdef MOMENT - call transpose2(AEA(1,1,2),atempd(1,1)) - call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1)) - s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1)) -#endif - call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1)) - s12d = scalar2(Ub2(1,i+2),vtemp3d(1)) -#ifdef MOMENT - call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) - ss13d = scalar2(b1(1,itk),vtemp4d(1)) - s13d = (gtemp(1,1)+gtemp(2,2))*ss13d -#endif -c s1d=0.0d0 -c s2d=0.0d0 -c s8d=0.0d0 -c s12d=0.0d0 -c s13d=0.0d0 -#ifdef MOMENT - gel_loc_turn6(i+3)=gel_loc_turn6(i+3) - & -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d) -#else - gel_loc_turn6(i+3)=gel_loc_turn6(i+3) - & -0.5d0*ekont*(s2d+s12d) -#endif -C Cartesian derivatives - do iii=1,2 - do kkk=1,5 - do lll=1,3 -#ifdef MOMENT - call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1)) - call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1)) - s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1 -#endif - call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1)) - call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1), - & vtemp1d(1)) - s2d = scalar2(b1(1,itk),vtemp1d(1)) -#ifdef MOMENT - call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1)) - call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1)) - s8d = -(atempd(1,1)+atempd(2,2))* - & scalar2(cc(1,1,itl),vtemp2(1)) -#endif - call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2), - & auxmatd(1,1)) - call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1)) - s12d = scalar2(Ub2(1,i+2),vtemp3d(1)) -c s1d=0.0d0 -c s2d=0.0d0 -c s8d=0.0d0 -c s12d=0.0d0 -c s13d=0.0d0 -#ifdef MOMENT - derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) - & - 0.5d0*(s1d+s2d) -#else - derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) - & - 0.5d0*s2d -#endif -#ifdef MOMENT - derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) - & - 0.5d0*(s8d+s12d) -#else - derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) - & - 0.5d0*s12d -#endif - enddo - enddo - enddo -#ifdef MOMENT - do kkk=1,5 - do lll=1,3 - call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1), - & achuj_tempd(1,1)) - call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1)) - call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) - s13d=(gtempd(1,1)+gtempd(2,2))*ss13 - derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d - call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4), - & vtemp4d(1)) - ss13d = scalar2(b1(1,itk),vtemp4d(1)) - s13d = (gtemp(1,1)+gtemp(2,2))*ss13d - derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d - enddo - enddo -#endif -cd write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num', -cd & 16*eel_turn6_num -cd goto 1112 - if (j.lt.nres-1) then - j1=j+1 - j2=j-1 - else - j1=j-1 - j2=j-2 - endif - if (l.lt.nres-1) then - l1=l+1 - l2=l-1 - else - l1=l-1 - l2=l-2 - endif - do ll=1,3 -cgrad ggg1(ll)=eel_turn6*g_contij(ll,1) -cgrad ggg2(ll)=eel_turn6*g_contij(ll,2) -cgrad ghalf=0.5d0*ggg1(ll) -cd ghalf=0.0d0 - gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1) - gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2) - gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf - & +ekont*derx_turn(ll,2,1) - gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1) - gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf - & +ekont*derx_turn(ll,4,1) - gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1) - gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij - gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij -cgrad ghalf=0.5d0*ggg2(ll) -cd ghalf=0.0d0 - gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf - & +ekont*derx_turn(ll,2,2) - gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2) - gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf - & +ekont*derx_turn(ll,4,2) - gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2) - gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl - gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl - enddo -cd goto 1112 -cgrad do m=i+1,j-1 -cgrad do ll=1,3 -cgrad gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll) -cgrad enddo -cgrad enddo -cgrad do m=k+1,l-1 -cgrad do ll=1,3 -cgrad gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll) -cgrad enddo -cgrad enddo -cgrad1112 continue -cgrad do m=i+2,j2 -cgrad do ll=1,3 -cgrad gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1) -cgrad enddo -cgrad enddo -cgrad do m=k+2,l2 -cgrad do ll=1,3 -cgrad gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2) -cgrad enddo -cgrad enddo -cd do iii=1,nres-3 -cd write (2,*) iii,g_corr6_loc(iii) -cd enddo - eello_turn6=ekont*eel_turn6 -cd write (2,*) 'ekont',ekont -cd write (2,*) 'eel_turn6',ekont*eel_turn6 - return - end - -C----------------------------------------------------------------------------- - double precision function scalar(u,v) -!DIR$ INLINEALWAYS scalar -#ifndef OSF -cDEC$ ATTRIBUTES FORCEINLINE::scalar -#endif - implicit none - double precision u(3),v(3) -cd double precision sc -cd integer i -cd sc=0.0d0 -cd do i=1,3 -cd sc=sc+u(i)*v(i) -cd enddo -cd scalar=sc - - scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3) - return - end -crc------------------------------------------------- - SUBROUTINE MATVEC2(A1,V1,V2) -!DIR$ INLINEALWAYS MATVEC2 -#ifndef OSF -cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2 -#endif - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - DIMENSION A1(2,2),V1(2),V2(2) -c DO 1 I=1,2 -c VI=0.0 -c DO 3 K=1,2 -c 3 VI=VI+A1(I,K)*V1(K) -c Vaux(I)=VI -c 1 CONTINUE - - vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2) - vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2) - - v2(1)=vaux1 - v2(2)=vaux2 - END -C--------------------------------------- - SUBROUTINE MATMAT2(A1,A2,A3) -#ifndef OSF -cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2 -#endif - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - DIMENSION A1(2,2),A2(2,2),A3(2,2) -c DIMENSION AI3(2,2) -c DO J=1,2 -c A3IJ=0.0 -c DO K=1,2 -c A3IJ=A3IJ+A1(I,K)*A2(K,J) -c enddo -c A3(I,J)=A3IJ -c enddo -c enddo - - ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1) - ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2) - ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1) - ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2) - - A3(1,1)=AI3_11 - A3(2,1)=AI3_21 - A3(1,2)=AI3_12 - A3(2,2)=AI3_22 - END - -c------------------------------------------------------------------------- - double precision function scalar2(u,v) -!DIR$ INLINEALWAYS scalar2 - implicit none - double precision u(2),v(2) - double precision sc - integer i - scalar2=u(1)*v(1)+u(2)*v(2) - return - end - -C----------------------------------------------------------------------------- - - subroutine transpose2(a,at) -!DIR$ INLINEALWAYS transpose2 -#ifndef OSF -cDEC$ ATTRIBUTES FORCEINLINE::transpose2 -#endif - implicit none - double precision a(2,2),at(2,2) - at(1,1)=a(1,1) - at(1,2)=a(2,1) - at(2,1)=a(1,2) - at(2,2)=a(2,2) - return - end -c-------------------------------------------------------------------------- - subroutine transpose(n,a,at) - implicit none - integer n,i,j - double precision a(n,n),at(n,n) - do i=1,n - do j=1,n - at(j,i)=a(i,j) - enddo - enddo - return - end -C--------------------------------------------------------------------------- - subroutine prodmat3(a1,a2,kk,transp,prod) -!DIR$ INLINEALWAYS prodmat3 -#ifndef OSF -cDEC$ ATTRIBUTES FORCEINLINE::prodmat3 -#endif - implicit none - integer i,j - double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2) - logical transp -crc double precision auxmat(2,2),prod_(2,2) - - if (transp) then -crc call transpose2(kk(1,1),auxmat(1,1)) -crc call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1)) -crc call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) - - prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1) - & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1) - prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2) - & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2) - prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1) - & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1) - prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2) - & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2) - - else -crc call matmat2(a1(1,1),kk(1,1),auxmat(1,1)) -crc call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) - - prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1) - & +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1) - prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2) - & +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2) - prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1) - & +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1) - prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2) - & +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2) - - endif -c call transpose2(a2(1,1),a2t(1,1)) - -crc print *,transp -crc print *,((prod_(i,j),i=1,2),j=1,2) -crc print *,((prod(i,j),i=1,2),j=1,2) - - return - end - diff --git a/source/unres/src_CSA_DiL/fitsq.f b/source/unres/src_CSA_DiL/fitsq.f deleted file mode 100644 index 36cbd30..0000000 --- a/source/unres/src_CSA_DiL/fitsq.f +++ /dev/null @@ -1,364 +0,0 @@ - subroutine fitsq(rms,x,y,nn,t,b,non_conv) - implicit real*8 (a-h,o-z) - include 'COMMON.IOUNITS' -c x and y are the vectors of coordinates (dimensioned (3,n)) of the two -c structures to be superimposed. nn is 3*n, where n is the number of -c points. t and b are respectively the translation vector and the -c rotation matrix that transforms the second set of coordinates to the -c frame of the first set. -c eta = machine-specific variable - - dimension x(3*nn),y(3*nn),t(3) - dimension b(3,3),q(3,3),r(3,3),v(3),xav(3),yav(3),e(3),c(3,3) - logical non_conv -c eta = z00100000 -c small=25.0*rmdcon(3) -c small=25.0*eta -c small=25.0*10.e-10 -c the following is a very lenient value for 'small' - small = 0.0001D0 - non_conv=.false. - fn=nn - do 10 i=1,3 - xav(i)=0.0D0 - yav(i)=0.0D0 - do 10 j=1,3 - 10 b(j,i)=0.0D0 - nc=0 -c - do 30 n=1,nn - do 20 i=1,3 -c write(iout,*)'x = ',x(nc+i),' y = ',y(nc+i) - xav(i)=xav(i)+x(nc+i)/fn - 20 yav(i)=yav(i)+y(nc+i)/fn - 30 nc=nc+3 -c - do i=1,3 - t(i)=yav(i)-xav(i) - enddo - - rms=0.0d0 - do n=1,nn - do i=1,3 - rms=rms+(y(3*(n-1)+i)-x(3*(n-1)+i)-t(i))**2 - enddo - enddo - rms=dabs(rms/fn) - -c write(iout,*)'xav = ',(xav(j),j=1,3) -c write(iout,*)'yav = ',(yav(j),j=1,3) -c write(iout,*)'t = ',(t(j),j=1,3) -c write(iout,*)'rms=',rms - if (rms.lt.small) return - - - nc=0 - rms=0.0D0 - do 50 n=1,nn - do 40 i=1,3 - rms=rms+((x(nc+i)-xav(i))**2+(y(nc+i)-yav(i))**2)/fn - do 40 j=1,3 - b(j,i)=b(j,i)+(x(nc+i)-xav(i))*(y(nc+j)-yav(j))/fn - 40 c(j,i)=b(j,i) - 50 nc=nc+3 - call sivade(b,q,r,d,non_conv) - sn3=dsign(1.0d0,d) - do 120 i=1,3 - do 120 j=1,3 - 120 b(j,i)=-q(j,1)*r(i,1)-q(j,2)*r(i,2)-sn3*q(j,3)*r(i,3) - call mvvad(b,xav,yav,t) - do 130 i=1,3 - do 130 j=1,3 - rms=rms+2.0*c(j,i)*b(j,i) - 130 b(j,i)=-b(j,i) - if (dabs(rms).gt.small) go to 140 -* write (6,301) - return - 140 if (rms.gt.0.0d0) go to 150 -c write (iout,303) rms - rms=0.0d0 -* stop -c 150 write (iout,302) dsqrt(rms) - 150 continue - return - 301 format (5x,'rms deviation negligible') - 302 format (5x,'rms deviation ',f14.6) - 303 format (//,5x,'negative ms deviation - ',f14.6) - end -c - subroutine sivade(x,q,r,dt,non_conv) - implicit real*8(a-h,o-z) -c computes q,e and r such that q(t)xr = diag(e) - dimension x(3,3),q(3,3),r(3,3),e(3) - dimension h(3,3),p(3,3),u(3,3),d(3) - logical non_conv -c eta = z00100000 -c write (2,*) "SIVADE" - nit = 0 - small=25.0*10.d-10 -c small=25.0*eta -c small=2.0*rmdcon(3) - xnrm=0.0d0 - do 20 i=1,3 - do 10 j=1,3 - xnrm=xnrm+x(j,i)*x(j,i) - u(j,i)=0.0d0 - r(j,i)=0.0d0 - 10 h(j,i)=0.0d0 - u(i,i)=1.0 - 20 r(i,i)=1.0 - xnrm=dsqrt(xnrm) - do 110 n=1,2 - xmax=0.0d0 - do 30 j=n,3 - 30 if (dabs(x(j,n)).gt.xmax) xmax=dabs(x(j,n)) - a=0.0d0 - do 40 j=n,3 - h(j,n)=x(j,n)/xmax - 40 a=a+h(j,n)*h(j,n) - a=dsqrt(a) - den=a*(a+dabs(h(n,n))) - d(n)=1.0/den - h(n,n)=h(n,n)+dsign(a,h(n,n)) - do 70 i=n,3 - s=0.0d0 - do 50 j=n,3 - 50 s=s+h(j,n)*x(j,i) - s=d(n)*s - do 60 j=n,3 - 60 x(j,i)=x(j,i)-s*h(j,n) - 70 continue - if (n.gt.1) go to 110 - xmax=dmax1(dabs(x(1,2)),dabs(x(1,3))) - h(2,3)=x(1,2)/xmax - h(3,3)=x(1,3)/xmax - a=dsqrt(h(2,3)*h(2,3)+h(3,3)*h(3,3)) - den=a*(a+dabs(h(2,3))) - d(3)=1.0/den - h(2,3)=h(2,3)+sign(a,h(2,3)) - do 100 i=1,3 - s=0.0d0 - do 80 j=2,3 - 80 s=s+h(j,3)*x(i,j) - s=d(3)*s - do 90 j=2,3 - 90 x(i,j)=x(i,j)-s*h(j,3) - 100 continue - 110 continue - do 130 i=1,3 - do 120 j=1,3 - 120 p(j,i)=-d(1)*h(j,1)*h(i,1) - 130 p(i,i)=1.0+p(i,i) - do 140 i=2,3 - do 140 j=2,3 - u(j,i)=u(j,i)-d(2)*h(j,2)*h(i,2) - 140 r(j,i)=r(j,i)-d(3)*h(j,3)*h(i,3) - call mmmul(p,u,q) - 150 np=1 - nq=1 - nit=nit+1 -c write (2,*) "nit",nit," e",(x(i,i),i=1,3) - if (nit.gt.10000) then - print '(a)','!!!! Over 10000 iterations in SIVADE!!!!!' - non_conv=.true. - return - endif - if (dabs(x(2,3)).gt.small*(dabs(x(2,2))+abs(x(3,3)))) go to 160 - x(2,3)=0.0d0 - nq=nq+1 - 160 if (dabs(x(1,2)).gt.small*(dabs(x(1,1))+dabs(x(2,2)))) go to 180 - x(1,2)=0.0d0 - if (x(2,3).ne.0.0d0) go to 170 - nq=nq+1 - go to 180 - 170 np=np+1 - 180 if (nq.eq.3) go to 310 - npq=4-np-nq -c write (2,*) "np",np," npq",npq - if (np.gt.npq) go to 230 - n0=0 - do 220 n=np,npq - nn=n+np-1 -c write (2,*) "nn",nn - if (dabs(x(nn,nn)).gt.small*xnrm) go to 220 - x(nn,nn)=0.0d0 - if (x(nn,nn+1).eq.0.0d0) go to 220 - n0=n0+1 -c write (2,*) "nn",nn - go to (190,210,220),nn - 190 do 200 j=2,3 - 200 call givns(x,q,1,j) - go to 220 - 210 call givns(x,q,2,3) - 220 continue -c write (2,*) "nn",nn," np",np," nq",nq," n0",n0 -c write (2,*) "x",(x(i,i),i=1,3) - if (n0.ne.0) go to 150 - 230 nn=3-nq - a=x(nn,nn)*x(nn,nn) - if (nn.gt.1) a=a+x(nn-1,nn)*x(nn-1,nn) - b=x(nn+1,nn+1)*x(nn+1,nn+1)+x(nn,nn+1)*x(nn,nn+1) - c=x(nn,nn)*x(nn,nn+1) - dd=0.5*(a-b) - xn2=c*c - rt=b-xn2/(dd+sign(dsqrt(dd*dd+xn2),dd)) - y=x(np,np)*x(np,np)-rt - z=x(np,np)*x(np,np+1) - do 300 n=np,nn -c write (2,*) "n",n," a",a," b",b," c",c," y",y," z",z - if (dabs(y).lt.dabs(z)) go to 240 - t=z/y - c=1.0/dsqrt(1.0d0+t*t) - s=c*t - go to 250 - 240 t=y/z - s=1.0/dsqrt(1.0d0+t*t) - c=s*t - 250 do 260 j=1,3 - v=x(j,n) - w=x(j,n+1) - x(j,n)=c*v+s*w - x(j,n+1)=-s*v+c*w - a=r(j,n) - b=r(j,n+1) - r(j,n)=c*a+s*b - 260 r(j,n+1)=-s*a+c*b - y=x(n,n) - z=x(n+1,n) - if (dabs(y).lt.dabs(z)) go to 270 - t=z/y - c=1.0/dsqrt(1.0+t*t) - s=c*t - go to 280 - 270 t=y/z - s=1.0/dsqrt(1.0+t*t) - c=s*t - 280 do 290 j=1,3 - v=x(n,j) - w=x(n+1,j) - a=q(j,n) - b=q(j,n+1) - x(n,j)=c*v+s*w - x(n+1,j)=-s*v+c*w - q(j,n)=c*a+s*b - 290 q(j,n+1)=-s*a+c*b - if (n.ge.nn) go to 300 - y=x(n,n+1) - z=x(n,n+2) - 300 continue - go to 150 - 310 do 320 i=1,3 - 320 e(i)=x(i,i) - nit=0 - 330 n0=0 - nit=nit+1 - if (nit.gt.10000) then - print '(a)','!!!! Over 10000 iterations in SIVADE!!!!!' - non_conv=.true. - return - endif -c write (2,*) "e",(e(i),i=1,3) - do 360 i=1,3 - if (e(i).ge.0.0d0) go to 350 - e(i)=-e(i) - do 340 j=1,3 - 340 q(j,i)=-q(j,i) - 350 if (i.eq.1) go to 360 - if (dabs(e(i)).lt.dabs(e(i-1))) go to 360 - call switch(i,1,q,r,e) - n0=n0+1 - 360 continue - if (n0.ne.0) go to 330 -c write (2,*) "e",(e(i),i=1,3) - if (dabs(e(3)).gt.small*xnrm) go to 370 - e(3)=0.0d0 - if (dabs(e(2)).gt.small*xnrm) go to 370 - e(2)=0.0d0 - 370 dt=det(q(1,1),q(1,2),q(1,3))*det(r(1,1),r(1,2),r(1,3)) -c write (2,*) "nit",nit -c write (2,501) (e(i),i=1,3) - return - 501 format (/,5x,'singular values - ',3e15.5) - end - subroutine givns(a,b,m,n) - implicit real*8 (a-h,o-z) - dimension a(3,3),b(3,3) - if (dabs(a(m,n)).lt.dabs(a(n,n))) go to 10 - t=a(n,n)/a(m,n) - s=1.0/dsqrt(1.0+t*t) - c=s*t - go to 20 - 10 t=a(m,n)/a(n,n) - c=1.0/dsqrt(1.0+t*t) - s=c*t - 20 do 30 j=1,3 - v=a(m,j) - w=a(n,j) - x=b(j,m) - y=b(j,n) - a(m,j)=c*v-s*w - a(n,j)=s*v+c*w - b(j,m)=c*x-s*y - 30 b(j,n)=s*x+c*y - return - end - subroutine switch(n,m,u,v,d) - implicit real*8 (a-h,o-z) - dimension u(3,3),v(3,3),d(3) - do 10 i=1,3 - tem=u(i,n) - u(i,n)=u(i,n-1) - u(i,n-1)=tem - if (m.eq.0) go to 10 - tem=v(i,n) - v(i,n)=v(i,n-1) - v(i,n-1)=tem - 10 continue - tem=d(n) - d(n)=d(n-1) - d(n-1)=tem - return - end - subroutine mvvad(b,xav,yav,t) - implicit real*8 (a-h,o-z) - dimension b(3,3),xav(3),yav(3),t(3) -c dimension a(3,3),b(3),c(3),d(3) -c do 10 j=1,3 -c d(j)=c(j) -c do 10 i=1,3 -c 10 d(j)=d(j)+a(j,i)*b(i) - do 10 j=1,3 - t(j)=yav(j) - do 10 i=1,3 - 10 t(j)=t(j)+b(j,i)*xav(i) - return - end - double precision function det (a,b,c) - implicit real*8 (a-h,o-z) - dimension a(3),b(3),c(3) - det=a(1)*(b(2)*c(3)-b(3)*c(2))+a(2)*(b(3)*c(1)-b(1)*c(3)) - 1 +a(3)*(b(1)*c(2)-b(2)*c(1)) - return - end - subroutine mmmul(a,b,c) - implicit real*8 (a-h,o-z) - dimension a(3,3),b(3,3),c(3,3) - do 10 i=1,3 - do 10 j=1,3 - c(i,j)=0.0d0 - do 10 k=1,3 - 10 c(i,j)=c(i,j)+a(i,k)*b(k,j) - return - end - subroutine matvec(uvec,tmat,pvec,nback) - implicit real*8 (a-h,o-z) - real*8 tmat(3,3),uvec(3,nback), pvec(3,nback) -c - do 2 j=1,nback - do 1 i=1,3 - uvec(i,j) = 0.0d0 - do 1 k=1,3 - 1 uvec(i,j)=uvec(i,j)+tmat(i,k)*pvec(k,j) - 2 continue - return - end diff --git a/source/unres/src_CSA_DiL/gen_rand_conf.F b/source/unres/src_CSA_DiL/gen_rand_conf.F deleted file mode 100644 index 78d4cca..0000000 --- a/source/unres/src_CSA_DiL/gen_rand_conf.F +++ /dev/null @@ -1,911 +0,0 @@ - subroutine gen_rand_conf(nstart,*) -C Generate random conformation or chain cut and regrowth. - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.LOCAL' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.IOUNITS' - include 'COMMON.MCM' - include 'COMMON.GEO' - include 'COMMON.CONTROL' - logical overlap,back,fail -cd print *,' CG Processor',me,' maxgen=',maxgen - maxsi=100 -cd write (iout,*) 'Gen_Rand_conf: nstart=',nstart - if (nstart.lt.5) then - it1=iabs(itype(2)) - phi(4)=gen_phi(4,iabs(itype(2)),abs(itype(3))) -c write(iout,*)'phi(4)=',rad2deg*phi(4) - if (nstart.lt.3) theta(3)=gen_theta(itype(2),pi,phi(4)) -c write(iout,*)'theta(3)=',rad2deg*theta(3) - if (it1.ne.10) then - nsi=0 - fail=.true. - do while (fail.and.nsi.le.maxsi) - call gen_side(it1,theta(3),alph(2),omeg(2),fail) - nsi=nsi+1 - enddo - if (nsi.gt.maxsi) return1 - endif ! it1.ne.10 - call orig_frame - i=4 - nstart=4 - else - i=nstart - nstart=max0(i,4) - endif - - maxnit=0 - - nit=0 - niter=0 - back=.false. - do while (i.le.nres .and. niter.lt.maxgen) - if (i.lt.nstart) then - if(iprint.gt.1) then - write (iout,'(/80(1h*)/2a/80(1h*))') - & 'Generation procedure went down to ', - & 'chain beginning. Cannot continue...' - write (*,'(/80(1h*)/2a/80(1h*))') - & 'Generation procedure went down to ', - & 'chain beginning. Cannot continue...' - endif - return1 - endif - it1=abs(itype(i-1)) - it2=abs(itype(i-2)) - it=abs(itype(i)) -c print *,'Gen_Rand_Conf: i=',i,' it=',it,' it1=',it1,' it2=',it2, -c & ' nit=',nit,' niter=',niter,' maxgen=',maxgen - phi(i+1)=gen_phi(i+1,it1,it) - if (back) then - phi(i)=gen_phi(i+1,it2,it1) - print *,'phi(',i,')=',phi(i) - theta(i-1)=gen_theta(it2,phi(i-1),phi(i)) - if (it2.ne.10) then - nsi=0 - fail=.true. - do while (fail.and.nsi.le.maxsi) - call gen_side(it2,theta(i-1),alph(i-2),omeg(i-2),fail) - nsi=nsi+1 - enddo - if (nsi.gt.maxsi) return1 - endif - call locate_next_res(i-1) - endif - theta(i)=gen_theta(it1,phi(i),phi(i+1)) - if (it1.ne.10) then - nsi=0 - fail=.true. - do while (fail.and.nsi.le.maxsi) - call gen_side(it1,theta(i),alph(i-1),omeg(i-1),fail) - nsi=nsi+1 - enddo - if (nsi.gt.maxsi) return1 - endif - call locate_next_res(i) - if (overlap(i-1)) then - if (nit.lt.maxnit) then - back=.true. - nit=nit+1 - else - nit=0 - if (i.gt.3) then - back=.true. - i=i-1 - else - write (iout,'(a)') - & 'Cannot generate non-overlaping conformation. Increase MAXNIT.' - write (*,'(a)') - & 'Cannot generate non-overlaping conformation. Increase MAXNIT.' - return1 - endif - endif - else - back=.false. - nit=0 - i=i+1 - endif - niter=niter+1 - enddo - if (niter.ge.maxgen) then - write (iout,'(a,2i5)') - & 'Too many trials in conformation generation',niter,maxgen - write (*,'(a,2i5)') - & 'Too many trials in conformation generation',niter,maxgen - return1 - endif - do j=1,3 - c(j,nres+1)=c(j,1) - c(j,nres+nres)=c(j,nres) - enddo - return - end -c------------------------------------------------------------------------- - logical function overlap(i) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.FFIELD' - data redfac /0.5D0/ - overlap=.false. - iti=abs(itype(i)) - if (iti.gt.ntyp) return -C Check for SC-SC overlaps. -cd print *,'nnt=',nnt,' nct=',nct - do j=nnt,i-1 - itj=abs(itype(j)) - if (j.lt.i-1 .or. ipot.ne.4) then - rcomp=sigmaii(iti,itj) - else - rcomp=sigma(iti,itj) - endif -cd print *,'j=',j - if (dist(nres+i,nres+j).lt.redfac*rcomp) then - overlap=.true. -c print *,'overlap, SC-SC: i=',i,' j=',j, -c & ' dist=',dist(nres+i,nres+j),' rcomp=', -c & rcomp - return - endif - enddo -C Check for overlaps between the added peptide group and the preceding -C SCs. - iteli=itel(i) - do j=1,3 - c(j,maxres2+1)=0.5D0*(c(j,i)+c(j,i+1)) - enddo - do j=nnt,i-2 - itj=abs(itype(j)) -cd print *,'overlap, p-Sc: i=',i,' j=',j, -cd & ' dist=',dist(nres+j,maxres2+1) - if (dist(nres+j,maxres2+1).lt.4.0D0*redfac) then - overlap=.true. - return - endif - enddo -C Check for overlaps between the added side chain and the preceding peptide -C groups. - do j=1,nnt-2 - do k=1,3 - c(k,maxres2+1)=0.5D0*(c(k,j)+c(k,j+1)) - enddo -cd print *,'overlap, SC-p: i=',i,' j=',j, -cd & ' dist=',dist(nres+i,maxres2+1) - if (dist(nres+i,maxres2+1).lt.4.0D0*redfac) then - overlap=.true. - return - endif - enddo -C Check for p-p overlaps - do j=1,3 - c(j,maxres2+2)=0.5D0*(c(j,i)+c(j,i+1)) - enddo - do j=nnt,i-2 - itelj=itel(j) - do k=1,3 - c(k,maxres2+2)=0.5D0*(c(k,j)+c(k,j+1)) - enddo -cd print *,'overlap, p-p: i=',i,' j=',j, -cd & ' dist=',dist(maxres2+1,maxres2+2) - if(iteli.ne.0.and.itelj.ne.0)then - if (dist(maxres2+1,maxres2+2).lt.rpp(iteli,itelj)*redfac) then - overlap=.true. - return - endif - endif - enddo - return - end -c-------------------------------------------------------------------------- - double precision function gen_phi(i,it1,it2) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.BOUNDS' -c gen_phi=ran_number(-pi,pi) -C 8/13/98 Generate phi using pre-defined boundaries - gen_phi=ran_number(phibound(1,i),phibound(2,i)) - return - end -c--------------------------------------------------------------------------- - double precision function gen_theta(it,gama,gama1) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.LOCAL' - include 'COMMON.GEO' - double precision y(2),z(2) - double precision theta_max,theta_min -c print *,'gen_theta: it=',it - theta_min=0.05D0*pi - theta_max=0.95D0*pi - if (dabs(gama).gt.dwapi) then - y(1)=dcos(gama) - y(2)=dsin(gama) - else - y(1)=0.0D0 - y(2)=0.0D0 - endif - if (dabs(gama1).gt.dwapi) then - z(1)=dcos(gama1) - z(2)=dsin(gama1) - else - z(1)=0.0D0 - z(2)=0.0D0 - endif - thet_pred_mean=a0thet(it) - do k=1,2 - thet_pred_mean=thet_pred_mean+athet(k,it,1,1)*y(k) - & +bthet(k,it,1,1)*z(k) - enddo - sig=polthet(3,it) - do j=2,0,-1 - sig=sig*thet_pred_mean+polthet(j,it) - enddo - sig=0.5D0/(sig*sig+sigc0(it)) - ak=dexp(gthet(1,it)- - &0.5D0*((gthet(2,it)-thet_pred_mean)/gthet(3,it))**2) -c print '(i5,5(1pe14.4))',it,(gthet(j,it),j=1,3) -c print '(5(1pe14.4))',thet_pred_mean,theta0(it),sig,sig0(it),ak - theta_temp=binorm(thet_pred_mean,theta0(it),sig,sig0(it),ak) - if (theta_temp.lt.theta_min) theta_temp=theta_min - if (theta_temp.gt.theta_max) theta_temp=theta_max - gen_theta=theta_temp -c print '(a)','Exiting GENTHETA.' - return - end -c------------------------------------------------------------------------- - subroutine gen_side(it,the,al,om,fail) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.SETUP' - include 'COMMON.IOUNITS' - double precision MaxBoxLen /10.0D0/ - double precision Ap_inv(3,3),a(3,3),z(3,maxlob),W1(maxlob), - & sumW(0:maxlob),y(2),cm(2),eig(2),box(2,2),work(100),detAp(maxlob) - double precision eig_limit /1.0D-8/ - double precision Big /10.0D0/ - double precision vec(3,3) - logical lprint,fail,lcheck - lcheck=.false. - lprint=.false. - fail=.false. - if (the.eq.0.0D0 .or. the.eq.pi) then -#ifdef MPI - write (*,'(a,i4,a,i3,a,1pe14.5)') - & 'CG Processor:',me,' Error in GenSide: it=',it,' theta=',the -#else -cd write (iout,'(a,i3,a,1pe14.5)') -cd & 'Error in GenSide: it=',it,' theta=',the -#endif - fail=.true. - return - endif - tant=dtan(the-pipol) - nlobit=nlob(it) - if (lprint) then -#ifdef MPI - print '(a,i4,a)','CG Processor:',me,' Enter Gen_Side.' - write (iout,'(a,i4,a)') 'Processor:',me,' Enter Gen_Side.' -#endif - print *,'it=',it,' nlobit=',nlobit,' the=',the,' tant=',tant - write (iout,*) 'it=',it,' nlobit=',nlobit,' the=',the, - & ' tant=',tant - endif - do i=1,nlobit - zz1=tant-censc(1,i,it) - do k=1,3 - do l=1,3 - a(k,l)=gaussc(k,l,i,it) - enddo - enddo - detApi=a(2,2)*a(3,3)-a(2,3)**2 - Ap_inv(2,2)=a(3,3)/detApi - Ap_inv(2,3)=-a(2,3)/detApi - Ap_inv(3,2)=Ap_inv(2,3) - Ap_inv(3,3)=a(2,2)/detApi - if (lprint) then - write (*,'(/a,i2/)') 'Cluster #',i - write (*,'(3(1pe14.5),5x,1pe14.5)') - & ((a(l,k),l=1,3),censc(k,i,it),k=1,3) - write (iout,'(/a,i2/)') 'Cluster #',i - write (iout,'(3(1pe14.5),5x,1pe14.5)') - & ((a(l,k),l=1,3),censc(k,i,it),k=1,3) - endif - W1i=0.0D0 - do k=2,3 - do l=2,3 - W1i=W1i+a(k,1)*a(l,1)*Ap_inv(k,l) - enddo - enddo - W1i=a(1,1)-W1i - W1(i)=dexp(bsc(i,it)-0.5D0*W1i*zz1*zz1) -c if (lprint) write(*,'(a,3(1pe15.5)/)') -c & 'detAp, W1, anormi',detApi,W1i,anormi - do k=2,3 - zk=censc(k,i,it) - do l=2,3 - zk=zk+zz1*Ap_inv(k,l)*a(l,1) - enddo - z(k,i)=zk - enddo - detAp(i)=dsqrt(detApi) - enddo - - if (lprint) then - print *,'W1:',(w1(i),i=1,nlobit) - print *,'detAp:',(detAp(i),i=1,nlobit) - print *,'Z' - do i=1,nlobit - print '(i2,3f10.5)',i,(rad2deg*z(j,i),j=2,3) - enddo - write (iout,*) 'W1:',(w1(i),i=1,nlobit) - write (iout,*) 'detAp:',(detAp(i),i=1,nlobit) - write (iout,*) 'Z' - do i=1,nlobit - write (iout,'(i2,3f10.5)') i,(rad2deg*z(j,i),j=2,3) - enddo - endif - if (lcheck) then -C Writing the distribution just to check the procedure - fac=0.0D0 - dV=deg2rad**2*10.0D0 - sum=0.0D0 - sum1=0.0D0 - do i=1,nlobit - fac=fac+W1(i)/detAp(i) - enddo - fac=1.0D0/(2.0D0*fac*pi) -cd print *,it,'fac=',fac - do ial=90,180,2 - y(1)=deg2rad*ial - do iom=-180,180,5 - y(2)=deg2rad*iom - wart=0.0D0 - do i=1,nlobit - do j=2,3 - do k=2,3 - a(j-1,k-1)=gaussc(j,k,i,it) - enddo - enddo - y2=y(2) - - do iii=-1,1 - - y(2)=y2+iii*dwapi - - wykl=0.0D0 - do j=1,2 - do k=1,2 - wykl=wykl+a(j,k)*(y(j)-z(j+1,i))*(y(k)-z(k+1,i)) - enddo - enddo - wart=wart+W1(i)*dexp(-0.5D0*wykl) - - enddo - - y(2)=y2 - - enddo -c print *,'y',y(1),y(2),' fac=',fac - wart=fac*wart - write (20,'(2f10.3,1pd15.5)') y(1)*rad2deg,y(2)*rad2deg,wart - sum=sum+wart - sum1=sum1+1.0D0 - enddo - enddo -c print *,'it=',it,' sum=',sum*dV,' sum1=',sum1*dV - return - endif - -C Calculate the CM of the system -C - do i=1,nlobit - W1(i)=W1(i)/detAp(i) - enddo - sumW(0)=0.0D0 - do i=1,nlobit - sumW(i)=sumW(i-1)+W1(i) - enddo - cm(1)=z(2,1)*W1(1) - cm(2)=z(3,1)*W1(1) - do j=2,nlobit - cm(1)=cm(1)+z(2,j)*W1(j) - cm(2)=cm(2)+W1(j)*(z(3,1)+pinorm(z(3,j)-z(3,1))) - enddo - cm(1)=cm(1)/sumW(nlobit) - cm(2)=cm(2)/sumW(nlobit) - if (cm(1).gt.Big .or. cm(1).lt.-Big .or. - & cm(2).gt.Big .or. cm(2).lt.-Big) then -cd write (iout,'(a)') -cd & 'Unexpected error in GenSide - CM coordinates too large.' -cd write (iout,'(i5,2(1pe14.5))') it,cm(1),cm(2) -cd write (*,'(a)') -cd & 'Unexpected error in GenSide - CM coordinates too large.' -cd write (*,'(i5,2(1pe14.5))') it,cm(1),cm(2) - fail=.true. - return - endif -cd print *,'CM:',cm(1),cm(2) -C -C Find the largest search distance from CM -C - radmax=0.0D0 - do i=1,nlobit - do j=2,3 - do k=2,3 - a(j-1,k-1)=gaussc(j,k,i,it) - enddo - enddo -#ifdef NAG - call f02faf('N','U',2,a,3,eig,work,100,ifail) -#else - call djacob(2,3,10000,1.0d-10,a,vec,eig) -#endif -#ifdef MPI - if (lprint) then - print *,'*************** CG Processor',me - print *,'CM:',cm(1),cm(2) - write (iout,*) '*************** CG Processor',me - write (iout,*) 'CM:',cm(1),cm(2) - print '(A,8f10.5)','Eigenvalues: ',(1.0/dsqrt(eig(k)),k=1,2) - write (iout,'(A,8f10.5)') - & 'Eigenvalues: ',(1.0/dsqrt(eig(k)),k=1,2) - endif -#endif - if (eig(1).lt.eig_limit) then - write(iout,'(a)') - & 'From Mult_Norm: Eigenvalues of A are too small.' - write(*,'(a)') - & 'From Mult_Norm: Eigenvalues of A are too small.' - fail=.true. - return - endif - radius=0.0D0 -cd print *,'i=',i - do j=1,2 - radius=radius+pinorm(z(j+1,i)-cm(j))**2 - enddo - radius=dsqrt(radius)+3.0D0/dsqrt(eig(1)) - if (radius.gt.radmax) radmax=radius - enddo - if (radmax.gt.pi) radmax=pi -C -C Determine the boundaries of the search rectangle. -C - if (lprint) then - print '(a,4(1pe14.4))','W1: ',(W1(i),i=1,nlob(it) ) - print '(a,4(1pe14.4))','radmax: ',radmax - endif - box(1,1)=dmax1(cm(1)-radmax,0.0D0) - box(2,1)=dmin1(cm(1)+radmax,pi) - box(1,2)=cm(2)-radmax - box(2,2)=cm(2)+radmax - if (lprint) then -#ifdef MPI - print *,'CG Processor',me,' Array BOX:' -#else - print *,'Array BOX:' -#endif - print '(4(1pe14.4))',((box(k,j),k=1,2),j=1,2) - print '(a,4(1pe14.4))','sumW: ',(sumW(i),i=0,nlob(it) ) -#ifdef MPI - write (iout,*)'CG Processor',me,' Array BOX:' -#else - write (iout,*)'Array BOX:' -#endif - write(iout,'(4(1pe14.4))') ((box(k,j),k=1,2),j=1,2) - write(iout,'(a,4(1pe14.4))')'sumW: ',(sumW(i),i=0,nlob(it) ) - endif - if (box(1,2).lt.-MaxBoxLen .or. box(2,2).gt.MaxBoxLen) then -#ifdef MPI - write (iout,'(a,i4,a)') 'CG Processor:',me,': bad sampling box.' - write (*,'(a,i4,a)') 'CG Processor:',me,': bad sampling box.' -#else -c write (iout,'(a)') 'Bad sampling box.' -#endif - fail=.true. - return - endif - which_lobe=ran_number(0.0D0,sumW(nlobit)) -c print '(a,1pe14.4)','which_lobe=',which_lobe - do i=1,nlobit - if (sumW(i-1).le.which_lobe .and. sumW(i).ge.which_lobe) goto 1 - enddo - 1 ilob=i -c print *,'ilob=',ilob,' nlob=',nlob(it) - do i=2,3 - cm(i-1)=z(i,ilob) - do j=2,3 - a(i-1,j-1)=gaussc(i,j,ilob,it) - enddo - enddo -cd print '(a,i4,a)','CG Processor',me,' Calling MultNorm1.' - call mult_norm1(3,2,a,cm,box,y,fail) - if (fail) return - al=y(1) - om=pinorm(y(2)) -cd print *,'al=',al,' om=',om -cd stop - return - end -c--------------------------------------------------------------------------- - double precision function ran_number(x1,x2) -C Calculate a random real number from the range (x1,x2). - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - double precision x1,x2,fctor - data fctor /2147483647.0D0/ -#ifdef MPI - include "mpif.h" - include 'COMMON.SETUP' - ran_number=x1+(x2-x1)*prng_next(me) -#else - call vrnd(ix,1) - ran_number=x1+(x2-x1)*ix/fctor -#endif - return - end -c-------------------------------------------------------------------------- - integer function iran_num(n1,n2) -C Calculate a random integer number from the range (n1,n2). - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - integer n1,n2,ix - real fctor /2147483647.0/ -#ifdef MPI - include "mpif.h" - include 'COMMON.SETUP' - ix=n1+(n2-n1+1)*prng_next(me) - if (ix.lt.n1) ix=n1 - if (ix.gt.n2) ix=n2 - iran_num=ix -#else - call vrnd(ix,1) - ix=n1+(n2-n1+1)*(ix/fctor) - if (ix.gt.n2) ix=n2 - iran_num=ix -#endif - return - end -c-------------------------------------------------------------------------- - double precision function binorm(x1,x2,sigma1,sigma2,ak) - implicit real*8 (a-h,o-z) -c print '(a)','Enter BINORM.' - alowb=dmin1(x1-3.0D0*sigma1,x2-3.0D0*sigma2) - aupb=dmax1(x1+3.0D0*sigma1,x2+3.0D0*sigma2) - seg=sigma1/(sigma1+ak*sigma2) - alen=ran_number(0.0D0,1.0D0) - if (alen.lt.seg) then - binorm=anorm_distr(x1,sigma1,alowb,aupb) - else - binorm=anorm_distr(x2,sigma2,alowb,aupb) - endif -c print '(a)','Exiting BINORM.' - return - end -c----------------------------------------------------------------------- -c double precision function anorm_distr(x,sigma,alowb,aupb) -c implicit real*8 (a-h,o-z) -c print '(a)','Enter ANORM_DISTR.' -c 10 y=ran_number(alowb,aupb) -c expon=dexp(-0.5D0*((y-x)/sigma)**2) -c ran=ran_number(0.0D0,1.0D0) -c if (expon.lt.ran) goto 10 -c anorm_distr=y -c print '(a)','Exiting ANORM_DISTR.' -c return -c end -c----------------------------------------------------------------------- - double precision function anorm_distr(x,sigma,alowb,aupb) - implicit real*8 (a-h,o-z) -c to make a normally distributed deviate with zero mean and unit variance -c - integer iset - real fac,gset,rsq,v1,v2,ran1 - save iset,gset - data iset/0/ - if(iset.eq.0) then -1 v1=2.0d0*ran_number(0.0d0,1.0d0)-1.0d0 - v2=2.0d0*ran_number(0.0d0,1.0d0)-1.0d0 - rsq=v1**2+v2**2 - if(rsq.ge.1.d0.or.rsq.eq.0.0d0) goto 1 - fac=sqrt(-2.0d0*log(rsq)/rsq) - gset=v1*fac - gaussdev=v2*fac - iset=1 - else - gaussdev=gset - iset=0 - endif - anorm_distr=x+gaussdev*sigma - return - end -c------------------------------------------------------------------------ - subroutine mult_norm(lda,n,a,x,fail) -C -C Generate the vector X whose elements obey the multiple-normal distribution -C from exp(-0.5*X'AX). LDA is the leading dimension of the moment matrix A, -C n is the dimension of the problem. FAIL is set at .TRUE., if the smallest -C eigenvalue of the matrix A is close to 0. -C - implicit double precision (a-h,o-z) - double precision a(lda,n),x(n),eig(100),vec(3,3),work(100) - double precision eig_limit /1.0D-8/ - logical fail - fail=.false. -c print '(a)','Enter MULT_NORM.' -C -C Find the smallest eigenvalue of the matrix A. -C -c do i=1,n -c print '(8f10.5)',(a(i,j),j=1,n) -c enddo -#ifdef NAG - call f02faf('V','U',2,a,lda,eig,work,100,ifail) -#else - call djacob(2,lda,10000,1.0d-10,a,vec,eig) -#endif -c print '(8f10.5)',(eig(i),i=1,n) -C print '(a)' -c do i=1,n -c print '(8f10.5)',(a(i,j),j=1,n) -c enddo - if (eig(1).lt.eig_limit) then - print *,'From Mult_Norm: Eigenvalues of A are too small.' - fail=.true. - return - endif -C -C Generate points following the normal distributions along the principal -C axes of the moment matrix. Store in WORK. -C - do i=1,n - sigma=1.0D0/dsqrt(eig(i)) - alim=-3.0D0*sigma - work(i)=anorm_distr(0.0D0,sigma,-alim,alim) - enddo -C -C Transform the vector of normal variables back to the original basis. -C - do i=1,n - xi=0.0D0 - do j=1,n - xi=xi+a(i,j)*work(j) - enddo - x(i)=xi - enddo - return - end -c------------------------------------------------------------------------ - subroutine mult_norm1(lda,n,a,z,box,x,fail) -C -C Generate the vector X whose elements obey the multi-gaussian multi-dimensional -C distribution from sum_{i=1}^m W(i)exp[-0.5*X'(i)A(i)X(i)]. LDA is the -C leading dimension of the moment matrix A, n is the dimension of the -C distribution, nlob is the number of lobes. FAIL is set at .TRUE., if the -C smallest eigenvalue of the matrix A is close to 0. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - double precision a(lda,n),z(n),x(n),box(n,n) - double precision etmp - include 'COMMON.IOUNITS' -#ifdef MP - include 'COMMON.SETUP' -#endif - logical fail -C -C Generate points following the normal distributions along the principal -C axes of the moment matrix. Store in WORK. -C -cd print *,'CG Processor',me,' entered MultNorm1.' -cd print '(2(1pe14.4),3x,1pe14.4)',((a(i,j),j=1,2),z(i),i=1,2) -cd do i=1,n -cd print *,i,box(1,i),box(2,i) -cd enddo - istep = 0 - 10 istep = istep + 1 - if (istep.gt.10000) then -c write (iout,'(a,i4,2a)') 'CG Processor: ',me,': too many steps', -c & ' in MultNorm1.' -c write (*,'(a,i4,2a)') 'CG Processor: ',me,': too many steps', -c & ' in MultNorm1.' -c write (iout,*) 'box',box -c write (iout,*) 'a',a -c write (iout,*) 'z',z - fail=.true. - return - endif - do i=1,n - x(i)=ran_number(box(1,i),box(2,i)) - enddo - ww=0.0D0 - do i=1,n - xi=pinorm(x(i)-z(i)) - ww=ww+0.5D0*a(i,i)*xi*xi - do j=i+1,n - ww=ww+a(i,j)*xi*pinorm(x(j)-z(j)) - enddo - enddo - dec=ran_number(0.0D0,1.0D0) -c print *,(x(i),i=1,n),ww,dexp(-ww),dec -crc if (dec.gt.dexp(-ww)) goto 10 - if(-ww.lt.100) then - etmp=dexp(-ww) - else - return - endif - if (dec.gt.etmp) goto 10 -cd print *,'CG Processor',me,' exitting MultNorm1.' - return - end -c -crc-------------------------------------- - subroutine overlap_sc(scfail) -c Internal and cartesian coordinates must be consistent as input, -c and will be up-to-date on return. -c At the end of this procedure, scfail is true if there are -c overlapping residues left, or false otherwise (success) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.FFIELD' - include 'COMMON.VAR' - include 'COMMON.SBRIDGE' - include 'COMMON.IOUNITS' - logical had_overlaps,fail,scfail - integer ioverlap(maxres),ioverlap_last - - had_overlaps=.false. - call overlap_sc_list(ioverlap,ioverlap_last) - if (ioverlap_last.gt.0) then - write (iout,*) '#OVERLAPing residues ',ioverlap_last - write (iout,'(20i4)') (ioverlap(k),k=1,ioverlap_last) - had_overlaps=.true. - endif - - maxsi=1000 - do k=1,1000 - if (ioverlap_last.eq.0) exit - - do ires=1,ioverlap_last - i=ioverlap(ires) - iti=abs(itype(i)) - if (iti.ne.10) then - nsi=0 - fail=.true. - do while (fail.and.nsi.le.maxsi) - call gen_side(iti,theta(i+1),alph(i),omeg(i),fail) - nsi=nsi+1 - enddo - if(fail) goto 999 - endif - enddo - - call chainbuild - call overlap_sc_list(ioverlap,ioverlap_last) -c write (iout,*) 'Overlaping residues ',ioverlap_last, -c & (ioverlap(j),j=1,ioverlap_last) - enddo - - if (k.le.1000.and.ioverlap_last.eq.0) then - scfail=.false. - if (had_overlaps) then - write (iout,*) '#OVERLAPing all corrected after ',k, - & ' random generation' - endif - else - scfail=.true. - write (iout,*) '#OVERLAPing NOT all corrected ',ioverlap_last - write (iout,'(20i4)') (ioverlap(j),j=1,ioverlap_last) - endif - - return - - 999 continue - write (iout,'(a30,i5,a12,i4)') - & '#OVERLAP FAIL in gen_side after',maxsi, - & 'iter for RES',i - scfail=.true. - return - end - - subroutine overlap_sc_list(ioverlap,ioverlap_last) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.FFIELD' - include 'COMMON.VAR' - include 'COMMON.CALC' - logical fail - integer ioverlap(maxres),ioverlap_last - data redfac /0.5D0/ - - ioverlap_last=0 -C Check for SC-SC overlaps and mark residues -c print *,'>>overlap_sc nnt=',nnt,' nct=',nct - ind=0 - do i=iatsc_s,iatsc_e - itypi=abs(itype(i)) - itypi1=abs(itype(i+1)) - xi=c(1,nres+i) - yi=c(2,nres+i) - zi=c(3,nres+i) - dxi=dc_norm(1,nres+i) - dyi=dc_norm(2,nres+i) - dzi=dc_norm(3,nres+i) - dsci_inv=dsc_inv(itypi) -c - do iint=1,nint_gr(i) - do j=istart(i,iint),iend(i,iint) - ind=ind+1 - itypj=itype(j) - dscj_inv=dsc_inv(itypj) - sig0ij=sigma(itypi,itypj) - chi1=chi(itypi,itypj) - chi2=chi(itypj,itypi) - chi12=chi1*chi2 - chip1=chip(itypi) - chip2=chip(itypj) - chip12=chip1*chip2 - alf1=alp(itypi) - alf2=alp(itypj) - alf12=0.5D0*(alf1+alf2) - if (j.gt.i+1) then - rcomp=sigmaii(itypi,itypj) - else - rcomp=sigma(itypi,itypj) - endif -c print '(2(a3,2i3),a3,2f10.5)', -c & ' i=',i,iti,' j=',j,itj,' d=',dist(nres+i,nres+j) -c & ,rcomp - xj=c(1,nres+j)-xi - yj=c(2,nres+j)-yi - zj=c(3,nres+j)-zi - dxj=dc_norm(1,nres+j) - dyj=dc_norm(2,nres+j) - dzj=dc_norm(3,nres+j) - rrij=1.0D0/(xj*xj+yj*yj+zj*zj) - rij=dsqrt(rrij) - call sc_angular - sigsq=1.0D0/sigsq - sig=sig0ij*dsqrt(sigsq) - rij_shift=1.0D0/rij-sig+sig0ij - -ct if ( 1.0/rij .lt. redfac*rcomp .or. -ct & rij_shift.le.0.0D0 ) then - if ( rij_shift.le.0.0D0 ) then -cd write (iout,'(a,i3,a,i3,a,f10.5,a,3f10.5)') -cd & 'overlap SC-SC: i=',i,' j=',j, -cd & ' dist=',dist(nres+i,nres+j),' rcomp=', -cd & rcomp,1.0/rij,rij_shift - ioverlap_last=ioverlap_last+1 - ioverlap(ioverlap_last)=i - do k=1,ioverlap_last-1 - if (ioverlap(k).eq.i) ioverlap_last=ioverlap_last-1 - enddo - ioverlap_last=ioverlap_last+1 - ioverlap(ioverlap_last)=j - do k=1,ioverlap_last-1 - if (ioverlap(k).eq.j) ioverlap_last=ioverlap_last-1 - enddo - endif - enddo - enddo - enddo - return - end diff --git a/source/unres/src_CSA_DiL/geomout_min.F b/source/unres/src_CSA_DiL/geomout_min.F deleted file mode 100644 index e634c5a..0000000 --- a/source/unres/src_CSA_DiL/geomout_min.F +++ /dev/null @@ -1,348 +0,0 @@ - subroutine pdbout(etot,tytul,iunit) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.NAMES' - include 'COMMON.IOUNITS' - include 'COMMON.HEADER' - include 'COMMON.SBRIDGE' - include 'COMMON.DISTFIT' - include 'COMMON.MD_' - character*50 tytul - dimension ica(maxres) - write (iunit,'(3a,1pe15.5)') 'REMARK ',tytul,' ENERGY ',etot -cmodel write (iunit,'(a5,i6)') 'MODEL',1 - if (nhfrag.gt.0) then - do j=1,nhfrag - iti=itype(hfrag(1,j)) - itj=itype(hfrag(2,j)) - if (j.lt.10) then - write (iunit,'(a5,i5,1x,a1,i1,2x,a3,i7,2x,a3,i7,i3,t76,i5)') - & 'HELIX',j,'H',j, - & restyp(iti),hfrag(1,j)-1, - & restyp(itj),hfrag(2,j)-1,1,hfrag(2,j)-hfrag(1,j) - else - write (iunit,'(a5,i5,1x,a1,i2,1x,a3,i7,2x,a3,i7,i3)') - & 'HELIX',j,'H',j, - & restyp(iti),hfrag(1,j)-1, - & restyp(itj),hfrag(2,j)-1,1,hfrag(2,j)-hfrag(1,j) - endif - enddo - endif - - if (nbfrag.gt.0) then - - do j=1,nbfrag - - iti=itype(bfrag(1,j)) - itj=itype(bfrag(2,j)-1) - - write (iunit,'(a5,i5,1x,a1,i1,i3,1x,a3,i6,2x,a3,i6,i3)') - & 'SHEET',1,'B',j,2, - & restyp(iti),bfrag(1,j)-1, - & restyp(itj),bfrag(2,j)-2,0 - - if (bfrag(3,j).gt.bfrag(4,j)) then - - itk=itype(bfrag(3,j)) - itl=itype(bfrag(4,j)+1) - - write (iunit,'(a5,i5,1x,a1,i1,i3,1x,a3,i6,2x,a3,i6,i3, - & 2x,a1,2x,a3,i6,3x,a1,2x,a3,i6)') - & 'SHEET',2,'B',j,2, - & restyp(itl),bfrag(4,j), - & restyp(itk),bfrag(3,j)-1,-1, - & "N",restyp(itk),bfrag(3,j)-1, - & "O",restyp(iti),bfrag(1,j)-1 - - else - - itk=itype(bfrag(3,j)) - itl=itype(bfrag(4,j)-1) - - - write (iunit,'(a5,i5,1x,a1,i1,i3,1x,a3,i6,2x,a3,i6,i3, - & 2x,a1,2x,a3,i6,3x,a1,2x,a3,i6)') - & 'SHEET',2,'B',j,2, - & restyp(itk),bfrag(3,j)-1, - & restyp(itl),bfrag(4,j)-2,1, - & "N",restyp(itk),bfrag(3,j)-1, - & "O",restyp(iti),bfrag(1,j)-1 - - - - endif - - enddo - endif - - if (nss.gt.0) then - do i=1,nss - write(iunit,'(a6,i4,1x,a3,i7,4x,a3,i7)') - & 'SSBOND',i,'CYS',ihpb(i)-1-nres, - & 'CYS',jhpb(i)-1-nres - enddo - endif - - iatom=0 - do i=nnt,nct - ires=i-nnt+1 - iatom=iatom+1 - ica(i)=iatom - iti=itype(i) - write (iunit,10) iatom,restyp(iti),ires,(c(j,i),j=1,3),vtot(i) - if (iti.ne.10) then - iatom=iatom+1 - write (iunit,20) iatom,restyp(iti),ires,(c(j,nres+i),j=1,3), - & vtot(i+nres) - endif - enddo - write (iunit,'(a)') 'TER' - do i=nnt,nct-1 - if (itype(i).eq.10) then - write (iunit,30) ica(i),ica(i+1) - else - write (iunit,30) ica(i),ica(i+1),ica(i)+1 - endif - enddo - if (itype(nct).ne.10) then - write (iunit,30) ica(nct),ica(nct)+1 - endif - do i=1,nss - write (iunit,30) ica(ihpb(i)-nres)+1,ica(jhpb(i)-nres)+1 - enddo - write (iunit,'(a6)') 'ENDMDL' - 10 FORMAT ('ATOM',I7,' CA ',A3,I6,4X,3F8.3,f15.3) - 20 FORMAT ('ATOM',I7,' CB ',A3,I6,4X,3F8.3,f15.3) - 30 FORMAT ('CONECT',8I5) - return - end -c------------------------------------------------------------------------------ - subroutine MOL2out(etot,tytul) -C Prints the Cartesian coordinates of the alpha-carbons in the Tripos mol2 -C format. - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.NAMES' - include 'COMMON.IOUNITS' - include 'COMMON.HEADER' - include 'COMMON.SBRIDGE' - character*50 tytul,fd - character*3 zahl - character*6 res_num,pom,ucase -#ifdef AIX - call fdate_(fd) -#elif (defined CRAY) - call date(fd) -#else - call fdate(fd) -#endif - write (imol2,'(a)') '#' - write (imol2,'(a)') - & '# Creating user name: unres' - write (imol2,'(2a)') '# Creation time: ', - & fd - write (imol2,'(/a)') '\@MOLECULE' - write (imol2,'(a)') tytul - write (imol2,'(5i5)') nct-nnt+1,nct-nnt+nss+1,nct-nnt+nss+1,0,0 - write (imol2,'(a)') 'SMALL' - write (imol2,'(a)') 'USER_CHARGES' - write (imol2,'(a)') '\@ATOM' - do i=nnt,nct - write (zahl,'(i3)') i - pom=ucase(restyp(itype(i))) - res_num = pom(:3)//zahl(2:) - write (imol2,10) i,(c(j,i),j=1,3),i,res_num,0.0 - enddo - write (imol2,'(a)') '\@BOND' - do i=nnt,nct-1 - write (imol2,'(i5,2i6,i2)') i-nnt+1,i-nnt+1,i-nnt+2,1 - enddo - do i=1,nss - write (imol2,'(i5,2i6,i2)') nct-nnt+i,ihpb(i),jhpb(i),1 - enddo - write (imol2,'(a)') '\@SUBSTRUCTURE' - do i=nnt,nct - write (zahl,'(i3)') i - pom = ucase(restyp(itype(i))) - res_num = pom(:3)//zahl(2:) - write (imol2,30) i-nnt+1,res_num,i-nnt+1,0 - enddo - 10 FORMAT (I7,' CA ',3F10.4,' C.3',I8,1X,A,F11.4,' ****') - 30 FORMAT (I7,1x,A,I14,' RESIDUE',I13,' **** ****') - return - end -c------------------------------------------------------------------------ - subroutine intout - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.LOCAL' - include 'COMMON.INTERACT' - include 'COMMON.NAMES' - include 'COMMON.GEO' - write (iout,'(/a)') 'Geometry of the virtual chain.' - write (iout,'(7a)') ' Res ',' d',' Theta', - & ' Gamma',' Dsc',' Alpha',' Beta ' - do i=1,nres - iti=itype(i) - write (iout,'(a3,i4,6f10.3)') restyp(iti),i,vbld(i), - & rad2deg*theta(i),rad2deg*phi(i),vbld(nres+i),rad2deg*alph(i), - & rad2deg*omeg(i) - enddo - return - end -c--------------------------------------------------------------------------- - subroutine briefout(it,ener) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.LOCAL' - include 'COMMON.INTERACT' - include 'COMMON.NAMES' - include 'COMMON.GEO' - include 'COMMON.SBRIDGE' -c print '(a,i5)',intname,igeom -#if defined(AIX) || defined(PGI) - open (igeom,file=intname,position='append') -#else - open (igeom,file=intname,access='append') -#endif - IF (NSS.LE.9) THEN - WRITE (igeom,180) IT,ENER,NSS,(IHPB(I),JHPB(I),I=1,NSS) - ELSE - WRITE (igeom,180) IT,ENER,NSS,(IHPB(I),JHPB(I),I=1,9) - WRITE (igeom,190) (IHPB(I),JHPB(I),I=10,NSS) - ENDIF -c IF (nvar.gt.nphi) WRITE (igeom,200) (RAD2DEG*THETA(I),I=3,NRES) - WRITE (igeom,200) (RAD2DEG*THETA(I),I=3,NRES) - WRITE (igeom,200) (RAD2DEG*PHI(I),I=4,NRES) -c if (nvar.gt.nphi+ntheta) then - write (igeom,200) (rad2deg*alph(i),i=2,nres-1) - write (igeom,200) (rad2deg*omeg(i),i=2,nres-1) -c endif - close(igeom) - 180 format (I5,F12.3,I2,9(1X,2I3)) - 190 format (3X,11(1X,2I3)) - 200 format (8F10.4) - return - end -#ifdef WINIFL - subroutine fdate(fd) - character*32 fd - write(fd,'(32x)') - return - end -#endif -c----------------------------------------------------------------- - subroutine statout(itime) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CONTROL' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.NAMES' - include 'COMMON.IOUNITS' - include 'COMMON.HEADER' - include 'COMMON.SBRIDGE' - include 'COMMON.DISTFIT' - include 'COMMON.MD_' -c include 'COMMON.REMD' - include 'COMMON.SETUP' - integer itime - double precision energia(0:n_ene) - double precision gyrate - external gyrate - common /gucio/ cm - character*256 line1,line2 - character*4 format1,format2 - character*30 format -#ifdef AIX - if(itime.eq.0) then - open(istat,file=statname,position="append") - endif -#else -#ifdef PGI - open(istat,file=statname,position="append") -#else - open(istat,file=statname,access="append") -#endif -#endif - if (refstr) then -c call rms_nac_nnc(rms,frac,frac_nn,co,.false.) - write (line1,'(i10,f15.2,3f12.3,f7.2,4f6.3,3f12.3,i5,$)') - & itime,totT,EK,potE,totE, - & rms,frac,frac_nn,co,amax,kinetic_T,t_bath,gyrate(),me - format1="a133" - else - write (line1,'(i10,f15.2,7f12.3,i5,$)') - & itime,totT,EK,potE,totE, - & amax,kinetic_T,t_bath,gyrate(),me - format1="a114" - endif - if(usampl.and.totT.gt.eq_time) then - write(line2,'(i5,2f9.4,300f7.4)') iset,uconst,uconst_back, - & (qfrag(ii1),ii1=1,nfrag),(qpair(ii2),ii2=1,npair), - & (utheta(i),ugamma(i),uscdiff(i),i=1,nfrag_back) - write(format2,'(a1,i3.3)') "a",23+7*nfrag+7*npair - & +21*nfrag_back - elseif(hremd.gt.0) then - write(line2,'(i5)') iset - format2="a005" - else - format2="a001" - line2=' ' - endif - if (print_compon) then - write(format,'(a1,a4,a1,a4,a10)') "(",format1,",",format2, - & ",20f12.3)" - write (istat,format) line1,line2, - & (potEcomp(print_order(i)),i=1,nprint_ene) - else - write(format,'(a1,a4,a1,a4,a1)') "(",format1,",",format2,")" - write (istat,format) line1,line2 - endif -#if defined(AIX) - call flush(istat) -#else - close(istat) -#endif - return - end -c--------------------------------------------------------------- - double precision function gyrate() - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.INTERACT' - include 'COMMON.CHAIN' - double precision cen(3),rg - - do j=1,3 - cen(j)=0.0d0 - enddo - - do i=nnt,nct - do j=1,3 - cen(j)=cen(j)+c(j,i) - enddo - enddo - do j=1,3 - cen(j)=cen(j)/dble(nct-nnt+1) - enddo - rg = 0.0d0 - do i = nnt, nct - do j=1,3 - rg = rg + (c(j,i)-cen(j))**2 - enddo - end do - gyrate = sqrt(rg/dble(nct-nnt+1)) - return - end - diff --git a/source/unres/src_CSA_DiL/gradient_p.F b/source/unres/src_CSA_DiL/gradient_p.F deleted file mode 100644 index 25d1b12..0000000 --- a/source/unres/src_CSA_DiL/gradient_p.F +++ /dev/null @@ -1,408 +0,0 @@ - subroutine gradient(n,x,nf,g,uiparm,urparm,ufparm) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.FFIELD' - include 'COMMON.MD_' - include 'COMMON.IOUNITS' - external ufparm - integer uiparm(1) - double precision urparm(1) - dimension x(maxvar),g(maxvar) -c -c This subroutine calculates total internal coordinate gradient. -c Depending on the number of function evaluations, either whole energy -c is evaluated beforehand, Cartesian coordinates and their derivatives in -c internal coordinates are reevaluated or only the cartesian-in-internal -c coordinate derivatives are evaluated. The subroutine was designed to work -c with SUMSL. -c -c - icg=mod(nf,2)+1 - -cd print *,'grad',nf,icg - if (nf-nfl+1) 20,30,40 - 20 call func(n,x,nf,f,uiparm,urparm,ufparm) -c write (iout,*) 'grad 20' - if (nf.eq.0) return - goto 40 - 30 call var_to_geom(n,x) - call chainbuild -c write (iout,*) 'grad 30' -C -C Evaluate the derivatives of virtual bond lengths and SC vectors in variables. -C - 40 call cartder -c write (iout,*) 'grad 40' -c print *,'GRADIENT: nnt=',nnt,' nct=',nct,' expon=',expon -C -C Convert the Cartesian gradient into internal-coordinate gradient. -C - ind=0 - ind1=0 - do i=1,nres-2 - gthetai=0.0D0 - gphii=0.0D0 - do j=i+1,nres-1 - ind=ind+1 -c ind=indmat(i,j) -c print *,'GRAD: i=',i,' jc=',j,' ind=',ind - do k=1,3 - gthetai=gthetai+dcdv(k,ind)*gradc(k,j,icg) - enddo - do k=1,3 - gphii=gphii+dcdv(k+3,ind)*gradc(k,j,icg) - enddo - enddo - do j=i+1,nres-1 - ind1=ind1+1 -c ind1=indmat(i,j) -c print *,'GRAD: i=',i,' jx=',j,' ind1=',ind1 - do k=1,3 - gthetai=gthetai+dxdv(k,ind1)*gradx(k,j,icg) - gphii=gphii+dxdv(k+3,ind1)*gradx(k,j,icg) - enddo - enddo - if (i.gt.1) g(i-1)=gphii - if (n.gt.nphi) g(nphi+i)=gthetai - enddo - if (n.le.nphi+ntheta) goto 10 - do i=2,nres-1 - if (itype(i).ne.10) then - galphai=0.0D0 - gomegai=0.0D0 - do k=1,3 - galphai=galphai+dxds(k,i)*gradx(k,i,icg) - enddo - do k=1,3 - gomegai=gomegai+dxds(k+3,i)*gradx(k,i,icg) - enddo - g(ialph(i,1))=galphai - g(ialph(i,1)+nside)=gomegai - endif - enddo -C -C Add the components corresponding to local energy terms. -C - 10 continue - do i=1,nvar -cd write (iout,*) 'i=',i,'g=',g(i),' gloc=',gloc(i,icg) - g(i)=g(i)+gloc(i,icg) - enddo -C Uncomment following three lines for diagnostics. -cd call intout -cd call briefout(0,0.0d0) -cd write (iout,'(i3,1pe15.5)') (k,g(k),k=1,n) - return - end -C------------------------------------------------------------------------- - subroutine grad_restr(n,x,nf,g,uiparm,urparm,ufparm) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.FFIELD' - include 'COMMON.IOUNITS' - external ufparm - integer uiparm(1) - double precision urparm(1) - dimension x(maxvar),g(maxvar) - - icg=mod(nf,2)+1 - if (nf-nfl+1) 20,30,40 - 20 call func_restr(n,x,nf,f,uiparm,urparm,ufparm) -c write (iout,*) 'grad 20' - if (nf.eq.0) return - goto 40 - 30 continue -#ifdef OSF -c Intercept NaNs in the coordinates -c write(iout,*) (var(i),i=1,nvar) - x_sum=0.D0 - do i=1,n - x_sum=x_sum+x(i) - enddo - if (x_sum.ne.x_sum) then - write(iout,*)" *** grad_restr : Found NaN in coordinates" - call flush(iout) - print *," *** grad_restr : Found NaN in coordinates" - return - endif -#endif - call var_to_geom_restr(n,x) - call chainbuild -C -C Evaluate the derivatives of virtual bond lengths and SC vectors in variables. -C - 40 call cartder -C -C Convert the Cartesian gradient into internal-coordinate gradient. -C - - ig=0 - ind=nres-2 - do i=2,nres-2 - IF (mask_phi(i+2).eq.1) THEN - gphii=0.0D0 - do j=i+1,nres-1 - ind=ind+1 - do k=1,3 - gphii=gphii+dcdv(k+3,ind)*gradc(k,j,icg) - gphii=gphii+dxdv(k+3,ind)*gradx(k,j,icg) - enddo - enddo - ig=ig+1 - g(ig)=gphii - ELSE - ind=ind+nres-1-i - ENDIF - enddo - - - ind=0 - do i=1,nres-2 - IF (mask_theta(i+2).eq.1) THEN - ig=ig+1 - gthetai=0.0D0 - do j=i+1,nres-1 - ind=ind+1 - do k=1,3 - gthetai=gthetai+dcdv(k,ind)*gradc(k,j,icg) - gthetai=gthetai+dxdv(k,ind)*gradx(k,j,icg) - enddo - enddo - g(ig)=gthetai - ELSE - ind=ind+nres-1-i - ENDIF - enddo - - do i=2,nres-1 - if (itype(i).ne.10) then - IF (mask_side(i).eq.1) THEN - ig=ig+1 - galphai=0.0D0 - do k=1,3 - galphai=galphai+dxds(k,i)*gradx(k,i,icg) - enddo - g(ig)=galphai - ENDIF - endif - enddo - - - do i=2,nres-1 - if (itype(i).ne.10) then - IF (mask_side(i).eq.1) THEN - ig=ig+1 - gomegai=0.0D0 - do k=1,3 - gomegai=gomegai+dxds(k+3,i)*gradx(k,i,icg) - enddo - g(ig)=gomegai - ENDIF - endif - enddo - -C -C Add the components corresponding to local energy terms. -C - - ig=0 - igall=0 - do i=4,nres - igall=igall+1 - if (mask_phi(i).eq.1) then - ig=ig+1 - g(ig)=g(ig)+gloc(igall,icg) - endif - enddo - - do i=3,nres - igall=igall+1 - if (mask_theta(i).eq.1) then - ig=ig+1 - g(ig)=g(ig)+gloc(igall,icg) - endif - enddo - - do ij=1,2 - do i=2,nres-1 - if (itype(i).ne.10) then - igall=igall+1 - if (mask_side(i).eq.1) then - ig=ig+1 - g(ig)=g(ig)+gloc(igall,icg) - endif - endif - enddo - enddo - -cd do i=1,ig -cd write (iout,'(a2,i5,a3,f25.8)') 'i=',i,' g=',g(i) -cd enddo - return - end -C------------------------------------------------------------------------- - subroutine cartgrad - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.FFIELD' - include 'COMMON.MD_' - include 'COMMON.IOUNITS' - include 'COMMON.TIME1' -c -c This subrouting calculates total Cartesian coordinate gradient. -c The subroutine chainbuild_cart and energy MUST be called beforehand. -c -#ifdef TIMING - time00=MPI_Wtime() -#endif - icg=1 - call sum_gradient -#ifdef TIMING -#endif -cd write (iout,*) "After sum_gradient" -cd do i=1,nres-1 -cd write (iout,*) i," gradc ",(gradc(j,i,icg),j=1,3) -cd write (iout,*) i," gradx ",(gradx(j,i,icg),j=1,3) -cd enddo -c If performing constraint dynamics, add the gradients of the constraint energy - if(usampl.and.totT.gt.eq_time) then - do i=1,nct - do j=1,3 - gradc(j,i,icg)=gradc(j,i,icg)+dudconst(j,i)+duscdiff(j,i) - gradx(j,i,icg)=gradx(j,i,icg)+dudxconst(j,i)+duscdiffx(j,i) - enddo - enddo - do i=1,nres-3 - gloc(i,icg)=gloc(i,icg)+dugamma(i) - enddo - do i=1,nres-2 - gloc(nphi+i,icg)=gloc(nphi+i,icg)+dutheta(i) - enddo - endif -#ifdef TIMING - time01=MPI_Wtime() -#endif - call intcartderiv -#ifdef TIMING - time_intcartderiv=time_intcartderiv+MPI_Wtime()-time01 -#endif -cd call checkintcartgrad -cd write(iout,*) 'calling int_to_cart' -cd write (iout,*) "gcart, gxcart, gloc before int_to_cart" - do i=1,nct - do j=1,3 - gcart(j,i)=gradc(j,i,icg) - gxcart(j,i)=gradx(j,i,icg) - enddo -cd write (iout,'(i5,2(3f10.5,5x),f10.5)') i,(gcart(j,i),j=1,3), -cd & (gxcart(j,i),j=1,3),gloc(i,icg) - enddo -#ifdef TIMING - time01=MPI_Wtime() -#endif - call int_to_cart -#ifdef TIMING - time_inttocart=time_inttocart+MPI_Wtime()-time01 -#endif -cd write (iout,*) "gcart and gxcart after int_to_cart" -cd do i=0,nres-1 -cd write (iout,'(i5,3f10.5,5x,3f10.5)') i,(gcart(j,i),j=1,3), -cd & (gxcart(j,i),j=1,3) -cd enddo -#ifdef TIMING - time_cartgrad=time_cartgrad+MPI_Wtime()-time00 -#endif - return - end -C------------------------------------------------------------------------- - subroutine zerograd - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.DERIV' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.MD_' -C -C Initialize Cartesian-coordinate gradient -C - do i=1,nres - do j=1,3 - gvdwx(j,i)=0.0D0 - gvdwxT(j,i)=0.0D0 - gradx_scp(j,i)=0.0D0 - gvdwc(j,i)=0.0D0 - gvdwcT(j,i)=0.0D0 - gvdwc_scp(j,i)=0.0D0 - gvdwc_scpp(j,i)=0.0d0 - gelc (j,i)=0.0D0 - gelc_long(j,i)=0.0D0 - gradb(j,i)=0.0d0 - gradbx(j,i)=0.0d0 - gvdwpp(j,i)=0.0d0 - gel_loc(j,i)=0.0d0 - gel_loc_long(j,i)=0.0d0 - ghpbc(j,i)=0.0D0 - ghpbx(j,i)=0.0D0 - gcorr3_turn(j,i)=0.0d0 - gcorr4_turn(j,i)=0.0d0 - gradcorr(j,i)=0.0d0 - gradcorr_long(j,i)=0.0d0 - gradcorr5_long(j,i)=0.0d0 - gradcorr6_long(j,i)=0.0d0 - gcorr6_turn_long(j,i)=0.0d0 - gradcorr5(j,i)=0.0d0 - gradcorr6(j,i)=0.0d0 - gcorr6_turn(j,i)=0.0d0 - gsccorc(j,i)=0.0d0 - gsccorx(j,i)=0.0d0 - gradc(j,i,icg)=0.0d0 - gradx(j,i,icg)=0.0d0 - gscloc(j,i)=0.0d0 - gsclocx(j,i)=0.0d0 - enddo - enddo -C -C Initialize the gradient of local energy terms. -C - do i=1,4*nres - gloc(i,icg)=0.0D0 - enddo - do i=1,nres - gel_loc_loc(i)=0.0d0 - gcorr_loc(i)=0.0d0 - g_corr5_loc(i)=0.0d0 - g_corr6_loc(i)=0.0d0 - gel_loc_turn3(i)=0.0d0 - gel_loc_turn4(i)=0.0d0 - gel_loc_turn6(i)=0.0d0 - gsccor_loc(i)=0.0d0 - enddo -c initialize gcart and gxcart - do i=0,nres - do j=1,3 - gcart(j,i)=0.0d0 - gxcart(j,i)=0.0d0 - enddo - enddo - return - end -c------------------------------------------------------------------------- - double precision function fdum() - fdum=0.0D0 - return - end diff --git a/source/unres/src_CSA_DiL/indexx.f b/source/unres/src_CSA_DiL/indexx.f deleted file mode 100644 index b903862..0000000 --- a/source/unres/src_CSA_DiL/indexx.f +++ /dev/null @@ -1,81 +0,0 @@ - SUBROUTINE indexx(n,arr,indx) - implicit real*8 (a-h,o-z) - INTEGER n,indx(n),M,NSTACK - REAL*8 arr(n) -c PARAMETER (M=7,NSTACK=50) - PARAMETER (M=7,NSTACK=500) - INTEGER i,indxt,ir,itemp,j,jstack,k,l,istack(NSTACK) - REAL*8 a - do 11 j=1,n - indx(j)=j -11 continue - jstack=0 - l=1 - ir=n -1 if(ir-l.lt.M)then - do 13 j=l+1,ir - indxt=indx(j) - a=arr(indxt) - do 12 i=j-1,1,-1 - if(arr(indx(i)).le.a)goto 2 - indx(i+1)=indx(i) -12 continue - i=0 -2 indx(i+1)=indxt -13 continue - if(jstack.eq.0)return - ir=istack(jstack) - l=istack(jstack-1) - jstack=jstack-2 - else - k=(l+ir)/2 - itemp=indx(k) - indx(k)=indx(l+1) - indx(l+1)=itemp - if(arr(indx(l+1)).gt.arr(indx(ir)))then - itemp=indx(l+1) - indx(l+1)=indx(ir) - indx(ir)=itemp - endif - if(arr(indx(l)).gt.arr(indx(ir)))then - itemp=indx(l) - indx(l)=indx(ir) - indx(ir)=itemp - endif - if(arr(indx(l+1)).gt.arr(indx(l)))then - itemp=indx(l+1) - indx(l+1)=indx(l) - indx(l)=itemp - endif - i=l+1 - j=ir - indxt=indx(l) - a=arr(indxt) -3 continue - i=i+1 - if(arr(indx(i)).lt.a)goto 3 -4 continue - j=j-1 - if(arr(indx(j)).gt.a)goto 4 - if(j.lt.i)goto 5 - itemp=indx(i) - indx(i)=indx(j) - indx(j)=itemp - goto 3 -5 indx(l)=indx(j) - indx(j)=indxt - jstack=jstack+2 - if(jstack.gt.NSTACK)pause 'NSTACK too small in indexx' - if(ir-i+1.ge.j-l)then - istack(jstack)=ir - istack(jstack-1)=i - ir=j-1 - else - istack(jstack)=j-1 - istack(jstack-1)=l - l=i - endif - endif - goto 1 - END -C (C) Copr. 1986-92 Numerical Recipes Software *11915aZ%. diff --git a/source/unres/src_CSA_DiL/initialize_p.F b/source/unres/src_CSA_DiL/initialize_p.F deleted file mode 100644 index 1ca9984..0000000 --- a/source/unres/src_CSA_DiL/initialize_p.F +++ /dev/null @@ -1,1417 +0,0 @@ - block data - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.MCM' -c include 'COMMON.MD' - data MovTypID - & /'pool','chain regrow','multi-bond','phi','theta','side chain', - & 'total'/ -c Conversion from poises to molecular unit and the gas constant -c data cPoise /2.9361d0/, Rb /0.001986d0/ - end -c-------------------------------------------------------------------------- - subroutine initialize -C -C Define constants and zero out tables. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif -#ifndef ISNAN - external proc_proc -#ifdef WINPGI -cMS$ATTRIBUTES C :: proc_proc -#endif -#endif - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.TORSION' - include 'COMMON.FFIELD' - include 'COMMON.SBRIDGE' - include 'COMMON.MCM' - include 'COMMON.MINIM' - include 'COMMON.DERIV' - include 'COMMON.SPLITELE' -c Common blocks from the diagonalization routines - COMMON /IOFILE/ IR,IW,IP,IJK,IPK,IDAF,NAV,IODA(400) - COMMON /MACHSW/ KDIAG,ICORFL,IXDR - logical mask_r -c real*8 text1 /'initial_i'/ - - mask_r=.false. -#ifndef ISNAN -c NaNQ initialization - i=-1 - arg=100.0d0 - rr=dacos(arg) -#ifdef WINPGI - idumm=proc_proc(rr,i) -#else - call proc_proc(rr,i) -#endif -#endif - - kdiag=0 - icorfl=0 - iw=2 -C -C The following is just to define auxiliary variables used in angle conversion -C - pi=4.0D0*datan(1.0D0) - dwapi=2.0D0*pi - dwapi3=dwapi/3.0D0 - pipol=0.5D0*pi - deg2rad=pi/180.0D0 - rad2deg=1.0D0/deg2rad - angmin=10.0D0*deg2rad -C -C Define I/O units. -C - inp= 1 - iout= 2 - ipdbin= 3 - ipdb= 7 - icart = 30 - imol2= 4 - igeom= 8 - intin= 9 - ithep= 11 - ithep_pdb=51 - irotam=12 - irotam_pdb=52 - itorp= 13 - itordp= 23 - ielep= 14 - isidep=15 - iscpp=25 - icbase=16 - ifourier=20 - istat= 17 - irest1=55 - irest2=56 - iifrag=57 - ientin=18 - ientout=19 - ibond = 28 - isccor = 29 -crc for write_rmsbank1 - izs1=21 -cdr include secondary structure prediction bias - isecpred=27 -C -C CSA I/O units (separated from others especially for Jooyoung) -C - icsa_rbank=30 - icsa_seed=31 - icsa_history=32 - icsa_bank=33 - icsa_bank1=34 - icsa_alpha=35 - icsa_alpha1=36 - icsa_bankt=37 - icsa_int=39 - icsa_bank_reminimized=38 - icsa_native_int=41 - icsa_in=40 -crc for ifc error 118 - icsa_pdb=42 -C -C Set default weights of the energy terms. -C - wlong=1.0D0 - welec=1.0D0 - wtor =1.0D0 - wang =1.0D0 - wscloc=1.0D0 - wstrain=1.0D0 -C -C Zero out tables. -C - print '(a,$)','Inside initialize' -c call memmon_print_usage() - do i=1,maxres2 - do j=1,3 - c(j,i)=0.0D0 - dc(j,i)=0.0D0 - enddo - enddo - do i=1,maxres - do j=1,3 - xloc(j,i)=0.0D0 - enddo - enddo - do i=1,ntyp - do j=1,ntyp - aa(i,j)=0.0D0 - bb(i,j)=0.0D0 - augm(i,j)=0.0D0 - sigma(i,j)=0.0D0 - r0(i,j)=0.0D0 - chi(i,j)=0.0D0 - enddo - do j=1,2 - bad(i,j)=0.0D0 - enddo - chip(i)=0.0D0 - alp(i)=0.0D0 - sigma0(i)=0.0D0 - sigii(i)=0.0D0 - rr0(i)=0.0D0 - a0thet(i)=0.0D0 - do j=1,2 - do ichir1=-1,1 - do ichir2=-1,1 - athet(j,i,ichir1,ichir2)=0.0D0 - bthet(j,i,ichir1,ichir2)=0.0D0 - enddo - enddo - enddo - do j=0,3 - polthet(j,i)=0.0D0 - enddo - do j=1,3 - gthet(j,i)=0.0D0 - enddo - theta0(i)=0.0D0 - sig0(i)=0.0D0 - sigc0(i)=0.0D0 - do j=1,maxlob - bsc(j,i)=0.0D0 - do k=1,3 - censc(k,j,i)=0.0D0 - enddo - do k=1,3 - do l=1,3 - gaussc(l,k,j,i)=0.0D0 - enddo - enddo - nlob(i)=0 - enddo - enddo - nlob(ntyp1)=0 - dsc(ntyp1)=0.0D0 - do i=-maxtor,maxtor - itortyp(i)=0 - do iblock=1,2 - do j=-maxtor,maxtor - do k=1,maxterm - v1(k,j,i,iblock)=0.0D0 - v2(k,j,i,iblock)=0.0D0 - enddo - enddo - enddo - enddo - do iblock=1,2 - do i=-maxtor,maxtor - do j=-maxtor,maxtor - do k=-maxtor,maxtor - do l=1,maxtermd_1 - v1c(1,l,i,j,k,iblock)=0.0D0 - v1s(1,l,i,j,k,iblock)=0.0D0 - v1c(2,l,i,j,k,iblock)=0.0D0 - v1s(2,l,i,j,k,iblock)=0.0D0 - enddo !l - do l=1,maxtermd_2 - do m=1,maxtermd_2 - v2c(m,l,i,j,k,iblock)=0.0D0 - v2s(m,l,i,j,k,iblock)=0.0D0 - enddo !m - enddo !l - enddo !k - enddo !j - enddo !i - enddo !i - do i=1,maxres - itype(i)=0 - itel(i)=0 - enddo -C Initialize the bridge arrays - ns=0 - nss=0 - nhpb=0 - do i=1,maxss - iss(i)=0 - enddo - do i=1,maxdim - dhpb(i)=0.0D0 - enddo - do i=1,maxres - ihpb(i)=0 - jhpb(i)=0 - enddo -C -C Initialize timing. -C - call set_timers -C -C Initialize variables used in minimization. -C -c maxfun=5000 -c maxit=2000 - maxfun=500 - maxit=200 - tolf=1.0D-2 - rtolf=5.0D-4 -C -C Initialize the variables responsible for the mode of gradient storage. -C - nfl=0 - icg=1 -C -C Initialize constants used to split the energy into long- and short-range -C components -C - r_cut=2.0d0 - rlamb=0.3d0 -#ifndef SPLITELE - nprint_ene=nprint_ene-1 -#endif - return - end -c------------------------------------------------------------------------- - block data nazwy - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.NAMES' - include 'COMMON.FFIELD' - data restyp / - &'DD' ,'DPR','DLY','DAR','DHI','DAS','DGL','DSG','DGN','DSN','DTH', - &'DYY','DAL','DTY','DTR','DVA','DLE','DIL','DPN','MED','DCY','ZER', - &'CYS','MET','PHE','ILE','LEU','VAL','TRP','TYR','ALA','GLY','THR', - &'SER','GLN','ASN','GLU','ASP','HIS','ARG','LYS','PRO','D'/ - data onelet / - &'z','p','k','r','h','d','e','n','q','s','t','g', - &'a','y','w','v','l','i','f','m','c','x', - &'C','M','F','I','L','V','W','Y','A','G','T', - &'S','Q','N','E','D','H','R','K','P','X'/ - data potname /'LJ','LJK','BP','GB','GBV'/ - data ename / - & "EVDW SC-SC","EVDW2 SC-p","EES p-p","ECORR4 ","ECORR5 ", - & "ECORR6 ","EELLO ","ETURN3 ","ETURN4 ","ETURN6 ", - & "EBE bend","ESC SCloc","ETORS ","ETORSD ","EHPB ","EVDWPP ", - & "ESTR ","EVDW2_14 ","UCONST ", " ","ESCCOR"," "," ", - & "DFA DIS","DFA TOR","DFA NEI","DFA BET"/ - data wname / - & "WSC","WSCP","WELEC","WCORR","WCORR5","WCORR6","WEL_LOC", - & "WTURN3","WTURN4","WTURN6","WANG","WSCLOC","WTOR","WTORD", - & "WSTRAIN","WVDWPP","WBOND","SCAL14"," "," ","WSCCOR", - & " "," ","WDFAD","WDFAT","WDFAN","WDFAB"/ - data nprint_ene /24/ - data print_order/1,2,3,11,12,13,14,4,5,6,7,8,9,10,19,18,15,17,16, - & 21,24,25,26,27,0,0,0/ - end -c--------------------------------------------------------------------------- - subroutine init_int_table - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' - integer blocklengths(15),displs(15) -#endif - include 'COMMON.CONTROL' - include 'COMMON.SETUP' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.LOCAL' - include 'COMMON.SBRIDGE' - include 'COMMON.TORCNSTR' - include 'COMMON.IOUNITS' - include 'COMMON.DERIV' - include 'COMMON.CONTACTS' - common /przechowalnia/ iturn3_start_all(0:max_fg_procs), - & iturn3_end_all(0:max_fg_procs),iturn4_start_all(0:max_fg_procs), - & iturn4_end_all(0:max_fg_procs),iatel_s_all(0:max_fg_procs), - &iatel_e_all(0:max_fg_procs),ielstart_all(maxres,0:max_fg_procs-1), - & ielend_all(maxres,0:max_fg_procs-1), - & ntask_cont_from_all(0:max_fg_procs-1), - & itask_cont_from_all(0:max_fg_procs-1,0:max_fg_procs-1), - & ntask_cont_to_all(0:max_fg_procs-1), - & itask_cont_to_all(0:max_fg_procs-1,0:max_fg_procs-1) - integer FG_GROUP,CONT_FROM_GROUP,CONT_TO_GROUP - logical scheck,lprint,flag -#ifdef MPI - integer my_sc_int(0:max_fg_Procs-1),my_sc_intt(0:max_fg_Procs), - & my_ele_int(0:max_fg_Procs-1),my_ele_intt(0:max_fg_Procs) -C... Determine the numbers of start and end SC-SC interaction -C... to deal with by current processor. - do i=0,nfgtasks-1 - itask_cont_from(i)=fg_rank - itask_cont_to(i)=fg_rank - enddo - lprint=.false. - if (lprint) - &write (iout,*) 'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct - n_sc_int_tot=(nct-nnt+1)*(nct-nnt)/2-nss - call int_bounds(n_sc_int_tot,my_sc_inds,my_sc_inde) - if (lprint) - & write (iout,*) 'Processor',fg_rank,' CG group',kolor, - & ' absolute rank',MyRank, - & ' n_sc_int_tot',n_sc_int_tot,' my_sc_inds=',my_sc_inds, - & ' my_sc_inde',my_sc_inde - ind_sctint=0 - iatsc_s=0 - iatsc_e=0 -#endif -c lprint=.false. - do i=1,maxres - nint_gr(i)=0 - nscp_gr(i)=0 - do j=1,maxint_gr - istart(i,1)=0 - iend(i,1)=0 - ielstart(i)=0 - ielend(i)=0 - iscpstart(i,1)=0 - iscpend(i,1)=0 - enddo - enddo - ind_scint=0 - ind_scint_old=0 -cd write (iout,*) 'ns=',ns,' nss=',nss,' ihpb,jhpb', -cd & (ihpb(i),jhpb(i),i=1,nss) - do i=nnt,nct-1 - scheck=.false. - do ii=1,nss - if (ihpb(ii).eq.i+nres) then - scheck=.true. - jj=jhpb(ii)-nres - goto 10 - endif - enddo - 10 continue -cd write (iout,*) 'i=',i,' scheck=',scheck,' jj=',jj - if (scheck) then - if (jj.eq.i+1) then -#ifdef MPI -c write (iout,*) 'jj=i+1' - call int_partition(ind_scint,my_sc_inds,my_sc_inde,i, - & iatsc_s,iatsc_e,i+2,nct,nint_gr(i),istart(i,1),iend(i,1),*12) -#else - nint_gr(i)=1 - istart(i,1)=i+2 - iend(i,1)=nct -#endif - else if (jj.eq.nct) then -#ifdef MPI -c write (iout,*) 'jj=nct' - call int_partition(ind_scint,my_sc_inds,my_sc_inde,i, - & iatsc_s,iatsc_e,i+1,nct-1,nint_gr(i),istart(i,1),iend(i,1),*12) -#else - nint_gr(i)=1 - istart(i,1)=i+1 - iend(i,1)=nct-1 -#endif - else -#ifdef MPI - call int_partition(ind_scint,my_sc_inds,my_sc_inde,i, - & iatsc_s,iatsc_e,i+1,jj-1,nint_gr(i),istart(i,1),iend(i,1),*12) - ii=nint_gr(i)+1 - call int_partition(ind_scint,my_sc_inds,my_sc_inde,i, - & iatsc_s,iatsc_e,jj+1,nct,nint_gr(i),istart(i,ii),iend(i,ii),*12) -#else - nint_gr(i)=2 - istart(i,1)=i+1 - iend(i,1)=jj-1 - istart(i,2)=jj+1 - iend(i,2)=nct -#endif - endif - else -#ifdef MPI - call int_partition(ind_scint,my_sc_inds,my_sc_inde,i, - & iatsc_s,iatsc_e,i+1,nct,nint_gr(i),istart(i,1),iend(i,1),*12) -#else - nint_gr(i)=1 - istart(i,1)=i+1 - iend(i,1)=nct - ind_scint=ind_scint+nct-i -#endif - endif -#ifdef MPI - ind_scint_old=ind_scint -#endif - enddo - 12 continue -#ifndef MPI - iatsc_s=nnt - iatsc_e=nct-1 -#endif -#ifdef MPI - if (lprint) write (*,*) 'Processor',fg_rank,' CG Group',kolor, - & ' absolute rank',myrank,' iatsc_s=',iatsc_s,' iatsc_e=',iatsc_e -#endif - if (lprint) then - write (iout,'(a)') 'Interaction array:' - do i=iatsc_s,iatsc_e - write (iout,'(i3,2(2x,2i3))') - & i,(istart(i,iint),iend(i,iint),iint=1,nint_gr(i)) - enddo - endif - ispp=4 -#ifdef MPI -C Now partition the electrostatic-interaction array - npept=nct-nnt - nele_int_tot=(npept-ispp)*(npept-ispp+1)/2 - call int_bounds(nele_int_tot,my_ele_inds,my_ele_inde) - if (lprint) - & write (*,*) 'Processor',fg_rank,' CG group',kolor, - & ' absolute rank',MyRank, - & ' nele_int_tot',nele_int_tot,' my_ele_inds=',my_ele_inds, - & ' my_ele_inde',my_ele_inde - iatel_s=0 - iatel_e=0 - ind_eleint=0 - ind_eleint_old=0 - do i=nnt,nct-3 - ijunk=0 - call int_partition(ind_eleint,my_ele_inds,my_ele_inde,i, - & iatel_s,iatel_e,i+ispp,nct-1,ijunk,ielstart(i),ielend(i),*13) - enddo ! i - 13 continue - if (iatel_s.eq.0) iatel_s=1 - nele_int_tot_vdw=(npept-2)*(npept-2+1)/2 -c write (iout,*) "nele_int_tot_vdw",nele_int_tot_vdw - call int_bounds(nele_int_tot_vdw,my_ele_inds_vdw,my_ele_inde_vdw) -c write (iout,*) "my_ele_inds_vdw",my_ele_inds_vdw, -c & " my_ele_inde_vdw",my_ele_inde_vdw - ind_eleint_vdw=0 - ind_eleint_vdw_old=0 - iatel_s_vdw=0 - iatel_e_vdw=0 - do i=nnt,nct-3 - ijunk=0 - call int_partition(ind_eleint_vdw,my_ele_inds_vdw, - & my_ele_inde_vdw,i, - & iatel_s_vdw,iatel_e_vdw,i+2,nct-1,ijunk,ielstart_vdw(i), - & ielend_vdw(i),*15) -c write (iout,*) i," ielstart_vdw",ielstart_vdw(i), -c & " ielend_vdw",ielend_vdw(i) - enddo ! i - if (iatel_s_vdw.eq.0) iatel_s_vdw=1 - 15 continue -#else - iatel_s=nnt - iatel_e=nct-5 - do i=iatel_s,iatel_e - ielstart(i)=i+4 - ielend(i)=nct-1 - enddo - iatel_s_vdw=nnt - iatel_e_vdw=nct-3 - do i=iatel_s_vdw,iatel_e_vdw - ielstart_vdw(i)=i+2 - ielend_vdw(i)=nct-1 - enddo -#endif - if (lprint) then - write (*,'(a)') 'Processor',fg_rank,' CG group',kolor, - & ' absolute rank',MyRank - write (iout,*) 'Electrostatic interaction array:' - do i=iatel_s,iatel_e - write (iout,'(i3,2(2x,2i3))') i,ielstart(i),ielend(i) - enddo - endif ! lprint -c iscp=3 - iscp=2 -C Partition the SC-p interaction array -#ifdef MPI - nscp_int_tot=(npept-iscp+1)*(npept-iscp+1) - call int_bounds(nscp_int_tot,my_scp_inds,my_scp_inde) - if (lprint) write (iout,*) 'Processor',fg_rank,' CG group',kolor, - & ' absolute rank',myrank, - & ' nscp_int_tot',nscp_int_tot,' my_scp_inds=',my_scp_inds, - & ' my_scp_inde',my_scp_inde - iatscp_s=0 - iatscp_e=0 - ind_scpint=0 - ind_scpint_old=0 - do i=nnt,nct-1 - if (i.lt.nnt+iscp) then -cd write (iout,*) 'i.le.nnt+iscp' - call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i, - & iatscp_s,iatscp_e,i+iscp,nct,nscp_gr(i),iscpstart(i,1), - & iscpend(i,1),*14) - else if (i.gt.nct-iscp) then -cd write (iout,*) 'i.gt.nct-iscp' - call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i, - & iatscp_s,iatscp_e,nnt,i-iscp,nscp_gr(i),iscpstart(i,1), - & iscpend(i,1),*14) - else - call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i, - & iatscp_s,iatscp_e,nnt,i-iscp,nscp_gr(i),iscpstart(i,1), - & iscpend(i,1),*14) - ii=nscp_gr(i)+1 - call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i, - & iatscp_s,iatscp_e,i+iscp,nct,nscp_gr(i),iscpstart(i,ii), - & iscpend(i,ii),*14) - endif - enddo ! i - 14 continue -#else - iatscp_s=nnt - iatscp_e=nct-1 - do i=nnt,nct-1 - if (i.lt.nnt+iscp) then - nscp_gr(i)=1 - iscpstart(i,1)=i+iscp - iscpend(i,1)=nct - elseif (i.gt.nct-iscp) then - nscp_gr(i)=1 - iscpstart(i,1)=nnt - iscpend(i,1)=i-iscp - else - nscp_gr(i)=2 - iscpstart(i,1)=nnt - iscpend(i,1)=i-iscp - iscpstart(i,2)=i+iscp - iscpend(i,2)=nct - endif - enddo ! i -#endif - if (lprint) then - write (iout,'(a)') 'SC-p interaction array:' - do i=iatscp_s,iatscp_e - write (iout,'(i3,2(2x,2i3))') - & i,(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i)) - enddo - endif ! lprint -C Partition local interactions -#ifdef MPI - call int_bounds(nres-2,loc_start,loc_end) - loc_start=loc_start+1 - loc_end=loc_end+1 - call int_bounds(nres-2,ithet_start,ithet_end) - ithet_start=ithet_start+2 - ithet_end=ithet_end+2 - call int_bounds(nct-nnt-2,iturn3_start,iturn3_end) - iturn3_start=iturn3_start+nnt - iphi_start=iturn3_start+2 - iturn3_end=iturn3_end+nnt - iphi_end=iturn3_end+2 - iturn3_start=iturn3_start-1 - iturn3_end=iturn3_end-1 - call int_bounds(nres-3,iphi1_start,iphi1_end) - iphi1_start=iphi1_start+3 - iphi1_end=iphi1_end+3 - call int_bounds(nct-nnt-3,iturn4_start,iturn4_end) - iturn4_start=iturn4_start+nnt - iphid_start=iturn4_start+2 - iturn4_end=iturn4_end+nnt - iphid_end=iturn4_end+2 - iturn4_start=iturn4_start-1 - iturn4_end=iturn4_end-1 - call int_bounds(nres-2,ibond_start,ibond_end) - ibond_start=ibond_start+1 - ibond_end=ibond_end+1 - call int_bounds(nct-nnt,ibondp_start,ibondp_end) - ibondp_start=ibondp_start+nnt - ibondp_end=ibondp_end+nnt - call int_bounds1(nres-1,ivec_start,ivec_end) - print *,"Processor",myrank,fg_rank,fg_rank1, - & " ivec_start",ivec_start," ivec_end",ivec_end - iset_start=loc_start+2 - iset_end=loc_end+2 - if (ndih_constr.eq.0) then - idihconstr_start=1 - idihconstr_end=0 - else - call int_bounds(ndih_constr,idihconstr_start,idihconstr_end) - endif - nsumgrad=(nres-nnt)*(nres-nnt+1)/2 - nlen=nres-nnt+1 - call int_bounds(nsumgrad,ngrad_start,ngrad_end) - igrad_start=((2*nlen+1) - & -sqrt(float((2*nlen-1)**2-8*(ngrad_start-1))))/2 - jgrad_start(igrad_start)= - & ngrad_start-(2*nlen-igrad_start)*(igrad_start-1)/2 - & +igrad_start - jgrad_end(igrad_start)=nres - igrad_end=((2*nlen+1) - & -sqrt(float((2*nlen-1)**2-8*(ngrad_end-1))))/2 - if (igrad_end.gt.igrad_start) jgrad_start(igrad_end)=igrad_end+1 - jgrad_end(igrad_end)=ngrad_end-(2*nlen-igrad_end)*(igrad_end-1)/2 - & +igrad_end - do i=igrad_start+1,igrad_end-1 - jgrad_start(i)=i+1 - jgrad_end(i)=nres - enddo - if (lprint) then - write (*,*) 'Processor:',fg_rank,' CG group',kolor, - & ' absolute rank',myrank, - & ' loc_start',loc_start,' loc_end',loc_end, - & ' ithet_start',ithet_start,' ithet_end',ithet_end, - & ' iphi_start',iphi_start,' iphi_end',iphi_end, - & ' iphid_start',iphid_start,' iphid_end',iphid_end, - & ' ibond_start',ibond_start,' ibond_end',ibond_end, - & ' ibondp_start',ibondp_start,' ibondp_end',ibondp_end, - & ' iturn3_start',iturn3_start,' iturn3_end',iturn3_end, - & ' iturn4_start',iturn4_start,' iturn4_end',iturn4_end, - & ' ivec_start',ivec_start,' ivec_end',ivec_end, - & ' iset_start',iset_start,' iset_end',iset_end, - & ' idihconstr_start',idihconstr_start,' idihconstr_end', - & idihconstr_end - write (*,*) 'Processor:',fg_rank,myrank,' igrad_start', - & igrad_start,' igrad_end',igrad_end,' ngrad_start',ngrad_start, - & ' ngrad_end',ngrad_end - do i=igrad_start,igrad_end - write(*,*) 'Processor:',fg_rank,myrank,i, - & jgrad_start(i),jgrad_end(i) - enddo - endif - if (nfgtasks.gt.1) then - call MPI_Allgather(ivec_start,1,MPI_INTEGER,ivec_displ(0),1, - & MPI_INTEGER,FG_COMM1,IERROR) - iaux=ivec_end-ivec_start+1 - call MPI_Allgather(iaux,1,MPI_INTEGER,ivec_count(0),1, - & MPI_INTEGER,FG_COMM1,IERROR) - call MPI_Allgather(iset_start-2,1,MPI_INTEGER,iset_displ(0),1, - & MPI_INTEGER,FG_COMM,IERROR) - iaux=iset_end-iset_start+1 - call MPI_Allgather(iaux,1,MPI_INTEGER,iset_count(0),1, - & MPI_INTEGER,FG_COMM,IERROR) - call MPI_Allgather(ibond_start,1,MPI_INTEGER,ibond_displ(0),1, - & MPI_INTEGER,FG_COMM,IERROR) - iaux=ibond_end-ibond_start+1 - call MPI_Allgather(iaux,1,MPI_INTEGER,ibond_count(0),1, - & MPI_INTEGER,FG_COMM,IERROR) - call MPI_Allgather(ithet_start,1,MPI_INTEGER,ithet_displ(0),1, - & MPI_INTEGER,FG_COMM,IERROR) - iaux=ithet_end-ithet_start+1 - call MPI_Allgather(iaux,1,MPI_INTEGER,ithet_count(0),1, - & MPI_INTEGER,FG_COMM,IERROR) - call MPI_Allgather(iphi_start,1,MPI_INTEGER,iphi_displ(0),1, - & MPI_INTEGER,FG_COMM,IERROR) - iaux=iphi_end-iphi_start+1 - call MPI_Allgather(iaux,1,MPI_INTEGER,iphi_count(0),1, - & MPI_INTEGER,FG_COMM,IERROR) - call MPI_Allgather(iphi1_start,1,MPI_INTEGER,iphi1_displ(0),1, - & MPI_INTEGER,FG_COMM,IERROR) - iaux=iphi1_end-iphi1_start+1 - call MPI_Allgather(iaux,1,MPI_INTEGER,iphi1_count(0),1, - & MPI_INTEGER,FG_COMM,IERROR) - do i=0,maxprocs-1 - do j=1,maxres - ielstart_all(j,i)=0 - ielend_all(j,i)=0 - enddo - enddo - call MPI_Allgather(iturn3_start,1,MPI_INTEGER, - & iturn3_start_all(0),1,MPI_INTEGER,FG_COMM,IERROR) - call MPI_Allgather(iturn4_start,1,MPI_INTEGER, - & iturn4_start_all(0),1,MPI_INTEGER,FG_COMM,IERROR) - call MPI_Allgather(iturn3_end,1,MPI_INTEGER, - & iturn3_end_all(0),1,MPI_INTEGER,FG_COMM,IERROR) - call MPI_Allgather(iturn4_end,1,MPI_INTEGER, - & iturn4_end_all(0),1,MPI_INTEGER,FG_COMM,IERROR) - call MPI_Allgather(iatel_s,1,MPI_INTEGER, - & iatel_s_all(0),1,MPI_INTEGER,FG_COMM,IERROR) - call MPI_Allgather(iatel_e,1,MPI_INTEGER, - & iatel_e_all(0),1,MPI_INTEGER,FG_COMM,IERROR) - call MPI_Allgather(ielstart(1),maxres,MPI_INTEGER, - & ielstart_all(1,0),maxres,MPI_INTEGER,FG_COMM,IERROR) - call MPI_Allgather(ielend(1),maxres,MPI_INTEGER, - & ielend_all(1,0),maxres,MPI_INTEGER,FG_COMM,IERROR) - if (lprint) then - write (iout,*) "iatel_s_all",(iatel_s_all(i),i=0,nfgtasks) - write (iout,*) "iatel_e_all",(iatel_e_all(i),i=0,nfgtasks) - write (iout,*) "iturn3_start_all", - & (iturn3_start_all(i),i=0,nfgtasks-1) - write (iout,*) "iturn3_end_all", - & (iturn3_end_all(i),i=0,nfgtasks-1) - write (iout,*) "iturn4_start_all", - & (iturn4_start_all(i),i=0,nfgtasks-1) - write (iout,*) "iturn4_end_all", - & (iturn4_end_all(i),i=0,nfgtasks-1) - write (iout,*) "The ielstart_all array" - do i=nnt,nct - write (iout,'(20i4)') i,(ielstart_all(i,j),j=0,nfgtasks-1) - enddo - write (iout,*) "The ielend_all array" - do i=nnt,nct - write (iout,'(20i4)') i,(ielend_all(i,j),j=0,nfgtasks-1) - enddo - call flush(iout) - endif - ntask_cont_from=0 - ntask_cont_to=0 - itask_cont_from(0)=fg_rank - itask_cont_to(0)=fg_rank - flag=.false. - do ii=iturn3_start,iturn3_end - call add_int(ii,ii+2,iturn3_sent(1,ii), - & ntask_cont_to,itask_cont_to,flag) - enddo - do ii=iturn4_start,iturn4_end - call add_int(ii,ii+3,iturn4_sent(1,ii), - & ntask_cont_to,itask_cont_to,flag) - enddo - do ii=iturn3_start,iturn3_end - call add_int_from(ii,ii+2,ntask_cont_from,itask_cont_from) - enddo - do ii=iturn4_start,iturn4_end - call add_int_from(ii,ii+3,ntask_cont_from,itask_cont_from) - enddo - if (lprint) then - write (iout,*) "After turn3 ntask_cont_from",ntask_cont_from, - & " ntask_cont_to",ntask_cont_to - write (iout,*) "itask_cont_from", - & (itask_cont_from(i),i=1,ntask_cont_from) - write (iout,*) "itask_cont_to", - & (itask_cont_to(i),i=1,ntask_cont_to) - call flush(iout) - endif -c write (iout,*) "Loop forward" -c call flush(iout) - do i=iatel_s,iatel_e -c write (iout,*) "from loop i=",i -c call flush(iout) - do j=ielstart(i),ielend(i) - call add_int_from(i,j,ntask_cont_from,itask_cont_from) - enddo - enddo -c write (iout,*) "Loop backward iatel_e-1",iatel_e-1, -c & " iatel_e",iatel_e -c call flush(iout) - nat_sent=0 - do i=iatel_s,iatel_e -c write (iout,*) "i",i," ielstart",ielstart(i), -c & " ielend",ielend(i) -c call flush(iout) - flag=.false. - do j=ielstart(i),ielend(i) - call add_int(i,j,iint_sent(1,j,nat_sent+1),ntask_cont_to, - & itask_cont_to,flag) - enddo - if (flag) then - nat_sent=nat_sent+1 - iat_sent(nat_sent)=i - endif - enddo - if (lprint) then - write (iout,*)"After longrange ntask_cont_from",ntask_cont_from, - & " ntask_cont_to",ntask_cont_to - write (iout,*) "itask_cont_from", - & (itask_cont_from(i),i=1,ntask_cont_from) - write (iout,*) "itask_cont_to", - & (itask_cont_to(i),i=1,ntask_cont_to) - call flush(iout) - write (iout,*) "iint_sent" - do i=1,nat_sent - ii=iat_sent(i) - write (iout,'(20i4)') ii,(j,(iint_sent(k,j,i),k=1,4), - & j=ielstart(ii),ielend(ii)) - enddo - write (iout,*) "iturn3_sent iturn3_start",iturn3_start, - & " iturn3_end",iturn3_end - write (iout,'(20i4)') (i,(iturn3_sent(j,i),j=1,4), - & i=iturn3_start,iturn3_end) - write (iout,*) "iturn4_sent iturn4_start",iturn4_start, - & " iturn4_end",iturn4_end - write (iout,'(20i4)') (i,(iturn4_sent(j,i),j=1,4), - & i=iturn4_start,iturn4_end) - call flush(iout) - endif - call MPI_Gather(ntask_cont_from,1,MPI_INTEGER, - & ntask_cont_from_all,1,MPI_INTEGER,king,FG_COMM,IERR) -c write (iout,*) "Gather ntask_cont_from ended" -c call flush(iout) - call MPI_Gather(itask_cont_from(0),max_fg_procs,MPI_INTEGER, - & itask_cont_from_all(0,0),max_fg_procs,MPI_INTEGER,king, - & FG_COMM,IERR) -c write (iout,*) "Gather itask_cont_from ended" -c call flush(iout) - call MPI_Gather(ntask_cont_to,1,MPI_INTEGER,ntask_cont_to_all, - & 1,MPI_INTEGER,king,FG_COMM,IERR) -c write (iout,*) "Gather ntask_cont_to ended" -c call flush(iout) - call MPI_Gather(itask_cont_to,max_fg_procs,MPI_INTEGER, - & itask_cont_to_all,max_fg_procs,MPI_INTEGER,king,FG_COMM,IERR) -c write (iout,*) "Gather itask_cont_to ended" -c call flush(iout) - if (fg_rank.eq.king) then - write (iout,*)"Contact receive task map (proc, #tasks, tasks)" - do i=0,nfgtasks-1 - write (iout,'(20i4)') i,ntask_cont_from_all(i), - & (itask_cont_from_all(j,i),j=1,ntask_cont_from_all(i)) - enddo - write (iout,*) - call flush(iout) - write (iout,*) "Contact send task map (proc, #tasks, tasks)" - do i=0,nfgtasks-1 - write (iout,'(20i4)') i,ntask_cont_to_all(i), - & (itask_cont_to_all(j,i),j=1,ntask_cont_to_all(i)) - enddo - write (iout,*) - call flush(iout) -C Check if every send will have a matching receive - ncheck_to=0 - ncheck_from=0 - do i=0,nfgtasks-1 - ncheck_to=ncheck_to+ntask_cont_to_all(i) - ncheck_from=ncheck_from+ntask_cont_from_all(i) - enddo - write (iout,*) "Control sums",ncheck_from,ncheck_to - if (ncheck_from.ne.ncheck_to) then - write (iout,*) "Error: #receive differs from #send." - write (iout,*) "Terminating program...!" - call flush(iout) - flag=.false. - else - flag=.true. - do i=0,nfgtasks-1 - do j=1,ntask_cont_to_all(i) - ii=itask_cont_to_all(j,i) - do k=1,ntask_cont_from_all(ii) - if (itask_cont_from_all(k,ii).eq.i) then - if(lprint)write(iout,*)"Matching send/receive",i,ii - exit - endif - enddo - if (k.eq.ntask_cont_from_all(ii)+1) then - flag=.false. - write (iout,*) "Error: send by",j," to",ii, - & " would have no matching receive" - endif - enddo - enddo - endif - if (.not.flag) then - write (iout,*) "Unmatched sends; terminating program" - call flush(iout) - endif - endif - call MPI_Bcast(flag,1,MPI_LOGICAL,king,FG_COMM,IERROR) -c write (iout,*) "flag broadcast ended flag=",flag -c call flush(iout) - if (.not.flag) then - call MPI_Finalize(IERROR) - stop "Error in INIT_INT_TABLE: unmatched send/receive." - endif - call MPI_Comm_group(FG_COMM,fg_group,IERR) -c write (iout,*) "MPI_Comm_group ended" -c call flush(iout) - call MPI_Group_incl(fg_group,ntask_cont_from+1, - & itask_cont_from(0),CONT_FROM_GROUP,IERR) - call MPI_Group_incl(fg_group,ntask_cont_to+1,itask_cont_to(0), - & CONT_TO_GROUP,IERR) - do i=1,nat_sent - ii=iat_sent(i) - iaux=4*(ielend(ii)-ielstart(ii)+1) - call MPI_Group_translate_ranks(fg_group,iaux, - & iint_sent(1,ielstart(ii),i),CONT_TO_GROUP, - & iint_sent_local(1,ielstart(ii),i),IERR ) -c write (iout,*) "Ranks translated i=",i -c call flush(iout) - enddo - iaux=4*(iturn3_end-iturn3_start+1) - call MPI_Group_translate_ranks(fg_group,iaux, - & iturn3_sent(1,iturn3_start),CONT_TO_GROUP, - & iturn3_sent_local(1,iturn3_start),IERR) - iaux=4*(iturn4_end-iturn4_start+1) - call MPI_Group_translate_ranks(fg_group,iaux, - & iturn4_sent(1,iturn4_start),CONT_TO_GROUP, - & iturn4_sent_local(1,iturn4_start),IERR) - if (lprint) then - write (iout,*) "iint_sent_local" - do i=1,nat_sent - ii=iat_sent(i) - write (iout,'(20i4)') ii,(j,(iint_sent_local(k,j,i),k=1,4), - & j=ielstart(ii),ielend(ii)) - call flush(iout) - enddo - write (iout,*) "iturn3_sent_local iturn3_start",iturn3_start, - & " iturn3_end",iturn3_end - write (iout,'(20i4)') (i,(iturn3_sent_local(j,i),j=1,4), - & i=iturn3_start,iturn3_end) - write (iout,*) "iturn4_sent_local iturn4_start",iturn4_start, - & " iturn4_end",iturn4_end - write (iout,'(20i4)') (i,(iturn4_sent_local(j,i),j=1,4), - & i=iturn4_start,iturn4_end) - call flush(iout) - endif - call MPI_Group_free(fg_group,ierr) - call MPI_Group_free(cont_from_group,ierr) - call MPI_Group_free(cont_to_group,ierr) - call MPI_Type_contiguous(3,MPI_DOUBLE_PRECISION,MPI_UYZ,IERROR) - call MPI_Type_commit(MPI_UYZ,IERROR) - call MPI_Type_contiguous(18,MPI_DOUBLE_PRECISION,MPI_UYZGRAD, - & IERROR) - call MPI_Type_commit(MPI_UYZGRAD,IERROR) - call MPI_Type_contiguous(2,MPI_DOUBLE_PRECISION,MPI_MU,IERROR) - call MPI_Type_commit(MPI_MU,IERROR) - call MPI_Type_contiguous(4,MPI_DOUBLE_PRECISION,MPI_MAT1,IERROR) - call MPI_Type_commit(MPI_MAT1,IERROR) - call MPI_Type_contiguous(8,MPI_DOUBLE_PRECISION,MPI_MAT2,IERROR) - call MPI_Type_commit(MPI_MAT2,IERROR) - call MPI_Type_contiguous(6,MPI_DOUBLE_PRECISION,MPI_THET,IERROR) - call MPI_Type_commit(MPI_THET,IERROR) - call MPI_Type_contiguous(9,MPI_DOUBLE_PRECISION,MPI_GAM,IERROR) - call MPI_Type_commit(MPI_GAM,IERROR) -#ifndef MATGATHER -c 9/22/08 Derived types to send matrices which appear in correlation terms - do i=0,nfgtasks-1 - if (ivec_count(i).eq.ivec_count(0)) then - lentyp(i)=0 - else - lentyp(i)=1 - endif - enddo - do ind_typ=lentyp(0),lentyp(nfgtasks-1) - if (ind_typ.eq.0) then - ichunk=ivec_count(0) - else - ichunk=ivec_count(1) - endif -c do i=1,4 -c blocklengths(i)=4 -c enddo -c displs(1)=0 -c do i=2,4 -c displs(i)=displs(i-1)+blocklengths(i-1)*maxres -c enddo -c do i=1,4 -c blocklengths(i)=blocklengths(i)*ichunk -c enddo -c write (iout,*) "blocklengths and displs" -c do i=1,4 -c write (iout,*) i,blocklengths(i),displs(i) -c enddo -c call flush(iout) -c call MPI_Type_indexed(4,blocklengths(1),displs(1), -c & MPI_DOUBLE_PRECISION,MPI_ROTAT1(ind_typ),IERROR) -c call MPI_Type_commit(MPI_ROTAT1(ind_typ),IERROR) -c write (iout,*) "MPI_ROTAT1",MPI_ROTAT1 -c do i=1,4 -c blocklengths(i)=2 -c enddo -c displs(1)=0 -c do i=2,4 -c displs(i)=displs(i-1)+blocklengths(i-1)*maxres -c enddo -c do i=1,4 -c blocklengths(i)=blocklengths(i)*ichunk -c enddo -c write (iout,*) "blocklengths and displs" -c do i=1,4 -c write (iout,*) i,blocklengths(i),displs(i) -c enddo -c call flush(iout) -c call MPI_Type_indexed(4,blocklengths(1),displs(1), -c & MPI_DOUBLE_PRECISION,MPI_ROTAT2(ind_typ),IERROR) -c call MPI_Type_commit(MPI_ROTAT2(ind_typ),IERROR) -c write (iout,*) "MPI_ROTAT2",MPI_ROTAT2 - do i=1,8 - blocklengths(i)=2 - enddo - displs(1)=0 - do i=2,8 - displs(i)=displs(i-1)+blocklengths(i-1)*maxres - enddo - do i=1,15 - blocklengths(i)=blocklengths(i)*ichunk - enddo - call MPI_Type_indexed(8,blocklengths,displs, - & MPI_DOUBLE_PRECISION,MPI_PRECOMP11(ind_typ),IERROR) - call MPI_Type_commit(MPI_PRECOMP11(ind_typ),IERROR) - do i=1,8 - blocklengths(i)=4 - enddo - displs(1)=0 - do i=2,8 - displs(i)=displs(i-1)+blocklengths(i-1)*maxres - enddo - do i=1,15 - blocklengths(i)=blocklengths(i)*ichunk - enddo - call MPI_Type_indexed(8,blocklengths,displs, - & MPI_DOUBLE_PRECISION,MPI_PRECOMP12(ind_typ),IERROR) - call MPI_Type_commit(MPI_PRECOMP12(ind_typ),IERROR) - do i=1,6 - blocklengths(i)=4 - enddo - displs(1)=0 - do i=2,6 - displs(i)=displs(i-1)+blocklengths(i-1)*maxres - enddo - do i=1,6 - blocklengths(i)=blocklengths(i)*ichunk - enddo - call MPI_Type_indexed(6,blocklengths,displs, - & MPI_DOUBLE_PRECISION,MPI_PRECOMP22(ind_typ),IERROR) - call MPI_Type_commit(MPI_PRECOMP22(ind_typ),IERROR) - do i=1,2 - blocklengths(i)=8 - enddo - displs(1)=0 - do i=2,2 - displs(i)=displs(i-1)+blocklengths(i-1)*maxres - enddo - do i=1,2 - blocklengths(i)=blocklengths(i)*ichunk - enddo - call MPI_Type_indexed(2,blocklengths,displs, - & MPI_DOUBLE_PRECISION,MPI_PRECOMP23(ind_typ),IERROR) - call MPI_Type_commit(MPI_PRECOMP23(ind_typ),IERROR) - do i=1,4 - blocklengths(i)=1 - enddo - displs(1)=0 - do i=2,4 - displs(i)=displs(i-1)+blocklengths(i-1)*maxres - enddo - do i=1,4 - blocklengths(i)=blocklengths(i)*ichunk - enddo - call MPI_Type_indexed(4,blocklengths,displs, - & MPI_DOUBLE_PRECISION,MPI_ROTAT_OLD(ind_typ),IERROR) - call MPI_Type_commit(MPI_ROTAT_OLD(ind_typ),IERROR) - enddo -#endif - endif - iint_start=ivec_start+1 - iint_end=ivec_end+1 - do i=0,nfgtasks-1 - iint_count(i)=ivec_count(i) - iint_displ(i)=ivec_displ(i) - ivec_displ(i)=ivec_displ(i)-1 - iset_displ(i)=iset_displ(i)-1 - ithet_displ(i)=ithet_displ(i)-1 - iphi_displ(i)=iphi_displ(i)-1 - iphi1_displ(i)=iphi1_displ(i)-1 - ibond_displ(i)=ibond_displ(i)-1 - enddo - if (nfgtasks.gt.1 .and. fg_rank.eq.king - & .and. (me.eq.0 .or. out1file)) then - write (iout,*) "IVEC_DISPL, IVEC_COUNT, ISET_START, ISET_COUNT" - do i=0,nfgtasks-1 - write (iout,*) i,ivec_displ(i),ivec_count(i),iset_displ(i), - & iset_count(i) - enddo - write (iout,*) "iphi_start",iphi_start," iphi_end",iphi_end, - & " iphi1_start",iphi1_start," iphi1_end",iphi1_end - write (iout,*)"IPHI_COUNT, IPHI_DISPL, IPHI1_COUNT, IPHI1_DISPL" - do i=0,nfgtasks-1 - write (iout,*) i,iphi_count(i),iphi_displ(i),iphi1_count(i), - & iphi1_displ(i) - enddo - write(iout,'(i10,a,i10,a,i10,a/a,i3,a)') n_sc_int_tot,' SC-SC ', - & nele_int_tot,' electrostatic and ',nscp_int_tot, - & ' SC-p interactions','were distributed among',nfgtasks, - & ' fine-grain processors.' - endif -#else - loc_start=2 - loc_end=nres-1 - ithet_start=3 - ithet_end=nres - iturn3_start=nnt - iturn3_end=nct-3 - iturn4_start=nnt - iturn4_end=nct-4 - iphi_start=nnt+3 - iphi_end=nct - iphi1_start=4 - iphi1_end=nres - idihconstr_start=1 - idihconstr_end=ndih_constr - iphid_start=iphi_start - iphid_end=iphi_end-1 - ibond_start=2 - ibond_end=nres-1 - ibondp_start=nnt+1 - ibondp_end=nct - ivec_start=1 - ivec_end=nres-1 - iset_start=3 - iset_end=nres+1 - iint_start=2 - iint_end=nres-1 -#endif - return - end -#ifdef MPI -c--------------------------------------------------------------------------- - subroutine add_int(ii,jj,itask,ntask_cont_to,itask_cont_to,flag) - implicit none - include "DIMENSIONS" - include "COMMON.INTERACT" - include "COMMON.SETUP" - include "COMMON.IOUNITS" - integer ii,jj,itask(4),ntask_cont_to, - & itask_cont_to(0:max_fg_procs-1) - logical flag - integer iturn3_start_all,iturn3_end_all,iturn4_start_all, - & iturn4_end_all,iatel_s_all,iatel_e_all,ielstart_all,ielend_all - common /przechowalnia/ iturn3_start_all(0:max_fg_procs), - & iturn3_end_all(0:max_fg_procs),iturn4_start_all(0:max_fg_procs), - & iturn4_end_all(0:max_fg_procs),iatel_s_all(0:max_fg_procs), - &iatel_e_all(0:max_fg_procs),ielstart_all(maxres,0:max_fg_procs-1), - & ielend_all(maxres,0:max_fg_procs-1) - integer iproc,isent,k,l -c Determines whether to send interaction ii,jj to other processors; a given -c interaction can be sent to at most 2 processors. -c Sets flag=.true. if interaction ii,jj needs to be sent to at least -c one processor, otherwise flag is unchanged from the input value. - isent=0 - itask(1)=fg_rank - itask(2)=fg_rank - itask(3)=fg_rank - itask(4)=fg_rank -c write (iout,*) "ii",ii," jj",jj -c Loop over processors to check if anybody could need interaction ii,jj - do iproc=0,fg_rank-1 -c Check if the interaction matches any turn3 at iproc - do k=iturn3_start_all(iproc),iturn3_end_all(iproc) - l=k+2 - if (k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1 - & .or. k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1 .and. l.eq.jj-1) - & then -c write (iout,*) "turn3 to iproc",iproc," ij",ii,jj,"kl",k,l -c call flush(iout) - flag=.true. - if (iproc.ne.itask(1).and.iproc.ne.itask(2) - & .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then - isent=isent+1 - itask(isent)=iproc - call add_task(iproc,ntask_cont_to,itask_cont_to) - endif - endif - enddo -C Check if the interaction matches any turn4 at iproc - do k=iturn4_start_all(iproc),iturn4_end_all(iproc) - l=k+3 - if (k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1 - & .or. k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1 .and. l.eq.jj-1) - & then -c write (iout,*) "turn3 to iproc",iproc," ij",ii,jj," kl",k,l -c call flush(iout) - flag=.true. - if (iproc.ne.itask(1).and.iproc.ne.itask(2) - & .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then - isent=isent+1 - itask(isent)=iproc - call add_task(iproc,ntask_cont_to,itask_cont_to) - endif - endif - enddo - if (iatel_s_all(iproc).gt.0 .and. iatel_e_all(iproc).gt.0 .and. - & iatel_s_all(iproc).le.ii-1 .and. iatel_e_all(iproc).ge.ii-1)then - if (ielstart_all(ii-1,iproc).le.jj-1.and. - & ielend_all(ii-1,iproc).ge.jj-1) then - flag=.true. - if (iproc.ne.itask(1).and.iproc.ne.itask(2) - & .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then - isent=isent+1 - itask(isent)=iproc - call add_task(iproc,ntask_cont_to,itask_cont_to) - endif - endif - if (ielstart_all(ii-1,iproc).le.jj+1.and. - & ielend_all(ii-1,iproc).ge.jj+1) then - flag=.true. - if (iproc.ne.itask(1).and.iproc.ne.itask(2) - & .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then - isent=isent+1 - itask(isent)=iproc - call add_task(iproc,ntask_cont_to,itask_cont_to) - endif - endif - endif - enddo - return - end -c--------------------------------------------------------------------------- - subroutine add_int_from(ii,jj,ntask_cont_from,itask_cont_from) - implicit none - include "DIMENSIONS" - include "COMMON.INTERACT" - include "COMMON.SETUP" - include "COMMON.IOUNITS" - integer ii,jj,itask(2),ntask_cont_from, - & itask_cont_from(0:max_fg_procs-1) - logical flag - integer iturn3_start_all,iturn3_end_all,iturn4_start_all, - & iturn4_end_all,iatel_s_all,iatel_e_all,ielstart_all,ielend_all - common /przechowalnia/ iturn3_start_all(0:max_fg_procs), - & iturn3_end_all(0:max_fg_procs),iturn4_start_all(0:max_fg_procs), - & iturn4_end_all(0:max_fg_procs),iatel_s_all(0:max_fg_procs), - &iatel_e_all(0:max_fg_procs),ielstart_all(maxres,0:max_fg_procs-1), - & ielend_all(maxres,0:max_fg_procs-1) - integer iproc,k,l - do iproc=fg_rank+1,nfgtasks-1 - do k=iturn3_start_all(iproc),iturn3_end_all(iproc) - l=k+2 - if (k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1.and.l.eq.jj-1 - & .or. k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1) - & then -c write (iout,*)"turn3 from iproc",iproc," ij",ii,jj," kl",k,l - call add_task(iproc,ntask_cont_from,itask_cont_from) - endif - enddo - do k=iturn4_start_all(iproc),iturn4_end_all(iproc) - l=k+3 - if (k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1.and.l.eq.jj-1 - & .or. k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1) - & then -c write (iout,*)"turn4 from iproc",iproc," ij",ii,jj," kl",k,l - call add_task(iproc,ntask_cont_from,itask_cont_from) - endif - enddo - if (iatel_s_all(iproc).gt.0 .and. iatel_e_all(iproc).gt.0) then - if (ii+1.ge.iatel_s_all(iproc).and.ii+1.le.iatel_e_all(iproc)) - & then - if (jj+1.ge.ielstart_all(ii+1,iproc).and. - & jj+1.le.ielend_all(ii+1,iproc)) then - call add_task(iproc,ntask_cont_from,itask_cont_from) - endif - if (jj-1.ge.ielstart_all(ii+1,iproc).and. - & jj-1.le.ielend_all(ii+1,iproc)) then - call add_task(iproc,ntask_cont_from,itask_cont_from) - endif - endif - if (ii-1.ge.iatel_s_all(iproc).and.ii-1.le.iatel_e_all(iproc)) - & then - if (jj-1.ge.ielstart_all(ii-1,iproc).and. - & jj-1.le.ielend_all(ii-1,iproc)) then - call add_task(iproc,ntask_cont_from,itask_cont_from) - endif - if (jj+1.ge.ielstart_all(ii-1,iproc).and. - & jj+1.le.ielend_all(ii-1,iproc)) then - call add_task(iproc,ntask_cont_from,itask_cont_from) - endif - endif - endif - enddo - return - end -c--------------------------------------------------------------------------- - subroutine add_task(iproc,ntask_cont,itask_cont) - implicit none - include "DIMENSIONS" - integer iproc,ntask_cont,itask_cont(0:max_fg_procs-1) - integer ii - do ii=1,ntask_cont - if (itask_cont(ii).eq.iproc) return - enddo - ntask_cont=ntask_cont+1 - itask_cont(ntask_cont)=iproc - return - end -c--------------------------------------------------------------------------- - subroutine int_bounds(total_ints,lower_bound,upper_bound) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - include 'COMMON.SETUP' - integer total_ints,lower_bound,upper_bound - integer int4proc(0:max_fg_procs),sint4proc(0:max_fg_procs) - nint=total_ints/nfgtasks - do i=1,nfgtasks - int4proc(i-1)=nint - enddo - nexcess=total_ints-nint*nfgtasks - do i=1,nexcess - int4proc(nfgtasks-i)=int4proc(nfgtasks-i)+1 - enddo - lower_bound=0 - do i=0,fg_rank-1 - lower_bound=lower_bound+int4proc(i) - enddo - upper_bound=lower_bound+int4proc(fg_rank) - lower_bound=lower_bound+1 - return - end -c--------------------------------------------------------------------------- - subroutine int_bounds1(total_ints,lower_bound,upper_bound) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - include 'COMMON.SETUP' - integer total_ints,lower_bound,upper_bound - integer int4proc(0:max_fg_procs),sint4proc(0:max_fg_procs) - nint=total_ints/nfgtasks1 - do i=1,nfgtasks1 - int4proc(i-1)=nint - enddo - nexcess=total_ints-nint*nfgtasks1 - do i=1,nexcess - int4proc(nfgtasks1-i)=int4proc(nfgtasks1-i)+1 - enddo - lower_bound=0 - do i=0,fg_rank1-1 - lower_bound=lower_bound+int4proc(i) - enddo - upper_bound=lower_bound+int4proc(fg_rank1) - lower_bound=lower_bound+1 - return - end -c--------------------------------------------------------------------------- - subroutine int_partition(int_index,lower_index,upper_index,atom, - & at_start,at_end,first_atom,last_atom,int_gr,jat_start,jat_end,*) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - integer int_index,lower_index,upper_index,atom,at_start,at_end, - & first_atom,last_atom,int_gr,jat_start,jat_end - logical lprn - lprn=.false. - if (lprn) write (iout,*) 'int_index=',int_index - int_index_old=int_index - int_index=int_index+last_atom-first_atom+1 - if (lprn) - & write (iout,*) 'int_index=',int_index, - & ' int_index_old',int_index_old, - & ' lower_index=',lower_index, - & ' upper_index=',upper_index, - & ' atom=',atom,' first_atom=',first_atom, - & ' last_atom=',last_atom - if (int_index.ge.lower_index) then - int_gr=int_gr+1 - if (at_start.eq.0) then - at_start=atom - jat_start=first_atom-1+lower_index-int_index_old - else - jat_start=first_atom - endif - if (lprn) write (iout,*) 'jat_start',jat_start - if (int_index.ge.upper_index) then - at_end=atom - jat_end=first_atom-1+upper_index-int_index_old - return1 - else - jat_end=last_atom - endif - if (lprn) write (iout,*) 'jat_end',jat_end - endif - return - end -#endif -c------------------------------------------------------------------------------ - subroutine hpb_partition - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.SBRIDGE' - include 'COMMON.IOUNITS' - include 'COMMON.SETUP' - include 'COMMON.CONTROL' -#ifdef MPI - call int_bounds(nhpb,link_start,link_end) - if (.not. out1file) - & write (iout,*) 'Processor',fg_rank,' CG group',kolor, - & ' absolute rank',MyRank, - & ' nhpb',nhpb,' link_start=',link_start, - & ' link_end',link_end -#else - link_start=1 - link_end=nhpb -#endif - return - end diff --git a/source/unres/src_CSA_DiL/int_to_cart.f b/source/unres/src_CSA_DiL/int_to_cart.f deleted file mode 100644 index 97324ec..0000000 --- a/source/unres/src_CSA_DiL/int_to_cart.f +++ /dev/null @@ -1,119 +0,0 @@ - subroutine int_to_cart -c-------------------------------------------------------------- -c This subroutine converts the energy derivatives from internal -c coordinates to cartesian coordinates -c------------------------------------------------------------- - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.INTERACT' - include 'COMMON.MD_' - include 'COMMON.IOUNITS' - -c calculating dE/ddc1 - if (nres.lt.3) return - do j=1,3 - gcart(j,1)=gcart(j,1)+gloc(1,icg)*dphi(j,1,4) - & +gloc(nres-2,icg)*dtheta(j,1,3) - if(itype(2).ne.10) then - gcart(j,1)=gcart(j,1)+gloc(ialph(2,1),icg)*dalpha(j,1,2)+ - & gloc(ialph(2,1)+nside,icg)*domega(j,1,2) - endif - enddo -c Calculating the remainder of dE/ddc2 - do j=1,3 - gcart(j,2)=gcart(j,2)+gloc(1,icg)*dphi(j,2,4)+ - & gloc(nres-2,icg)*dtheta(j,2,3)+gloc(nres-1,icg)*dtheta(j,1,4) - if(itype(2).ne.10) then - gcart(j,2)=gcart(j,2)+gloc(ialph(2,1),icg)*dalpha(j,2,2)+ - & gloc(ialph(2,1)+nside,icg)*domega(j,2,2) - endif - if(itype(3).ne.10) then - gcart(j,2)=gcart(j,2)+gloc(ialph(3,1),icg)*dalpha(j,1,3)+ - & gloc(ialph(3,1)+nside,icg)*domega(j,1,3) - endif - if(nres.gt.4) then - gcart(j,2)=gcart(j,2)+gloc(2,icg)*dphi(j,1,5) - endif - enddo -c If there are only five residues - if(nres.eq.5) then - do j=1,3 - gcart(j,3)=gcart(j,3)+gloc(1,icg)*dphi(j,3,4)+gloc(2,icg)* - & dphi(j,2,5)+gloc(nres-1,icg)*dtheta(j,2,4)+gloc(nres,icg)* - & dtheta(j,1,5) - if(itype(3).ne.10) then - gcart(j,3)=gcart(j,3)+gloc(ialph(3,1),icg)* - & dalpha(j,2,3)+gloc(ialph(3,1)+nside,icg)*domega(j,2,3) - endif - if(itype(4).ne.10) then - gcart(j,3)=gcart(j,3)+gloc(ialph(4,1),icg)* - & dalpha(j,1,4)+gloc(ialph(4,1)+nside,icg)*domega(j,1,4) - endif - enddo - endif -c If there are more than five residues - if(nres.gt.5) then - do i=3,nres-3 - do j=1,3 - gcart(j,i)=gcart(j,i)+gloc(i-2,icg)*dphi(j,3,i+1) - & +gloc(i-1,icg)*dphi(j,2,i+2)+ - & gloc(i,icg)*dphi(j,1,i+3)+gloc(nres+i-4,icg)*dtheta(j,2,i+1)+ - & gloc(nres+i-3,icg)*dtheta(j,1,i+2) - if(itype(i).ne.10) then - gcart(j,i)=gcart(j,i)+gloc(ialph(i,1),icg)*dalpha(j,2,i)+ - & gloc(ialph(i,1)+nside,icg)*domega(j,2,i) - endif - if(itype(i+1).ne.10) then - gcart(j,i)=gcart(j,i)+gloc(ialph(i+1,1),icg)*dalpha(j,1,i+1) - & +gloc(ialph(i+1,1)+nside,icg)*domega(j,1,i+1) - endif - enddo - enddo - endif -c Setting dE/ddnres-2 - if(nres.gt.5) then - do j=1,3 - gcart(j,nres-2)=gcart(j,nres-2)+gloc(nres-4,icg)* - & dphi(j,3,nres-1)+gloc(nres-3,icg)*dphi(j,2,nres) - & +gloc(2*nres-6,icg)* - & dtheta(j,2,nres-1)+gloc(2*nres-5,icg)*dtheta(j,1,nres) - if(itype(nres-2).ne.10) then - gcart(j,nres-2)=gcart(j,nres-2)+gloc(ialph(nres-2,1),icg)* - & dalpha(j,2,nres-2)+gloc(ialph(nres-2,1)+nside,icg)* - & domega(j,2,nres-2) - endif - if(itype(nres-1).ne.10) then - gcart(j,nres-2)=gcart(j,nres-2)+gloc(ialph(nres-1,1),icg)* - & dalpha(j,1,nres-1)+gloc(ialph(nres-1,1)+nside,icg)* - & domega(j,1,nres-1) - endif - enddo - endif -c Settind dE/ddnres-1 - do j=1,3 - gcart(j,nres-1)=gcart(j,nres-1)+gloc(nres-3,icg)*dphi(j,3,nres)+ - & gloc(2*nres-5,icg)*dtheta(j,2,nres) - if(itype(nres-1).ne.10) then - gcart(j,nres-1)=gcart(j,nres-1)+gloc(ialph(nres-1,1),icg)* - & dalpha(j,2,nres-1)+gloc(ialph(nres-1,1)+nside,icg)* - & domega(j,2,nres-1) - endif - enddo -c The side-chain vector derivatives - do i=2,nres-1 - if(itype(i).ne.10) then - do j=1,3 - gxcart(j,i)=gxcart(j,i)+gloc(ialph(i,1),icg)*dalpha(j,3,i) - & +gloc(ialph(i,1)+nside,icg)*domega(j,3,i) - enddo - endif - enddo - return - end - - diff --git a/source/unres/src_CSA_DiL/intcartderiv.F b/source/unres/src_CSA_DiL/intcartderiv.F deleted file mode 100644 index 5fea875..0000000 --- a/source/unres/src_CSA_DiL/intcartderiv.F +++ /dev/null @@ -1,466 +0,0 @@ - subroutine intcartderiv - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.SETUP' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.INTERACT' - include 'COMMON.DERIV' - include 'COMMON.IOUNITS' - include 'COMMON.LOCAL' - double precision dcostheta(3,2,maxres), - & dcosphi(3,3,maxres),dsinphi(3,3,maxres), - & dcosalpha(3,3,maxres),dcosomega(3,3,maxres), - & dsinomega(3,3,maxres),vo1(3),vo2(3),vo3(3), - & dummy(3),vp1(3),vp2(3),vp3(3),vpp1(3),n(3) - -#if defined(MPI) && defined(PARINTDER) - if (nfgtasks.gt.1 .and. me.eq.king) - & call MPI_Bcast(8,1,MPI_INTEGER,king,FG_COMM,IERROR) -#endif - pi4 = 0.5d0*pipol - pi34 = 3*pi4 - -c write (iout,*) "iphi1_start",iphi1_start," iphi1_end",iphi1_end -c Derivatives of theta's -#if defined(MPI) && defined(PARINTDER) -c We need dtheta(:,:,i-1) to compute dphi(:,:,i) - do i=max0(ithet_start-1,3),ithet_end -#else - do i=3,nres -#endif - cost=dcos(theta(i)) - sint=sqrt(1-cost*cost) - do j=1,3 - dcostheta(j,1,i)=-(dc_norm(j,i-1)+cost*dc_norm(j,i-2))/ - & vbld(i-1) - dtheta(j,1,i)=-1/sint*dcostheta(j,1,i) - dcostheta(j,2,i)=-(dc_norm(j,i-2)+cost*dc_norm(j,i-1))/ - & vbld(i) - dtheta(j,2,i)=-1/sint*dcostheta(j,2,i) - enddo - enddo - -c Derivatives of phi: -c If phi is 0 or 180 degrees, then the formulas -c have to be derived by power series expansion of the -c conventional formulas around 0 and 180. -#ifdef PARINTDER - do i=iphi1_start,iphi1_end -#else - do i=4,nres -#endif -c the conventional case - sint=dsin(theta(i)) - sint1=dsin(theta(i-1)) - sing=dsin(phi(i)) - cost=dcos(theta(i)) - cost1=dcos(theta(i-1)) - cosg=dcos(phi(i)) - scalp=scalar(dc_norm(1,i-3),dc_norm(1,i-1)) - fac0=1.0d0/(sint1*sint) - fac1=cost*fac0 - fac2=cost1*fac0 - fac3=cosg*cost1/(sint1*sint1) - fac4=cosg*cost/(sint*sint) -c Obtaining the gamma derivatives from sine derivative - if (phi(i).gt.-pi4.and.phi(i).le.pi4.or. - & phi(i).gt.pi34.and.phi(i).le.pi.or. - & phi(i).gt.-pi.and.phi(i).le.-pi34) then - call vecpr(dc_norm(1,i-1),dc_norm(1,i-2),vp1) - call vecpr(dc_norm(1,i-3),dc_norm(1,i-1),vp2) - call vecpr(dc_norm(1,i-3),dc_norm(1,i-2),vp3) - do j=1,3 - ctgt=cost/sint - ctgt1=cost1/sint1 - cosg_inv=1.0d0/cosg - dsinphi(j,1,i)=-sing*ctgt1*dtheta(j,1,i-1) - & -(fac0*vp1(j)+sing*dc_norm(j,i-3))*vbld_inv(i-2) - dphi(j,1,i)=cosg_inv*dsinphi(j,1,i) - dsinphi(j,2,i)= - & -sing*(ctgt1*dtheta(j,2,i-1)+ctgt*dtheta(j,1,i)) - & -(fac0*vp2(j)+sing*dc_norm(j,i-2))*vbld_inv(i-1) - dphi(j,2,i)=cosg_inv*dsinphi(j,2,i) -c Bug fixed 3/24/05 (AL) - dsinphi(j,3,i)=-sing*ctgt*dtheta(j,2,i) - & +(fac0*vp3(j)-sing*dc_norm(j,i-1))*vbld_inv(i) -c & +(fac0*vp3(j)-sing*dc_norm(j,i-1))*vbld_inv(i-1) - dphi(j,3,i)=cosg_inv*dsinphi(j,3,i) - enddo -c Obtaining the gamma derivatives from cosine derivative - else - do j=1,3 - dcosphi(j,1,i)=fac1*dcostheta(j,1,i-1)+fac3* - & dcostheta(j,1,i-1)-fac0*(dc_norm(j,i-1)-scalp* - & dc_norm(j,i-3))/vbld(i-2) - dphi(j,1,i)=-1/sing*dcosphi(j,1,i) - dcosphi(j,2,i)=fac1*dcostheta(j,2,i-1)+fac2* - & dcostheta(j,1,i)+fac3*dcostheta(j,2,i-1)+fac4* - & dcostheta(j,1,i) - dphi(j,2,i)=-1/sing*dcosphi(j,2,i) - dcosphi(j,3,i)=fac2*dcostheta(j,2,i)+fac4* - & dcostheta(j,2,i)-fac0*(dc_norm(j,i-3)-scalp* - & dc_norm(j,i-1))/vbld(i) - dphi(j,3,i)=-1/sing*dcosphi(j,3,i) - enddo - endif - enddo -#ifdef CRYST_SC -c Derivatives of side-chain angles alpha and omega -#if defined(MPI) && defined(PARINTDER) - do i=ibond_start,ibond_end -#else - do i=2,nres-1 -#endif - if(itype(i).ne.10) then - fac5=1.0d0/dsqrt(2*(1+dcos(theta(i+1)))) - fac6=fac5/vbld(i) - fac7=fac5*fac5 - fac8=fac5/vbld(i+1) - fac9=fac5/vbld(i+nres) - scala1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres)) - scala2=scalar(dc_norm(1,i),dc_norm(1,i+nres)) - cosa=dsqrt(0.5d0/(1.0d0+dcos(theta(i+1))))*( - & scalar(dC_norm(1,i),dC_norm(1,i+nres)) - & -scalar(dC_norm(1,i-1),dC_norm(1,i+nres))) - sina=sqrt(1-cosa*cosa) - sino=dsin(omeg(i)) - do j=1,3 - dcosalpha(j,1,i)=fac6*(scala1*dc_norm(j,i-1)- - & dc_norm(j,i+nres))-cosa*fac7*dcostheta(j,1,i+1) - dalpha(j,1,i)=-1/sina*dcosalpha(j,1,i) - dcosalpha(j,2,i)=fac8*(dc_norm(j,i+nres)- - & scala2*dc_norm(j,i))-cosa*fac7*dcostheta(j,2,i+1) - dalpha(j,2,i)=-1/sina*dcosalpha(j,2,i) - dcosalpha(j,3,i)=(fac9*(dc_norm(j,i)- - & dc_norm(j,i-1))-(cosa*dc_norm(j,i+nres))/ - & vbld(i+nres)) - dalpha(j,3,i)=-1/sina*dcosalpha(j,3,i) - enddo -c obtaining the derivatives of omega from sines - if(omeg(i).gt.-pi4.and.omeg(i).le.pi4.or. - & omeg(i).gt.pi34.and.omeg(i).le.pi.or. - & omeg(i).gt.-pi.and.omeg(i).le.-pi34) then - fac15=dcos(theta(i+1))/(dsin(theta(i+1))* - & dsin(theta(i+1))) - fac16=dcos(alph(i))/(dsin(alph(i))*dsin(alph(i))) - fac17=1.0d0/(dsin(theta(i+1))*dsin(alph(i))) - call vecpr(dc_norm(1,i+nres),dc_norm(1,i),vo1) - call vecpr(dc_norm(1,i+nres),dc_norm(1,i-1),vo2) - call vecpr(dc_norm(1,i),dc_norm(1,i-1),vo3) - coso_inv=1.0d0/dcos(omeg(i)) - do j=1,3 - dsinomega(j,1,i)=sino*(fac15*dcostheta(j,1,i+1) - & +fac16*dcosalpha(j,1,i))-fac17/vbld(i)*vo1(j)-( - & sino*dc_norm(j,i-1))/vbld(i) - domega(j,1,i)=coso_inv*dsinomega(j,1,i) - dsinomega(j,2,i)=sino*(fac15*dcostheta(j,2,i+1) - & +fac16*dcosalpha(j,2,i))+fac17/vbld(i+1)*vo2(j) - & -sino*dc_norm(j,i)/vbld(i+1) - domega(j,2,i)=coso_inv*dsinomega(j,2,i) - dsinomega(j,3,i)=sino*fac16*dcosalpha(j,3,i)- - & fac17/vbld(i+nres)*vo3(j)-sino*dc_norm(j,i+nres)/ - & vbld(i+nres) - domega(j,3,i)=coso_inv*dsinomega(j,3,i) - enddo - else -c obtaining the derivatives of omega from cosines - fac10=sqrt(0.5d0*(1-dcos(theta(i+1)))) - fac11=sqrt(0.5d0*(1+dcos(theta(i+1)))) - fac12=fac10*sina - fac13=fac12*fac12 - fac14=sina*sina - do j=1,3 - dcosomega(j,1,i)=(-(0.25d0*cosa/fac11* - & dcostheta(j,1,i+1)+fac11*dcosalpha(j,1,i))*fac12+ - & (0.25d0/fac10*sina*dcostheta(j,1,i+1)+cosa/sina* - & fac10*dcosalpha(j,1,i))*(scala2-fac11*cosa))/fac13 - domega(j,1,i)=-1/sino*dcosomega(j,1,i) - dcosomega(j,2,i)=(((dc_norm(j,i+nres)-scala2* - & dc_norm(j,i))/vbld(i+1)-0.25d0*cosa/fac11* - & dcostheta(j,2,i+1)-fac11*dcosalpha(j,2,i))*fac12+ - & (scala2-fac11*cosa)*(0.25d0*sina/fac10* - & dcostheta(j,2,i+1)+fac10*cosa/sina*dcosalpha(j,2,i) - & ))/fac13 - domega(j,2,i)=-1/sino*dcosomega(j,2,i) - dcosomega(j,3,i)=1/fac10*((1/vbld(i+nres)*(dc_norm(j,i)- - & scala2*dc_norm(j,i+nres))-fac11*dcosalpha(j,3,i))*sina+ - & (scala2-fac11*cosa)*(cosa/sina*dcosalpha(j,3,i)))/fac14 - domega(j,3,i)=-1/sino*dcosomega(j,3,i) - enddo - endif - endif - enddo -#endif -#if defined(MPI) && defined(PARINTDER) - if (nfgtasks.gt.1) then -#ifdef DEBUG -cd write (iout,*) "Gather dtheta" -cd call flush(iout) - write (iout,*) "dtheta before gather" - do i=1,nres - write (iout,'(i3,3(3f8.5,3x))') i,((dtheta(j,k,i),k=1,3),j=1,2) - enddo -#endif - call MPI_Gatherv(dtheta(1,1,ithet_start),ithet_count(fg_rank), - & MPI_THET,dtheta(1,1,1),ithet_count(0),ithet_displ(0),MPI_THET, - & king,FG_COMM,IERROR) -#ifdef DEBUG -cd write (iout,*) "Gather dphi" -cd call flush(iout) - write (iout,*) "dphi before gather" - do i=1,nres - write (iout,'(i3,3(3f8.5,3x))') i,((dphi(j,k,i),k=1,3),j=1,3) - enddo -#endif - call MPI_Gatherv(dphi(1,1,iphi1_start),iphi1_count(fg_rank), - & MPI_GAM,dphi(1,1,1),iphi1_count(0),iphi1_displ(0),MPI_GAM, - & king,FG_COMM,IERROR) -cd write (iout,*) "Gather dalpha" -cd call flush(iout) -#ifdef CRYST_SC - call MPI_Gatherv(dalpha(1,1,ibond_start),ibond_count(fg_rank), - & MPI_GAM,dalpha(1,1,1),ibond_count(0),ibond_displ(0),MPI_GAM, - & king,FG_COMM,IERROR) -cd write (iout,*) "Gather domega" -cd call flush(iout) - call MPI_Gatherv(domega(1,1,ibond_start),ibond_count(fg_rank), - & MPI_GAM,domega(1,1,1),ibond_count(0),ibond_displ(0),MPI_GAM, - & king,FG_COMM,IERROR) -#endif - endif -#endif -#ifdef DEBUG - write (iout,*) "dtheta after gather" - do i=1,nres - write (iout,'(i3,3(3f8.5,3x))') i,((dtheta(j,k,i),j=1,3),j=1,2) - enddo - write (iout,*) "dphi after gather" - do i=1,nres - write (iout,'(i3,3(3f8.5,3x))') i,((dphi(j,k,i),j=1,3),k=1,3) - enddo -#endif - return - end - - subroutine checkintcartgrad - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.INTERACT' - include 'COMMON.DERIV' - include 'COMMON.IOUNITS' - include 'COMMON.SETUP' - double precision dthetanum(3,2,maxres),dphinum(3,3,maxres) - & ,dalphanum(3,3,maxres), domeganum(3,3,maxres) - double precision theta_s(maxres),phi_s(maxres),alph_s(maxres), - & omeg_s(maxres),dc_norm_s(3) - double precision aincr /1.0d-5/ - - do i=1,nres - phi_s(i)=phi(i) - theta_s(i)=theta(i) - alph_s(i)=alph(i) - omeg_s(i)=omeg(i) - enddo -c Check theta gradient - write (iout,*) - & "Analytical (upper) and numerical (lower) gradient of theta" - write (iout,*) - do i=3,nres - do j=1,3 - dcji=dc(j,i-2) - dc(j,i-2)=dcji+aincr - call chainbuild_cart - call int_from_cart1(.false.) - dthetanum(j,1,i)=(theta(i)-theta_s(i))/aincr - dc(j,i-2)=dcji - dcji=dc(j,i-1) - dc(j,i-1)=dc(j,i-1)+aincr - call chainbuild_cart - dthetanum(j,2,i)=(theta(i)-theta_s(i))/aincr - dc(j,i-1)=dcji - enddo - write (iout,'(i5,3f10.5,5x,3f10.5)') i,(dtheta(j,1,i),j=1,3), - & (dtheta(j,2,i),j=1,3) - write (iout,'(5x,3f10.5,5x,3f10.5)') (dthetanum(j,1,i),j=1,3), - & (dthetanum(j,2,i),j=1,3) - write (iout,'(5x,3f10.5,5x,3f10.5)') - & (dthetanum(j,1,i)/dtheta(j,1,i),j=1,3), - & (dthetanum(j,2,i)/dtheta(j,2,i),j=1,3) - write (iout,*) - enddo -c Check gamma gradient - write (iout,*) - & "Analytical (upper) and numerical (lower) gradient of gamma" - do i=4,nres - do j=1,3 - dcji=dc(j,i-3) - dc(j,i-3)=dcji+aincr - call chainbuild_cart - dphinum(j,1,i)=(phi(i)-phi_s(i))/aincr - dc(j,i-3)=dcji - dcji=dc(j,i-2) - dc(j,i-2)=dcji+aincr - call chainbuild_cart - dphinum(j,2,i)=(phi(i)-phi_s(i))/aincr - dc(j,i-2)=dcji - dcji=dc(j,i-1) - dc(j,i-1)=dc(j,i-1)+aincr - call chainbuild_cart - dphinum(j,3,i)=(phi(i)-phi_s(i))/aincr - dc(j,i-1)=dcji - enddo - write (iout,'(i5,3(3f10.5,5x))') i,(dphi(j,1,i),j=1,3), - & (dphi(j,2,i),j=1,3),(dphi(j,3,i),j=1,3) - write (iout,'(5x,3(3f10.5,5x))') (dphinum(j,1,i),j=1,3), - & (dphinum(j,2,i),j=1,3),(dphinum(j,3,i),j=1,3) - write (iout,'(5x,3(3f10.5,5x))') - & (dphinum(j,1,i)/dphi(j,1,i),j=1,3), - & (dphinum(j,2,i)/dphi(j,2,i),j=1,3), - & (dphinum(j,3,i)/dphi(j,3,i),j=1,3) - write (iout,*) - enddo -c Check alpha gradient - write (iout,*) - & "Analytical (upper) and numerical (lower) gradient of alpha" - do i=2,nres-1 - if(itype(i).ne.10) then - do j=1,3 - dcji=dc(j,i-1) - dc(j,i-1)=dcji+aincr - call chainbuild_cart - dalphanum(j,1,i)=(alph(i)-alph_s(i)) - & /aincr - dc(j,i-1)=dcji - dcji=dc(j,i) - dc(j,i)=dcji+aincr - call chainbuild_cart - dalphanum(j,2,i)=(alph(i)-alph_s(i)) - & /aincr - dc(j,i)=dcji - dcji=dc(j,i+nres) - dc(j,i+nres)=dc(j,i+nres)+aincr - call chainbuild_cart - dalphanum(j,3,i)=(alph(i)-alph_s(i)) - & /aincr - dc(j,i+nres)=dcji - enddo - endif - write (iout,'(i5,3(3f10.5,5x))') i,(dalpha(j,1,i),j=1,3), - & (dalpha(j,2,i),j=1,3),(dalpha(j,3,i),j=1,3) - write (iout,'(5x,3(3f10.5,5x))') (dalphanum(j,1,i),j=1,3), - & (dalphanum(j,2,i),j=1,3),(dalphanum(j,3,i),j=1,3) - write (iout,'(5x,3(3f10.5,5x))') - & (dalphanum(j,1,i)/dalpha(j,1,i),j=1,3), - & (dalphanum(j,2,i)/dalpha(j,2,i),j=1,3), - & (dalphanum(j,3,i)/dalpha(j,3,i),j=1,3) - write (iout,*) - enddo -c Check omega gradient - write (iout,*) - & "Analytical (upper) and numerical (lower) gradient of omega" - do i=2,nres-1 - if(itype(i).ne.10) then - do j=1,3 - dcji=dc(j,i-1) - dc(j,i-1)=dcji+aincr - call chainbuild_cart - domeganum(j,1,i)=(omeg(i)-omeg_s(i)) - & /aincr - dc(j,i-1)=dcji - dcji=dc(j,i) - dc(j,i)=dcji+aincr - call chainbuild_cart - domeganum(j,2,i)=(omeg(i)-omeg_s(i)) - & /aincr - dc(j,i)=dcji - dcji=dc(j,i+nres) - dc(j,i+nres)=dc(j,i+nres)+aincr - call chainbuild_cart - domeganum(j,3,i)=(omeg(i)-omeg_s(i)) - & /aincr - dc(j,i+nres)=dcji - enddo - endif - write (iout,'(i5,3(3f10.5,5x))') i,(domega(j,1,i),j=1,3), - & (domega(j,2,i),j=1,3),(domega(j,3,i),j=1,3) - write (iout,'(5x,3(3f10.5,5x))') (domeganum(j,1,i),j=1,3), - & (domeganum(j,2,i),j=1,3),(domeganum(j,3,i),j=1,3) - write (iout,'(5x,3(3f10.5,5x))') - & (domeganum(j,1,i)/domega(j,1,i),j=1,3), - & (domeganum(j,2,i)/domega(j,2,i),j=1,3), - & (domeganum(j,3,i)/domega(j,3,i),j=1,3) - write (iout,*) - enddo - return - end - - subroutine chainbuild_cart - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.SETUP' - include 'COMMON.CHAIN' - include 'COMMON.LOCAL' - include 'COMMON.TIME1' - include 'COMMON.IOUNITS' - -#ifdef MPI - if (nfgtasks.gt.1) then -c write (iout,*) "BCAST in chainbuild_cart" -c call flush(iout) -c Broadcast the order to build the chain and compute internal coordinates -c to the slaves. The slaves receive the order in ERGASTULUM. - time00=MPI_Wtime() -c write (iout,*) "CHAINBUILD_CART: DC before BCAST" -c do i=0,nres -c write (iout,'(i3,3f10.5,5x,3f10.5)') i,(dc(j,i),j=1,3), -c & (dc(j,i+nres),j=1,3) -c enddo - if (fg_rank.eq.0) - & call MPI_Bcast(7,1,MPI_INTEGER,king,FG_COMM,IERROR) - time_bcast7=time_bcast7+MPI_Wtime()-time00 - time01=MPI_Wtime() - call MPI_Bcast(dc(1,0),6*(nres+1),MPI_DOUBLE_PRECISION, - & king,FG_COMM,IERR) -c write (iout,*) "CHAINBUILD_CART: DC after BCAST" -c do i=0,nres -c write (iout,'(i3,3f10.5,5x,3f10.5)') i,(dc(j,i),j=1,3), -c & (dc(j,i+nres),j=1,3) -c enddo -c write (iout,*) "End BCAST in chainbuild_cart" -c call flush(iout) - time_bcast=time_bcast+MPI_Wtime()-time00 - time_bcastc=time_bcastc+MPI_Wtime()-time01 - endif -#endif - do j=1,3 - c(j,1)=dc(j,0) - enddo - do i=2,nres - do j=1,3 - c(j,i)=c(j,i-1)+dc(j,i-1) - enddo - enddo - do i=1,nres - do j=1,3 - c(j,i+nres)=c(j,i)+dc(j,i+nres) - enddo - enddo -c write (iout,*) "CHAINBUILD_CART" -c call cartprint - call int_from_cart1(.false.) - return - end diff --git a/source/unres/src_CSA_DiL/intcor.f b/source/unres/src_CSA_DiL/intcor.f deleted file mode 100644 index a3cd5d0..0000000 --- a/source/unres/src_CSA_DiL/intcor.f +++ /dev/null @@ -1,91 +0,0 @@ -C -C------------------------------------------------------------------------------ -C - double precision function alpha(i1,i2,i3) -c -c Calculates the planar angle between atoms (i1), (i2), and (i3). -c - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.CHAIN' - x12=c(1,i1)-c(1,i2) - x23=c(1,i3)-c(1,i2) - y12=c(2,i1)-c(2,i2) - y23=c(2,i3)-c(2,i2) - z12=c(3,i1)-c(3,i2) - z23=c(3,i3)-c(3,i2) - vnorm=dsqrt(x12*x12+y12*y12+z12*z12) - wnorm=dsqrt(x23*x23+y23*y23+z23*z23) - scalar=(x12*x23+y12*y23+z12*z23)/(vnorm*wnorm) - alpha=arcos(scalar) - return - end -C -C------------------------------------------------------------------------------ -C - double precision function beta(i1,i2,i3,i4) -c -c Calculates the dihedral angle between atoms (i1), (i2), (i3) and (i4) -c - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.CHAIN' - x12=c(1,i1)-c(1,i2) - x23=c(1,i3)-c(1,i2) - x34=c(1,i4)-c(1,i3) - y12=c(2,i1)-c(2,i2) - y23=c(2,i3)-c(2,i2) - y34=c(2,i4)-c(2,i3) - z12=c(3,i1)-c(3,i2) - z23=c(3,i3)-c(3,i2) - z34=c(3,i4)-c(3,i3) -cd print '(2i3,3f10.5)',i1,i2,x12,y12,z12 -cd print '(2i3,3f10.5)',i2,i3,x23,y23,z23 -cd print '(2i3,3f10.5)',i3,i4,x34,y34,z34 - wx=-y23*z34+y34*z23 - wy=x23*z34-z23*x34 - wz=-x23*y34+y23*x34 - wnorm=dsqrt(wx*wx+wy*wy+wz*wz) - vx=y12*z23-z12*y23 - vy=-x12*z23+z12*x23 - vz=x12*y23-y12*x23 - vnorm=dsqrt(vx*vx+vy*vy+vz*vz) - if (vnorm.gt.1.0D-13 .and. wnorm.gt.1.0D-13) then - scalar=(vx*wx+vy*wy+vz*wz)/(vnorm*wnorm) - if (dabs(scalar).gt.1.0D0) - &scalar=0.99999999999999D0*scalar/dabs(scalar) - angle=dacos(scalar) -cd print '(2i4,10f7.3)',i2,i3,vx,vy,vz,wx,wy,wz,vnorm,wnorm, -cd &scalar,angle - else - angle=pi - endif -c if (angle.le.0.0D0) angle=pi+angle - tx=vy*wz-vz*wy - ty=-vx*wz+vz*wx - tz=vx*wy-vy*wx - scalar=tx*x23+ty*y23+tz*z23 - if (scalar.lt.0.0D0) angle=-angle - beta=angle - return - end -C -C------------------------------------------------------------------------------ -C - function dist(i1,i2) -c -c Calculates the distance between atoms (i1) and (i2). -c - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.CHAIN' - x12=c(1,i1)-c(1,i2) - y12=c(2,i1)-c(2,i2) - z12=c(3,i1)-c(3,i2) - dist=dsqrt(x12*x12+y12*y12+z12*z12) - return - end -C diff --git a/source/unres/src_CSA_DiL/intlocal.f b/source/unres/src_CSA_DiL/intlocal.f deleted file mode 100644 index 2dbcc88..0000000 --- a/source/unres/src_CSA_DiL/intlocal.f +++ /dev/null @@ -1,517 +0,0 @@ - subroutine integral(gamma1,gamma2,gamma3,gamma4,ity1,ity2,a1,a2, - & si1,si2,si3,si4,transp,q) - implicit none - integer ity1,ity2 - integer ilam1,ilam2,ilam3,ilam4,iincr - double precision gamma1,gamma2,gamma3,gamma4,beta,b(2,90),lambda1, - & lambda2,lambda3,lambda4 - logical transp - double precision elocal,ele - double precision delta,delta2,sum,ene,sumene,boltz - double precision q,a1(2,2),a2(2,2),si1,si2,si3,si4 - double precision conv /.01745329252d0/,pi /3.141592654d0/ - - iincr=20 - delta=iincr*conv - delta2=0.5d0*delta -cd print *,'iincr',iincr,' delta',delta -cd write(2,*) gamma1,gamma2,ity1,ity2,a1,a2,si1,si2,si3,si4,transp - -cd do ilam1=-180,180,5 -cd do ilam2=-180,180,5 -cd lambda1=ilam1*conv+delta2 -cd lambda2=ilam2*conv+delta2 -cd write(2,'(2i5,2f10.5)') ilam1,ilam2,elocal(2,lambda1,lambda2), -cd & ele(lambda1,lambda2,a1,1.0d0,1.d00) -cd enddo -cd enddo -cd stop - - sum=0.0d0 - sumene=0.0d0 - do ilam1=-180,179,iincr - do ilam2=-180,179,iincr - do ilam3=-180,179,iincr - do ilam4=-180,179,iincr - lambda1=ilam1*conv+delta2 - lambda2=ilam2*conv+delta2 - lambda3=ilam3*conv+delta2 - lambda4=ilam4*conv+delta2 -cd write (2,*) ilam1,ilam2,ilam3,ilam4 -cd write (2,*) lambda1,lambda2,lambda3,lambda4 - ene= - & -elocal(ity1,lambda1,lambda2,.false.)* - & elocal(ity2,lambda3,lambda4,transp)* - & ele(si1*lambda1+gamma1,si3*lambda3+gamma3,a1)* - & ele(si2*lambda2+gamma2,si4*lambda4+gamma4,a2) -cd write (2,*) elocal(ity1,lambda1,gamma1-pi-lambda2), -cd & elocal(ity2,lambda3,gamma2-pi-lambda4), -cd & ele(lambda1,lambda2,a1,si1,si3), -cd & ele(lambda3,lambda4,a2,si2,si4) - sum=sum+ene - enddo - enddo - enddo - enddo - q=sum/(2*pi)**4*delta**4 - write (2,* )'sum',sum,' q',q - return - end -c--------------------------------------------------------------------------- - subroutine integral3(gamma1,gamma2,ity1,ity2,ity3,ity4, - & a1,koniec,q1,q2,q3,q4) - implicit none - integer ity1,ity2,ity3,ity4 - integer ilam1,ilam2,ilam3,ilam4,iincr - double precision gamma1,gamma2,gamma3,gamma4,beta,lambda1, - & lambda2,lambda3,lambda4 - logical koniec - double precision elocal,ele - double precision delta,delta2,sum1,sum2,sum3,sum4, - & ene1,ene2,ene3,ene4,boltz - double precision q1,q2,q3,q4,a1(2,2),a2(2,2) - double precision conv /.01745329252d0/,pi /3.141592654d0/ - - iincr=60 - delta=iincr*conv - delta2=0.5d0*delta -cd print *,'iincr',iincr,' delta',delta - write(2,*) gamma1,gamma2,ity1,ity2,ity3,ity4,a1,koniec - -cd do ilam1=-180,180,5 -cd do ilam2=-180,180,5 -cd lambda1=ilam1*conv+delta2 -cd lambda2=ilam2*conv+delta2 -cd write(2,'(2i5,2f10.5)') ilam1,ilam2,elocal(2,lambda1,lambda2), -cd & ele(lambda1,lambda2,a1,1.0d0,1.d00) -cd enddo -cd enddo -cd stop - - sum1=0.0d0 - sum2=0.0d0 - sum3=0.0d0 - sum4=0.0d0 - do ilam1=-180,179,iincr - do ilam2=-180,179,iincr - do ilam3=-180,179,iincr - do ilam4=-180,179,iincr - lambda1=ilam1*conv+delta2 - lambda2=ilam2*conv+delta2 - lambda3=ilam3*conv+delta2 - lambda4=ilam4*conv+delta2 -cd write (2,*) ilam1,ilam2,ilam3,ilam4 -cd write (2,*) lambda1,lambda2,lambda3,lambda4 - if (.not.koniec) then - ene1= - & elocal(ity1,lambda1,gamma1-pi-lambda2,.false.)* - & elocal(ity3,lambda3,gamma2-pi-lambda4,.false.)* - & ele(lambda2,lambda4,a1) - else - ene1= - & elocal(ity1,lambda1,gamma1-pi-lambda2,.false.)* - & elocal(ity3,lambda3,lambda4,.false.)* - & ele(lambda2,-lambda4,a1) - endif - ene2= - & elocal(ity1,lambda1,gamma1-pi-lambda2,.false.)* - & elocal(ity4,lambda3,lambda4,.false.)* - & ele(lambda2,lambda3,a1) - if (.not.koniec) then - ene3= - & elocal(ity2,lambda1,lambda2,.false.)* - & elocal(ity3,lambda3,gamma2-pi-lambda4,.false.)* - & ele(lambda1,lambda4,a1) - else - ene3= - & elocal(ity2,lambda1,lambda2,.false.)* - & elocal(ity3,lambda3,lambda4,.false.)* - & ele(lambda1,-lambda4,a1) - endif - ene4= - & elocal(ity2,lambda1,lambda2,.false.)* - & elocal(ity4,lambda3,lambda4,.false.)* - & ele(lambda1,lambda3,a1) - sum1=sum1+ene1 - sum2=sum2+ene2 - sum3=sum3+ene3 - sum4=sum4+ene4 - enddo - enddo - enddo - enddo - q1=sum1/(2*pi)**4*delta**4 - q2=sum2/(2*pi)**4*delta**4 - q3=sum3/(2*pi)**4*delta**4 - q4=sum4/(2*pi)**4*delta**4 - write (2,* )'sum',sum1,sum2,sum3,sum4,' q',q1,q2,q3,q4 - return - end -c------------------------------------------------------------------------- - subroutine integral5(gamma1,gamma2,gamma3,gamma4,ity1,ity2,ity3, - & ity4,ity5,ity6,a1,a2,si1,si2,si3,si4,transp,ene1,ene2,ene3,ene4) - implicit none - integer ity1,ity2,ity3,ity4,ity5,ity6 - integer ilam1,ilam2,ilam3,ilam4,ilam5,iincr - double precision gamma1,gamma2,gamma3,gamma4,beta,b(2,90),lambda1, - & lambda2,lambda3,lambda4,lambda5 - logical transp - double precision elocal,ele - double precision eloc1,eloc2,eloc3,eloc4,eloc5,eloc6,ele1,ele2 - double precision delta,delta2,sum,ene,sumene,pom - double precision ene1,ene2,ene3,ene4,sum1,sum2,sum3,sum4, - & a1(2,2),a2(2,2) - integer si1,si2,si3,si4 - double precision conv /.01745329252d0/,pi /3.141592654d0/ - - iincr=60 - delta=iincr*conv - delta2=0.5d0*delta -cd print *,'iincr',iincr,' delta',delta -cd write(2,*) 'gamma1=',gamma1,' gamma2=',gamma2, -cd & ' gamma3=',gamma3,' gamma4=',gamma4 -cd write(2,*) ity1,ity2,ity3,ity4,ity5,ity6 -cd write(2,*) 'a1=',a1 -cd write(2,*) 'a2=',a2 -cd write(2,*) si1,si2,si3,si4,transp - - sum1=0.0d0 - sum2=0.0d0 - sum3=0.0d0 - sum4=0.0d0 - do ilam1=-180,179,iincr - do ilam2=-180,179,iincr - do ilam3=-180,179,iincr - do ilam4=-180,179,iincr - do ilam5=-180,179,iincr - lambda1=ilam1*conv+delta2 - lambda2=ilam2*conv+delta2 - lambda3=ilam3*conv+delta2 - lambda4=ilam4*conv+delta2 - lambda5=ilam5*conv+delta2 - if (transp) then - ele1=ele(lambda1,si4*lambda4,a1) - ele2=ele(lambda2,lambda3,a2) - else - ele1=ele(lambda1,lambda3,a1) - ele2=ele(lambda2,si4*lambda4,a2) - endif - eloc2=elocal(ity2,lambda1,gamma2-pi-lambda2,.false.) - eloc5=elocal(ity5,lambda3,gamma4-pi-si4*lambda4,.false.) - pom=ele1*ele2*eloc2*eloc5 - if (si1.gt.0) then - eloc1=elocal(ity1,lambda5,gamma1-pi-lambda1,.false.) - sum1=sum1+pom*eloc1 - endif - eloc3=elocal(ity3,lambda2,lambda5,.false.) - sum2=sum2+pom*eloc3 - eloc4=elocal(ity4,lambda5,gamma3-pi-lambda3,.false.) - sum3=sum3+pom*eloc4 - if (si4.gt.0) then - eloc6=elocal(ity6,lambda4,lambda5,.false.) - sum4=sum4+pom*eloc6 - endif - enddo - enddo - enddo - enddo - enddo - pom=1.0d0/(2*pi)**5*delta**5 - ene1=sum1*pom - ene2=sum2*pom - ene3=sum3*pom - ene4=sum4*pom -c write (2,* )'sum',sum1,sum2,sum3,sum4,' q',ene1,ene2,ene3,ene4 - return - end -c------------------------------------------------------------------------- - subroutine integral_turn6(gamma1,gamma2,gamma3,gamma4,ity1,ity2, - & ity3,ity4,ity5,ity6,a1,a2,ene_turn6) - implicit none - integer ity1,ity2,ity3,ity4,ity5,ity6 - integer ilam1,ilam2,ilam3,ilam4,ilam5,ilam6,iincr - double precision gamma1,gamma2,gamma3,gamma4,beta,b(2,90),lambda1, - & lambda2,lambda3,lambda4,lambda5,lambda6 - logical transp - double precision elocal,ele - double precision eloc1,eloc2,eloc3,eloc4,eloc41,eloc5,eloc6, - & eloc61,ele1,ele2 - double precision delta,delta2,sum,ene,sumene,pom,ene5 - double precision ene_turn6,sum5,a1(2,2),a2(2,2) - double precision conv /.01745329252d0/,pi /3.141592654d0/ - - iincr=60 - delta=iincr*conv - delta2=0.5d0*delta -cd print *,'iincr',iincr,' delta',delta - write(2,*) 'gamma1=',gamma1,' gamma2=',gamma2, - & ' gamma3=',gamma3,' gamma4=',gamma4 - write(2,*) ity1,ity2,ity3,ity4,ity5,ity6 - write(2,*) 'a1=',a1 - write(2,*) 'a2=',a2 - - sum5=0.0d0 - do ilam1=-180,179,iincr - do ilam2=-180,179,iincr - do ilam3=-180,179,iincr - do ilam4=-180,179,iincr - do ilam5=-180,179,iincr - lambda1=ilam1*conv+delta2 - lambda2=ilam2*conv+delta2 - lambda3=ilam3*conv+delta2 - lambda4=ilam4*conv+delta2 - lambda5=ilam5*conv+delta2 - ele1=ele(lambda1,-lambda4,a1) - ele2=ele(lambda2,lambda3,a2) - eloc2=elocal(ity2,lambda1,gamma2-pi-lambda2,.false.) - eloc5=elocal(ity5,lambda3,lambda4,.false.) - pom=ele1*ele2*eloc2*eloc5 - eloc3=elocal(ity3,lambda2,gamma3-pi-lambda5,.false.) - eloc4=elocal(ity4,lambda5,gamma4-pi-lambda3,.false.) - sum5=sum5+pom*eloc3*eloc4 - enddo - enddo - enddo - enddo - enddo - pom=-1.0d0/(2*pi)**5*delta**5 - ene_turn6=sum5*pom -c print *,'sum6',sum6,' ene6',ene6 - return - end -c------------------------------------------------------------------------- - subroutine integral6(gamma1,gamma2,gamma3,gamma4,ity1,ity2,ity3, - & ity4,ity5,ity6,a1,a2,si1,si2,si3,si4,transp,ene1,ene2,ene3,ene4, - & ene5,ene6) - implicit none - integer ity1,ity2,ity3,ity4,ity5,ity6 - integer ilam1,ilam2,ilam3,ilam4,ilam5,ilam6,iincr - double precision gamma1,gamma2,gamma3,gamma4,beta,b(2,90),lambda1, - & lambda2,lambda3,lambda4,lambda5,lambda6 - logical transp - double precision elocal,ele - double precision eloc1,eloc2,eloc3,eloc4,eloc41,eloc5,eloc6, - & eloc61,ele1,ele2 - double precision delta,delta2,sum,ene,sumene,pom - double precision ene1,ene2,ene3,ene4,ene5,ene6,sum1,sum2,sum3, - & sum4,sum5,sum6,a1(2,2),a2(2,2) - integer si1,si2,si3,si4 - double precision conv /.01745329252d0/,pi /3.141592654d0/ - - iincr=60 - delta=iincr*conv - delta2=0.5d0*delta -cd print *,'iincr',iincr,' delta',delta -cd write(2,*) 'gamma1=',gamma1,' gamma2=',gamma2, -cd & ' gamma3=',gamma3,' gamma4=',gamma4 -cd write(2,*) ity1,ity2,ity3,ity4,ity5,ity6 -cd write(2,*) 'a1=',a1 -cd write(2,*) 'a2=',a2 -cd write(2,*) si1,si2,si3,si4,transp - - sum1=0.0d0 - sum2=0.0d0 - sum3=0.0d0 - sum4=0.0d0 - sum5=0.0d0 - sum6=0.0d0 - eloc1=0.0d0 - eloc6=0.0d0 - eloc61=0.0d0 - do ilam1=-180,179,iincr - do ilam2=-180,179,iincr - do ilam3=-180,179,iincr - do ilam4=-180,179,iincr - do ilam5=-180,179,iincr - do ilam6=-180,179,iincr - lambda1=ilam1*conv+delta2 - lambda2=ilam2*conv+delta2 - lambda3=ilam3*conv+delta2 - lambda4=ilam4*conv+delta2 - lambda5=ilam5*conv+delta2 - lambda6=ilam6*conv+delta2 - if (transp) then - ele1=ele(lambda1,si4*lambda4,a1) - ele2=ele(lambda2,lambda3,a2) - else - ele1=ele(lambda1,lambda3,a1) - ele2=ele(lambda2,si4*lambda4,a2) - endif - eloc2=elocal(ity2,lambda1,gamma2-pi-lambda2,.false.) - eloc5=elocal(ity5,lambda3,gamma4-pi-si4*lambda4,.false.) - pom=ele1*ele2*eloc2*eloc5 - if (si1.gt.0) then - eloc1=elocal(ity1,lambda5,gamma1-pi-lambda1,.false.) - endif - eloc3=elocal(ity3,lambda2,lambda6,.false.) - sum1=sum1+pom*eloc1*eloc3 - eloc4=elocal(ity4,lambda5,gamma3-pi-lambda3,.false.) - if (si4.gt.0) then - eloc6=elocal(ity6,lambda4,lambda6,.false.) - eloc61=elocal(ity6,lambda4,lambda5,.false.) - endif - sum2=sum2+pom*eloc4*eloc6 - eloc41=elocal(ity4,lambda6,gamma3-pi-lambda3,.false.) - sum3=sum3+pom*eloc1*eloc41 - sum4=sum4+pom*eloc1*eloc6 - sum5=sum5+pom*eloc3*eloc4 - sum6=sum6+pom*eloc3*eloc61 - enddo - enddo - enddo - enddo - enddo - enddo - pom=-1.0d0/(2*pi)**6*delta**6 - ene1=sum1*pom - ene2=sum2*pom - ene3=sum3*pom - ene4=sum4*pom - ene5=sum5*pom - ene6=sum6*pom -c print *,'sum6',sum6,' ene6',ene6 - return - end -c------------------------------------------------------------------------- - subroutine integral3a(gamma1,gamma2,ity1,ity2,a1,si1,ene1) - implicit none - integer ity1,ity2,ity3,ity4,ity5,ity6 - integer ilam1,ilam2,ilam3,ilam4,ilam5,ilam6,iincr - double precision gamma1,gamma2,gamma3,gamma4,beta,b(2,90),lambda1, - & lambda2,lambda3,lambda4,lambda5,lambda6 - logical transp - double precision elocal,ele - double precision eloc1,eloc2,eloc3,eloc4,eloc41,eloc5,eloc6, - & eloc61,ele1,ele2 - double precision delta,delta2,sum,ene,sumene,pom - double precision ene1,ene2,ene3,ene4,ene5,ene6,sum1,sum2,sum3, - & sum4,sum5,sum6,a1(2,2),a2(2,2) - integer si1,si2,si3,si4 - double precision conv /.01745329252d0/,pi /3.141592654d0/ - - iincr=60 - delta=iincr*conv - delta2=0.5d0*delta -cd print *,'iincr',iincr,' delta',delta -cd write(2,*) 'gamma1=',gamma1,' gamma2=',gamma2 -cd write(2,*) ity1,ity2 -cd write(2,*) 'a1=',a1 -cd write(2,*) si1, - - sum1=0.0d0 - eloc1=0.0d0 - do ilam1=-180,179,iincr - do ilam2=-180,179,iincr - do ilam3=-180,179,iincr - lambda1=ilam1*conv+delta2 - lambda2=ilam2*conv+delta2 - lambda3=ilam3*conv+delta2 - ele1=ele(lambda1,si1*lambda3,a1) - eloc1=elocal(ity1,lambda1,gamma1-pi-lambda2,.false.) - if (si1.gt.0) then - eloc2=elocal(ity2,lambda2,gamma2-pi-lambda3,.false.) - else - eloc2=elocal(ity2,lambda2,lambda3,.false.) - endif - sum1=sum1+ele1*eloc1*eloc2 - enddo - enddo - enddo - pom=1.0d0/(2*pi)**3*delta**3 - ene1=sum1*pom - return - end -c------------------------------------------------------------------------- - subroutine integral4a(gamma1,gamma2,gamma3,ity1,ity2,ity3,a1,si1, - & ene1) - implicit none - integer ity1,ity2,ity3,ity4,ity5,ity6 - integer ilam1,ilam2,ilam3,ilam4,ilam5,ilam6,iincr - double precision gamma1,gamma2,gamma3,gamma4,beta,b(2,90),lambda1, - & lambda2,lambda3,lambda4,lambda5,lambda6 - logical transp - double precision elocal,ele - double precision eloc1,eloc2,eloc3,eloc4,eloc41,eloc5,eloc6, - & eloc61,ele1,ele2 - double precision delta,delta2,sum,ene,sumene,pom - double precision ene1,ene2,ene3,ene4,ene5,ene6,sum1,sum2,sum3, - & sum4,sum5,sum6,a1(2,2),a2(2,2) - integer si1,si2,si3,si4 - double precision conv /.01745329252d0/,pi /3.141592654d0/ - - iincr=60 - delta=iincr*conv - delta2=0.5d0*delta -cd print *,'iincr',iincr,' delta',delta -cd write(2,*) 'gamma1=',gamma1,' gamma2=',gamma2, -cd & ' gamma3=',gamma3 -cd write(2,*) ity1,ity2,ity3 -cd write(2,*) 'a1=',a1 -cd write(2,*) 'si1=',si1 - sum1=0.0d0 - do ilam1=-180,179,iincr - do ilam2=-180,179,iincr - do ilam3=-180,179,iincr - do ilam4=-180,179,iincr - lambda1=ilam1*conv+delta2 - lambda2=ilam2*conv+delta2 - lambda3=ilam3*conv+delta2 - lambda4=ilam4*conv+delta2 - ele1=ele(lambda1,si1*lambda4,a1) - eloc1=elocal(ity1,lambda1,gamma1-pi-lambda2,.false.) - eloc2=elocal(ity2,lambda2,gamma2-pi-lambda3,.false.) - if (si1.gt.0) then - eloc3=elocal(ity3,lambda3,gamma3-pi-lambda4,.false.) - else - eloc3=elocal(ity3,lambda3,lambda4,.false.) - endif - sum1=sum1+ele1*eloc1*eloc2*eloc3 - enddo - enddo - enddo - enddo - pom=-1.0d0/(2*pi)**4*delta**4 - ene1=sum1*pom - return - end -c------------------------------------------------------------------------- - double precision function elocal(i,x,y,transp) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.TORSION' - integer i - double precision x,y,u(2),v(2),cu(2),dv(2),ev(2) - double precision scalar2 - logical transp - u(1)=dcos(x) - u(2)=dsin(x) - v(1)=dcos(y) - v(2)=dsin(y) - if (transp) then - call matvec2(cc(1,1,i),v,cu) - call matvec2(dd(1,1,i),u,dv) - call matvec2(ee(1,1,i),u,ev) - elocal=scalar2(b1(1,i),v)+scalar2(b2(1,i),u)+scalar2(cu,v)+ - & scalar2(dv,u)+scalar2(ev,v) - else - call matvec2(cc(1,1,i),u,cu) - call matvec2(dd(1,1,i),v,dv) - call matvec2(ee(1,1,i),v,ev) - elocal=scalar2(b1(1,i),u)+scalar2(b2(1,i),v)+scalar2(cu,u)+ - & scalar2(dv,v)+scalar2(ev,u) - endif - return - end -c------------------------------------------------------------------------- - double precision function ele(x,y,a) - implicit none - double precision x,y,a(2,2),si1,si2,u(2),v(2),av(2) - double precision scalar2 - u(1)=-cos(x) - u(2)= sin(x) - v(1)=-cos(y) - v(2)= sin(y) - call matvec2(a,v,av) - ele=scalar2(u,av) - return - end diff --git a/source/unres/src_CSA_DiL/local_move.f b/source/unres/src_CSA_DiL/local_move.f deleted file mode 100644 index 763d3cc..0000000 --- a/source/unres/src_CSA_DiL/local_move.f +++ /dev/null @@ -1,972 +0,0 @@ -c------------------------------------------------------------- - - subroutine local_move_init(debug) -crc implicit none - -c Includes - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' ! Needed by COMMON.LOCAL - include 'COMMON.GEO' ! For pi, deg2rad - include 'COMMON.LOCAL' ! For vbl - include 'COMMON.LOCMOVE' - -c INPUT arguments - logical debug - - -c Determine wheter to do some debugging output - locmove_output=debug - -c Set the init_called flag to 1 - init_called=1 - -c The following are never changed - min_theta=60.D0*deg2rad ! (0,PI) - max_theta=175.D0*deg2rad ! (0,PI) - dmin2=vbl*vbl*2.*(1.-cos(min_theta)) - dmax2=vbl*vbl*2.*(1.-cos(max_theta)) - flag=1.0D300 - small=1.0D-5 - small2=0.5*small*small - -c Not really necessary... - a_n=0 - b_n=0 - res_n=0 - - return - end - -c------------------------------------------------------------- - - subroutine local_move(n_start, n_end, PHImin, PHImax) -c Perform a local move between residues m and n (inclusive) -c PHImin and PHImax [0,PI] determine the size of the move -c Works on whatever structure is in the variables theta and phi, -c sidechain variables are left untouched -c The final structure is NOT minimized, but both the cartesian -c variables c and the angles are up-to-date at the end (no further -c chainbuild is required) -crc implicit none - -c Includes - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.MINIM' - include 'COMMON.SBRIDGE' - include 'COMMON.LOCMOVE' - -c External functions - integer move_res - external move_res - double precision ran_number - external ran_number - -c INPUT arguments - integer n_start, n_end ! First and last residues to move - double precision PHImin, PHImax ! min/max angles [0,PI] - -c Local variables - integer i,j - double precision min,max - integer iretcode - - -c Check if local_move_init was called. This assumes that it -c would not be 1 if not explicitely initialized - if (init_called.ne.1) then - write(6,*)' *** local_move_init not called!!!' - stop - endif - -c Quick check for crazy range - if (n_start.gt.n_end .or. n_start.lt.1 .or. n_end.gt.nres) then - write(6,'(a,i3,a,i3)') - + ' *** Cannot make local move between n_start = ', - + n_start,' and n_end = ',n_end - return - endif - -c Take care of end residues first... - if (n_start.eq.1) then -c Move residue 1 (completely random) - theta(3)=ran_number(min_theta,max_theta) - phi(4)=ran_number(-PI,PI) - i=2 - else - i=n_start - endif - if (n_end.eq.nres) then -c Move residue nres (completely random) - theta(nres)=ran_number(min_theta,max_theta) - phi(nres)=ran_number(-PI,PI) - j=nres-1 - else - j=n_end - endif - -c ...then go through all other residues one by one -c Start from the two extremes and converge - call chainbuild - do while (i.le.j) - min=PHImin - max=PHImax -c$$$c Move the first two residues by less than the others -c$$$ if (i-n_start.lt.3) then -c$$$ if (i-n_start.eq.0) then -c$$$ min=0.4*PHImin -c$$$ max=0.4*PHImax -c$$$ else if (i-n_start.eq.1) then -c$$$ min=0.8*PHImin -c$$$ max=0.8*PHImax -c$$$ else if (i-n_start.eq.2) then -c$$$ min=PHImin -c$$$ max=PHImax -c$$$ endif -c$$$ endif - -c The actual move, on residue i - iretcode=move_res(min,max,i) ! Discard iretcode - i=i+1 - - if (i.le.j) then - min=PHImin - max=PHImax -c$$$c Move the last two residues by less than the others -c$$$ if (n_end-j.lt.3) then -c$$$ if (n_end-j.eq.0) then -c$$$ min=0.4*PHImin -c$$$ max=0.4*PHImax -c$$$ else if (n_end-j.eq.1) then -c$$$ min=0.8*PHImin -c$$$ max=0.8*PHImax -c$$$ else if (n_end-j.eq.2) then -c$$$ min=PHImin -c$$$ max=PHImax -c$$$ endif -c$$$ endif - -c The actual move, on residue j - iretcode=move_res(min,max,j) ! Discard iretcode - j=j-1 - endif - enddo - - call int_from_cart(.false.,.false.) - - return - end - -c------------------------------------------------------------- - - subroutine output_tabs -c Prints out the contents of a_..., b_..., res_... - implicit none - -c Includes - include 'COMMON.GEO' - include 'COMMON.LOCMOVE' - -c Local variables - integer i,j - - - write(6,*)'a_...' - write(6,'(8f7.1)')(a_ang(i)*rad2deg,i=0,a_n-1) - write(6,'(8(2x,3l1,2x))')((a_tab(i,j),i=0,2),j=0,a_n-1) - - write(6,*)'b_...' - write(6,'(4f7.1)')(b_ang(i)*rad2deg,i=0,b_n-1) - write(6,'(4(2x,3l1,2x))')((b_tab(i,j),i=0,2),j=0,b_n-1) - - write(6,*)'res_...' - write(6,'(12f7.1)')(res_ang(i)*rad2deg,i=0,res_n-1) - write(6,'(12(2x,3l1,2x))')((res_tab(0,i,j),i=0,2),j=0,res_n-1) - write(6,'(12(2x,3l1,2x))')((res_tab(1,i,j),i=0,2),j=0,res_n-1) - write(6,'(12(2x,3l1,2x))')((res_tab(2,i,j),i=0,2),j=0,res_n-1) - - return - end - -c------------------------------------------------------------- - - subroutine angles2tab(PHImin,PHImax,n,ang,tab) -c Only uses angles if [0,PI] (but PHImin cannot be 0., -c and PHImax cannot be PI) - implicit none - -c Includes - include 'COMMON.GEO' - -c INPUT arguments - double precision PHImin,PHImax - -c OUTPUT arguments - integer n - double precision ang(0:3) - logical tab(0:2,0:3) - - - if (PHImin .eq. PHImax) then -c Special case with two 010's - n = 2; - ang(0) = -PHImin; - ang(1) = PHImin; - tab(0,0) = .false. - tab(2,0) = .false. - tab(0,1) = .false. - tab(2,1) = .false. - tab(1,0) = .true. - tab(1,1) = .true. - else if (PHImin .eq. PI) then -c Special case with one 010 - n = 1 - ang(0) = PI - tab(0,0) = .false. - tab(2,0) = .false. - tab(1,0) = .true. - else if (PHImax .eq. 0.) then -c Special case with one 010 - n = 1 - ang(0) = 0. - tab(0,0) = .false. - tab(2,0) = .false. - tab(1,0) = .true. - else -c Standard cases - n = 0 - if (PHImin .gt. 0.) then -c Start of range (011) - ang(n) = PHImin - tab(0,n) = .false. - tab(1,n) = .true. - tab(2,n) = .true. -c End of range (110) - ang(n+1) = -PHImin - tab(0,n+1) = .true. - tab(1,n+1) = .true. - tab(2,n+1) = .false. - n = n+2 - endif - if (PHImax .lt. PI) then -c Start of range (011) - ang(n) = -PHImax - tab(0,n) = .false. - tab(1,n) = .true. - tab(2,n) = .true. -c End of range (110) - ang(n+1) = PHImax - tab(0,n+1) = .true. - tab(1,n+1) = .true. - tab(2,n+1) = .false. - n = n+2 - endif - endif - - return - end - -c------------------------------------------------------------- - - subroutine minmax_angles(x,y,z,r,n,ang,tab) -c When solutions do not exist, assume all angles -c are acceptable - i.e., initial geometry must be correct - implicit none - -c Includes - include 'COMMON.GEO' - include 'COMMON.LOCMOVE' - -c Input arguments - double precision x,y,z,r - -c Output arguments - integer n - double precision ang(0:3) - logical tab(0:2,0:3) - -c Local variables - double precision num, denom, phi - double precision Kmin, Kmax - integer i - - - num = x*x + y*y + z*z - denom = x*x + y*y - n = 0 - if (denom .gt. 0.) then - phi = atan2(y,x) - denom = 2.*r*sqrt(denom) - num = num+r*r - Kmin = (num - dmin2)/denom - Kmax = (num - dmax2)/denom - -c Allowed values of K (else all angles are acceptable) -c -1 <= Kmin < 1 -c -1 < Kmax <= 1 - if (Kmin .gt. 1. .or. abs(Kmin-1.) .lt. small2) then - Kmin = -flag - else if (Kmin .lt. -1. .or. abs(Kmin+1.) .lt. small2) then - Kmin = PI - else - Kmin = acos(Kmin) - endif - - if (Kmax .lt. -1. .or. abs(Kmax+1.) .lt. small2) then - Kmax = flag - else if (Kmax .gt. 1. .or. abs(Kmax-1.) .lt. small2) then - Kmax = 0. - else - Kmax = acos(Kmax) - endif - - if (Kmax .lt. Kmin) Kmax = Kmin - - call angles2tab(Kmin, Kmax, n, ang, tab) - -c Add phi and check that angles are within range (-PI,PI] - do i=0,n-1 - ang(i) = ang(i)+phi - if (ang(i) .le. -PI) then - ang(i) = ang(i)+2.*PI - else if (ang(i) .gt. PI) then - ang(i) = ang(i)-2.*PI - endif - enddo - endif - - return - end - -c------------------------------------------------------------- - - subroutine construct_tab -c Take a_... and b_... values and produces the results res_... -c x_ang are assumed to be all different (diff > small) -c x_tab(1,i) must be 1 for all i (i.e., all x_ang are acceptable) - implicit none - -c Includes - include 'COMMON.LOCMOVE' - -c Local variables - integer n_max,i,j,index - logical done - double precision phi - - - n_max = a_n + b_n - if (n_max .eq. 0) then - res_n = 0 - return - endif - - do i=0,n_max-1 - do j=0,1 - res_tab(j,0,i) = .true. - res_tab(j,2,i) = .true. - res_tab(j,1,i) = .false. - enddo - enddo - - index = 0 - phi = -flag - done = .false. - do while (.not.done) - res_ang(index) = flag - -c Check a first... - do i=0,a_n-1 - if ((a_ang(i)-phi).gt.small .and. - + a_ang(i) .lt. res_ang(index)) then -c Found a lower angle - res_ang(index) = a_ang(i) -c Copy the values from a_tab into res_tab(0,,) - res_tab(0,0,index) = a_tab(0,i) - res_tab(0,1,index) = a_tab(1,i) - res_tab(0,2,index) = a_tab(2,i) -c Set default values for res_tab(1,,) - res_tab(1,0,index) = .true. - res_tab(1,1,index) = .false. - res_tab(1,2,index) = .true. - else if (abs(a_ang(i)-res_ang(index)).lt.small) then -c Found an equal angle (can only be equal to a b_ang) - res_tab(0,0,index) = a_tab(0,i) - res_tab(0,1,index) = a_tab(1,i) - res_tab(0,2,index) = a_tab(2,i) - endif - enddo -c ...then check b - do i=0,b_n-1 - if ((b_ang(i)-phi).gt.small .and. - + b_ang(i) .lt. res_ang(index)) then -c Found a lower angle - res_ang(index) = b_ang(i) -c Copy the values from b_tab into res_tab(1,,) - res_tab(1,0,index) = b_tab(0,i) - res_tab(1,1,index) = b_tab(1,i) - res_tab(1,2,index) = b_tab(2,i) -c Set default values for res_tab(0,,) - res_tab(0,0,index) = .true. - res_tab(0,1,index) = .false. - res_tab(0,2,index) = .true. - else if (abs(b_ang(i)-res_ang(index)).lt.small) then -c Found an equal angle (can only be equal to an a_ang) - res_tab(1,0,index) = b_tab(0,i) - res_tab(1,1,index) = b_tab(1,i) - res_tab(1,2,index) = b_tab(2,i) - endif - enddo - - if (res_ang(index) .eq. flag) then - res_n = index - done = .true. - else if (index .eq. n_max-1) then - res_n = n_max - done = .true. - else - phi = res_ang(index) ! Store previous angle - index = index+1 - endif - enddo - -c Fill the gaps -c First a... - index = 0 - if (a_n .gt. 0) then - do while (.not.res_tab(0,1,index)) - index=index+1 - enddo - done = res_tab(0,2,index) - do i=index+1,res_n-1 - if (res_tab(0,1,i)) then - done = res_tab(0,2,i) - else - res_tab(0,0,i) = done - res_tab(0,1,i) = done - res_tab(0,2,i) = done - endif - enddo - done = res_tab(0,0,index) - do i=index-1,0,-1 - if (res_tab(0,1,i)) then - done = res_tab(0,0,i) - else - res_tab(0,0,i) = done - res_tab(0,1,i) = done - res_tab(0,2,i) = done - endif - enddo - else - do i=0,res_n-1 - res_tab(0,0,i) = .true. - res_tab(0,1,i) = .true. - res_tab(0,2,i) = .true. - enddo - endif -c ...then b - index = 0 - if (b_n .gt. 0) then - do while (.not.res_tab(1,1,index)) - index=index+1 - enddo - done = res_tab(1,2,index) - do i=index+1,res_n-1 - if (res_tab(1,1,i)) then - done = res_tab(1,2,i) - else - res_tab(1,0,i) = done - res_tab(1,1,i) = done - res_tab(1,2,i) = done - endif - enddo - done = res_tab(1,0,index) - do i=index-1,0,-1 - if (res_tab(1,1,i)) then - done = res_tab(1,0,i) - else - res_tab(1,0,i) = done - res_tab(1,1,i) = done - res_tab(1,2,i) = done - endif - enddo - else - do i=0,res_n-1 - res_tab(1,0,i) = .true. - res_tab(1,1,i) = .true. - res_tab(1,2,i) = .true. - enddo - endif - -c Finally fill the last row with AND operation - do i=0,res_n-1 - do j=0,2 - res_tab(2,j,i) = (res_tab(0,j,i) .and. res_tab(1,j,i)) - enddo - enddo - - return - end - -c------------------------------------------------------------- - - subroutine construct_ranges(phi_n,phi_start,phi_end) -c Given the data in res_..., construct a table of -c min/max allowed angles - implicit none - -c Includes - include 'COMMON.GEO' - include 'COMMON.LOCMOVE' - -c Output arguments - integer phi_n - double precision phi_start(0:11),phi_end(0:11) - -c Local variables - logical done - integer index - - - if (res_n .eq. 0) then -c Any move is allowed - phi_n = 1 - phi_start(0) = -PI - phi_end(0) = PI - else - phi_n = 0 - index = 0 - done = .false. - do while (.not.done) -c Find start of range (01x) - done = .false. - do while (.not.done) - if (res_tab(2,0,index).or.(.not.res_tab(2,1,index))) then - index=index+1 - else - done = .true. - phi_start(phi_n) = res_ang(index) - endif - if (index .eq. res_n) done = .true. - enddo -c If a start was found (index < res_n), find the end of range (x10) -c It may not be found without wrapping around - if (index .lt. res_n) then - done = .false. - do while (.not.done) - if ((.not.res_tab(2,1,index)).or.res_tab(2,2,index)) then - index=index+1 - else - done = .true. - endif - if (index .eq. res_n) done = .true. - enddo - if (index .lt. res_n) then -c Found the end of the range - phi_end(phi_n) = res_ang(index) - phi_n=phi_n+1 - index=index+1 - if (index .eq. res_n) then - done = .true. - else - done = .false. - endif - else -c Need to wrap around - done = .true. - phi_end(phi_n) = flag - endif - endif - enddo -c Take care of the last one if need to wrap around - if (phi_end(phi_n) .eq. flag) then - index = 0 - do while ((.not.res_tab(2,1,index)).or.res_tab(2,2,index)) - index=index+1 - enddo - phi_end(phi_n) = res_ang(index) + 2.*PI - phi_n=phi_n+1 - endif - endif - - return - end - -c------------------------------------------------------------- - - subroutine fix_no_moves(phi) - implicit none - -c Includes - include 'COMMON.GEO' - include 'COMMON.LOCMOVE' - -c Output arguments - double precision phi - -c Local variables - integer index - double precision diff,temp - - -c Look for first 01x in gammas (there MUST be at least one) - diff = flag - index = 0 - do while (res_tab(1,0,index) .or. (.not.res_tab(1,1,index))) - index=index+1 - enddo - if (res_ang(index) .le. 0.D0) then ! Make sure it's from PHImax -c Try to increase PHImax - if (index .gt. 0) then - phi = res_ang(index-1) - diff = abs(res_ang(index) - res_ang(index-1)) - endif -c Look for last (corresponding) x10 - index = res_n - 1 - do while ((.not.res_tab(1,1,index)) .or. res_tab(1,2,index)) - index=index-1 - enddo - if (index .lt. res_n-1) then - temp = abs(res_ang(index) - res_ang(index+1)) - if (temp .lt. diff) then - phi = res_ang(index+1) - diff = temp - endif - endif - endif - -c If increasing PHImax didn't work, decreasing PHImin -c will (with one exception) -c Look for first x10 (there MUST be at least one) - index = 0 - do while ((.not.res_tab(1,1,index)) .or. res_tab(1,2,index)) - index=index+1 - enddo - if (res_ang(index) .lt. 0.D0) then ! Make sure it's from PHImin -c Try to decrease PHImin - if (index .lt. res_n-1) then - temp = abs(res_ang(index) - res_ang(index+1)) - if (res_ang(index+1) .le. 0.D0 .and. temp .lt. diff) then - phi = res_ang(index+1) - diff = temp - endif - endif -c Look for last (corresponding) 01x - index = res_n - 1 - do while (res_tab(1,0,index) .or. (.not.res_tab(1,1,index))) - index=index-1 - enddo - if (index .gt. 0) then - temp = abs(res_ang(index) - res_ang(index-1)) - if (res_ang(index-1) .ge. 0.D0 .and. temp .lt. diff) then - phi = res_ang(index-1) - diff = temp - endif - endif - endif - -c If it still didn't work, it must be PHImax == 0. or PHImin == PI - if (diff .eq. flag) then - index = 0 - if (res_tab(index,1,0) .or. (.not.res_tab(index,1,1)) .or. - + res_tab(index,1,2)) index = res_n - 1 -c This MUST work at this point - if (index .eq. 0) then - phi = res_ang(1) - else - phi = res_ang(index - 1) - endif - endif - - return - end - -c------------------------------------------------------------- - - integer function move_res(PHImin,PHImax,i_move) -c Moves residue i_move (in array c), leaving everything else fixed -c Starting geometry is not checked, it should be correct! -c R(,i_move) is the only residue that will move, but must have -c 1 < i_move < nres (i.e., cannot move ends) -c Whether any output is done is controlled by locmove_output -crc implicit none - -c Includes - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - include 'COMMON.LOCMOVE' - -c External functions - double precision ran_number - external ran_number - -c Input arguments - double precision PHImin,PHImax - integer i_move - -c RETURN VALUES: -c 0: move successfull -c 1: Dmin or Dmax had to be modified -c 2: move failed - check your input geometry - - -c Local variables - double precision X(0:2),Y(0:2),Z(0:2),Orig(0:2) - double precision P(0:2) - logical no_moves,done - integer index,i,j - double precision phi,temp,radius - double precision phi_start(0:11), phi_end(0:11) - integer phi_n - -c Set up the coordinate system - do i=0,2 - Orig(i)=0.5*(c(i+1,i_move-1)+c(i+1,i_move+1)) ! Position of origin - enddo - - do i=0,2 - Z(i)=c(i+1,i_move+1)-c(i+1,i_move-1) - enddo - temp=sqrt(Z(0)*Z(0)+Z(1)*Z(1)+Z(2)*Z(2)) - do i=0,2 - Z(i)=Z(i)/temp - enddo - - do i=0,2 - X(i)=c(i+1,i_move)-Orig(i) - enddo -c radius is the radius of the circle on which c(,i_move) can move - radius=sqrt(X(0)*X(0)+X(1)*X(1)+X(2)*X(2)) - do i=0,2 - X(i)=X(i)/radius - enddo - - Y(0)=Z(1)*X(2)-X(1)*Z(2) - Y(1)=X(0)*Z(2)-Z(0)*X(2) - Y(2)=Z(0)*X(1)-X(0)*Z(1) - -c Calculate min, max angles coming from dmin, dmax to c(,i_move-2) - if (i_move.gt.2) then - do i=0,2 - P(i)=c(i+1,i_move-2)-Orig(i) - enddo - call minmax_angles(P(0)*X(0)+P(1)*X(1)+P(2)*X(2), - + P(0)*Y(0)+P(1)*Y(1)+P(2)*Y(2), - + P(0)*Z(0)+P(1)*Z(1)+P(2)*Z(2), - + radius,a_n,a_ang,a_tab) - else - a_n=0 - endif - -c Calculate min, max angles coming from dmin, dmax to c(,i_move+2) - if (i_move.lt.nres-2) then - do i=0,2 - P(i)=c(i+1,i_move+2)-Orig(i) - enddo - call minmax_angles(P(0)*X(0)+P(1)*X(1)+P(2)*X(2), - + P(0)*Y(0)+P(1)*Y(1)+P(2)*Y(2), - + P(0)*Z(0)+P(1)*Z(1)+P(2)*Z(2), - + radius,b_n,b_ang,b_tab) - else - b_n=0 - endif - -c Construct the resulting table for alpha and beta - call construct_tab() - - if (locmove_output) then - print *,'ALPHAS & BETAS TABLE' - call output_tabs() - endif - -c Check that there is at least one possible move - no_moves = .true. - if (res_n .eq. 0) then - no_moves = .false. - else - index = 0 - do while ((index .lt. res_n) .and. no_moves) - if (res_tab(2,1,index)) no_moves = .false. - index=index+1 - enddo - endif - if (no_moves) then - if (locmove_output) print *,' *** Cannot move anywhere' - move_res=2 - return - endif - -c Transfer res_... into a_... - a_n = 0 - do i=0,res_n-1 - if ( (res_tab(2,0,i).neqv.res_tab(2,1,i)) .or. - + (res_tab(2,0,i).neqv.res_tab(2,2,i)) ) then - a_ang(a_n) = res_ang(i) - do j=0,2 - a_tab(j,a_n) = res_tab(2,j,i) - enddo - a_n=a_n+1 - endif - enddo - -c Check that the PHI's are within [0,PI] - if (PHImin .lt. 0. .or. abs(PHImin) .lt. small) PHImin = -flag - if (PHImin .gt. PI .or. abs(PHImin-PI) .lt. small) PHImin = PI - if (PHImax .gt. PI .or. abs(PHImax-PI) .lt. small) PHImax = flag - if (PHImax .lt. 0. .or. abs(PHImax) .lt. small) PHImax = 0. - if (PHImax .lt. PHImin) PHImax = PHImin -c Calculate min and max angles coming from PHImin and PHImax, -c and put them in b_... - call angles2tab(PHImin, PHImax, b_n, b_ang, b_tab) -c Construct the final table - call construct_tab() - - if (locmove_output) then - print *,'FINAL TABLE' - call output_tabs() - endif - -c Check that there is at least one possible move - no_moves = .true. - if (res_n .eq. 0) then - no_moves = .false. - else - index = 0 - do while ((index .lt. res_n) .and. no_moves) - if (res_tab(2,1,index)) no_moves = .false. - index=index+1 - enddo - endif - - if (no_moves) then -c Take care of the case where no solution exists... - call fix_no_moves(phi) - if (locmove_output) then - print *,' *** Had to modify PHImin or PHImax' - print *,'phi: ',phi*rad2deg - endif - move_res=1 - else -c ...or calculate the solution -c Construct phi_start/phi_end arrays - call construct_ranges(phi_n, phi_start, phi_end) -c Choose random angle phi in allowed range(s) - temp = 0. - do i=0,phi_n-1 - temp = temp + phi_end(i) - phi_start(i) - enddo - phi = ran_number(phi_start(0),phi_start(0)+temp) - index = 0 - done = .false. - do while (.not.done) - if (phi .lt. phi_end(index)) then - done = .true. - else - index=index+1 - endif - if (index .eq. phi_n) then - done = .true. - else if (.not.done) then - phi = phi + phi_start(index) - phi_end(index-1) - endif - enddo - if (index.eq.phi_n) phi=phi_end(phi_n-1) ! Fix numerical errors - if (phi .gt. PI) phi = phi-2.*PI - - if (locmove_output) then - print *,'ALLOWED RANGE(S)' - do i=0,phi_n-1 - print *,phi_start(i)*rad2deg,phi_end(i)*rad2deg - enddo - print *,'phi: ',phi*rad2deg - endif - move_res=0 - endif - -c Re-use radius as temp variable - temp=radius*cos(phi) - radius=radius*sin(phi) - do i=0,2 - c(i+1,i_move)=Orig(i)+temp*X(i)+radius*Y(i) - enddo - - return - end - -c------------------------------------------------------------- - - subroutine loc_test -crc implicit none - -c Includes - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.LOCMOVE' - -c External functions - integer move_res - external move_res - -c Local variables - integer i,j - integer phi_n - double precision phi_start(0:11),phi_end(0:11) - double precision phi - double precision R(0:2,0:5) - - locmove_output=.true. - -c call angles2tab(30.*deg2rad,70.*deg2rad,a_n,a_ang,a_tab) -c call angles2tab(80.*deg2rad,130.*deg2rad,b_n,b_ang,b_tab) -c call minmax_angles(0.D0,3.8D0,0.D0,3.8D0,b_n,b_ang,b_tab) -c call construct_tab -c call output_tabs - -c call construct_ranges(phi_n,phi_start,phi_end) -c do i=0,phi_n-1 -c print *,phi_start(i)*rad2deg,phi_end(i)*rad2deg -c enddo - -c call fix_no_moves(phi) -c print *,'NO MOVES FOUND, BEST PHI IS',phi*rad2deg - - R(0,0)=0.D0 - R(1,0)=0.D0 - R(2,0)=0.D0 - R(0,1)=0.D0 - R(1,1)=-cos(28.D0*deg2rad) - R(2,1)=-0.5D0-sin(28.D0*deg2rad) - R(0,2)=0.D0 - R(1,2)=0.D0 - R(2,2)=-0.5D0 - R(0,3)=cos(30.D0*deg2rad) - R(1,3)=0.D0 - R(2,3)=0.D0 - R(0,4)=0.D0 - R(1,4)=0.D0 - R(2,4)=0.5D0 - R(0,5)=0.D0 - R(1,5)=cos(26.D0*deg2rad) - R(2,5)=0.5D0+sin(26.D0*deg2rad) - do i=1,5 - do j=0,2 - R(j,i)=vbl*R(j,i) - enddo - enddo -c i=move_res(R(0,1),0.D0*deg2rad,180.D0*deg2rad) - imov=2 - i=move_res(0.D0*deg2rad,180.D0*deg2rad,imov) - print *,'RETURNED ',i - print *,(R(i,3)/vbl,i=0,2) - - return - end - -c------------------------------------------------------------- diff --git a/source/unres/src_CSA_DiL/matmult.f b/source/unres/src_CSA_DiL/matmult.f deleted file mode 100644 index e9257cf..0000000 --- a/source/unres/src_CSA_DiL/matmult.f +++ /dev/null @@ -1,18 +0,0 @@ - SUBROUTINE MATMULT(A1,A2,A3) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - DIMENSION A1(3,3),A2(3,3),A3(3,3) - DIMENSION AI3(3,3) - DO 1 I=1,3 - DO 2 J=1,3 - A3IJ=0.0 - DO 3 K=1,3 - 3 A3IJ=A3IJ+A1(I,K)*A2(K,J) - AI3(I,J)=A3IJ - 2 CONTINUE - 1 CONTINUE - DO 4 I=1,3 - DO 4 J=1,3 - 4 A3(I,J)=AI3(I,J) - RETURN - END diff --git a/source/unres/src_CSA_DiL/minim_jlee.F b/source/unres/src_CSA_DiL/minim_jlee.F deleted file mode 100644 index 2b53f11..0000000 --- a/source/unres/src_CSA_DiL/minim_jlee.F +++ /dev/null @@ -1,452 +0,0 @@ -#ifdef MPI - subroutine minim_jlee -c controls minimization and sorting routines - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - parameter (liv=60,lv=(77+maxvar*(maxvar+17)/2)) - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.MINIM' - include 'COMMON.CONTROL' - include 'mpif.h' - external func,gradient,fdum - real ran1,ran2,ran3 - include 'COMMON.SETUP' - include 'COMMON.GEO' - include 'COMMON.FFIELD' - include 'COMMON.SBRIDGE' - include 'COMMON.DISTFIT' - include 'COMMON.CHAIN' - dimension muster(mpi_status_size) - dimension var(maxvar),erg(mxch*(mxch+1)/2+1) - dimension var2(maxvar) - integer iffr(maxres),ihpbt(maxdim),jhpbt(maxdim) - double precision d(maxvar),v(1:lv+1),garbage(maxvar) - double precision energia(0:n_ene),time0s,time1s - dimension indx(9),info(12) - dimension iv(liv) - dimension idum(1),rdum(1) - dimension icont(2,maxcont) - logical check_var,fail - integer iloop(2) - common /przechowalnia/ v - data rad /1.745329252d-2/ -c receive # of start -! print *,'Processor',me,' calling MINIM_JLEE maxfun',maxfun, -! & ' maxmin',maxmin,' tolf',tolf,' rtolf',rtolf - nhpb0=nhpb - 10 continue - time0s=MPI_WTIME() -c print *, 'MINIM_JLEE: ',me,' is waiting' - call mpi_recv(info,12,mpi_integer,king,idint,CG_COMM, - * muster,ierr) - time1s=MPI_WTIME() - write (iout,'(a12,f10.4,a4)')'Waiting for ',time1s-time0s,' sec' - call flush(iout) - if (info(1).eq.0.and.info(2).eq.-2) then -cd write (iout,*) 'Parallel tmscore for refresh bank' -cd call flush(iout) - call refresh_bank_worker_tmscore(var) - goto 10 - endif - n=info(1) -c print *, 'MINIM_JLEE: ',me,' received: ',n - -crc if (ierr.ne.0) go to 100 -c if # = 0, return - if (n.eq.0) then - write (iout,*) 'Finishing minim_jlee - signal',n,' from master' - call flush(iout) - return - endif - - nfun=0 - IF (n.lt.0) THEN - call mpi_recv(var,nvar,mpi_double_precision, - * king,idreal,CG_COMM,muster,ierr) - call mpi_recv(iffr,nres,mpi_integer, - * king,idint,CG_COMM,muster,ierr) - call mpi_recv(var2,nvar,mpi_double_precision, - * king,idreal,CG_COMM,muster,ierr) - ELSE -c receive initial values of variables - call mpi_recv(var,nvar,mpi_double_precision, - * king,idreal,CG_COMM,muster,ierr) -crc if (ierr.ne.0) go to 100 - ENDIF - - if(vdisulf.and.info(2).ne.-1) then - if(info(4).ne.0)then - call mpi_recv(ihpbt,info(4),mpi_integer, - * king,idint,CG_COMM,muster,ierr) - call mpi_recv(jhpbt,info(4),mpi_integer, - * king,idint,CG_COMM,muster,ierr) - endif - endif - - IF (n.lt.0) THEN - n=-n - nhpb=nhpb0 - link_start=1 - link_end=nhpb - call init_int_table - call contact_cp(var,var2,iffr,nfun,n) - ENDIF - - if(vdisulf.and.info(2).ne.-1) then - nss=0 - if(info(4).ne.0)then -cd write(iout,*) 'SS=',info(4),'N=',info(1),'IT=',info(2) - call var_to_geom(nvar,var) - call chainbuild - do i=1,info(4) - if (dist(ihpbt(i),jhpbt(i)).lt.7.0) then - nss=nss+1 - ihpb(nss)=ihpbt(i) - jhpb(nss)=jhpbt(i) -cd write(iout,*) 'SS mv=',info(3), -cd & ihpb(nss)-nres,jhpb(nss)-nres, -cd & dist(ihpb(nss),jhpb(nss)) - dhpb(nss)=dbr - forcon(nss)=fbr - else -cd write(iout,*) 'rm SS mv=',info(3), -cd & ihpbt(i)-nres,jhpbt(i)-nres,dist(ihpbt(i),jhpbt(i)) - endif - enddo - endif - nhpb=nss - link_start=1 - link_end=nhpb - call init_int_table - endif - - if (info(3).eq.14) then - write(iout,*) 'calling local_move',info(7),info(8) - call local_move_init(.false.) - call var_to_geom(nvar,var) - call local_move(info(7),info(8),20d0,50d0) - call geom_to_var(nvar,var) - endif - - - if (info(3).eq.16) then - write(iout,*) 'calling beta_slide',info(7),info(8), - & info(10), info(11), info(12) - call var_to_geom(nvar,var) - call beta_slide(info(7),info(8),info(10),info(11),info(12) - & ,nfun,n) - call geom_to_var(nvar,var) - endif - - - if (info(3).eq.17) then - write(iout,*) 'calling beta_zip',info(7),info(8) - call var_to_geom(nvar,var) - call beta_zip(info(7),info(8),nfun,n) - call geom_to_var(nvar,var) - endif - - -crc overlap test - - if (overlapsc) then - - call var_to_geom(nvar,var) - call chainbuild - call etotal(energia(0)) - nfun=nfun+1 - if (energia(1).eq.1.0d20) then - info(3)=-info(3) - write (iout,'(a,1pe14.5)')'#OVERLAP evdw=1d20',energia(1) - call overlap_sc(fail) - if(.not.fail) then - call geom_to_var(nvar,var) - call etotal(energia(0)) - nfun=nfun+1 - write (iout,'(a,1pe14.5)')'#OVERLAP evdw after',energia(1) - else - v(10)=1.0d20 - iv(1)=-1 - goto 201 - endif - endif - endif - - if (searchsc) then - call var_to_geom(nvar,var) - call sc_move(2,nres-1,1,10d0,nft_sc,etot) - call geom_to_var(nvar,var) -cd write(iout,*) 'sc_move',nft_sc,etot - endif - - if (check_var(var,info)) then - v(10)=1.0d21 - iv(1)=6 - goto 201 - endif - - -crc - -! write (iout,*) 'MINIM_JLEE: Processor',me,' nvar',nvar -! write (iout,'(8f10.4)') (var(i),i=1,nvar) -! write (*,*) 'MINIM_JLEE: Processor',me,' received nvar',nvar -! write (*,'(8f10.4)') (var(i),i=1,nvar) - - do i=1,nvar - garbage(i)=var(i) - enddo - - call deflt(2,iv,liv,lv,v) -* 12 means fresh start, dont call deflt - iv(1)=12 -* max num of fun calls - if (maxfun.eq.0) maxfun=500 - iv(17)=maxfun -* max num of iterations - if (maxmin.eq.0) maxmin=1000 - iv(18)=maxmin -* controls output - iv(19)=2 -* selects output unit -cd iv(21)=iout - iv(21)=0 -* 1 means to print out result - iv(22)=0 -cd iv(22)=1 -* 1 means to print out summary stats - iv(23)=0 -* 1 means to print initial x and d - iv(24)=0 - -c if(me.eq.3.and.n.eq.255) then -c print *,' CHUJ: stoi' -c iv(21)=6 -c iv(22)=1 -c iv(23)=1 -c iv(24)=1 -c endif - -* min val for v(radfac) default is 0.1 - v(24)=0.1D0 -* max val for v(radfac) default is 4.0 - v(25)=2.0D0 -c v(25)=4.0D0 -* check false conv if (act fnctn decrease) .lt. v(26)*(exp decrease) -* the sumsl default is 0.1 - v(26)=0.1D0 -* false conv if (act fnctn decrease) .lt. v(34) -* the sumsl default is 100*machep - v(34)=v(34)/100.0D0 -* absolute convergence - if (tolf.eq.0.0D0) tolf=1.0D-4 - v(31)=tolf -* relative convergence - if (rtolf.eq.0.0D0) rtolf=1.0D-4 - v(32)=rtolf -* controls initial step size - v(35)=1.0D-1 -* large vals of d correspond to small components of step - do i=1,nphi - d(i)=1.0D-1 - enddo - do i=nphi+1,nvar - d(i)=1.0D-1 - enddo -c minimize energy -! write (iout,*) 'Processor',me,' nvar',nvar -! write (iout,*) 'Variables BEFORE minimization:' -! write (iout,'(8f10.4)') (rad2deg*var(i),i=1,nvar) - -c print *, 'MINIM_JLEE: ',me,' before SUMSL ' - - call func(nvar,var,nf,eee,idum,rdum,fdum) - nfun=nfun+1 - if(eee.ge.1.0d20) then -c print *,'MINIM_JLEE: ',me,' CHUJ NASTAPIL' -c print *,' energy before SUMSL =',eee -c print *,' aborting local minimization' - iv(1)=-1 - v(10)=eee - go to 201 - endif - -ct time0s=MPI_WTIME() - call sumsl(nvar,d,var,func,gradient,iv,liv,lv,v,idum,rdum,fdum) -ct write(iout,*) 'sumsl time=',MPI_WTIME()-time0s,iv(7),v(10) -c print *, 'MINIM_JLEE: ',me,' after SUMSL ' - -c find which conformation was returned from sumsl - nfun=nfun+iv(7) -! print *,'Processor',me,' iv(17)',iv(17),' iv(18)',iv(18),' nf',nf, -! & ' retcode',iv(1),' energy',v(10),' tolf',v(31),' rtolf',v(32) -c if (iv(1).ne.4 .or. nf.le.1) then -c write (*,*) 'Processor',me,' something bad in SUMSL',iv(1),nf -c write (*,*) 'Initial Variables' -c write (*,'(8f10.4)') (rad2deg*garbage(i),i=1,nvar) -c write (*,*) 'Variables' -c write (*,'(8f10.4)') (rad2deg*var(i),i=1,nvar) -c write (*,*) 'Vector d' -c write (*,'(8f10.4)') (d(i),i=1,nvar) -c write (iout,*) 'Processor',me,' something bad in SUMSL', -c & iv(1),nf -c write (iout,*) 'Initial Variables' -c write (iout,'(8f10.4)') (rad2deg*garbage(i),i=1,nvar) -c write (iout,*) 'Variables' -c write (iout,'(8f10.4)') (rad2deg*var(i),i=1,nvar) -c write (iout,*) 'Vector d' -c write (iout,'(8f10.4)') (d(i),i=1,nvar) -c endif -c if (nf.lt.iv(6)-1) then -c recalculate intra- and interchain energies -c call func(nvar,var,nf,v(10),iv,v,fdum) -c else if (nf.eq.iv(6)-1) then -c regenerate conformation -c call var_to_geom(nvar,var) -c call chainbuild -c endif -c change origin and axes to standard ECEPP format -c call var_to_geom(nvar,var) -! write (iout,*) 'MINIM_JLEE after minim: Processor',me,' nvar',nvar -! write (iout,'(8f10.4)') (var(i),i=1,nvar) -! write (iout,*) 'Energy:',v(10) -c send back output -c print *, 'MINIM_JLEE: ',me,' minimized: ',n - 201 continue - indx(1)=n -c return code: 6-gradient 9-number of ftn evaluation, etc - indx(2)=iv(1) -c total # of ftn evaluations (for iwf=0, it includes all minimizations). - indx(3)=nfun - indx(4)=info(2) - indx(5)=info(3) - indx(6)=nss - indx(7)=info(5) - indx(8)=info(6) - indx(9)=info(9) - call mpi_send(indx,9,mpi_integer,king,idint,CG_COMM, - * ierr) -c send back energies -c al & cc -c calculate contact order -#ifdef CO_BIAS - call contact(.false.,ncont,icont,co) - erg(1)=v(10)-1.0d2*co -#else - erg(1)=v(10) -#endif - j=1 - call mpi_send(erg,j,mpi_double_precision,king,idreal, - * CG_COMM,ierr) -#ifdef CO_BIAS - call mpi_send(co,j,mpi_double_precision,king,idreal, - * CG_COMM,ierr) -#endif -c send back values of variables - call mpi_send(var,nvar,mpi_double_precision, - * king,idreal,CG_COMM,ierr) -! print * , 'MINIM_JLEE: Processor',me,' send erg and var ' - - if(vdisulf.and.info(2).ne.-1.and.nss.ne.0) then -cd call intout -cd call chainbuild -cd call etotal(energia(0)) -cd etot=energia(0) -cd call enerprint(energia(0)) - call mpi_send(ihpb,nss,mpi_integer, - * king,idint,CG_COMM,ierr) - call mpi_send(jhpb,nss,mpi_integer, - * king,idint,CG_COMM,ierr) - endif - - go to 10 - 100 print *, ' error in receiving message from emperor', me - call mpi_abort(mpi_comm_world,ierror,ierrcode) - return - 200 print *, ' error in sending message to emperor' - call mpi_abort(mpi_comm_world,ierror,ierrcode) - return - 300 print *, ' error in communicating with emperor' - call mpi_abort(mpi_comm_world,ierror,ierrcode) - return - 956 format (' initial energy could not be calculated',41x) - 957 format (80x) - 965 format (' convergence code ',i2,' # of function calls ', - * i4,' # of gradient calls ',i4,10x) - 975 format (' energy ',1p,e12.4,' scaled gradient ',e11.3,32x) - end -#else - subroutine minim_jlee -c controls minimization and sorting routines - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - write (iout,*) "Unsupported option for serial version" - return - end -#endif - - logical function check_var(var,info) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.GEO' - include 'COMMON.SETUP' - dimension var(maxvar) - dimension info(3) -C AL ------- - check_var=.false. - do i=nphi+ntheta+1,nphi+ntheta+nside -! Check the side chain "valence" angles alpha - if (var(i).lt.1.0d-7) then - write (iout,*) 'CHUJ NASTAPIL ABSOLUTNY!!!!!!!!!!!!' - write (iout,*) 'Processor',me,'received bad variables!!!!' - write (iout,*) 'Variables' - write (iout,'(8f10.4)') (rad2deg*var(j),j=1,nvar) - write (iout,*) 'Continuing calculations at this point', - & ' could destroy the results obtained so far... ABORTING!!!!!!' - write (iout,'(a19,i5,f10.4,a4,2i4,a3,i3)') - & 'valence angle alpha',i-nphi-ntheta,var(i), - & 'n it',info(1),info(2),'mv ',info(3) - write (*,*) 'CHUJ NASTAPIL ABSOLUTNY!!!!!!!!!!!!' - write (*,*) 'Processor',me,'received bad variables!!!!' - write (*,*) 'Variables' - write (*,'(8f10.4)') (rad2deg*var(j),j=1,nvar) - write (*,*) 'Continuing calculations at this point', - & ' could destroy the results obtained so far... ABORTING!!!!!!' - write (*,'(a19,i5,f10.4,a4,2i4,a3,i3)') - & 'valence angle alpha',i-nphi-ntheta,var(i), - & 'n it',info(1),info(2),'mv ',info(3) - check_var=.true. - return - endif - enddo -! Check the backbone "valence" angles theta - do i=nphi+1,nphi+ntheta - if (var(i).lt.1.0d-7) then - write (iout,*) 'CHUJ NASTAPIL ABSOLUTNY!!!!!!!!!!!!' - write (iout,*) 'Processor',me,'received bad variables!!!!' - write (iout,*) 'Variables' - write (iout,'(8f10.4)') (rad2deg*var(j),j=1,nvar) - write (iout,*) 'Continuing calculations at this point', - & ' could destroy the results obtained so far... ABORTING!!!!!!' - write (iout,'(a19,i5,f10.4,a4,2i4,a3,i3)') - & 'valence angle theta',i-nphi,var(i), - & 'n it',info(1),info(2),'mv ',info(3) - write (*,*) 'CHUJ NASTAPIL ABSOLUTNY!!!!!!!!!!!!' - write (*,*) 'Processor',me,'received bad variables!!!!' - write (*,*) 'Variables' - write (*,'(8f10.4)') (rad2deg*var(j),j=1,nvar) - write (*,*) 'Continuing calculations at this point', - & ' could destroy the results obtained so far... ABORTING!!!!!!' - write (*,'(a19,i5,f10.4,a4,2i4,a3,i3)') - & 'valence angle theta',i-nphi,var(i), - & 'n it',info(1),info(2),'mv ',info(3) - check_var=.true. - return - endif - enddo - return - end diff --git a/source/unres/src_CSA_DiL/minim_mult.F b/source/unres/src_CSA_DiL/minim_mult.F deleted file mode 100644 index 0af0b3b..0000000 --- a/source/unres/src_CSA_DiL/minim_mult.F +++ /dev/null @@ -1,131 +0,0 @@ -#ifdef MPI - subroutine minim_mcmf - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - parameter (liv=60,lv=(77+maxvar*(maxvar+17)/2)) - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.MINIM' - include 'mpif.h' - external func,gradient,fdum - real ran1,ran2,ran3 - include 'COMMON.SETUP' - include 'COMMON.GEO' - include 'COMMON.CHAIN' - include 'COMMON.FFIELD' - dimension muster(mpi_status_size) - dimension var(maxvar),erg(mxch*(mxch+1)/2+1) - double precision d(maxvar),v(1:lv+1),garbage(maxvar) - dimension indx(6) - dimension iv(liv) - dimension idum(1),rdum(1) - double precision przes(3),obrot(3,3) - logical non_conv - data rad /1.745329252d-2/ - common /przechowalnia/ v - - ichuj=0 - 10 continue - ichuj = ichuj + 1 - call mpi_recv(indx,6,mpi_integer,king,idint,CG_COMM, - * muster,ierr) - if (indx(1).eq.0) return -c print *, 'worker ',me,' received order ',indx(2) - call mpi_recv(var,nvar,mpi_double_precision, - * king,idreal,CG_COMM,muster,ierr) - call mpi_recv(ene0,1,mpi_double_precision, - * king,idreal,CG_COMM,muster,ierr) -c print *, 'worker ',me,' var read ' - - - call deflt(2,iv,liv,lv,v) -* 12 means fresh start, dont call deflt - iv(1)=12 -* max num of fun calls - if (maxfun.eq.0) maxfun=500 - iv(17)=maxfun -* max num of iterations - if (maxmin.eq.0) maxmin=1000 - iv(18)=maxmin -* controls output - iv(19)=2 -* selects output unit -c iv(21)=iout - iv(21)=0 -* 1 means to print out result - iv(22)=0 -* 1 means to print out summary stats - iv(23)=0 -* 1 means to print initial x and d - iv(24)=0 -* min val for v(radfac) default is 0.1 - v(24)=0.1D0 -* max val for v(radfac) default is 4.0 - v(25)=2.0D0 -* check false conv if (act fnctn decrease) .lt. v(26)*(exp decrease) -* the sumsl default is 0.1 - v(26)=0.1D0 -* false conv if (act fnctn decrease) .lt. v(34) -* the sumsl default is 100*machep - v(34)=v(34)/100.0D0 -* absolute convergence - if (tolf.eq.0.0D0) tolf=1.0D-4 - v(31)=tolf -* relative convergence - if (rtolf.eq.0.0D0) rtolf=1.0D-4 - v(32)=rtolf -* controls initial step size - v(35)=1.0D-1 -* large vals of d correspond to small components of step - do i=1,nphi - d(i)=1.0D-1 - enddo - do i=nphi+1,nvar - d(i)=1.0D-1 - enddo -c minimize energy - - call func(nvar,var,nf,eee,idum,rdum,fdum) - if(eee.gt.1.0d18) then -c print *,'MINIM_JLEE: ',me,' CHUJ NASTAPIL' -c print *,' energy before SUMSL =',eee -c print *,' aborting local minimization' - iv(1)=-1 - v(10)=eee - nf=1 - go to 201 - endif - - call sumsl(nvar,d,var,func,gradient,iv,liv,lv,v,idum,rdum,fdum) -c find which conformation was returned from sumsl - nf=iv(7)+1 - 201 continue -c total # of ftn evaluations (for iwf=0, it includes all minimizations). - indx(4)=nf - indx(5)=iv(1) - eee=v(10) - - call mpi_send(indx,6,mpi_integer,king,idint,CG_COMM, - * ierr) -c print '(a5,i3,15f10.5)', 'ENEX0',indx(1),v(10) -c print *,indx(2),indx(5) - call mpi_send(var,nvar,mpi_double_precision, - * king,idreal,CG_COMM,ierr) - call mpi_send(eee,1,mpi_double_precision,king,idreal, - * CG_COMM,ierr) - call mpi_send(ene0,1,mpi_double_precision,king,idreal, - * CG_COMM,ierr) - go to 10 - - return - end -#else - subroutine minim_mcmf - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - write (iout,*) "Unsupported option for serial version" - return - end -#endif - diff --git a/source/unres/src_CSA_DiL/minimize_p.F b/source/unres/src_CSA_DiL/minimize_p.F deleted file mode 100644 index 876db34..0000000 --- a/source/unres/src_CSA_DiL/minimize_p.F +++ /dev/null @@ -1,641 +0,0 @@ - subroutine minimize(etot,x,iretcode,nfun) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - parameter (liv=60,lv=(77+maxvar*(maxvar+17)/2)) -********************************************************************* -* OPTIMIZE sets up SUMSL or DFP and provides a simple interface for * -* the calling subprogram. * -* when d(i)=1.0, then v(35) is the length of the initial step, * -* calculated in the usual pythagorean way. * -* absolute convergence occurs when the function is within v(31) of * -* zero. unless you know the minimum value in advance, abs convg * -* is probably not useful. * -* relative convergence is when the model predicts that the function * -* will decrease by less than v(32)*abs(fun). * -********************************************************************* - include 'COMMON.IOUNITS' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.MINIM' - common /srutu/ icall - dimension iv(liv) - double precision minval,x(maxvar),d(maxvar),v(1:lv),xx(maxvar) - double precision energia(0:n_ene) - external func,gradient,fdum - external func_restr,grad_restr - logical not_done,change,reduce -c common /przechowalnia/ v - - icall = 1 - - NOT_DONE=.TRUE. - -c DO WHILE (NOT_DONE) - - call deflt(2,iv,liv,lv,v) -* 12 means fresh start, dont call deflt - iv(1)=12 -* max num of fun calls - if (maxfun.eq.0) maxfun=500 - iv(17)=maxfun -* max num of iterations - if (maxmin.eq.0) maxmin=1000 - iv(18)=maxmin -* controls output - iv(19)=2 -* selects output unit - iv(21)=0 - if (print_min_ini+print_min_stat+print_min_res.gt.0) iv(21)=iout -* 1 means to print out result - iv(22)=print_min_res -* 1 means to print out summary stats - iv(23)=print_min_stat -* 1 means to print initial x and d - iv(24)=print_min_ini -* min val for v(radfac) default is 0.1 - v(24)=0.1D0 -* max val for v(radfac) default is 4.0 - v(25)=2.0D0 -c v(25)=4.0D0 -* check false conv if (act fnctn decrease) .lt. v(26)*(exp decrease) -* the sumsl default is 0.1 - v(26)=0.1D0 -* false conv if (act fnctn decrease) .lt. v(34) -* the sumsl default is 100*machep - v(34)=v(34)/100.0D0 -* absolute convergence - if (tolf.eq.0.0D0) tolf=1.0D-4 - v(31)=tolf -* relative convergence - if (rtolf.eq.0.0D0) rtolf=1.0D-4 - v(32)=rtolf -* controls initial step size - v(35)=1.0D-1 -* large vals of d correspond to small components of step - do i=1,nphi - d(i)=1.0D-1 - enddo - do i=nphi+1,nvar - d(i)=1.0D-1 - enddo -cd print *,'Calling SUMSL' -c call var_to_geom(nvar,x) -c call chainbuild -c call etotal(energia(0)) -c etot = energia(0) - IF (mask_r) THEN - call x2xx(x,xx,nvar_restr) - call sumsl(nvar_restr,d,xx,func_restr,grad_restr, - & iv,liv,lv,v,idum,rdum,fdum) - call xx2x(x,xx) - ELSE - call sumsl(nvar,d,x,func,gradient,iv,liv,lv,v,idum,rdum,fdum) - ENDIF - etot=v(10) - iretcode=iv(1) -cd print *,'Exit SUMSL; return code:',iretcode,' energy:',etot -cd write (iout,'(/a,i4/)') 'SUMSL return code:',iv(1) -c call intout -c change=reduce(x) - call var_to_geom(nvar,x) -c if (change) then -c write (iout,'(a)') 'Reduction worked, minimizing again...' -c else -c not_done=.false. -c endif - call chainbuild -c call etotal(energia(0)) -c etot=energia(0) -c call enerprint(energia(0)) - nfun=iv(6) - -c write (*,*) 'Processor',MyID,' leaves MINIMIZE.' - -c ENDDO ! NOT_DONE - - return - end -#ifdef MPI -c---------------------------------------------------------------------------- - subroutine ergastulum - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include "mpif.h" -#endif - include 'COMMON.SETUP' - include 'COMMON.DERIV' - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.FFIELD' - include 'COMMON.INTERACT' - include 'COMMON.MD_' - include 'COMMON.TIME1' - double precision z(maxres6),d_a_tmp(maxres6) - double precision edum(0:n_ene),time_order(0:10) - double precision Gcopy(maxres2,maxres2) - common /przechowalnia/ Gcopy - integer icall /0/ -C Workers wait for variables and NF, and NFL from the boss - iorder=0 - do while (iorder.ge.0) -c write (*,*) 'Processor',fg_rank,' CG group',kolor, -c & ' receives order from Master' - time00=MPI_Wtime() - call MPI_Bcast(iorder,1,MPI_INTEGER,king,FG_COMM,IERR) - time_Bcast=time_Bcast+MPI_Wtime()-time00 - if (icall.gt.4 .and. iorder.ge.0) - & time_order(iorder)=time_order(iorder)+MPI_Wtime()-time00 - icall=icall+1 -c write (*,*) -c & 'Processor',fg_rank,' completed receive MPI_BCAST order',iorder - if (iorder.eq.0) then - call zerograd - call etotal(edum) -c write (2,*) "After etotal" -c write (2,*) "dimen",dimen," dimen3",dimen3 -c call flush(2) - else if (iorder.eq.2) then - call zerograd -cmd call etotal_short(edum) -c write (2,*) "After etotal_short" -c write (2,*) "dimen",dimen," dimen3",dimen3 -c call flush(2) - else if (iorder.eq.3) then - call zerograd -cmd call etotal_long(edum) -c write (2,*) "After etotal_long" -c write (2,*) "dimen",dimen," dimen3",dimen3 -c call flush(2) - else if (iorder.eq.1) then - call sum_gradient -c write (2,*) "After sum_gradient" -c write (2,*) "dimen",dimen," dimen3",dimen3 -c call flush(2) - else if (iorder.eq.4) then -cmd call ginv_mult(z,d_a_tmp) - else if (iorder.eq.5) then -c Setup MD things for a slave - dimen=(nct-nnt+1)+nside - dimen1=(nct-nnt)+(nct-nnt+1) - dimen3=dimen*3 -c write (2,*) "dimen",dimen," dimen3",dimen3 -c call flush(2) - call int_bounds(dimen,igmult_start,igmult_end) - igmult_start=igmult_start-1 - call MPI_Allgather(3*igmult_start,1,MPI_INTEGER, - & ng_start(0),1,MPI_INTEGER,FG_COMM,IERROR) - my_ng_count=igmult_end-igmult_start - call MPI_Allgather(3*my_ng_count,1,MPI_INTEGER,ng_counts(0),1, - & MPI_INTEGER,FG_COMM,IERROR) -c write (2,*) "ng_start",(ng_start(i),i=0,nfgtasks-1) -c write (2,*) "ng_counts",(ng_counts(i),i=0,nfgtasks-1) - myginv_ng_count=maxres2*my_ng_count -c write (2,*) "igmult_start",igmult_start," igmult_end", -c & igmult_end," my_ng_count",my_ng_count -c call flush(2) - call MPI_Allgather(maxres2*igmult_start,1,MPI_INTEGER, - & nginv_start(0),1,MPI_INTEGER,FG_COMM,IERROR) - call MPI_Allgather(myginv_ng_count,1,MPI_INTEGER, - & nginv_counts(0),1,MPI_INTEGER,FG_COMM,IERROR) -c write (2,*) "nginv_start",(nginv_start(i),i=0,nfgtasks-1) -c write (2,*) "nginv_counts",(nginv_counts(i),i=0,nfgtasks-1) -c call flush(2) -c call MPI_Barrier(FG_COMM,IERROR) - time00=MPI_Wtime() - call MPI_Scatterv(ginv(1,1),nginv_counts(0), - & nginv_start(0),MPI_DOUBLE_PRECISION,gcopy(1,1), - & myginv_ng_count,MPI_DOUBLE_PRECISION,king,FG_COMM,IERR) -#ifdef TIMING - time_scatter_ginv=time_scatter_ginv+MPI_Wtime()-time00 -#endif - do i=1,dimen - do j=1,2*my_ng_count - ginv(j,i)=gcopy(i,j) - enddo - enddo -c write (2,*) "dimen",dimen," dimen3",dimen3 -c write (2,*) "End MD setup" -c call flush(2) -c write (iout,*) "My chunk of ginv_block" -c call MATOUT2(my_ng_count,dimen3,maxres2,maxers2,ginv_block) - else if (iorder.eq.6) then - call int_from_cart1(.false.) - else if (iorder.eq.7) then - call chainbuild_cart - else if (iorder.eq.8) then - call intcartderiv - else if (iorder.eq.9) then -cmd call fricmat_mult(z,d_a_tmp) - else if (iorder.eq.10) then -cmd call setup_fricmat - endif - enddo - write (*,*) 'Processor',fg_rank,' CG group',kolor, - & ' absolute rank',myrank,' leves ERGASTULUM.' - write(*,*)'Processor',fg_rank,' wait times for respective orders', - & (' order[',i,']',time_order(i),i=0,10) - return - end -#endif -************************************************************************ - subroutine func(n,x,nf,f,uiparm,urparm,ufparm) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.DERIV' - include 'COMMON.IOUNITS' - include 'COMMON.GEO' - common /chuju/ jjj - double precision energia(0:n_ene) - integer jjj - double precision ufparm - external ufparm - integer uiparm(1) - real*8 urparm(1) - dimension x(maxvar) -c if (jjj.gt.0) then -c write (iout,'(10f8.3)') (rad2deg*x(i),i=1,n) -c endif - nfl=nf - icg=mod(nf,2)+1 -cd print *,'func',nf,nfl,icg - call var_to_geom(n,x) - call zerograd - call chainbuild -cd write (iout,*) 'ETOTAL called from FUNC' - call etotal(energia(0)) - call sum_gradient - f=energia(0) -c if (jjj.gt.0) then -c write (iout,'(10f8.3)') (rad2deg*x(i),i=1,n) -c write (iout,*) 'f=',etot -c jjj=0 -c endif - return - end -************************************************************************ - subroutine func_restr(n,x,nf,f,uiparm,urparm,ufparm) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.DERIV' - include 'COMMON.IOUNITS' - include 'COMMON.GEO' - common /chuju/ jjj - double precision energia(0:n_ene) - integer jjj - double precision ufparm - external ufparm - integer uiparm(1) - real*8 urparm(1) - dimension x(maxvar) -c if (jjj.gt.0) then -c write (iout,'(10f8.3)') (rad2deg*x(i),i=1,n) -c endif - nfl=nf - icg=mod(nf,2)+1 - call var_to_geom_restr(n,x) - call zerograd - call chainbuild -cd write (iout,*) 'ETOTAL called from FUNC' - call etotal(energia(0)) - call sum_gradient - f=energia(0) -c if (jjj.gt.0) then -c write (iout,'(10f8.3)') (rad2deg*x(i),i=1,n) -c write (iout,*) 'f=',etot -c jjj=0 -c endif - return - end -c------------------------------------------------------- - subroutine x2xx(x,xx,n) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - double precision xx(maxvar),x(maxvar) - - do i=1,nvar - varall(i)=x(i) - enddo - - ig=0 - igall=0 - do i=4,nres - igall=igall+1 - if (mask_phi(i).eq.1) then - ig=ig+1 - xx(ig)=x(igall) - endif - enddo - - do i=3,nres - igall=igall+1 - if (mask_theta(i).eq.1) then - ig=ig+1 - xx(ig)=x(igall) - endif - enddo - - do ij=1,2 - do i=2,nres-1 - if (itype(i).ne.10) then - igall=igall+1 - if (mask_side(i).eq.1) then - ig=ig+1 - xx(ig)=x(igall) - endif - endif - enddo - enddo - - n=ig - - return - end - - subroutine xx2x(x,xx) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - double precision xx(maxvar),x(maxvar) - - do i=1,nvar - x(i)=varall(i) - enddo - - ig=0 - igall=0 - do i=4,nres - igall=igall+1 - if (mask_phi(i).eq.1) then - ig=ig+1 - x(igall)=xx(ig) - endif - enddo - - do i=3,nres - igall=igall+1 - if (mask_theta(i).eq.1) then - ig=ig+1 - x(igall)=xx(ig) - endif - enddo - - do ij=1,2 - do i=2,nres-1 - if (itype(i).ne.10) then - igall=igall+1 - if (mask_side(i).eq.1) then - ig=ig+1 - x(igall)=xx(ig) - endif - endif - enddo - enddo - - return - end - -c---------------------------------------------------------- - subroutine minim_dc(etot,iretcode,nfun) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - parameter (liv=60,lv=(77+maxvar*(maxvar+17)/2)) -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.SETUP' - include 'COMMON.IOUNITS' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.MINIM' - include 'COMMON.CHAIN' - dimension iv(liv) - double precision minval,x(maxvar),d(maxvar),v(1:lv),xx(maxvar) -c common /przechowalnia/ v - - double precision energia(0:n_ene) - external func_dc,grad_dc,fdum - logical not_done,change,reduce - double precision g(maxvar),f1 - - call deflt(2,iv,liv,lv,v) -* 12 means fresh start, dont call deflt - iv(1)=12 -* max num of fun calls - if (maxfun.eq.0) maxfun=500 - iv(17)=maxfun -* max num of iterations - if (maxmin.eq.0) maxmin=1000 - iv(18)=maxmin -* controls output - iv(19)=2 -* selects output unit - iv(21)=0 - if (print_min_ini+print_min_stat+print_min_res.gt.0) iv(21)=iout -* 1 means to print out result - iv(22)=print_min_res -* 1 means to print out summary stats - iv(23)=print_min_stat -* 1 means to print initial x and d - iv(24)=print_min_ini -* min val for v(radfac) default is 0.1 - v(24)=0.1D0 -* max val for v(radfac) default is 4.0 - v(25)=2.0D0 -c v(25)=4.0D0 -* check false conv if (act fnctn decrease) .lt. v(26)*(exp decrease) -* the sumsl default is 0.1 - v(26)=0.1D0 -* false conv if (act fnctn decrease) .lt. v(34) -* the sumsl default is 100*machep - v(34)=v(34)/100.0D0 -* absolute convergence - if (tolf.eq.0.0D0) tolf=1.0D-4 - v(31)=tolf -* relative convergence - if (rtolf.eq.0.0D0) rtolf=1.0D-4 - v(32)=rtolf -* controls initial step size - v(35)=1.0D-1 -* large vals of d correspond to small components of step - do i=1,6*nres - d(i)=1.0D-1 - enddo - - k=0 - do i=1,nres-1 - do j=1,3 - k=k+1 - x(k)=dc(j,i) - enddo - enddo - do i=2,nres-1 - if (ialph(i,1).gt.0) then - do j=1,3 - k=k+1 - x(k)=dc(j,i+nres) - enddo - endif - enddo - - call sumsl(k,d,x,func_dc,grad_dc,iv,liv,lv,v,idum,rdum,fdum) - - k=0 - do i=1,nres-1 - do j=1,3 - k=k+1 - dc(j,i)=x(k) - enddo - enddo - do i=2,nres-1 - if (ialph(i,1).gt.0) then - do j=1,3 - k=k+1 - dc(j,i+nres)=x(k) - enddo - endif - enddo - call chainbuild_cart - -cd call zerograd -cd nf=0 -cd call func_dc(k,x,nf,f,idum,rdum,fdum) -cd call grad_dc(k,x,nf,g,idum,rdum,fdum) -cd -cd do i=1,k -cd x(i)=x(i)+1.0D-5 -cd call func_dc(k,x,nf,f1,idum,rdum,fdum) -cd x(i)=x(i)-1.0D-5 -cd print '(i5,2f15.5)',i,g(i),(f1-f)/1.0D-5 -cd enddo - - etot=v(10) - iretcode=iv(1) - nfun=iv(6) - return - end - - subroutine func_dc(n,x,nf,f,uiparm,urparm,ufparm) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.SETUP' - include 'COMMON.DERIV' - include 'COMMON.IOUNITS' - include 'COMMON.GEO' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - double precision energia(0:n_ene) - double precision ufparm - external ufparm - integer uiparm(1) - real*8 urparm(1) - dimension x(maxvar) - nfl=nf -cbad icg=mod(nf,2)+1 - icg=1 - - k=0 - do i=1,nres-1 - do j=1,3 - k=k+1 - dc(j,i)=x(k) - enddo - enddo - do i=2,nres-1 - if (ialph(i,1).gt.0) then - do j=1,3 - k=k+1 - dc(j,i+nres)=x(k) - enddo - endif - enddo - call chainbuild_cart - - call zerograd - call etotal(energia(0)) - f=energia(0) - -cd print *,'func_dc ',nf,nfl,f - - return - end - - subroutine grad_dc(n,x,nf,g,uiparm,urparm,ufparm) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.SETUP' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.FFIELD' - include 'COMMON.MD_' - include 'COMMON.IOUNITS' - external ufparm - integer uiparm(1),k - double precision urparm(1) - dimension x(maxvar),g(maxvar) -c -c -c -cbad icg=mod(nf,2)+1 - icg=1 -cd print *,'grad_dc ',nf,nfl,nf-nfl+1,icg - if (nf-nfl+1) 20,30,40 - 20 call func_dc(n,x,nf,f,uiparm,urparm,ufparm) -cd print *,20 - if (nf.eq.0) return - goto 40 - 30 continue -cd print *,30 - k=0 - do i=1,nres-1 - do j=1,3 - k=k+1 - dc(j,i)=x(k) - enddo - enddo - do i=2,nres-1 - if (ialph(i,1).gt.0) then - do j=1,3 - k=k+1 - dc(j,i+nres)=x(k) - enddo - endif - enddo - call chainbuild_cart - -C -C Evaluate the derivatives of virtual bond lengths and SC vectors in variables. -C - 40 call cartgrad -cd print *,40 - k=0 - do i=1,nres-1 - do j=1,3 - k=k+1 - g(k)=gcart(j,i) - enddo - enddo - do i=2,nres-1 - if (ialph(i,1).gt.0) then - do j=1,3 - k=k+1 - g(k)=gxcart(j,i) - enddo - endif - enddo - - return - end diff --git a/source/unres/src_CSA_DiL/misc.f b/source/unres/src_CSA_DiL/misc.f deleted file mode 100644 index e189839..0000000 --- a/source/unres/src_CSA_DiL/misc.f +++ /dev/null @@ -1,203 +0,0 @@ -C $Date: 1994/10/12 17:24:21 $ -C $Revision: 2.5 $ -C -C -C - logical function find_arg(ipos,line,errflag) - parameter (maxlen=80) - character*80 line - character*1 empty /' '/,equal /'='/ - logical errflag -* This function returns .TRUE., if an argument follows keyword keywd; if so -* IPOS will point to the first non-blank character of the argument. Returns -* .FALSE., if no argument follows the keyword; in this case IPOS points -* to the first non-blank character of the next keyword. - do while (line(ipos:ipos) .eq. empty .and. ipos.le.maxlen) - ipos=ipos+1 - enddo - errflag=.false. - if (line(ipos:ipos).eq.equal) then - find_arg=.true. - ipos=ipos+1 - do while (line(ipos:ipos) .eq. empty .and. ipos.le.maxlen) - ipos=ipos+1 - enddo - if (ipos.gt.maxlen) errflag=.true. - else - find_arg=.false. - endif - return - end - logical function find_group(iunit,jout,key1) - character*(*) key1 - character*80 karta,ucase - integer ilen - external ilen - logical lcom - rewind (iunit) - karta=' ' - ll=ilen(key1) - do while (index(ucase(karta),key1(1:ll)).eq.0.or.lcom(1,karta)) - read (iunit,'(a)',end=10) karta - enddo - write (jout,'(2a)') '> ',karta(1:78) - find_group=.true. - return - 10 find_group=.false. - return - end - logical function iblnk(charc) - character*1 charc - integer n - n = ichar(charc) - iblnk = (n.eq.9) .or. (n.eq.10) .or. (charc.eq. ' ') - return - end - integer function ilen(string) - character*(*) string - logical iblnk - - ilen = len(string) -1 if ( ilen .gt. 0 ) then - if ( iblnk( string(ilen:ilen) ) ) then - ilen = ilen - 1 - goto 1 - endif - endif - return - end - integer function in_keywd_set(nkey,ikey,narg,keywd,keywdset) - character*16 keywd,keywdset(1:nkey,0:nkey) - character*16 ucase - do i=1,narg - if (ucase(keywd).eq.keywdset(i,ikey)) then -* Match found - in_keywd_set=i - return - endif - enddo -* No match to the allowed set of keywords if this point is reached. - in_keywd_set=0 - return - end - character*(*) function lcase(string) - integer i, k, idiff - character*(*) string - character*1 c - character*40 chtmp -c - i = len(lcase) - k = len(string) - if (i .lt. k) then - k = i - if (string(k+1:) .ne. ' ') then - chtmp = string - endif - endif - idiff = ichar('a') - ichar('A') - lcase = string - do 99 i = 1, k - c = string(i:i) - if (lge(c,'A') .and. lle(c,'Z')) then - lcase(i:i) = char(ichar(c) + idiff) - endif - 99 continue - return - end - logical function lcom(ipos,karta) - character*80 karta - character koment(2) /'!','#'/ - lcom=.false. - do i=1,2 - if (karta(ipos:ipos).eq.koment(i)) lcom=.true. - enddo - return - end - logical function lower_case(ch) - character*(*) ch - lower_case=(ch.ge.'a' .and. ch.le.'z') - return - end - subroutine mykey(line,keywd,ipos,blankline,errflag) -* This subroutine seeks a non-empty substring keywd in the string LINE. -* The substring begins with the first character different from blank and -* "=" encountered right to the pointer IPOS (inclusively) and terminates -* at the character left to the first blank or "=". When the subroutine is -* exited, the pointer IPOS is moved to the position of the terminator in LINE. -* The logical variable BLANKLINE is set at .TRUE., if LINE(IPOS:) contains -* only separators or the maximum length of the data line (80) has been reached. -* The logical variable ERRFLAG is set at .TRUE. if the string -* consists only from a "=". - parameter (maxlen=80) - character*1 empty /' '/,equal /'='/,comma /','/ - character*(*) keywd - character*80 line - logical blankline,errflag,lcom - errflag=.false. - do while (line(ipos:ipos).eq.empty .and. (ipos.le.maxlen)) - ipos=ipos+1 - enddo - if (ipos.gt.maxlen .or. lcom(ipos,line) ) then -* At this point the rest of the input line turned out to contain only blanks -* or to be commented out. - blankline=.true. - return - endif - blankline=.false. - istart=ipos -* Checks whether the current char is a separator. - do while (line(ipos:ipos).ne.empty .and. line(ipos:ipos).ne.equal - & .and. line(ipos:ipos).ne.comma .and. ipos.le.maxlen) - ipos=ipos+1 - enddo - iend=ipos-1 -* Error flag set to .true., if the length of the keyword was found less than 1. - if (iend.lt.istart) then - errflag=.true. - return - endif - keywd=line(istart:iend) - return - end - subroutine numstr(inum,numm) - character*10 huj /'0123456789'/ - character*(*) numm - inumm=inum - inum1=inumm/10 - inum2=inumm-10*inum1 - inumm=inum1 - numm(3:3)=huj(inum2+1:inum2+1) - inum1=inumm/10 - inum2=inumm-10*inum1 - inumm=inum1 - numm(2:2)=huj(inum2+1:inum2+1) - inum1=inumm/10 - inum2=inumm-10*inum1 - inumm=inum1 - numm(1:1)=huj(inum2+1:inum2+1) - return - end - character*(*) function ucase(string) - integer i, k, idiff - character*(*) string - character*1 c - character*40 chtmp -c - i = len(ucase) - k = len(string) - if (i .lt. k) then - k = i - if (string(k+1:) .ne. ' ') then - chtmp = string - endif - endif - idiff = ichar('a') - ichar('A') - ucase = string - do 99 i = 1, k - c = string(i:i) - if (lge(c,'a') .and. lle(c,'z')) then - ucase(i:i) = char(ichar(c) - idiff) - endif - 99 continue - return - end diff --git a/source/unres/src_CSA_DiL/newconf.F b/source/unres/src_CSA_DiL/newconf.F deleted file mode 100644 index df93149..0000000 --- a/source/unres/src_CSA_DiL/newconf.F +++ /dev/null @@ -1,2456 +0,0 @@ -#ifdef MPI -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine make_var(n,idum,iter_csa) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.HAIRPIN' - include 'COMMON.VAR' - include 'COMMON.DISTFIT' - include 'COMMON.GEO' - include 'COMMON.CONTROL' - logical nicht_getan,nicht_getan1,fail,lfound - integer nharp,iharp(4,maxres/3),nconf_harp - integer iisucc(mxio) - logical ifused(mxio) - integer nhx_seed(max_seed),ihx_seed(4,maxres/3,max_seed) - integer nhx_use(max_seed),ihx_use(0:4,maxres/3,max_seed) - integer nlx_seed(max_seed),ilx_seed(2,maxres/3,max_seed), - & nlx_use(max_seed),ilx_use(maxres/3,max_seed) - real ran1,ran2 - - write (iout,*) 'make_var : nseed=',nseed,'ntry=',n - index=0 - -c----------------------------------------- - if (n7.gt.0.or.n8.gt.0.or.n9.gt.0.or.n14.gt.0.or.n15.gt.0 - & .or.n16.gt.0.or.n17.gt.0.or.n18.gt.0) - & call select_frag(n7frag,n8frag,n14frag, - & n15frag,nbefrag,iter_csa) - -c--------------------------------------------------- -c N18 - random perturbation of one phi(=gamma) angle in a loop -c - IF (n18.gt.0) THEN - nlx_tot=0 - do iters=1,nseed - i1=is(iters) - nlx_seed(iters)=0 - do i2=1,n14frag - if (lvar_frag(i2,1).eq.i1) then - nlx_seed(iters)=nlx_seed(iters)+5 - ilx_seed(1,nlx_seed(iters),iters)=lvar_frag(i2,2) - ilx_seed(2,nlx_seed(iters),iters)=lvar_frag(i2,3) - ilx_use(nlx_seed(iters),iters)=5 - endif - enddo - nlx_use(iters)=nlx_seed(iters) - nlx_tot=nlx_tot+nlx_seed(iters) - enddo - - if (nlx_tot .ge. n18*nseed) then - ntot_gen=n18*nseed - else - ntot_gen=(nlx_tot/nseed)*nseed - endif - - ngen=0 - do while (ngen.lt.ntot_gen) - do iters=1,nseed - iseed=is(iters) - if (nlx_use(iters).gt.0) then - nicht_getan=.true. - do while (nicht_getan) - iih=iran_num(1,nlx_seed(iters)) - if (ilx_use(iih,iters).gt.0) then - nicht_getan=.false. - ilx_use(iih,iters)=ilx_use(iih,iters)-1 - nlx_use(iters)=nlx_use(iters)-1 - endif - enddo - ngen=ngen+1 - index=index+1 - movenx(index)=18 - parent(1,index)=iseed - parent(2,index)=0 - - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - jr=iran_num(ilx_seed(1,iih,iters),ilx_seed(2,iih,iters)) - d=ran_number(-pi,pi) - dihang_in(2,jr-2,1,index)=pinorm(dihang_in(2,jr-2,1,index)+d) - - - if (ngen.eq.ntot_gen) goto 145 - endif - enddo - enddo - 145 continue - - ENDIF - - -c----------------------------------------- -c N17 : zip a beta in a seed by forcing one additional p-p contact -c - IF (n17.gt.0) THEN - nhx_tot=0 - do iters=1,nseed - i1=is(iters) - nhx_seed(iters)=0 - nhx_use(iters)=0 - do i2=1,nbefrag - if (avar_frag(i2,1).eq.i1) then - nhx_seed(iters)=nhx_seed(iters)+1 - ihx_use(2,nhx_seed(iters),iters)=1 - if (avar_frag(i2,5)-avar_frag(i2,3).le.3.and. - & avar_frag(i2,2).gt.1.and.avar_frag(i2,4).lt.nres) then - ihx_seed(1,nhx_seed(iters),iters)=avar_frag(i2,2)-1 - ihx_seed(2,nhx_seed(iters),iters)=avar_frag(i2,4)+1 - ihx_use(0,nhx_seed(iters),iters)=1 - ihx_use(1,nhx_seed(iters),iters)=0 - nhx_use(iters)=nhx_use(iters)+1 - else - if (avar_frag(i2,4).gt.avar_frag(i2,5)) then - if (avar_frag(i2,2).gt.1.and. - & avar_frag(i2,4).lt.nres) then - ihx_seed(1,nhx_seed(iters),iters)=avar_frag(i2,2)-1 - ihx_seed(2,nhx_seed(iters),iters)=avar_frag(i2,4)+1 - ihx_use(0,nhx_seed(iters),iters)=1 - ihx_use(1,nhx_seed(iters),iters)=0 - nhx_use(iters)=nhx_use(iters)+1 - endif - if (avar_frag(i2,3).lt.nres.and. - & avar_frag(i2,5).gt.1) then - ihx_seed(1,nhx_seed(iters),iters)=avar_frag(i2,3)+1 - ihx_seed(2,nhx_seed(iters),iters)=avar_frag(i2,5)-1 - ihx_use(0,nhx_seed(iters),iters)= - & ihx_use(0,nhx_seed(iters),iters)+1 - ihx_use(2,nhx_seed(iters),iters)=0 - nhx_use(iters)=nhx_use(iters)+1 - endif - else - if (avar_frag(i2,2).gt.1.and. - & avar_frag(i2,4).gt.1) then - ihx_seed(1,nhx_seed(iters),iters)=avar_frag(i2,2)-1 - ihx_seed(2,nhx_seed(iters),iters)=avar_frag(i2,4)-1 - ihx_use(0,nhx_seed(iters),iters)=1 - ihx_use(1,nhx_seed(iters),iters)=0 - nhx_use(iters)=nhx_use(iters)+1 - endif - if (avar_frag(i2,3).lt.nres.and. - & avar_frag(i2,5).lt.nres) then - ihx_seed(1,nhx_seed(iters),iters)=avar_frag(i2,3)+1 - ihx_seed(2,nhx_seed(iters),iters)=avar_frag(i2,5)+1 - ihx_use(0,nhx_seed(iters),iters)= - & ihx_use(0,nhx_seed(iters),iters)+1 - ihx_use(2,nhx_seed(iters),iters)=0 - nhx_use(iters)=nhx_use(iters)+1 - endif - endif - endif - endif - enddo - - nhx_tot=nhx_tot+nhx_use(iters) -cd write (iout,*) "debug N17",iters,nhx_seed(iters), -cd & nhx_use(iters),nhx_tot - enddo - - if (nhx_tot .ge. n17*nseed) then - ntot_gen=n17*nseed - else if (nhx_tot .ge. nseed) then - ntot_gen=(nhx_tot/nseed)*nseed - else - ntot_gen=nhx_tot - endif -cd write (iout,*) "debug N17==",ntot_gen,nhx_tot,nseed - - ngen=0 - do while (ngen.lt.ntot_gen) - do iters=1,nseed - iseed=is(iters) - if (nhx_use(iters).gt.0) then -cd write (iout,*) "debug N17",nhx_use(iters),ngen,ntot_gen -cd write (iout,*) "debugN17^", -cd & (ihx_use(0,k,iters),k=1,nhx_use(iters)) - nicht_getan=.true. - do while (nicht_getan) - iih=iran_num(1,nhx_seed(iters)) -cd write (iout,*) "debugN17^",iih - if (ihx_use(0,iih,iters).gt.0) then - iim=iran_num(1,2) -cd write (iout,*) "debugN17=",iih,nhx_seed(iters) -cd write (iout,*) "debugN17-",iim,'##', -cd & (ihx_use(k,iih,iters),k=0,2) -cd call flush(iout) - do while (ihx_use(iim,iih,iters).eq.1) - iim=iran_num(1,2) -cd write (iout,*) "debugN17-",iim,'##', -cd & (ihx_use(k,iih,iters),k=0,2) -cd call flush(iout) - enddo - nicht_getan=.false. - ihx_use(iim,iih,iters)=1 - ihx_use(0,iih,iters)=ihx_use(0,iih,iters)-1 - nhx_use(iters)=nhx_use(iters)-1 - endif - enddo - ngen=ngen+1 - index=index+1 - movenx(index)=17 - parent(1,index)=iseed - parent(2,index)=0 - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - if (iim.eq.1) then - idata(1,index)=ihx_seed(1,iih,iters) - idata(2,index)=ihx_seed(2,iih,iters) - else - idata(1,index)=ihx_seed(3,iih,iters) - idata(2,index)=ihx_seed(4,iih,iters) - endif - - if (ngen.eq.ntot_gen) goto 115 - endif - enddo - enddo - 115 continue - write (iout,*) "N17",n17," ngen/nseed",ngen/nseed, - & ngen,nseed - - - ENDIF -c----------------------------------------- -c N16 : slide non local beta in a seed by +/- 1 or +/- 2 -c - IF (n16.gt.0) THEN - nhx_tot=0 - do iters=1,nseed - i1=is(iters) - nhx_seed(iters)=0 - do i2=1,n7frag - if (bvar_frag(i2,1).eq.i1) then - nhx_seed(iters)=nhx_seed(iters)+1 - ihx_seed(1,nhx_seed(iters),iters)=bvar_frag(i2,3) - ihx_seed(2,nhx_seed(iters),iters)=bvar_frag(i2,4) - ihx_seed(3,nhx_seed(iters),iters)=bvar_frag(i2,5) - ihx_seed(4,nhx_seed(iters),iters)=bvar_frag(i2,6) - ihx_use(0,nhx_seed(iters),iters)=4 - do i3=1,4 - ihx_use(i3,nhx_seed(iters),iters)=0 - enddo - endif - enddo - nhx_use(iters)=4*nhx_seed(iters) - nhx_tot=nhx_tot+nhx_seed(iters) -cd write (iout,*) "debug N16",iters,nhx_seed(iters) - enddo - - if (4*nhx_tot .ge. n16*nseed) then - ntot_gen=n16*nseed - else if (4*nhx_tot .ge. nseed) then - ntot_gen=(4*nhx_tot/nseed)*nseed - else - ntot_gen=4*nhx_tot - endif - write (iout,*) "debug N16",ntot_gen,4*nhx_tot,nseed - - ngen=0 - do while (ngen.lt.ntot_gen) - do iters=1,nseed - iseed=is(iters) - if (nhx_use(iters).gt.0) then - nicht_getan=.true. - do while (nicht_getan) - iih=iran_num(1,nhx_seed(iters)) - if (ihx_use(0,iih,iters).gt.0) then - iim=iran_num(1,4) - do while (ihx_use(iim,iih,iters).eq.1) -cd write (iout,*) iim, -cd & ihx_use(0,iih,iters),ihx_use(iim,iih,iters) - iim=iran_num(1,4) - enddo - nicht_getan=.false. - ihx_use(iim,iih,iters)=1 - ihx_use(0,iih,iters)=ihx_use(0,iih,iters)-1 - nhx_use(iters)=nhx_use(iters)-1 - endif - enddo - ngen=ngen+1 - index=index+1 - movenx(index)=16 - parent(1,index)=iseed - parent(2,index)=0 - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - do i=1,4 - idata(i,index)=ihx_seed(i,iih,iters) - enddo - idata(5,index)=iim - - if (ngen.eq.ntot_gen) goto 116 - endif - enddo - enddo - 116 continue - write (iout,*) "N16",n16," ngen/nseed",ngen/nseed, - & ngen,nseed - ENDIF -c----------------------------------------- -c N15 : copy two 2nd structure elements from 1 or 2 conf. in bank to a seed -c - IF (n15.gt.0) THEN - - do iters=1,nseed - iseed=is(iters) - do i=1,mxio - ifused(i)=.false. - enddo - - do idummy=1,n15 - iter=0 - 84 continue - - iran=0 - iif=iran_num(1,n15frag) - do while( (ifused(iif) .or. svar_frag(iif,1).eq.iseed) .and. - & iran.le.mxio ) - iif=iran_num(1,n15frag) - iran=iran+1 - enddo - if(iran.ge.mxio) goto 811 - - iran=0 - iig=iran_num(1,n15frag) - do while( (ifused(iig) .or. svar_frag(iig,1).eq.iseed .or. - & .not.(svar_frag(iif,3).lt.svar_frag(iig,2).or. - & svar_frag(iig,3).lt.svar_frag(iif,2)) ) .and. - & iran.le.mxio ) - iig=iran_num(1,n15frag) - iran=iran+1 - enddo - if(iran.ge.mxio) goto 811 - - index=index+1 - movenx(index)=15 - parent(1,index)=iseed - parent(2,index)=svar_frag(iif,1) - parent(3,index)=svar_frag(iig,1) - - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - ifused(iif)=.true. - ifused(iig)=.true. - call newconf_copy(idum,dihang_in(1,1,1,index), - & svar_frag(iif,1),svar_frag(iif,2),svar_frag(iif,3)) - - do j=svar_frag(iig,2),svar_frag(iig,3) - do i=1,4 - dihang_in(i,j,1,index)=bvar(i,j,1,svar_frag(iig,1)) - enddo - enddo - - - if(iter.lt.10) then - call check_old(icheck,index) - if(icheck.eq.1) then - index=index-1 - ifused(iif)=.false. - goto 84 - endif - endif - - 811 continue - enddo - enddo - ENDIF - -c----------------------------------------- -c N14 local_move (Maurizio) for loops in a seed -c - IF (n14.gt.0) THEN - nlx_tot=0 - do iters=1,nseed - i1=is(iters) - nlx_seed(iters)=0 - do i2=1,n14frag - if (lvar_frag(i2,1).eq.i1) then - nlx_seed(iters)=nlx_seed(iters)+3 - ilx_seed(1,nlx_seed(iters),iters)=lvar_frag(i2,2) - ilx_seed(2,nlx_seed(iters),iters)=lvar_frag(i2,3) - ilx_use(nlx_seed(iters),iters)=3 - endif - enddo - nlx_use(iters)=nlx_seed(iters) - nlx_tot=nlx_tot+nlx_seed(iters) -cd write (iout,*) "debug N14",iters,nlx_seed(iters) - enddo - - if (nlx_tot .ge. n14*nseed) then - ntot_gen=n14*nseed - else - ntot_gen=(nlx_tot/nseed)*nseed - endif -cd write (iout,*) "debug N14",ntot_gen,n14frag,nseed - - ngen=0 - do while (ngen.lt.ntot_gen) - do iters=1,nseed - iseed=is(iters) - if (nlx_use(iters).gt.0) then - nicht_getan=.true. - do while (nicht_getan) - iih=iran_num(1,nlx_seed(iters)) - if (ilx_use(iih,iters).gt.0) then - nicht_getan=.false. - ilx_use(iih,iters)=ilx_use(iih,iters)-1 - nlx_use(iters)=nlx_use(iters)-1 - endif - enddo - ngen=ngen+1 - index=index+1 - movenx(index)=14 - parent(1,index)=iseed - parent(2,index)=0 - - idata(1,index)=ilx_seed(1,iih,iters) - idata(2,index)=ilx_seed(2,iih,iters) - - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - if (ngen.eq.ntot_gen) goto 131 - endif - enddo - enddo - 131 continue -cd write (iout,*) "N14",n14," ngen/nseed",ngen/nseed, -cd & ngen,nseed - - ENDIF -c----------------------------------------- -c N9 : shift a helix in a seed -c - IF (n9.gt.0) THEN - nhx_tot=0 - do iters=1,nseed - i1=is(iters) - nhx_seed(iters)=0 - do i2=1,n8frag - if (hvar_frag(i2,1).eq.i1) then - nhx_seed(iters)=nhx_seed(iters)+1 - ihx_seed(1,nhx_seed(iters),iters)=hvar_frag(i2,2) - ihx_seed(2,nhx_seed(iters),iters)=hvar_frag(i2,3) - ihx_use(0,nhx_seed(iters),iters)=4 - do i3=1,4 - ihx_use(i3,nhx_seed(iters),iters)=0 - enddo - endif - enddo - nhx_use(iters)=4*nhx_seed(iters) - nhx_tot=nhx_tot+nhx_seed(iters) -cd write (iout,*) "debug N9",iters,nhx_seed(iters) - enddo - - if (4*nhx_tot .ge. n9*nseed) then - ntot_gen=n9*nseed - else - ntot_gen=(4*nhx_tot/nseed)*nseed - endif -cd write (iout,*) "debug N9",ntot_gen,n8frag,nseed - - ngen=0 - do while (ngen.lt.ntot_gen) - do iters=1,nseed - iseed=is(iters) - if (nhx_use(iters).gt.0) then - nicht_getan=.true. - do while (nicht_getan) - iih=iran_num(1,nhx_seed(iters)) - if (ihx_use(0,iih,iters).gt.0) then - iim=iran_num(1,4) - do while (ihx_use(iim,iih,iters).eq.1) -cd write (iout,*) iim, -cd & ihx_use(0,iih,iters),ihx_use(iim,iih,iters) - iim=iran_num(1,4) - enddo - nicht_getan=.false. - ihx_use(iim,iih,iters)=1 - ihx_use(0,iih,iters)=ihx_use(0,iih,iters)-1 - nhx_use(iters)=nhx_use(iters)-1 - endif - enddo - ngen=ngen+1 - index=index+1 - movenx(index)=9 - parent(1,index)=iseed - parent(2,index)=0 - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - jstart=max(nnt,ihx_seed(1,iih,iters)+1) - jend=min(nct,ihx_seed(2,iih,iters)) -cd write (iout,*) "debug N9",iters,iih,jstart,jend - if (iim.eq.1) then - ishift=-2 - else if (iim.eq.2) then - ishift=-1 - else if (iim.eq.3) then - ishift=1 - else if (iim.eq.4) then - ishift=2 - else - write (iout,*) 'CHUJ NASTAPIL: iim=',iim - call mpi_abort(mpi_comm_world,ierror,ierrcode) - endif - do j=jstart,jend - if (itype(j).eq.10) then - iang=2 - else - iang=4 - endif - do i=1,iang - if (j+ishift.ge.nnt.and.j+ishift.le.nct) - & dihang_in(i,j+ishift,1,index)=bvar(i,j,1,iseed) - enddo - enddo - if (ishift.gt.0) then - do j=0,ishift-1 - if (itype(jend+j).eq.10) then - iang=2 - else - iang=4 - endif - do i=1,iang - if (jend+j.ge.nnt.and.jend+j.le.nct) - & dihang_in(i,jstart+j,1,index)=bvar(i,jend+j,1,iseed) - enddo - enddo - else - do j=0,-ishift-1 - if (itype(jstart+j).eq.10) then - iang=2 - else - iang=4 - endif - do i=1,iang - if (jend+j.ge.nnt.and.jend+j.le.nct) - & dihang_in(i,jend+j,1,index)=bvar(i,jstart+j,1,iseed) - enddo - enddo - endif - if (ngen.eq.ntot_gen) goto 133 - endif - enddo - enddo - 133 continue -cd write (iout,*) "N9",n9," ngen/nseed",ngen/nseed, -cd & ngen,nseed - - ENDIF -c----------------------------------------- -c N8 : copy a helix from bank to seed -c - if (n8.gt.0) then - if (n8frag.lt.n8) then - write (iout,*) "N8: only ",n8frag,'helices' - n8c=n8frag - else - n8c=n8 - endif - - do iters=1,nseed - iseed=is(iters) - do i=1,mxio - ifused(i)=.false. - enddo - - - do idummy=1,n8c - iter=0 - 94 continue - iran=0 - iif=iran_num(1,n8frag) - do while( (ifused(iif) .or. hvar_frag(iif,1).eq.iseed) .and. - & iran.le.mxio ) - iif=iran_num(1,n8frag) - iran=iran+1 - enddo - - if(iran.ge.mxio) goto 911 - - index=index+1 - movenx(index)=8 - parent(1,index)=iseed - parent(2,index)=hvar_frag(iif,1) - - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - ifused(iif)=.true. - if (hvar_frag(iif,3)-hvar_frag(iif,2).le.6) then - call newconf_copy(idum,dihang_in(1,1,1,index), - & hvar_frag(iif,1),hvar_frag(iif,2),hvar_frag(iif,3)) - else - ih_start=iran_num(hvar_frag(iif,2),hvar_frag(iif,3)-6) - ih_end=iran_num(ih_start,hvar_frag(iif,3)) - call newconf_copy(idum,dihang_in(1,1,1,index), - & hvar_frag(iif,1),ih_start,ih_end) - endif - iter=iter+1 - if(iter.lt.10) then - call check_old(icheck,index) - if(icheck.eq.1) then - index=index-1 - ifused(iif)=.false. - goto 94 - endif - endif - - - 911 continue - - enddo - enddo - - endif - -c----------------------------------------- -c N7 : copy nonlocal beta fragment from bank to seed -c - if (n7.gt.0) then - if (n7frag.lt.n7) then - write (iout,*) "N7: only ",n7frag,'nonlocal fragments' - n7c=n7frag - else - n7c=n7 - endif - - do i=1,maxres - do j=1,mxio2 - iff_in(i,j)=0 - enddo - enddo - index2=0 - do i=1,mxio - isend2(i)=0 - enddo - - do iters=1,nseed - iseed=is(iters) - do i=1,mxio - ifused(i)=.false. - enddo - - do idummy=1,n7c - iran=0 - iif=iran_num(1,n7frag) - do while( (ifused(iif) .or. bvar_frag(iif,1).eq.iseed) .and. - & iran.le.mxio ) - iif=iran_num(1,n7frag) - iran=iran+1 - enddo - -cd write (*,'(3i5,l,4i5)'),iters,idummy,iif,ifused(iif), -cd & bvar_frag(iif,1),iseed,iran,index2 - - if(iran.ge.mxio) goto 999 - if(index2.ge.mxio2) goto 999 - - index=index+1 - movenx(index)=7 - parent(1,index)=iseed - parent(2,index)=bvar_frag(iif,1) - index2=index2+1 - isend2(index)=index2 - ifused(iif)=.true. - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in2(i,j,k,index2)=bvar(i,j,k,bvar_frag(iif,1)) - enddo - enddo - enddo - - if (bvar_frag(iif,2).eq.4) then - do i=bvar_frag(iif,3),bvar_frag(iif,4) - iff_in(i,index2)=1 - enddo - if (bvar_frag(iif,5).lt.bvar_frag(iif,6)) then -cd print *,'###',bvar_frag(iif,3),bvar_frag(iif,4), -cd & bvar_frag(iif,5),bvar_frag(iif,6) - do i=bvar_frag(iif,5),bvar_frag(iif,6) - iff_in(i,index2)=1 - enddo - else -cd print *,'###',bvar_frag(iif,3),bvar_frag(iif,4), -cd & bvar_frag(iif,6),bvar_frag(iif,5) - do i=bvar_frag(iif,6),bvar_frag(iif,5) - iff_in(i,index2)=1 - enddo - endif - endif - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - - 999 continue - - enddo - enddo - - endif -c----------------------------------------------- -c N6 : copy random continues fragment from bank to seed -c - do iters=1,nseed - iseed=is(iters) - do idummy=1,n6 - isize=(is2-is1+1)*ran1(idum)+is1 - index=index+1 - movenx(index)=6 - - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - iter=0 - 104 continue - if(icycle.le.0) then - i1=nconf* ran1(idum)+1 - i1=nbank-nconf+i1 - else - i1=nbank* ran1(idum)+1 - endif - if(i1.eq.iseed) goto 104 - iter=iter+1 - call newconf_residue(idum,dihang_in(1,1,1,index),i1,isize) - parent(1,index)=iseed - parent(2,index)=i1 - if(iter.lt.10) then - call check_old(icheck,index) - if(icheck.eq.1) goto 104 - endif - enddo - enddo -c----------------------------------------- - if (n3.gt.0.or.n4.gt.0) call gen_hairpin - nconf_harp=0 - do iters=1,nseed - if (nharp_seed(iters).gt.0) nconf_harp=nconf_harp+1 - enddo -c----------------------------------------- -c N3 : copy hairpin from bank to seed -c - do iters=1,nseed - iseed=is(iters) - nsucc=0 - nacc=0 - do idummy=1,n3 - index=index+1 - iter=0 - 124 continue - if(icycle.le.0) then - i1=nconf* ran1(idum)+1 - i1=nbank-nconf+i1 - else - i1=nbank* ran1(idum)+1 - endif - if(i1.eq.iseed) goto 124 - do k=1,nsucc - if (i1.eq.iisucc(k).and.nsucc.lt.nconf_harp-1) goto 124 - enddo - nsucc=nsucc+1 - iisucc(nsucc)=i1 - iter=iter+1 - call newconf_residue_hairpin(idum,dihang_in(1,1,1,index), - & i1,fail) - if (fail) then - if (icycle.le.0 .and. nsucc.eq.nconf .or. - & icycle.gt.0 .and. nsucc.eq.nbank) then - index=index-1 - goto 125 - else - goto 124 - endif - endif - if(iter.lt.10) then - call check_old(icheck,index) - if(icheck.eq.1) goto 124 - endif - movenx(index)=3 - parent(1,index)=iseed - parent(2,index)=i1 - - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - nacc=nacc+1 - enddo -c if not enough hairpins, supplement with windows - 125 continue -cdd if (n3.ne.0) write (iout,*) "N3",n3," nsucc",nsucc," nacc",nacc - do idummy=nacc+1,n3 - isize=(is2-is1+1)*ran1(idum)+is1 - index=index+1 - movenx(index)=6 - parent(1,index)=iseed - parent(2,index)=i1 - - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - iter=0 - 114 continue - if(icycle.le.0) then - i1=nconf* ran1(idum)+1 - i1=nbank-nconf+i1 - else - i1=nbank* ran1(idum)+1 - endif - if(i1.eq.iseed) goto 114 - iter=iter+1 - call newconf_residue(idum,dihang_in(1,1,1,index),i1,isize) - if(iter.lt.10) then - call check_old(icheck,index) - if(icheck.eq.1) goto 114 - endif - enddo - enddo -c----------------------------------------- -c N4 : shift a turn in hairpin in seed -c - IF (N4.GT.0) THEN - if (4*nharp_tot .ge. n4*nseed) then - ntot_gen=n4*nseed - else - ntot_gen=(4*nharp_tot/nseed)*nseed - endif - ngen=0 - do while (ngen.lt.ntot_gen) - do iters=1,nseed - iseed=is(iters) -c write (iout,*) 'iters',iters,' iseed',iseed,' nharp_seed', -c & nharp_seed(iters),' nharp_use',nharp_use(iters), -c & ' ntot_gen',ntot_gen -c write (iout,*) 'iharp_use(0)', -c & (iharp_use(0,k,iters),k=1,nharp_seed(iters)) - if (nharp_use(iters).gt.0) then - nicht_getan=.true. - do while (nicht_getan) - iih=iran_num(1,nharp_seed(iters)) -c write (iout,*) 'iih',iih,' iharp_use', -c & (iharp_use(k,iih,iters),k=1,4) - if (iharp_use(0,iih,iters).gt.0) then - nicht_getan1=.true. - do while (nicht_getan1) - iim=iran_num(1,4) - nicht_getan1=iharp_use(iim,iih,iters).eq.1 - enddo - nicht_getan=.false. - iharp_use(iim,iih,iters)=1 - iharp_use(0,iih,iters)=iharp_use(0,iih,iters)-1 - nharp_use(iters)=nharp_use(iters)-1 -cdd write (iout,'(a16,i3,a5,i2,a10,2i4)') -cdd & 'N4 selected hairpin',iih,' move',iim,' iharp_seed', -cdd & iharp_seed(1,iih,iters),iharp_seed(2,iih,iters) - endif - enddo - ngen=ngen+1 - index=index+1 - movenx(index)=4 - parent(1,index)=iseed - parent(2,index)=0 - - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,iseed) - enddo - enddo - enddo - jstart=iharp_seed(1,iih,iters)+1 - jend=iharp_seed(2,iih,iters) - if (iim.eq.1) then - ishift=-2 - else if (iim.eq.2) then - ishift=-1 - else if (iim.eq.3) then - ishift=1 - else if (iim.eq.4) then - ishift=2 - else - write (iout,*) 'CHUJ NASTAPIL: iim=',iim - call mpi_abort(mpi_comm_world,ierror,ierrcode) - endif -c write (iout,*) 'jstart',jstart,' jend',jend,' ishift',ishift -c write (iout,*) 'Before turn shift' -c do j=2,nres-1 -c theta(j+1)=dihang_in(1,j,1,index) -c phi(j+2)=dihang_in(2,j,1,index) -c alph(j)=dihang_in(3,j,1,index) -c omeg(j)=dihang_in(4,j,1,index) -c enddo -c call intout - do j=jstart,jend - if (itype(j).eq.10) then - iang=2 - else - iang=4 - endif - do i=1,iang - if (j+ishift.ge.nnt.and.j+ishift.le.nct) - & dihang_in(i,j+ishift,1,index)=bvar(i,j,1,iseed) - enddo - enddo -c write (iout,*) 'After turn shift' -c do j=2,nres-1 -c theta(j+1)=dihang_in(1,j,1,index) -c phi(j+2)=dihang_in(2,j,1,index) -c alph(j)=dihang_in(3,j,1,index) -c omeg(j)=dihang_in(4,j,1,index) -c enddo -c call intout - if (ngen.eq.ntot_gen) goto 135 - endif - enddo - enddo -c if not enough hairpins, supplement with windows -c write (iout,*) 'end of enddo' - 135 continue -cdd write (iout,*) "N4",n4," ngen/nseed",ngen/nseed, -cdd & ngen,nseed - do iters=1,nseed - iseed=is(iters) - do idummy=ngen/nseed+1,n4 - isize=(is2-is1+1)*ran1(idum)+is1 - index=index+1 - movenx(index)=6 - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - - iter=0 - 134 continue - if(icycle.le.0) then - i1=nconf* ran1(idum)+1 - i1=nbank-nconf+i1 - else - i1=nbank* ran1(idum)+1 - endif - if(i1.eq.iseed) goto 134 - iter=iter+1 - call newconf_residue(idum,dihang_in(1,1,1,index),i1,isize) - parent(1,index)=iseed - parent(2,index)=i1 - if(iter.lt.10) then - call check_old(icheck,index) - if(icheck.eq.1) goto 134 - endif - enddo - enddo - ENDIF -c----------------------------------------- -c N5 : copy one residue from bank to seed (normally switched off - use N1) -c - do iters=1,nseed - iseed=is(iters) - isize=1 - do i=1,n5 - index=index+1 - movenx(index)=5 - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - - iter=0 - 105 continue - if(icycle.le.0) then - i1=nconf* ran1(idum)+1 - i1=nbank-nconf+i1 - else - i1=nbank* ran1(idum)+1 - endif - if(i1.eq.iseed) goto 105 - iter=iter+1 - call newconf_residue(idum,dihang_in(1,1,1,index),i1,isize) - parent(1,index)=iseed - parent(2,index)=i1 - if(iter.lt.10) then - call check_old(icheck,index) - if(icheck.eq.1) goto 105 - endif - enddo - enddo -c----------------------------------------- -c N2 : copy backbone of one residue from bank or first bank to seed -c (normally switched off - use N1) -c - do iters=1,nseed - iseed=is(iters) - do i=n2,1,-1 - if(icycle.le.0.and.iuse.gt.nconf-irr) then - iseed=ran1(idum)*nconf+1 - iseed=nbank-nconf+iseed - endif - index=index+1 - movenx(index)=2 - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - iter=0 - 102 i1= ran1(idum)*nbank+1 - if(i1.eq.iseed) goto 102 - iter=iter+1 - if(icycle.le.0.and.iuse.gt.nconf-irr) then - nran=mod(i-1,nran0)+3 - call newconf1arr(idum,dihang_in(1,1,1,index),nran,i1) - parent(1,index)=-iseed - parent(2,index)=-i1 - else if(icycle.le.0.and.iters.le.iuse) then - nran=mod(i-1,nran0)+1 - call newconf1abr(idum,dihang_in(1,1,1,index),nran,i1) - parent(1,index)=iseed - parent(2,index)=-i1 - else - nran=mod(i-1,nran1)+1 - if(ran1(idum).lt.0.5) then - call newconf1abr(idum,dihang_in(1,1,1,index),nran,i1) - parent(1,index)=iseed - parent(2,index)=-i1 - else - call newconf1abb(idum,dihang_in(1,1,1,index),nran,i1) - parent(1,index)=iseed - parent(2,index)=i1 - endif - endif - if(iter.lt.10) then - call check_old(icheck,index) - if(icheck.eq.1) goto 102 - endif - enddo - enddo -c----------------------------------------- -c N1 : copy backbone or sidechain of one residue from bank or -c first bank to seed -c - do iters=1,nseed - iseed=is(iters) - do i=n1,1,-1 - if(icycle.le.0.and.iuse.gt.nconf-irr) then - iseed=ran1(idum)*nconf+1 - iseed=nbank-nconf+iseed - endif - index=index+1 - movenx(index)=1 - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - iter=0 - 101 i1= ran1(idum)*nbank+1 - - if(i1.eq.iseed) goto 101 - iter=iter+1 - if(icycle.le.0.and.iuse.gt.nconf-irr) then - nran=mod(i-1,nran0)+3 - call newconf1rr(idum,dihang_in(1,1,1,index),nran,i1) - parent(1,index)=-iseed - parent(2,index)=-i1 - else if(icycle.le.0.and.iters.le.iuse) then - nran=mod(i-1,nran0)+1 - call newconf1br(idum,dihang_in(1,1,1,index),nran,i1) - parent(1,index)=iseed - parent(2,index)=-i1 - else - nran=mod(i-1,nran1)+1 - if(ran1(idum).lt.0.5) then - call newconf1br(idum,dihang_in(1,1,1,index),nran,i1) - parent(1,index)=iseed - parent(2,index)=-i1 - else - call newconf1bb(idum,dihang_in(1,1,1,index),nran,i1) - parent(1,index)=iseed - parent(2,index)=i1 - endif - endif - if(iter.lt.10) then - call check_old(icheck,index) - if(icheck.eq.1) goto 101 - endif - enddo - enddo -c----------------------------------------- -c N0 just all seeds -c - IF (n0.gt.0) THEN - do iters=1,nseed - iseed=is(iters) - index=index+1 - movenx(index)=0 - parent(1,index)=iseed - parent(2,index)=0 - - if (vdisulf) then - nss_in(index)=bvar_nss(iseed) - do ij=1,nss_in(index) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - endif - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,iseed) - enddo - enddo - enddo - enddo - ENDIF -c----------------------------------------- - if (vdisulf) then - do iters=1,nseed - iseed=is(iters) - - do k=1,numch - do j=2,nres-1 - theta(j+1)=bvar(1,j,k,iseed) - phi(j+2)=bvar(2,j,k,iseed) - alph(j)=bvar(3,j,k,iseed) - omeg(j)=bvar(4,j,k,iseed) - enddo - enddo - call chainbuild - -cd write(iout,*) 'makevar DYNSS',iseed,'#',bvar_ns(iseed), -cd & (bvar_s(k,iseed),k=1,bvar_ns(iseed)), -cd & bvar_nss(iseed), -cd & (bvar_ss(1,k,iseed)-nres,'-', -cd & bvar_ss(2,k,iseed)-nres,k=1,bvar_nss(iseed)) - - do i1=1,bvar_ns(iseed) -c -c N10 fussion of free halfcysteines in seed -c first select CYS with distance < 7A -c - do j1=i1+1,bvar_ns(iseed) - if (dist(bvar_s(i1,iseed)+nres,bvar_s(j1,iseed)+nres) - & .lt.7.0.and. - & iabs(bvar_s(i1,iseed)-bvar_s(j1,iseed)).gt.3) then - - index=index+1 - movenx(index)=10 - parent(1,index)=iseed - parent(2,index)=0 - do ij=1,bvar_nss(iseed) - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - enddo - ij=bvar_nss(iseed)+1 - nss_in(index)=ij - iss_in(ij,index)=bvar_s(i1,iseed)+nres - jss_in(ij,index)=bvar_s(j1,iseed)+nres - -cd write(iout,*) 'makevar NSS0',index, -cd & dist(bvar_s(i1,iseed)+nres,bvar_s(j1,iseed)+nres), -cd & nss_in(index),iss_in(ij,index)-nres,'-',jss_in(ij,index)-nres - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - endif - enddo -c -c N11 type I transdisulfidation -c - do j1=1,bvar_nss(iseed) - if (dist(bvar_s(i1,iseed)+nres,bvar_ss(1,j1,iseed)) - & .lt.7.0.and. - & iabs(bvar_s(i1,iseed)-(bvar_ss(1,j1,iseed)-nres)) - & .gt.3) then - - index=index+1 - movenx(index)=11 - parent(1,index)=iseed - parent(2,index)=0 - do ij=1,bvar_nss(iseed) - if (ij.ne.j1) then - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - endif - enddo - nss_in(index)=bvar_nss(iseed) - iss_in(j1,index)=bvar_s(i1,iseed)+nres - jss_in(j1,index)=bvar_ss(1,j1,iseed) - if (iss_in(j1,index).gt.jss_in(j1,index)) then - iss_in(j1,index)=bvar_ss(1,j1,iseed) - jss_in(j1,index)=bvar_s(i1,iseed)+nres - endif - -cd write(iout,*) 'makevar NSS1 #1',index, -cd & bvar_s(i1,iseed),bvar_ss(1,j1,iseed)-nres, -cd & dist(bvar_s(i1,iseed)+nres,bvar_ss(1,j1,iseed)), -cd & (iss_in(ij,index)-nres,'-',jss_in(ij,index)-nres, -cd & ij=1,nss_in(index)) - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,iseed) - enddo - enddo - enddo - endif - if (dist(bvar_s(i1,iseed)+nres,bvar_ss(2,j1,iseed)) - & .lt.7.0.and. - & iabs(bvar_s(i1,iseed)-(bvar_ss(2,j1,iseed)-nres)) - & .gt.3) then - - index=index+1 - movenx(index)=11 - parent(1,index)=iseed - parent(2,index)=0 - do ij=1,bvar_nss(iseed) - if (ij.ne.j1) then - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - endif - enddo - nss_in(index)=bvar_nss(iseed) - iss_in(j1,index)=bvar_s(i1,iseed)+nres - jss_in(j1,index)=bvar_ss(2,j1,iseed) - if (iss_in(j1,index).gt.jss_in(j1,index)) then - iss_in(j1,index)=bvar_ss(2,j1,iseed) - jss_in(j1,index)=bvar_s(i1,iseed)+nres - endif - - -cd write(iout,*) 'makevar NSS1 #2',index, -cd & bvar_s(i1,iseed),bvar_ss(2,j1,iseed)-nres, -cd & dist(bvar_s(i1,iseed)+nres,bvar_ss(2,j1,iseed)), -cd & (iss_in(ij,index)-nres,'-',jss_in(ij,index)-nres, -cd & ij=1,nss_in(index)) - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - endif - enddo - enddo - -c -c N12 type II transdisulfidation -c - do i1=1,bvar_nss(iseed) - do j1=i1+1,bvar_nss(iseed) - if (dist(bvar_ss(1,i1,iseed),bvar_ss(1,j1,iseed)) - & .lt.7.0.and. - & dist(bvar_ss(2,i1,iseed),bvar_ss(2,j1,iseed)) - & .lt.7.0.and. - & iabs(bvar_ss(1,i1,iseed)-bvar_ss(1,j1,iseed)) - & .gt.3.and. - & iabs(bvar_ss(2,i1,iseed)-bvar_ss(2,j1,iseed)) - & .gt.3) then - index=index+1 - movenx(index)=12 - parent(1,index)=iseed - parent(2,index)=0 - do ij=1,bvar_nss(iseed) - if (ij.ne.i1 .and. ij.ne.j1) then - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - endif - enddo - nss_in(index)=bvar_nss(iseed) - iss_in(i1,index)=bvar_ss(1,i1,iseed) - jss_in(i1,index)=bvar_ss(1,j1,iseed) - if (iss_in(i1,index).gt.jss_in(i1,index)) then - iss_in(i1,index)=bvar_ss(1,j1,iseed) - jss_in(i1,index)=bvar_ss(1,i1,iseed) - endif - iss_in(j1,index)=bvar_ss(2,i1,iseed) - jss_in(j1,index)=bvar_ss(2,j1,iseed) - if (iss_in(j1,index).gt.jss_in(j1,index)) then - iss_in(j1,index)=bvar_ss(2,j1,iseed) - jss_in(j1,index)=bvar_ss(2,i1,iseed) - endif - - -cd write(iout,*) 'makevar NSS2 #1',index, -cd & bvar_ss(1,i1,iseed)-nres,bvar_ss(1,j1,iseed)-nres, -cd & dist(bvar_ss(1,i1,iseed),bvar_ss(1,j1,iseed)), -cd & bvar_ss(2,i1,iseed)-nres,bvar_ss(2,j1,iseed)-nres, -cd & dist(bvar_ss(2,i1,iseed),bvar_ss(2,j1,iseed)), -cd & (iss_in(ij,index)-nres,'-',jss_in(ij,index)-nres, -cd & ij=1,nss_in(index)) - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - endif - - if (dist(bvar_ss(1,i1,iseed),bvar_ss(2,j1,iseed)) - & .lt.7.0.and. - & dist(bvar_ss(2,i1,iseed),bvar_ss(1,j1,iseed)) - & .lt.7.0.and. - & iabs(bvar_ss(1,i1,iseed)-bvar_ss(2,j1,iseed)) - & .gt.3.and. - & iabs(bvar_ss(2,i1,iseed)-bvar_ss(1,j1,iseed)) - & .gt.3) then - index=index+1 - movenx(index)=12 - parent(1,index)=iseed - parent(2,index)=0 - do ij=1,bvar_nss(iseed) - if (ij.ne.i1 .and. ij.ne.j1) then - iss_in(ij,index)=bvar_ss(1,ij,iseed) - jss_in(ij,index)=bvar_ss(2,ij,iseed) - endif - enddo - nss_in(index)=bvar_nss(iseed) - iss_in(i1,index)=bvar_ss(1,i1,iseed) - jss_in(i1,index)=bvar_ss(2,j1,iseed) - if (iss_in(i1,index).gt.jss_in(i1,index)) then - iss_in(i1,index)=bvar_ss(2,j1,iseed) - jss_in(i1,index)=bvar_ss(1,i1,iseed) - endif - iss_in(j1,index)=bvar_ss(2,i1,iseed) - jss_in(j1,index)=bvar_ss(1,j1,iseed) - if (iss_in(j1,index).gt.jss_in(j1,index)) then - iss_in(j1,index)=bvar_ss(1,j1,iseed) - jss_in(j1,index)=bvar_ss(2,i1,iseed) - endif - - -cd write(iout,*) 'makevar NSS2 #2',index, -cd & bvar_ss(1,i1,iseed)-nres,bvar_ss(2,j1,iseed)-nres, -cd & dist(bvar_ss(1,i1,iseed),bvar_ss(2,j1,iseed)), -cd & bvar_ss(2,i1,iseed)-nres,bvar_ss(1,j1,iseed)-nres, -cd & dist(bvar_ss(2,i1,iseed),bvar_ss(1,j1,iseed)), -cd & (iss_in(ij,index)-nres,'-',jss_in(ij,index)-nres, -cd & ij=1,nss_in(index)) - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - endif - - - enddo - enddo -c -c N13 removal of disulfide bond -c - if (bvar_nss(iseed).gt.0) then - i1=bvar_nss(iseed)*ran1(idum)+1 - - index=index+1 - movenx(index)=13 - parent(1,index)=iseed - parent(2,index)=0 - ij=0 - do j1=1,bvar_nss(iseed) - if (j1.ne.i1) then - ij=ij+1 - iss_in(ij,index)=bvar_ss(1,j1,iseed) - jss_in(ij,index)=bvar_ss(2,j1,iseed) - endif - enddo - nss_in(index)=bvar_nss(iseed)-1 - -cd write(iout,*) 'NSS3',index,i1, -cd & bvar_ss(1,i1,iseed)-nres,'=',bvar_ss(2,i1,iseed)-nres,'#', -cd & (iss_in(ij,index)-nres,'-',jss_in(ij,index)-nres, -cd & ij=1,nss_in(index)) - - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - endif - - enddo - endif -c----------------------------------------- - - - - if(index.ne.n) write(iout,*)'make_var : ntry=',index - - n=index -cd do ii=1,n -cd write (istat,*) "======== ii=",ii," the dihang array" -cd do i=1,nres -cd write (istat,'(i5,4f15.5)') i,(dihang_in(k,i,1,ii)*rad2deg,k=1,4) -cd enddo -cd enddo - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine check_old(icheck,n) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - data ctdif /10./ - data ctdiff /60./ - - i1=n - do i2=1,n-1 - diff=0.d0 - do m=1,numch - do j=2,nres-1 - do i=1,4 - dif=rad2deg*dabs(dihang_in(i,j,m,i1)-dihang_in(i,j,m,i2)) - if(dif.gt.180.0) dif=360.0-dif - if(dif.gt.ctdif) goto 100 - diff=diff+dif - if(diff.gt.ctdiff) goto 100 - enddo - enddo - enddo - icheck=1 - return - 100 continue - enddo - - icheck=0 - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine newconf1rr(idum,vvar,nran,i1) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - real ran1,ran2 - dimension vvar(mxang,maxres,mxch),iold(ntotal) - ctdif=10. - - do k=1,numch - do j=2,nres-1 - do i=1,4 - vvar(i,j,k)=rvar(i,j,k,iseed) - enddo - enddo - enddo - - do index=1,nran - iold(index) = 0 - enddo - - number=ntotgr - - iter=0 - do index=1,nran - 10 iran= ran1(idum)*number+1 - if(iter.gt.number) return - iter=iter+1 - if(iter.eq.1) goto 11 - do ind=1,index-1 - if(iran.eq.iold(ind)) goto 10 - enddo - 11 continue - - do ind=1,ngroup(iran) - i=igroup(1,ind,iran) - j=igroup(2,ind,iran) - k=igroup(3,ind,iran) - dif=rad2deg*dabs(vvar(i,j,k)-rvar(i,j,k,i1)) - if(dif.gt.180.) dif=360.-dif - if(dif.gt.ctdif) goto 20 - enddo - if(iter.gt.number) goto 20 - goto 10 - 20 continue - do ind=1,ngroup(iran) - i=igroup(1,ind,iran) - j=igroup(2,ind,iran) - k=igroup(3,ind,iran) - vvar(i,j,k)=rvar(i,j,k,i1) - enddo - iold(index)=iran - enddo - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine newconf1br(idum,vvar,nran,i1) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - include 'COMMON.TORCNSTR' - include 'COMMON.CONTROL' - real ran1,ran2 - dimension vvar(mxang,maxres,mxch),iold(ntotal) - ctdif=10. - - do k=1,numch - do j=2,nres-1 - do i=1,4 - vvar(i,j,k)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - do index=1,nran - iold(index) = 0 - enddo - - number=ntotgr - - iter=0 - do index=1,nran - 10 iran= ran1(idum)*number+1 - if(i2ndstr.gt.0) then - rtmp=ran1(idum) - if(rtmp.le.rdih_bias) then - i=0 - do j=1,ndih_nconstr - if(igroup(2,1,iran).eq.idih_nconstr(j))i=j - enddo - if(i.eq.0) then - juhc=0 -4321 juhc=juhc+1 - iran= ran1(idum)*number+1 - i=0 - do j=1,ndih_nconstr - if(igroup(2,1,iran).eq.idih_nconstr(j))i=j - enddo - if(i.eq.0.or.juhc.lt.1000)goto 4321 - if(juhc.eq.1000) then - print *, 'move 6 : failed to find unconstrained group' - write(iout,*) 'move 6 : failed to find unconstrained group' - endif - endif - endif - endif - if(iter.gt.number) return - iter=iter+1 - if(iter.eq.1) goto 11 - do ind=1,index-1 - if(iran.eq.iold(ind)) goto 10 - enddo - 11 continue - - do ind=1,ngroup(iran) - i=igroup(1,ind,iran) - j=igroup(2,ind,iran) - k=igroup(3,ind,iran) - dif=rad2deg*dabs(vvar(i,j,k)-rvar(i,j,k,i1)) - if(dif.gt.180.) dif=360.-dif - if(dif.gt.ctdif) goto 20 - enddo - if(iter.gt.number) goto 20 - goto 10 - 20 continue - do ind=1,ngroup(iran) - i=igroup(1,ind,iran) - j=igroup(2,ind,iran) - k=igroup(3,ind,iran) - vvar(i,j,k)=rvar(i,j,k,i1) - enddo - iold(index)=iran - enddo - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine newconf1bb(idum,vvar,nran,i1) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - real ran1,ran2 - dimension vvar(mxang,maxres,mxch),iold(ntotal) - ctdif=10. - - do k=1,numch - do j=2,nres-1 - do i=1,4 - vvar(i,j,k)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - do index=1,nran - iold(index) = 0 - enddo - - number=ntotgr - - iter=0 - do index=1,nran - 10 iran= ran1(idum)*number+1 - if(iter.gt.number) return - iter=iter+1 - if(iter.eq.1) goto 11 - do ind=1,index-1 - if(iran.eq.iold(ind)) goto 10 - enddo - 11 continue - - do ind=1,ngroup(iran) - i=igroup(1,ind,iran) - j=igroup(2,ind,iran) - k=igroup(3,ind,iran) - dif=rad2deg*dabs(vvar(i,j,k)-bvar(i,j,k,i1)) - if(dif.gt.180.) dif=360.-dif - if(dif.gt.ctdif) goto 20 - enddo - if(iter.gt.number) goto 20 - goto 10 - 20 continue - do ind=1,ngroup(iran) - i=igroup(1,ind,iran) - j=igroup(2,ind,iran) - k=igroup(3,ind,iran) - vvar(i,j,k)=bvar(i,j,k,i1) - enddo - iold(index)=iran - enddo - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine newconf1arr(idum,vvar,nran,i1) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - real ran1,ran2 - dimension vvar(mxang,maxres,mxch),iold(ntotal) - ctdif=10. - - do k=1,numch - do j=2,nres-1 - do i=1,4 - vvar(i,j,k)=rvar(i,j,k,iseed) - enddo - enddo - enddo - - do index=1,nran - iold(index) = 0 - enddo - - number=nres-2 - - iter=0 - do index=1,nran - 10 iran= ran1(idum)*number+1 - if(iter.gt.number) return - iter=iter+1 - if(iter.eq.1) goto 11 - do ind=1,index-1 - if(iran.eq.iold(ind)) goto 10 - enddo - 11 continue - - do ind=1,ngroup(iran) - i=igroup(1,ind,iran) - j=igroup(2,ind,iran) - k=igroup(3,ind,iran) - dif=rad2deg*dabs(vvar(i,j,k)-rvar(i,j,k,i1)) - if(dif.gt.180.) dif=360.-dif - if(dif.gt.ctdif) goto 20 - enddo - if(iter.gt.number) goto 20 - goto 10 - 20 continue - do ind=1,ngroup(iran) - i=igroup(1,ind,iran) - j=igroup(2,ind,iran) - k=igroup(3,ind,iran) - vvar(i,j,k)=rvar(i,j,k,i1) - enddo - iold(index)=iran - enddo - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine newconf1abr(idum,vvar,nran,i1) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - include 'COMMON.TORCNSTR' - include 'COMMON.CONTROL' - real ran1,ran2 - dimension vvar(mxang,maxres,mxch),iold(ntotal) - ctdif=10. - - do k=1,numch - do j=2,nres-1 - do i=1,4 - vvar(i,j,k)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - do index=1,nran - iold(index) = 0 - enddo - - number=nres-2 - - iter=0 - do index=1,nran - 10 iran= ran1(idum)*number+1 - if(i2ndstr.gt.0) then - rtmp=ran1(idum) - if(rtmp.le.rdih_bias) then - iran=ran1(idum)*ndih_nconstr+1 - iran=idih_nconstr(iran) - endif - endif - if(iter.gt.number) return - iter=iter+1 - if(iter.eq.1) goto 11 - do ind=1,index-1 - if(iran.eq.iold(ind)) goto 10 - enddo - 11 continue - - do ind=1,ngroup(iran) - i=igroup(1,ind,iran) - j=igroup(2,ind,iran) - k=igroup(3,ind,iran) - dif=rad2deg*dabs(vvar(i,j,k)-rvar(i,j,k,i1)) - if(dif.gt.180.) dif=360.-dif - if(dif.gt.ctdif) goto 20 - enddo - if(iter.gt.number) goto 20 - goto 10 - 20 continue - do ind=1,ngroup(iran) - i=igroup(1,ind,iran) - j=igroup(2,ind,iran) - k=igroup(3,ind,iran) - vvar(i,j,k)=rvar(i,j,k,i1) - enddo - iold(index)=iran - enddo - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine newconf1abb(idum,vvar,nran,i1) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - include 'COMMON.TORCNSTR' - include 'COMMON.CONTROL' - real ran1,ran2 - dimension vvar(mxang,maxres,mxch),iold(ntotal) - ctdif=10. - - do k=1,numch - do j=2,nres-1 - do i=1,4 - vvar(i,j,k)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - do index=1,nran - iold(index) = 0 - enddo - - number=nres-2 - - iter=0 - do index=1,nran - 10 iran= ran1(idum)*number+1 - if(i2ndstr.gt.0) then - rtmp=ran1(idum) - if(rtmp.le.rdih_bias) then - iran=ran1(idum)*ndih_nconstr+1 - iran=idih_nconstr(iran) - endif - endif - if(iter.gt.number) return - iter=iter+1 - if(iter.eq.1) goto 11 - do ind=1,index-1 - if(iran.eq.iold(ind)) goto 10 - enddo - 11 continue - - do ind=1,ngroup(iran) - i=igroup(1,ind,iran) - j=igroup(2,ind,iran) - k=igroup(3,ind,iran) - dif=rad2deg*dabs(vvar(i,j,k)-bvar(i,j,k,i1)) - if(dif.gt.180.) dif=360.-dif - if(dif.gt.ctdif) goto 20 - enddo - if(iter.gt.number) goto 20 - goto 10 - 20 continue - do ind=1,ngroup(iran) - i=igroup(1,ind,iran) - j=igroup(2,ind,iran) - k=igroup(3,ind,iran) - vvar(i,j,k)=bvar(i,j,k,i1) - enddo - iold(index)=iran - enddo - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine newconf_residue(idum,vvar,i1,isize) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - include 'COMMON.TORCNSTR' - include 'COMMON.CONTROL' - real ran1,ran2 - dimension vvar(mxang,maxres,mxch),iold(ntotal) - ctdif=10. - - if (iseed.gt.mxio .or. iseed.lt.1) then - write (iout,*) 'Dimension ERROR in NEWCONF: ISEED',iseed - call mpi_abort(mpi_comm_world,ierror,ierrcode) - endif - do k=1,numch - do j=2,nres-1 - do i=1,4 - vvar(i,j,k)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - - k=1 - number=nres+isize-2 - iter=1 - 10 iran= ran1(idum)*number+1 - if(i2ndstr.gt.0) then - rtmp=ran1(idum) - if(rtmp.le.rdih_bias) then - iran=ran1(idum)*ndih_nconstr+1 - iran=idih_nconstr(iran) - endif - endif - istart=iran-isize+1 - iend=iran - if(istart.lt.2) istart=2 - if(iend.gt.nres-1) iend=nres-1 - - if(iter.eq.1) goto 11 - do ind=1,iter-1 - if(iran.eq.iold(ind)) goto 10 - enddo - 11 continue - - do j=istart,iend - do i=1,4 - dif=rad2deg*dabs(vvar(i,j,k)-bvar(i,j,k,i1)) - if(dif.gt.180.) dif=360.-dif - if(dif.gt.ctdif) goto 20 - enddo - enddo - iold(iter)=iran - iter=iter+1 - if(iter.gt.number) goto 20 - goto 10 - - 20 continue - do j=istart,iend - do i=1,4 - vvar(i,j,k)=bvar(i,j,k,i1) - enddo - enddo - - return - end - -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine newconf_copy(idum,vvar,i1,istart,iend) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - include 'COMMON.TORCNSTR' - include 'COMMON.CONTROL' - real ran1,ran2 - dimension vvar(mxang,maxres,mxch),iold(ntotal) - ctdif=10. - - if (iseed.gt.mxio .or. iseed.lt.1) then - write (iout,*) 'Dimension ERROR in NEWCONF: ISEED',iseed - call mpi_abort(mpi_comm_world,ierror,ierrcode) - endif - do k=1,numch - do j=2,nres-1 - do i=1,4 - vvar(i,j,k)=bvar(i,j,k,iseed) - enddo - enddo - enddo - - - do j=istart,iend - do i=1,4 - vvar(i,j,1)=bvar(i,j,1,i1) - enddo - enddo - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine newconf_residue_hairpin(idum,vvar,i1,fail) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - include 'COMMON.VAR' - real ran1,ran2 - dimension vvar(mxang,maxres,mxch),iold(ntotal) - integer nharp,iharp(4,maxres/3),icipa(maxres/3) - logical fail,not_done - ctdif=10. - - fail=.false. - if (iseed.gt.mxio .or. iseed.lt.1) then - write (iout,*) 'Dimension ERROR in NEWCONF: ISEED',iseed - call mpi_abort(mpi_comm_world,ierror,ierrcode) - endif - do k=1,numch - do j=2,nres-1 - do i=1,4 - vvar(i,j,k)=bvar(i,j,k,iseed) - enddo - enddo - enddo - do k=1,numch - do j=2,nres-1 - theta(j+1)=bvar(1,j,k,i1) - phi(j+2)=bvar(2,j,k,i1) - alph(j)=bvar(3,j,k,i1) - omeg(j)=bvar(4,j,k,i1) - enddo - enddo -c call intout - call chainbuild - call hairpin(.false.,nharp,iharp) - - if (nharp.eq.0) then - fail=.true. - return - endif - - n_used=0 - - DO III=1,NHARP - - not_done = .true. - icount=0 - do while (not_done) - icount=icount+1 - iih=iran_num(1,nharp) - do k=1,n_used - if (iih.eq.icipa(k)) then - iih=0 - goto 22 - endif - enddo - not_done=.false. - n_used=n_used+1 - icipa(n_used)=iih - 22 continue - not_done = not_done .and. icount.le.nharp - enddo - - if (iih.eq.0) then - write (iout,*) "CHUJ NASTAPIL W NEWCONF_RESIDUE_HAIRPIN!!!!" - fail=.true. - return - endif - - istart=iharp(1,iih)+1 - iend=iharp(2,iih) - -cdd write (iout,*) "newconf_residue_hairpin: iih",iih, -cdd & " istart",istart," iend",iend - - do k=1,numch - do j=istart,iend - do i=1,4 - dif=rad2deg*dabs(vvar(i,j,k)-bvar(i,j,k,i1)) - if(dif.gt.180.) dif=360.-dif - if(dif.gt.ctdif) goto 20 - enddo - enddo - enddo - goto 10 - 20 continue - do k=1,numch - do j=istart,iend - do i=1,4 - vvar(i,j,k)=bvar(i,j,k,i1) - enddo - enddo - enddo -c do j=1,numch -c do l=2,nres-1 -c write (iout,'(4f8.3)') (rad2deg*vvar(i,l,j),i=1,4) -c enddo -c enddo - return - 10 continue - ENDDO - - fail=.true. - - return - end -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine gen_hairpin - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.HAIRPIN' - -c write (iout,*) 'Entering GEN_HAIRPIN' - do iters=1,nseed - i1=is(iters) - do k=1,numch - do j=2,nres-1 - theta(j+1)=bvar(1,j,k,i1) - phi(j+2)=bvar(2,j,k,i1) - alph(j)=bvar(3,j,k,i1) - omeg(j)=bvar(4,j,k,i1) - enddo - enddo - call chainbuild - call hairpin(.false.,nharp_seed(iters),iharp_seed(1,1,iters)) - enddo - - nharp_tot=0 - do iters=1,nseed - nharp_tot=nharp_tot+nharp_seed(iters) - nharp_use(iters)=4*nharp_seed(iters) - do j=1,nharp_seed(iters) - iharp_use(0,j,iters)=4 - do k=1,4 - iharp_use(k,j,iters)=0 - enddo - enddo - enddo - - write (iout,*) 'GEN_HAIRPIN: nharp_tot',nharp_tot -cdd do i=1,nseed -cdd write (iout,*) 'seed',i -cdd write (iout,*) 'nharp_seed',nharp_seed(i), -cdd & ' nharp_use',nharp_use(i) -cd write (iout,*) 'iharp_seed, iharp_use' -cd do j=1,nharp_seed(i) -cd write (iout,'(7i3)') iharp_seed(1,j,i),iharp_seed(2,j,i), -cd & (iharp_use(k,j,i),k=0,4) -cd enddo -cdd enddo - return - end - -ccccccccccccccccccccccccccccccccccccccccccccccccc -ccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine select_frag(nn,nh,nl,ns,nb,i_csa) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.HAIRPIN' - include 'COMMON.DISTFIT' - character*50 linia - integer isec(maxres) - - - nn=0 - nh=0 - nl=0 - ns=0 - nb=0 -cd write (iout,*) 'Entering select_frag' - do i1=1,nbank - do i=1,nres - isec(i)=0 - enddo - do k=1,numch - do j=2,nres-1 - theta(j+1)=bvar(1,j,k,i1) - phi(j+2)=bvar(2,j,k,i1) - alph(j)=bvar(3,j,k,i1) - omeg(j)=bvar(4,j,k,i1) - enddo - enddo - call chainbuild -cd write (iout,*) ' -- ',i1,' -- ' - call secondary2(.false.) -c -c bvar_frag nn==pair of nonlocal strands in beta sheet (loop>4) -c strands > 4 residues; used by N7 and N16 -c - do j=1,nbfrag -c -Ctest 09/12/02 bfrag(2,j)-bfrag(1,j).gt.3 -c - do i=bfrag(1,j),bfrag(2,j) - isec(i)=1 - enddo - do i=bfrag(4,j),bfrag(3,j),sign(1,bfrag(3,j)-bfrag(4,j)) - isec(i)=1 - enddo - - if ( (bfrag(3,j).lt.bfrag(4,j) .or. - & bfrag(4,j)-bfrag(2,j).gt.4) .and. - & bfrag(2,j)-bfrag(1,j).gt.4 ) then - nn=nn+1 - - - if (bfrag(3,j).lt.bfrag(4,j)) then - write(linia,'(a6,i3,a1,i3,a1,i3,a1,i3)') - & "select",bfrag(1,j)-1,"-",bfrag(2,j)-1 - & ,",",bfrag(3,j)-1,"-",bfrag(4,j)-1 - else - write(linia,'(a6,i3,a1,i3,a1,i3,a1,i3)') - & "select",bfrag(1,j)-1,"-",bfrag(2,j)-1 - & ,",",bfrag(4,j)-1,"-",bfrag(3,j)-1 - - endif -cd call write_pdb(i_csa*1000+nn+nh,linia,0d0) - - bvar_frag(nn,1)=i1 - bvar_frag(nn,2)=4 - do i=1,4 - bvar_frag(nn,i+2)=bfrag(i,j) - enddo - endif - enddo - -c -c hvar_frag nh==helices; used by N8 and N9 -c - do j=1,nhfrag - - do i=hfrag(1,j),hfrag(2,j) - isec(i)=2 - enddo - - if ( hfrag(2,j)-hfrag(1,j).gt.4 ) then - nh=nh+1 - -cd write(linia,'(a6,i3,a1,i3)') -cd & "select",hfrag(1,j)-1,"-",hfrag(2,j)-1 -cd call write_pdb(i_csa*1000+nn+nh,linia,0d0) - - hvar_frag(nh,1)=i1 - hvar_frag(nh,2)=hfrag(1,j) - hvar_frag(nh,3)=hfrag(2,j) - endif - enddo - - -cv write(iout,'(i4,1pe12.4,1x,1000i1)') -cv & i1,bene(i1),(isec(i),i=1,nres) -cv write(linia,'(i4,1x,1000i1)') -cv & i1,(isec(i),i=1,nres) -cv call write_pdb(i_csa*1000+i1,linia,bene(i1)) -c -c lvar_frag nl==loops; used by N14 -c - i=1 - nl1=nl - do while (i.lt.nres) - if (isec(i).eq.0) then - nl=nl+1 - lvar_frag(nl,1)=i1 - lvar_frag(nl,2)=i - i=i+1 - do while (isec(i).eq.0.and.i.le.nres) - i=i+1 - enddo - lvar_frag(nl,3)=i-1 - if (lvar_frag(nl,3)-lvar_frag(nl,2).lt.1) nl=nl-1 - endif - i=i+1 - enddo -cd write(iout,'(4i5)') (i,(lvar_frag(i,ii),ii=1,3),i=nl1+1,nl) - -c -c svar_frag ns==an secondary structure element; used by N15 -c - i=1 - ns1=ns - do while (i.lt.nres) - if (isec(i).gt.0) then - ns=ns+1 - svar_frag(ns,1)=i1 - svar_frag(ns,2)=i - i=i+1 - do while (isec(i).gt.0.and.isec(i-1).eq.isec(i) - & .and.i.le.nres) - i=i+1 - enddo - svar_frag(ns,3)=i-1 - if (svar_frag(ns,3)-svar_frag(ns,2).lt.1) ns=ns-1 - endif - if (isec(i).eq.0) i=i+1 - enddo -cd write(iout,'(4i5)') (i,(svar_frag(i,ii),ii=1,3),i=ns1+1,ns) - -c -c avar_frag nb==any pair of beta strands; used by N17 -c - do j=1,nbfrag - nb=nb+1 - avar_frag(nb,1)=i1 - do i=1,4 - avar_frag(nb,i+1)=bfrag(i,j) - enddo - enddo - - enddo - - return - end -#endif diff --git a/source/unres/src_CSA_DiL/parmread.F b/source/unres/src_CSA_DiL/parmread.F deleted file mode 100644 index 44d0370..0000000 --- a/source/unres/src_CSA_DiL/parmread.F +++ /dev/null @@ -1,1132 +0,0 @@ - subroutine parmread -C -C Read the parameters of the probability distributions of the virtual-bond -C valence angles and the side chains and energy parameters. -C -C Important! Energy-term weights ARE NOT read here; they are read from the -C main input file instead, because NO defaults have yet been set for these -C parameters. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include "mpif.h" - integer IERROR -#endif - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.GEO' - include 'COMMON.LOCAL' - include 'COMMON.TORSION' - include 'COMMON.SCCOR' - include 'COMMON.SCROT' - include 'COMMON.FFIELD' - include 'COMMON.NAMES' - include 'COMMON.SBRIDGE' - include 'COMMON.MD_' - include 'COMMON.SETUP' - character*1 t1,t2,t3 - character*1 onelett(4) /"G","A","P","D"/ - character*1 toronelet(-2:2) /"p","a","G","A","P"/ - logical lprint,LaTeX - dimension blower(3,3,maxlob) - dimension b(13) - character*3 lancuch,ucase -C -C For printing parameters after they are read set the following in the UNRES -C C-shell script: -C -C setenv PRINT_PARM YES -C -C To print parameters in LaTeX format rather than as ASCII tables: -C -C setenv LATEX YES -C - call getenv_loc("PRINT_PARM",lancuch) - lprint = (ucase(lancuch).eq."YES" .or. ucase(lancuch).eq."Y") - call getenv_loc("LATEX",lancuch) - LaTeX = (ucase(lancuch).eq."YES" .or. ucase(lancuch).eq."Y") -C - dwa16=2.0d0**(1.0d0/6.0d0) - itypro=20 -C Assign virtual-bond length - vbl=3.8D0 - vblinv=1.0D0/vbl - vblinv2=vblinv*vblinv -c -c Read the virtual-bond parameters, masses, and moments of inertia -c and Stokes' radii of the peptide group and side chains -c -#ifdef CRYST_BOND - read (ibond,*) vbldp0,akp,mp,ip,pstok - do i=1,ntyp - nbondterm(i)=1 - read (ibond,*) vbldsc0(1,i),aksc(1,i),msc(i),isc(i),restok(i) - dsc(i) = vbldsc0(1,i) - if (i.eq.10) then - dsc_inv(i)=0.0D0 - else - dsc_inv(i)=1.0D0/dsc(i) - endif - enddo -#else - read (ibond,*) junk,vbldp0,akp,rjunk,mp,ip,pstok - do i=1,ntyp - read (ibond,*) nbondterm(i),(vbldsc0(j,i),aksc(j,i),abond0(j,i), - & j=1,nbondterm(i)),msc(i),isc(i),restok(i) - dsc(i) = vbldsc0(1,i) - if (i.eq.10) then - dsc_inv(i)=0.0D0 - else - dsc_inv(i)=1.0D0/dsc(i) - endif - enddo -#endif - if (lprint) then - write(iout,'(/a/)')"Dynamic constants of the interaction sites:" - write (iout,'(a10,a3,6a10)') 'Type','N','VBL','K','A0','mass', - & 'inertia','Pstok' - write(iout,'(a10,i3,6f10.5)') "p",1,vbldp0,akp,0.0d0,mp,ip,pstok - do i=1,ntyp - write (iout,'(a10,i3,6f10.5)') restyp(i),nbondterm(i), - & vbldsc0(1,i),aksc(1,i),abond0(1,i),msc(i),isc(i),restok(i) - do j=2,nbondterm(i) - write (iout,'(13x,3f10.5)') - & vbldsc0(j,i),aksc(j,i),abond0(j,i) - enddo - enddo - endif -#ifdef CRYST_THETA -C -C Read the parameters of the probability distribution/energy expression -C of the virtual-bond valence angles theta -C - do i=1,ntyp - read (ithep,*,err=111,end=111) a0thet(i),(athet(j,i,1,1),j=1,2), - & (bthet(j,i,1,1),j=1,2) - read (ithep,*,err=111,end=111) (polthet(j,i),j=0,3) - read (ithep,*,err=111,end=111) (gthet(j,i),j=1,3) - read (ithep,*,err=111,end=111) theta0(i),sig0(i),sigc0(i) - sigc0(i)=sigc0(i)**2 - enddo - do i=1,ntyp - athet(1,i,1,-1)=athet(1,i,1,1) - athet(2,i,1,-1)=athet(2,i,1,1) - bthet(1,i,1,-1)=-bthet(1,i,1,1) - bthet(2,i,1,-1)=-bthet(2,i,1,1) - athet(1,i,-1,1)=-athet(1,i,1,1) - athet(2,i,-1,1)=-athet(2,i,1,1) - bthet(1,i,-1,1)=bthet(1,i,1,1) - bthet(2,i,-1,1)=bthet(2,i,1,1) - enddo - do i=-ntyp,-1 - a0thet(i)=a0thet(-i) - athet(1,i,-1,-1)=athet(1,-i,1,1) - athet(2,i,-1,-1)=-athet(2,-i,1,1) - bthet(1,i,-1,-1)=bthet(1,-i,1,1) - bthet(2,i,-1,-1)=-bthet(2,-i,1,1) - athet(1,i,-1,1)=athet(1,-i,1,1) - athet(2,i,-1,1)=-athet(2,-i,1,1) - bthet(1,i,-1,1)=-bthet(1,-i,1,1) - bthet(2,i,-1,1)=bthet(2,-i,1,1) - athet(1,i,1,-1)=-athet(1,-i,1,1) - athet(2,i,1,-1)=athet(2,-i,1,1) - bthet(1,i,1,-1)=bthet(1,-i,1,1) - bthet(2,i,1,-1)=-bthet(2,-i,1,1) - theta0(i)=theta0(-i) - sig0(i)=sig0(-i) - sigc0(i)=sigc0(-i) - do j=0,3 - polthet(j,i)=polthet(j,-i) - enddo - do j=1,3 - gthet(j,i)=gthet(j,-i) - enddo - enddo - close (ithep) - if (lprint) then - if (.not.LaTeX) then - write (iout,'(a)') - & 'Parameters of the virtual-bond valence angles:' - write (iout,'(/a/9x,5a/79(1h-))') 'Fourier coefficients:', - & ' ATHETA0 ',' A1 ',' A2 ', - & ' B1 ',' B2 ' - do i=1,ntyp - write(iout,'(a3,i4,2x,5(1pe14.5))') restyp(i),i, - & a0thet(i),(athet(j,i,1,1),j=1,2),(bthet(j,i,1,1),j=1,2) - enddo - write (iout,'(/a/9x,5a/79(1h-))') - & 'Parameters of the expression for sigma(theta_c):', - & ' ALPH0 ',' ALPH1 ',' ALPH2 ', - & ' ALPH3 ',' SIGMA0C ' - do i=1,ntyp - write (iout,'(a3,i4,2x,5(1pe14.5))') restyp(i),i, - & (polthet(j,i),j=0,3),sigc0(i) - enddo - write (iout,'(/a/9x,5a/79(1h-))') - & 'Parameters of the second gaussian:', - & ' THETA0 ',' SIGMA0 ',' G1 ', - & ' G2 ',' G3 ' - do i=1,ntyp - write (iout,'(a3,i4,2x,5(1pe14.5))') restyp(i),i,theta0(i), - & sig0(i),(gthet(j,i),j=1,3) - enddo - else - write (iout,'(a)') - & 'Parameters of the virtual-bond valence angles:' - write (iout,'(/a/9x,5a/79(1h-))') - & 'Coefficients of expansion', - & ' theta0 ',' a1*10^2 ',' a2*10^2 ', - & ' b1*10^1 ',' b2*10^1 ' - do i=1,ntyp - write(iout,'(a3,1h&,2x,5(f8.3,1h&))') restyp(i), - & a0thet(i),(100*athet(j,i,1,1),j=1,2), - $ (10*bthet(j,i,1,1),j=1,2) - enddo - write (iout,'(/a/9x,5a/79(1h-))') - & 'Parameters of the expression for sigma(theta_c):', - & ' alpha0 ',' alph1 ',' alph2 ', - & ' alhp3 ',' sigma0c ' - do i=1,ntyp - write (iout,'(a3,1h&,2x,5(1pe12.3,1h&))') restyp(i), - & (polthet(j,i),j=0,3),sigc0(i) - enddo - write (iout,'(/a/9x,5a/79(1h-))') - & 'Parameters of the second gaussian:', - & ' theta0 ',' sigma0*10^2 ',' G1*10^-1', - & ' G2 ',' G3*10^1 ' - do i=1,ntyp - write (iout,'(a3,1h&,2x,5(f8.3,1h&))') restyp(i),theta0(i), - & 100*sig0(i),gthet(1,i)*0.1D0,gthet(2,i),gthet(3,i)*10.0D0 - enddo - endif - endif -#else -C -C Read the parameters of Utheta determined from ab initio surfaces -C Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203 -C - read (ithep,*,err=111,end=111) nthetyp,ntheterm,ntheterm2, - & ntheterm3,nsingle,ndouble - nntheterm=max0(ntheterm,ntheterm2,ntheterm3) - read (ithep,*,err=111,end=111) (ithetyp(i),i=1,ntyp1) - do i=1,maxthetyp - do j=1,maxthetyp - do k=1,maxthetyp - aa0thet(i,j,k)=0.0d0 - do l=1,ntheterm - aathet(l,i,j,k)=0.0d0 - enddo - do l=1,ntheterm2 - do m=1,nsingle - bbthet(m,l,i,j,k)=0.0d0 - ccthet(m,l,i,j,k)=0.0d0 - ddthet(m,l,i,j,k)=0.0d0 - eethet(m,l,i,j,k)=0.0d0 - enddo - enddo - do l=1,ntheterm3 - do m=1,ndouble - do mm=1,ndouble - ffthet(mm,m,l,i,j,k)=0.0d0 - ggthet(mm,m,l,i,j,k)=0.0d0 - enddo - enddo - enddo - enddo - enddo - enddo - do i=1,nthetyp - do j=1,nthetyp - do k=1,nthetyp - read (ithep,'(3a)',end=111,err=111) res1,res2,res3 - read (ithep,*,end=111,err=111) aa0thet(i,j,k) - read (ithep,*,end=111,err=111)(aathet(l,i,j,k),l=1,ntheterm) - read (ithep,*,end=111,err=111) - & ((bbthet(lll,ll,i,j,k),lll=1,nsingle), - & (ccthet(lll,ll,i,j,k),lll=1,nsingle), - & (ddthet(lll,ll,i,j,k),lll=1,nsingle), - & (eethet(lll,ll,i,j,k),lll=1,nsingle),ll=1,ntheterm2) - read (ithep,*,end=111,err=111) - & (((ffthet(llll,lll,ll,i,j,k),ffthet(lll,llll,ll,i,j,k), - & ggthet(llll,lll,ll,i,j,k),ggthet(lll,llll,ll,i,j,k), - & llll=1,lll-1),lll=2,ndouble),ll=1,ntheterm3) - enddo - enddo - enddo -C -C For dummy ends assign glycine-type coefficients of theta-only terms; the -C coefficients of theta-and-gamma-dependent terms are zero. -C - do i=1,nthetyp - do j=1,nthetyp - do l=1,ntheterm - aathet(l,i,j,nthetyp+1)=aathet(l,i,j,1) - aathet(l,nthetyp+1,i,j)=aathet(l,1,i,j) - enddo - aa0thet(i,j,nthetyp+1)=aa0thet(i,j,1) - aa0thet(nthetyp+1,i,j)=aa0thet(1,i,j) - enddo - do l=1,ntheterm - aathet(l,nthetyp+1,i,nthetyp+1)=aathet(l,1,i,1) - enddo - aa0thet(nthetyp+1,i,nthetyp+1)=aa0thet(1,i,1) - enddo -C -C Control printout of the coefficients of virtual-bond-angle potentials -C - if (lprint) then - write (iout,'(//a)') 'Parameter of virtual-bond-angle potential' - do i=1,nthetyp+1 - do j=1,nthetyp+1 - do k=1,nthetyp+1 - write (iout,'(//4a)') - & 'Type ',onelett(i),onelett(j),onelett(k) - write (iout,'(//a,10x,a)') " l","a[l]" - write (iout,'(i2,1pe15.5)') 0,aa0thet(i,j,k) - write (iout,'(i2,1pe15.5)') - & (l,aathet(l,i,j,k),l=1,ntheterm) - do l=1,ntheterm2 - write (iout,'(//2h m,4(9x,a,3h[m,,i1,1h]))') - & "b",l,"c",l,"d",l,"e",l - do m=1,nsingle - write (iout,'(i2,4(1pe15.5))') m, - & bbthet(m,l,i,j,k),ccthet(m,l,i,j,k), - & ddthet(m,l,i,j,k),eethet(m,l,i,j,k) - enddo - enddo - do l=1,ntheterm3 - write (iout,'(//3hm,n,4(6x,a,5h[m,n,,i1,1h]))') - & "f+",l,"f-",l,"g+",l,"g-",l - do m=2,ndouble - do n=1,m-1 - write (iout,'(i1,1x,i1,4(1pe15.5))') n,m, - & ffthet(n,m,l,i,j,k),ffthet(m,n,l,i,j,k), - & ggthet(n,m,l,i,j,k),ggthet(m,n,l,i,j,k) - enddo - enddo - enddo - enddo - enddo - enddo - call flush(iout) - endif - write (2,*) "Start reading THETA_PDB" - do i=1,ntyp - read (ithep_pdb,*,err=111,end=111) a0thet(i), - & (athet(j,i,1,1),j=1,2), - & (bthet(j,i,1,1),j=1,2) - read (ithep_pdb,*,err=111,end=111) (polthet(j,i),j=0,3) - read (ithep_pdb,*,err=111,end=111) (gthet(j,i),j=1,3) - read (ithep_pdb,*,err=111,end=111) theta0(i),sig0(i),sigc0(i) - sigc0(i)=sigc0(i)**2 - write (2,*) "End reading THETA_PDB" - enddo - close (ithep_pdb) -#endif - close(ithep) -#ifdef CRYST_SC -C -C Read the parameters of the probability distribution/energy expression -C of the side chains. -C - do i=1,ntyp - read (irotam,'(3x,i3,f8.3)',end=112,err=112) nlob(i),dsc(i) - if (i.eq.10) then - dsc_inv(i)=0.0D0 - else - dsc_inv(i)=1.0D0/dsc(i) - endif - if (i.ne.10) then - do j=1,nlob(i) - do k=1,3 - do l=1,3 - blower(l,k,j)=0.0D0 - enddo - enddo - enddo - bsc(1,i)=0.0D0 - read(irotam,*,end=112,err=112)(censc(k,1,i),k=1,3), - & ((blower(k,l,1),l=1,k),k=1,3) - censc(1,1,-i)=censc(1,1,i) - censc(2,1,-i)=censc(2,1,i) - censc(3,1,-i)=-censc(3,1,i) - - do j=2,nlob(i) - read (irotam,*,end=112,err=112) bsc(j,i) - read (irotam,*,end=112,err=112) (censc(k,j,i),k=1,3), - & ((blower(k,l,j),l=1,k),k=1,3) - censc(1,j,-i)=censc(1,j,i) - censc(2,j,-i)=censc(2,j,i) - censc(3,j,-i)=-censc(3,j,i) -C BSC is amplitude of Gaussian - enddo - do j=1,nlob(i) - do k=1,3 - do l=1,k - akl=0.0D0 - do m=1,3 - akl=akl+blower(k,m,j)*blower(l,m,j) - enddo - gaussc(k,l,j,i)=akl - gaussc(l,k,j,i)=akl - if (((k.eq.3).and.(l.ne.3)) - & .or.((l.eq.3).and.(k.ne.3))) then - gaussc(k,l,j,-i)=-akl - gaussc(l,k,j,-i)=-akl - else - gaussc(k,l,j,-i)=akl - gaussc(l,k,j,-i)=akl - endif - enddo - enddo - enddo - endif - enddo - close (irotam) - if (lprint) then - write (iout,'(/a)') 'Parameters of side-chain local geometry' - do i=1,ntyp - nlobi=nlob(i) - if (nlobi.gt.0) then - if (LaTeX) then - write (iout,'(/3a,i2,a,f8.3)') 'Residue type: ',restyp(i), - & ' # of gaussian lobes:',nlobi,' dsc:',dsc(i) - write (iout,'(1h&,a,3(2h&&,f8.3,2h&&))') - & 'log h',(bsc(j,i),j=1,nlobi) - write (iout,'(1h&,a,3(1h&,f8.3,1h&,f8.3,1h&,f8.3,1h&))') - & 'x',((censc(k,j,i),k=1,3),j=1,nlobi) - do k=1,3 - write (iout,'(2h& ,5(2x,1h&,3(f7.3,1h&)))') - & ((gaussc(k,l,j,i),l=1,3),j=1,nlobi) - enddo - else - write (iout,'(/a,8x,i1,4(25x,i1))') 'Lobe:',(j,j=1,nlobi) - write (iout,'(a,f10.4,4(16x,f10.4))') - & 'Center ',(bsc(j,i),j=1,nlobi) - write (iout,'(5(2x,3f8.4))') ((censc(k,j,i),k=1,3), - & j=1,nlobi) - write (iout,'(a)') - endif - endif - enddo - endif -#else -C -C Read scrot parameters for potentials determined from all-atom AM1 calculations -C added by Urszula Kozlowska 07/11/2007 -C - do i=1,ntyp - read (irotam,*,end=112,err=112) - if (i.eq.10) then - read (irotam,*,end=112,err=112) - else - do j=1,65 - read(irotam,*,end=112,err=112) sc_parmin(j,i) - enddo - endif - enddo -C -C Read the parameters of the probability distribution/energy expression -C of the side chains. -C - do i=1,ntyp - read (irotam_pdb,'(3x,i3,f8.3)',end=112,err=112) nlob(i),dsc(i) - if (i.eq.10) then - dsc_inv(i)=0.0D0 - else - dsc_inv(i)=1.0D0/dsc(i) - endif - if (i.ne.10) then - do j=1,nlob(i) - do k=1,3 - do l=1,3 - blower(l,k,j)=0.0D0 - enddo - enddo - enddo - bsc(1,i)=0.0D0 - read(irotam_pdb,*,end=112,err=112)(censc(k,1,i),k=1,3), - & ((blower(k,l,1),l=1,k),k=1,3) - do j=2,nlob(i) - read (irotam_pdb,*,end=112,err=112) bsc(j,i) - read (irotam_pdb,*,end=112,err=112) (censc(k,j,i),k=1,3), - & ((blower(k,l,j),l=1,k),k=1,3) - enddo - do j=1,nlob(i) - do k=1,3 - do l=1,k - akl=0.0D0 - do m=1,3 - akl=akl+blower(k,m,j)*blower(l,m,j) - enddo - gaussc(k,l,j,i)=akl - gaussc(l,k,j,i)=akl - enddo - enddo - enddo - endif - enddo - close (irotam_pdb) -#endif - close(irotam) - -#ifdef CRYST_TOR -C -C Read torsional parameters in old format -C - read (itorp,*,end=113,err=113) ntortyp,nterm_old - if (lprint)write (iout,*) 'ntortyp,nterm',ntortyp,nterm_old - read (itorp,*,end=113,err=113) (itortyp(i),i=1,ntyp) - do i=1,ntortyp - do j=1,ntortyp - read (itorp,'(a)') - do k=1,nterm_old - read (itorp,*,end=113,err=113) kk,v1(k,j,i),v2(k,j,i) - enddo - enddo - enddo - close (itorp) - if (lprint) then - write (iout,'(/a/)') 'Torsional constants:' - do i=1,ntortyp - do j=1,ntortyp - write (iout,'(2i3,6f10.5)') i,j,(v1(k,i,j),k=1,nterm_old) - write (iout,'(6x,6f10.5)') (v2(k,i,j),k=1,nterm_old) - enddo - enddo - endif -#else -C -C Read torsional parameters -C - read (itorp,*,end=113,err=113) ntortyp - read (itorp,*,end=113,err=113) (itortyp(i),i=1,ntyp) - do iblock=1,2 - do i=-ntyp,-1 - itortyp(i)=-itortyp(-i) - enddo -c write (iout,*) 'ntortyp',ntortyp - do i=0,ntortyp-1 - do j=-ntortyp+1,ntortyp-1 - read (itorp,*,end=113,err=113) nterm(i,j,iblock), - & nlor(i,j,iblock) - nterm(-i,-j,iblock)=nterm(i,j,iblock) - nlor(-i,-j,iblock)=nlor(i,j,iblock) - v0ij=0.0d0 - si=-1.0d0 - do k=1,nterm(i,j,iblock) - read (itorp,*,end=113,err=113) kk,v1(k,i,j,iblock), - & v2(k,i,j,iblock) - v1(k,-i,-j,iblock)=v1(k,i,j,iblock) - v2(k,-i,-j,iblock)=-v2(k,i,j,iblock) - v0ij=v0ij+si*v1(k,i,j,iblock) - si=-si -c write(iout,*) i,j,k,iblock,nterm(i,j,iblock) -c write(iout,*) v1(k,-i,-j,iblock),v1(k,i,j,iblock), -c &v2(k,-i,-j,iblock),v2(k,i,j,iblock) - enddo - do k=1,nlor(i,j,iblock) - read (itorp,*,end=113,err=113) kk,vlor1(k,i,j), - & vlor2(k,i,j),vlor3(k,i,j) - v0ij=v0ij+vlor1(k,i,j)/(1+vlor3(k,i,j)**2) - enddo - v0(i,j,iblock)=v0ij - v0(-i,-j,iblock)=v0ij - enddo - enddo - enddo - close (itorp) - if (lprint) then - write (iout,'(/a/)') 'Torsional constants:' - do i=1,ntortyp - do j=1,ntortyp - write (iout,*) 'ityp',i,' jtyp',j - write (iout,*) 'Fourier constants' - do k=1,nterm(i,j,iblock) - write (iout,'(2(1pe15.5))') v1(k,i,j,iblock), - & v2(k,i,j,iblock) - enddo - write (iout,*) 'Lorenz constants' - do k=1,nlor(i,j,iblock) - write (iout,'(3(1pe15.5))') - & vlor1(k,i,j),vlor2(k,i,j),vlor3(k,i,j) - enddo - enddo - enddo - endif -C -C 6/23/01 Read parameters for double torsionals -C - do iblock=1,2 - do i=0,ntortyp-1 - do j=-ntortyp+1,ntortyp-1 - do k=-ntortyp+1,ntortyp-1 - read (itordp,'(3a1)',end=114,err=114) t1,t2,t3 -c write (iout,*) "OK onelett", -c & i,j,k,t1,t2,t3 - - if (t1.ne.toronelet(i) .or. t2.ne.toronelet(j) - & .or. t3.ne.toronelet(k)) then - write (iout,*) "Error in double torsional parameter file", - & i,j,k,t1,t2,t3 -#ifdef MPI - call MPI_Finalize(Ierror) -#endif - stop "Error in double torsional parameter file" - endif - read (itordp,*,end=114,err=114) ntermd_1(i,j,k,iblock), - & ntermd_2(i,j,k,iblock) - ntermd_1(-i,-j,-k,iblock)=ntermd_1(i,j,k,iblock) - ntermd_2(-i,-j,-k,iblock)=ntermd_2(i,j,k,iblock) - read (itordp,*,end=114,err=114) (v1c(1,l,i,j,k,iblock),l=1, - & ntermd_1(i,j,k,iblock)) - read (itordp,*,end=114,err=114) (v1s(1,l,i,j,k,iblock),l=1, - & ntermd_1(i,j,k,iblock)) - read (itordp,*,end=114,err=114) (v1c(2,l,i,j,k,iblock),l=1, - & ntermd_1(i,j,k,iblock)) - read (itordp,*,end=114,err=114) (v1s(2,l,i,j,k,iblock),l=1, - & ntermd_1(i,j,k,iblock)) -C Matrix of D parameters for one dimesional foureir series - do l=1,ntermd_1(i,j,k,iblock) - v1c(1,l,-i,-j,-k,iblock)=v1c(1,l,i,j,k,iblock) - v1s(1,l,-i,-j,-k,iblock)=-v1s(1,l,i,j,k,iblock) - v1c(2,l,-i,-j,-k,iblock)=v1c(2,l,i,j,k,iblock) - v1s(2,l,-i,-j,-k,iblock)=-v1s(2,l,i,j,k,iblock) -c write(iout,*) "whcodze" , -c & v1s(2,l,-i,-j,-k,iblock),v1s(2,l,i,j,k,iblock) - enddo - read (itordp,*,end=114,err=114) ((v2c(l,m,i,j,k,iblock), - & v2c(m,l,i,j,k,iblock),v2s(l,m,i,j,k,iblock), - & v2s(m,l,i,j,k,iblock), - & m=1,l-1),l=1,ntermd_2(i,j,k,iblock)) -C Matrix of D parameters for two dimesional fourier series - do l=1,ntermd_2(i,j,k,iblock) - do m=1,l-1 - v2c(l,m,-i,-j,-k,iblock)=v2c(l,m,i,j,k,iblock) - v2c(m,l,-i,-j,-k,iblock)=v2c(m,l,i,j,k,iblock) - v2s(l,m,-i,-j,-k,iblock)=-v2s(l,m,i,j,k,iblock) - v2s(m,l,-i,-j,-k,iblock)=-v2s(m,l,i,j,k,iblock) - enddo!m - enddo!l - enddo!k - enddo!j - enddo!i - enddo!iblock - if (lprint) then - write (iout,*) - write (iout,*) 'Constants for double torsionals' - do iblock=1,2 - do i=1,ntortyp - do j=-ntortyp,ntortyp - do k=-ntortyp,ntortyp - write (iout,*) 'ityp',i,' jtyp',j,' ktyp',k, - & ' nsingle',ntermd_1(i,j,k,iblock), - & ' ndouble',ntermd_2(i,j,k,iblock) - write (iout,*) - write (iout,*) 'Single angles:' - do l=1,ntermd_1(i,j,k,iblock) - write (iout,'(i5,2f10.5,5x,2f10.5,5x,2f10.5)') l, - & v1c(1,l,i,j,k,iblock),v1s(1,l,i,j,k,iblock), - & v1c(2,l,i,j,k,iblock),v1s(2,l,i,j,k,iblock) - enddo - write (iout,*) - write (iout,*) 'Pairs of angles:' - write (iout,'(3x,20i10)') (l,l=1,ntermd_2(i,j,k,iblock)) - do l=1,ntermd_2(i,j,k,iblock) - write (iout,'(i5,20f10.5)') - & l,(v2c(l,m,i,j,k,iblock),m=1,ntermd_2(i,j,k,iblock)) - enddo - write (iout,*) - write (iout,'(3x,20i10)') (l,l=1,ntermd_2(i,j,k,iblock)) - do l=1,ntermd_2(i,j,k,iblock) - write (iout,'(i5,20f10.5)') - & l,(v2s(l,m,i,j,k,iblock),m=1,ntermd_2(i,j,k,iblock)), - & (v2s(l,m,-i,-j,-k,iblock),m=1,ntermd_2(i,j,k,iblock)) - enddo - write (iout,*) - enddo - enddo - enddo - enddo - endif -#endif -C -C 5/21/07 (AL) Read coefficients of the backbone-local sidechain-local -C correlation energies. -C - read (isccor,*,end=119,err=119) nterm_sccor - do i=1,20 - do j=1,20 - read (isccor,'(a)') - do k=1,nterm_sccor - read (isccor,*,end=119,err=119) kk,v1sccor(k,i,j), - & v2sccor(k,i,j) - enddo - enddo - enddo - close (isccor) - if (lprint) then - write (iout,'(/a/)') 'Torsional constants of SCCORR:' - do i=1,20 - do j=1,20 - write (iout,*) 'ityp',i,' jtyp',j - do k=1,nterm_sccor - write (iout,'(2(1pe15.5))') v1sccor(k,i,j),v2sccor(k,i,j) - enddo - enddo - enddo - endif -C -C 9/18/99 (AL) Read coefficients of the Fourier expansion of the local -C interaction energy of the Gly, Ala, and Pro prototypes. -C - if (lprint) then - write (iout,*) - write (iout,*) "Coefficients of the cumulants" - endif - read (ifourier,*) nloctyp - do i=0,nloctyp-1 - read (ifourier,*,end=115,err=115) - read (ifourier,*,end=115,err=115) (b(ii),ii=1,13) - if (lprint) then - write (iout,*) 'Type',i - write (iout,'(a,i2,a,f10.5)') ('b(',ii,')=',b(ii),ii=1,13) - endif - B1(1,i) = b(3) - B1(2,i) = b(5) - B1(1,-i) = b(3) - B1(2,-i) = -b(5) -c b1(1,i)=0.0d0 -c b1(2,i)=0.0d0 - B1tilde(1,i) = b(3) - B1tilde(2,i) =-b(5) - B1tilde(1,-i) =-b(3) - B1tilde(2,-i) =b(5) -c b1tilde(1,i)=0.0d0 -c b1tilde(2,i)=0.0d0 - B2(1,i) = b(2) - B2(2,i) = b(4) - B2(1,-i) =b(2) - B2(2,-i) =-b(4) - -c b2(1,i)=0.0d0 -c b2(2,i)=0.0d0 - CC(1,1,i)= b(7) - CC(2,2,i)=-b(7) - CC(2,1,i)= b(9) - CC(1,2,i)= b(9) - CC(1,1,-i)= b(7) - CC(2,2,-i)=-b(7) - CC(2,1,-i)=-b(9) - CC(1,2,-i)=-b(9) -c CC(1,1,i)=0.0d0 -c CC(2,2,i)=0.0d0 -c CC(2,1,i)=0.0d0 -c CC(1,2,i)=0.0d0 - Ctilde(1,1,i)=b(7) - Ctilde(1,2,i)=b(9) - Ctilde(2,1,i)=-b(9) - Ctilde(2,2,i)=b(7) - Ctilde(1,1,-i)=b(7) - Ctilde(1,2,-i)=-b(9) - Ctilde(2,1,-i)=b(9) - Ctilde(2,2,-i)=b(7) -c Ctilde(1,1,i)=0.0d0 -c Ctilde(1,2,i)=0.0d0 -c Ctilde(2,1,i)=0.0d0 -c Ctilde(2,2,i)=0.0d0 - DD(1,1,i)= b(6) - DD(2,2,i)=-b(6) - DD(2,1,i)= b(8) - DD(1,2,i)= b(8) - DD(1,1,-i)= b(6) - DD(2,2,-i)=-b(6) - DD(2,1,-i)=-b(8) - DD(1,2,-i)=-b(8) -c DD(1,1,i)=0.0d0 -c DD(2,2,i)=0.0d0 -c DD(2,1,i)=0.0d0 -c DD(1,2,i)=0.0d0 - Dtilde(1,1,i)=b(6) - Dtilde(1,2,i)=b(8) - Dtilde(2,1,i)=-b(8) - Dtilde(2,2,i)=b(6) - Dtilde(1,1,-i)=b(6) - Dtilde(1,2,-i)=-b(8) - Dtilde(2,1,-i)=b(8) - Dtilde(2,2,-i)=b(6) -c Dtilde(1,1,i)=0.0d0 -c Dtilde(1,2,i)=0.0d0 -c Dtilde(2,1,i)=0.0d0 -c Dtilde(2,2,i)=0.0d0 - EE(1,1,i)= b(10)+b(11) - EE(2,2,i)=-b(10)+b(11) - EE(2,1,i)= b(12)-b(13) - EE(1,2,i)= b(12)+b(13) - EE(1,1,-i)= b(10)+b(11) - EE(2,2,-i)=-b(10)+b(11) - EE(2,1,-i)=-b(12)+b(13) - EE(1,2,-i)=-b(12)-b(13) -c ee(1,1,i)=1.0d0 -c ee(2,2,i)=1.0d0 -c ee(2,1,i)=0.0d0 -c ee(1,2,i)=0.0d0 -c ee(2,1,i)=ee(1,2,i) - enddo - if (lprint) then - do i=1,nloctyp - write (iout,*) 'Type',i - write (iout,*) 'B1' - write(iout,*) B1(1,i),B1(2,i) - write (iout,*) 'B2' - write(iout,*) B2(1,i),B2(2,i) - write (iout,*) 'CC' - do j=1,2 - write (iout,'(2f10.5)') CC(j,1,i),CC(j,2,i) - enddo - write(iout,*) 'DD' - do j=1,2 - write (iout,'(2f10.5)') DD(j,1,i),DD(j,2,i) - enddo - write(iout,*) 'EE' - do j=1,2 - write (iout,'(2f10.5)') EE(j,1,i),EE(j,2,i) - enddo - enddo - endif -C -C Read electrostatic-interaction parameters -C - if (lprint) then - write (iout,*) - write (iout,'(/a)') 'Electrostatic interaction constants:' - write (iout,'(1x,a,1x,a,10x,a,11x,a,11x,a,11x,a)') - & 'IT','JT','APP','BPP','AEL6','AEL3' - endif - read (ielep,*,end=116,err=116) ((epp(i,j),j=1,2),i=1,2) - read (ielep,*,end=116,err=116) ((rpp(i,j),j=1,2),i=1,2) - read (ielep,*,end=116,err=116) ((elpp6(i,j),j=1,2),i=1,2) - read (ielep,*,end=116,err=116) ((elpp3(i,j),j=1,2),i=1,2) - close (ielep) - do i=1,2 - do j=1,2 - rri=rpp(i,j)**6 - app (i,j)=epp(i,j)*rri*rri - bpp (i,j)=-2.0D0*epp(i,j)*rri - ael6(i,j)=elpp6(i,j)*4.2D0**6 - ael3(i,j)=elpp3(i,j)*4.2D0**3 - if (lprint) write(iout,'(2i3,4(1pe15.4))')i,j,app(i,j),bpp(i,j), - & ael6(i,j),ael3(i,j) - enddo - enddo -C -C Read side-chain interaction parameters. -C - read (isidep,*,end=117,err=117) ipot,expon - if (ipot.lt.1 .or. ipot.gt.5) then - write (iout,'(2a)') 'Error while reading SC interaction', - & 'potential file - unknown potential type.' -#ifdef MPI - call MPI_Finalize(Ierror) -#endif - stop - endif - expon2=expon/2 - if(me.eq.king) - & write(iout,'(/3a,2i3)') 'Potential is ',potname(ipot), - & ', exponents are ',expon,2*expon - goto (10,20,30,30,40) ipot -C----------------------- LJ potential --------------------------------- - 10 read (isidep,*,end=116,err=116)((eps(i,j),j=i,ntyp),i=1,ntyp), - & (sigma0(i),i=1,ntyp) - if (lprint) then - write (iout,'(/a/)') 'Parameters of the LJ potential:' - write (iout,'(a/)') 'The epsilon array:' - call printmat(ntyp,ntyp,ntyp,iout,restyp,eps) - write (iout,'(/a)') 'One-body parameters:' - write (iout,'(a,4x,a)') 'residue','sigma' - write (iout,'(a3,6x,f10.5)') (restyp(i),sigma0(i),i=1,ntyp) - endif - goto 50 -C----------------------- LJK potential -------------------------------- - 20 read (isidep,*,end=116,err=116)((eps(i,j),j=i,ntyp),i=1,ntyp), - & (sigma0(i),i=1,ntyp),(rr0(i),i=1,ntyp) - if (lprint) then - write (iout,'(/a/)') 'Parameters of the LJK potential:' - write (iout,'(a/)') 'The epsilon array:' - call printmat(ntyp,ntyp,ntyp,iout,restyp,eps) - write (iout,'(/a)') 'One-body parameters:' - write (iout,'(a,4x,2a)') 'residue',' sigma ',' r0 ' - write (iout,'(a3,6x,2f10.5)') (restyp(i),sigma0(i),rr0(i), - & i=1,ntyp) - endif - goto 50 -C---------------------- GB or BP potential ----------------------------- - 30 read (isidep,*,end=116,err=116)((eps(i,j),j=i,ntyp),i=1,ntyp), - & (sigma0(i),i=1,ntyp),(sigii(i),i=1,ntyp),(chip(i),i=1,ntyp), - & (alp(i),i=1,ntyp) -C For the GB potential convert sigma'**2 into chi' - if (ipot.eq.4) then - do i=1,ntyp - chip(i)=(chip(i)-1.0D0)/(chip(i)+1.0D0) - enddo - endif - if (lprint) then - write (iout,'(/a/)') 'Parameters of the BP potential:' - write (iout,'(a/)') 'The epsilon array:' - call printmat(ntyp,ntyp,ntyp,iout,restyp,eps) - write (iout,'(/a)') 'One-body parameters:' - write (iout,'(a,4x,4a)') 'residue',' sigma ','s||/s_|_^2', - & ' chip ',' alph ' - write (iout,'(a3,6x,4f10.5)') (restyp(i),sigma0(i),sigii(i), - & chip(i),alp(i),i=1,ntyp) - endif - goto 50 -C--------------------- GBV potential ----------------------------------- - 40 read (isidep,*,end=116,err=116)((eps(i,j),j=i,ntyp),i=1,ntyp), - & (sigma0(i),i=1,ntyp),(rr0(i),i=1,ntyp),(sigii(i),i=1,ntyp), - & (chip(i),i=1,ntyp),(alp(i),i=1,ntyp) - if (lprint) then - write (iout,'(/a/)') 'Parameters of the GBV potential:' - write (iout,'(a/)') 'The epsilon array:' - call printmat(ntyp,ntyp,ntyp,iout,restyp,eps) - write (iout,'(/a)') 'One-body parameters:' - write (iout,'(a,4x,5a)') 'residue',' sigma ',' r0 ', - & 's||/s_|_^2',' chip ',' alph ' - write (iout,'(a3,6x,5f10.5)') (restyp(i),sigma0(i),rr0(i), - & sigii(i),chip(i),alp(i),i=1,ntyp) - endif - 50 continue - close (isidep) -C----------------------------------------------------------------------- -C Calculate the "working" parameters of SC interactions. - do i=2,ntyp - do j=1,i-1 - eps(i,j)=eps(j,i) - enddo - enddo - do i=1,ntyp - do j=i,ntyp - sigma(i,j)=dsqrt(sigma0(i)**2+sigma0(j)**2) - sigma(j,i)=sigma(i,j) - rs0(i,j)=dwa16*sigma(i,j) - rs0(j,i)=rs0(i,j) - enddo - enddo - if (lprint) write (iout,'(/a/10x,7a/72(1h-))') - & 'Working parameters of the SC interactions:', - & ' a ',' b ',' augm ',' sigma ',' r0 ', - & ' chi1 ',' chi2 ' - do i=1,ntyp - do j=i,ntyp - epsij=eps(i,j) - if (ipot.eq.1 .or. ipot.eq.3 .or. ipot.eq.4) then - rrij=sigma(i,j) - else - rrij=rr0(i)+rr0(j) - endif - r0(i,j)=rrij - r0(j,i)=rrij - rrij=rrij**expon - epsij=eps(i,j) - sigeps=dsign(1.0D0,epsij) - epsij=dabs(epsij) - aa(i,j)=epsij*rrij*rrij - bb(i,j)=-sigeps*epsij*rrij - aa(j,i)=aa(i,j) - bb(j,i)=bb(i,j) - if (ipot.gt.2) then - sigt1sq=sigma0(i)**2 - sigt2sq=sigma0(j)**2 - sigii1=sigii(i) - sigii2=sigii(j) - ratsig1=sigt2sq/sigt1sq - ratsig2=1.0D0/ratsig1 - chi(i,j)=(sigii1-1.0D0)/(sigii1+ratsig1) - if (j.gt.i) chi(j,i)=(sigii2-1.0D0)/(sigii2+ratsig2) - rsum_max=dsqrt(sigii1*sigt1sq+sigii2*sigt2sq) - else - rsum_max=sigma(i,j) - endif -c if (ipot.eq.1 .or. ipot.eq.3 .or. ipot.eq.4) then - sigmaii(i,j)=rsum_max - sigmaii(j,i)=rsum_max -c else -c sigmaii(i,j)=r0(i,j) -c sigmaii(j,i)=r0(i,j) -c endif -cd write (iout,*) i,j,r0(i,j),sigma(i,j),rsum_max - if ((ipot.eq.2 .or. ipot.eq.5) .and. r0(i,j).gt.rsum_max) then - r_augm=sigma(i,j)*(rrij-sigma(i,j))/rrij - augm(i,j)=epsij*r_augm**(2*expon) -c augm(i,j)=0.5D0**(2*expon)*aa(i,j) - augm(j,i)=augm(i,j) - else - augm(i,j)=0.0D0 - augm(j,i)=0.0D0 - endif - if (lprint) then - write (iout,'(2(a3,2x),3(1pe10.3),5(0pf8.3))') - & restyp(i),restyp(j),aa(i,j),bb(i,j),augm(i,j), - & sigma(i,j),r0(i,j),chi(i,j),chi(j,i) - endif - enddo - enddo -#ifdef OLDSCP -C -C Define the SC-p interaction constants (hard-coded; old style) -C - do i=1,20 -C "Soft" SC-p repulsion (causes helices to be too flat, but facilitates -C helix formation) -c aad(i,1)=0.3D0*4.0D0**12 -C Following line for constants currently implemented -C "Hard" SC-p repulsion (gives correct turn spacing in helices) - aad(i,1)=1.5D0*4.0D0**12 -c aad(i,1)=0.17D0*5.6D0**12 - aad(i,2)=aad(i,1) -C "Soft" SC-p repulsion - bad(i,1)=0.0D0 -C Following line for constants currently implemented -c aad(i,1)=0.3D0*4.0D0**6 -C "Hard" SC-p repulsion - bad(i,1)=3.0D0*4.0D0**6 -c bad(i,1)=-2.0D0*0.17D0*5.6D0**6 - bad(i,2)=bad(i,1) -c aad(i,1)=0.0D0 -c aad(i,2)=0.0D0 -c bad(i,1)=1228.8D0 -c bad(i,2)=1228.8D0 - enddo -#else -C -C 8/9/01 Read the SC-p interaction constants from file -C - do i=1,ntyp - read (iscpp,*,end=118,err=118) (eps_scp(i,j),rscp(i,j),j=1,2) - enddo - do i=1,ntyp - aad(i,1)=dabs(eps_scp(i,1))*rscp(i,1)**12 - aad(i,2)=dabs(eps_scp(i,2))*rscp(i,2)**12 - bad(i,1)=-2*eps_scp(i,1)*rscp(i,1)**6 - bad(i,2)=-2*eps_scp(i,2)*rscp(i,2)**6 - enddo - - if (lprint) then - write (iout,*) "Parameters of SC-p interactions:" - do i=1,20 - write (iout,'(4f8.3,4e12.4)') eps_scp(i,1),rscp(i,1), - & eps_scp(i,2),rscp(i,2),aad(i,1),bad(i,1),aad(i,2),bad(i,2) - enddo - endif -#endif -C -C Define the constants of the disulfide bridge -C - ebr=-5.50D0 -c -c Old arbitrary potential - commented out. -c -c dbr= 4.20D0 -c fbr= 3.30D0 -c -c Constants of the disulfide-bond potential determined based on the RHF/6-31G** -c energy surface of diethyl disulfide. -c A. Liwo and U. Kozlowska, 11/24/03 -c - D0CM = 3.78d0 - AKCM = 15.1d0 - AKTH = 11.0d0 - AKCT = 12.0d0 - V1SS =-1.08d0 - V2SS = 7.61d0 - V3SS = 13.7d0 -c akcm=0.0d0 -c akth=0.0d0 -c akct=0.0d0 -c v1ss=0.0d0 -c v2ss=0.0d0 -c v3ss=0.0d0 - - if(me.eq.king) then - write (iout,'(/a)') "Disulfide bridge parameters:" - write (iout,'(a,f10.2)') 'S-S bridge energy: ',ebr - write (iout,'(2(a,f10.2))') 'd0cm:',d0cm,' akcm:',akcm - write (iout,'(2(a,f10.2))') 'akth:',akth,' akct:',akct - write (iout,'(3(a,f10.2))') 'v1ss:',v1ss,' v2ss:',v2ss, - & ' v3ss:',v3ss - endif - return - 111 write (iout,*) "Error reading bending energy parameters." - goto 999 - 112 write (iout,*) "Error reading rotamer energy parameters." - goto 999 - 113 write (iout,*) "Error reading torsional energy parameters." - goto 999 - 114 write (iout,*) "Error reading double torsional energy parameters." - goto 999 - 115 write (iout,*) - & "Error reading cumulant (multibody energy) parameters." - goto 999 - 116 write (iout,*) "Error reading electrostatic energy parameters." - goto 999 - 117 write (iout,*) "Error reading side chain interaction parameters." - goto 999 - 118 write (iout,*) "Error reading SCp interaction parameters." - goto 999 - 119 write (iout,*) "Error reading SCCOR parameters" - 999 continue -#ifdef MPI - call MPI_Finalize(Ierror) -#endif - stop - return - end - - - subroutine getenv_loc(var, val) - character(*) var, val - -#ifdef WINIFL - character(2000) line - external ilen - - open (196,file='env',status='old',readonly,shared) - iread=0 -c write(*,*)'looking for ',var -10 read(196,*,err=11,end=11)line - iread=index(line,var) -c write(*,*)iread,' ',var,' ',line - if (iread.eq.0) go to 10 -c write(*,*)'---> ',line -11 continue - if(iread.eq.0) then -c write(*,*)'CHUJ' - val='' - else - iread=iread+ilen(var)+1 - read (line(iread:),*,err=12,end=12) val -c write(*,*)'OK: ',var,' = ',val - endif - close(196) - return -12 val='' - close(196) -#elif (defined CRAY) - integer lennam,lenval,ierror -c -c getenv using a POSIX call, useful on the T3D -c Sept 1996, comment out error check on advice of H. Pritchard -c - lennam = len(var) - if(lennam.le.0) stop '--error calling getenv--' - call pxfgetenv(var,lennam,val,lenval,ierror) -c-HP- if(ierror.ne.0) stop '--error returned by pxfgetenv--' -#else - call getenv(var,val) -#endif - - return - end diff --git a/source/unres/src_CSA_DiL/pinorm.f b/source/unres/src_CSA_DiL/pinorm.f deleted file mode 100644 index 91392bf..0000000 --- a/source/unres/src_CSA_DiL/pinorm.f +++ /dev/null @@ -1,17 +0,0 @@ - double precision function pinorm(x) - implicit real*8 (a-h,o-z) -c -c this function takes an angle (in radians) and puts it in the range of -c -pi to +pi. -c - integer n - include 'COMMON.GEO' - n = x / dwapi - pinorm = x - n * dwapi - if ( pinorm .gt. pi ) then - pinorm = pinorm - dwapi - else if ( pinorm .lt. - pi ) then - pinorm = pinorm + dwapi - end if - return - end diff --git a/source/unres/src_CSA_DiL/printmat.f b/source/unres/src_CSA_DiL/printmat.f deleted file mode 100644 index be2b38f..0000000 --- a/source/unres/src_CSA_DiL/printmat.f +++ /dev/null @@ -1,16 +0,0 @@ - subroutine printmat(ldim,m,n,iout,key,a) - character*3 key(n) - double precision a(ldim,n) - do 1 i=1,n,8 - nlim=min0(i+7,n) - write (iout,1000) (key(k),k=i,nlim) - write (iout,1020) - 1000 format (/5x,8(6x,a3)) - 1020 format (/80(1h-)/) - do 2 j=1,n - write (iout,1010) key(j),(a(j,k),k=i,nlim) - 2 continue - 1 continue - 1010 format (a3,2x,8(f9.4)) - return - end diff --git a/source/unres/src_CSA_DiL/prng_32.F b/source/unres/src_CSA_DiL/prng_32.F deleted file mode 100644 index 9448f31..0000000 --- a/source/unres/src_CSA_DiL/prng_32.F +++ /dev/null @@ -1,1077 +0,0 @@ -#if defined(AIX) || defined(AMD64) - real*8 function prng_next(mel) - implicit none - integer me,mel -c -c Calling sequence: -c = prng_next ( ) -c = vprng ( , , ) -c -c This code is based on a sequential algorithm provided by Mal Kalos. -c This version uses a single 64-bit word to store the initial seeds -c and additive constants. -c A 64-bit floating point number is returned. -c -c The array "iparam" is full-word aligned, being padded by zeros to -c let each generator be on a subpage boundary. -c That is, rows 1 and 2 in a given column of the array are for real, -c rows 3-16 are bogus. -c -c July 12, 1993: double the number of sequences. We should have been -c using two packets per seed, rather than four -c October 31, 1993: merge the two arrays of seeds and constants, -c and switch to 64-bit arithmetic. -c June 1994: port to RS6K. Internal state is kept as 2 64-bit integers -c The ishft function is defined only on 32-bit integers, so we will -c shift numbers by dividing by 2**11 and then adding on 2**53-1. -c -c November 1994: ishift now works on 64-bit numbers (though it gives a -c warning). Thus we go back to using it. John Zollweg also added the -c vprng() routine to return vectors of real*8 random numbers. -c - real*8 recip53 - parameter ( recip53 = 2.0D0**(-53) ) - integer*8 two - parameter ( two = 2**11) - integer*8 m,ishift -c parameter ( m = 34522712143931 ) ! 11**13 -c parameter ( ishift = 9007199254740991 ) ! 2**53-1 - - integer nmax - integer*8 iparam - parameter(nmax=1021) - common/ksrprng/iparam(2,0:nmax) - - integer*8 next - -crc g77 doesn't support integer*8 constants - m = dint(34522712143931.0d0) - ishift = dint(9007199254740991.0d0) - if(mel.gt.nmax) then - me=mod(mel,nmax) - else - me=mel - endif -c RS6K porting note: ishift now takes 64-bit integers , with a warning - if ( 0.le.me .and. me.le.nmax ) then - next = iparam(1,me)*m + iparam(2,me) - iparam(1,me) = next - prng_next = recip53 * ishft( next, -11 ) - else - prng_next=-1.0D0 - endif - - end -c -c vprng(me, rn, num) Get a vector of random numbers -c - subroutine vprng(me,rn,num) - real*8 recip53, rn(1) - parameter ( recip53 = 2.0D0**(-53) ) - integer*8 m,iparam -c parameter ( m = 34522712143931 ) ! 11**13 - integer nmax, num, me - parameter(nmax=1021) - common/ksrprng/iparam(2,0:nmax) - - integer*8 next - -crc g77 doesn't support integer*8 constants - m = dint(34522712143931.0d0) - - if ( 0.le.me .and. me.le.nmax ) then - do 1 i=1,num - next = iparam(1,me)*m + iparam(2,me) - iparam(1,me) = next - rn(i) = recip53 * ishft( next, -11 ) - 1 continue - else - rn(1)=-1.0D0 - endif - return - end - -c -c prng_chkpnt Get the current state of a generator -c -c Calling sequence: -c logical prng_chkpnt, status -c status = prng_chkpnt (me, iseed) where -c -c me is the particular generator whose state is being gotten -c seed is an 4-element integer array where the "l"-values will be saved -c - logical function prng_chkpnt (me, iseed) - implicit none - integer me - integer*8 iseed - - integer nmax - integer*8 iparam - parameter(nmax=1021) - common/ksrprng/iparam(2,0:nmax) - - if (me .lt. 0 .or. me .gt. nmax) then - prng_chkpnt=.false. - else - prng_chkpnt=.true. - iseed=iparam(1,me) - endif - end -c -c prng_restart Restart generator from a saved state -c -c Calling sequence: -c logical prng_restart, status -c status = prng_restart (me, iseed) where -c -c me is the particular generator being restarted -c iseed is a 8-byte integer containing the "l"-values -c - logical function prng_restart (mel, iseed) - implicit none - integer me,mel - integer*8 iseed - - integer nmax - integer*8 iparam - parameter(nmax=1021) - common/ksrprng/iparam(2,0:nmax) - - if(mel.gt.nmax) then - me=mod(mel,nmax) - else - me=mel - endif - if (me .lt. 0 .or. me .gt. nmax) then - prng_restart=.false. - return - else - prng_restart=.true. - iparam(1,me)=iseed - endif - end - - block data prngblk - parameter(nmax=1021) - integer*8 iparam - common/ksrprng/iparam(2,0:nmax) - data (iparam(1,i),iparam(2,i),i= 0, 29) / - + 11848219, 11848219, 11848237, 11848237, 11848241, 11848241, - + 11848247, 11848247, 11848253, 11848253, 11848271, 11848271, - + 11848297, 11848297, 11848313, 11848313, 11848339, 11848339, - + 11848351, 11848351, 11848357, 11848357, 11848363, 11848363, - + 11848367, 11848367, 11848373, 11848373, 11848379, 11848379, - + 11848393, 11848393, 11848433, 11848433, 11848451, 11848451, - + 11848469, 11848469, 11848477, 11848477, 11848489, 11848489, - + 11848493, 11848493, 11848513, 11848513, 11848523, 11848523, - + 11848531, 11848531, 11848537, 11848537, 11848553, 11848553, - + 11848589, 11848589, 11848591, 11848591, 11848601, 11848601 / - data (iparam(1,i),iparam(2,i),i= 30, 59) / - + 11848619, 11848619, 11848637, 11848637, 11848663, 11848663, - + 11848673, 11848673, 11848679, 11848679, 11848691, 11848691, - + 11848699, 11848699, 11848709, 11848709, 11848717, 11848717, - + 11848721, 11848721, 11848729, 11848729, 11848741, 11848741, - + 11848751, 11848751, 11848757, 11848757, 11848787, 11848787, - + 11848801, 11848801, 11848829, 11848829, 11848853, 11848853, - + 11848861, 11848861, 11848867, 11848867, 11848873, 11848873, - + 11848891, 11848891, 11848909, 11848909, 11848919, 11848919, - + 11848931, 11848931, 11848937, 11848937, 11848961, 11848961, - + 11848981, 11848981, 11849021, 11849021, 11849039, 11849039 / - data (iparam(1,i),iparam(2,i),i= 60, 89) / - + 11849053, 11849053, 11849059, 11849059, 11849069, 11849069, - + 11849077, 11849077, 11849087, 11849087, 11849093, 11849093, - + 11849107, 11849107, 11849111, 11849111, 11849129, 11849129, - + 11849137, 11849137, 11849177, 11849177, 11849183, 11849183, - + 11849203, 11849203, 11849231, 11849231, 11849237, 11849237, - + 11849239, 11849239, 11849249, 11849249, 11849251, 11849251, - + 11849269, 11849269, 11849273, 11849273, 11849291, 11849291, - + 11849297, 11849297, 11849309, 11849309, 11849339, 11849339, - + 11849359, 11849359, 11849363, 11849363, 11849399, 11849399, - + 11849401, 11849401, 11849413, 11849413, 11849417, 11849417 / - data (iparam(1,i),iparam(2,i),i= 90, 119) / - + 11849437, 11849437, 11849443, 11849443, 11849473, 11849473, - + 11849491, 11849491, 11849503, 11849503, 11849507, 11849507, - + 11849557, 11849557, 11849567, 11849567, 11849569, 11849569, - + 11849573, 11849573, 11849587, 11849587, 11849599, 11849599, - + 11849633, 11849633, 11849641, 11849641, 11849653, 11849653, - + 11849659, 11849659, 11849671, 11849671, 11849683, 11849683, - + 11849689, 11849689, 11849693, 11849693, 11849699, 11849699, - + 11849701, 11849701, 11849707, 11849707, 11849713, 11849713, - + 11849723, 11849723, 11849741, 11849741, 11849743, 11849743, - + 11849759, 11849759, 11849767, 11849767, 11849771, 11849771 / - data (iparam(1,i),iparam(2,i),i= 120, 149) / - + 11849791, 11849791, 11849801, 11849801, 11849809, 11849809, - + 11849813, 11849813, 11849869, 11849869, 11849881, 11849881, - + 11849891, 11849891, 11849909, 11849909, 11849923, 11849923, - + 11849933, 11849933, 11849947, 11849947, 11849987, 11849987, - + 11850001, 11850001, 11850011, 11850011, 11850019, 11850019, - + 11850023, 11850023, 11850031, 11850031, 11850049, 11850049, - + 11850061, 11850061, 11850073, 11850073, 11850077, 11850077, - + 11850103, 11850103, 11850109, 11850109, 11850121, 11850121, - + 11850127, 11850127, 11850133, 11850133, 11850149, 11850149, - + 11850161, 11850161, 11850169, 11850169, 11850191, 11850191 / - data (iparam(1,i),iparam(2,i),i= 150, 179) / - + 11850233, 11850233, 11850247, 11850247, 11850259, 11850259, - + 11850269, 11850269, 11850283, 11850283, 11850301, 11850301, - + 11850341, 11850341, 11850347, 11850347, 11850367, 11850367, - + 11850373, 11850373, 11850379, 11850379, 11850389, 11850389, - + 11850407, 11850407, 11850427, 11850427, 11850437, 11850437, - + 11850469, 11850469, 11850481, 11850481, 11850511, 11850511, - + 11850529, 11850529, 11850541, 11850541, 11850557, 11850557, - + 11850607, 11850607, 11850611, 11850611, 11850667, 11850667, - + 11850677, 11850677, 11850679, 11850679, 11850701, 11850701, - + 11850731, 11850731, 11850739, 11850739, 11850749, 11850749 / - data (iparam(1,i),iparam(2,i),i= 180, 209) / - + 11850791, 11850791, 11850803, 11850803, 11850829, 11850829, - + 11850833, 11850833, 11850859, 11850859, 11850877, 11850877, - + 11850899, 11850899, 11850907, 11850907, 11850913, 11850913, - + 11850919, 11850919, 11850931, 11850931, 11850941, 11850941, - + 11850947, 11850947, 11850953, 11850953, 11850961, 11850961, - + 11850983, 11850983, 11850991, 11850991, 11850997, 11850997, - + 11851031, 11851031, 11851033, 11851033, 11851051, 11851051, - + 11851061, 11851061, 11851067, 11851067, 11851093, 11851093, - + 11851109, 11851109, 11851123, 11851123, 11851127, 11851127, - + 11851139, 11851139, 11851157, 11851157, 11851163, 11851163 / - data (iparam(1,i),iparam(2,i),i= 210, 239) / - + 11851181, 11851181, 11851201, 11851201, 11851219, 11851219, - + 11851291, 11851291, 11851303, 11851303, 11851309, 11851309, - + 11851313, 11851313, 11851319, 11851319, 11851349, 11851349, - + 11851351, 11851351, 11851361, 11851361, 11851373, 11851373, - + 11851403, 11851403, 11851409, 11851409, 11851423, 11851423, - + 11851447, 11851447, 11851451, 11851451, 11851481, 11851481, - + 11851493, 11851493, 11851519, 11851519, 11851523, 11851523, - + 11851529, 11851529, 11851547, 11851547, 11851549, 11851549, - + 11851559, 11851559, 11851577, 11851577, 11851589, 11851589, - + 11851591, 11851591, 11851597, 11851597, 11851603, 11851603 / - data (iparam(1,i),iparam(2,i),i= 240, 269) / - + 11851607, 11851607, 11851613, 11851613, 11851621, 11851621, - + 11851627, 11851627, 11851639, 11851639, 11851673, 11851673, - + 11851681, 11851681, 11851727, 11851727, 11851753, 11851753, - + 11851759, 11851759, 11851787, 11851787, 11851793, 11851793, - + 11851799, 11851799, 11851813, 11851813, 11851841, 11851841, - + 11851859, 11851859, 11851867, 11851867, 11851891, 11851891, - + 11851909, 11851909, 11851919, 11851919, 11851927, 11851927, - + 11851933, 11851933, 11851949, 11851949, 11851967, 11851967, - + 11851997, 11851997, 11852017, 11852017, 11852051, 11852051, - + 11852053, 11852053, 11852059, 11852059, 11852083, 11852083 / - data (iparam(1,i),iparam(2,i),i= 270, 299) / - + 11852089, 11852089, 11852129, 11852129, 11852147, 11852147, - + 11852149, 11852149, 11852161, 11852161, 11852171, 11852171, - + 11852177, 11852177, 11852209, 11852209, 11852221, 11852221, - + 11852237, 11852237, 11852251, 11852251, 11852263, 11852263, - + 11852273, 11852273, 11852279, 11852279, 11852287, 11852287, - + 11852293, 11852293, 11852297, 11852297, 11852303, 11852303, - + 11852311, 11852311, 11852327, 11852327, 11852339, 11852339, - + 11852341, 11852341, 11852359, 11852359, 11852369, 11852369, - + 11852437, 11852437, 11852453, 11852453, 11852459, 11852459, - + 11852473, 11852473, 11852513, 11852513, 11852531, 11852531 / - data (iparam(1,i),iparam(2,i),i= 300, 329) / - + 11852537, 11852537, 11852539, 11852539, 11852557, 11852557, - + 11852573, 11852573, 11852579, 11852579, 11852591, 11852591, - + 11852609, 11852609, 11852611, 11852611, 11852623, 11852623, - + 11852641, 11852641, 11852647, 11852647, 11852657, 11852657, - + 11852663, 11852663, 11852717, 11852717, 11852719, 11852719, - + 11852741, 11852741, 11852759, 11852759, 11852767, 11852767, - + 11852773, 11852773, 11852803, 11852803, 11852807, 11852807, - + 11852809, 11852809, 11852831, 11852831, 11852833, 11852833, - + 11852837, 11852837, 11852857, 11852857, 11852873, 11852873, - + 11852879, 11852879, 11852891, 11852891, 11852917, 11852917 / - data (iparam(1,i),iparam(2,i),i= 330, 359) / - + 11852921, 11852921, 11852957, 11852957, 11852959, 11852959, - + 11852969, 11852969, 11852983, 11852983, 11852989, 11852989, - + 11853001, 11853001, 11853013, 11853013, 11853019, 11853019, - + 11853031, 11853031, 11853089, 11853089, 11853133, 11853133, - + 11853157, 11853157, 11853161, 11853161, 11853181, 11853181, - + 11853203, 11853203, 11853217, 11853217, 11853221, 11853221, - + 11853227, 11853227, 11853241, 11853241, 11853307, 11853307, - + 11853319, 11853319, 11853323, 11853323, 11853329, 11853329, - + 11853367, 11853367, 11853383, 11853383, 11853419, 11853419, - + 11853421, 11853421, 11853427, 11853427, 11853449, 11853449 / - data (iparam(1,i),iparam(2,i),i= 360, 389) / - + 11853451, 11853451, 11853463, 11853463, 11853529, 11853529, - + 11853557, 11853557, 11853571, 11853571, 11853601, 11853601, - + 11853613, 11853613, 11853617, 11853617, 11853629, 11853629, - + 11853649, 11853649, 11853659, 11853659, 11853679, 11853679, - + 11853689, 11853689, 11853719, 11853719, 11853731, 11853731, - + 11853757, 11853757, 11853761, 11853761, 11853773, 11853773, - + 11853791, 11853791, 11853817, 11853817, 11853839, 11853839, - + 11853847, 11853847, 11853857, 11853857, 11853869, 11853869, - + 11853883, 11853883, 11853887, 11853887, 11853889, 11853889, - + 11853893, 11853893, 11853899, 11853899, 11853911, 11853911 / - data (iparam(1,i),iparam(2,i),i= 390, 419) / - + 11853931, 11853931, 11853943, 11853943, 11853979, 11853979, - + 11853991, 11853991, 11854001, 11854001, 11854009, 11854009, - + 11854019, 11854019, 11854057, 11854057, 11854061, 11854061, - + 11854147, 11854147, 11854159, 11854159, 11854163, 11854163, - + 11854169, 11854169, 11854211, 11854211, 11854247, 11854247, - + 11854261, 11854261, 11854267, 11854267, 11854279, 11854279, - + 11854303, 11854303, 11854327, 11854327, 11854331, 11854331, - + 11854333, 11854333, 11854363, 11854363, 11854379, 11854379, - + 11854399, 11854399, 11854411, 11854411, 11854429, 11854429, - + 11854433, 11854433, 11854439, 11854439, 11854441, 11854441 / - data (iparam(1,i),iparam(2,i),i= 420, 449) / - + 11854463, 11854463, 11854477, 11854477, 11854489, 11854489, - + 11854517, 11854517, 11854519, 11854519, 11854523, 11854523, - + 11854529, 11854529, 11854567, 11854567, 11854571, 11854571, - + 11854573, 11854573, 11854603, 11854603, 11854607, 11854607, - + 11854681, 11854681, 11854691, 11854691, 11854709, 11854709, - + 11854723, 11854723, 11854757, 11854757, 11854783, 11854783, - + 11854793, 11854793, 11854813, 11854813, 11854847, 11854847, - + 11854853, 11854853, 11854873, 11854873, 11854877, 11854877, - + 11854883, 11854883, 11854891, 11854891, 11854897, 11854897, - + 11854901, 11854901, 11854919, 11854919, 11854937, 11854937 / - data (iparam(1,i),iparam(2,i),i= 450, 479) / - + 11854961, 11854961, 11854963, 11854963, 11854979, 11854979, - + 11855003, 11855003, 11855017, 11855017, 11855023, 11855023, - + 11855029, 11855029, 11855033, 11855033, 11855111, 11855111, - + 11855141, 11855141, 11855147, 11855147, 11855149, 11855149, - + 11855159, 11855159, 11855177, 11855177, 11855203, 11855203, - + 11855213, 11855213, 11855219, 11855219, 11855231, 11855231, - + 11855267, 11855267, 11855269, 11855269, 11855303, 11855303, - + 11855309, 11855309, 11855321, 11855321, 11855329, 11855329, - + 11855339, 11855339, 11855351, 11855351, 11855353, 11855353, - + 11855357, 11855357, 11855359, 11855359, 11855381, 11855381 / - data (iparam(1,i),iparam(2,i),i= 480, 509) / - + 11855383, 11855383, 11855387, 11855387, 11855399, 11855399, - + 11855407, 11855407, 11855413, 11855413, 11855489, 11855489, - + 11855491, 11855491, 11855507, 11855507, 11855521, 11855521, - + 11855531, 11855531, 11855549, 11855549, 11855551, 11855551, - + 11855567, 11855567, 11855581, 11855581, 11855587, 11855587, - + 11855593, 11855593, 11855633, 11855633, 11855653, 11855653, - + 11855663, 11855663, 11855687, 11855687, 11855689, 11855689, - + 11855699, 11855699, 11855713, 11855713, 11855731, 11855731, - + 11855737, 11855737, 11855743, 11855743, 11855747, 11855747, - + 11855759, 11855759, 11855773, 11855773, 11855801, 11855801 / - data (iparam(1,i),iparam(2,i),i= 510, 539) / - + 11855807, 11855807, 11855813, 11855813, 11855827, 11855827, - + 11855839, 11855839, 11855869, 11855869, 11855881, 11855881, - + 11855903, 11855903, 11855911, 11855911, 11855933, 11855933, - + 11855959, 11855959, 11855989, 11855989, 11855993, 11855993, - + 11855999, 11855999, 11856001, 11856001, 11856023, 11856023, - + 11856049, 11856049, 11856071, 11856071, 11856101, 11856101, - + 11856107, 11856107, 11856113, 11856113, 11856139, 11856139, - + 11856151, 11856151, 11856161, 11856161, 11856179, 11856179, - + 11856193, 11856193, 11856199, 11856199, 11856223, 11856223, - + 11856239, 11856239, 11856263, 11856263, 11856269, 11856269 / - data (iparam(1,i),iparam(2,i),i= 540, 569) / - + 11856281, 11856281, 11856287, 11856287, 11856307, 11856307, - + 11856311, 11856311, 11856329, 11856329, 11856343, 11856343, - + 11856359, 11856359, 11856371, 11856371, 11856373, 11856373, - + 11856409, 11856409, 11856419, 11856419, 11856461, 11856461, - + 11856469, 11856469, 11856473, 11856473, 11856479, 11856479, - + 11856511, 11856511, 11856517, 11856517, 11856541, 11856541, - + 11856547, 11856547, 11856553, 11856553, 11856583, 11856583, - + 11856629, 11856629, 11856641, 11856641, 11856653, 11856653, - + 11856659, 11856659, 11856673, 11856673, 11856697, 11856697, - + 11856709, 11856709, 11856727, 11856727, 11856731, 11856731 / - data (iparam(1,i),iparam(2,i),i= 570, 599) / - + 11856763, 11856763, 11856809, 11856809, 11856811, 11856811, - + 11856821, 11856821, 11856841, 11856841, 11856857, 11856857, - + 11856877, 11856877, 11856883, 11856883, 11856899, 11856899, - + 11856919, 11856919, 11856947, 11856947, 11856953, 11856953, - + 11856979, 11856979, 11857003, 11857003, 11857033, 11857033, - + 11857037, 11857037, 11857039, 11857039, 11857049, 11857049, - + 11857061, 11857061, 11857067, 11857067, 11857073, 11857073, - + 11857081, 11857081, 11857091, 11857091, 11857093, 11857093, - + 11857099, 11857099, 11857123, 11857123, 11857127, 11857127, - + 11857147, 11857147, 11857151, 11857151, 11857193, 11857193 / - data (iparam(1,i),iparam(2,i),i= 600, 629) / - + 11857217, 11857217, 11857229, 11857229, 11857243, 11857243, - + 11857249, 11857249, 11857267, 11857267, 11857277, 11857277, - + 11857291, 11857291, 11857303, 11857303, 11857309, 11857309, - + 11857327, 11857327, 11857331, 11857331, 11857333, 11857333, - + 11857361, 11857361, 11857367, 11857367, 11857369, 11857369, - + 11857393, 11857393, 11857399, 11857399, 11857409, 11857409, - + 11857421, 11857421, 11857423, 11857423, 11857451, 11857451, - + 11857453, 11857453, 11857457, 11857457, 11857477, 11857477, - + 11857481, 11857481, 11857493, 11857493, 11857499, 11857499, - + 11857519, 11857519, 11857523, 11857523, 11857529, 11857529 / - data (iparam(1,i),iparam(2,i),i= 630, 659) / - + 11857543, 11857543, 11857561, 11857561, 11857589, 11857589, - + 11857591, 11857591, 11857613, 11857613, 11857621, 11857621, - + 11857661, 11857661, 11857667, 11857667, 11857693, 11857693, - + 11857697, 11857697, 11857709, 11857709, 11857711, 11857711, - + 11857751, 11857751, 11857753, 11857753, 11857759, 11857759, - + 11857763, 11857763, 11857777, 11857777, 11857787, 11857787, - + 11857793, 11857793, 11857801, 11857801, 11857817, 11857817, - + 11857819, 11857819, 11857831, 11857831, 11857837, 11857837, - + 11857873, 11857873, 11857877, 11857877, 11857883, 11857883, - + 11857889, 11857889, 11857907, 11857907, 11857913, 11857913 / - data (iparam(1,i),iparam(2,i),i= 660, 689) / - + 11857931, 11857931, 11857969, 11857969, 11857991, 11857991, - + 11857999, 11857999, 11858009, 11858009, 11858017, 11858017, - + 11858023, 11858023, 11858029, 11858029, 11858039, 11858039, - + 11858051, 11858051, 11858057, 11858057, 11858059, 11858059, - + 11858101, 11858101, 11858111, 11858111, 11858131, 11858131, - + 11858149, 11858149, 11858159, 11858159, 11858177, 11858177, - + 11858191, 11858191, 11858201, 11858201, 11858227, 11858227, - + 11858243, 11858243, 11858267, 11858267, 11858269, 11858269, - + 11858279, 11858279, 11858281, 11858281, 11858291, 11858291, - + 11858311, 11858311, 11858323, 11858323, 11858359, 11858359 / - data (iparam(1,i),iparam(2,i),i= 690, 719) / - + 11858377, 11858377, 11858381, 11858381, 11858387, 11858387, - + 11858423, 11858423, 11858443, 11858443, 11858447, 11858447, - + 11858479, 11858479, 11858533, 11858533, 11858543, 11858543, - + 11858551, 11858551, 11858557, 11858557, 11858569, 11858569, - + 11858573, 11858573, 11858579, 11858579, 11858597, 11858597, - + 11858599, 11858599, 11858629, 11858629, 11858657, 11858657, - + 11858659, 11858659, 11858683, 11858683, 11858701, 11858701, - + 11858719, 11858719, 11858723, 11858723, 11858729, 11858729, - + 11858747, 11858747, 11858779, 11858779, 11858783, 11858783, - + 11858801, 11858801, 11858807, 11858807, 11858813, 11858813 / - data (iparam(1,i),iparam(2,i),i= 720, 749) / - + 11858839, 11858839, 11858851, 11858851, 11858893, 11858893, - + 11858897, 11858897, 11858921, 11858921, 11858947, 11858947, - + 11858953, 11858953, 11858969, 11858969, 11858971, 11858971, - + 11858989, 11858989, 11859017, 11859017, 11859031, 11859031, - + 11859049, 11859049, 11859061, 11859061, 11859073, 11859073, - + 11859077, 11859077, 11859079, 11859079, 11859083, 11859083, - + 11859101, 11859101, 11859109, 11859109, 11859137, 11859137, - + 11859139, 11859139, 11859151, 11859151, 11859157, 11859157, - + 11859163, 11859163, 11859167, 11859167, 11859179, 11859179, - + 11859187, 11859187, 11859229, 11859229, 11859233, 11859233 / - data (iparam(1,i),iparam(2,i),i= 750, 779) / - + 11859241, 11859241, 11859247, 11859247, 11859269, 11859269, - + 11859293, 11859293, 11859307, 11859307, 11859311, 11859311, - + 11859349, 11859349, 11859359, 11859359, 11859371, 11859371, - + 11859377, 11859377, 11859383, 11859383, 11859427, 11859427, - + 11859433, 11859433, 11859451, 11859451, 11859457, 11859457, - + 11859461, 11859461, 11859473, 11859473, 11859481, 11859481, - + 11859487, 11859487, 11859493, 11859493, 11859503, 11859503, - + 11859509, 11859509, 11859539, 11859539, 11859541, 11859541, - + 11859563, 11859563, 11859569, 11859569, 11859571, 11859571, - + 11859583, 11859583, 11859599, 11859599, 11859611, 11859611 / - data (iparam(1,i),iparam(2,i),i= 780, 809) / - + 11859643, 11859643, 11859707, 11859707, 11859713, 11859713, - + 11859719, 11859719, 11859739, 11859739, 11859751, 11859751, - + 11859791, 11859791, 11859817, 11859817, 11859821, 11859821, - + 11859833, 11859833, 11859847, 11859847, 11859853, 11859853, - + 11859877, 11859877, 11859889, 11859889, 11859893, 11859893, - + 11859901, 11859901, 11859907, 11859907, 11859917, 11859917, - + 11859923, 11859923, 11859929, 11859929, 11859961, 11859961, - + 11859979, 11859979, 11859989, 11859989, 11859997, 11859997, - + 11860021, 11860021, 11860031, 11860031, 11860039, 11860039, - + 11860049, 11860049, 11860081, 11860081, 11860087, 11860087 / - data (iparam(1,i),iparam(2,i),i= 810, 839) / - + 11860097, 11860097, 11860103, 11860103, 11860109, 11860109, - + 11860117, 11860117, 11860133, 11860133, 11860151, 11860151, - + 11860171, 11860171, 11860207, 11860207, 11860223, 11860223, - + 11860231, 11860231, 11860243, 11860243, 11860267, 11860267, - + 11860301, 11860301, 11860307, 11860307, 11860327, 11860327, - + 11860379, 11860379, 11860397, 11860397, 11860411, 11860411, - + 11860469, 11860469, 11860477, 11860477, 11860483, 11860483, - + 11860487, 11860487, 11860489, 11860489, 11860493, 11860493, - + 11860517, 11860517, 11860547, 11860547, 11860567, 11860567, - + 11860573, 11860573, 11860613, 11860613, 11860619, 11860619 / - data (iparam(1,i),iparam(2,i),i= 840, 869) / - + 11860627, 11860627, 11860637, 11860637, 11860643, 11860643, - + 11860649, 11860649, 11860661, 11860661, 11860669, 11860669, - + 11860687, 11860687, 11860691, 11860691, 11860697, 11860697, - + 11860699, 11860699, 11860703, 11860703, 11860727, 11860727, - + 11860741, 11860741, 11860753, 11860753, 11860777, 11860777, - + 11860787, 11860787, 11860789, 11860789, 11860811, 11860811, - + 11860837, 11860837, 11860859, 11860859, 11860867, 11860867, - + 11860889, 11860889, 11860897, 11860897, 11860963, 11860963, - + 11860969, 11860969, 11860973, 11860973, 11860993, 11860993, - + 11861011, 11861011, 11861033, 11861033, 11861071, 11861071 / - data (iparam(1,i),iparam(2,i),i= 870, 899) / - + 11861081, 11861081, 11861089, 11861089, 11861093, 11861093, - + 11861099, 11861099, 11861107, 11861107, 11861131, 11861131, - + 11861141, 11861141, 11861159, 11861159, 11861167, 11861167, - + 11861191, 11861191, 11861197, 11861197, 11861207, 11861207, - + 11861219, 11861219, 11861221, 11861221, 11861231, 11861231, - + 11861237, 11861237, 11861273, 11861273, 11861293, 11861293, - + 11861299, 11861299, 11861303, 11861303, 11861327, 11861327, - + 11861351, 11861351, 11861357, 11861357, 11861363, 11861363, - + 11861371, 11861371, 11861401, 11861401, 11861407, 11861407, - + 11861411, 11861411, 11861413, 11861413, 11861429, 11861429 / - data (iparam(1,i),iparam(2,i),i= 900, 929) / - + 11861441, 11861441, 11861467, 11861467, 11861527, 11861527, - + 11861539, 11861539, 11861543, 11861543, 11861557, 11861557, - + 11861569, 11861569, 11861573, 11861573, 11861579, 11861579, - + 11861581, 11861581, 11861599, 11861599, 11861611, 11861611, - + 11861617, 11861617, 11861627, 11861627, 11861639, 11861639, - + 11861651, 11861651, 11861659, 11861659, 11861671, 11861671, - + 11861683, 11861683, 11861687, 11861687, 11861693, 11861693, - + 11861701, 11861701, 11861711, 11861711, 11861713, 11861713, - + 11861749, 11861749, 11861791, 11861791, 11861803, 11861803, - + 11861819, 11861819, 11861827, 11861827, 11861849, 11861849 / - data (iparam(1,i),iparam(2,i),i= 930, 959) / - + 11861873, 11861873, 11861879, 11861879, 11861887, 11861887, - + 11861911, 11861911, 11861917, 11861917, 11861921, 11861921, - + 11861923, 11861923, 11861953, 11861953, 11861959, 11861959, - + 11861987, 11861987, 11862007, 11862007, 11862013, 11862013, - + 11862029, 11862029, 11862031, 11862031, 11862049, 11862049, - + 11862077, 11862077, 11862083, 11862083, 11862157, 11862157, - + 11862167, 11862167, 11862199, 11862199, 11862203, 11862203, - + 11862217, 11862217, 11862223, 11862223, 11862229, 11862229, - + 11862233, 11862233, 11862239, 11862239, 11862241, 11862241, - + 11862259, 11862259, 11862269, 11862269, 11862271, 11862271 / - data (iparam(1,i),iparam(2,i),i= 960, 989) / - + 11862293, 11862293, 11862307, 11862307, 11862313, 11862313, - + 11862317, 11862317, 11862343, 11862343, 11862353, 11862353, - + 11862373, 11862373, 11862391, 11862391, 11862439, 11862439, - + 11862469, 11862469, 11862493, 11862493, 11862527, 11862527, - + 11862547, 11862547, 11862563, 11862563, 11862569, 11862569, - + 11862577, 11862577, 11862581, 11862581, 11862611, 11862611, - + 11862623, 11862623, 11862661, 11862661, 11862673, 11862673, - + 11862679, 11862679, 11862701, 11862701, 11862703, 11862703, - + 11862713, 11862713, 11862761, 11862761, 11862791, 11862791, - + 11862803, 11862803, 11862839, 11862839, 11862841, 11862841 / - data (iparam(1,i),iparam(2,i),i= 990,1019) / - + 11862857, 11862857, 11862869, 11862869, 11862881, 11862881, - + 11862911, 11862911, 11862919, 11862919, 11862959, 11862959, - + 11862979, 11862979, 11862989, 11862989, 11862997, 11862997, - + 11863021, 11863021, 11863031, 11863031, 11863037, 11863037, - + 11863039, 11863039, 11863057, 11863057, 11863067, 11863067, - + 11863073, 11863073, 11863099, 11863099, 11863109, 11863109, - + 11863121, 11863121, 11863123, 11863123, 11863133, 11863133, - + 11863151, 11863151, 11863153, 11863153, 11863171, 11863171, - + 11863183, 11863183, 11863207, 11863207, 11863213, 11863213, - + 11863237, 11863237, 11863249, 11863249, 11863253, 11863253 / - data (iparam(1,i),iparam(2,i),i=1020,1021) / - + 11863259, 11863259, 11863279, 11863279 / - end -#else - real function prng_next(me) -crc logical prng_restart, prng_chkpnt -c -c Calling sequence: -c = prng_next ( ) -c -c This code is based on a sequential algorithm provided by Mal Kalos. -c This version uses 4 16-bit packets, and uses a block data common -c area for the initial seeds and constants. A 64-bit floating point -c number is returned. -c -c The arrays "l" and "n" are full-word aligned, being padded by zeros -c That is, rows 1-4 in a given column are for real, rows 5-16 are bogus -c -c July 12, 1993: double the number of sequences. We should have been -c using two packets per seed, rather than four -c - real tpm12 - integer iseed(4) - parameter(tpm12 = 1.d0/65536.d0) - parameter(nmax=1021) -c external prngblk - common/ksrprng/l(16,0:nmax),n(16,0:nmax) -c*ksr*subpage /ksrprng/ - data m1,m2,m3,m4 / 0, 8037, 61950, 30779/ - if (me .lt. 0 .or. me .gt. nmax) then - prng_next=-1.0 - return - endif - l1=l(1,me) - l2=l(2,me) - l3=l(3,me) - l4=l(4,me) - i1=l1*m4+l2*m3+l3*m2+l4*m1 + n(1,me) - i2=l2*m4+l3*m3+l4*m2 + n(2,me) - i3=l3*m4+l4*m3 + n(3,me) - i4=l4*m4 + n(4,me) - l4=and(i4,65535) - i3=i3+ishft(i4,-16) - l3=and(i3,65535) - i2=i2+ishft(i3,-16) - l2=and(i2,65535) - l1=and(i1+ishft(i2,-16),65535) - prng_next=tpm12*(l1+tpm12*(l2+tpm12*(l3+tpm12*l4))) - l(1,me)=l1 - l(2,me)=l2 - l(3,me)=l3 - l(4,me)=l4 - return - end -c -c prng_chkpnt Get the current state of a generator -c -c Calling sequence: -c logical prng_chkpnt, status -c status = prng_chkpnt (me, iseed) where -c -c me is the particular generator whose state is being gotten -c seed is an 4-element integer array where the "l"-values will be saved -c -crc entry prng_chkpnt (me, iseed) - logical function prng_chkpnt (me, iseed) - integer iseed(4) - parameter(nmax=1021) - common/ksrprng/l(16,0:nmax),n(16,0:nmax) - if (me .lt. 0 .or. me .gt. nmax) then - prng_chkpnt=.false. - else - prng_chkpnt=.true. - iseed(1)=l(1,me) - iseed(2)=l(2,me) - iseed(3)=l(3,me) - iseed(4)=l(4,me) - endif - return - end -c -c prng_restart Restart generator from a saved state -c -c Calling sequence: -c logical prng_restart, status -c status = prng_restart (me, iseed) where -c -c me is the particular generator being restarted -c seed is an 4-element integer array containing the "l"-values -c -crc entry prng_restart (me, iseed) - logical function prng_restart (me, iseed) - integer iseed(4) - parameter(nmax=1021) - common/ksrprng/l(16,0:nmax),n(16,0:nmax) - if (me .lt. 0 .or. me .gt. nmax) then - prng_restart=.false. - return - else - prng_restart=.true. - l(1,me)=iseed(1) - l(2,me)=iseed(2) - l(3,me)=iseed(3) - l(4,me)=iseed(4) - endif - return - end - - block data prngblk -c -c Sequence of prime numbers represented as pairs of 16-bit integers -c modulo 2**16, obtained from Mal Kalos August 28, 1992. Only 98 -c continuation cards are allowed by ksr Fortran, so several DATA -c statements are used to initialize 1022 generators. -c -c @cornell university, 1992 -c - parameter(nmax=1021,nmax1=2*nmax+2) - common/ksrprng/l(16,0:nmax),n(16,0:nmax) -c*ksr*subpage /ksrprng/ - -c High order quads in arrays "l" and "n" are initialized to zero : rows 1-2 -c Rows 5-16 remain uninitialized. They are just pads, never used. - DATA ((l(i,j),i=1,2),j=0,nmax)/nmax1*0.0/ - DATA ((n(i,j),i=1,2),j=0,nmax)/nmax1*0.0/ - -c The rest of array "l" and "n" are initialized to a 20-bit seed - DATA ((l(i,j),i=3,4),j=0,489)/ - .180, 51739,180, 51757,180, 51761,180, 51767,180,51773, - .180, 51791,180, 51817,180, 51833,180, 51859,180, 51871, - .180, 51877,180, 51883,180, 51887,180, 51893,180, 51899, - .180, 51913,180, 51953,180, 51971,180, 51989,180, 51997, - .180, 52009,180, 52013,180, 52033,180, 52043,180, 52051, - .180, 52057,180, 52073,180, 52109,180, 52111,180, 52121, - .180, 52139,180, 52157,180, 52183,180, 52193,180, 52199, - .180, 52211,180, 52219,180, 52229,180, 52237,180, 52241, - .180, 52249,180, 52261,180, 52271,180, 52277,180, 52307, - .180, 52321,180, 52349,180, 52373,180, 52381,180, 52387, - .180, 52393,180, 52411,180, 52429,180, 52439,180, 52451, - .180, 52457,180, 52481,180, 52501,180, 52541,180, 52559, - .180, 52573,180, 52579,180, 52589,180, 52597,180, 52607, - .180, 52613,180, 52627,180, 52631,180, 52649,180, 52657, - .180, 52697,180, 52703,180, 52723,180, 52751,180, 52757, - .180, 52759,180, 52769,180, 52771,180, 52789,180, 52793, - .180, 52811,180, 52817,180, 52829,180, 52859,180, 52879, - .180, 52883,180, 52919,180, 52921,180, 52933,180, 52937, - .180, 52957,180, 52963,180, 52993,180, 53011,180, 53023, - .180, 53027,180, 53077,180, 53087,180, 53089,180, 53093, - .180, 53107,180, 53119,180, 53153,180, 53161,180, 53173, - .180, 53179,180, 53191,180, 53203,180, 53209,180, 53213, - .180, 53219,180, 53221,180, 53227,180, 53233,180, 53243, - .180, 53261,180, 53263,180, 53279,180, 53287,180, 53291, - .180, 53311,180, 53321,180, 53329,180, 53333,180, 53389, - .180, 53401,180, 53411,180, 53429,180, 53443,180, 53453, - .180, 53467,180, 53507,180, 53521,180, 53531,180, 53539, - .180, 53543,180, 53551,180, 53569,180, 53581,180, 53593, - .180, 53597,180, 53623,180, 53629,180, 53641,180, 53647, - .180, 53653,180, 53669,180, 53681,180, 53689,180, 53711, - .180, 53753,180, 53767,180, 53779,180, 53789,180, 53803, - .180, 53821,180, 53861,180, 53867,180, 53887,180, 53893, - .180, 53899,180, 53909,180, 53927,180, 53947,180, 53957, - .180, 53989,180, 54001,180, 54031,180, 54049,180, 54061, - .180, 54077,180, 54127,180, 54131,180, 54187,180, 54197, - .180, 54199,180, 54221,180, 54251,180, 54259,180, 54269, - .180, 54311,180, 54323,180, 54349,180, 54353,180, 54379, - .180, 54397,180, 54419,180, 54427,180, 54433,180, 54439, - .180, 54451,180, 54461,180, 54467,180, 54473,180, 54481, - .180, 54503,180, 54511,180, 54517,180, 54551,180, 54553, - .180, 54571,180, 54581,180, 54587,180, 54613,180, 54629, - .180, 54643,180, 54647,180, 54659,180, 54677,180, 54683, - .180, 54701,180, 54721,180, 54739,180, 54811,180, 54823, - .180, 54829,180, 54833,180, 54839,180, 54869,180, 54871, - .180, 54881,180, 54893,180, 54923,180, 54929,180, 54943, - .180, 54967,180, 54971,180, 55001,180, 55013,180, 55039, - .180, 55043,180, 55049,180, 55067,180, 55069,180, 55079, - .180, 55097,180, 55109,180, 55111,180, 55117,180, 55123, - .180, 55127,180, 55133,180, 55141,180, 55147,180, 55159, - .180, 55193,180, 55201,180, 55247,180, 55273,180, 55279, - .180, 55307,180, 55313,180, 55319,180, 55333,180, 55361, - .180, 55379,180, 55387,180, 55411,180, 55429,180, 55439, - .180, 55447,180, 55453,180, 55469,180, 55487,180, 55517, - .180, 55537,180, 55571,180, 55573,180, 55579,180, 55603, - .180, 55609,180, 55649,180, 55667,180, 55669,180, 55681, - .180, 55691,180, 55697,180, 55729,180, 55741,180, 55757, - .180, 55771,180, 55783,180, 55793,180, 55799,180, 55807, - .180, 55813,180, 55817,180, 55823,180, 55831,180, 55847, - .180, 55859,180, 55861,180, 55879,180, 55889,180, 55957, - .180, 55973,180, 55979,180, 55993,180, 56033,180, 56051, - .180, 56057,180, 56059,180, 56077,180, 56093,180, 56099, - .180, 56111,180, 56129,180, 56131,180, 56143,180, 56161, - .180, 56167,180, 56177,180, 56183,180, 56237,180, 56239, - .180, 56261,180, 56279,180, 56287,180, 56293,180, 56323, - .180, 56327,180, 56329,180, 56351,180, 56353,180, 56357, - .180, 56377,180, 56393,180, 56399,180, 56411,180, 56437, - .180, 56441,180, 56477,180, 56479,180, 56489,180, 56503, - .180, 56509,180, 56521,180, 56533,180, 56539,180, 56551, - .180, 56609,180, 56653,180, 56677,180, 56681,180, 56701, - .180, 56723,180, 56737,180, 56741,180, 56747,180, 56761, - .180, 56827,180, 56839,180, 56843,180, 56849,180, 56887, - .180, 56903,180, 56939,180, 56941,180, 56947,180, 56969, - .180, 56971,180, 56983,180, 57049,180, 57077,180, 57091, - .180, 57121,180, 57133,180, 57137,180, 57149,180, 57169, - .180, 57179,180, 57199,180, 57209,180, 57239,180, 57251, - .180, 57277,180, 57281,180, 57293,180, 57311,180, 57337, - .180, 57359,180, 57367,180, 57377,180, 57389,180, 57403, - .180, 57407,180, 57409,180, 57413,180, 57419,180, 57431, - .180, 57451,180, 57463,180, 57499,180, 57511,180, 57521, - .180, 57529,180, 57539,180, 57577,180, 57581,180, 57667, - .180, 57679,180, 57683,180, 57689,180, 57731,180, 57767, - .180, 57781,180, 57787,180, 57799,180, 57823,180, 57847, - .180, 57851,180, 57853,180, 57883,180, 57899,180, 57919, - .180, 57931,180, 57949,180, 57953,180, 57959,180, 57961, - .180, 57983,180, 57997,180, 58009,180, 58037,180, 58039, - .180, 58043,180, 58049,180, 58087,180, 58091,180, 58093, - .180, 58123,180, 58127,180, 58201,180, 58211,180, 58229, - .180, 58243,180, 58277,180, 58303,180, 58313,180, 58333, - .180, 58367,180, 58373,180, 58393,180, 58397,180, 58403, - .180, 58411,180, 58417,180, 58421,180, 58439,180, 58457, - .180, 58481,180, 58483,180, 58499,180, 58523,180, 58537, - .180, 58543,180, 58549,180, 58553,180, 58631,180, 58661, - .180, 58667,180, 58669,180, 58679,180, 58697,180, 58723, - .180, 58733,180, 58739,180, 58751,180, 58787,180, 58789, - .180, 58823,180, 58829,180, 58841,180, 58849,180, 58859, - .180, 58871,180, 58873,180, 58877,180, 58879,180, 58901, - .180, 58903,180, 58907,180, 58919,180, 58927,180, 58933, - .180, 59009,180, 59011,180, 59027,180, 59041,180, 59051/ - DATA ((l(i,j),i=3,4),j=490,979)/ - .180, 59069,180, 59071,180, 59087,180, 59101,180, 59107, - .180, 59113,180, 59153,180, 59173,180, 59183,180, 59207, - .180, 59209,180, 59219,180, 59233,180, 59251,180, 59257, - .180, 59263,180, 59267,180, 59279,180, 59293,180, 59321, - .180, 59327,180, 59333,180, 59347,180, 59359,180, 59389, - .180, 59401,180, 59423,180, 59431,180, 59453,180, 59479, - .180, 59509,180, 59513,180, 59519,180, 59521,180, 59543, - .180, 59569,180, 59591,180, 59621,180, 59627,180, 59633, - .180, 59659,180, 59671,180, 59681,180, 59699,180, 59713, - .180, 59719,180, 59743,180, 59759,180, 59783,180, 59789, - .180, 59801,180, 59807,180, 59827,180, 59831,180, 59849, - .180, 59863,180, 59879,180, 59891,180, 59893,180, 59929, - .180, 59939,180, 59981,180, 59989,180, 59993,180, 59999, - .180, 60031,180, 60037,180, 60061,180, 60067,180, 60073, - .180, 60103,180, 60149,180, 60161,180, 60173,180, 60179, - .180, 60193,180, 60217,180, 60229,180, 60247,180, 60251, - .180, 60283,180, 60329,180, 60331,180, 60341,180, 60361, - .180, 60377,180, 60397,180, 60403,180, 60419,180, 60439, - .180, 60467,180, 60473,180, 60499,180, 60523,180, 60553, - .180, 60557,180, 60559,180, 60569,180, 60581,180, 60587, - .180, 60593,180, 60601,180, 60611,180, 60613,180, 60619, - .180, 60643,180, 60647,180, 60667,180, 60671,180, 60713, - .180, 60737,180, 60749,180, 60763,180, 60769,180, 60787, - .180, 60797,180, 60811,180, 60823,180, 60829,180, 60847, - .180, 60851,180, 60853,180, 60881,180, 60887,180, 60889, - .180, 60913,180, 60919,180, 60929,180, 60941,180, 60943, - .180, 60971,180, 60973,180, 60977,180, 60997,180, 61001, - .180, 61013,180, 61019,180, 61039,180, 61043,180, 61049, - .180, 61063,180, 61081,180, 61109,180, 61111,180, 61133, - .180, 61141,180, 61181,180, 61187,180, 61213,180, 61217, - .180, 61229,180, 61231,180, 61271,180, 61273,180, 61279, - .180, 61283,180, 61297,180, 61307,180, 61313,180, 61321, - .180, 61337,180, 61339,180, 61351,180, 61357,180, 61393, - .180, 61397,180, 61403,180, 61409,180, 61427,180, 61433, - .180, 61451,180, 61489,180, 61511,180, 61519,180, 61529, - .180, 61537,180, 61543,180, 61549,180, 61559,180, 61571, - .180, 61577,180, 61579,180, 61621,180, 61631,180, 61651, - .180, 61669,180, 61679,180, 61697,180, 61711,180, 61721, - .180, 61747,180, 61763,180, 61787,180, 61789,180, 61799, - .180, 61801,180, 61811,180, 61831,180, 61843,180, 61879, - .180, 61897,180, 61901,180, 61907,180, 61943,180, 61963, - .180, 61967,180, 61999,180, 62053,180, 62063,180, 62071, - .180, 62077,180, 62089,180, 62093,180, 62099,180, 62117, - .180, 62119,180, 62149,180, 62177,180, 62179,180, 62203, - .180, 62221,180, 62239,180, 62243,180, 62249,180, 62267, - .180, 62299,180, 62303,180, 62321,180, 62327,180, 62333, - .180, 62359,180, 62371,180, 62413,180, 62417,180, 62441, - .180, 62467,180, 62473,180, 62489,180, 62491,180, 62509, - .180, 62537,180, 62551,180, 62569,180, 62581,180, 62593, - .180, 62597,180, 62599,180, 62603,180, 62621,180, 62629, - .180, 62657,180, 62659,180, 62671,180, 62677,180, 62683, - .180, 62687,180, 62699,180, 62707,180, 62749,180, 62753, - .180, 62761,180, 62767,180, 62789,180, 62813,180, 62827, - .180, 62831,180, 62869,180, 62879,180, 62891,180, 62897, - .180, 62903,180, 62947,180, 62953,180, 62971,180, 62977, - .180, 62981,180, 62993,180, 63001,180, 63007,180, 63013, - .180, 63023,180, 63029,180, 63059,180, 63061,180, 63083, - .180, 63089,180, 63091,180, 63103,180, 63119,180, 63131, - .180, 63163,180, 63227,180, 63233,180, 63239,180, 63259, - .180, 63271,180, 63311,180, 63337,180, 63341,180, 63353, - .180, 63367,180, 63373,180, 63397,180, 63409,180, 63413, - .180, 63421,180, 63427,180, 63437,180, 63443,180, 63449, - .180, 63481,180, 63499,180, 63509,180, 63517,180, 63541, - .180, 63551,180, 63559,180, 63569,180, 63601,180, 63607, - .180, 63617,180, 63623,180, 63629,180, 63637,180, 63653, - .180, 63671,180, 63691,180, 63727,180, 63743,180, 63751, - .180, 63763,180, 63787,180, 63821,180, 63827,180, 63847, - .180, 63899,180, 63917,180, 63931,180, 63989,180, 63997, - .180, 64003,180, 64007,180, 64009,180, 64013,180, 64037, - .180, 64067,180, 64087,180, 64093,180, 64133,180, 64139, - .180, 64147,180, 64157,180, 64163,180, 64169,180, 64181, - .180, 64189,180, 64207,180, 64211,180, 64217,180, 64219, - .180, 64223,180, 64247,180, 64261,180, 64273,180, 64297, - .180, 64307,180, 64309,180, 64331,180, 64357,180, 64379, - .180, 64387,180, 64409,180, 64417,180, 64483,180, 64489, - .180, 64493,180, 64513,180, 64531,180, 64553,180, 64591, - .180, 64601,180, 64609,180, 64613,180, 64619,180, 64627, - .180, 64651,180, 64661,180, 64679,180, 64687,180, 64711, - .180, 64717,180, 64727,180, 64739,180, 64741,180, 64751, - .180, 64757,180, 64793,180, 64813,180, 64819,180, 64823, - .180, 64847,180, 64871,180, 64877,180, 64883,180, 64891, - .180, 64921,180, 64927,180, 64931,180, 64933,180, 64949, - .180, 64961,180, 64987,180, 65047,180, 65059,180, 65063, - .180, 65077,180, 65089,180, 65093,180, 65099,180, 65101, - .180, 65119,180, 65131,180, 65137,180, 65147,180, 65159, - .180, 65171,180, 65179,180, 65191,180, 65203,180, 65207, - .180, 65213,180, 65221,180, 65231,180, 65233,180, 65269, - .180, 65311,180, 65323,180, 65339,180, 65347,180, 65369, - .180, 65393,180, 65399,180, 65407,180, 65431,180, 65437, - .180, 65441,180, 65443,180, 65473,180, 65479,180, 65507, - .180, 65527,180, 65533,181, 13,181, 15,181, 33, - .181, 61,181, 67,181, 141,181, 151,181, 183, - .181, 187,181, 201,181, 207,181, 213,181, 217, - .181, 223,181, 225,181, 243,181, 253,181, 255, - .181, 277,181, 291,181, 297,181, 301,181, 327, - .181, 337,181, 357,181, 375,181, 423,181, 453, - .181, 477,181, 511,181, 531,181, 547,181, 553, - .181, 561,181, 565,181, 595,181, 607,181, 645/ - DATA ((l(i,j),i=3,4),j=980,nmax)/ - .181, 657,181, 663,181, 685,181, 687,181, 697, - .181, 745,181, 775,181, 787,181, 823,181, 825, - .181, 841,181, 853,181, 865,181, 895,181, 903, - .181, 943,181, 963,181, 973,181, 981,181, 1005, - .181,1015,181,1021,181,1023,181,1041,181,1051, - .181, 1057,181, 1083,181, 1093,181, 1105,181, 1107, - .181, 1117,181, 1135,181, 1137,181, 1155,181, 1167, - .181, 1191,181, 1197,181, 1221,181, 1233,181, 1237, - .181, 1243,181, 1263/ - DATA ((n(i,j),i=3,4),j=0,489)/ - .180, 51739,180, 51757,180, 51761,180, 51767,180, 51773, - .180, 51791,180, 51817,180, 51833,180, 51859,180, 51871, - .180, 51877,180, 51883,180, 51887,180, 51893,180, 51899, - .180, 51913,180, 51953,180, 51971,180, 51989,180, 51997, - .180, 52009,180, 52013,180, 52033,180, 52043,180, 52051, - .180, 52057,180, 52073,180, 52109,180, 52111,180, 52121, - .180, 52139,180, 52157,180, 52183,180, 52193,180, 52199, - .180, 52211,180, 52219,180, 52229,180, 52237,180, 52241, - .180, 52249,180, 52261,180, 52271,180, 52277,180, 52307, - .180, 52321,180, 52349,180, 52373,180, 52381,180, 52387, - .180, 52393,180, 52411,180, 52429,180, 52439,180, 52451, - .180, 52457,180, 52481,180, 52501,180, 52541,180, 52559, - .180, 52573,180, 52579,180, 52589,180, 52597,180, 52607, - .180, 52613,180, 52627,180, 52631,180, 52649,180, 52657, - .180, 52697,180, 52703,180, 52723,180, 52751,180, 52757, - .180, 52759,180, 52769,180, 52771,180, 52789,180, 52793, - .180, 52811,180, 52817,180, 52829,180, 52859,180, 52879, - .180, 52883,180, 52919,180, 52921,180, 52933,180, 52937, - .180, 52957,180, 52963,180, 52993,180, 53011,180, 53023, - .180, 53027,180, 53077,180, 53087,180, 53089,180, 53093, - .180, 53107,180, 53119,180, 53153,180, 53161,180, 53173, - .180, 53179,180, 53191,180, 53203,180, 53209,180, 53213, - .180, 53219,180, 53221,180, 53227,180, 53233,180, 53243, - .180, 53261,180, 53263,180, 53279,180, 53287,180, 53291, - .180, 53311,180, 53321,180, 53329,180, 53333,180, 53389, - .180, 53401,180, 53411,180, 53429,180, 53443,180, 53453, - .180, 53467,180, 53507,180, 53521,180, 53531,180, 53539, - .180, 53543,180, 53551,180, 53569,180, 53581,180, 53593, - .180, 53597,180, 53623,180, 53629,180, 53641,180, 53647, - .180, 53653,180, 53669,180, 53681,180, 53689,180, 53711, - .180, 53753,180, 53767,180, 53779,180, 53789,180, 53803, - .180, 53821,180, 53861,180, 53867,180, 53887,180, 53893, - .180, 53899,180, 53909,180, 53927,180, 53947,180, 53957, - .180, 53989,180, 54001,180, 54031,180, 54049,180, 54061, - .180, 54077,180, 54127,180, 54131,180, 54187,180, 54197, - .180, 54199,180, 54221,180, 54251,180, 54259,180, 54269, - .180, 54311,180, 54323,180, 54349,180, 54353,180, 54379, - .180, 54397,180, 54419,180, 54427,180, 54433,180, 54439, - .180, 54451,180, 54461,180, 54467,180, 54473,180, 54481, - .180, 54503,180, 54511,180, 54517,180, 54551,180, 54553, - .180, 54571,180, 54581,180, 54587,180, 54613,180, 54629, - .180, 54643,180, 54647,180, 54659,180, 54677,180, 54683, - .180, 54701,180, 54721,180, 54739,180, 54811,180, 54823, - .180, 54829,180, 54833,180, 54839,180, 54869,180, 54871, - .180, 54881,180, 54893,180, 54923,180, 54929,180, 54943, - .180, 54967,180, 54971,180, 55001,180, 55013,180, 55039, - .180, 55043,180, 55049,180, 55067,180, 55069,180, 55079, - .180, 55097,180, 55109,180, 55111,180, 55117,180, 55123, - .180, 55127,180, 55133,180, 55141,180, 55147,180, 55159, - .180, 55193,180, 55201,180, 55247,180, 55273,180, 55279, - .180, 55307,180, 55313,180, 55319,180, 55333,180, 55361, - .180, 55379,180, 55387,180, 55411,180, 55429,180, 55439, - .180, 55447,180, 55453,180, 55469,180, 55487,180, 55517, - .180, 55537,180, 55571,180, 55573,180, 55579,180, 55603, - .180, 55609,180, 55649,180, 55667,180, 55669,180, 55681, - .180, 55691,180, 55697,180, 55729,180, 55741,180, 55757, - .180, 55771,180, 55783,180, 55793,180, 55799,180, 55807, - .180, 55813,180, 55817,180, 55823,180, 55831,180, 55847, - .180, 55859,180, 55861,180, 55879,180, 55889,180, 55957, - .180, 55973,180, 55979,180, 55993,180, 56033,180, 56051, - .180, 56057,180, 56059,180, 56077,180, 56093,180, 56099, - .180, 56111,180, 56129,180, 56131,180, 56143,180, 56161, - .180, 56167,180, 56177,180, 56183,180, 56237,180, 56239, - .180, 56261,180, 56279,180, 56287,180, 56293,180, 56323, - .180, 56327,180, 56329,180, 56351,180, 56353,180, 56357, - .180, 56377,180, 56393,180, 56399,180, 56411,180, 56437, - .180, 56441,180, 56477,180, 56479,180, 56489,180, 56503, - .180, 56509,180, 56521,180, 56533,180, 56539,180, 56551, - .180, 56609,180, 56653,180, 56677,180, 56681,180, 56701, - .180, 56723,180, 56737,180, 56741,180, 56747,180, 56761, - .180, 56827,180, 56839,180, 56843,180, 56849,180, 56887, - .180, 56903,180, 56939,180, 56941,180, 56947,180, 56969, - .180, 56971,180, 56983,180, 57049,180, 57077,180, 57091, - .180, 57121,180, 57133,180, 57137,180, 57149,180, 57169, - .180, 57179,180, 57199,180, 57209,180, 57239,180, 57251, - .180, 57277,180, 57281,180, 57293,180, 57311,180, 57337, - .180, 57359,180, 57367,180, 57377,180, 57389,180, 57403, - .180, 57407,180, 57409,180, 57413,180, 57419,180, 57431, - .180, 57451,180, 57463,180, 57499,180, 57511,180, 57521, - .180, 57529,180, 57539,180, 57577,180, 57581,180, 57667, - .180, 57679,180, 57683,180, 57689,180, 57731,180, 57767, - .180, 57781,180, 57787,180, 57799,180, 57823,180, 57847, - .180, 57851,180, 57853,180, 57883,180, 57899,180, 57919, - .180, 57931,180, 57949,180, 57953,180, 57959,180, 57961, - .180, 57983,180, 57997,180, 58009,180, 58037,180, 58039, - .180, 58043,180, 58049,180, 58087,180, 58091,180, 58093, - .180, 58123,180, 58127,180, 58201,180, 58211,180, 58229, - .180, 58243,180, 58277,180, 58303,180, 58313,180, 58333, - .180, 58367,180, 58373,180, 58393,180, 58397,180, 58403, - .180, 58411,180, 58417,180, 58421,180, 58439,180, 58457, - .180, 58481,180, 58483,180, 58499,180, 58523,180, 58537, - .180, 58543,180, 58549,180, 58553,180, 58631,180, 58661, - .180, 58667,180, 58669,180, 58679,180, 58697,180, 58723, - .180, 58733,180, 58739,180, 58751,180, 58787,180, 58789, - .180, 58823,180, 58829,180, 58841,180, 58849,180, 58859, - .180, 58871,180, 58873,180, 58877,180, 58879,180, 58901, - .180, 58903,180, 58907,180, 58919,180, 58927,180, 58933, - .180, 59009,180, 59011,180, 59027,180, 59041,180, 59051/ - DATA ((n(i,j),i=3,4),j=490,979)/ - .180, 59069,180, 59071,180, 59087,180, 59101,180, 59107, - .180, 59113,180, 59153,180, 59173,180, 59183,180, 59207, - .180, 59209,180, 59219,180, 59233,180, 59251,180, 59257, - .180, 59263,180, 59267,180, 59279,180, 59293,180, 59321, - .180, 59327,180, 59333,180, 59347,180, 59359,180, 59389, - .180, 59401,180, 59423,180, 59431,180, 59453,180, 59479, - .180, 59509,180, 59513,180, 59519,180, 59521,180, 59543, - .180, 59569,180, 59591,180, 59621,180, 59627,180, 59633, - .180, 59659,180, 59671,180, 59681,180, 59699,180, 59713, - .180, 59719,180, 59743,180, 59759,180, 59783,180, 59789, - .180, 59801,180, 59807,180, 59827,180, 59831,180, 59849, - .180, 59863,180, 59879,180, 59891,180, 59893,180, 59929, - .180, 59939,180, 59981,180, 59989,180, 59993,180, 59999, - .180, 60031,180, 60037,180, 60061,180, 60067,180, 60073, - .180, 60103,180, 60149,180, 60161,180, 60173,180, 60179, - .180, 60193,180, 60217,180, 60229,180, 60247,180, 60251, - .180, 60283,180, 60329,180, 60331,180, 60341,180, 60361, - .180, 60377,180, 60397,180, 60403,180, 60419,180, 60439, - .180, 60467,180, 60473,180, 60499,180, 60523,180, 60553, - .180, 60557,180, 60559,180, 60569,180, 60581,180, 60587, - .180, 60593,180, 60601,180, 60611,180, 60613,180, 60619, - .180, 60643,180, 60647,180, 60667,180, 60671,180, 60713, - .180, 60737,180, 60749,180, 60763,180, 60769,180, 60787, - .180, 60797,180, 60811,180, 60823,180, 60829,180, 60847, - .180, 60851,180, 60853,180, 60881,180, 60887,180, 60889, - .180, 60913,180, 60919,180, 60929,180, 60941,180, 60943, - .180, 60971,180, 60973,180, 60977,180, 60997,180, 61001, - .180, 61013,180, 61019,180, 61039,180, 61043,180, 61049, - .180, 61063,180, 61081,180, 61109,180, 61111,180, 61133, - .180, 61141,180, 61181,180, 61187,180, 61213,180, 61217, - .180, 61229,180, 61231,180, 61271,180, 61273,180, 61279, - .180, 61283,180, 61297,180, 61307,180, 61313,180, 61321, - .180, 61337,180, 61339,180, 61351,180, 61357,180, 61393, - .180, 61397,180, 61403,180, 61409,180, 61427,180, 61433, - .180, 61451,180, 61489,180, 61511,180, 61519,180, 61529, - .180, 61537,180, 61543,180, 61549,180, 61559,180, 61571, - .180, 61577,180, 61579,180, 61621,180, 61631,180, 61651, - .180, 61669,180, 61679,180, 61697,180, 61711,180, 61721, - .180, 61747,180, 61763,180, 61787,180, 61789,180, 61799, - .180, 61801,180, 61811,180, 61831,180, 61843,180, 61879, - .180, 61897,180, 61901,180, 61907,180, 61943,180, 61963, - .180, 61967,180, 61999,180, 62053,180, 62063,180, 62071, - .180, 62077,180, 62089,180, 62093,180, 62099,180, 62117, - .180, 62119,180, 62149,180, 62177,180, 62179,180, 62203, - .180, 62221,180, 62239,180, 62243,180, 62249,180, 62267, - .180, 62299,180, 62303,180, 62321,180, 62327,180, 62333, - .180, 62359,180, 62371,180, 62413,180, 62417,180, 62441, - .180, 62467,180, 62473,180, 62489,180, 62491,180, 62509, - .180, 62537,180, 62551,180, 62569,180, 62581,180, 62593, - .180, 62597,180, 62599,180, 62603,180, 62621,180, 62629, - .180, 62657,180, 62659,180, 62671,180, 62677,180, 62683, - .180, 62687,180, 62699,180, 62707,180, 62749,180, 62753, - .180, 62761,180, 62767,180, 62789,180, 62813,180, 62827, - .180, 62831,180, 62869,180, 62879,180, 62891,180, 62897, - .180, 62903,180, 62947,180, 62953,180, 62971,180, 62977, - .180, 62981,180, 62993,180, 63001,180, 63007,180, 63013, - .180, 63023,180, 63029,180, 63059,180, 63061,180, 63083, - .180, 63089,180, 63091,180, 63103,180, 63119,180, 63131, - .180, 63163,180, 63227,180, 63233,180, 63239,180, 63259, - .180, 63271,180, 63311,180, 63337,180, 63341,180, 63353, - .180, 63367,180, 63373,180, 63397,180, 63409,180, 63413, - .180, 63421,180, 63427,180, 63437,180, 63443,180, 63449, - .180, 63481,180, 63499,180, 63509,180, 63517,180, 63541, - .180, 63551,180, 63559,180, 63569,180, 63601,180, 63607, - .180, 63617,180, 63623,180, 63629,180, 63637,180, 63653, - .180, 63671,180, 63691,180, 63727,180, 63743,180, 63751, - .180, 63763,180, 63787,180, 63821,180, 63827,180, 63847, - .180, 63899,180, 63917,180, 63931,180, 63989,180, 63997, - .180, 64003,180, 64007,180, 64009,180, 64013,180, 64037, - .180, 64067,180, 64087,180, 64093,180, 64133,180, 64139, - .180, 64147,180, 64157,180, 64163,180, 64169,180, 64181, - .180, 64189,180, 64207,180, 64211,180, 64217,180, 64219, - .180, 64223,180, 64247,180, 64261,180, 64273,180, 64297, - .180, 64307,180, 64309,180, 64331,180, 64357,180, 64379, - .180, 64387,180, 64409,180, 64417,180, 64483,180, 64489, - .180, 64493,180, 64513,180, 64531,180, 64553,180, 64591, - .180, 64601,180, 64609,180, 64613,180, 64619,180, 64627, - .180, 64651,180, 64661,180, 64679,180, 64687,180, 64711, - .180, 64717,180, 64727,180, 64739,180, 64741,180, 64751, - .180, 64757,180, 64793,180, 64813,180, 64819,180, 64823, - .180, 64847,180, 64871,180, 64877,180, 64883,180, 64891, - .180, 64921,180, 64927,180, 64931,180, 64933,180, 64949, - .180, 64961,180, 64987,180, 65047,180, 65059,180, 65063, - .180, 65077,180, 65089,180, 65093,180, 65099,180, 65101, - .180, 65119,180, 65131,180, 65137,180, 65147,180, 65159, - .180, 65171,180, 65179,180, 65191,180, 65203,180, 65207, - .180, 65213,180, 65221,180, 65231,180, 65233,180, 65269, - .180, 65311,180, 65323,180, 65339,180, 65347,180, 65369, - .180, 65393,180, 65399,180, 65407,180, 65431,180, 65437, - .180, 65441,180, 65443,180, 65473,180, 65479,180, 65507, - .180, 65527,180, 65533,181, 13,181, 15,181, 33, - .181, 61,181, 67,181, 141,181, 151,181, 183, - .181, 187,181, 201,181, 207,181, 213,181, 217, - .181, 223,181, 225,181, 243,181, 253,181, 255, - .181, 277,181, 291,181, 297,181, 301,181, 327, - .181, 337,181, 357,181, 375,181, 423,181, 453, - .181, 477,181, 511,181, 531,181, 547,181, 553, - .181, 561,181, 565,181, 595,181, 607,181, 645/ - DATA ((n(i,j),i=3,4),j=980,nmax)/ - .181, 657,181, 663,181, 685,181, 687,181, 697, - .181, 745,181, 775,181, 787,181, 823,181, 825, - .181, 841,181, 853,181, 865,181, 895,181, 903, - .181, 943,181, 963,181, 973,181, 981,181, 1005, - .181, 1015,181, 1021,181, 1023,181, 1041,181, 1051, - .181, 1057,181, 1083,181, 1093,181, 1105,181, 1107, - .181, 1117,181, 1135,181, 1137,181, 1155,181, 1167, - .181, 1191,181, 1197,181, 1221,181, 1233,181, 1237, - .181, 1243,181, 1263/ - end -#endif diff --git a/source/unres/src_CSA_DiL/ran.f b/source/unres/src_CSA_DiL/ran.f deleted file mode 100644 index dd23252..0000000 --- a/source/unres/src_CSA_DiL/ran.f +++ /dev/null @@ -1,128 +0,0 @@ -ccccccccccccccccccccccccccccccccccccccccccccccccc - FUNCTION ran0(idum) - INTEGER idum,IA,IM,IQ,IR,MASK - REAL ran0,AM - PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836, - *MASK=123459876) - INTEGER k - idum=ieor(idum,MASK) - k=idum/IQ - idum=IA*(idum-k*IQ)-IR*k - if (idum.lt.0) idum=idum+IM - ran0=AM*idum - idum=ieor(idum,MASK) - return - END -C (C) Copr. 1986-92 Numerical Recipes Software *11915 -ccccccccccccccccccccccccccccccccccccccccccccccccc - FUNCTION ran1(idum) - INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV - REAL ran1,AM,EPS,RNMX - PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836, - *NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS) - INTEGER j,k,iv(NTAB),iy - SAVE iv,iy - DATA iv /NTAB*0/, iy /0/ - if (idum.le.0.or.iy.eq.0) then - idum=max(-idum,1) - do 11 j=NTAB+8,1,-1 - k=idum/IQ - idum=IA*(idum-k*IQ)-IR*k - if (idum.lt.0) idum=idum+IM - if (j.le.NTAB) iv(j)=idum -11 continue - iy=iv(1) - endif - k=idum/IQ - idum=IA*(idum-k*IQ)-IR*k - if (idum.lt.0) idum=idum+IM - j=1+iy/NDIV - iy=iv(j) - iv(j)=idum - ran1=min(AM*iy,RNMX) - return - END -C (C) Copr. 1986-92 Numerical Recipes Software *11915 -ccccccccccccccccccccccccccccccccccccccccccccccccc - FUNCTION ran2(idum) - INTEGER idum,IM1,IM2,IMM1,IA1,IA2,IQ1,IQ2,IR1,IR2,NTAB,NDIV - REAL ran2,AM,EPS,RNMX - PARAMETER (IM1=2147483563,IM2=2147483399,AM=1./IM1,IMM1=IM1-1, - *IA1=40014,IA2=40692,IQ1=53668,IQ2=52774,IR1=12211,IR2=3791, - *NTAB=32,NDIV=1+IMM1/NTAB,EPS=1.2e-7,RNMX=1.-EPS) - INTEGER idum2,j,k,iv(NTAB),iy - SAVE iv,iy,idum2 - DATA idum2/123456789/, iv/NTAB*0/, iy/0/ - if (idum.le.0) then - idum=max(-idum,1) - idum2=idum - do 11 j=NTAB+8,1,-1 - k=idum/IQ1 - idum=IA1*(idum-k*IQ1)-k*IR1 - if (idum.lt.0) idum=idum+IM1 - if (j.le.NTAB) iv(j)=idum -11 continue - iy=iv(1) - endif - k=idum/IQ1 - idum=IA1*(idum-k*IQ1)-k*IR1 - if (idum.lt.0) idum=idum+IM1 - k=idum2/IQ2 - idum2=IA2*(idum2-k*IQ2)-k*IR2 - if (idum2.lt.0) idum2=idum2+IM2 - j=1+iy/NDIV - iy=iv(j)-idum2 - iv(j)=idum - if(iy.lt.1)iy=iy+IMM1 - ran2=min(AM*iy,RNMX) - return - END -C (C) Copr. 1986-92 Numerical Recipes Software *11915 -ccccccccccccccccccccccccccccccccccccccccccccccccc - FUNCTION ran3(idum) - INTEGER idum - INTEGER MBIG,MSEED,MZ -C REAL MBIG,MSEED,MZ - REAL ran3,FAC - PARAMETER (MBIG=1000000000,MSEED=161803398,MZ=0,FAC=1./MBIG) -C PARAMETER (MBIG=4000000.,MSEED=1618033.,MZ=0.,FAC=1./MBIG) - INTEGER i,iff,ii,inext,inextp,k - INTEGER mj,mk,ma(55) -C REAL mj,mk,ma(55) - SAVE iff,inext,inextp,ma - DATA iff /0/ - if(idum.lt.0.or.iff.eq.0)then - iff=1 - mj=MSEED-iabs(idum) - mj=mod(mj,MBIG) - ma(55)=mj - mk=1 - do 11 i=1,54 - ii=mod(21*i,55) - ma(ii)=mk - mk=mj-mk - if(mk.lt.MZ)mk=mk+MBIG - mj=ma(ii) -11 continue - do 13 k=1,4 - do 12 i=1,55 - ma(i)=ma(i)-ma(1+mod(i+30,55)) - if(ma(i).lt.MZ)ma(i)=ma(i)+MBIG -12 continue -13 continue - inext=0 - inextp=31 - idum=1 - endif - inext=inext+1 - if(inext.eq.56)inext=1 - inextp=inextp+1 - if(inextp.eq.56)inextp=1 - mj=ma(inext)-ma(inextp) - if(mj.lt.MZ)mj=mj+MBIG - ma(inext)=mj - ran3=mj*FAC - return - END -C (C) Copr. 1986-92 Numerical Recipes Software *11915 -ccccccccccccccccccccccccccccccccccccccccccccccccc diff --git a/source/unres/src_CSA_DiL/randgens.f b/source/unres/src_CSA_DiL/randgens.f deleted file mode 100644 index 0daeb35..0000000 --- a/source/unres/src_CSA_DiL/randgens.f +++ /dev/null @@ -1,99 +0,0 @@ -C $Date: 1994/10/04 16:19:52 $ -C $Revision: 2.1 $ -C -C -C See help for RANDOMV on the PSFSHARE disk to understand these -C subroutines. This is the VS Fortran version of this code. -C -C - SUBROUTINE VRND(VEC,N) - INTEGER A(250) - COMMON /VRANDD/ A, I, I147 - INTEGER LOOP,I,I147,VEC(N) - DO 23000 LOOP=1,N - I=I+1 - IF(.NOT.(I.GE.251))GOTO 23002 - I=1 -23002 CONTINUE - I147=I147+1 - IF(.NOT.(I147.GE.251))GOTO 23004 - I147=1 -23004 CONTINUE - A(I)=IEOR(A(I147),A(I)) - VEC(LOOP)=A(I) -23000 CONTINUE - RETURN - END -C -C - DOUBLE PRECISION FUNCTION RNDV(IDUM) - DOUBLE PRECISION RM1,RM2,R(99) - INTEGER IA1,IC1,M1, IA2,IC2,M2, IA3,IC3,M3, IDUM - SAVE - DATA IA1,IC1,M1/1279,351762,1664557/ - DATA IA2,IC2,M2/2011,221592,1048583/ - DATA IA3,IC3,M3/15551,6150,29101/ - IF(.NOT.(IDUM.LT.0))GOTO 23006 - IX1 = MOD(-IDUM,M1) - IX1 = MOD(IA1*IX1+IC1,M1) - IX2 = MOD(IX1,M2) - IX1 = MOD(IA1*IX1+IC1,M1) - IX3 = MOD(IX1,M3) - RM1 = 1./DBLE(M1) - RM2 = 1./DBLE(M2) - DO 23008 J = 1,99 - IX1 = MOD(IA1*IX1+IC1,M1) - IX2 = MOD(IA2*IX2+IC2,M2) - R(J) = (DBLE(IX1)+DBLE(IX2)*RM2)*RM1 -23008 CONTINUE -23006 CONTINUE - IX1 = MOD(IA1*IX1+IC1,M1) - IX2 = MOD(IA2*IX2+IC2,M2) - IX3 = MOD(IA3*IX3+IC3,M3) - J = 1+(99*IX3)/M3 - RNDV = R(J) - R(J) = (DBLE(IX1)+DBLE(IX2)*RM2)*RM1 - IDUM = IX1 - RETURN - END -C -C - SUBROUTINE VRNDST(SEED) - INTEGER A(250),LOOP,IDUM,SEED - DOUBLE PRECISION RNDV - COMMON /VRANDD/ A, I, I147 - I=0 - I147=103 - IDUM=SEED - DO 23010 LOOP=1,250 - A(LOOP)=INT(RNDV(IDUM)*2147483647) -23010 CONTINUE - RETURN - END -C -C - SUBROUTINE VRNDIN(IODEV) - INTEGER IODEV, A(250) - COMMON/VRANDD/ A, I, I147 - READ(IODEV) A, I, I147 - RETURN - END -C -C - SUBROUTINE VRNDOU(IODEV) -C This corresponds to VRNDOUT in the APFTN64 version - INTEGER IODEV, A(250) - COMMON/VRANDD/ A, I, I147 - WRITE(IODEV) A, I, I147 - RETURN - END - FUNCTION RNUNF(N) - INTEGER IRAN1(2000) - DATA FCTOR /2147483647.0D0/ -C We get only one random number, here! DR 9/1/92 - CALL VRND(IRAN1,1) - RNUNF= DBLE( IRAN1(1) ) / FCTOR -C****************************** -C write(6,*) 'rnunf in rnunf = ',rnunf - RETURN - END diff --git a/source/unres/src_CSA_DiL/readpdb.F b/source/unres/src_CSA_DiL/readpdb.F deleted file mode 100644 index eb4ba3f..0000000 --- a/source/unres/src_CSA_DiL/readpdb.F +++ /dev/null @@ -1,428 +0,0 @@ - subroutine readpdb -C Read the PDB file and convert the peptide geometry into virtual-chain -C geometry. - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.LOCAL' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.IOUNITS' - include 'COMMON.GEO' - include 'COMMON.NAMES' - include 'COMMON.CONTROL' - include 'COMMON.DISTFIT' - include 'COMMON.SETUP' - character*3 seq,atom,res - character*80 card - dimension sccor(3,20) - double precision e1(3),e2(3),e3(3) - logical fail - integer rescode - ibeg=1 - lsecondary=.false. - nhfrag=0 - nbfrag=0 - do i=1,10000 - read (ipdbin,'(a80)',end=10) card - if (card(:5).eq.'HELIX') then - nhfrag=nhfrag+1 - lsecondary=.true. - read(card(22:25),*) hfrag(1,nhfrag) - read(card(34:37),*) hfrag(2,nhfrag) - endif - if (card(:5).eq.'SHEET') then - nbfrag=nbfrag+1 - lsecondary=.true. - read(card(24:26),*) bfrag(1,nbfrag) - read(card(35:37),*) bfrag(2,nbfrag) -crc---------------------------------------- -crc to be corrected !!! - bfrag(3,nbfrag)=bfrag(1,nbfrag) - bfrag(4,nbfrag)=bfrag(2,nbfrag) -crc---------------------------------------- - endif - if (card(:3).eq.'END' .or. card(:3).eq.'TER') goto 10 -C Fish out the ATOM cards. - if (index(card(1:4),'ATOM').gt.0) then - read (card(14:16),'(a3)') atom - if (atom.eq.'CA' .or. atom.eq.'CH3') then -C Calculate the CM of the preceding residue. - if (ibeg.eq.0) then - if (unres_pdb) then - do j=1,3 - dc(j,ires+nres)=sccor(j,iii) - enddo - else - call sccenter(ires,iii,sccor) - endif - endif -C Start new residue. - read (card(24:26),*) ires - read (card(18:20),'(a3)') res - if (ibeg.eq.1) then - ishift=ires-1 - if (res.ne.'GLY' .and. res.ne. 'ACE') then - ishift=ishift-1 - itype(1)=21 - endif - ibeg=0 - endif - ires=ires-ishift - if (res.eq.'ACE') then - ity=10 - else - itype(ires)=rescode(ires,res,0) - endif - read(card(31:54),'(3f8.3)') (c(j,ires),j=1,3) -c if(me.eq.king.or..not.out1file) -c & write (iout,'(2i3,2x,a,3f8.3)') -c & ires,itype(ires),res,(c(j,ires),j=1,3) - iii=1 - do j=1,3 - sccor(j,iii)=c(j,ires) - enddo - else if (atom.ne.'O '.and.atom(1:1).ne.'H' .and. - & atom.ne.'N ' .and. atom.ne.'C ') then - iii=iii+1 - read(card(31:54),'(3f8.3)') (sccor(j,iii),j=1,3) - endif - endif - enddo - 10 if(me.eq.king.or..not.out1file) - & write (iout,'(a,i5)') ' Nres: ',ires -C Calculate the CM of the last side chain. - if (unres_pdb) then - do j=1,3 - dc(j,ires+nres)=sccor(j,iii) - enddo - else - call sccenter(ires,iii,sccor) - endif - nres=ires - nsup=nres - nstart_sup=1 - if (itype(nres).ne.10) then - nres=nres+1 - itype(nres)=21 - if (unres_pdb) then -C 2/15/2013 by Adam: corrected insertion of the last dummy residue - call refsys(nres-3,nres-2,nres-1,e1,e2,e3,fail) - if (fail) then - e2(1)=0.0d0 - e2(2)=1.0d0 - e2(3)=0.0d0 - endif - do j=1,3 - c(j,nres)=c(j,nres-1)-3.8d0*e2(j) - enddo - else - do j=1,3 - dcj=c(j,nres-2)-c(j,nres-3) - c(j,nres)=c(j,nres-1)+dcj - c(j,2*nres)=c(j,nres) - enddo - endif - endif - do i=2,nres-1 - do j=1,3 - c(j,i+nres)=dc(j,i) - enddo - enddo - do j=1,3 - c(j,nres+1)=c(j,1) - c(j,2*nres)=c(j,nres) - enddo - if (itype(1).eq.21) then - nsup=nsup-1 - nstart_sup=2 - if (unres_pdb) then -C 2/15/2013 by Adam: corrected insertion of the first dummy residue - call refsys(2,3,4,e1,e2,e3,fail) - if (fail) then - e2(1)=0.0d0 - e2(2)=1.0d0 - e2(3)=0.0d0 - endif - do j=1,3 - c(j,1)=c(j,2)-3.8d0*e2(j) - enddo - else - do j=1,3 - dcj=c(j,4)-c(j,3) - c(j,1)=c(j,2)-dcj - c(j,nres+1)=c(j,1) - enddo - endif - endif -C Calculate internal coordinates. - if(me.eq.king.or..not.out1file)then - write (iout,'(a)') - & "Backbone and SC coordinates as read from the PDB" - do ires=1,nres - write (iout,'(2i3,2x,a,3f8.3,5x,3f8.3)') - & ires,itype(ires),restyp(itype(ires)),(c(j,ires),j=1,3), - & (c(j,nres+ires),j=1,3) - enddo - endif - call int_from_cart(.true.,.false.) - call sc_loc_geom(.false.) - do i=1,nres - thetaref(i)=theta(i) - phiref(i)=phi(i) - enddo - do i=1,nres-1 - do j=1,3 - dc(j,i)=c(j,i+1)-c(j,i) - dc_norm(j,i)=dc(j,i)*vbld_inv(i+1) - enddo - enddo - do i=2,nres-1 - do j=1,3 - dc(j,i+nres)=c(j,i+nres)-c(j,i) - dc_norm(j,i+nres)=dc(j,i+nres)*vbld_inv(i+nres) - enddo -c write (iout,*) i,(dc(j,i+nres),j=1,3),(dc_norm(j,i+nres),j=1,3), -c & vbld_inv(i+nres) - enddo -c call chainbuild -C Copy the coordinates to reference coordinates - do i=1,2*nres - do j=1,3 - cref(j,i)=c(j,i) - enddo - enddo - - - do j=1,nbfrag - do i=1,4 - bfrag(i,j)=bfrag(i,j)-ishift - enddo - enddo - - do j=1,nhfrag - do i=1,2 - hfrag(i,j)=hfrag(i,j)-ishift - enddo - enddo - - return - end -c--------------------------------------------------------------------------- - subroutine int_from_cart(lside,lprn) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -c include "mpif.h" - include 'COMMON.LOCAL' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.IOUNITS' - include 'COMMON.GEO' - include 'COMMON.NAMES' - include 'COMMON.CONTROL' - include 'COMMON.SETUP' - character*3 seq,atom,res - character*80 card - dimension sccor(3,20) - integer rescode - logical lside,lprn - if(me.eq.king.or..not.out1file)then - if (lprn) then - write (iout,'(/a)') - & 'Internal coordinates calculated from crystal structure.' - if (lside) then - write (iout,'(8a)') ' Res ',' dvb',' Theta', - & ' Gamma',' Dsc_id',' Dsc',' Alpha', - & ' Beta ' - else - write (iout,'(4a)') ' Res ',' dvb',' Theta', - & ' Gamma' - endif - endif - endif - do i=1,nres-1 - iti=itype(i) - if (dist(i,i+1).lt.2.0D0 .or. dist(i,i+1).gt.5.0D0) then - write (iout,'(a,i4)') 'Bad Cartesians for residue',i -ctest stop - endif - vbld(i+1)=dist(i,i+1) - vbld_inv(i+1)=1.0d0/vbld(i+1) - if (i.gt.1) theta(i+1)=alpha(i-1,i,i+1) - if (i.gt.2) phi(i+1)=beta(i-2,i-1,i,i+1) - enddo -c if (unres_pdb) then -c if (itype(1).eq.21) then -c theta(3)=90.0d0*deg2rad -c phi(4)=180.0d0*deg2rad -c vbld(2)=3.8d0 -c vbld_inv(2)=1.0d0/vbld(2) -c endif -c if (itype(nres).eq.21) then -c theta(nres)=90.0d0*deg2rad -c phi(nres)=180.0d0*deg2rad -c vbld(nres)=3.8d0 -c vbld_inv(nres)=1.0d0/vbld(2) -c endif -c endif - if (lside) then - do i=2,nres-1 - do j=1,3 - c(j,maxres2)=0.5D0*(2*c(j,i)+(c(j,i-1)-c(j,i))*vbld_inv(i) - & +(c(j,i+1)-c(j,i))*vbld_inv(i+1)) - enddo - iti=itype(i) - di=dist(i,nres+i) -C 9/29/12 Adam: Correction for zero SC-SC bond length - if (itype(i).ne.10 .and. itype(i).ne.21. and. di.eq.0.0d0) - & di=dsc(itype(i)) - vbld(i+nres)=di - if (itype(i).ne.10) then - vbld_inv(i+nres)=1.0d0/di - else - vbld_inv(i+nres)=0.0d0 - endif - if (iti.ne.10) then - alph(i)=alpha(nres+i,i,maxres2) - omeg(i)=beta(nres+i,i,maxres2,i+1) - endif - if(me.eq.king.or..not.out1file)then - if (lprn) - & write (iout,'(a3,i4,7f10.3)') restyp(iti),i,vbld(i), - & rad2deg*theta(i),rad2deg*phi(i),dsc(iti),vbld(nres+i), - & rad2deg*alph(i),rad2deg*omeg(i) - endif - enddo - else if (lprn) then - do i=2,nres - iti=itype(i) - if(me.eq.king.or..not.out1file) - & write (iout,'(a3,i4,7f10.3)') restyp(iti),i,dist(i,i-1), - & rad2deg*theta(i),rad2deg*phi(i) - enddo - endif - return - end -c------------------------------------------------------------------------------- - subroutine sc_loc_geom(lprn) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -c include "mpif.h" - include 'COMMON.LOCAL' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.IOUNITS' - include 'COMMON.GEO' - include 'COMMON.NAMES' - include 'COMMON.CONTROL' - include 'COMMON.SETUP' - double precision x_prime(3),y_prime(3),z_prime(3) - logical lprn - do i=1,nres-1 - do j=1,3 - dc_norm(j,i)=vbld_inv(i+1)*(c(j,i+1)-c(j,i)) - enddo - enddo - do i=2,nres-1 - if (itype(i).ne.10) then - do j=1,3 - dc_norm(j,i+nres)=vbld_inv(i+nres)*(c(j,i+nres)-c(j,i)) - enddo - else - do j=1,3 - dc_norm(j,i+nres)=0.0d0 - enddo - endif - enddo - do i=2,nres-1 - costtab(i+1) =dcos(theta(i+1)) - sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1)) - cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1))) - sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1))) - cosfac2=0.5d0/(1.0d0+costtab(i+1)) - cosfac=dsqrt(cosfac2) - sinfac2=0.5d0/(1.0d0-costtab(i+1)) - sinfac=dsqrt(sinfac2) - it=itype(i) - if (it.ne.10) then -c -C Compute the axes of tghe local cartesian coordinates system; store in -c x_prime, y_prime and z_prime -c - do j=1,3 - x_prime(j) = 0.00 - y_prime(j) = 0.00 - z_prime(j) = 0.00 - enddo - do j = 1,3 - x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac - y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac - enddo - call vecpr(x_prime,y_prime,z_prime) -c -C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i), -C to local coordinate system. Store in xx, yy, zz. -c - xx=0.0d0 - yy=0.0d0 - zz=0.0d0 - do j = 1,3 - xx = xx + x_prime(j)*dc_norm(j,i+nres) - yy = yy + y_prime(j)*dc_norm(j,i+nres) - zz = zz + z_prime(j)*dc_norm(j,i+nres) - enddo - - xxref(i)=xx - yyref(i)=yy - zzref(i)=zz - else - xxref(i)=0.0d0 - yyref(i)=0.0d0 - zzref(i)=0.0d0 - endif - enddo - if (lprn) then - do i=2,nres - iti=itype(i) - if(me.eq.king.or..not.out1file) - & write (iout,'(a3,i4,3f10.5)') restyp(iti),i,xxref(i), - & yyref(i),zzref(i) - enddo - endif - return - end -c--------------------------------------------------------------------------- - subroutine sccenter(ires,nscat,sccor) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - dimension sccor(3,20) - do j=1,3 - sccmj=0.0D0 - do i=1,nscat - sccmj=sccmj+sccor(j,i) - enddo - dc(j,ires)=sccmj/nscat - enddo - return - end -c--------------------------------------------------------------------------- - subroutine bond_regular - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.LOCAL' - include 'COMMON.CALC' - include 'COMMON.INTERACT' - include 'COMMON.CHAIN' - do i=1,nres-1 - vbld(i+1)=vbl - vbld_inv(i+1)=1.0d0/vbld(i+1) - vbld(i+1+nres)=dsc(itype(i+1)) - vbld_inv(i+1+nres)=dsc_inv(itype(i+1)) -c print *,vbld(i+1),vbld(i+1+nres) - enddo - return - end diff --git a/source/unres/src_CSA_DiL/readrtns_csa.F b/source/unres/src_CSA_DiL/readrtns_csa.F deleted file mode 100644 index 112514f..0000000 --- a/source/unres/src_CSA_DiL/readrtns_csa.F +++ /dev/null @@ -1,1917 +0,0 @@ - subroutine readrtns - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.SETUP' - include 'COMMON.CONTROL' - include 'COMMON.SBRIDGE' - include 'COMMON.IOUNITS' - logical file_exist -C Read force-field parameters except weights - call parmread -C Read job setup parameters - call read_control -C Read control parameters for energy minimzation if required - if (minim) call read_minim -C Read MCM control parameters if required -c if (modecalc.eq.3 .or. modecalc.eq.6) call mcmread -C Read MD control parameters if reqjuired -c if (modecalc.eq.12) call read_MDpar -C Read MREMD control parameters if required -c if (modecalc.eq.14) then -c call read_MDpar -c call read_REMDpar -c endif -C Read MUCA control parameters if required -c if (lmuca) call read_muca -C Read CSA control parameters if required (from fort.40 if exists -C otherwise from general input file) - if (modecalc.eq.8) then - inquire (file="fort.40",exist=file_exist) - if (.not.file_exist) call csaread - endif -cfmc if (modecalc.eq.10) call mcmfread -C Read molecule information, molecule geometry, energy-term weights, and -C restraints if requested - call molread - -C Print restraint information -#ifdef MPI - if (.not. out1file .or. me.eq.king) then -#endif - if (nhpb.gt.nss) - &write (iout,'(a,i5,a)') "The following",nhpb-nss, - & " distance constraints have been imposed" - do i=nss+1,nhpb - write (iout,'(3i6,f10.5)') i-nss,ihpb(i),jhpb(i),forcon(i) - enddo -#ifdef MPI - endif -#endif -c print *,"Processor",myrank," leaves READRTNS" - return - end -C------------------------------------------------------------------------------- - subroutine read_control -C -C Read contorl data -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MP - include 'mpif.h' - logical OKRandom, prng_restart - real*8 r1 -#endif - include 'COMMON.IOUNITS' - include 'COMMON.TIME1' -c include 'COMMON.THREAD' - include 'COMMON.SBRIDGE' - include 'COMMON.CONTROL' - include 'COMMON.MCM' -c include 'COMMON.MAP' - include 'COMMON.HEADER' -c include 'COMMON.CSA' - include 'COMMON.CHAIN' -c include 'COMMON.MUCA' -c include 'COMMON.MD' - include 'COMMON.FFIELD' - include 'COMMON.SETUP' - COMMON /MACHSW/ KDIAG,ICORFL,IXDR - character*8 diagmeth(0:3) /'Library','EVVRSP','Givens','Jacobi'/ - character*80 ucase - character*320 controlcard - - nglob_csa=0 - eglob_csa=1d99 - nmin_csa=0 - read (INP,'(a)') titel - call card_concat(controlcard) -c out1file=index(controlcard,'OUT1FILE').gt.0 .or. fg_rank.gt.0 -c print *,"Processor",me," fg_rank",fg_rank," out1file",out1file - call reada(controlcard,'SEED',seed,0.0D0) - call random_init(seed) -C Set up the time limit (caution! The time must be input in minutes!) - read_cart=index(controlcard,'READ_CART').gt.0 - call readi(controlcard,'CONSTR_DIST',constr_dist,0) - call reada(controlcard,'TIMLIM',timlim,960.0D0) ! default 16 hours - unres_pdb = index(controlcard,'UNRES_PDB') .gt. 0 - call reada(controlcard,'SAFETY',safety,30.0D0) ! default 30 minutes - call reada(controlcard,'RMSDBC',rmsdbc,3.0D0) - call reada(controlcard,'RMSDBC1',rmsdbc1,0.5D0) - call reada(controlcard,'RMSDBC1MAX',rmsdbc1max,1.5D0) - call reada(controlcard,'RMSDBCM',rmsdbcm,3.0D0) - call reada(controlcard,'DRMS',drms,0.1D0) - if(me.eq.king .or. .not. out1file .and. fg_rank.eq.0) then - write (iout,'(a,f10.1)')'RMSDBC = ',rmsdbc - write (iout,'(a,f10.1)')'RMSDBC1 = ',rmsdbc1 - write (iout,'(a,f10.1)')'RMSDBC1MAX = ',rmsdbc1max - write (iout,'(a,f10.1)')'DRMS = ',drms - write (iout,'(a,f10.1)')'RMSDBCM = ',rmsdbcm - write (iout,'(a,f10.1)') 'Time limit (min):',timlim - endif - call readi(controlcard,'NZ_START',nz_start,0) - call readi(controlcard,'NZ_END',nz_end,0) - call readi(controlcard,'IZ_SC',iz_sc,0) - timlim=60.0D0*timlim - safety = 60.0d0*safety - timem=timlim - modecalc=0 - call reada(controlcard,"T_BATH",t_bath,300.0d0) - minim=(index(controlcard,'MINIMIZE').gt.0) - dccart=(index(controlcard,'CART').gt.0) - overlapsc=(index(controlcard,'OVERLAP').gt.0) - overlapsc=.not.overlapsc - searchsc=(index(controlcard,'NOSEARCHSC').gt.0) - searchsc=.not.searchsc - sideadd=(index(controlcard,'SIDEADD').gt.0) - energy_dec=(index(controlcard,'ENERGY_DEC').gt.0) - outpdb=(index(controlcard,'PDBOUT').gt.0) - outmol2=(index(controlcard,'MOL2OUT').gt.0) - pdbref=(index(controlcard,'PDBREF').gt.0) - refstr=pdbref .or. (index(controlcard,'REFSTR').gt.0) - indpdb=index(controlcard,'PDBSTART') - extconf=(index(controlcard,'EXTCONF').gt.0) - call readi(controlcard,'IPRINT',iprint,0) - call readi(controlcard,'MAXGEN',maxgen,10000) - call readi(controlcard,'MAXOVERLAP',maxoverlap,1000) - call readi(controlcard,"KDIAG",kdiag,0) - call readi(controlcard,"RESCALE_MODE",rescale_mode,0) - if(me.eq.king .or. .not. out1file .and. fg_rank.eq.0) - & write (iout,*) "RESCALE_MODE",rescale_mode - split_ene=index(controlcard,'SPLIT_ENE').gt.0 - if (index(controlcard,'REGULAR').gt.0.0D0) then - call reada(controlcard,'WEIDIS',weidis,0.1D0) - modecalc=1 - refstr=.true. - endif - if (index(controlcard,'CHECKGRAD').gt.0) then - modecalc=5 - if (index(controlcard,'CART').gt.0) then - icheckgrad=1 - elseif (index(controlcard,'CARINT').gt.0) then - icheckgrad=2 - else - icheckgrad=3 - endif - elseif (index(controlcard,'THREAD').gt.0) then - modecalc=2 - call readi(controlcard,'THREAD',nthread,0) - if (nthread.gt.0) then - call reada(controlcard,'WEIDIS',weidis,0.1D0) - else - if (fg_rank.eq.0) - & write (iout,'(a)')'A number has to follow the THREAD keyword.' - stop 'Error termination in Read_Control.' - endif - else if (index(controlcard,'MCMA').gt.0) then - modecalc=3 - else if (index(controlcard,'MCEE').gt.0) then - modecalc=6 - else if (index(controlcard,'MULTCONF').gt.0) then - modecalc=4 - else if (index(controlcard,'MAP').gt.0) then - modecalc=7 - call readi(controlcard,'MAP',nmap,0) - else if (index(controlcard,'CSA').gt.0) then - modecalc=8 -crc else if (index(controlcard,'ZSCORE').gt.0) then -crc -crc ZSCORE is rm from UNRES, modecalc=9 is available -crc -crc modecalc=9 -cfcm else if (index(controlcard,'MCMF').gt.0) then -cfmc modecalc=10 - else if (index(controlcard,'SOFTREG').gt.0) then - modecalc=11 - else if (index(controlcard,'CHECK_BOND').gt.0) then - modecalc=-1 - else if (index(controlcard,'TEST').gt.0) then - modecalc=-2 - else if (index(controlcard,'MD').gt.0) then - modecalc=12 - else if (index(controlcard,'RE ').gt.0) then - modecalc=14 - endif - - lmuca=index(controlcard,'MUCA').gt.0 - call readi(controlcard,'MUCADYN',mucadyn,0) - call readi(controlcard,'MUCASMOOTH',muca_smooth,0) - if (lmuca .and. (me.eq.king .or. .not.out1file )) - & then - write (iout,*) 'MUCADYN=',mucadyn - write (iout,*) 'MUCASMOOTH=',muca_smooth - endif - - iscode=index(controlcard,'ONE_LETTER') - indphi=index(controlcard,'PHI') - indback=index(controlcard,'BACK') - iranconf=index(controlcard,'RAND_CONF') - i2ndstr=index(controlcard,'USE_SEC_PRED') - gradout=index(controlcard,'GRADOUT').gt.0 - gnorm_check=index(controlcard,'GNORM_CHECK').gt.0 - - if(me.eq.king.or..not.out1file) - & write (iout,'(2a)') diagmeth(kdiag), - & ' routine used to diagonalize matrices.' - return - end -c------------------------------------------------------------------------------ - subroutine molread -C -C Read molecular data. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' - integer error_msg -#endif - include 'COMMON.IOUNITS' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.LOCAL' - include 'COMMON.NAMES' - include 'COMMON.CHAIN' - include 'COMMON.FFIELD' - include 'COMMON.SBRIDGE' - include 'COMMON.HEADER' - include 'COMMON.CONTROL' -c include 'COMMON.DBASE' -c include 'COMMON.THREAD' - include 'COMMON.CONTACTS' - include 'COMMON.TORCNSTR' - include 'COMMON.TIME1' - include 'COMMON.BOUNDS' -c include 'COMMON.MD' -c include 'COMMON.REMD' - include 'COMMON.SETUP' - character*4 sequence(maxres) - integer rescode - double precision x(maxvar) - character*256 pdbfile - character*320 weightcard - character*80 weightcard_t,ucase - dimension itype_pdb(maxres) - common /pizda/ itype_pdb - logical seq_comp,fail - double precision energia(0:n_ene) - integer ilen - external ilen -C -C Body -C -C Read weights of the subsequent energy terms. - - call card_concat(weightcard) - call reada(weightcard,'WLONG',wlong,1.0D0) - call reada(weightcard,'WSC',wsc,wlong) - call reada(weightcard,'WSCP',wscp,wlong) - call reada(weightcard,'WELEC',welec,1.0D0) - call reada(weightcard,'WVDWPP',wvdwpp,welec) - call reada(weightcard,'WEL_LOC',wel_loc,1.0D0) - call reada(weightcard,'WCORR4',wcorr4,0.0D0) - call reada(weightcard,'WCORR5',wcorr5,0.0D0) - call reada(weightcard,'WCORR6',wcorr6,0.0D0) - call reada(weightcard,'WTURN3',wturn3,1.0D0) - call reada(weightcard,'WTURN4',wturn4,1.0D0) - call reada(weightcard,'WTURN6',wturn6,1.0D0) - call reada(weightcard,'WSCCOR',wsccor,1.0D0) - call reada(weightcard,'WSTRAIN',wstrain,1.0D0) - call reada(weightcard,'WBOND',wbond,1.0D0) - call reada(weightcard,'WTOR',wtor,1.0D0) - call reada(weightcard,'WTORD',wtor_d,1.0D0) - call reada(weightcard,'WANG',wang,1.0D0) - call reada(weightcard,'WSCLOC',wscloc,1.0D0) -C Juyong - call reada(weightcard,'WDFAD',wdfa_dist,0.0d0) - call reada(weightcard,'WDFAT',wdfa_tor,0.0d0) - call reada(weightcard,'WDFAN',wdfa_nei,0.0d0) - call reada(weightcard,'WDFAB',wdfa_beta,0.0d0) -C - call reada(weightcard,'SCAL14',scal14,0.4D0) - call reada(weightcard,'SCALSCP',scalscp,1.0d0) - call reada(weightcard,'CUTOFF',cutoff_corr,7.0d0) - call reada(weightcard,'DELT_CORR',delt_corr,0.5d0) - call reada(weightcard,'TEMP0',temp0,300.0d0) - if (index(weightcard,'SOFT').gt.0) ipot=6 -C 12/1/95 Added weight for the multi-body term WCORR - call reada(weightcard,'WCORRH',wcorr,1.0D0) - if (wcorr4.gt.0.0d0) wcorr=wcorr4 - weights(1)=wsc - weights(2)=wscp - weights(3)=welec - weights(4)=wcorr - weights(5)=wcorr5 - weights(6)=wcorr6 - weights(7)=wel_loc - weights(8)=wturn3 - weights(9)=wturn4 - weights(10)=wturn6 - weights(11)=wang - weights(12)=wscloc - weights(13)=wtor - weights(14)=wtor_d - weights(15)=wstrain - weights(16)=wvdwpp - weights(17)=wbond - weights(18)=scal14 - weights(21)=wsccor -C JUYONG - weights(24)=wdfa_dist - weights(25)=wdfa_tor - weights(26)=wdfa_nei - weights(27)=wdfa_beta -C - - if(me.eq.king.or..not.out1file) - & write (iout,10) wsc,wscp,welec,wvdwpp,wbond,wang,wscloc,wtor, - & wtor_d,wstrain,wel_loc,wcorr,wcorr5,wcorr6,wsccor,wturn3, - & wturn4,wturn6, - & wdfa_dist,wdfa_tor,wdfa_nei,wdfa_beta - - 10 format (/'Energy-term weights (unscaled):'// - & 'WSCC= ',f10.6,' (SC-SC)'/ - & 'WSCP= ',f10.6,' (SC-p)'/ - & 'WELEC= ',f10.6,' (p-p electr)'/ - & 'WVDWPP= ',f10.6,' (p-p VDW)'/ - & 'WBOND= ',f10.6,' (stretching)'/ - & 'WANG= ',f10.6,' (bending)'/ - & 'WSCLOC= ',f10.6,' (SC local)'/ - & 'WTOR= ',f10.6,' (torsional)'/ - & 'WTORD= ',f10.6,' (double torsional)'/ - & 'WSTRAIN=',f10.6,' (SS bridges & dist. cnstr.)'/ - & 'WEL_LOC=',f10.6,' (multi-body 3-rd order)'/ - & 'WCORR4= ',f10.6,' (multi-body 4th order)'/ - & 'WCORR5= ',f10.6,' (multi-body 5th order)'/ - & 'WCORR6= ',f10.6,' (multi-body 6th order)'/ - & 'WSCCOR= ',f10.6,' (back-scloc correlation)'/ - & 'WTURN3= ',f10.6,' (turns, 3rd order)'/ - & 'WTURN4= ',f10.6,' (turns, 4th order)'/ - & 'WTURN6= ',f10.6,' (turns, 6th order)'/ - & 'WDFA_D= ',f10.6,' (DFA, distance)' / - & 'WDFA_T= ',f10.6,' (DFA, torsional)' / - & 'WDFA_N= ',f10.6,' (DFA, number of neighbor)' / - & 'WDFA_B= ',f10.6,' (DFA, beta formation)') - - if(me.eq.king.or..not.out1file)then - if (wcorr4.gt.0.0d0) then - write (iout,'(/2a/)') 'Local-electrostatic type correlation ', - & 'between contact pairs of peptide groups' - write (iout,'(2(a,f5.3/))') - & 'Cutoff on 4-6th order correlation terms: ',cutoff_corr, - & 'Range of quenching the correlation terms:',2*delt_corr - else if (wcorr.gt.0.0d0) then - write (iout,'(/2a/)') 'Hydrogen-bonding correlation ', - & 'between contact pairs of peptide groups' - endif - write (iout,'(a,f8.3)') - & 'Scaling factor of 1,4 SC-p interactions:',scal14 - write (iout,'(a,f8.3)') - & 'General scaling factor of SC-p interactions:',scalscp - endif - r0_corr=cutoff_corr-delt_corr - do i=1,20 - aad(i,1)=scalscp*aad(i,1) - aad(i,2)=scalscp*aad(i,2) - bad(i,1)=scalscp*bad(i,1) - bad(i,2)=scalscp*bad(i,2) - enddo -c call rescale_weights(t_bath) - if(me.eq.king.or..not.out1file) - & write (iout,22) wsc,wscp,welec,wvdwpp,wbond,wang,wscloc,wtor, - & wtor_d,wstrain,wel_loc,wcorr,wcorr5,wcorr6,wsccor,wturn3, - & wturn4,wturn6, - & wdfa_dist,wdfa_tor,wdfa_nei,wdfa_beta - - 22 format (/'Energy-term weights (scaled):'// - & 'WSCC= ',f10.6,' (SC-SC)'/ - & 'WSCP= ',f10.6,' (SC-p)'/ - & 'WELEC= ',f10.6,' (p-p electr)'/ - & 'WVDWPP= ',f10.6,' (p-p VDW)'/ - & 'WBOND= ',f10.6,' (stretching)'/ - & 'WANG= ',f10.6,' (bending)'/ - & 'WSCLOC= ',f10.6,' (SC local)'/ - & 'WTOR= ',f10.6,' (torsional)'/ - & 'WTORD= ',f10.6,' (double torsional)'/ - & 'WSTRAIN=',f10.6,' (SS bridges & dist. cnstr.)'/ - & 'WEL_LOC=',f10.6,' (multi-body 3-rd order)'/ - & 'WCORR4= ',f10.6,' (multi-body 4th order)'/ - & 'WCORR5= ',f10.6,' (multi-body 5th order)'/ - & 'WCORR6= ',f10.6,' (multi-body 6th order)'/ - & 'WSCCOR= ',f10.6,' (back-scloc correlatkion)'/ - & 'WTURN3= ',f10.6,' (turns, 3rd order)'/ - & 'WTURN4= ',f10.6,' (turns, 4th order)'/ - & 'WTURN6= ',f10.6,' (turns, 6th order)'/ - & 'WDFA_D= ',f10.6,' (DFA, distance)' / - & 'WDFA_T= ',f10.6,' (DFA, torsional)' / - & 'WDFA_N= ',f10.6,' (DFA, number of neighbor)' / - & 'WDFA_B= ',f10.6,' (DFA, beta formation)') - - if(me.eq.king.or..not.out1file) - & write (iout,*) "Reference temperature for weights calculation:", - & temp0 - call reada(weightcard,"D0CM",d0cm,3.78d0) - call reada(weightcard,"AKCM",akcm,15.1d0) - call reada(weightcard,"AKTH",akth,11.0d0) - call reada(weightcard,"AKCT",akct,12.0d0) - call reada(weightcard,"V1SS",v1ss,-1.08d0) - call reada(weightcard,"V2SS",v2ss,7.61d0) - call reada(weightcard,"V3SS",v3ss,13.7d0) - call reada(weightcard,"EBR",ebr,-5.50D0) - if(me.eq.king.or..not.out1file) then - write (iout,*) "Parameters of the SS-bond potential:" - write (iout,*) "D0CM",d0cm," AKCM",akcm," AKTH",akth, - & " AKCT",akct - write (iout,*) "V1SS",v1ss," V2SS",v2ss," V3SS",v3ss - write (iout,*) "EBR",ebr - print *,'indpdb=',indpdb,' pdbref=',pdbref - endif - if (indpdb.gt.0 .or. pdbref) then - read(inp,'(a)') pdbfile - if(me.eq.king.or..not.out1file) - & write (iout,'(2a)') 'PDB data will be read from file ', - & pdbfile(:ilen(pdbfile)) - open(ipdbin,file=pdbfile,status='old',err=33) - goto 34 - 33 write (iout,'(a)') 'Error opening PDB file.' - stop - 34 continue -c print *,'Begin reading pdb data' - call readpdb -c print *,'Finished reading pdb data' - if(me.eq.king.or..not.out1file) - & write (iout,'(a,i3,a,i3)')'nsup=',nsup, - & ' nstart_sup=',nstart_sup - do i=1,nres - itype_pdb(i)=itype(i) - enddo - close (ipdbin) - nnt=nstart_sup - nct=nstart_sup+nsup-1 - call contact(.false.,ncont_ref,icont_ref,co) - - if (sideadd) then -C Following 2 lines for diagnostics; comment out if not needed - write (iout,*) "Before sideadd" - call intout - if(me.eq.king.or..not.out1file) - & write(iout,*)'Adding sidechains' - maxsi=1000 - do i=2,nres-1 - iti=itype(i) - if (iti.ne.10) then - nsi=0 - fail=.true. - do while (fail.and.nsi.le.maxsi) -c call gen_side(iti,theta(i+1),alph(i),omeg(i),fail) - nsi=nsi+1 - enddo - if(fail) write(iout,*)'Adding sidechain failed for res ', - & i,' after ',nsi,' trials' - endif - enddo - endif -C 10/03/12 Adam: Recalculate coordinates with new side chain positions - call chainbuild -C Following 2 lines for diagnostics; comment out if not needed - write (iout,*) "After sideadd" - call intout - endif - - if (indpdb.eq.0) then -C Read sequence if not taken from the pdb file. - read (inp,*) nres -c print *,'nres=',nres - if (iscode.gt.0) then - read (inp,'(80a1)') (sequence(i)(1:1),i=1,nres) - else - read (inp,'(20(1x,a3))') (sequence(i),i=1,nres) - endif -C Convert sequence to numeric code - do i=1,nres - itype(i)=rescode(i,sequence(i),iscode) - enddo -C Assign initial virtual bond lengths - do i=2,nres - vbld(i)=vbl - vbld_inv(i)=vblinv - enddo - do i=2,nres-1 - vbld(i+nres)=dsc(iabs(itype(i))) - vbld_inv(i+nres)=dsc_inv(iabs(itype(i))) -c write (iout,*) "i",i," itype",itype(i), -c & " dsc",dsc(itype(i))," vbld",vbld(i),vbld(i+nres) - enddo - endif -c print *,nres -c print '(20i4)',(itype(i),i=1,nres) - do i=1,nres -#ifdef PROCOR - if (itype(i).eq.21 .or. itype(i+1).eq.21) then -#else - if (itype(i).eq.21) then -#endif - itel(i)=0 -#ifdef PROCOR - else if (iabs(itype(i+1)).ne.20) then -#else - else if (iabs(itype(i)).ne.20) then -#endif - itel(i)=1 - else - itel(i)=2 - endif - enddo - if(me.eq.king.or..not.out1file)then - write (iout,*) "ITEL" - do i=1,nres-1 - write (iout,*) i,itype(i),itel(i) - enddo - print *,'Call Read_Bridge.' - endif - call read_bridge -C 8/13/98 Set limits to generating the dihedral angles - do i=1,nres - phibound(1,i)=-pi - phibound(2,i)=pi - enddo - read (inp,*) ndih_constr - if (ndih_constr.gt.0) then - read (inp,*) ftors - read (inp,*) (idih_constr(i),phi0(i),drange(i),i=1,ndih_constr) - if(me.eq.king.or..not.out1file)then - write (iout,*) - & 'There are',ndih_constr,' constraints on phi angles.' - do i=1,ndih_constr - write (iout,'(i5,2f8.3)') idih_constr(i),phi0(i),drange(i) - enddo - endif - do i=1,ndih_constr - phi0(i)=deg2rad*phi0(i) - drange(i)=deg2rad*drange(i) - enddo - if(me.eq.king.or..not.out1file) - & write (iout,*) 'FTORS',ftors - do i=1,ndih_constr - ii = idih_constr(i) - phibound(1,ii) = phi0(i)-drange(i) - phibound(2,ii) = phi0(i)+drange(i) - enddo - endif - nnt=1 -#ifdef MPI - if (me.eq.king) then -#endif - write (iout,'(a)') 'Boundaries in phi angle sampling:' - do i=1,nres - write (iout,'(a3,i5,2f10.1)') - & restyp(itype(i)),i,phibound(1,i)*rad2deg,phibound(2,i)*rad2deg - enddo -#ifdef MP - endif -#endif - nct=nres -cd print *,'NNT=',NNT,' NCT=',NCT - if (itype(1).eq.21) nnt=2 - if (itype(nres).eq.21) nct=nct-1 - -C Juyong:READ init_vars -C Initialize variables! -C Juyong:READ read_info -C READ fragment information!! -C both routines should be in dfa.F file!! - - if (.not. (wdfa_dist.eq.0.0 .and. wdfa_tor.eq.0.0 .and. - & wdfa_nei.eq.0.0 .and. wdfa_beta.eq.0.0)) then - call init_dfa_vars - print*, 'init_dfa_vars finished!' - call read_dfa_info - print*, 'read_dfa_info finished!' - endif -C -C - - - if (pdbref) then - if(me.eq.king.or..not.out1file) - & write (iout,'(a,i3)') 'nsup=',nsup - nstart_seq=nnt - if (nsup.le.(nct-nnt+1)) then - do i=0,nct-nnt+1-nsup - if (seq_comp(itype(nnt+i),itype_pdb(nstart_sup),nsup)) then - nstart_seq=nnt+i - goto 111 - endif - enddo - write (iout,'(a)') - & 'Error - sequences to be superposed do not match.' - stop - else - do i=0,nsup-(nct-nnt+1) - if (seq_comp(itype(nnt),itype_pdb(nstart_sup+i),nct-nnt+1)) - & then - nstart_sup=nstart_sup+i - nsup=nct-nnt+1 - goto 111 - endif - enddo - write (iout,'(a)') - & 'Error - sequences to be superposed do not match.' - endif - 111 continue - if (nsup.eq.0) nsup=nct-nnt - if (nstart_sup.eq.0) nstart_sup=nnt - if (nstart_seq.eq.0) nstart_seq=nnt - if(me.eq.king.or..not.out1file) - & write (iout,*) 'nsup=',nsup,' nstart_sup=',nstart_sup, - & ' nstart_seq=',nstart_seq - endif -c--- Zscore rms ------- - if (nz_start.eq.0) nz_start=nnt - if (nz_end.eq.0 .and. nsup.gt.0) then - nz_end=nnt+nsup-1 - else if (nz_end.eq.0) then - nz_end=nct - endif - if(me.eq.king.or..not.out1file)then - write (iout,*) 'NZ_START=',nz_start,' NZ_END=',nz_end - write (iout,*) 'IZ_SC=',iz_sc - endif -c---------------------- - call init_int_table - if (refstr) then - if (.not.pdbref) then - call read_angles(inp,*38) - goto 39 - 38 write (iout,'(a)') 'Error reading reference structure.' -#ifdef MPI - call MPI_Finalize(MPI_COMM_WORLD,IERROR) - stop 'Error reading reference structure' -#endif - 39 call chainbuild - call setup_var -czscore call geom_to_var(nvar,coord_exp_zs(1,1)) - nstart_sup=nnt - nstart_seq=nnt - nsup=nct-nnt+1 - do i=1,2*nres - do j=1,3 - cref(j,i)=c(j,i) - enddo - enddo - call contact(.true.,ncont_ref,icont_ref,co) - endif -c write (iout,*) "constr_dist",constr_dist,nstart_sup,nsup - call flush(iout) - if (constr_dist.gt.0) call read_dist_constr -c write (iout,*) "After read_dist_constr nhpb",nhpb - call hpb_partition - if(me.eq.king.or..not.out1file) - & write (iout,*) 'Contact order:',co - if (pdbref) then - if(me.eq.king.or..not.out1file) - & write (2,*) 'Shifting contacts:',nstart_seq,nstart_sup - do i=1,ncont_ref - do j=1,2 - icont_ref(j,i)=icont_ref(j,i)+nstart_seq-nstart_sup - enddo - if(me.eq.king.or..not.out1file) - & write (2,*) i,' ',restyp(itype(icont_ref(1,i))),' ', - & icont_ref(1,i),' ', - & restyp(itype(icont_ref(2,i))),' ',icont_ref(2,i) - enddo - endif - endif - if (indpdb.eq.0 .and. modecalc.ne.2 .and. modecalc.ne.4 - & .and. modecalc.ne.8 .and. modecalc.ne.9 .and. - & modecalc.ne.10) then -C If input structure hasn't been supplied from the PDB file read or generate -C initial geometry. - if (iranconf.eq.0 .and. .not. extconf) then - if(me.eq.king.or..not.out1file .and.fg_rank.eq.0) - & write (iout,'(a)') 'Initial geometry will be read in.' - if (read_cart) then - read(inp,'(8f10.5)',end=36,err=36) - & ((c(l,k),l=1,3),k=1,nres), - & ((c(l,k+nres),l=1,3),k=nnt,nct) - call int_from_cart1(.false.) - do i=1,nres-1 - do j=1,3 - dc(j,i)=c(j,i+1)-c(j,i) - dc_norm(j,i)=dc_norm(j,i)*vbld_inv(i+1) - enddo - enddo - do i=nnt,nct - if (itype(i).ne.10) then - do j=1,3 - dc(j,i+nres)=c(j,i+nres)-c(j,i) - dc_norm(j,i+nres)=dc_norm(j,i+nres)*vbld_inv(i+nres) - enddo - endif - enddo - return - else - call read_angles(inp,*36) - endif - goto 37 - 36 write (iout,'(a)') 'Error reading angle file.' -#ifdef MPI - call mpi_finalize( MPI_COMM_WORLD,IERR ) -#endif - stop 'Error reading angle file.' - 37 continue - else if (extconf) then - if(me.eq.king.or..not.out1file .and. fg_rank.eq.0) - & write (iout,'(a)') 'Extended chain initial geometry.' - do i=3,nres - theta(i)=90d0*deg2rad - enddo - do i=4,nres - phi(i)=180d0*deg2rad - enddo - do i=2,nres-1 - alph(i)=110d0*deg2rad - enddo - do i=2,nres-1 - omeg(i)=-120d0*deg2rad - if (itype(i).le.0) omeg(i)=-omeg(i) - enddo - else - if(me.eq.king.or..not.out1file) - & write (iout,'(a)') 'Random-generated initial geometry.' - - -#ifdef MPI - if (me.eq.king .or. fg_rank.eq.0 .and. ( - & modecalc.eq.12 .or. modecalc.eq.14) ) then -#endif - do itrial=1,100 - itmp=1 -c call gen_rand_conf(itmp,*30) - goto 40 - 30 write (iout,*) 'Failed to generate random conformation', - & ', itrial=',itrial - write (*,*) 'Processor:',me, - & ' Failed to generate random conformation', - & ' itrial=',itrial - call intout - -#ifdef AIX - call flush_(iout) -#else - call flush(iout) -#endif - enddo - write (iout,'(a,i3,a)') 'Processor:',me, - & ' error in generating random conformation.' - write (*,'(a,i3,a)') 'Processor:',me, - & ' error in generating random conformation.' - call flush(iout) -#ifdef MPI - call MPI_Abort(mpi_comm_world,error_msg,ierrcode) - 40 continue - endif -#else - do itrial=1,100 - itmp=1 -c call gen_rand_conf(itmp,*31) - goto 40 - 31 write (iout,*) 'Failed to generate random conformation', - & ', itrial=',itrial - write (*,*) 'Failed to generate random conformation', - & ', itrial=',itrial - enddo - write (iout,'(a,i3,a)') 'Processor:',me, - & ' error in generating random conformation.' - write (*,'(a,i3,a)') 'Processor:',me, - & ' error in generating random conformation.' - stop - 40 continue -#endif - endif - elseif (modecalc.eq.4) then - read (inp,'(a)') intinname - open (intin,file=intinname,status='old',err=333) - if (me.eq.king .or. .not.out1file.and.fg_rank.eq.0) - & write (iout,'(a)') 'intinname',intinname - write (*,'(a)') 'Processor',myrank,' intinname',intinname - goto 334 - 333 write (iout,'(2a)') 'Error opening angle file ',intinname -#ifdef MPI - call MPI_Finalize(MPI_COMM_WORLD,IERR) -#endif - stop 'Error opening angle file.' - 334 continue - - endif -C Generate distance constraints, if the PDB structure is to be regularized. - call setup_var - if (me.eq.king .or. .not. out1file) - & call intout - if (ns.gt.0 .and. (me.eq.king .or. .not.out1file) ) then - write (iout,'(/a,i3,a)') - & 'The chain contains',ns,' disulfide-bridging cysteines.' - write (iout,'(20i4)') (iss(i),i=1,ns) - write (iout,'(/a/)') 'Pre-formed links are:' - do i=1,nss - i1=ihpb(i)-nres - i2=jhpb(i)-nres - it1=itype(i1) - it2=itype(i2) - if (me.eq.king.or..not.out1file) - & write (iout,'(2a,i3,3a,i3,a,3f10.3)') - & restyp(it1),'(',i1,') -- ',restyp(it2),'(',i2,')',dhpb(i), - & ebr,forcon(i) - enddo - write (iout,'(a)') - endif -c if (i2ndstr.gt.0) call secstrp2dihc -c call geom_to_var(nvar,x) -c call etotal(energia(0)) -c call enerprint(energia(0)) -c call briefout(0,etot) -c stop -cd write (iout,'(2(a,i3))') 'NNT',NNT,' NCT',NCT -cd write (iout,'(a)') 'Variable list:' -cd write (iout,'(i4,f10.5)') (i,rad2deg*x(i),i=1,nvar) -#ifdef MPI - if (me.eq.king .or. (fg_rank.eq.0 .and. .not.out1file)) - & write (iout,'(//80(1h*)/20x,a,i4,a/80(1h*)//)') - & 'Processor',myrank,': end reading molecular data.' -#endif - return - end -c-------------------------------------------------------------------------- - logical function seq_comp(itypea,itypeb,length) - implicit none - integer length,itypea(length),itypeb(length) - integer i - do i=1,length - if (itypea(i).ne.itypeb(i)) then - seq_comp=.false. - return - endif - enddo - seq_comp=.true. - return - end -c----------------------------------------------------------------------------- - subroutine read_bridge -C Read information about disulfide bridges. - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.IOUNITS' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.LOCAL' - include 'COMMON.NAMES' - include 'COMMON.CHAIN' - include 'COMMON.FFIELD' - include 'COMMON.SBRIDGE' - include 'COMMON.HEADER' - include 'COMMON.CONTROL' -c include 'COMMON.DBASE' -c include 'COMMON.THREAD' - include 'COMMON.TIME1' - include 'COMMON.SETUP' -C Read bridging residues. - read (inp,*) ns,(iss(i),i=1,ns) - print *,'ns=',ns - if(me.eq.king.or..not.out1file) - & write (iout,*) 'ns=',ns,' iss:',(iss(i),i=1,ns) -C Check whether the specified bridging residues are cystines. - do i=1,ns - if (itype(iss(i)).ne.1) then - if (me.eq.king.or..not.out1file) write (iout,'(2a,i3,a)') - & 'Do you REALLY think that the residue ',restyp(iss(i)),i, - & ' can form a disulfide bridge?!!!' - write (*,'(2a,i3,a)') - & 'Do you REALLY think that the residue ',restyp(iss(i)),i, - & ' can form a disulfide bridge?!!!' -#ifdef MPI - call MPI_Finalize(MPI_COMM_WORLD,ierror) - stop -#endif - endif - enddo -C Read preformed bridges. - if (ns.gt.0) then - read (inp,*) nss,(ihpb(i),jhpb(i),i=1,nss) - write (iout,*) 'nss=',nss,' ihpb,jhpb: ',(ihpb(i),jhpb(i),i=1,nss) - if (nss.gt.0) then - nhpb=nss -C Check if the residues involved in bridges are in the specified list of -C bridging residues. - do i=1,nss - do j=1,i-1 - if (ihpb(i).eq.ihpb(j).or.ihpb(i).eq.jhpb(j) - & .or.jhpb(i).eq.ihpb(j).or.jhpb(i).eq.jhpb(j)) then - write (iout,'(a,i3,a)') 'Disulfide pair',i, - & ' contains residues present in other pairs.' - write (*,'(a,i3,a)') 'Disulfide pair',i, - & ' contains residues present in other pairs.' -#ifdef MPI - call MPI_Finalize(MPI_COMM_WORLD,ierror) - stop -#endif - endif - enddo - do j=1,ns - if (ihpb(i).eq.iss(j)) goto 10 - enddo - write (iout,'(a,i3,a)') 'Pair',i,' contains unknown cystine.' - 10 continue - do j=1,ns - if (jhpb(i).eq.iss(j)) goto 20 - enddo - write (iout,'(a,i3,a)') 'Pair',i,' contains unknown cystine.' - 20 continue - dhpb(i)=dbr - forcon(i)=fbr - enddo - do i=1,nss - ihpb(i)=ihpb(i)+nres - jhpb(i)=jhpb(i)+nres - enddo - endif - endif - return - end -c---------------------------------------------------------------------------- - subroutine read_x(kanal,*) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.CONTROL' - include 'COMMON.LOCAL' - include 'COMMON.INTERACT' -c Read coordinates from input -c - read(kanal,'(8f10.5)',end=10,err=10) - & ((c(l,k),l=1,3),k=1,nres), - & ((c(l,k+nres),l=1,3),k=nnt,nct) - do j=1,3 - c(j,nres+1)=c(j,1) - c(j,2*nres)=c(j,nres) - enddo - call int_from_cart1(.false.) - do i=1,nres-1 - do j=1,3 - dc(j,i)=c(j,i+1)-c(j,i) - dc_norm(j,i)=dc(j,i)*vbld_inv(i+1) - enddo - enddo - do i=nnt,nct - if (itype(i).ne.10) then - do j=1,3 - dc(j,i+nres)=c(j,i+nres)-c(j,i) - dc_norm(j,i+nres)=dc(j,i+nres)*vbld_inv(i+nres) - enddo - endif - enddo - - return - 10 return1 - end -c------------------------------------------------------------------------------ - subroutine setup_var - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.LOCAL' - include 'COMMON.NAMES' - include 'COMMON.CHAIN' - include 'COMMON.FFIELD' - include 'COMMON.SBRIDGE' - include 'COMMON.HEADER' - include 'COMMON.CONTROL' -c include 'COMMON.DBASE' -c include 'COMMON.THREAD' - include 'COMMON.TIME1' -C Set up variable list. - ntheta=nres-2 - nphi=nres-3 - nvar=ntheta+nphi - nside=0 - do i=2,nres-1 - if (itype(i).ne.10) then - nside=nside+1 - ialph(i,1)=nvar+nside - ialph(nside,2)=i - endif - enddo - if (indphi.gt.0) then - nvar=nphi - else if (indback.gt.0) then - nvar=nphi+ntheta - else - nvar=nvar+2*nside - endif -cd write (iout,'(3i4)') (i,ialph(i,1),ialph(i,2),i=2,nres-1) - return - end -c---------------------------------------------------------------------------- - subroutine gen_dist_constr -C Generate CA distance constraints. - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.LOCAL' - include 'COMMON.NAMES' - include 'COMMON.CHAIN' - include 'COMMON.FFIELD' - include 'COMMON.SBRIDGE' - include 'COMMON.HEADER' - include 'COMMON.CONTROL' -c include 'COMMON.DBASE' -c include 'COMMON.THREAD' - include 'COMMON.TIME1' - dimension itype_pdb(maxres) - common /pizda/ itype_pdb - character*2 iden -cd print *,'gen_dist_constr: nnt=',nnt,' nct=',nct -cd write (2,*) 'gen_dist_constr: nnt=',nnt,' nct=',nct, -cd & ' nstart_sup',nstart_sup,' nstart_seq',nstart_seq, -cd & ' nsup',nsup - do i=nstart_sup,nstart_sup+nsup-1 -cd write (2,*) 'i',i,' seq ',restyp(itype(i+nstart_seq-nstart_sup)), -cd & ' seq_pdb', restyp(itype_pdb(i)) - do j=i+2,nstart_sup+nsup-1 - nhpb=nhpb+1 - ihpb(nhpb)=i+nstart_seq-nstart_sup - jhpb(nhpb)=j+nstart_seq-nstart_sup - forcon(nhpb)=weidis - dhpb(nhpb)=dist(i,j) - enddo - enddo -cd write (iout,'(a)') 'Distance constraints:' -cd do i=nss+1,nhpb -cd ii=ihpb(i) -cd jj=jhpb(i) -cd iden='CA' -cd if (ii.gt.nres) then -cd iden='SC' -cd ii=ii-nres -cd jj=jj-nres -cd endif -cd write (iout,'(a,1x,a,i4,3x,a,1x,a,i4,2f10.3)') -cd & restyp(itype(ii)),iden,ii,restyp(itype(jj)),iden,jj, -cd & dhpb(i),forcon(i) -cd enddo - return - end -c---------------------------------------------------------------------------- - subroutine csaread - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.GEO' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.CONTROL' - character*80 ucase - character*620 mcmcard - call card_concat(mcmcard) - - call readi(mcmcard,'NCONF',nconf,50) - call readi(mcmcard,'NADD',nadd,0) - call readi(mcmcard,'JSTART',jstart,1) - call readi(mcmcard,'JEND',jend,1) - call readi(mcmcard,'NSTMAX',nstmax,500000) - call readi(mcmcard,'N0',n0,1) - call readi(mcmcard,'N1',n1,6) - call readi(mcmcard,'N2',n2,4) - call readi(mcmcard,'N3',n3,0) - call readi(mcmcard,'N4',n4,0) - call readi(mcmcard,'N5',n5,0) - call readi(mcmcard,'N6',n6,10) - call readi(mcmcard,'N7',n7,0) - call readi(mcmcard,'N8',n8,0) - call readi(mcmcard,'N9',n9,0) - call readi(mcmcard,'N14',n14,0) - call readi(mcmcard,'N15',n15,0) - call readi(mcmcard,'N16',n16,0) - call readi(mcmcard,'N17',n17,0) - call readi(mcmcard,'N18',n18,0) - - vdisulf=(index(mcmcard,'DYNSS').gt.0) - - call readi(mcmcard,'NDIFF',ndiff,2) - call reada(mcmcard,'DIFFCUT',diffcut,0.0d0) - call readi(mcmcard,'IS1',is1,1) - call readi(mcmcard,'IS2',is2,8) - call readi(mcmcard,'NRAN0',nran0,4) - call readi(mcmcard,'NRAN1',nran1,2) - call readi(mcmcard,'IRR',irr,1) - call readi(mcmcard,'NSEED',nseed,20) - call readi(mcmcard,'NTOTAL',ntotal,10000) - call reada(mcmcard,'CUT1',cut1,2.0d0) - call reada(mcmcard,'CUT2',cut2,5.0d0) - call reada(mcmcard,'ESTOP',estop,-300000.0d0) - call readi(mcmcard,'ICMAX',icmax,1) - call readi(mcmcard,'NBANKM',nbankm,400) - call readi(mcmcard,'IUCUT',iucut,2) - call readi(mcmcard,'IRESTART',irestart,0) -c!bankt call readi(mcmcard,'NBANKTM',ntbankm,0) - ntbankm=0 -c!bankt - call reada(mcmcard,'DELE',dele,20.0d0) - call reada(mcmcard,'DIFCUT',difcut,720.0d0) - call readi(mcmcard,'IREF',iref,0) - call reada(mcmcard,'RMSCUT',rmscut,4.0d0) - call reada(mcmcard,'PNCCUT',pnccut,0.5d0) - call readi(mcmcard,'NCONF_IN',nconf_in,0) - call reada(mcmcard,'RDIH_BIAS',rdih_bias,0.5d0) - write (iout,*) "NCONF_IN",nconf_in - tm_score=(index(mcmcard,'TMSCORE').gt.0) - if (tm_score) write (iout,*) "Using TM_Score instead of DIFF", - & " for torsional angles" - return - end - - subroutine read_minim - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.MINIM' - include 'COMMON.IOUNITS' - character*80 ucase - character*320 minimcard - call card_concat(minimcard) - call readi(minimcard,'MAXMIN',maxmin,2000) - call readi(minimcard,'MAXFUN',maxfun,5000) - call readi(minimcard,'MINMIN',minmin,maxmin) - call readi(minimcard,'MINFUN',minfun,maxmin) - call reada(minimcard,'TOLF',tolf,1.0D-2) - call reada(minimcard,'RTOLF',rtolf,1.0D-4) - print_min_stat=min0(index(minimcard,'PRINT_MIN_STAT'),1) - print_min_res=min0(index(minimcard,'PRINT_MIN_RES'),1) - print_min_ini=min0(index(minimcard,'PRINT_MIN_INI'),1) - write (iout,'(/80(1h*)/20x,a/80(1h*))') - & 'Options in energy minimization:' - write (iout,'(4(a,i5),a,1pe14.5,a,1pe14.5)') - & 'MaxMin:',MaxMin,' MaxFun:',MaxFun, - & 'MinMin:',MinMin,' MinFun:',MinFun, - & ' TolF:',TolF,' RTolF:',RTolF - return - end -c---------------------------------------------------------------------------- - subroutine read_angles(kanal,*) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.CONTROL' -c Read angles from input -c - read (kanal,*,err=10,end=10) (theta(i),i=3,nres) - read (kanal,*,err=10,end=10) (phi(i),i=4,nres) - read (kanal,*,err=10,end=10) (alph(i),i=2,nres-1) - read (kanal,*,err=10,end=10) (omeg(i),i=2,nres-1) - - do i=1,nres -c 9/7/01 avoid 180 deg valence angle - if (theta(i).gt.179.99d0) theta(i)=179.99d0 -c - theta(i)=deg2rad*theta(i) - phi(i)=deg2rad*phi(i) - alph(i)=deg2rad*alph(i) - omeg(i)=deg2rad*omeg(i) - enddo - return - 10 return1 - end -c---------------------------------------------------------------------------- - subroutine reada(rekord,lancuch,wartosc,default) - implicit none - character*(*) rekord,lancuch - double precision wartosc,default - integer ilen,iread - external ilen - iread=index(rekord,lancuch) - if (iread.eq.0) then - wartosc=default - return - endif - iread=iread+ilen(lancuch)+1 - read (rekord(iread:),*,err=10,end=10) wartosc - return - 10 wartosc=default - return - end -c---------------------------------------------------------------------------- - subroutine readi(rekord,lancuch,wartosc,default) - implicit none - character*(*) rekord,lancuch - integer wartosc,default - integer ilen,iread - external ilen - iread=index(rekord,lancuch) - if (iread.eq.0) then - wartosc=default - return - endif - iread=iread+ilen(lancuch)+1 - read (rekord(iread:),*,err=10,end=10) wartosc - return - 10 wartosc=default - return - end -c---------------------------------------------------------------------------- - subroutine multreadi(rekord,lancuch,tablica,dim,default) - implicit none - integer dim,i - integer tablica(dim),default - character*(*) rekord,lancuch - character*80 aux - integer ilen,iread - external ilen - do i=1,dim - tablica(i)=default - enddo - iread=index(rekord,lancuch(:ilen(lancuch))//"=") - if (iread.eq.0) return - iread=iread+ilen(lancuch)+1 - read (rekord(iread:),*,end=10,err=10) (tablica(i),i=1,dim) - 10 return - end -c---------------------------------------------------------------------------- - subroutine multreada(rekord,lancuch,tablica,dim,default) - implicit none - integer dim,i - double precision tablica(dim),default - character*(*) rekord,lancuch - character*80 aux - integer ilen,iread - external ilen - do i=1,dim - tablica(i)=default - enddo - iread=index(rekord,lancuch(:ilen(lancuch))//"=") - if (iread.eq.0) return - iread=iread+ilen(lancuch)+1 - read (rekord(iread:),*,end=10,err=10) (tablica(i),i=1,dim) - 10 return - end -c---------------------------------------------------------------------------- - subroutine openunits - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' - character*16 form,nodename - integer nodelen -#endif - include 'COMMON.SETUP' - include 'COMMON.IOUNITS' -c include 'COMMON.MD' - include 'COMMON.CONTROL' - integer lenpre,lenpot,ilen,lentmp - external ilen - character*3 out1file_text,ucase - character*3 ll - external ucase -c print *,"Processor",myrank,"fg_rank",fg_rank," entered openunits" - call getenv_loc("PREFIX",prefix) - pref_orig = prefix - call getenv_loc("POT",pot) - call getenv_loc("DIRTMP",tmpdir) - call getenv_loc("CURDIR",curdir) - call getenv_loc("OUT1FILE",out1file_text) -c print *,"Processor",myrank,"fg_rank",fg_rank," did GETENV" - out1file_text=ucase(out1file_text) - if (out1file_text(1:1).eq."Y") then - out1file=.true. - else - out1file=fg_rank.gt.0 - endif - lenpre=ilen(prefix) - lenpot=ilen(pot) - lentmp=ilen(tmpdir) - if (lentmp.gt.0) then - write (*,'(80(1h!))') - write (*,'(a,19x,a,19x,a)') "!"," A T T E N T I O N ","!" - write (*,'(80(1h!))') - write (*,*)"All output files will be on node /tmp directory." -#ifdef MPI - call MPI_GET_PROCESSOR_NAME( nodename, nodelen, IERROR ) - if (me.eq.king) then - write (*,*) "The master node is ",nodename - else if (fg_rank.eq.0) then - write (*,*) "I am the CG slave node ",nodename - else - write (*,*) "I am the FG slave node ",nodename - endif -#endif - PREFIX = tmpdir(:lentmp)//'/'//prefix(:lenpre) - lenpre = lentmp+lenpre+1 - endif - entname=prefix(:lenpre)//'_'//pot(:lenpot)//'.entr' -C Get the names and open the input files -#if defined(WINIFL) || defined(WINPGI) - open(1,file=pref_orig(:ilen(pref_orig))// - & '.inp',status='old',readonly,shared) - open (9,file=prefix(:ilen(prefix))//'.intin',status='unknown') -C open (18,file=prefix(:ilen(prefix))//'.entin',status='unknown') -C Get parameter filenames and open the parameter files. - call getenv_loc('BONDPAR',bondname) - open (ibond,file=bondname,status='old',readonly,shared) - call getenv_loc('THETPAR',thetname) - open (ithep,file=thetname,status='old',readonly,shared) -#ifndef CRYST_THETA - call getenv_loc('THETPARPDB',thetname_pdb) - open (ithep_pdb,file=thetname_pdb,status='old',readonly,shared) -#endif - call getenv_loc('ROTPAR',rotname) - open (irotam,file=rotname,status='old',readonly,shared) -#ifndef CRYST_SC - call getenv_loc('ROTPARPDB',rotname_pdb) - open (irotam_pdb,file=rotname_pdb,status='old',readonly,shared) -#endif - call getenv_loc('TORPAR',torname) - open (itorp,file=torname,status='old',readonly,shared) - call getenv_loc('TORDPAR',tordname) - open (itordp,file=tordname,status='old',readonly,shared) - call getenv_loc('FOURIER',fouriername) - open (ifourier,file=fouriername,status='old',readonly,shared) - call getenv_loc('ELEPAR',elename) - open (ielep,file=elename,status='old',readonly,shared) - call getenv_loc('SIDEPAR',sidename) - open (isidep,file=sidename,status='old',readonly,shared) -#elif (defined CRAY) || (defined AIX) - open(1,file=pref_orig(:ilen(pref_orig))//'.inp',status='old', - & action='read') -c print *,"Processor",myrank," opened file 1" - open (9,file=prefix(:ilen(prefix))//'.intin',status='unknown') -c print *,"Processor",myrank," opened file 9" -C open (18,file=prefix(:ilen(prefix))//'.entin',status='unknown') -C Get parameter filenames and open the parameter files. - call getenv_loc('BONDPAR',bondname) - open (ibond,file=bondname,status='old',action='read') -c print *,"Processor",myrank," opened file IBOND" - call getenv_loc('THETPAR',thetname) - open (ithep,file=thetname,status='old',action='read') -c print *,"Processor",myrank," opened file ITHEP" -#ifndef CRYST_THETA - call getenv_loc('THETPARPDB',thetname_pdb) - open (ithep_pdb,file=thetname_pdb,status='old',action='read') -#endif - call getenv_loc('ROTPAR',rotname) - open (irotam,file=rotname,status='old',action='read') -c print *,"Processor",myrank," opened file IROTAM" -#ifndef CRYST_SC - call getenv_loc('ROTPARPDB',rotname_pdb) - open (irotam_pdb,file=rotname_pdb,status='old',action='read') -#endif - call getenv_loc('TORPAR',torname) - open (itorp,file=torname,status='old',action='read') -c print *,"Processor",myrank," opened file ITORP" - call getenv_loc('TORDPAR',tordname) - open (itordp,file=tordname,status='old',action='read') -c print *,"Processor",myrank," opened file ITORDP" - call getenv_loc('SCCORPAR',sccorname) - open (isccor,file=sccorname,status='old',action='read') -c print *,"Processor",myrank," opened file ISCCOR" - call getenv_loc('FOURIER',fouriername) - open (ifourier,file=fouriername,status='old',action='read') -c print *,"Processor",myrank," opened file IFOURIER" - call getenv_loc('ELEPAR',elename) - open (ielep,file=elename,status='old',action='read') -c print *,"Processor",myrank," opened file IELEP" - call getenv_loc('SIDEPAR',sidename) - open (isidep,file=sidename,status='old',action='read') -c print *,"Processor",myrank," opened file ISIDEP" -c print *,"Processor",myrank," opened parameter files" -#elif (defined G77) - open(1,file=pref_orig(:ilen(pref_orig))//'.inp',status='old') - open (9,file=prefix(:ilen(prefix))//'.intin',status='unknown') -C open (18,file=prefix(:ilen(prefix))//'.entin',status='unknown') -C Get parameter filenames and open the parameter files. - call getenv_loc('BONDPAR',bondname) - open (ibond,file=bondname,status='old') - call getenv_loc('THETPAR',thetname) - open (ithep,file=thetname,status='old') -#ifndef CRYST_THETA - call getenv_loc('THETPARPDB',thetname_pdb) - open (ithep_pdb,file=thetname_pdb,status='old') -#endif - call getenv_loc('ROTPAR',rotname) - open (irotam,file=rotname,status='old') -#ifndef CRYST_SC - call getenv_loc('ROTPARPDB',rotname_pdb) - open (irotam_pdb,file=rotname_pdb,status='old') -#endif - call getenv_loc('TORPAR',torname) - open (itorp,file=torname,status='old') - call getenv_loc('TORDPAR',tordname) - open (itordp,file=tordname,status='old') - call getenv_loc('SCCORPAR',sccorname) - open (isccor,file=sccorname,status='old') - call getenv_loc('FOURIER',fouriername) - open (ifourier,file=fouriername,status='old') - call getenv_loc('ELEPAR',elename) - open (ielep,file=elename,status='old') - call getenv_loc('SIDEPAR',sidename) - open (isidep,file=sidename,status='old') -#else - open(1,file=pref_orig(:ilen(pref_orig))//'.inp',status='old', - & readonly) - open (9,file=prefix(:ilen(prefix))//'.intin',status='unknown') -C open (18,file=prefix(:ilen(prefix))//'.entin',status='unknown') -C Get parameter filenames and open the parameter files. - call getenv_loc('BONDPAR',bondname) - open (ibond,file=bondname,status='old',readonly) - call getenv_loc('THETPAR',thetname) - open (ithep,file=thetname,status='old',readonly) -#ifndef CRYST_THETA - call getenv_loc('THETPARPDB',thetname_pdb) - print *,"thetname_pdb ",thetname_pdb - open (ithep_pdb,file=thetname_pdb,status='old',readonly) - print *,ithep_pdb," opened" -#endif - call getenv_loc('ROTPAR',rotname) - open (irotam,file=rotname,status='old',readonly) -#ifndef CRYST_SC - call getenv_loc('ROTPARPDB',rotname_pdb) - open (irotam_pdb,file=rotname_pdb,status='old',readonly) -#endif - call getenv_loc('TORPAR',torname) - open (itorp,file=torname,status='old',readonly) - call getenv_loc('TORDPAR',tordname) - open (itordp,file=tordname,status='old',readonly) - call getenv_loc('SCCORPAR',sccorname) - open (isccor,file=sccorname,status='old',readonly) - call getenv_loc('FOURIER',fouriername) - open (ifourier,file=fouriername,status='old',readonly) - call getenv_loc('ELEPAR',elename) - open (ielep,file=elename,status='old',readonly) - call getenv_loc('SIDEPAR',sidename) - open (isidep,file=sidename,status='old',readonly) -#endif -#ifndef OLDSCP -C -C 8/9/01 In the newest version SCp interaction constants are read from a file -C Use -DOLDSCP to use hard-coded constants instead. -C - call getenv_loc('SCPPAR',scpname) -#if defined(WINIFL) || defined(WINPGI) - open (iscpp,file=scpname,status='old',readonly,shared) -#elif (defined CRAY) || (defined AIX) - open (iscpp,file=scpname,status='old',action='read') -#elif (defined G77) - open (iscpp,file=scpname,status='old') -#else - open (iscpp,file=scpname,status='old',readonly) -#endif -#endif - call getenv_loc('PATTERN',patname) -#if defined(WINIFL) || defined(WINPGI) - open (icbase,file=patname,status='old',readonly,shared) -#elif (defined CRAY) || (defined AIX) - open (icbase,file=patname,status='old',action='read') -#elif (defined G77) - open (icbase,file=patname,status='old') -#else - open (icbase,file=patname,status='old',readonly) -#endif -#ifdef MPI -C Open output file only for CG processes -c print *,"Processor",myrank," fg_rank",fg_rank - if (fg_rank.eq.0) then - - if (nodes.eq.1) then - npos=3 - else - npos = dlog10(dfloat(nodes-1))+1 - endif - if (npos.lt.3) npos=3 - write (liczba,'(i1)') npos - form = '(bz,i'//liczba(:ilen(liczba))//'.'//liczba(:ilen(liczba)) - & //')' - write (liczba,form) me - outname=prefix(:lenpre)//'.out_'//pot(:lenpot)// - & liczba(:ilen(liczba)) - intname=prefix(:lenpre)//'_'//pot(:lenpot)//liczba(:ilen(liczba)) - & //'.int' - pdbname=prefix(:lenpre)//'_'//pot(:lenpot)//liczba(:ilen(liczba)) - & //'.pdb' - mol2name=prefix(:lenpre)//'_'//pot(:lenpot)// - & liczba(:ilen(liczba))//'.mol2' - statname=prefix(:lenpre)//'_'//pot(:lenpot)// - & liczba(:ilen(liczba))//'.stat' - if (lentmp.gt.0) - & call copy_to_tmp(pref_orig(:ilen(pref_orig))//'_'//pot(:lenpot) - & //liczba(:ilen(liczba))//'.stat') - rest2name=prefix(:ilen(prefix))//"_"//liczba(:ilen(liczba)) - & //'.rst' -c if(usampl) then -c qname=prefix(:lenpre)//'_'//pot(:lenpot)// -c & liczba(:ilen(liczba))//'.const' -c endif - - endif -#else - outname=prefix(:lenpre)//'.out_'//pot(:lenpot) - intname=prefix(:lenpre)//'_'//pot(:lenpot)//'.int' - pdbname=prefix(:lenpre)//'_'//pot(:lenpot)//'.pdb' - mol2name=prefix(:lenpre)//'_'//pot(:lenpot)//'.mol2' - statname=prefix(:lenpre)//'_'//pot(:lenpot)//'.stat' - if (lentmp.gt.0) - & call copy_to_tmp(pref_orig(:ilen(pref_orig))//'_'//pot(:lenpot)// - & '.stat') - rest2name=prefix(:ilen(prefix))//'.rst' -c if(usampl) then -c qname=prefix(:lenpre)//'_'//pot(:lenpot)//'.const' -c endif -#endif -#if defined(AIX) || defined(PGI) - if (me.eq.king .or. .not. out1file) - & open(iout,file=outname,status='unknown') -#ifdef DEBUG - if (fg_rank.gt.0) then - write (liczba,'(i3.3)') myrank/nfgtasks - write (ll,'(bz,i3.3)') fg_rank - open(iout,file="debug"//liczba(:ilen(liczba))//"."//ll, - & status='unknown') - endif -#endif - if(me.eq.king) then - open(igeom,file=intname,status='unknown',position='append') - open(ipdb,file=pdbname,status='unknown') - open(imol2,file=mol2name,status='unknown') - open(istat,file=statname,status='unknown',position='append') - else -c1out open(iout,file=outname,status='unknown') - endif -#else - if (me.eq.king .or. .not.out1file) - & open(iout,file=outname,status='unknown') -#ifdef DEBUG - if (fg_rank.gt.0) then - write (liczba,'(i3.3)') myrank/nfgtasks - write (ll,'(bz,i3.3)') fg_rank - open(iout,file="debug"//liczba(:ilen(liczba))//"."//ll, - & status='unknown') - endif -#endif - if(me.eq.king) then - open(igeom,file=intname,status='unknown',access='append') - open(ipdb,file=pdbname,status='unknown') - open(imol2,file=mol2name,status='unknown') - open(istat,file=statname,status='unknown',access='append') - else -c1out open(iout,file=outname,status='unknown') - endif -#endif - csa_rbank=prefix(:lenpre)//'.CSA.rbank' - csa_seed=prefix(:lenpre)//'.CSA.seed' - csa_history=prefix(:lenpre)//'.CSA.history' - csa_bank=prefix(:lenpre)//'.CSA.bank' - csa_bank1=prefix(:lenpre)//'.CSA.bank1' - csa_alpha=prefix(:lenpre)//'.CSA.alpha' - csa_alpha1=prefix(:lenpre)//'.CSA.alpha1' -c!bankt csa_bankt=prefix(:lenpre)//'.CSA.bankt' - csa_int=prefix(:lenpre)//'.int' - csa_bank_reminimized=prefix(:lenpre)//'.CSA.bank_reminimized' - csa_native_int=prefix(:lenpre)//'.CSA.native.int' - csa_in=prefix(:lenpre)//'.CSA.in' -c print *,"Processor",myrank,"fg_rank",fg_rank," opened files" -C Write file names - if (me.eq.king)then - write (iout,'(80(1h-))') - write (iout,'(30x,a)') "FILE ASSIGNMENT" - write (iout,'(80(1h-))') - write (iout,*) "Input file : ", - & pref_orig(:ilen(pref_orig))//'.inp' - write (iout,*) "Output file : ", - & outname(:ilen(outname)) - write (iout,*) - write (iout,*) "Sidechain potential file : ", - & sidename(:ilen(sidename)) -#ifndef OLDSCP - write (iout,*) "SCp potential file : ", - & scpname(:ilen(scpname)) -#endif - write (iout,*) "Electrostatic potential file : ", - & elename(:ilen(elename)) - write (iout,*) "Cumulant coefficient file : ", - & fouriername(:ilen(fouriername)) - write (iout,*) "Torsional parameter file : ", - & torname(:ilen(torname)) - write (iout,*) "Double torsional parameter file : ", - & tordname(:ilen(tordname)) - write (iout,*) "SCCOR parameter file : ", - & sccorname(:ilen(sccorname)) - write (iout,*) "Bond & inertia constant file : ", - & bondname(:ilen(bondname)) - write (iout,*) "Bending parameter file : ", - & thetname(:ilen(thetname)) - write (iout,*) "Rotamer parameter file : ", - & rotname(:ilen(rotname)) - write (iout,*) "Threading database : ", - & patname(:ilen(patname)) - if (lentmp.ne.0) - &write (iout,*)" DIRTMP : ", - & tmpdir(:lentmp) - write (iout,'(80(1h-))') - endif - return - end -c---------------------------------------------------------------------------- - subroutine card_concat(card) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - character*(*) card - character*80 karta,ucase - external ilen - read (inp,'(a)') karta - karta=ucase(karta) - card=' ' - do while (karta(80:80).eq.'&') - card=card(:ilen(card)+1)//karta(:79) - read (inp,'(a)') karta - karta=ucase(karta) - enddo - card=card(:ilen(card)+1)//karta - return - end - - subroutine read_dist_constr - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.SETUP' - include 'COMMON.CONTROL' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.SBRIDGE' - integer ifrag_(2,100),ipair_(2,100) - double precision wfrag_(100),wpair_(100) - character*500 controlcard - write (iout,*) "Calling read_dist_constr" - write (iout,*) "nres",nres," nstart_sup",nstart_sup," nsup",nsup - call flush(iout) - call card_concat(controlcard) - call readi(controlcard,"NFRAG",nfrag_,0) - call readi(controlcard,"NPAIR",npair_,0) - call readi(controlcard,"NDIST",ndist_,0) - call reada(controlcard,'DIST_CUT',dist_cut,5.0d0) - call multreadi(controlcard,"IFRAG",ifrag_(1,1),2*nfrag_,0) - call multreadi(controlcard,"IPAIR",ipair_(1,1),2*npair_,0) - call multreada(controlcard,"WFRAG",wfrag_(1),nfrag_,0.0d0) - call multreada(controlcard,"WPAIR",wpair_(1),npair_,0.0d0) -c write (iout,*) "NFRAG",nfrag_," NPAIR",npair_," NDIST",ndist_ -c write (iout,*) "IFRAG" -c do i=1,nfrag_ -c write (iout,*) i,ifrag_(1,i),ifrag_(2,i),wfrag_(i) -c enddo -c write (iout,*) "IPAIR" -c do i=1,npair_ -c write (iout,*) i,ipair_(1,i),ipair_(2,i),wpair_(i) -c enddo - call flush(iout) - do i=1,nfrag_ - if (ifrag_(1,i).lt.nstart_sup) ifrag_(1,i)=nstart_sup - if (ifrag_(2,i).gt.nstart_sup+nsup-1) - & ifrag_(2,i)=nstart_sup+nsup-1 -c write (iout,*) i,ifrag_(1,i),ifrag_(2,i),wfrag_(i) - call flush(iout) - if (wfrag_(i).gt.0.0d0) then - do j=ifrag_(1,i),ifrag_(2,i)-1 - do k=j+1,ifrag_(2,i) - write (iout,*) "j",j," k",k - ddjk=dist(j,k) - if (constr_dist.eq.1) then - nhpb=nhpb+1 - ihpb(nhpb)=j - jhpb(nhpb)=k - dhpb(nhpb)=ddjk - forcon(nhpb)=wfrag_(i) - else if (constr_dist.eq.2) then - if (ddjk.le.dist_cut) then - nhpb=nhpb+1 - ihpb(nhpb)=j - jhpb(nhpb)=k - dhpb(nhpb)=ddjk - forcon(nhpb)=wfrag_(i) - endif - else - nhpb=nhpb+1 - ihpb(nhpb)=j - jhpb(nhpb)=k - dhpb(nhpb)=ddjk - forcon(nhpb)=wfrag_(i)*dexp(-0.5d0*(ddjk/dist_cut)**2) - endif -#ifdef MPI - if (.not.out1file .or. me.eq.king) - & write (iout,'(a,3i5,f8.2,1pe12.2)') "+dist.constr ", - & nhpb,ihpb(nhpb),jhpb(nhpb),dhpb(nhpb),forcon(nhpb) -#else - write (iout,'(a,3i5,f8.2,1pe12.2)') "+dist.constr ", - & nhpb,ihpb(nhpb),jhpb(nhpb),dhpb(nhpb),forcon(nhpb) -#endif - enddo - enddo - endif - enddo - do i=1,npair_ - if (wpair_(i).gt.0.0d0) then - ii = ipair_(1,i) - jj = ipair_(2,i) - if (ii.gt.jj) then - itemp=ii - ii=jj - jj=itemp - endif - do j=ifrag_(1,ii),ifrag_(2,ii) - do k=ifrag_(1,jj),ifrag_(2,jj) - nhpb=nhpb+1 - ihpb(nhpb)=j - jhpb(nhpb)=k - forcon(nhpb)=wpair_(i) - dhpb(nhpb)=dist(j,k) -#ifdef MPI - if (.not.out1file .or. me.eq.king) - & write (iout,'(a,3i5,f8.2,f10.1)') "+dist.constr ", - & nhpb,ihpb(nhpb),jhpb(nhpb),dhpb(nhpb),forcon(nhpb) -#else - write (iout,'(a,3i5,f8.2,f10.1)') "+dist.constr ", - & nhpb,ihpb(nhpb),jhpb(nhpb),dhpb(nhpb),forcon(nhpb) -#endif - enddo - enddo - endif - enddo - do i=1,ndist_ - read (inp,*) ihpb(nhpb+1),jhpb(nhpb+1),forcon(nhpb+1) - if (forcon(nhpb+1).gt.0.0d0) then - nhpb=nhpb+1 - dhpb(nhpb)=dist(ihpb(nhpb),jhpb(nhpb)) -#ifdef MPI - if (.not.out1file .or. me.eq.king) - & write (iout,'(a,3i5,f8.2,f10.1)') "+dist.constr ", - & nhpb,ihpb(nhpb),jhpb(nhpb),dhpb(nhpb),forcon(nhpb) -#else - write (iout,'(a,3i5,f8.2,f10.1)') "+dist.constr ", - & nhpb,ihpb(nhpb),jhpb(nhpb),dhpb(nhpb),forcon(nhpb) -#endif - endif - enddo - call flush(iout) - return - end -c------------------------------------------------------------------------------- -#ifdef WINIFL - subroutine flush(iu) - return - end -#endif -#ifdef AIX - subroutine flush(iu) - call flush_(iu) - return - end -#endif -c------------------------------------------------------------------------------ - subroutine copy_to_tmp(source) - include "DIMENSIONS" - include "COMMON.IOUNITS" - character*(*) source - character* 256 tmpfile - integer ilen - external ilen - logical ex - tmpfile=curdir(:ilen(curdir))//"/"//source(:ilen(source)) - inquire(file=tmpfile,exist=ex) - if (ex) then - write (*,*) "Copying ",tmpfile(:ilen(tmpfile)), - & " to temporary directory..." - write (*,*) "/bin/cp "//tmpfile(:ilen(tmpfile))//" "//tmpdir - call system("/bin/cp "//tmpfile(:ilen(tmpfile))//" "//tmpdir) - endif - return - end -c------------------------------------------------------------------------------ - subroutine move_from_tmp(source) - include "DIMENSIONS" - include "COMMON.IOUNITS" - character*(*) source - integer ilen - external ilen - write (*,*) "Moving ",source(:ilen(source)), - & " from temporary directory to working directory" - write (*,*) "/bin/mv "//source(:ilen(source))//" "//curdir - call system("/bin/mv "//source(:ilen(source))//" "//curdir) - return - end -c------------------------------------------------------------------------------ - subroutine random_init(seed) -C -C Initialize random number generator -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef AMD64 - integer*8 iseedi8 -#endif -#ifdef MPI - include 'mpif.h' - logical OKRandom, prng_restart - real*8 r1 - integer iseed_array(4) -#endif - include 'COMMON.IOUNITS' - include 'COMMON.TIME1' -c include 'COMMON.THREAD' - include 'COMMON.SBRIDGE' - include 'COMMON.CONTROL' - include 'COMMON.MCM' -c include 'COMMON.MAP' - include 'COMMON.HEADER' -c include 'COMMON.CSA' - include 'COMMON.CHAIN' -c include 'COMMON.MUCA' -c include 'COMMON.MD' - include 'COMMON.FFIELD' - include 'COMMON.SETUP' - iseed=-dint(dabs(seed)) - if (iseed.eq.0) then - write (iout,'(/80(1h*)/20x,a/80(1h*))') - & 'Random seed undefined. The program will stop.' - write (*,'(/80(1h*)/20x,a/80(1h*))') - & 'Random seed undefined. The program will stop.' -#ifdef MPI - call mpi_finalize(mpi_comm_world,ierr) -#endif - stop 'Bad random seed.' - endif -#ifdef MPI - if (fg_rank.eq.0) then - seed=seed*(me+1)+1 -#ifdef AMD64 - iseedi8=dint(seed) - if(me.eq.king .or. .not. out1file) - & write (iout,*) 'MPI: node= ', me, ' iseed= ',iseedi8 - write (*,*) 'MPI: node= ', me, ' iseed= ',iseedi8 - OKRandom = prng_restart(me,iseedi8) -#else - do i=1,4 - tmp=65536.0d0**(4-i) - iseed_array(i) = dint(seed/tmp) - seed=seed-iseed_array(i)*tmp - enddo - if(me.eq.king .or. .not. out1file) - & write (iout,*) 'MPI: node= ', me, ' iseed(4)= ', - & (iseed_array(i),i=1,4) - write (*,*) 'MPI: node= ',me, ' iseed(4)= ', - & (iseed_array(i),i=1,4) - OKRandom = prng_restart(me,iseed_array) -#endif - if (OKRandom) then - r1=ran_number(0.0D0,1.0D0) - if(me.eq.king .or. .not. out1file) - & write (iout,*) 'ran_num',r1 - if (r1.lt.0.0d0) OKRandom=.false. - endif - if (.not.OKRandom) then - write (iout,*) 'PRNG IS NOT WORKING!!!' - print *,'PRNG IS NOT WORKING!!!' - if (me.eq.0) then - call flush(iout) - call mpi_abort(mpi_comm_world,error_msg,ierr) - stop - else - write (iout,*) 'too many processors for parallel prng' - write (*,*) 'too many processors for parallel prng' - call flush(iout) - stop - endif - endif - endif -#else - call vrndst(iseed) - write (iout,*) 'ran_num',ran_number(0.0d0,1.0d0) -#endif - return - end diff --git a/source/unres/src_CSA_DiL/refsys.f b/source/unres/src_CSA_DiL/refsys.f deleted file mode 100644 index b57c201..0000000 --- a/source/unres/src_CSA_DiL/refsys.f +++ /dev/null @@ -1,60 +0,0 @@ - subroutine refsys(i2,i3,i4,e1,e2,e3,fail) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -c this subroutine calculates unity vectors of a local reference system -c defined by atoms (i2), (i3), and (i4). the x axis is the axis from -c atom (i3) to atom (i2), and the xy plane is the plane defined by atoms -c (i2), (i3), and (i4). z axis is directed according to the sign of the -c vector product (i3)-(i2) and (i3)-(i4). sets fail to .true. if atoms -c (i2) and (i3) or (i3) and (i4) coincide or atoms (i2), (i3), and (i4) -c form a linear fragment. returns vectors e1, e2, and e3. - logical fail - double precision e1(3),e2(3),e3(3) - double precision u(3),z(3) - include 'COMMON.IOUNITS' - include "COMMON.CHAIN" - data coinc /1.0d-13/,align /1.0d-13/ - fail=.false. - s1=0.0d0 - s2=0.0d0 - do 1 i=1,3 - zi=c(i,i2)-c(i,i3) - ui=c(i,i4)-c(i,i3) - s1=s1+zi*zi - s2=s2+ui*ui - z(i)=zi - 1 u(i)=ui - s1=sqrt(s1) - s2=sqrt(s2) - if (s1.gt.coinc) goto 2 - write (iout,1000) i2,i3,i1 - fail=.true. - return - 2 if (s2.gt.coinc) goto 4 - write(iout,1000) i3,i4,i1 - fail=.true. - return - 4 s1=1.0/s1 - s2=1.0/s2 - v1=z(2)*u(3)-z(3)*u(2) - v2=z(3)*u(1)-z(1)*u(3) - v3=z(1)*u(2)-z(2)*u(1) - anorm=sqrt(v1*v1+v2*v2+v3*v3) - if (anorm.gt.align) goto 6 - write (iout,1010) i2,i3,i4,i1 - fail=.true. - return - 6 anorm=1.0/anorm - e3(1)=v1*anorm - e3(2)=v2*anorm - e3(3)=v3*anorm - e1(1)=z(1)*s1 - e1(2)=z(2)*s1 - e1(3)=z(3)*s1 - e2(1)=e1(3)*e3(2)-e1(2)*e3(3) - e2(2)=e1(1)*e3(3)-e1(3)*e3(1) - e2(3)=e1(2)*e3(1)-e1(1)*e3(2) - 1000 format (/1x,' * * * error - atoms',i4,' and',i4,' coincide.') - 1010 format (/1x,' * * * error - atoms',2(i4,2h, ),i4,' form a linear') - return - end diff --git a/source/unres/src_CSA_DiL/rescode.f b/source/unres/src_CSA_DiL/rescode.f deleted file mode 100644 index 12abbbe..0000000 --- a/source/unres/src_CSA_DiL/rescode.f +++ /dev/null @@ -1,33 +0,0 @@ - integer function rescode(iseq,nam,itype) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.NAMES' - include 'COMMON.IOUNITS' - character*3 nam,ucase - - if (itype.eq.0) then - - do i=-ntyp1,ntyp1 -cc write(iout,*),i,ucase(nam),restyp(i) - if (ucase(nam).eq.restyp(i)) then - rescode=i - return - endif - enddo - - else - - do i=-ntyp1,ntyp1 - if (nam(1:1).eq.onelet(i)) then - rescode=i - return - endif - enddo - - endif - - write (iout,10) iseq,nam - stop - 10 format ('**** Error - residue',i4,' has an unresolved name ',a3) - end - diff --git a/source/unres/src_CSA_DiL/rmdd.f b/source/unres/src_CSA_DiL/rmdd.f deleted file mode 100644 index 799ab47..0000000 --- a/source/unres/src_CSA_DiL/rmdd.f +++ /dev/null @@ -1,159 +0,0 @@ -c algorithm 611, collected algorithms from acm. -c algorithm appeared in acm-trans. math. software, vol.9, no. 4, -c dec., 1983, p. 503-524. - integer function imdcon(k) -c - integer k -c -c *** return integer machine-dependent constants *** -c -c *** k = 1 means return standard output unit number. *** -c *** k = 2 means return alternate output unit number. *** -c *** k = 3 means return input unit number. *** -c (note -- k = 2, 3 are used only by test programs.) -c -c +++ port version follows... -c external i1mach -c integer i1mach -c integer mdperm(3) -c data mdperm(1)/2/, mdperm(2)/4/, mdperm(3)/1/ -c imdcon = i1mach(mdperm(k)) -c +++ end of port version +++ -c -c +++ non-port version follows... - integer mdcon(3) - data mdcon(1)/6/, mdcon(2)/8/, mdcon(3)/5/ - imdcon = mdcon(k) -c +++ end of non-port version +++ -c - 999 return -c *** last card of imdcon follows *** - end - double precision function rmdcon(k) -c -c *** return machine dependent constants used by nl2sol *** -c -c +++ comments below contain data statements for various machines. +++ -c +++ to convert to another machine, place a c in column 1 of the +++ -c +++ data statement line(s) that correspond to the current machine +++ -c +++ and remove the c from column 1 of the data statement line(s) +++ -c +++ that correspond to the new machine. +++ -c - integer k -c -c *** the constant returned depends on k... -c -c *** k = 1... smallest pos. eta such that -eta exists. -c *** k = 2... square root of eta. -c *** k = 3... unit roundoff = smallest pos. no. machep such -c *** that 1 + machep .gt. 1 .and. 1 - machep .lt. 1. -c *** k = 4... square root of machep. -c *** k = 5... square root of big (see k = 6). -c *** k = 6... largest machine no. big such that -big exists. -c - double precision big, eta, machep - integer bigi(4), etai(4), machei(4) -c/+ - double precision dsqrt -c/ - equivalence (big,bigi(1)), (eta,etai(1)), (machep,machei(1)) -c -c +++ ibm 360, ibm 370, or xerox +++ -c -c data big/z7fffffffffffffff/, eta/z0010000000000000/, -c 1 machep/z3410000000000000/ -c -c +++ data general +++ -c -c data big/0.7237005577d+76/, eta/0.5397605347d-78/, -c 1 machep/2.22044605d-16/ -c -c +++ dec 11 +++ -c -c data big/1.7d+38/, eta/2.938735878d-39/, machep/2.775557562d-17/ -c -c +++ hp3000 +++ -c -c data big/1.157920892d+77/, eta/8.636168556d-78/, -c 1 machep/5.551115124d-17/ -c -c +++ honeywell +++ -c -c data big/1.69d+38/, eta/5.9d-39/, machep/2.1680435d-19/ -c -c +++ dec10 +++ -c -c data big/"377777100000000000000000/, -c 1 eta/"002400400000000000000000/, -c 2 machep/"104400000000000000000000/ -c -c +++ burroughs +++ -c -c data big/o0777777777777777,o7777777777777777/, -c 1 eta/o1771000000000000,o7770000000000000/, -c 2 machep/o1451000000000000,o0000000000000000/ -c -c +++ control data +++ -c -c data big/37767777777777777777b,37167777777777777777b/, -c 1 eta/00014000000000000000b,00000000000000000000b/, -c 2 machep/15614000000000000000b,15010000000000000000b/ -c -c +++ prime +++ -c -c data big/1.0d+9786/, eta/1.0d-9860/, machep/1.4210855d-14/ -c -c +++ univac +++ -c -c data big/8.988d+307/, eta/1.2d-308/, machep/1.734723476d-18/ -c -c +++ vax +++ -c - data big/1.7d+38/, eta/2.939d-39/, machep/1.3877788d-17/ -c -c +++ cray 1 +++ -c -c data bigi(1)/577767777777777777777b/, -c 1 bigi(2)/000007777777777777776b/, -c 2 etai(1)/200004000000000000000b/, -c 3 etai(2)/000000000000000000000b/, -c 4 machei(1)/377224000000000000000b/, -c 5 machei(2)/000000000000000000000b/ -c -c +++ port library -- requires more than just a data statement... +++ -c -c external d1mach -c double precision d1mach, zero -c data big/0.d+0/, eta/0.d+0/, machep/0.d+0/, zero/0.d+0/ -c if (big .gt. zero) go to 1 -c big = d1mach(2) -c eta = d1mach(1) -c machep = d1mach(4) -c1 continue -c -c +++ end of port +++ -c -c------------------------------- body -------------------------------- -c - go to (10, 20, 30, 40, 50, 60), k -c - 10 rmdcon = eta - go to 999 -c - 20 rmdcon = dsqrt(256.d+0*eta)/16.d+0 - go to 999 -c - 30 rmdcon = machep - go to 999 -c - 40 rmdcon = dsqrt(machep) - go to 999 -c - 50 rmdcon = dsqrt(big/256.d+0)*16.d+0 - go to 999 -c - 60 rmdcon = big -c - 999 return -c *** last card of rmdcon follows *** - end diff --git a/source/unres/src_CSA_DiL/rmsd.F b/source/unres/src_CSA_DiL/rmsd.F deleted file mode 100644 index 8e07b0c..0000000 --- a/source/unres/src_CSA_DiL/rmsd.F +++ /dev/null @@ -1,184 +0,0 @@ - subroutine rms_nac_nnc(rms,frac,frac_nn,co,lprn) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.CONTACTS' - include 'COMMON.IOUNITS' - double precision przes(3),obr(3,3) - logical non_conv,lprn -c call fitsq(rms,c(1,nstart_seq),cref(1,nstart_sup),nsup,przes, -c & obr,non_conv) -c rms=dsqrt(rms) - call rmsd(rms) - call contact(.false.,ncont,icont,co) - frac=contact_fract(ncont,ncont_ref,icont,icont_ref) - frac_nn=contact_fract_nn(ncont,ncont_ref,icont,icont_ref) - if (lprn) write (iout,'(a,f8.3/a,f8.3/a,f8.3/a,f8.3)') - & 'RMS deviation from the reference structure:',rms, - & ' % of native contacts:',frac*100, - & ' % of nonnative contacts:',frac_nn*100, - & ' contact order:',co - - return - end -c--------------------------------------------------------------------------- - subroutine rmsd(drms) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.INTERACT' - logical non_conv - double precision przes(3),obrot(3,3) - double precision ccopy(3,maxres2+2),crefcopy(3,maxres2+2) - - iatom=0 -c print *,"nz_start",nz_start," nz_end",nz_end - do i=nz_start,nz_end - iatom=iatom+1 - iti=itype(i) - do k=1,3 - ccopy(k,iatom)=c(k,i+nstart_seq-nstart_sup) - crefcopy(k,iatom)=cref(k,i) - enddo - if (iz_sc.eq.1.and.iti.ne.10) then - iatom=iatom+1 - do k=1,3 - ccopy(k,iatom)=c(k,nres+i+nstart_seq-nstart_sup) - crefcopy(k,iatom)=cref(k,nres+i) - enddo - endif - enddo - -c ----- diagnostics -c write (iout,*) 'Ccopy and CREFcopy' -c print '(i5,3f10.5,5x,3f10.5)',(k,(ccopy(j,k),j=1,3), -c & (crefcopy(j,k),j=1,3),k=1,iatom) -c write (iout,'(i5,3f10.5,5x,3f10.5)') (k,(ccopy(j,k),j=1,3), -c & (crefcopy(j,k),j=1,3),k=1,iatom) -c ----- end diagnostics - - call fitsq(roznica,ccopy(1,1),crefcopy(1,1),iatom, - & przes,obrot,non_conv) - if (non_conv) then - print *,'Problems in FITSQ!!! rmsd' - write (iout,*) 'Problems in FITSQ!!! rmsd' - print *,'Ccopy and CREFcopy' - write (iout,*) 'Ccopy and CREFcopy' - print '(i5,3f10.5,5x,3f10.5)',(k,(ccopy(j,k),j=1,3), - & (crefcopy(j,k),j=1,3),k=1,iatom) - write (iout,'(i5,3f10.5,5x,3f10.5)') (k,(ccopy(j,k),j=1,3), - & (crefcopy(j,k),j=1,3),k=1,iatom) -#ifdef MPI -c call mpi_abort(mpi_comm_world,ierror,ierrcode) - roznica=100.0 -#else - stop -#endif - endif - drms=dsqrt(dabs(roznica)) -c ---- diagnostics -c write (iout,*) "rms",drms -c ---- end diagnostics - return - end - -c-------------------------------------------- - subroutine rmsd_csa(drms) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.INTERACT' - logical non_conv - double precision przes(3),obrot(3,3) - double precision ccopy(3,maxres2+2),crefcopy(3,maxres2+2) - - iatom=0 - do i=nz_start,nz_end - iatom=iatom+1 - iti=itype(i) - do k=1,3 - ccopy(k,iatom)=c(k,i) - crefcopy(k,iatom)=crefjlee(k,i) - enddo - if (iz_sc.eq.1.and.iti.ne.10) then - iatom=iatom+1 - do k=1,3 - ccopy(k,iatom)=c(k,nres+i) - crefcopy(k,iatom)=crefjlee(k,nres+i) - enddo - endif - enddo - - call fitsq(roznica,ccopy(1,1),crefcopy(1,1),iatom, - & przes,obrot,non_conv) - if (non_conv) then - print *,'Problems in FITSQ!!! rmsd_csa' - write (iout,*) 'Problems in FITSQ!!! rmsd_csa' - print *,'Ccopy and CREFcopy' - write (iout,*) 'Ccopy and CREFcopy' - print '(i5,3f10.5,5x,3f10.5)',(k,(ccopy(j,k),j=1,3), - & (crefcopy(j,k),j=1,3),k=1,iatom) - write (iout,'(i5,3f10.5,5x,3f10.5)') (k,(ccopy(j,k),j=1,3), - & (crefcopy(j,k),j=1,3),k=1,iatom) -#ifdef MPI - call mpi_abort(mpi_comm_world,ierror,ierrcode) -#else - stop -#endif - endif - drms=dsqrt(dabs(roznica)) - return - end - -c--------------------------------------------------------------------------- - subroutine calc_tmscore(tmscore_dp,lprn) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.INTERACT' - real x1(maxres),y1(maxres),z1(maxres) - integer n_1(maxres),L1 - real x2(maxres),y2(maxres),z2(maxres) - integer n_2(maxres),L2 - real TM,Rcomm - integer Lcomm - logical lprn - - L1=0 -c print *,"nz_start",nz_start," nz_end",nz_end - do i=nz_start,nz_end - L1=L1+1 - n_1(L1)=L1 - x1(L1)=c(1,i+nstart_seq-nstart_sup) - y1(L1)=c(2,i+nstart_seq-nstart_sup) - z1(L1)=c(3,i+nstart_seq-nstart_sup) - - n_2(L1)=L1 - x2(L1)=cref(1,i) - y2(L1)=cref(2,i) - z2(L1)=cref(3,i) - enddo - L2=L1 - - call TMscore(L1,x1,y1,z1,n_1,L2,x2,y2,z2,n_2,TM,Rcomm,Lcomm) - - tmscore_dp=TM - if (lprn) then - write (iout,'(a40,f8.2)') - & 'TM-score with the reference structure: ',TM - endif - return - end - diff --git a/source/unres/src_CSA_DiL/sc_move.F b/source/unres/src_CSA_DiL/sc_move.F deleted file mode 100644 index 74e9bf2..0000000 --- a/source/unres/src_CSA_DiL/sc_move.F +++ /dev/null @@ -1,823 +0,0 @@ - subroutine sc_move(n_start,n_end,n_maxtry,e_drop, - + n_fun,etot) -c Perform a quick search over side-chain arrangments (over -c residues n_start to n_end) for a given (frozen) CA trace -c Only side-chains are minimized (at most n_maxtry times each), -c not CA positions -c Stops if energy drops by e_drop, otherwise tries all residues -c in the given range -c If there is an energy drop, full minimization may be useful -c n_start, n_end CAN be modified by this routine, but only if -c out of bounds (n_start <= 1, n_end >= nres, n_start < n_end) -c NOTE: this move should never increase the energy -crc implicit none - -c Includes - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.HEADER' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.FFIELD' - -c External functions - integer iran_num - external iran_num - -c Input arguments - integer n_start,n_end,n_maxtry - double precision e_drop - -c Output arguments - integer n_fun - double precision etot - -c Local variables - double precision energy(0:n_ene) - double precision cur_alph(2:nres-1),cur_omeg(2:nres-1) - double precision orig_e,cur_e - integer n,n_steps,n_first,n_cur,n_tot,i - double precision orig_w(n_ene) - double precision wtime - - -c Set non side-chain weights to zero (minimization is faster) -c NOTE: e(2) does not actually depend on the side-chain, only CA - orig_w(2)=wscp - orig_w(3)=welec - orig_w(4)=wcorr - orig_w(5)=wcorr5 - orig_w(6)=wcorr6 - orig_w(7)=wel_loc - orig_w(8)=wturn3 - orig_w(9)=wturn4 - orig_w(10)=wturn6 - orig_w(11)=wang - orig_w(13)=wtor - orig_w(14)=wtor_d - orig_w(15)=wvdwpp - - wscp=0.D0 - welec=0.D0 - wcorr=0.D0 - wcorr5=0.D0 - wcorr6=0.D0 - wel_loc=0.D0 - wturn3=0.D0 - wturn4=0.D0 - wturn6=0.D0 - wang=0.D0 - wtor=0.D0 - wtor_d=0.D0 - wvdwpp=0.D0 - -c Make sure n_start, n_end are within proper range - if (n_start.lt.2) n_start=2 - if (n_end.gt.nres-1) n_end=nres-1 -crc if (n_start.lt.n_end) then - if (n_start.gt.n_end) then - n_start=2 - n_end=nres-1 - endif - -c Save the initial values of energy and coordinates -cd call chainbuild -cd call etotal(energy) -cd write (iout,*) 'start sc ene',energy(0) -cd call enerprint(energy(0)) -crc etot=energy(0) - n_fun=0 -crc orig_e=etot -crc cur_e=orig_e -crc do i=2,nres-1 -crc cur_alph(i)=alph(i) -crc cur_omeg(i)=omeg(i) -crc enddo - -ct wtime=MPI_WTIME() -c Try (one by one) all specified residues, starting from a -c random position in sequence -c Stop early if the energy has decreased by at least e_drop - n_tot=n_end-n_start+1 - n_first=iran_num(0,n_tot-1) - n_steps=0 - n=0 -crc do while (n.lt.n_tot .and. orig_e-etot.lt.e_drop) - do while (n.lt.n_tot) - n_cur=n_start+mod(n_first+n,n_tot) - call single_sc_move(n_cur,n_maxtry,e_drop, - + n_steps,n_fun,etot) -c If a lower energy was found, update the current structure... -crc if (etot.lt.cur_e) then -crc cur_e=etot -crc do i=2,nres-1 -crc cur_alph(i)=alph(i) -crc cur_omeg(i)=omeg(i) -crc enddo -crc else -c ...else revert to the previous one -crc etot=cur_e -crc do i=2,nres-1 -crc alph(i)=cur_alph(i) -crc omeg(i)=cur_omeg(i) -crc enddo -crc endif - n=n+1 -cd -cd call chainbuild -cd call etotal(energy) -cd print *,'running',n,energy(0) - enddo - -cd call chainbuild -cd call etotal(energy) -cd write (iout,*) 'end sc ene',energy(0) - -c Put the original weights back to calculate the full energy - wscp=orig_w(2) - welec=orig_w(3) - wcorr=orig_w(4) - wcorr5=orig_w(5) - wcorr6=orig_w(6) - wel_loc=orig_w(7) - wturn3=orig_w(8) - wturn4=orig_w(9) - wturn6=orig_w(10) - wang=orig_w(11) - wtor=orig_w(13) - wtor_d=orig_w(14) - wvdwpp=orig_w(15) - -crc n_fun=n_fun+1 -ct write (iout,*) 'sc_local time= ',MPI_WTIME()-wtime - return - end - -c------------------------------------------------------------- - - subroutine single_sc_move(res_pick,n_maxtry,e_drop, - + n_steps,n_fun,e_sc) -c Perturb one side-chain (res_pick) and minimize the -c neighbouring region, keeping all CA's and non-neighbouring -c side-chains fixed -c Try until e_drop energy improvement is achieved, or n_maxtry -c attempts have been made -c At the start, e_sc should contain the side-chain-only energy(0) -c nsteps and nfun for this move are ADDED to n_steps and n_fun -crc implicit none - -c Includes - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.CHAIN' - include 'COMMON.MINIM' - include 'COMMON.FFIELD' - include 'COMMON.IOUNITS' - -c External functions - double precision dist - external dist - -c Input arguments - integer res_pick,n_maxtry - double precision e_drop - -c Input/Output arguments - integer n_steps,n_fun - double precision e_sc - -c Local variables - logical fail - integer i,j - integer nres_moved - integer iretcode,loc_nfun,orig_maxfun,n_try - double precision sc_dist,sc_dist_cutoff - double precision energy(0:n_ene),orig_e,cur_e - double precision evdw,escloc - double precision cur_alph(2:nres-1),cur_omeg(2:nres-1) - double precision var(maxvar) - - double precision orig_theta(1:nres),orig_phi(1:nres), - + orig_alph(1:nres),orig_omeg(1:nres) - - -c Define what is meant by "neighbouring side-chain" - sc_dist_cutoff=5.0D0 - -c Don't do glycine or ends - i=itype(res_pick) - if (i.eq.10 .or. i.eq.21) return - -c Freeze everything (later will relax only selected side-chains) - mask_r=.true. - do i=1,nres - mask_phi(i)=0 - mask_theta(i)=0 - mask_side(i)=0 - enddo - -c Find the neighbours of the side-chain to move -c and save initial variables -crc orig_e=e_sc -crc cur_e=orig_e - nres_moved=0 - do i=2,nres-1 -c Don't do glycine (itype(j)==10) - if (itype(i).ne.10) then - sc_dist=dist(nres+i,nres+res_pick) - else - sc_dist=sc_dist_cutoff - endif - if (sc_dist.lt.sc_dist_cutoff) then - nres_moved=nres_moved+1 - mask_side(i)=1 - cur_alph(i)=alph(i) - cur_omeg(i)=omeg(i) - endif - enddo - - call chainbuild - call egb1(evdw) - call esc(escloc) - e_sc=wsc*evdw+wscloc*escloc -cd call etotal(energy) -cd print *,'new ',(energy(k),k=0,n_ene) - orig_e=e_sc - cur_e=orig_e - - n_try=0 - do while (n_try.lt.n_maxtry .and. orig_e-cur_e.lt.e_drop) -c Move the selected residue (don't worry if it fails) - call gen_side(iabs(itype(res_pick)),theta(res_pick+1), - + alph(res_pick),omeg(res_pick),fail) - -c Minimize the side-chains starting from the new arrangement - call geom_to_var(nvar,var) - orig_maxfun=maxfun - maxfun=7 - -crc do i=1,nres -crc orig_theta(i)=theta(i) -crc orig_phi(i)=phi(i) -crc orig_alph(i)=alph(i) -crc orig_omeg(i)=omeg(i) -crc enddo - - call minimize_sc1(e_sc,var,iretcode,loc_nfun) - -cv write(*,'(2i3,2f12.5,2i3)') -cv & res_pick,nres_moved,orig_e,e_sc-cur_e, -cv & iretcode,loc_nfun - -c$$$ if (iretcode.eq.8) then -c$$$ write(iout,*)'Coordinates just after code 8' -c$$$ call chainbuild -c$$$ call all_varout -c$$$ call flush(iout) -c$$$ do i=1,nres -c$$$ theta(i)=orig_theta(i) -c$$$ phi(i)=orig_phi(i) -c$$$ alph(i)=orig_alph(i) -c$$$ omeg(i)=orig_omeg(i) -c$$$ enddo -c$$$ write(iout,*)'Coordinates just before code 8' -c$$$ call chainbuild -c$$$ call all_varout -c$$$ call flush(iout) -c$$$ endif - - n_fun=n_fun+loc_nfun - maxfun=orig_maxfun - call var_to_geom(nvar,var) - -c If a lower energy was found, update the current structure... - if (e_sc.lt.cur_e) then -cv call chainbuild -cv call etotal(energy) -cd call egb1(evdw) -cd call esc(escloc) -cd e_sc1=wsc*evdw+wscloc*escloc -cd print *,' new',e_sc1,energy(0) -cv print *,'new ',energy(0) -cd call enerprint(energy(0)) - cur_e=e_sc - do i=2,nres-1 - if (mask_side(i).eq.1) then - cur_alph(i)=alph(i) - cur_omeg(i)=omeg(i) - endif - enddo - else -c ...else revert to the previous one - e_sc=cur_e - do i=2,nres-1 - if (mask_side(i).eq.1) then - alph(i)=cur_alph(i) - omeg(i)=cur_omeg(i) - endif - enddo - endif - n_try=n_try+1 - - enddo - n_steps=n_steps+n_try - -c Reset the minimization mask_r to false - mask_r=.false. - - return - end - -c------------------------------------------------------------- - - subroutine sc_minimize(etot,iretcode,nfun) -c Minimizes side-chains only, leaving backbone frozen -crc implicit none - -c Includes - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.FFIELD' - -c Output arguments - double precision etot - integer iretcode,nfun - -c Local variables - integer i - double precision orig_w(n_ene),energy(0:n_ene) - double precision var(maxvar) - - -c Set non side-chain weights to zero (minimization is faster) -c NOTE: e(2) does not actually depend on the side-chain, only CA - orig_w(2)=wscp - orig_w(3)=welec - orig_w(4)=wcorr - orig_w(5)=wcorr5 - orig_w(6)=wcorr6 - orig_w(7)=wel_loc - orig_w(8)=wturn3 - orig_w(9)=wturn4 - orig_w(10)=wturn6 - orig_w(11)=wang - orig_w(13)=wtor - orig_w(14)=wtor_d - - wscp=0.D0 - welec=0.D0 - wcorr=0.D0 - wcorr5=0.D0 - wcorr6=0.D0 - wel_loc=0.D0 - wturn3=0.D0 - wturn4=0.D0 - wturn6=0.D0 - wang=0.D0 - wtor=0.D0 - wtor_d=0.D0 - -c Prepare to freeze backbone - do i=1,nres - mask_phi(i)=0 - mask_theta(i)=0 - mask_side(i)=1 - enddo - -c Minimize the side-chains - mask_r=.true. - call geom_to_var(nvar,var) - call minimize(etot,var,iretcode,nfun) - call var_to_geom(nvar,var) - mask_r=.false. - -c Put the original weights back and calculate the full energy - wscp=orig_w(2) - welec=orig_w(3) - wcorr=orig_w(4) - wcorr5=orig_w(5) - wcorr6=orig_w(6) - wel_loc=orig_w(7) - wturn3=orig_w(8) - wturn4=orig_w(9) - wturn6=orig_w(10) - wang=orig_w(11) - wtor=orig_w(13) - wtor_d=orig_w(14) - - call chainbuild - call etotal(energy) - etot=energy(0) - - return - end - -c------------------------------------------------------------- - subroutine minimize_sc1(etot,x,iretcode,nfun) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - parameter (liv=60,lv=(77+maxvar*(maxvar+17)/2)) - include 'COMMON.IOUNITS' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.MINIM' - common /srutu/ icall - dimension iv(liv) - double precision minval,x(maxvar),d(maxvar),v(1:lv),xx(maxvar) - double precision energia(0:n_ene) - external func,gradient,fdum - external func_restr1,grad_restr1 - logical not_done,change,reduce - common /przechowalnia/ v - - call deflt(2,iv,liv,lv,v) -* 12 means fresh start, dont call deflt - iv(1)=12 -* max num of fun calls - if (maxfun.eq.0) maxfun=500 - iv(17)=maxfun -* max num of iterations - if (maxmin.eq.0) maxmin=1000 - iv(18)=maxmin -* controls output - iv(19)=2 -* selects output unit -c iv(21)=iout - iv(21)=0 -* 1 means to print out result - iv(22)=0 -* 1 means to print out summary stats - iv(23)=0 -* 1 means to print initial x and d - iv(24)=0 -* min val for v(radfac) default is 0.1 - v(24)=0.1D0 -* max val for v(radfac) default is 4.0 - v(25)=2.0D0 -c v(25)=4.0D0 -* check false conv if (act fnctn decrease) .lt. v(26)*(exp decrease) -* the sumsl default is 0.1 - v(26)=0.1D0 -* false conv if (act fnctn decrease) .lt. v(34) -* the sumsl default is 100*machep - v(34)=v(34)/100.0D0 -* absolute convergence - if (tolf.eq.0.0D0) tolf=1.0D-4 - v(31)=tolf -* relative convergence - if (rtolf.eq.0.0D0) rtolf=1.0D-4 - v(32)=rtolf -* controls initial step size - v(35)=1.0D-1 -* large vals of d correspond to small components of step - do i=1,nphi - d(i)=1.0D-1 - enddo - do i=nphi+1,nvar - d(i)=1.0D-1 - enddo - IF (mask_r) THEN - call x2xx(x,xx,nvar_restr) - call sumsl(nvar_restr,d,xx,func_restr1,grad_restr1, - & iv,liv,lv,v,idum,rdum,fdum) - call xx2x(x,xx) - ELSE - call sumsl(nvar,d,x,func,gradient,iv,liv,lv,v,idum,rdum,fdum) - ENDIF - etot=v(10) - iretcode=iv(1) - nfun=iv(6) - - return - end -************************************************************************ - subroutine func_restr1(n,x,nf,f,uiparm,urparm,ufparm) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.DERIV' - include 'COMMON.IOUNITS' - include 'COMMON.GEO' - include 'COMMON.FFIELD' - include 'COMMON.INTERACT' - include 'COMMON.TIME1' - common /chuju/ jjj - double precision energia(0:n_ene),evdw,escloc - integer jjj - double precision ufparm,e1,e2 - external ufparm - integer uiparm(1) - real*8 urparm(1) - dimension x(maxvar) - nfl=nf - icg=mod(nf,2)+1 - -#ifdef OSF -c Intercept NaNs in the coordinates, before calling etotal - x_sum=0.D0 - do i=1,n - x_sum=x_sum+x(i) - enddo - FOUND_NAN=.false. - if (x_sum.ne.x_sum) then - write(iout,*)" *** func_restr1 : Found NaN in coordinates" - f=1.0D+73 - FOUND_NAN=.true. - return - endif -#endif - - call var_to_geom_restr(n,x) - call zerograd - call chainbuild -cd write (iout,*) 'ETOTAL called from FUNC' - call egb1(evdw) - call esc(escloc) - f=wsc*evdw+wscloc*escloc -cd call etotal(energia(0)) -cd f=wsc*energia(1)+wscloc*energia(12) -cd print *,f,evdw,escloc,energia(0) -C -C Sum up the components of the Cartesian gradient. -C - do i=1,nct - do j=1,3 - gradx(j,i,icg)=wsc*gvdwx(j,i) - enddo - enddo - - return - end -c------------------------------------------------------- - subroutine grad_restr1(n,x,nf,g,uiparm,urparm,ufparm) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.FFIELD' - include 'COMMON.IOUNITS' - external ufparm - integer uiparm(1) - double precision urparm(1) - dimension x(maxvar),g(maxvar) - - icg=mod(nf,2)+1 - if (nf-nfl+1) 20,30,40 - 20 call func_restr1(n,x,nf,f,uiparm,urparm,ufparm) -c write (iout,*) 'grad 20' - if (nf.eq.0) return - goto 40 - 30 call var_to_geom_restr(n,x) - call chainbuild -C -C Evaluate the derivatives of virtual bond lengths and SC vectors in variables. -C - 40 call cartder -C -C Convert the Cartesian gradient into internal-coordinate gradient. -C - - ig=0 - ind=nres-2 - do i=2,nres-2 - IF (mask_phi(i+2).eq.1) THEN - gphii=0.0D0 - do j=i+1,nres-1 - ind=ind+1 - do k=1,3 - gphii=gphii+dcdv(k+3,ind)*gradc(k,j,icg) - gphii=gphii+dxdv(k+3,ind)*gradx(k,j,icg) - enddo - enddo - ig=ig+1 - g(ig)=gphii - ELSE - ind=ind+nres-1-i - ENDIF - enddo - - - ind=0 - do i=1,nres-2 - IF (mask_theta(i+2).eq.1) THEN - ig=ig+1 - gthetai=0.0D0 - do j=i+1,nres-1 - ind=ind+1 - do k=1,3 - gthetai=gthetai+dcdv(k,ind)*gradc(k,j,icg) - gthetai=gthetai+dxdv(k,ind)*gradx(k,j,icg) - enddo - enddo - g(ig)=gthetai - ELSE - ind=ind+nres-1-i - ENDIF - enddo - - do i=2,nres-1 - if (itype(i).ne.10) then - IF (mask_side(i).eq.1) THEN - ig=ig+1 - galphai=0.0D0 - do k=1,3 - galphai=galphai+dxds(k,i)*gradx(k,i,icg) - enddo - g(ig)=galphai - ENDIF - endif - enddo - - - do i=2,nres-1 - if (itype(i).ne.10) then - IF (mask_side(i).eq.1) THEN - ig=ig+1 - gomegai=0.0D0 - do k=1,3 - gomegai=gomegai+dxds(k+3,i)*gradx(k,i,icg) - enddo - g(ig)=gomegai - ENDIF - endif - enddo - -C -C Add the components corresponding to local energy terms. -C - - ig=0 - igall=0 - do i=4,nres - igall=igall+1 - if (mask_phi(i).eq.1) then - ig=ig+1 - g(ig)=g(ig)+gloc(igall,icg) - endif - enddo - - do i=3,nres - igall=igall+1 - if (mask_theta(i).eq.1) then - ig=ig+1 - g(ig)=g(ig)+gloc(igall,icg) - endif - enddo - - do ij=1,2 - do i=2,nres-1 - if (itype(i).ne.10) then - igall=igall+1 - if (mask_side(i).eq.1) then - ig=ig+1 - g(ig)=g(ig)+gloc(igall,icg) - endif - endif - enddo - enddo - -cd do i=1,ig -cd write (iout,'(a2,i5,a3,f25.8)') 'i=',i,' g=',g(i) -cd enddo - return - end -C----------------------------------------------------------------------------- - subroutine egb1(evdw) -C -C This subroutine calculates the interaction energy of nonbonded side chains -C assuming the Gay-Berne potential of interaction. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.LOCAL' - include 'COMMON.CHAIN' - include 'COMMON.DERIV' - include 'COMMON.NAMES' - include 'COMMON.INTERACT' - include 'COMMON.IOUNITS' - include 'COMMON.CALC' - include 'COMMON.CONTROL' - logical lprn - evdw=0.0D0 -c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon - evdw=0.0D0 - lprn=.false. -c if (icall.eq.0) lprn=.true. - ind=0 - do i=iatsc_s,iatsc_e - - - itypi=iabs(itype(i)) - itypi1=iabs(itype(i+1)) - xi=c(1,nres+i) - yi=c(2,nres+i) - zi=c(3,nres+i) - dxi=dc_norm(1,nres+i) - dyi=dc_norm(2,nres+i) - dzi=dc_norm(3,nres+i) - dsci_inv=dsc_inv(itypi) -C -C Calculate SC interaction energy. -C - do iint=1,nint_gr(i) - do j=istart(i,iint),iend(i,iint) - IF (mask_side(j).eq.1.or.mask_side(i).eq.1) THEN - ind=ind+1 - itypj=iabs(itype(j)) - dscj_inv=dsc_inv(itypj) - sig0ij=sigma(itypi,itypj) - chi1=chi(itypi,itypj) - chi2=chi(itypj,itypi) - chi12=chi1*chi2 - chip1=chip(itypi) - chip2=chip(itypj) - chip12=chip1*chip2 - alf1=alp(itypi) - alf2=alp(itypj) - alf12=0.5D0*(alf1+alf2) -C For diagnostics only!!! -c chi1=0.0D0 -c chi2=0.0D0 -c chi12=0.0D0 -c chip1=0.0D0 -c chip2=0.0D0 -c chip12=0.0D0 -c alf1=0.0D0 -c alf2=0.0D0 -c alf12=0.0D0 - xj=c(1,nres+j)-xi - yj=c(2,nres+j)-yi - zj=c(3,nres+j)-zi - dxj=dc_norm(1,nres+j) - dyj=dc_norm(2,nres+j) - dzj=dc_norm(3,nres+j) - rrij=1.0D0/(xj*xj+yj*yj+zj*zj) - rij=dsqrt(rrij) -C Calculate angle-dependent terms of energy and contributions to their -C derivatives. - call sc_angular - sigsq=1.0D0/sigsq - sig=sig0ij*dsqrt(sigsq) - rij_shift=1.0D0/rij-sig+sig0ij -C I hate to put IF's in the loops, but here don't have another choice!!!! - if (rij_shift.le.0.0D0) then - evdw=1.0D20 -cd write (iout,'(2(a3,i3,2x),17(0pf7.3))') -cd & restyp(itypi),i,restyp(itypj),j, -cd & rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) - return - endif - sigder=-sig*sigsq -c--------------------------------------------------------------- - rij_shift=1.0D0/rij_shift - fac=rij_shift**expon - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) - evdwij=eps1*eps2rt*eps3rt*(e1+e2) - eps2der=evdwij*eps3rt - eps3der=evdwij*eps2rt - evdwij=evdwij*eps2rt*eps3rt - evdw=evdw+evdwij - if (lprn) then - sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) - epsi=bb(itypi,itypj)**2/aa(itypi,itypj) -cd write (iout,'(2(a3,i3,2x),17(0pf7.3))') -cd & restyp(itypi),i,restyp(itypj),j, -cd & epsi,sigm,chi1,chi2,chip1,chip2, -cd & eps1,eps2rt**2,eps3rt**2,sig,sig0ij, -cd & om1,om2,om12,1.0D0/rij,1.0D0/rij_shift, -cd & evdwij - endif - - if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') - & 'evdw',i,j,evdwij - -C Calculate gradient components. - e1=e1*eps1*eps2rt**2*eps3rt**2 - fac=-expon*(e1+evdwij)*rij_shift - sigder=fac*sigder - fac=rij*fac -C Calculate the radial part of the gradient - gg(1)=xj*fac - gg(2)=yj*fac - gg(3)=zj*fac -C Calculate angular part of the gradient. - call sc_grad - ENDIF - enddo ! j - enddo ! iint - enddo ! i - end -C----------------------------------------------------------------------------- diff --git a/source/unres/src_CSA_DiL/shift.F b/source/unres/src_CSA_DiL/shift.F deleted file mode 100644 index 6eb9b3f..0000000 --- a/source/unres/src_CSA_DiL/shift.F +++ /dev/null @@ -1,105 +0,0 @@ -c--------------------------------- - subroutine csa_read - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.IOUNITS' - - open(icsa_in,file=csa_in,status="old",err=100) - read(icsa_in,*) nconf - read(icsa_in,*) jstart,jend - read(icsa_in,*) nstmax - read(icsa_in,*) n1,n2,n3,n4,n5,n6,n7,n8,is1,is2 - read(icsa_in,*) nran0,nran1,irr - read(icsa_in,*) nseed - read(icsa_in,*) ntotal,cut1,cut2 - read(icsa_in,*) estop - read(icsa_in,*) icmax,irestart - read(icsa_in,*) ntbankm,dele,difcut - read(icsa_in,*) iref,rmscut,pnccut - read(icsa_in,*) ndiff - close(icsa_in) - - return - - 100 continue - return - end -c--------------------------------- - subroutine initial_write - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.IOUNITS' - - open(icsa_seed,file=csa_seed,status="unknown") - write(icsa_seed,*) "seed" - close(31) -#if defined(AIX) || defined(PGI) - open(icsa_history,file=csa_history,status="unknown", - & position="append") -#else - open(icsa_history,file=csa_history,status="unknown", - & access="append") -#endif - write(icsa_history,*) nconf - write(icsa_history,*) jstart,jend - write(icsa_history,*) nstmax - write(icsa_history,*) n1,n2,n3,n4,n5,n6,n7,n8,is1,is2 - write(icsa_history,*) nran0,nran1,irr - write(icsa_history,*) nseed - write(icsa_history,*) ntotal,cut1,cut2 - write(icsa_history,*) estop - write(icsa_history,*) icmax,irestart - write(icsa_history,*) ntbankm,dele,difcut - write(icsa_history,*) iref,rmscut,pnccut - write(icsa_history,*) ndiff - - write(icsa_history,*) - close(icsa_history) - - open(icsa_bank1,file=csa_bank1,status="unknown") - write(icsa_bank1,*) 0 - close(icsa_bank1) - - return - end -c--------------------------------- - subroutine restart_write - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CSA' - include 'COMMON.BANK' - -#if defined(AIX) || defined(PGI) - open(icsa_history,file=csa_history,position="append") -#else - open(icsa_history,file=csa_history,access="append") -#endif - write(icsa_history,*) - write(icsa_history,*) "This is restart" - write(icsa_history,*) - write(icsa_history,*) nconf - write(icsa_history,*) jstart,jend - write(icsa_history,*) nstmax - write(icsa_history,*) n1,n2,n3,n4,n5,n6,n7,n8,is1,is2 - write(icsa_history,*) nran0,nran1,irr - write(icsa_history,*) nseed - write(icsa_history,*) ntotal,cut1,cut2 - write(icsa_history,*) estop - write(icsa_history,*) icmax,irestart - write(icsa_history,*) ntbankm,dele,difcut - write(icsa_history,*) iref,rmscut,pnccut - write(icsa_history,*) ndiff - write(icsa_history,*) - write(icsa_history,*) "irestart is: ", irestart - - write(icsa_history,*) - close(icsa_history) - - return - end -c--------------------------------- diff --git a/source/unres/src_CSA_DiL/sumsld.f b/source/unres/src_CSA_DiL/sumsld.f deleted file mode 100644 index 1ce7b78..0000000 --- a/source/unres/src_CSA_DiL/sumsld.f +++ /dev/null @@ -1,1446 +0,0 @@ - subroutine sumsl(n, d, x, calcf, calcg, iv, liv, lv, v, - 1 uiparm, urparm, ufparm) -c -c *** minimize general unconstrained objective function using *** -c *** analytic gradient and hessian approx. from secant update *** -c - integer n, liv, lv - integer iv(liv), uiparm(1) - double precision d(n), x(n), v(lv), urparm(1) -c dimension v(71 + n*(n+15)/2), uiparm(*), urparm(*) - external calcf, calcg, ufparm -c -c *** purpose *** -c -c this routine interacts with subroutine sumit in an attempt -c to find an n-vector x* that minimizes the (unconstrained) -c objective function computed by calcf. (often the x* found is -c a local minimizer rather than a global one.) -c -c-------------------------- parameter usage -------------------------- -c -c n........ (input) the number of variables on which f depends, i.e., -c the number of components in x. -c d........ (input/output) a scale vector such that d(i)*x(i), -c i = 1,2,...,n, are all in comparable units. -c d can strongly affect the behavior of sumsl. -c finding the best choice of d is generally a trial- -c and-error process. choosing d so that d(i)*x(i) -c has about the same value for all i often works well. -c the defaults provided by subroutine deflt (see i -c below) require the caller to supply d. -c x........ (input/output) before (initially) calling sumsl, the call- -c er should set x to an initial guess at x*. when -c sumsl returns, x contains the best point so far -c found, i.e., the one that gives the least value so -c far seen for f(x). -c calcf.... (input) a subroutine that, given x, computes f(x). calcf -c must be declared external in the calling program. -c it is invoked by -c call calcf(n, x, nf, f, uiparm, urparm, ufparm) -c when calcf is called, nf is the invocation -c count for calcf. nf is included for possible use -c with calcg. if x is out of bounds (e.g., if it -c would cause overflow in computing f(x)), then calcf -c should set nf to 0. this will cause a shorter step -c to be attempted. (if x is in bounds, then calcf -c should not change nf.) the other parameters are as -c described above and below. calcf should not change -c n, p, or x. -c calcg.... (input) a subroutine that, given x, computes g(x), the gra- -c dient of f at x. calcg must be declared external in -c the calling program. it is invoked by -c call calcg(n, x, nf, g, uiparm, urparm, ufaprm) -c when calcg is called, nf is the invocation -c count for calcf at the time f(x) was evaluated. the -c x passed to calcg is usually the one passed to calcf -c on either its most recent invocation or the one -c prior to it. if calcf saves intermediate results -c for use by calcg, then it is possible to tell from -c nf whether they are valid for the current x (or -c which copy is valid if two copies are kept). if g -c cannot be computed at x, then calcg should set nf to -c 0. in this case, sumsl will return with iv(1) = 65. -c (if g can be computed at x, then calcg should not -c changed nf.) the other parameters to calcg are as -c described above and below. calcg should not change -c n or x. -c iv....... (input/output) an integer value array of length liv (see -c below) that helps control the sumsl algorithm and -c that is used to store various intermediate quanti- -c ties. of particular interest are the initialization/ -c return code iv(1) and the entries in iv that control -c printing and limit the number of iterations and func- -c tion evaluations. see the section on iv input -c values below. -c liv...... (input) length of iv array. must be at least 60. if li -c is too small, then sumsl returns with iv(1) = 15. -c when sumsl returns, the smallest allowed value of -c liv is stored in iv(lastiv) -- see the section on -c iv output values below. (this is intended for use -c with extensions of sumsl that handle constraints.) -c lv....... (input) length of v array. must be at least 71+n*(n+15)/2. -c (at least 77+n*(n+17)/2 for smsno, at least -c 78+n*(n+12) for humsl). if lv is too small, then -c sumsl returns with iv(1) = 16. when sumsl returns, -c the smallest allowed value of lv is stored in -c iv(lastv) -- see the section on iv output values -c below. -c v........ (input/output) a floating-point value array of length l -c (see below) that helps control the sumsl algorithm -c and that is used to store various intermediate -c quantities. of particular interest are the entries -c in v that limit the length of the first step -c attempted (lmax0) and specify convergence tolerances -c (afctol, lmaxs, rfctol, sctol, xctol, xftol). -c uiparm... (input) user integer parameter array passed without change -c to calcf and calcg. -c urparm... (input) user floating-point parameter array passed without -c change to calcf and calcg. -c ufparm... (input) user external subroutine or function passed without -c change to calcf and calcg. -c -c *** iv input values (from subroutine deflt) *** -c -c iv(1)... on input, iv(1) should have a value between 0 and 14...... -c 0 and 12 mean this is a fresh start. 0 means that -c deflt(2, iv, liv, lv, v) -c is to be called to provide all default values to iv and -c v. 12 (the value that deflt assigns to iv(1)) means the -c caller has already called deflt and has possibly changed -c some iv and/or v entries to non-default values. -c 13 means deflt has been called and that sumsl (and -c sumit) should only do their storage allocation. that is, -c they should set the output components of iv that tell -c where various subarrays arrays of v begin, such as iv(g) -c (and, for humsl and humit only, iv(dtol)), and return. -c 14 means that a storage has been allocated (by a call -c with iv(1) = 13) and that the algorithm should be -c started. when called with iv(1) = 13, sumsl returns -c iv(1) = 14 unless liv or lv is too small (or n is not -c positive). default = 12. -c iv(inith).... iv(25) tells whether the hessian approximation h should -c be initialized. 1 (the default) means sumit should -c initialize h to the diagonal matrix whose i-th diagonal -c element is d(i)**2. 0 means the caller has supplied a -c cholesky factor l of the initial hessian approximation -c h = l*(l**t) in v, starting at v(iv(lmat)) = v(iv(42)) -c (and stored compactly by rows). note that iv(lmat) may -c be initialized by calling sumsl with iv(1) = 13 (see -c the iv(1) discussion above). default = 1. -c iv(mxfcal)... iv(17) gives the maximum number of function evaluations -c (calls on calcf) allowed. if this number does not suf- -c fice, then sumsl returns with iv(1) = 9. default = 200. -c iv(mxiter)... iv(18) gives the maximum number of iterations allowed. -c it also indirectly limits the number of gradient evalua- -c tions (calls on calcg) to iv(mxiter) + 1. if iv(mxiter) -c iterations do not suffice, then sumsl returns with -c iv(1) = 10. default = 150. -c iv(outlev)... iv(19) controls the number and length of iteration sum- -c mary lines printed (by itsum). iv(outlev) = 0 means do -c not print any summary lines. otherwise, print a summary -c line after each abs(iv(outlev)) iterations. if iv(outlev) -c is positive, then summary lines of length 78 (plus carri- -c age control) are printed, including the following... the -c iteration and function evaluation counts, f = the current -c function value, relative difference in function values -c achieved by the latest step (i.e., reldf = (f0-v(f))/f01, -c where f01 is the maximum of abs(v(f)) and abs(v(f0)) and -c v(f0) is the function value from the previous itera- -c tion), the relative function reduction predicted for the -c step just taken (i.e., preldf = v(preduc) / f01, where -c v(preduc) is described below), the scaled relative change -c in x (see v(reldx) below), the step parameter for the -c step just taken (stppar = 0 means a full newton step, -c between 0 and 1 means a relaxed newton step, between 1 -c and 2 means a double dogleg step, greater than 2 means -c a scaled down cauchy step -- see subroutine dbldog), the -c 2-norm of the scale vector d times the step just taken -c (see v(dstnrm) below), and npreldf, i.e., -c v(nreduc)/f01, where v(nreduc) is described below -- if -c npreldf is positive, then it is the relative function -c reduction predicted for a newton step (one with -c stppar = 0). if npreldf is negative, then it is the -c negative of the relative function reduction predicted -c for a step computed with step bound v(lmaxs) for use in -c testing for singular convergence. -c if iv(outlev) is negative, then lines of length 50 -c are printed, including only the first 6 items listed -c above (through reldx). -c default = 1. -c iv(parprt)... iv(20) = 1 means print any nondefault v values on a -c fresh start or any changed v values on a restart. -c iv(parprt) = 0 means skip this printing. default = 1. -c iv(prunit)... iv(21) is the output unit number on which all printing -c is done. iv(prunit) = 0 means suppress all printing. -c default = standard output unit (unit 6 on most systems). -c iv(solprt)... iv(22) = 1 means print out the value of x returned (as -c well as the gradient and the scale vector d). -c iv(solprt) = 0 means skip this printing. default = 1. -c iv(statpr)... iv(23) = 1 means print summary statistics upon return- -c ing. these consist of the function value, the scaled -c relative change in x caused by the most recent step (see -c v(reldx) below), the number of function and gradient -c evaluations (calls on calcf and calcg), and the relative -c function reductions predicted for the last step taken and -c for a newton step (or perhaps a step bounded by v(lmaxs) -c -- see the descriptions of preldf and npreldf under -c iv(outlev) above). -c iv(statpr) = 0 means skip this printing. -c iv(statpr) = -1 means skip this printing as well as that -c of the one-line termination reason message. default = 1. -c iv(x0prt).... iv(24) = 1 means print the initial x and scale vector d -c (on a fresh start only). iv(x0prt) = 0 means skip this -c printing. default = 1. -c -c *** (selected) iv output values *** -c -c iv(1)........ on output, iv(1) is a return code.... -c 3 = x-convergence. the scaled relative difference (see -c v(reldx)) between the current parameter vector x and -c a locally optimal parameter vector is very likely at -c most v(xctol). -c 4 = relative function convergence. the relative differ- -c ence between the current function value and its lo- -c cally optimal value is very likely at most v(rfctol). -c 5 = both x- and relative function convergence (i.e., the -c conditions for iv(1) = 3 and iv(1) = 4 both hold). -c 6 = absolute function convergence. the current function -c value is at most v(afctol) in absolute value. -c 7 = singular convergence. the hessian near the current -c iterate appears to be singular or nearly so, and a -c step of length at most v(lmaxs) is unlikely to yield -c a relative function decrease of more than v(sctol). -c 8 = false convergence. the iterates appear to be converg- -c ing to a noncritical point. this may mean that the -c convergence tolerances (v(afctol), v(rfctol), -c v(xctol)) are too small for the accuracy to which -c the function and gradient are being computed, that -c there is an error in computing the gradient, or that -c the function or gradient is discontinuous near x. -c 9 = function evaluation limit reached without other con- -c vergence (see iv(mxfcal)). -c 10 = iteration limit reached without other convergence -c (see iv(mxiter)). -c 11 = stopx returned .true. (external interrupt). see the -c usage notes below. -c 14 = storage has been allocated (after a call with -c iv(1) = 13). -c 17 = restart attempted with n changed. -c 18 = d has a negative component and iv(dtype) .le. 0. -c 19...43 = v(iv(1)) is out of range. -c 63 = f(x) cannot be computed at the initial x. -c 64 = bad parameters passed to assess (which should not -c occur). -c 65 = the gradient could not be computed at x (see calcg -c above). -c 67 = bad first parameter to deflt. -c 80 = iv(1) was out of range. -c 81 = n is not positive. -c iv(g)........ iv(28) is the starting subscript in v of the current -c gradient vector (the one corresponding to x). -c iv(lastiv)... iv(44) is the least acceptable value of liv. (it is -c only set if liv is at least 44.) -c iv(lastv).... iv(45) is the least acceptable value of lv. (it is -c only set if liv is large enough, at least iv(lastiv).) -c iv(nfcall)... iv(6) is the number of calls so far made on calcf (i.e., -c function evaluations). -c iv(ngcall)... iv(30) is the number of gradient evaluations (calls on -c calcg). -c iv(niter).... iv(31) is the number of iterations performed. -c -c *** (selected) v input values (from subroutine deflt) *** -c -c v(bias)..... v(43) is the bias parameter used in subroutine dbldog -- -c see that subroutine for details. default = 0.8. -c v(afctol)... v(31) is the absolute function convergence tolerance. -c if sumsl finds a point where the function value is less -c than v(afctol) in absolute value, and if sumsl does not -c return with iv(1) = 3, 4, or 5, then it returns with -c iv(1) = 6. this test can be turned off by setting -c v(afctol) to zero. default = max(10**-20, machep**2), -c where machep is the unit roundoff. -c v(dinit).... v(38), if nonnegative, is the value to which the scale -c vector d is initialized. default = -1. -c v(lmax0).... v(35) gives the maximum 2-norm allowed for d times the -c very first step that sumsl attempts. this parameter can -c markedly affect the performance of sumsl. -c v(lmaxs).... v(36) is used in testing for singular convergence -- if -c the function reduction predicted for a step of length -c bounded by v(lmaxs) is at most v(sctol) * abs(f0), where -c f0 is the function value at the start of the current -c iteration, and if sumsl does not return with iv(1) = 3, -c 4, 5, or 6, then it returns with iv(1) = 7. default = 1. -c v(rfctol)... v(32) is the relative function convergence tolerance. -c if the current model predicts a maximum possible function -c reduction (see v(nreduc)) of at most v(rfctol)*abs(f0) -c at the start of the current iteration, where f0 is the -c then current function value, and if the last step attempt- -c ed achieved no more than twice the predicted function -c decrease, then sumsl returns with iv(1) = 4 (or 5). -c default = max(10**-10, machep**(2/3)), where machep is -c the unit roundoff. -c v(sctol).... v(37) is the singular convergence tolerance -- see the -c description of v(lmaxs) above. -c v(tuner1)... v(26) helps decide when to check for false convergence. -c this is done if the actual function decrease from the -c current step is no more than v(tuner1) times its predict- -c ed value. default = 0.1. -c v(xctol).... v(33) is the x-convergence tolerance. if a newton step -c (see v(nreduc)) is tried that has v(reldx) .le. v(xctol) -c and if this step yields at most twice the predicted func- -c tion decrease, then sumsl returns with iv(1) = 3 (or 5). -c (see the description of v(reldx) below.) -c default = machep**0.5, where machep is the unit roundoff. -c v(xftol).... v(34) is the false convergence tolerance. if a step is -c tried that gives no more than v(tuner1) times the predict- -c ed function decrease and that has v(reldx) .le. v(xftol), -c and if sumsl does not return with iv(1) = 3, 4, 5, 6, or -c 7, then it returns with iv(1) = 8. (see the description -c of v(reldx) below.) default = 100*machep, where -c machep is the unit roundoff. -c v(*)........ deflt supplies to v a number of tuning constants, with -c which it should ordinarily be unnecessary to tinker. see -c section 17 of version 2.2 of the nl2sol usage summary -c (i.e., the appendix to ref. 1) for details on v(i), -c i = decfac, incfac, phmnfc, phmxfc, rdfcmn, rdfcmx, -c tuner2, tuner3, tuner4, tuner5. -c -c *** (selected) v output values *** -c -c v(dgnorm)... v(1) is the 2-norm of (diag(d)**-1)*g, where g is the -c most recently computed gradient. -c v(dstnrm)... v(2) is the 2-norm of diag(d)*step, where step is the -c current step. -c v(f)........ v(10) is the current function value. -c v(f0)....... v(13) is the function value at the start of the current -c iteration. -c v(nreduc)... v(6), if positive, is the maximum function reduction -c possible according to the current model, i.e., the func- -c tion reduction predicted for a newton step (i.e., -c step = -h**-1 * g, where g is the current gradient and -c h is the current hessian approximation). -c if v(nreduc) is negative, then it is the negative of -c the function reduction predicted for a step computed with -c a step bound of v(lmaxs) for use in testing for singular -c convergence. -c v(preduc)... v(7) is the function reduction predicted (by the current -c quadratic model) for the current step. this (divided by -c v(f0)) is used in testing for relative function -c convergence. -c v(reldx).... v(17) is the scaled relative change in x caused by the -c current step, computed as -c max(abs(d(i)*(x(i)-x0(i)), 1 .le. i .le. p) / -c max(d(i)*(abs(x(i))+abs(x0(i))), 1 .le. i .le. p), -c where x = x0 + step. -c -c------------------------------- notes ------------------------------- -c -c *** algorithm notes *** -c -c this routine uses a hessian approximation computed from the -c bfgs update (see ref 3). only a cholesky factor of the hessian -c approximation is stored, and this is updated using ideas from -c ref. 4. steps are computed by the double dogleg scheme described -c in ref. 2. the steps are assessed as in ref. 1. -c -c *** usage notes *** -c -c after a return with iv(1) .le. 11, it is possible to restart, -c i.e., to change some of the iv and v input values described above -c and continue the algorithm from the point where it was interrupt- -c ed. iv(1) should not be changed, nor should any entries of i -c and v other than the input values (those supplied by deflt). -c those who do not wish to write a calcg which computes the -c gradient analytically should call smsno rather than sumsl. -c smsno uses finite differences to compute an approximate gradient. -c those who would prefer to provide f and g (the function and -c gradient) by reverse communication rather than by writing subrou- -c tines calcf and calcg may call on sumit directly. see the com- -c ments at the beginning of sumit. -c those who use sumsl interactively may wish to supply their -c own stopx function, which should return .true. if the break key -c has been pressed since stopx was last invoked. this makes it -c possible to externally interrupt sumsl (which will return with -c iv(1) = 11 if stopx returns .true.). -c storage for g is allocated at the end of v. thus the caller -c may make v longer than specified above and may allow calcg to use -c elements of g beyond the first n as scratch storage. -c -c *** portability notes *** -c -c the sumsl distribution tape contains both single- and double- -c precision versions of the sumsl source code, so it should be un- -c necessary to change precisions. -c only the functions imdcon and rmdcon contain machine-dependent -c constants. to change from one machine to another, it should -c suffice to change the (few) relevant lines in these functions. -c intrinsic functions are explicitly declared. on certain com- -c puters (e.g. univac), it may be necessary to comment out these -c declarations. so that this may be done automatically by a simple -c program, such declarations are preceded by a comment having c/+ -c in columns 1-3 and blanks in columns 4-72 and are followed by -c a comment having c/ in columns 1 and 2 and blanks in columns 3-72. -c the sumsl source code is expressed in 1966 ansi standard -c fortran. it may be converted to fortran 77 by commenting out all -c lines that fall between a line having c/6 in columns 1-3 and a -c line having c/7 in columns 1-3 and by removing (i.e., replacing -c by a blank) the c in column 1 of the lines that follow the c/7 -c line and precede a line having c/ in columns 1-2 and blanks in -c columns 3-72. these changes convert some data statements into -c parameter statements, convert some variables from real to -c character*4, and make the data statements that initialize these -c variables use character strings delimited by primes instead -c of hollerith constants. (such variables and data statements -c appear only in modules itsum and parck. parameter statements -c appear nearly everywhere.) these changes also add save state- -c ments for variables given machine-dependent constants by rmdcon. -c -c *** references *** -c -c 1. dennis, j.e., gay, d.m., and welsch, r.e. (1981), algorithm 573 -- -c an adaptive nonlinear least-squares algorithm, acm trans. -c math. software 7, pp. 369-383. -c -c 2. dennis, j.e., and mei, h.h.w. (1979), two new unconstrained opti- -c mization algorithms which use function and gradient -c values, j. optim. theory applic. 28, pp. 453-482. -c -c 3. dennis, j.e., and more, j.j. (1977), quasi-newton methods, motiva- -c tion and theory, siam rev. 19, pp. 46-89. -c -c 4. goldfarb, d. (1976), factorized variable metric methods for uncon- -c strained optimization, math. comput. 30, pp. 796-811. -c -c *** general *** -c -c coded by david m. gay (winter 1980). revised summer 1982. -c this subroutine was written in connection with research -c supported in part by the national science foundation under -c grants mcs-7600324, dcr75-10143, 76-14311dss, mcs76-11989, -c and mcs-7906671. -c. -c -c---------------------------- declarations --------------------------- -c - external deflt, sumit -c -c deflt... supplies default iv and v input components. -c sumit... reverse-communication routine that carries out sumsl algo- -c rithm. -c - integer g1, iv1, nf - double precision f -c -c *** subscripts for iv *** -c - integer nextv, nfcall, nfgcal, g, toobig, vneed -c -c/6 -c data nextv/47/, nfcall/6/, nfgcal/7/, g/28/, toobig/2/, vneed/4/ -c/7 - parameter (nextv=47, nfcall=6, nfgcal=7, g=28, toobig=2, vneed=4) -c/ -c -c+++++++++++++++++++++++++++++++ body ++++++++++++++++++++++++++++++++ -c - if (iv(1) .eq. 0) call deflt(2, iv, liv, lv, v) - iv1 = iv(1) - if (iv1 .eq. 12 .or. iv1 .eq. 13) iv(vneed) = iv(vneed) + n - if (iv1 .eq. 14) go to 10 - if (iv1 .gt. 2 .and. iv1 .lt. 12) go to 10 - g1 = 1 - if (iv1 .eq. 12) iv(1) = 13 - go to 20 -c - 10 g1 = iv(g) -c - 20 call sumit(d, f, v(g1), iv, liv, lv, n, v, x) - if (iv(1) - 2) 30, 40, 50 -c - 30 nf = iv(nfcall) - call calcf(n, x, nf, f, uiparm, urparm, ufparm) - if (nf .le. 0) iv(toobig) = 1 - go to 20 -c - 40 call calcg(n, x, iv(nfgcal), v(g1), uiparm, urparm, ufparm) - go to 20 -c - 50 if (iv(1) .ne. 14) go to 999 -c -c *** storage allocation -c - iv(g) = iv(nextv) - iv(nextv) = iv(g) + n - if (iv1 .ne. 13) go to 10 -c - 999 return -c *** last card of sumsl follows *** - end - subroutine sumit(d, fx, g, iv, liv, lv, n, v, x) -c -c *** carry out sumsl (unconstrained minimization) iterations, using -c *** double-dogleg/bfgs steps. -c -c *** parameter declarations *** -c - integer liv, lv, n - integer iv(liv) - double precision d(n), fx, g(n), v(lv), x(n) -c -c-------------------------- parameter usage -------------------------- -c -c d.... scale vector. -c fx... function value. -c g.... gradient vector. -c iv... integer value array. -c liv.. length of iv (at least 60). -c lv... length of v (at least 71 + n*(n+13)/2). -c n.... number of variables (components in x and g). -c v.... floating-point value array. -c x.... vector of parameters to be optimized. -c -c *** discussion *** -c -c parameters iv, n, v, and x are the same as the corresponding -c ones to sumsl (which see), except that v can be shorter (since -c the part of v that sumsl uses for storing g is not needed). -c moreover, compared with sumsl, iv(1) may have the two additional -c output values 1 and 2, which are explained below, as is the use -c of iv(toobig) and iv(nfgcal). the value iv(g), which is an -c output value from sumsl (and smsno), is not referenced by -c sumit or the subroutines it calls. -c fx and g need not have been initialized when sumit is called -c with iv(1) = 12, 13, or 14. -c -c iv(1) = 1 means the caller should set fx to f(x), the function value -c at x, and call sumit again, having changed none of the -c other parameters. an exception occurs if f(x) cannot be -c (e.g. if overflow would occur), which may happen because -c of an oversized step. in this case the caller should set -c iv(toobig) = iv(2) to 1, which will cause sumit to ig- -c nore fx and try a smaller step. the parameter nf that -c sumsl passes to calcf (for possible use by calcg) is a -c copy of iv(nfcall) = iv(6). -c iv(1) = 2 means the caller should set g to g(x), the gradient vector -c of f at x, and call sumit again, having changed none of -c the other parameters except possibly the scale vector d -c when iv(dtype) = 0. the parameter nf that sumsl passes -c to calcg is iv(nfgcal) = iv(7). if g(x) cannot be -c evaluated, then the caller may set iv(nfgcal) to 0, in -c which case sumit will return with iv(1) = 65. -c. -c *** general *** -c -c coded by david m. gay (december 1979). revised sept. 1982. -c this subroutine was written in connection with research supported -c in part by the national science foundation under grants -c mcs-7600324 and mcs-7906671. -c -c (see sumsl for references.) -c -c+++++++++++++++++++++++++++ declarations ++++++++++++++++++++++++++++ -c -c *** local variables *** -c - integer dg1, dummy, g01, i, k, l, lstgst, nwtst1, step1, - 1 temp1, w, x01, z - double precision t -c -c *** constants *** -c - double precision half, negone, one, onep2, zero -c -c *** no intrinsic functions *** -c -c *** external functions and subroutines *** -c - external assst, dbdog, deflt, dotprd, itsum, litvmu, livmul, - 1 ltvmul, lupdat, lvmul, parck, reldst, stopx, vaxpy, - 2 vcopy, vscopy, vvmulp, v2norm, wzbfgs - logical stopx - double precision dotprd, reldst, v2norm -c -c assst.... assesses candidate step. -c dbdog.... computes double-dogleg (candidate) step. -c deflt.... supplies default iv and v input components. -c dotprd... returns inner product of two vectors. -c itsum.... prints iteration summary and info on initial and final x. -c litvmu... multiplies inverse transpose of lower triangle times vector. -c livmul... multiplies inverse of lower triangle times vector. -c ltvmul... multiplies transpose of lower triangle times vector. -c lupdt.... updates cholesky factor of hessian approximation. -c lvmul.... multiplies lower triangle times vector. -c parck.... checks validity of input iv and v values. -c reldst... computes v(reldx) = relative step size. -c stopx.... returns .true. if the break key has been pressed. -c vaxpy.... computes scalar times one vector plus another. -c vcopy.... copies one vector to another. -c vscopy... sets all elements of a vector to a scalar. -c vvmulp... multiplies vector by vector raised to power (componentwise). -c v2norm... returns the 2-norm of a vector. -c wzbfgs... computes w and z for lupdat corresponding to bfgs update. -c -c *** subscripts for iv and v *** -c - integer afctol - integer cnvcod, dg, dgnorm, dinit, dstnrm, dst0, f, f0, fdif, - 1 gthg, gtstep, g0, incfac, inith, irc, kagqt, lmat, lmax0, - 2 lmaxs, mode, model, mxfcal, mxiter, nextv, nfcall, nfgcal, - 3 ngcall, niter, nreduc, nwtstp, preduc, radfac, radinc, - 4 radius, rad0, reldx, restor, step, stglim, stlstg, toobig, - 5 tuner4, tuner5, vneed, xirc, x0 -c -c *** iv subscript values *** -c -c/6 -c data cnvcod/55/, dg/37/, g0/48/, inith/25/, irc/29/, kagqt/33/, -c 1 mode/35/, model/5/, mxfcal/17/, mxiter/18/, nfcall/6/, -c 2 nfgcal/7/, ngcall/30/, niter/31/, nwtstp/34/, radinc/8/, -c 3 restor/9/, step/40/, stglim/11/, stlstg/41/, toobig/2/, -c 4 vneed/4/, xirc/13/, x0/43/ -c/7 - parameter (cnvcod=55, dg=37, g0=48, inith=25, irc=29, kagqt=33, - 1 mode=35, model=5, mxfcal=17, mxiter=18, nfcall=6, - 2 nfgcal=7, ngcall=30, niter=31, nwtstp=34, radinc=8, - 3 restor=9, step=40, stglim=11, stlstg=41, toobig=2, - 4 vneed=4, xirc=13, x0=43) -c/ -c -c *** v subscript values *** -c -c/6 -c data afctol/31/ -c data dgnorm/1/, dinit/38/, dstnrm/2/, dst0/3/, f/10/, f0/13/, -c 1 fdif/11/, gthg/44/, gtstep/4/, incfac/23/, lmat/42/, -c 2 lmax0/35/, lmaxs/36/, nextv/47/, nreduc/6/, preduc/7/, -c 3 radfac/16/, radius/8/, rad0/9/, reldx/17/, tuner4/29/, -c 4 tuner5/30/ -c/7 - parameter (afctol=31) - parameter (dgnorm=1, dinit=38, dstnrm=2, dst0=3, f=10, f0=13, - 1 fdif=11, gthg=44, gtstep=4, incfac=23, lmat=42, - 2 lmax0=35, lmaxs=36, nextv=47, nreduc=6, preduc=7, - 3 radfac=16, radius=8, rad0=9, reldx=17, tuner4=29, - 4 tuner5=30) -c/ -c -c/6 -c data half/0.5d+0/, negone/-1.d+0/, one/1.d+0/, onep2/1.2d+0/, -c 1 zero/0.d+0/ -c/7 - parameter (half=0.5d+0, negone=-1.d+0, one=1.d+0, onep2=1.2d+0, - 1 zero=0.d+0) -c/ -c -c+++++++++++++++++++++++++++++++ body ++++++++++++++++++++++++++++++++ -c -C Following SAVE statement inserted. - save l - i = iv(1) - if (i .eq. 1) go to 50 - if (i .eq. 2) go to 60 -c -c *** check validity of iv and v input values *** -c - if (iv(1) .eq. 0) call deflt(2, iv, liv, lv, v) - if (iv(1) .eq. 12 .or. iv(1) .eq. 13) - 1 iv(vneed) = iv(vneed) + n*(n+13)/2 - call parck(2, d, iv, liv, lv, n, v) - i = iv(1) - 2 - if (i .gt. 12) go to 999 - go to (180, 180, 180, 180, 180, 180, 120, 90, 120, 10, 10, 20), i -c -c *** storage allocation *** -c -10 l = iv(lmat) - iv(x0) = l + n*(n+1)/2 - iv(step) = iv(x0) + n - iv(stlstg) = iv(step) + n - iv(g0) = iv(stlstg) + n - iv(nwtstp) = iv(g0) + n - iv(dg) = iv(nwtstp) + n - iv(nextv) = iv(dg) + n - if (iv(1) .ne. 13) go to 20 - iv(1) = 14 - go to 999 -c -c *** initialization *** -c - 20 iv(niter) = 0 - iv(nfcall) = 1 - iv(ngcall) = 1 - iv(nfgcal) = 1 - iv(mode) = -1 - iv(model) = 1 - iv(stglim) = 1 - iv(toobig) = 0 - iv(cnvcod) = 0 - iv(radinc) = 0 - v(rad0) = zero - if (v(dinit) .ge. zero) call vscopy(n, d, v(dinit)) - if (iv(inith) .ne. 1) go to 40 -c -c *** set the initial hessian approximation to diag(d)**-2 *** -c - l = iv(lmat) - call vscopy(n*(n+1)/2, v(l), zero) - k = l - 1 - do 30 i = 1, n - k = k + i - t = d(i) - if (t .le. zero) t = one - v(k) = t - 30 continue -c -c *** compute initial function value *** -c - 40 iv(1) = 1 - go to 999 -c - 50 v(f) = fx - if (iv(mode) .ge. 0) go to 180 - iv(1) = 2 - if (iv(toobig) .eq. 0) go to 999 - iv(1) = 63 - go to 300 -c -c *** make sure gradient could be computed *** -c - 60 if (iv(nfgcal) .ne. 0) go to 70 - iv(1) = 65 - go to 300 -c - 70 dg1 = iv(dg) - call vvmulp(n, v(dg1), g, d, -1) - v(dgnorm) = v2norm(n, v(dg1)) -c -c *** test norm of gradient *** -c - if (v(dgnorm) .gt. v(afctol)) go to 75 - iv(irc) = 10 - iv(cnvcod) = iv(irc) - 4 -c - 75 if (iv(cnvcod) .ne. 0) go to 290 - if (iv(mode) .eq. 0) go to 250 -c -c *** allow first step to have scaled 2-norm at most v(lmax0) *** -c - v(radius) = v(lmax0) -c - iv(mode) = 0 -c -c -c----------------------------- main loop ----------------------------- -c -c -c *** print iteration summary, check iteration limit *** -c - 80 call itsum(d, g, iv, liv, lv, n, v, x) - 90 k = iv(niter) - if (k .lt. iv(mxiter)) go to 100 - iv(1) = 10 - go to 300 -c -c *** update radius *** -c - 100 iv(niter) = k + 1 - if(k.gt.0)v(radius) = v(radfac) * v(dstnrm) -c -c *** initialize for start of next iteration *** -c - g01 = iv(g0) - x01 = iv(x0) - v(f0) = v(f) - iv(irc) = 4 - iv(kagqt) = -1 -c -c *** copy x to x0, g to g0 *** -c - call vcopy(n, v(x01), x) - call vcopy(n, v(g01), g) -c -c *** check stopx and function evaluation limit *** -c -C AL 4/30/95 - dummy=iv(nfcall) - 110 if (.not. stopx(dummy)) go to 130 - iv(1) = 11 - go to 140 -c -c *** come here when restarting after func. eval. limit or stopx. -c - 120 if (v(f) .ge. v(f0)) go to 130 - v(radfac) = one - k = iv(niter) - go to 100 -c - 130 if (iv(nfcall) .lt. iv(mxfcal)) go to 150 - iv(1) = 9 - 140 if (v(f) .ge. v(f0)) go to 300 -c -c *** in case of stopx or function evaluation limit with -c *** improved v(f), evaluate the gradient at x. -c - iv(cnvcod) = iv(1) - go to 240 -c -c. . . . . . . . . . . . . compute candidate step . . . . . . . . . . -c - 150 step1 = iv(step) - dg1 = iv(dg) - nwtst1 = iv(nwtstp) - if (iv(kagqt) .ge. 0) go to 160 - l = iv(lmat) - call livmul(n, v(nwtst1), v(l), g) - v(nreduc) = half * dotprd(n, v(nwtst1), v(nwtst1)) - call litvmu(n, v(nwtst1), v(l), v(nwtst1)) - call vvmulp(n, v(step1), v(nwtst1), d, 1) - v(dst0) = v2norm(n, v(step1)) - call vvmulp(n, v(dg1), v(dg1), d, -1) - call ltvmul(n, v(step1), v(l), v(dg1)) - v(gthg) = v2norm(n, v(step1)) - iv(kagqt) = 0 - 160 call dbdog(v(dg1), lv, n, v(nwtst1), v(step1), v) - if (iv(irc) .eq. 6) go to 180 -c -c *** check whether evaluating f(x0 + step) looks worthwhile *** -c - if (v(dstnrm) .le. zero) go to 180 - if (iv(irc) .ne. 5) go to 170 - if (v(radfac) .le. one) go to 170 - if (v(preduc) .le. onep2 * v(fdif)) go to 180 -c -c *** compute f(x0 + step) *** -c - 170 x01 = iv(x0) - step1 = iv(step) - call vaxpy(n, x, one, v(step1), v(x01)) - iv(nfcall) = iv(nfcall) + 1 - iv(1) = 1 - iv(toobig) = 0 - go to 999 -c -c. . . . . . . . . . . . . assess candidate step . . . . . . . . . . . -c - 180 x01 = iv(x0) - v(reldx) = reldst(n, d, x, v(x01)) - call assst(iv, liv, lv, v) - step1 = iv(step) - lstgst = iv(stlstg) - if (iv(restor) .eq. 1) call vcopy(n, x, v(x01)) - if (iv(restor) .eq. 2) call vcopy(n, v(lstgst), v(step1)) - if (iv(restor) .ne. 3) go to 190 - call vcopy(n, v(step1), v(lstgst)) - call vaxpy(n, x, one, v(step1), v(x01)) - v(reldx) = reldst(n, d, x, v(x01)) -c - 190 k = iv(irc) - go to (200,230,230,230,200,210,220,220,220,220,220,220,280,250), k -c -c *** recompute step with changed radius *** -c - 200 v(radius) = v(radfac) * v(dstnrm) - go to 110 -c -c *** compute step of length v(lmaxs) for singular convergence test. -c - 210 v(radius) = v(lmaxs) - go to 150 -c -c *** convergence or false convergence *** -c - 220 iv(cnvcod) = k - 4 - if (v(f) .ge. v(f0)) go to 290 - if (iv(xirc) .eq. 14) go to 290 - iv(xirc) = 14 -c -c. . . . . . . . . . . . process acceptable step . . . . . . . . . . . -c - 230 if (iv(irc) .ne. 3) go to 240 - step1 = iv(step) - temp1 = iv(stlstg) -c -c *** set temp1 = hessian * step for use in gradient tests *** -c - l = iv(lmat) - call ltvmul(n, v(temp1), v(l), v(step1)) - call lvmul(n, v(temp1), v(l), v(temp1)) -c -c *** compute gradient *** -c - 240 iv(ngcall) = iv(ngcall) + 1 - iv(1) = 2 - go to 999 -c -c *** initializations -- g0 = g - g0, etc. *** -c - 250 g01 = iv(g0) - call vaxpy(n, v(g01), negone, v(g01), g) - step1 = iv(step) - temp1 = iv(stlstg) - if (iv(irc) .ne. 3) go to 270 -c -c *** set v(radfac) by gradient tests *** -c -c *** set temp1 = diag(d)**-1 * (hessian*step + (g(x0)-g(x))) *** -c - call vaxpy(n, v(temp1), negone, v(g01), v(temp1)) - call vvmulp(n, v(temp1), v(temp1), d, -1) -c -c *** do gradient tests *** -c - if (v2norm(n, v(temp1)) .le. v(dgnorm) * v(tuner4)) - 1 go to 260 - if (dotprd(n, g, v(step1)) - 1 .ge. v(gtstep) * v(tuner5)) go to 270 - 260 v(radfac) = v(incfac) -c -c *** update h, loop *** -c - 270 w = iv(nwtstp) - z = iv(x0) - l = iv(lmat) - call wzbfgs(v(l), n, v(step1), v(w), v(g01), v(z)) -c -c ** use the n-vectors starting at v(step1) and v(g01) for scratch.. - call lupdat(v(temp1), v(step1), v(l), v(g01), v(l), n, v(w), v(z)) - iv(1) = 2 - go to 80 -c -c. . . . . . . . . . . . . . misc. details . . . . . . . . . . . . . . -c -c *** bad parameters to assess *** -c - 280 iv(1) = 64 - go to 300 -c -c *** print summary of final iteration and other requested items *** -c - 290 iv(1) = iv(cnvcod) - iv(cnvcod) = 0 - 300 call itsum(d, g, iv, liv, lv, n, v, x) -c - 999 return -c -c *** last line of sumit follows *** - end - subroutine dbdog(dig, lv, n, nwtstp, step, v) -c -c *** compute double dogleg step *** -c -c *** parameter declarations *** -c - integer lv, n - double precision dig(n), nwtstp(n), step(n), v(lv) -c -c *** purpose *** -c -c this subroutine computes a candidate step (for use in an uncon- -c strained minimization code) by the double dogleg algorithm of -c dennis and mei (ref. 1), which is a variation on powell*s dogleg -c scheme (ref. 2, p. 95). -c -c-------------------------- parameter usage -------------------------- -c -c dig (input) diag(d)**-2 * g -- see algorithm notes. -c g (input) the current gradient vector. -c lv (input) length of v. -c n (input) number of components in dig, g, nwtstp, and step. -c nwtstp (input) negative newton step -- see algorithm notes. -c step (output) the computed step. -c v (i/o) values array, the following components of which are -c used here... -c v(bias) (input) bias for relaxed newton step, which is v(bias) of -c the way from the full newton to the fully relaxed newton -c step. recommended value = 0.8 . -c v(dgnorm) (input) 2-norm of diag(d)**-1 * g -- see algorithm notes. -c v(dstnrm) (output) 2-norm of diag(d) * step, which is v(radius) -c unless v(stppar) = 0 -- see algorithm notes. -c v(dst0) (input) 2-norm of diag(d) * nwtstp -- see algorithm notes. -c v(grdfac) (output) the coefficient of dig in the step returned -- -c step(i) = v(grdfac)*dig(i) + v(nwtfac)*nwtstp(i). -c v(gthg) (input) square-root of (dig**t) * (hessian) * dig -- see -c algorithm notes. -c v(gtstep) (output) inner product between g and step. -c v(nreduc) (output) function reduction predicted for the full newton -c step. -c v(nwtfac) (output) the coefficient of nwtstp in the step returned -- -c see v(grdfac) above. -c v(preduc) (output) function reduction predicted for the step returned. -c v(radius) (input) the trust region radius. d times the step returned -c has 2-norm v(radius) unless v(stppar) = 0. -c v(stppar) (output) code telling how step was computed... 0 means a -c full newton step. between 0 and 1 means v(stppar) of the -c way from the newton to the relaxed newton step. between -c 1 and 2 means a true double dogleg step, v(stppar) - 1 of -c the way from the relaxed newton to the cauchy step. -c greater than 2 means 1 / (v(stppar) - 1) times the cauchy -c step. -c -c------------------------------- notes ------------------------------- -c -c *** algorithm notes *** -c -c let g and h be the current gradient and hessian approxima- -c tion respectively and let d be the current scale vector. this -c routine assumes dig = diag(d)**-2 * g and nwtstp = h**-1 * g. -c the step computed is the same one would get by replacing g and h -c by diag(d)**-1 * g and diag(d)**-1 * h * diag(d)**-1, -c computing step, and translating step back to the original -c variables, i.e., premultiplying it by diag(d)**-1. -c -c *** references *** -c -c 1. dennis, j.e., and mei, h.h.w. (1979), two new unconstrained opti- -c mization algorithms which use function and gradient -c values, j. optim. theory applic. 28, pp. 453-482. -c 2. powell, m.j.d. (1970), a hybrid method for non-linear equations, -c in numerical methods for non-linear equations, edited by -c p. rabinowitz, gordon and breach, london. -c -c *** general *** -c -c coded by david m. gay. -c this subroutine was written in connection with research supported -c by the national science foundation under grants mcs-7600324 and -c mcs-7906671. -c -c------------------------ external quantities ------------------------ -c -c *** functions and subroutines called *** -c - external dotprd, v2norm - double precision dotprd, v2norm -c -c dotprd... returns inner product of two vectors. -c v2norm... returns 2-norm of a vector. -c -c *** intrinsic functions *** -c/+ - double precision dsqrt -c/ -c-------------------------- local variables -------------------------- -c - integer i - double precision cfact, cnorm, ctrnwt, ghinvg, femnsq, gnorm, - 1 nwtnrm, relax, rlambd, t, t1, t2 - double precision half, one, two, zero -c -c *** v subscripts *** -c - integer bias, dgnorm, dstnrm, dst0, grdfac, gthg, gtstep, - 1 nreduc, nwtfac, preduc, radius, stppar -c -c *** data initializations *** -c -c/6 -c data half/0.5d+0/, one/1.d+0/, two/2.d+0/, zero/0.d+0/ -c/7 - parameter (half=0.5d+0, one=1.d+0, two=2.d+0, zero=0.d+0) -c/ -c -c/6 -c data bias/43/, dgnorm/1/, dstnrm/2/, dst0/3/, grdfac/45/, -c 1 gthg/44/, gtstep/4/, nreduc/6/, nwtfac/46/, preduc/7/, -c 2 radius/8/, stppar/5/ -c/7 - parameter (bias=43, dgnorm=1, dstnrm=2, dst0=3, grdfac=45, - 1 gthg=44, gtstep=4, nreduc=6, nwtfac=46, preduc=7, - 2 radius=8, stppar=5) -c/ -c -c+++++++++++++++++++++++++++++++ body ++++++++++++++++++++++++++++++++ -c - nwtnrm = v(dst0) - rlambd = one - if (nwtnrm .gt. zero) rlambd = v(radius) / nwtnrm - gnorm = v(dgnorm) - ghinvg = two * v(nreduc) - v(grdfac) = zero - v(nwtfac) = zero - if (rlambd .lt. one) go to 30 -c -c *** the newton step is inside the trust region *** -c - v(stppar) = zero - v(dstnrm) = nwtnrm - v(gtstep) = -ghinvg - v(preduc) = v(nreduc) - v(nwtfac) = -one - do 20 i = 1, n - 20 step(i) = -nwtstp(i) - go to 999 -c - 30 v(dstnrm) = v(radius) - cfact = (gnorm / v(gthg))**2 -c *** cauchy step = -cfact * g. - cnorm = gnorm * cfact - relax = one - v(bias) * (one - gnorm*cnorm/ghinvg) - if (rlambd .lt. relax) go to 50 -c -c *** step is between relaxed newton and full newton steps *** -c - v(stppar) = one - (rlambd - relax) / (one - relax) - t = -rlambd - v(gtstep) = t * ghinvg - v(preduc) = rlambd * (one - half*rlambd) * ghinvg - v(nwtfac) = t - do 40 i = 1, n - 40 step(i) = t * nwtstp(i) - go to 999 -c - 50 if (cnorm .lt. v(radius)) go to 70 -c -c *** the cauchy step lies outside the trust region -- -c *** step = scaled cauchy step *** -c - t = -v(radius) / gnorm - v(grdfac) = t - v(stppar) = one + cnorm / v(radius) - v(gtstep) = -v(radius) * gnorm - v(preduc) = v(radius)*(gnorm - half*v(radius)*(v(gthg)/gnorm)**2) - do 60 i = 1, n - 60 step(i) = t * dig(i) - go to 999 -c -c *** compute dogleg step between cauchy and relaxed newton *** -c *** femur = relaxed newton step minus cauchy step *** -c - 70 ctrnwt = cfact * relax * ghinvg / gnorm -c *** ctrnwt = inner prod. of cauchy and relaxed newton steps, -c *** scaled by gnorm**-1. - t1 = ctrnwt - gnorm*cfact**2 -c *** t1 = inner prod. of femur and cauchy step, scaled by -c *** gnorm**-1. - t2 = v(radius)*(v(radius)/gnorm) - gnorm*cfact**2 - t = relax * nwtnrm - femnsq = (t/gnorm)*t - ctrnwt - t1 -c *** femnsq = square of 2-norm of femur, scaled by gnorm**-1. - t = t2 / (t1 + dsqrt(t1**2 + femnsq*t2)) -c *** dogleg step = cauchy step + t * femur. - t1 = (t - one) * cfact - v(grdfac) = t1 - t2 = -t * relax - v(nwtfac) = t2 - v(stppar) = two - t - v(gtstep) = t1*gnorm**2 + t2*ghinvg - v(preduc) = -t1*gnorm * ((t2 + one)*gnorm) - 1 - t2 * (one + half*t2)*ghinvg - 2 - half * (v(gthg)*t1)**2 - do 80 i = 1, n - 80 step(i) = t1*dig(i) + t2*nwtstp(i) -c - 999 return -c *** last line of dbdog follows *** - end - subroutine ltvmul(n, x, l, y) -c -c *** compute x = (l**t)*y, where l is an n x n lower -c *** triangular matrix stored compactly by rows. x and y may -c *** occupy the same storage. *** -c - integer n -cal double precision x(n), l(1), y(n) - double precision x(n), l(n*(n+1)/2), y(n) -c dimension l(n*(n+1)/2) - integer i, ij, i0, j - double precision yi, zero -c/6 -c data zero/0.d+0/ -c/7 - parameter (zero=0.d+0) -c/ -c - i0 = 0 - do 20 i = 1, n - yi = y(i) - x(i) = zero - do 10 j = 1, i - ij = i0 + j - x(j) = x(j) + yi*l(ij) - 10 continue - i0 = i0 + i - 20 continue - 999 return -c *** last card of ltvmul follows *** - end - subroutine lupdat(beta, gamma, l, lambda, lplus, n, w, z) -c -c *** compute lplus = secant update of l *** -c -c *** parameter declarations *** -c - integer n -cal double precision beta(n), gamma(n), l(1), lambda(n), lplus(1), - double precision beta(n), gamma(n), l(n*(n+1)/2), lambda(n), - 1 lplus(n*(n+1)/2),w(n), z(n) -c dimension l(n*(n+1)/2), lplus(n*(n+1)/2) -c -c-------------------------- parameter usage -------------------------- -c -c beta = scratch vector. -c gamma = scratch vector. -c l (input) lower triangular matrix, stored rowwise. -c lambda = scratch vector. -c lplus (output) lower triangular matrix, stored rowwise, which may -c occupy the same storage as l. -c n (input) length of vector parameters and order of matrices. -c w (input, destroyed on output) right singular vector of rank 1 -c correction to l. -c z (input, destroyed on output) left singular vector of rank 1 -c correction to l. -c -c------------------------------- notes ------------------------------- -c -c *** application and usage restrictions *** -c -c this routine updates the cholesky factor l of a symmetric -c positive definite matrix to which a secant update is being -c applied -- it computes a cholesky factor lplus of -c l * (i + z*w**t) * (i + w*z**t) * l**t. it is assumed that w -c and z have been chosen so that the updated matrix is strictly -c positive definite. -c -c *** algorithm notes *** -c -c this code uses recurrence 3 of ref. 1 (with d(j) = 1 for all j) -c to compute lplus of the form l * (i + z*w**t) * q, where q -c is an orthogonal matrix that makes the result lower triangular. -c lplus may have some negative diagonal elements. -c -c *** references *** -c -c 1. goldfarb, d. (1976), factorized variable metric methods for uncon- -c strained optimization, math. comput. 30, pp. 796-811. -c -c *** general *** -c -c coded by david m. gay (fall 1979). -c this subroutine was written in connection with research supported -c by the national science foundation under grants mcs-7600324 and -c mcs-7906671. -c -c------------------------ external quantities ------------------------ -c -c *** intrinsic functions *** -c/+ - double precision dsqrt -c/ -c-------------------------- local variables -------------------------- -c - integer i, ij, j, jj, jp1, k, nm1, np1 - double precision a, b, bj, eta, gj, lj, lij, ljj, nu, s, theta, - 1 wj, zj - double precision one, zero -c -c *** data initializations *** -c -c/6 -c data one/1.d+0/, zero/0.d+0/ -c/7 - parameter (one=1.d+0, zero=0.d+0) -c/ -c -c+++++++++++++++++++++++++++++++ body ++++++++++++++++++++++++++++++++ -c - nu = one - eta = zero - if (n .le. 1) go to 30 - nm1 = n - 1 -c -c *** temporarily store s(j) = sum over k = j+1 to n of w(k)**2 in -c *** lambda(j). -c - s = zero - do 10 i = 1, nm1 - j = n - i - s = s + w(j+1)**2 - lambda(j) = s - 10 continue -c -c *** compute lambda, gamma, and beta by goldfarb*s recurrence 3. -c - do 20 j = 1, nm1 - wj = w(j) - a = nu*z(j) - eta*wj - theta = one + a*wj - s = a*lambda(j) - lj = dsqrt(theta**2 + a*s) - if (theta .gt. zero) lj = -lj - lambda(j) = lj - b = theta*wj + s - gamma(j) = b * nu / lj - beta(j) = (a - b*eta) / lj - nu = -nu / lj - eta = -(eta + (a**2)/(theta - lj)) / lj - 20 continue - 30 lambda(n) = one + (nu*z(n) - eta*w(n))*w(n) -c -c *** update l, gradually overwriting w and z with l*w and l*z. -c - np1 = n + 1 - jj = n * (n + 1) / 2 - do 60 k = 1, n - j = np1 - k - lj = lambda(j) - ljj = l(jj) - lplus(jj) = lj * ljj - wj = w(j) - w(j) = ljj * wj - zj = z(j) - z(j) = ljj * zj - if (k .eq. 1) go to 50 - bj = beta(j) - gj = gamma(j) - ij = jj + j - jp1 = j + 1 - do 40 i = jp1, n - lij = l(ij) - lplus(ij) = lj*lij + bj*w(i) + gj*z(i) - w(i) = w(i) + lij*wj - z(i) = z(i) + lij*zj - ij = ij + i - 40 continue - 50 jj = jj - j - 60 continue -c - 999 return -c *** last card of lupdat follows *** - end - subroutine lvmul(n, x, l, y) -c -c *** compute x = l*y, where l is an n x n lower triangular -c *** matrix stored compactly by rows. x and y may occupy the same -c *** storage. *** -c - integer n -cal double precision x(n), l(1), y(n) - double precision x(n), l(n*(n+1)/2), y(n) -c dimension l(n*(n+1)/2) - integer i, ii, ij, i0, j, np1 - double precision t, zero -c/6 -c data zero/0.d+0/ -c/7 - parameter (zero=0.d+0) -c/ -c - np1 = n + 1 - i0 = n*(n+1)/2 - do 20 ii = 1, n - i = np1 - ii - i0 = i0 - i - t = zero - do 10 j = 1, i - ij = i0 + j - t = t + l(ij)*y(j) - 10 continue - x(i) = t - 20 continue - 999 return -c *** last card of lvmul follows *** - end - subroutine vvmulp(n, x, y, z, k) -c -c *** set x(i) = y(i) * z(i)**k, 1 .le. i .le. n (for k = 1 or -1) *** -c - integer n, k - double precision x(n), y(n), z(n) - integer i -c - if (k .ge. 0) go to 20 - do 10 i = 1, n - 10 x(i) = y(i) / z(i) - go to 999 -c - 20 do 30 i = 1, n - 30 x(i) = y(i) * z(i) - 999 return -c *** last card of vvmulp follows *** - end - subroutine wzbfgs (l, n, s, w, y, z) -c -c *** compute y and z for lupdat corresponding to bfgs update. -c - integer n -cal double precision l(1), s(n), w(n), y(n), z(n) - double precision l(n*(n+1)/2), s(n), w(n), y(n), z(n) -c dimension l(n*(n+1)/2) -c -c-------------------------- parameter usage -------------------------- -c -c l (i/o) cholesky factor of hessian, a lower triang. matrix stored -c compactly by rows. -c n (input) order of l and length of s, w, y, z. -c s (input) the step just taken. -c w (output) right singular vector of rank 1 correction to l. -c y (input) change in gradients corresponding to s. -c z (output) left singular vector of rank 1 correction to l. -c -c------------------------------- notes ------------------------------- -c -c *** algorithm notes *** -c -c when s is computed in certain ways, e.g. by gqtstp or -c dbldog, it is possible to save n**2/2 operations since (l**t)*s -c or l*(l**t)*s is then known. -c if the bfgs update to l*(l**t) would reduce its determinant to -c less than eps times its old value, then this routine in effect -c replaces y by theta*y + (1 - theta)*l*(l**t)*s, where theta -c (between 0 and 1) is chosen to make the reduction factor = eps. -c -c *** general *** -c -c coded by david m. gay (fall 1979). -c this subroutine was written in connection with research supported -c by the national science foundation under grants mcs-7600324 and -c mcs-7906671. -c -c------------------------ external quantities ------------------------ -c -c *** functions and subroutines called *** -c - external dotprd, livmul, ltvmul - double precision dotprd -c dotprd returns inner product of two vectors. -c livmul multiplies l**-1 times a vector. -c ltvmul multiplies l**t times a vector. -c -c *** intrinsic functions *** -c/+ - double precision dsqrt -c/ -c-------------------------- local variables -------------------------- -c - integer i - double precision cs, cy, eps, epsrt, one, shs, ys, theta -c -c *** data initializations *** -c -c/6 -c data eps/0.1d+0/, one/1.d+0/ -c/7 - parameter (eps=0.1d+0, one=1.d+0) -c/ -c -c+++++++++++++++++++++++++++++++ body ++++++++++++++++++++++++++++++++ -c - call ltvmul(n, w, l, s) - shs = dotprd(n, w, w) - ys = dotprd(n, y, s) - if (ys .ge. eps*shs) go to 10 - theta = (one - eps) * shs / (shs - ys) - epsrt = dsqrt(eps) - cy = theta / (shs * epsrt) - cs = (one + (theta-one)/epsrt) / shs - go to 20 - 10 cy = one / (dsqrt(ys) * dsqrt(shs)) - cs = one / shs - 20 call livmul(n, z, l, y) - do 30 i = 1, n - 30 z(i) = cy * z(i) - cs * w(i) -c - 999 return -c *** last card of wzbfgs follows *** - end diff --git a/source/unres/src_CSA_DiL/test.F b/source/unres/src_CSA_DiL/test.F deleted file mode 100644 index a065af9..0000000 --- a/source/unres/src_CSA_DiL/test.F +++ /dev/null @@ -1,2800 +0,0 @@ - subroutine test - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.IOUNITS' - include 'COMMON.DISTFIT' - include 'COMMON.SBRIDGE' - include 'COMMON.CONTROL' - include 'COMMON.FFIELD' - include 'COMMON.MINIM' - include 'COMMON.CHAIN' - double precision time0,time1 - double precision energy(0:n_ene),ee - double precision var(maxvar),var1(maxvar) - integer j1,j2 - logical debug,accepted - debug=.true. - - - call geom_to_var(nvar,var1) - call chainbuild - call etotal(energy(0)) - etot=energy(0) - call rmsd(rms) - write(iout,*) 'etot=',0,etot,rms - call secondary2(.false.) - - call write_pdb(0,'first structure',etot) - - j1=13 - j2=21 - da=180.0*deg2rad - - - - temp=3000.0d0 - betbol=1.0D0/(1.9858D-3*temp) - jr=iran_num(j1,j2) - d=ran_number(-pi,pi) -c phi(jr)=pinorm(phi(jr)+d) - call chainbuild - call etotal(energy(0)) - etot0=energy(0) - call rmsd(rms) - write(iout,*) 'etot=',1,etot0,rms - call write_pdb(1,'perturb structure',etot0) - - do i=2,500,2 - jr=iran_num(j1,j2) - d=ran_number(-da,da) - phiold=phi(jr) - phi(jr)=pinorm(phi(jr)+d) - call chainbuild - call etotal(energy(0)) - etot=energy(0) - - if (etot.lt.etot0) then - accepted=.true. - else - accepted=.false. - xxr=ran_number(0.0D0,1.0D0) - xxh=betbol*(etot-etot0) - if (xxh.lt.50.0D0) then - xxh=dexp(-xxh) - if (xxh.gt.xxr) accepted=.true. - endif - endif - accepted=.true. -c print *,etot0,etot,accepted - if (accepted) then - etot0=etot - call rmsd(rms) - write(iout,*) 'etot=',i,etot,rms - call write_pdb(i,'MC structure',etot) -c minimize -c call geom_to_var(nvar,var1) - call sc_move(2,nres-1,1,10d0,nft_sc,etot) - call geom_to_var(nvar,var) - call minimize(etot,var,iretcode,nfun) - write(iout,*)'SUMSL return code is',iretcode,' eval ',nfun - call var_to_geom(nvar,var) - call chainbuild - call rmsd(rms) - write(iout,*) 'etot mcm=',i,etot,rms - call write_pdb(i+1,'MCM structure',etot) - call var_to_geom(nvar,var1) -c -------- - else - phi(jr)=phiold - endif - enddo - -c minimize -c call sc_move(2,nres-1,1,10d0,nft_sc,etot) -c call geom_to_var(nvar,var) -c -c call chainbuild -c call write_pdb(998 ,'sc min',etot) -c -c call minimize(etot,var,iretcode,nfun) -c write(iout,*)'------------------------------------------------' -c write(iout,*)'SUMSL return code is',iretcode,' eval ',nfun -c -c call var_to_geom(nvar,var) -c call chainbuild -c call write_pdb(999,'full min',etot) - - - return - end - - - subroutine test_n16 - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.IOUNITS' - include 'COMMON.DISTFIT' - include 'COMMON.SBRIDGE' - include 'COMMON.CONTROL' - include 'COMMON.FFIELD' - include 'COMMON.MINIM' - include 'COMMON.CHAIN' - double precision time0,time1 - double precision energy(0:n_ene),ee - double precision var(maxvar),var1(maxvar) - integer jdata(5) - logical debug - debug=.true. - -c - call geom_to_var(nvar,var1) - call chainbuild - call etotal(energy(0)) - etot=energy(0) - write(iout,*) nnt,nct,etot - call write_pdb(1,'first structure',etot) - call secondary2(.true.) - - do i=1,4 - jdata(i)=bfrag(i,2) - enddo - - DO ij=1,4 - ieval=0 - jdata(5)=ij - call var_to_geom(nvar,var1) - write(iout,*) 'N16 test',(jdata(i),i=1,5) - call beta_slide(jdata(1),jdata(2),jdata(3),jdata(4),jdata(5) - & ,ieval,ij) - call geom_to_var(nvar,var) - - if (minim) then -#ifdef MPI - time0=MPI_WTIME() -#else - time0=tcpu() -#endif - call minimize(etot,var,iretcode,nfun) - write(iout,*)'------------------------------------------------' - write(iout,*)'SUMSL return code is',iretcode,' eval ',nfun, - & '+ DIST eval',ieval - -#ifdef MPI - time1=MPI_WTIME() -#else - time1=tcpu() -#endif - write (iout,'(a,f6.2,f8.2,a)')' Time for full min.',time1-time0, - & nfun/(time1-time0),' eval/s' - - call var_to_geom(nvar,var) - call chainbuild - call write_pdb(ij*100+99,'full min',etot) - endif - - - ENDDO - - return - end - - - subroutine test_local - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.IOUNITS' - double precision time0,time1 - double precision energy(0:n_ene),ee - double precision varia(maxvar) -c - call chainbuild -c call geom_to_var(nvar,varia) - call write_pdb(1,'first structure',0d0) - - call etotal(energy(0)) - etot=energy(0) - write(iout,*) nnt,nct,etot - - write(iout,*) 'calling sc_move' - call sc_move(nnt,nct,5,10d0,nft_sc,etot) - write(iout,*) nft_sc,etot - call write_pdb(2,'second structure',etot) - - write(iout,*) 'calling local_move' - call local_move_init(.false.) - call local_move(24,29,20d0,50d0) - call chainbuild - call write_pdb(3,'third structure',etot) - - write(iout,*) 'calling sc_move' - call sc_move(24,29,5,10d0,nft_sc,etot) - write(iout,*) nft_sc,etot - call write_pdb(2,'last structure',etot) - - - return - end - - subroutine test_sc - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.IOUNITS' - double precision time0,time1 - double precision energy(0:n_ene),ee - double precision varia(maxvar) -c - call chainbuild -c call geom_to_var(nvar,varia) - call write_pdb(1,'first structure',0d0) - - call etotal(energy(0)) - etot=energy(0) - write(iout,*) nnt,nct,etot - - write(iout,*) 'calling sc_move' - - call sc_move(nnt,nct,5,10d0,nft_sc,etot) - write(iout,*) nft_sc,etot - call write_pdb(2,'second structure',etot) - - write(iout,*) 'calling sc_move 2nd time' - - call sc_move(nnt,nct,5,1d0,nft_sc,etot) - write(iout,*) nft_sc,etot - call write_pdb(3,'last structure',etot) - return - end -c-------------------------------------------------------- - subroutine bgrow(bstrand,nbstrand,in,ind,new) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - integer bstrand(maxres/3,6) - - ishift=iabs(bstrand(in,ind+4)-new) - - print *,'bgrow',bstrand(in,ind+4),new,ishift - - bstrand(in,ind)=new - - if(ind.eq.1)then - bstrand(nbstrand,5)=bstrand(nbstrand,1) - do i=1,nbstrand-1 - IF (bstrand(nbstrand,3).eq.bstrand(i,3)) THEN - if (bstrand(i,5).lt.bstrand(i,6)) then - bstrand(i,5)=bstrand(i,5)-ishift - else - bstrand(i,5)=bstrand(i,5)+ishift - endif - ENDIF - enddo - else - bstrand(nbstrand,6)=bstrand(nbstrand,2) - do i=1,nbstrand-1 - IF (bstrand(nbstrand,3).eq.bstrand(i,3)) THEN - if (bstrand(i,6).lt.bstrand(i,5)) then - bstrand(i,6)=bstrand(i,6)-ishift - else - bstrand(i,6)=bstrand(i,6)+ishift - endif - ENDIF - enddo - endif - - - return - end - - -c------------------------------------------ - subroutine test11 - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.GEO' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.VAR' - include 'COMMON.CONTROL' - include 'COMMON.SBRIDGE' - include 'COMMON.FFIELD' - include 'COMMON.MINIM' -c - include 'COMMON.DISTFIT' - integer if(20,maxres),nif,ifa(20) - integer ibc(0:maxres,0:maxres),istrand(20) - integer ibd(maxres),ifb(10,2),nifb,lifb(10),lifb0 - integer itmp(20,maxres) - double precision time0,time1 - double precision energy(0:n_ene),ee - double precision varia(maxvar),vorg(maxvar) -c - logical debug,ltest,usedbfrag(maxres/3) - character*50 linia -c - integer betasheet(maxres),ibetasheet(maxres),nbetasheet - integer bstrand(maxres/3,6),nbstrand - -c------------------------ - - debug=.true. -c------------------------ - nbstrand=0 - nbetasheet=0 - do i=1,nres - betasheet(i)=0 - ibetasheet(i)=0 - enddo - call geom_to_var(nvar,vorg) - call secondary2(debug) - - if (nbfrag.le.1) return - - do i=1,nbfrag - usedbfrag(i)=.false. - enddo - - - nbetasheet=nbetasheet+1 - nbstrand=2 - bstrand(1,1)=bfrag(1,1) - bstrand(1,2)=bfrag(2,1) - bstrand(1,3)=nbetasheet - bstrand(1,4)=1 - bstrand(1,5)=bfrag(1,1) - bstrand(1,6)=bfrag(2,1) - do i=bfrag(1,1),bfrag(2,1) - betasheet(i)=nbetasheet - ibetasheet(i)=1 - enddo -c - bstrand(2,1)=bfrag(3,1) - bstrand(2,2)=bfrag(4,1) - bstrand(2,3)=nbetasheet - bstrand(2,5)=bfrag(3,1) - bstrand(2,6)=bfrag(4,1) - - if (bfrag(3,1).le.bfrag(4,1)) then - bstrand(2,4)=2 - do i=bfrag(3,1),bfrag(4,1) - betasheet(i)=nbetasheet - ibetasheet(i)=2 - enddo - else - bstrand(2,4)=-2 - do i=bfrag(4,1),bfrag(3,1) - betasheet(i)=nbetasheet - ibetasheet(i)=2 - enddo - endif - - iused_nbfrag=1 - - do while (iused_nbfrag.ne.nbfrag) - - do j=2,nbfrag - - IF (.not.usedbfrag(j)) THEN - - write (*,*) j,(bfrag(i,j),i=1,4) - do jk=6,1,-1 - write (*,'(i4,a3,10i4)') jk,'B',(bstrand(i,jk),i=1,nbstrand) - enddo - write (*,*) '------------------' - - - if (bfrag(3,j).le.bfrag(4,j)) then - do i=bfrag(3,j),bfrag(4,j) - if(betasheet(i).eq.nbetasheet) then - in=ibetasheet(i) - do k=bfrag(3,j),bfrag(4,j) - betasheet(k)=nbetasheet - ibetasheet(k)=in - enddo - nbstrand=nbstrand+1 - usedbfrag(j)=.true. - iused_nbfrag=iused_nbfrag+1 - do k=bfrag(1,j),bfrag(2,j) - betasheet(k)=nbetasheet - ibetasheet(k)=nbstrand - enddo - if (bstrand(in,4).lt.0) then - bstrand(nbstrand,1)=bfrag(2,j) - bstrand(nbstrand,2)=bfrag(1,j) - bstrand(nbstrand,3)=nbetasheet - bstrand(nbstrand,4)=-nbstrand - bstrand(nbstrand,5)=bstrand(nbstrand,1) - bstrand(nbstrand,6)=bstrand(nbstrand,2) - if(bstrand(in,1).lt.bfrag(4,j)) then - call bgrow(bstrand,nbstrand,in,1,bfrag(4,j)) - else - bstrand(nbstrand,5)=bstrand(nbstrand,5)+ - & (bstrand(in,5)-bfrag(4,j)) - endif - if(bstrand(in,2).gt.bfrag(3,j)) then - call bgrow(bstrand,nbstrand,in,2,bfrag(3,j)) - else - bstrand(nbstrand,6)=bstrand(nbstrand,6)- - & (-bstrand(in,6)+bfrag(3,j)) - endif - else - bstrand(nbstrand,1)=bfrag(1,j) - bstrand(nbstrand,2)=bfrag(2,j) - bstrand(nbstrand,3)=nbetasheet - bstrand(nbstrand,4)=nbstrand - bstrand(nbstrand,5)=bstrand(nbstrand,1) - bstrand(nbstrand,6)=bstrand(nbstrand,2) - if(bstrand(in,1).gt.bfrag(3,j)) then - call bgrow(bstrand,nbstrand,in,1,bfrag(3,j)) - else - bstrand(nbstrand,5)=bstrand(nbstrand,5)- - & (-bstrand(in,5)+bfrag(3,j)) - endif - if(bstrand(in,2).lt.bfrag(4,j)) then - call bgrow(bstrand,nbstrand,in,2,bfrag(4,j)) - else - bstrand(nbstrand,6)=bstrand(nbstrand,6)+ - & (bstrand(in,6)-bfrag(4,j)) - endif - endif - goto 11 - endif - if(betasheet(bfrag(1,j)+i-bfrag(3,j)).eq.nbetasheet) then - in=ibetasheet(bfrag(1,j)+i-bfrag(3,j)) - do k=bfrag(1,j),bfrag(2,j) - betasheet(k)=nbetasheet - ibetasheet(k)=in - enddo - nbstrand=nbstrand+1 - usedbfrag(j)=.true. - iused_nbfrag=iused_nbfrag+1 - do k=bfrag(3,1),bfrag(4,1) - betasheet(k)=nbetasheet - ibetasheet(k)=nbstrand - enddo - if (bstrand(in,4).lt.0) then - bstrand(nbstrand,1)=bfrag(4,j) - bstrand(nbstrand,2)=bfrag(3,j) - bstrand(nbstrand,3)=nbetasheet - bstrand(nbstrand,4)=-nbstrand - bstrand(nbstrand,5)=bstrand(nbstrand,1) - bstrand(nbstrand,6)=bstrand(nbstrand,2) - if(bstrand(in,1).lt.bfrag(2,j)) then - call bgrow(bstrand,nbstrand,in,1,bfrag(2,j)) - else - bstrand(nbstrand,5)=bstrand(nbstrand,5)+ - & (bstrand(in,5)-bfrag(2,j)) - endif - if(bstrand(in,2).gt.bfrag(1,j)) then - call bgrow(bstrand,nbstrand,in,2,bfrag(1,j)) - else - bstrand(nbstrand,6)=bstrand(nbstrand,6)- - & (-bstrand(in,6)+bfrag(1,j)) - endif - else - bstrand(nbstrand,1)=bfrag(3,j) - bstrand(nbstrand,2)=bfrag(4,j) - bstrand(nbstrand,3)=nbetasheet - bstrand(nbstrand,4)=nbstrand - bstrand(nbstrand,5)=bstrand(nbstrand,1) - bstrand(nbstrand,6)=bstrand(nbstrand,2) - if(bstrand(in,1).gt.bfrag(1,j)) then - call bgrow(bstrand,nbstrand,in,1,bfrag(1,j)) - else - bstrand(nbstrand,5)=bstrand(nbstrand,5)- - & (-bstrand(in,5)+bfrag(1,j)) - endif - if(bstrand(in,2).lt.bfrag(2,j)) then - call bgrow(bstrand,nbstrand,in,2,bfrag(2,j)) - else - bstrand(nbstrand,6)=bstrand(nbstrand,6)+ - & (bstrand(in,6)-bfrag(2,j)) - endif - endif - goto 11 - endif - enddo - else - do i=bfrag(4,j),bfrag(3,j) - if(betasheet(i).eq.nbetasheet) then - in=ibetasheet(i) - do k=bfrag(4,j),bfrag(3,j) - betasheet(k)=nbetasheet - ibetasheet(k)=in - enddo - nbstrand=nbstrand+1 - usedbfrag(j)=.true. - iused_nbfrag=iused_nbfrag+1 - do k=bfrag(1,j),bfrag(2,j) - betasheet(k)=nbetasheet - ibetasheet(k)=nbstrand - enddo - if (bstrand(in,4).lt.0) then - bstrand(nbstrand,1)=bfrag(1,j) - bstrand(nbstrand,2)=bfrag(2,j) - bstrand(nbstrand,3)=nbetasheet - bstrand(nbstrand,4)=nbstrand - bstrand(nbstrand,5)=bstrand(nbstrand,1) - bstrand(nbstrand,6)=bstrand(nbstrand,2) - if(bstrand(in,1).lt.bfrag(3,j)) then - call bgrow(bstrand,nbstrand,in,1,bfrag(3,j)) - else - bstrand(nbstrand,5)=bstrand(nbstrand,5)- - & (bstrand(in,5)-bfrag(3,j)) - endif - if(bstrand(in,2).gt.bfrag(4,j)) then - call bgrow(bstrand,nbstrand,in,2,bfrag(4,j)) - else - bstrand(nbstrand,6)=bstrand(nbstrand,6)+ - & (-bstrand(in,6)+bfrag(4,j)) - endif - else - bstrand(nbstrand,1)=bfrag(2,j) - bstrand(nbstrand,2)=bfrag(1,j) - bstrand(nbstrand,3)=nbetasheet - bstrand(nbstrand,4)=-nbstrand - bstrand(nbstrand,5)=bstrand(nbstrand,1) - bstrand(nbstrand,6)=bstrand(nbstrand,2) - if(bstrand(in,1).gt.bfrag(4,j)) then - call bgrow(bstrand,nbstrand,in,1,bfrag(4,j)) - else - bstrand(nbstrand,5)=bstrand(nbstrand,5)+ - & (-bstrand(in,5)+bfrag(4,j)) - endif - if(bstrand(in,2).lt.bfrag(3,j)) then - call bgrow(bstrand,nbstrand,in,2,bfrag(3,j)) - else - bstrand(nbstrand,6)=bstrand(nbstrand,6)- - & (bstrand(in,6)-bfrag(3,j)) - endif - endif - goto 11 - endif - if(betasheet(bfrag(2,j)-i+bfrag(4,j)).eq.nbetasheet) then - in=ibetasheet(bfrag(2,j)-i+bfrag(4,j)) - do k=bfrag(1,j),bfrag(2,j) - betasheet(k)=nbetasheet - ibetasheet(k)=in - enddo - nbstrand=nbstrand+1 - usedbfrag(j)=.true. - iused_nbfrag=iused_nbfrag+1 - do k=bfrag(4,j),bfrag(3,j) - betasheet(k)=nbetasheet - ibetasheet(k)=nbstrand - enddo - if (bstrand(in,4).lt.0) then - bstrand(nbstrand,1)=bfrag(4,j) - bstrand(nbstrand,2)=bfrag(3,j) - bstrand(nbstrand,3)=nbetasheet - bstrand(nbstrand,4)=nbstrand - bstrand(nbstrand,5)=bstrand(nbstrand,1) - bstrand(nbstrand,6)=bstrand(nbstrand,2) - if(bstrand(in,1).lt.bfrag(2,j)) then - call bgrow(bstrand,nbstrand,in,1,bfrag(2,j)) - else - bstrand(nbstrand,5)=bstrand(nbstrand,5)- - & (bstrand(in,5)-bfrag(2,j)) - endif - if(bstrand(in,2).gt.bfrag(1,j)) then - call bgrow(bstrand,nbstrand,in,2,bfrag(1,j)) - else - bstrand(nbstrand,6)=bstrand(nbstrand,6)+ - & (-bstrand(in,6)+bfrag(1,j)) - endif - else - bstrand(nbstrand,1)=bfrag(3,j) - bstrand(nbstrand,2)=bfrag(4,j) - bstrand(nbstrand,3)=nbetasheet - bstrand(nbstrand,4)=-nbstrand - bstrand(nbstrand,5)=bstrand(nbstrand,1) - bstrand(nbstrand,6)=bstrand(nbstrand,2) - if(bstrand(in,1).gt.bfrag(1,j)) then - call bgrow(bstrand,nbstrand,in,1,bfrag(1,j)) - else - bstrand(nbstrand,5)=bstrand(nbstrand,5)+ - & (-bstrand(in,5)+bfrag(1,j)) - endif - if(bstrand(in,2).lt.bfrag(2,j)) then - call bgrow(bstrand,nbstrand,in,2,bfrag(2,j)) - else - bstrand(nbstrand,6)=bstrand(nbstrand,6)- - & (bstrand(in,6)-bfrag(2,j)) - endif - endif - goto 11 - endif - enddo - endif - - - - ENDIF - enddo - - j=2 - do while (usedbfrag(j)) - j=j+1 - enddo - - nbstrand=nbstrand+1 - nbetasheet=nbetasheet+1 - bstrand(nbstrand,1)=bfrag(1,j) - bstrand(nbstrand,2)=bfrag(2,j) - bstrand(nbstrand,3)=nbetasheet - bstrand(nbstrand,5)=bfrag(1,j) - bstrand(nbstrand,6)=bfrag(2,j) - - bstrand(nbstrand,4)=nbstrand - do i=bfrag(1,j),bfrag(2,j) - betasheet(i)=nbetasheet - ibetasheet(i)=nbstrand - enddo -c - nbstrand=nbstrand+1 - bstrand(nbstrand,1)=bfrag(3,j) - bstrand(nbstrand,2)=bfrag(4,j) - bstrand(nbstrand,3)=nbetasheet - bstrand(nbstrand,5)=bfrag(3,j) - bstrand(nbstrand,6)=bfrag(4,j) - - if (bfrag(3,j).le.bfrag(4,j)) then - bstrand(nbstrand,4)=nbstrand - do i=bfrag(3,j),bfrag(4,j) - betasheet(i)=nbetasheet - ibetasheet(i)=nbstrand - enddo - else - bstrand(nbstrand,4)=-nbstrand - do i=bfrag(4,j),bfrag(3,j) - betasheet(i)=nbetasheet - ibetasheet(i)=nbstrand - enddo - endif - - iused_nbfrag=iused_nbfrag+1 - usedbfrag(j)=.true. - - - 11 continue - do jk=6,1,-1 - write (*,'(i4,a3,10i4)') jk,'A',(bstrand(i,jk),i=1,nbstrand) - enddo - - - enddo - - do i=1,nres - if (betasheet(i).ne.0) write(*,*) i,betasheet(i),ibetasheet(i) - enddo - write(*,*) - do j=6,1,-1 - write (*,'(i4,a3,10i4)') j,':',(bstrand(i,j),i=1,nbstrand) - enddo - -c------------------------ - nifb=0 - do i=1,nbstrand - do j=i+1,nbstrand - if(iabs(bstrand(i,5)-bstrand(j,5)).le.5 .or. - & iabs(bstrand(i,6)-bstrand(j,6)).le.5 ) then - nifb=nifb+1 - ifb(nifb,1)=bstrand(i,4) - ifb(nifb,2)=bstrand(j,4) - endif - enddo - enddo - - write(*,*) - do i=1,nifb - write (*,'(a3,20i4)') "ifb",i,ifb(i,1),ifb(i,2) - enddo - - do i=1,nbstrand - ifa(i)=bstrand(i,4) - enddo - write (*,'(a3,20i4)') "ifa",(ifa(i),i=1,nbstrand) - - nif=iabs(bstrand(1,6)-bstrand(1,5))+1 - do j=2,nbstrand - if (iabs(bstrand(j,6)-bstrand(j,5))+1.gt.nif) - & nif=iabs(bstrand(j,6)-bstrand(j,5))+1 - enddo - - write(*,*) nif - do i=1,nif - do j=1,nbstrand - if(j,i)=bstrand(j,6)+(i-1)*sign(1,bstrand(j,5)-bstrand(j,6)) - if (if(j,i).gt.0) then - if(betasheet(if(j,i)).eq.0 .or. - & ibetasheet(if(j,i)).ne.iabs(bstrand(j,4))) if(j,i)=0 - else - if(j,i)=0 - endif - enddo - write(*,'(a3,10i4)') 'if ',(if(j,i),j=1,nbstrand) - enddo - -c read (inp,*) (ifa(i),i=1,4) -c do i=1,nres -c read (inp,*,err=20,end=20) (if(j,i),j=1,4) -c enddo -c 20 nif=i-1 - stop -c------------------------ - - isa=4 - is=2*isa-1 - iconf=0 -cccccccccccccccccccccccccccccccccc - DO ig=1,is**isa-1 -cccccccccccccccccccccccccccccccccc - - ii=ig - do j=1,is - istrand(is-j+1)=int(ii/is**(is-j)) - ii=ii-istrand(is-j+1)*is**(is-j) - enddo - ltest=.true. - do k=1,isa - istrand(k)=istrand(k)+1 - if(istrand(k).gt.isa) istrand(k)=istrand(k)-2*isa-1 - enddo - do k=1,isa - do l=1,isa - if(istrand(k).eq.istrand(l).and.k.ne.l.or. - & istrand(k).eq.-istrand(l).and.k.ne.l) ltest=.false. - enddo - enddo - - lifb0=1 - do m=1,nifb - lifb(m)=0 - do k=1,isa-1 - if( - & ifb(m,1).eq.istrand(k).and.ifb(m,2).eq.istrand(k+1).or. - & ifb(m,2).eq.istrand(k).and.ifb(m,1).eq.istrand(k+1).or. - & -ifb(m,1).eq.istrand(k).and.-ifb(m,2).eq.istrand(k+1).or. - & -ifb(m,2).eq.istrand(k).and.-ifb(m,1).eq.istrand(k+1)) - & lifb(m)=1 - enddo - lifb0=lifb0*lifb(m) - enddo - - if (mod(isa,2).eq.0) then - do k=isa/2+1,isa - if (istrand(k).eq.1) ltest=.false. - enddo - else - do k=(isa+1)/2+1,isa - if (istrand(k).eq.1) ltest=.false. - enddo - endif - - IF (ltest.and.lifb0.eq.1) THEN - iconf=iconf+1 - - call var_to_geom(nvar,vorg) - - write (*,'(i5,i10,10i3)') iconf,ig,(istrand(k),k=1,isa) - write (iout,'(i5,i10,10i3)') iconf,ig,(istrand(k),k=1,isa) - write (linia,'(10i3)') (istrand(k),k=1,isa) - - do i=1,nres - do j=1,nres - ibc(i,j)=0 - enddo - enddo - - - do i=1,4 - if ( sign(1,istrand(i)).eq.sign(1,ifa(iabs(istrand(i)))) ) then - do j=1,nif - itmp(iabs(istrand(i)),j)=if(iabs(ifa(iabs(istrand(i)))),j) - enddo - else - do j=1,nif - itmp(iabs(istrand(i)),j)=if(iabs(ifa(iabs(istrand(i)))),nif-j+1) - enddo - endif - enddo - - do i=1,nif - write(*,*) (itmp(j,i),j=1,4) - enddo - - do i=1,nif -c ifa(1),ifa(2),ifa(3),ifa(4) -c if(1,i),if(2,i),if(3,i),if(4,i) - do k=1,isa-1 - ltest=.false. - do m=1,nifb - if( - & ifb(m,1).eq.istrand(k).and.ifb(m,2).eq.istrand(k+1).or. - & ifb(m,2).eq.istrand(k).and.ifb(m,1).eq.istrand(k+1).or. - & -ifb(m,1).eq.istrand(k).and.-ifb(m,2).eq.istrand(k+1).or. - & -ifb(m,2).eq.istrand(k).and.-ifb(m,1).eq.istrand(k+1)) - & then - ltest=.true. - goto 110 - endif - enddo - 110 continue - if (ltest) then - ibc(itmp(iabs(istrand(k)),i),itmp(iabs(istrand(k+1)),i))=-1 - else - ibc(itmp(iabs(istrand(k)),i),itmp(iabs(istrand(k+1)),i))=-2 - endif -c - if (k.lt.3) - & ibc(itmp(iabs(istrand(k)),i),itmp(iabs(istrand(k+2)),i))=-3 - if (k.lt.2) - & ibc(itmp(iabs(istrand(k)),i),itmp(iabs(istrand(k+3)),i))=-4 - enddo - enddo -c------------------------ - -c -c freeze sec.elements -c - do i=1,nres - mask(i)=1 - mask_phi(i)=1 - mask_theta(i)=1 - mask_side(i)=1 - enddo - - do j=1,nbfrag - do i=bfrag(1,j),bfrag(2,j) - mask(i)=0 - mask_phi(i)=0 - mask_theta(i)=0 - enddo - if (bfrag(3,j).le.bfrag(4,j)) then - do i=bfrag(3,j),bfrag(4,j) - mask(i)=0 - mask_phi(i)=0 - mask_theta(i)=0 - enddo - else - do i=bfrag(4,j),bfrag(3,j) - mask(i)=0 - mask_phi(i)=0 - mask_theta(i)=0 - enddo - endif - enddo - do j=1,nhfrag - do i=hfrag(1,j),hfrag(2,j) - mask(i)=0 - mask_phi(i)=0 - mask_theta(i)=0 - enddo - enddo - mask_r=.true. - -c------------------------ -c generate constrains -c - nhpb0=nhpb - call chainbuild - ind=0 - do i=1,nres-3 - do j=i+3,nres - ind=ind+1 - if ( ibc(i,j).eq.-1 .or. ibc(j,i).eq.-1) then - d0(ind)=DIST(i,j) - w(ind)=10.0 - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=10.0 - dhpb(nhpb)=d0(ind) - else if ( ibc(i,j).eq.-2 .or. ibc(j,i).eq.-2) then - d0(ind)=5.0 - w(ind)=10.0 - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=10.0 - dhpb(nhpb)=d0(ind) - else if ( ibc(i,j).eq.-3 .or. ibc(j,i).eq.-3) then - d0(ind)=11.0 - w(ind)=10.0 - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=10.0 - dhpb(nhpb)=d0(ind) - else if ( ibc(i,j).eq.-4 .or. ibc(j,i).eq.-4) then - d0(ind)=16.0 - w(ind)=10.0 - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=10.0 - dhpb(nhpb)=d0(ind) - else if ( ibc(i,j).gt.0 ) then - d0(ind)=DIST(i,ibc(i,j)) - w(ind)=10.0 - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=10.0 - dhpb(nhpb)=d0(ind) - else if ( ibc(j,i).gt.0 ) then - d0(ind)=DIST(ibc(j,i),j) - w(ind)=10.0 - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=10.0 - dhpb(nhpb)=d0(ind) - else - w(ind)=0.0 - endif - dd(ind)=d0(ind) - enddo - enddo - call hpb_partition -cd-------------------------- - - write(iout,'(i3,2i4,a3,2i4,f7.2)') (i,ibc(ihpb(i),jhpb(i)), - & ibc(jhpb(i),ihpb(i)),' --', - & ihpb(i),jhpb(i),dhpb(i),i=1,nhpb) - -cd nhpb=0 -cd goto 901 -c -c - call contact_cp_min(varia,ifun,iconf,linia,debug) - if (minim) then -#ifdef MPI - time0=MPI_WTIME() -#else - time0=tcpu() -#endif - call minimize(etot,varia,iretcode,nfun) - write(iout,*)'------------------------------------------------' - write(iout,*)'SUMSL return code is',iretcode,' eval ',nfun, - & '+ DIST eval',ifun - -#ifdef MPI - time1=MPI_WTIME() -#else - time1=tcpu() -#endif - write (iout,'(a,f6.2,f8.2,a)')' Time for full min.',time1-time0, - & nfun/(time1-time0),' eval/s' - - write (linia,'(a10,10i3)') 'full_min',(istrand(k),k=1,isa) - call var_to_geom(nvar,varia) - call chainbuild - call write_pdb(900+iconf,linia,etot) - endif - - call etotal(energy(0)) - etot=energy(0) - call enerprint(energy(0)) -cd call intout -cd call briefout(0,etot) -cd call secondary2(.true.) - - 901 CONTINUE -ctest return -cccccccccccccccccccccccccccccccccccc - ENDIF - ENDDO -cccccccccccccccccccccccccccccccccccc - - return - 10 write (iout,'(a)') 'Error reading test structure.' - return - end -c-------------------------------------------------------- - - subroutine test3 - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.GEO' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.VAR' - include 'COMMON.CONTROL' - include 'COMMON.SBRIDGE' - include 'COMMON.FFIELD' - include 'COMMON.MINIM' -c - include 'COMMON.DISTFIT' - integer if(3,maxres),nif - integer ibc(maxres,maxres),istrand(20) - integer ibd(maxres),ifb(10,2),nifb,lifb(10),lifb0 - double precision time0,time1 - double precision energy(0:n_ene),ee - double precision varia(maxvar) -c - logical debug,ltest - character*50 linia -c - do i=1,nres - read (inp,*,err=20,end=20) if(1,i),if(2,i),if(3,i) - enddo - 20 nif=i-1 - write (*,'(a4,3i5)') ('if =',if(1,i),if(2,i),if(3,i), - & i=1,nif) - - -c------------------------ - call secondary2(debug) -c------------------------ - do i=1,nres - do j=1,nres - ibc(i,j)=0 - enddo - enddo - -c -c freeze sec.elements and store indexes for beta constrains -c - do i=1,nres - mask(i)=1 - mask_phi(i)=1 - mask_theta(i)=1 - mask_side(i)=1 - enddo - - do j=1,nbfrag - do i=bfrag(1,j),bfrag(2,j) - mask(i)=0 - mask_phi(i)=0 - mask_theta(i)=0 - enddo - if (bfrag(3,j).le.bfrag(4,j)) then - do i=bfrag(3,j),bfrag(4,j) - mask(i)=0 - mask_phi(i)=0 - mask_theta(i)=0 - ibc(bfrag(1,j)+i-bfrag(3,j),i)=-1 - enddo - else - do i=bfrag(4,j),bfrag(3,j) - mask(i)=0 - mask_phi(i)=0 - mask_theta(i)=0 - ibc(bfrag(2,j)-i+bfrag(4,j),i)=-1 - enddo - endif - enddo - do j=1,nhfrag - do i=hfrag(1,j),hfrag(2,j) - mask(i)=0 - mask_phi(i)=0 - mask_theta(i)=0 - enddo - enddo - mask_r=.true. - - -c ---------------- test -------------- - do i=1,nif - if (ibc(if(1,i),if(2,i)).eq.-1) then - ibc(if(1,i),if(2,i))=if(3,i) - ibc(if(1,i),if(3,i))=if(2,i) - else if (ibc(if(2,i),if(1,i)).eq.-1) then - ibc(if(2,i),if(1,i))=0 - ibc(if(1,i),if(2,i))=if(3,i) - ibc(if(1,i),if(3,i))=if(2,i) - else - ibc(if(1,i),if(2,i))=if(3,i) - ibc(if(1,i),if(3,i))=if(2,i) - endif - enddo - - do i=1,nres - do j=1,nres - if (ibc(i,j).ne.0) write(*,'(3i5)') i,j,ibc(i,j) - enddo - enddo -c------------------------ - call chainbuild - ind=0 - do i=1,nres-3 - do j=i+3,nres - ind=ind+1 - if ( ibc(i,j).eq.-1 ) then - d0(ind)=DIST(i,j) - w(ind)=10.0 - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=10.0 - dhpb(nhpb)=d0(ind) - else if ( ibc(i,j).gt.0 ) then - d0(ind)=DIST(i,ibc(i,j)) - w(ind)=10.0 - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=10.0 - dhpb(nhpb)=d0(ind) - else if ( ibc(j,i).gt.0 ) then - d0(ind)=DIST(ibc(j,i),j) - w(ind)=10.0 - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=10.0 - dhpb(nhpb)=d0(ind) - else - w(ind)=0.0 - endif - enddo - enddo - call hpb_partition - -cd-------------------------- - write(*,'(i3,2i4,a3,2i4,f7.2)') (i,ibc(ihpb(i),jhpb(i)), - & ibc(jhpb(i),ihpb(i)),' --', - & ihpb(i),jhpb(i),dhpb(i),i=1,nhpb) - - - linia='dist' - debug=.true. - in_pdb=7 -c - call contact_cp_min(varia,ieval,in_pdb,linia,debug) - if (minim) then -#ifdef MPI - time0=MPI_WTIME() -#else - time0=tcpu() -#endif - call minimize(etot,varia,iretcode,nfun) - write(iout,*)'------------------------------------------------' - write(iout,*)'SUMSL return code is',iretcode,' eval ',nfun, - & '+ DIST eval',ieval - -#ifdef MPI - time1=MPI_WTIME() -#else - time1=tcpu() -#endif - write (iout,'(a,f6.2,f8.2,a)')' Time for full min.',time1-time0, - & nfun/(time1-time0),' eval/s' - - - call var_to_geom(nvar,varia) - call chainbuild - call write_pdb(999,'full min',etot) - endif - - call etotal(energy(0)) - etot=energy(0) - call enerprint(energy(0)) - call intout - call briefout(0,etot) - call secondary2(.true.) - - return - 10 write (iout,'(a)') 'Error reading test structure.' - return - end - - - - - subroutine test__ - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.GEO' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.VAR' - include 'COMMON.CONTROL' - include 'COMMON.SBRIDGE' - include 'COMMON.FFIELD' - include 'COMMON.MINIM' -c - include 'COMMON.DISTFIT' - integer if(2,2),ind - integer iff(maxres) - double precision time0,time1 - double precision energy(0:n_ene),ee - double precision theta2(maxres),phi2(maxres),alph2(maxres), - & omeg2(maxres), - & theta1(maxres),phi1(maxres),alph1(maxres), - & omeg1(maxres) - double precision varia(maxvar),varia2(maxvar) -c - - - read (inp,*,err=10,end=10) if(1,1),if(1,2),if(2,1),if(2,2) - write (iout,'(a4,4i5)') 'if =',if(1,1),if(1,2),if(2,1),if(2,2) - read (inp,*,err=10,end=10) (theta2(i),i=3,nres) - read (inp,*,err=10,end=10) (phi2(i),i=4,nres) - read (inp,*,err=10,end=10) (alph2(i),i=2,nres-1) - read (inp,*,err=10,end=10) (omeg2(i),i=2,nres-1) - do i=1,nres - theta2(i)=deg2rad*theta2(i) - phi2(i)=deg2rad*phi2(i) - alph2(i)=deg2rad*alph2(i) - omeg2(i)=deg2rad*omeg2(i) - enddo - do i=1,nres - theta1(i)=theta(i) - phi1(i)=phi(i) - alph1(i)=alph(i) - omeg1(i)=omeg(i) - enddo - - do i=1,nres - mask(i)=1 - enddo - - -c------------------------ - do i=1,nres - iff(i)=0 - enddo - do j=1,2 - do i=if(j,1),if(j,2) - iff(i)=1 - enddo - enddo - - call chainbuild - call geom_to_var(nvar,varia) - call write_pdb(1,'first structure',0d0) - - call secondary(.true.) - - call secondary2(.true.) - - do j=1,nbfrag - if ( (bfrag(3,j).lt.bfrag(4,j) .or. - & bfrag(4,j)-bfrag(2,j).gt.4) .and. - & bfrag(2,j)-bfrag(1,j).gt.3 ) then - nn=nn+1 - - if (bfrag(3,j).lt.bfrag(4,j)) then - write(iout,'(a6,i3,a1,i3,a1,i3,a1,i3)') - & "select",bfrag(1,j)-1,"-",bfrag(2,j)-1 - & ,",",bfrag(3,j)-1,"-",bfrag(4,j)-1 - else - write(iout,'(a6,i3,a1,i3,a1,i3,a1,i3)') - & "select",bfrag(1,j)-1,"-",bfrag(2,j)-1 - & ,",",bfrag(4,j)-1,"-",bfrag(3,j)-1 - endif - endif - enddo - - do i=1,nres - theta(i)=theta2(i) - phi(i)=phi2(i) - alph(i)=alph2(i) - omeg(i)=omeg2(i) - enddo - - call chainbuild - call geom_to_var(nvar,varia2) - call write_pdb(2,'second structure',0d0) - - - -c------------------------------------------------------- - - ifun=-1 - call contact_cp(varia,varia2,iff,ifun,7) - if (minim) then -#ifdef MPI - time0=MPI_WTIME() -#else - time0=tcpu() -#endif - call minimize(etot,varia,iretcode,nfun) - write(iout,*)'------------------------------------------------' - write(iout,*)'SUMSL return code is',iretcode,' eval ',nfun, - & '+ DIST eval',ifun - -#ifdef MPI - time1=MPI_WTIME() -#else - time1=tcpu() -#endif - write (iout,'(a,f6.2,f8.2,a)')' Time for full min.',time1-time0, - & nfun/(time1-time0),' eval/s' - - - call var_to_geom(nvar,varia) - call chainbuild - call write_pdb(999,'full min',etot) - endif - - call etotal(energy(0)) - etot=energy(0) - call enerprint(energy(0)) - call intout - call briefout(0,etot) - - return - 10 write (iout,'(a)') 'Error reading test structure.' - return - end - -c------------------------------------------------- -c------------------------------------------------- - - subroutine secondary(lprint) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.DISTFIT' - - integer ncont,icont(2,maxres*maxres/2),isec(maxres,3) - logical lprint,not_done - real dcont(maxres*maxres/2),d - real rcomp /7.0/ - real rbeta /5.2/ - real ralfa /5.2/ - real r310 /6.6/ - double precision xpi(3),xpj(3) - - - - call chainbuild -cd call write_pdb(99,'sec structure',0d0) - ncont=0 - nbfrag=0 - nhfrag=0 - do i=1,nres - isec(i,1)=0 - isec(i,2)=0 - isec(i,3)=0 - enddo - - do i=2,nres-3 - do k=1,3 - xpi(k)=0.5d0*(c(k,i-1)+c(k,i)) - enddo - do j=i+2,nres - do k=1,3 - xpj(k)=0.5d0*(c(k,j-1)+c(k,j)) - enddo -cd d = (c(1,i)-c(1,j))*(c(1,i)-c(1,j)) + -cd & (c(2,i)-c(2,j))*(c(2,i)-c(2,j)) + -cd & (c(3,i)-c(3,j))*(c(3,i)-c(3,j)) -cd print *,'CA',i,j,d - d = (xpi(1)-xpj(1))*(xpi(1)-xpj(1)) + - & (xpi(2)-xpj(2))*(xpi(2)-xpj(2)) + - & (xpi(3)-xpj(3))*(xpi(3)-xpj(3)) - if ( d.lt.rcomp*rcomp) then - ncont=ncont+1 - icont(1,ncont)=i - icont(2,ncont)=j - dcont(ncont)=sqrt(d) - endif - enddo - enddo - if (lprint) then - write (iout,*) - write (iout,'(a)') '#PP contact map distances:' - do i=1,ncont - write (iout,'(3i4,f10.5)') - & i,icont(1,i),icont(2,i),dcont(i) - enddo - endif - -c finding parallel beta -cd write (iout,*) '------- looking for parallel beta -----------' - nbeta=0 - nstrand=0 - do i=1,ncont - i1=icont(1,i) - j1=icont(2,i) - if(dcont(i).le.rbeta .and. j1-i1.gt.4 .and. - & isec(i1,1).le.1.and.isec(j1,1).le.1.and. - & (isec(i1,2).ne.isec(j1,2).or.isec(i1,2)*isec(j1,2).eq.0).and. - & (isec(i1,3).ne.isec(j1,3).or.isec(i1,3)*isec(j1,3).eq.0).and. - & (isec(i1,2).ne.isec(j1,3).or.isec(i1,2)*isec(j1,3).eq.0).and. - & (isec(i1,3).ne.isec(j1,2).or.isec(i1,3)*isec(j1,2).eq.0) - & ) then - ii1=i1 - jj1=j1 -cd write (iout,*) i1,j1,dcont(i) - not_done=.true. - do while (not_done) - i1=i1+1 - j1=j1+1 - do j=1,ncont - if (i1.eq.icont(1,j) .and. j1.eq.icont(2,j) - & .and. dcont(j).le.rbeta .and. - & isec(i1,1).le.1.and.isec(j1,1).le.1.and. - & (isec(i1,2).ne.isec(j1,2).or.isec(i1,2)*isec(j1,2).eq.0).and. - & (isec(i1,3).ne.isec(j1,3).or.isec(i1,3)*isec(j1,3).eq.0).and. - & (isec(i1,2).ne.isec(j1,3).or.isec(i1,2)*isec(j1,3).eq.0).and. - & (isec(i1,3).ne.isec(j1,2).or.isec(i1,3)*isec(j1,2).eq.0) - & ) goto 5 - enddo - not_done=.false. - 5 continue -cd write (iout,*) i1,j1,dcont(j),not_done - enddo - j1=j1-1 - i1=i1-1 - if (i1-ii1.gt.1) then - ii1=max0(ii1-1,1) - jj1=max0(jj1-1,1) - nbeta=nbeta+1 - if(lprint)write(iout,*)'parallel beta',nbeta,ii1,i1,jj1,j1 - - nbfrag=nbfrag+1 - bfrag(1,nbfrag)=ii1 - bfrag(2,nbfrag)=i1 - bfrag(3,nbfrag)=jj1 - bfrag(4,nbfrag)=j1 - - do ij=ii1,i1 - isec(ij,1)=isec(ij,1)+1 - isec(ij,1+isec(ij,1))=nbeta - enddo - do ij=jj1,j1 - isec(ij,1)=isec(ij,1)+1 - isec(ij,1+isec(ij,1))=nbeta - enddo - - if(lprint) then - nstrand=nstrand+1 - if (nbeta.le.9) then - write(12,'(a18,i1,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",ii1-1,"..",i1-1,"'" - else - write(12,'(a18,i2,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",ii1-1,"..",i1-1,"'" - endif - nstrand=nstrand+1 - if (nbeta.le.9) then - write(12,'(a18,i1,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",jj1-1,"..",j1-1,"'" - else - write(12,'(a18,i2,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",jj1-1,"..",j1-1,"'" - endif - write(12,'(a8,4i4)') - & "SetNeigh",ii1-1,i1-1,jj1-1,j1-1 - endif - endif - endif - enddo - -c finding antiparallel beta -cd write (iout,*) '--------- looking for antiparallel beta ---------' - - do i=1,ncont - i1=icont(1,i) - j1=icont(2,i) - if (dcont(i).le.rbeta.and. - & isec(i1,1).le.1.and.isec(j1,1).le.1.and. - & (isec(i1,2).ne.isec(j1,2).or.isec(i1,2)*isec(j1,2).eq.0).and. - & (isec(i1,3).ne.isec(j1,3).or.isec(i1,3)*isec(j1,3).eq.0).and. - & (isec(i1,2).ne.isec(j1,3).or.isec(i1,2)*isec(j1,3).eq.0).and. - & (isec(i1,3).ne.isec(j1,2).or.isec(i1,3)*isec(j1,2).eq.0) - & ) then - ii1=i1 - jj1=j1 -cd write (iout,*) i1,j1,dcont(i) - - not_done=.true. - do while (not_done) - i1=i1+1 - j1=j1-1 - do j=1,ncont - if (i1.eq.icont(1,j).and.j1.eq.icont(2,j) .and. - & isec(i1,1).le.1.and.isec(j1,1).le.1.and. - & (isec(i1,2).ne.isec(j1,2).or.isec(i1,2)*isec(j1,2).eq.0).and. - & (isec(i1,3).ne.isec(j1,3).or.isec(i1,3)*isec(j1,3).eq.0).and. - & (isec(i1,2).ne.isec(j1,3).or.isec(i1,2)*isec(j1,3).eq.0).and. - & (isec(i1,3).ne.isec(j1,2).or.isec(i1,3)*isec(j1,2).eq.0) - & .and. dcont(j).le.rbeta ) goto 6 - enddo - not_done=.false. - 6 continue -cd write (iout,*) i1,j1,dcont(j),not_done - enddo - i1=i1-1 - j1=j1+1 - if (i1-ii1.gt.1) then - if(lprint)write (iout,*)'antiparallel beta', - & nbeta,ii1-1,i1,jj1,j1-1 - - nbfrag=nbfrag+1 - bfrag(1,nbfrag)=max0(ii1-1,1) - bfrag(2,nbfrag)=i1 - bfrag(3,nbfrag)=jj1 - bfrag(4,nbfrag)=max0(j1-1,1) - - nbeta=nbeta+1 - iii1=max0(ii1-1,1) - do ij=iii1,i1 - isec(ij,1)=isec(ij,1)+1 - isec(ij,1+isec(ij,1))=nbeta - enddo - jjj1=max0(j1-1,1) - do ij=jjj1,jj1 - isec(ij,1)=isec(ij,1)+1 - isec(ij,1+isec(ij,1))=nbeta - enddo - - - if (lprint) then - nstrand=nstrand+1 - if (nstrand.le.9) then - write(12,'(a18,i1,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",ii1-2,"..",i1-1,"'" - else - write(12,'(a18,i2,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",ii1-2,"..",i1-1,"'" - endif - nstrand=nstrand+1 - if (nstrand.le.9) then - write(12,'(a18,i1,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",j1-2,"..",jj1-1,"'" - else - write(12,'(a18,i2,a9,i3,a2,i3,a1)') - & "DefPropRes 'strand",nstrand, - & "' 'num = ",j1-2,"..",jj1-1,"'" - endif - write(12,'(a8,4i4)') - & "SetNeigh",ii1-2,i1-1,jj1-1,j1-2 - endif - endif - endif - enddo - - if (nstrand.gt.0.and.lprint) then - write(12,'(a27,$)') "DefPropRes 'sheet' 'strand1" - do i=2,nstrand - if (i.le.9) then - write(12,'(a9,i1,$)') " | strand",i - else - write(12,'(a9,i2,$)') " | strand",i - endif - enddo - write(12,'(a1)') "'" - endif - - -c finding alpha or 310 helix - - nhelix=0 - do i=1,ncont - i1=icont(1,i) - j1=icont(2,i) - if (j1.eq.i1+3.and.dcont(i).le.r310 - & .or.j1.eq.i1+4.and.dcont(i).le.ralfa ) then -cd if (j1.eq.i1+3) write (iout,*) "found 1-4 ",i1,j1,dcont(i) -cd if (j1.eq.i1+4) write (iout,*) "found 1-5 ",i1,j1,dcont(i) - ii1=i1 - jj1=j1 - if (isec(ii1,1).eq.0) then - not_done=.true. - else - not_done=.false. - endif - do while (not_done) - i1=i1+1 - j1=j1+1 - do j=1,ncont - if (i1.eq.icont(1,j) .and. j1.eq.icont(2,j)) goto 10 - enddo - not_done=.false. - 10 continue -cd write (iout,*) i1,j1,not_done - enddo - j1=j1-1 - if (j1-ii1.gt.4) then - nhelix=nhelix+1 -cd write (iout,*)'helix',nhelix,ii1,j1 - - nhfrag=nhfrag+1 - hfrag(1,nhfrag)=ii1 - hfrag(2,nhfrag)=max0(j1-1,1) - - do ij=ii1,j1 - isec(ij,1)=-1 - enddo - if (lprint) then - write (iout,'(a6,i3,2i4)') "Helix",nhelix,ii1-1,j1-2 - if (nhelix.le.9) then - write(12,'(a17,i1,a9,i3,a2,i3,a1)') - & "DefPropRes 'helix",nhelix, - & "' 'num = ",ii1-1,"..",j1-2,"'" - else - write(12,'(a17,i2,a9,i3,a2,i3,a1)') - & "DefPropRes 'helix",nhelix, - & "' 'num = ",ii1-1,"..",j1-2,"'" - endif - endif - endif - endif - enddo - - if (nhelix.gt.0.and.lprint) then - write(12,'(a26,$)') "DefPropRes 'helix' 'helix1" - do i=2,nhelix - if (nhelix.le.9) then - write(12,'(a8,i1,$)') " | helix",i - else - write(12,'(a8,i2,$)') " | helix",i - endif - enddo - write(12,'(a1)') "'" - endif - - if (lprint) then - write(12,'(a37)') "DefPropRes 'coil' '! (helix | sheet)'" - write(12,'(a20)') "XMacStand ribbon.mac" - endif - - - return - end -c---------------------------------------------------------------------------- - - subroutine write_pdb(npdb,titelloc,ee) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - character*50 titelloc1 - character*(*) titelloc - character*3 zahl - character*5 liczba5 - double precision ee - integer npdb,ilen - external ilen - - titelloc1=titelloc - lenpre=ilen(prefix) - if (npdb.lt.1000) then - call numstr(npdb,zahl) - open(ipdb,file=prefix(:lenpre)//'@@'//zahl//'.pdb') - else - if (npdb.lt.10000) then - write(liczba5,'(i1,i4)') 0,npdb - else - write(liczba5,'(i5)') npdb - endif - open(ipdb,file=prefix(:lenpre)//'@@'//liczba5//'.pdb') - endif - call pdbout(ee,titelloc1,ipdb) - close(ipdb) - return - end - -c----------------------------------------------------------- - subroutine contact_cp2(var,var2,iff,ieval,in_pdb) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.SBRIDGE' - include 'COMMON.FFIELD' - include 'COMMON.IOUNITS' - include 'COMMON.DISTFIT' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.MINIM' - - character*50 linia - integer nf,ij(4) - double precision var(maxvar),var2(maxvar) - double precision time0,time1 - integer iff(maxres),ieval - double precision theta1(maxres),phi1(maxres),alph1(maxres), - & omeg1(maxres) - - - call var_to_geom(nvar,var) - call chainbuild - nhpb0=nhpb - ind=0 - do i=1,nres-3 - do j=i+3,nres - ind=ind+1 - if ( iff(i).eq.1.and.iff(j).eq.1 ) then - d0(ind)=DIST(i,j) - w(ind)=10.0 - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=10.0 - dhpb(nhpb)=d0(ind) - else - w(ind)=0.0 - endif - enddo - enddo - call hpb_partition - - do i=1,nres - theta1(i)=theta(i) - phi1(i)=phi(i) - alph1(i)=alph(i) - omeg1(i)=omeg(i) - enddo - - call var_to_geom(nvar,var2) - - do i=1,nres - if ( iff(i).eq.1 ) then - theta(i)=theta1(i) - phi(i)=phi1(i) - alph(i)=alph1(i) - omeg(i)=omeg1(i) - endif - enddo - - call chainbuild - - NX=NRES-3 - NY=((NRES-4)*(NRES-5))/2 - call distfit(.true.,200) - - - ipot0=ipot - maxmin0=maxmin - maxfun0=maxfun - wstrain0=wstrain - - ipot=6 - maxmin=2000 - maxfun=5000 - call geom_to_var(nvar,var) - call minimize(etot,var,iretcode,nfun) - write(iout,*)'SUMSL return code is',iretcode,' eval SOFT',nfun - - call var_to_geom(nvar,var) - call chainbuild - - - iwsk=0 - nf=0 - if (iff(1).eq.1) then - iwsk=1 - nf=nf+1 - ij(nf)=0 - endif - do i=2,nres - if ( iwsk.eq.0.and.iff(i-1).eq.0.and.iff(i).eq.1 ) then - iwsk=1 - nf=nf+1 - ij(nf)=i - endif - if ( iwsk.eq.1.and.iff(i-1).eq.1.and.iff(i).eq.0 ) then - iwsk=0 - nf=nf+1 - ij(nf)=i-1 - endif - enddo - if (iff(nres).eq.1) then - nf=nf+1 - ij(nf)=nres - endif - - -cd write(linia,'(a6,i3,a1,i3,a1,i3,a1,i3)') -cd & "select",ij(1),"-",ij(2), -cd & ",",ij(3),"-",ij(4) -cd call write_pdb(in_pdb,linia,etot) - - - ipot=ipot0 - maxmin=maxmin0 - maxfun=maxfun0 - call minimize(etot,var,iretcode,nfun) - ieval=nfun - - nhpb= nhpb0 - link_start=1 - link_end=nhpb - wstrain=wstrain0 - - return - end -c----------------------------------------------------------- - subroutine contact_cp(var,var2,iff,ieval,in_pdb) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.SBRIDGE' - include 'COMMON.FFIELD' - include 'COMMON.IOUNITS' - include 'COMMON.DISTFIT' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.MINIM' - - character*50 linia - integer nf,ij(4) - double precision energy(0:n_ene) - double precision var(maxvar),var2(maxvar) - double precision time0,time1 - integer iff(maxres),ieval - double precision theta1(maxres),phi1(maxres),alph1(maxres), - & omeg1(maxres) - logical debug - - debug=.false. -c debug=.true. - if (ieval.eq.-1) debug=.true. - - -c -c store selected dist. constrains from 1st structure -c -#ifdef OSF -c Intercept NaNs in the coordinates -c write(iout,*) (var(i),i=1,nvar) - x_sum=0.D0 - do i=1,nvar - x_sum=x_sum+var(i) - enddo - if (x_sum.ne.x_sum) then - write(iout,*)" *** contact_cp : Found NaN in coordinates" - call flush(iout) - print *," *** contact_cp : Found NaN in coordinates" - return - endif -#endif - - - call var_to_geom(nvar,var) - call chainbuild - nhpb0=nhpb - ind=0 - do i=1,nres-3 - do j=i+3,nres - ind=ind+1 - if ( iff(i).eq.1.and.iff(j).eq.1 ) then - d0(ind)=DIST(i,j) - w(ind)=10.0 - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=10.0 - dhpb(nhpb)=d0(ind) - else - w(ind)=0.0 - endif - enddo - enddo - call hpb_partition - - do i=1,nres - theta1(i)=theta(i) - phi1(i)=phi(i) - alph1(i)=alph(i) - omeg1(i)=omeg(i) - enddo - -c -c freeze sec.elements from 2nd structure -c - do i=1,nres - mask_phi(i)=1 - mask_theta(i)=1 - mask_side(i)=1 - enddo - - call var_to_geom(nvar,var2) - call secondary2(debug) - do j=1,nbfrag - do i=bfrag(1,j),bfrag(2,j) - mask(i)=0 - mask_phi(i)=0 - mask_theta(i)=0 - enddo - if (bfrag(3,j).le.bfrag(4,j)) then - do i=bfrag(3,j),bfrag(4,j) - mask(i)=0 - mask_phi(i)=0 - mask_theta(i)=0 - enddo - else - do i=bfrag(4,j),bfrag(3,j) - mask(i)=0 - mask_phi(i)=0 - mask_theta(i)=0 - enddo - endif - enddo - do j=1,nhfrag - do i=hfrag(1,j),hfrag(2,j) - mask(i)=0 - mask_phi(i)=0 - mask_theta(i)=0 - enddo - enddo - mask_r=.true. - -c -c copy selected res from 1st to 2nd structure -c - - do i=1,nres - if ( iff(i).eq.1 ) then - theta(i)=theta1(i) - phi(i)=phi1(i) - alph(i)=alph1(i) - omeg(i)=omeg1(i) - endif - enddo - - if(debug) then -c -c prepare description in linia variable -c - iwsk=0 - nf=0 - if (iff(1).eq.1) then - iwsk=1 - nf=nf+1 - ij(nf)=1 - endif - do i=2,nres - if ( iwsk.eq.0.and.iff(i-1).eq.0.and.iff(i).eq.1 ) then - iwsk=1 - nf=nf+1 - ij(nf)=i - endif - if ( iwsk.eq.1.and.iff(i-1).eq.1.and.iff(i).eq.0 ) then - iwsk=0 - nf=nf+1 - ij(nf)=i-1 - endif - enddo - if (iff(nres).eq.1) then - nf=nf+1 - ij(nf)=nres - endif - - write(linia,'(a6,i3,a1,i3,a1,i3,a1,i3)') - & "SELECT",ij(1)-1,"-",ij(2)-1, - & ",",ij(3)-1,"-",ij(4)-1 - - endif -c -c run optimization -c - call contact_cp_min(var,ieval,in_pdb,linia,debug) - - return - end - - subroutine contact_cp_min(var,ieval,in_pdb,linia,debug) -c -c input : theta,phi,alph,omeg,in_pdb,linia,debug -c output : var,ieval -c - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.SBRIDGE' - include 'COMMON.FFIELD' - include 'COMMON.IOUNITS' - include 'COMMON.DISTFIT' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.MINIM' - - character*50 linia - integer nf,ij(4) - double precision energy(0:n_ene) - double precision var(maxvar) - double precision time0,time1 - integer ieval,info(3) - logical debug,fail,check_var,reduce,change - - write(iout,'(a20,i6,a20)') - & '------------------',in_pdb,'-------------------' - - if (debug) then - call chainbuild - call write_pdb(1000+in_pdb,'combined structure',0d0) -#ifdef MPI - time0=MPI_WTIME() -#else - time0=tcpu() -#endif - endif - -c -c run optimization of distances -c -c uses d0(),w() and mask() for frozen 2D -c -ctest--------------------------------------------- -ctest NX=NRES-3 -ctest NY=((NRES-4)*(NRES-5))/2 -ctest call distfit(debug,5000) - - do i=1,nres - mask_side(i)=0 - enddo - - ipot01=ipot - maxmin01=maxmin - maxfun01=maxfun -c wstrain01=wstrain - wsc01=wsc - wscp01=wscp - welec01=welec - wvdwpp01=wvdwpp -c wang01=wang - wscloc01=wscloc - wtor01=wtor - wtor_d01=wtor_d - - ipot=6 - maxmin=2000 - maxfun=4000 -c wstrain=1.0 - wsc=0.0 - wscp=0.0 - welec=0.0 - wvdwpp=0.0 -c wang=0.0 - wscloc=0.0 - wtor=0.0 - wtor_d=0.0 - - call geom_to_var(nvar,var) -cde change=reduce(var) - if (check_var(var,info)) then - write(iout,*) 'cp_min error in input' - print *,'cp_min error in input' - return - endif - -cd call etotal(energy(0)) -cd call enerprint(energy(0)) -cd call check_eint - -#ifdef MPI - time0=MPI_WTIME() -#else - time0=tcpu() -#endif -cdtest call minimize(etot,var,iretcode,nfun) -cdtest write(iout,*)'SUMSL return code is',iretcode,' eval SDIST',nfun -#ifdef MPI - time1=MPI_WTIME() -#else - time1=tcpu() -#endif - -cd call etotal(energy(0)) -cd call enerprint(energy(0)) -cd call check_eint - - do i=1,nres - mask_side(i)=1 - enddo - - ipot=ipot01 - maxmin=maxmin01 - maxfun=maxfun01 -c wstrain=wstrain01 - wsc=wsc01 - wscp=wscp01 - welec=welec01 - wvdwpp=wvdwpp01 -c wang=wang01 - wscloc=wscloc01 - wtor=wtor01 - wtor_d=wtor_d01 -ctest-------------------------------------------------- - - if(debug) then -#ifdef MPI - time1=MPI_WTIME() -#else - time1=tcpu() -#endif - write (iout,'(a,f6.2,a)')' Time for distfit ',time1-time0,' sec' - call write_pdb(2000+in_pdb,'distfit structure',0d0) - endif - - - ipot0=ipot - maxmin0=maxmin - maxfun0=maxfun - wstrain0=wstrain -c -c run soft pot. optimization -c with constrains: -c nhpb,ihpb(),jhpb(),forcon(),dhpb() and hpb_partition -c and frozen 2D: -c mask_phi(),mask_theta(),mask_side(),mask_r -c - ipot=6 - maxmin=2000 - maxfun=4000 - -cde change=reduce(var) -cde if (check_var(var,info)) write(iout,*) 'error before soft' -#ifdef MPI - time0=MPI_WTIME() -#else - time0=tcpu() -#endif - call minimize(etot,var,iretcode,nfun) - - write(iout,*)'SUMSL return code is',iretcode,' eval SOFT',nfun -#ifdef MPI - time1=MPI_WTIME() -#else - time1=tcpu() -#endif - write (iout,'(a,f6.2,f8.2,a)')' Time for soft min.',time1-time0, - & nfun/(time1-time0),' SOFT eval/s' - if (debug) then - call var_to_geom(nvar,var) - call chainbuild - call write_pdb(3000+in_pdb,'soft structure',etot) - endif -c -c run full UNRES optimization with constrains and frozen 2D -c the same variables as soft pot. optimizatio -c - ipot=ipot0 - maxmin=maxmin0 - maxfun=maxfun0 -c -c check overlaps before calling full UNRES minim -c - call var_to_geom(nvar,var) - call chainbuild - call etotal(energy(0)) -#ifdef OSF - write(iout,*) 'N7 ',energy(0) - if (energy(0).ne.energy(0)) then - write(iout,*) 'N7 error - gives NaN',energy(0) - endif -#endif - ieval=1 - if (energy(1).eq.1.0d20) then - write (iout,'(a,1pe14.5)')'#N7_OVERLAP evdw=1d20',energy(1) - call overlap_sc(fail) - if(.not.fail) then - call etotal(energy(0)) - ieval=ieval+1 - write (iout,'(a,1pe14.5)')'#N7_OVERLAP evdw after',energy(1) - else - mask_r=.false. - nhpb= nhpb0 - link_start=1 - link_end=nhpb - wstrain=wstrain0 - return - endif - endif - call flush(iout) -c -cdte time0=MPI_WTIME() -cde change=reduce(var) -cde if (check_var(var,info)) then -cde write(iout,*) 'error before mask dist' -cde call var_to_geom(nvar,var) -cde call chainbuild -cde call write_pdb(10000+in_pdb,'before mask dist',etot) -cde endif -cdte call minimize(etot,var,iretcode,nfun) -cdte write(iout,*)'SUMSL MASK DIST return code is',iretcode, -cdte & ' eval ',nfun -cdte ieval=ieval+nfun -cdte -cdte time1=MPI_WTIME() -cdte write (iout,'(a,f6.2,f8.2,a)') -cdte & ' Time for mask dist min.',time1-time0, -cdte & nfun/(time1-time0),' eval/s' -cdte call flush(iout) - if (debug) then - call var_to_geom(nvar,var) - call chainbuild - call write_pdb(4000+in_pdb,'mask dist',etot) - endif -c -c switch off freezing of 2D and -c run full UNRES optimization with constrains -c - mask_r=.false. -#ifdef MPI - time0=MPI_WTIME() -#else - time0=tcpu() -#endif -cde change=reduce(var) -cde if (check_var(var,info)) then -cde write(iout,*) 'error before dist' -cde call var_to_geom(nvar,var) -cde call chainbuild -cde call write_pdb(11000+in_pdb,'before dist',etot) -cde endif - - call minimize(etot,var,iretcode,nfun) - -cde change=reduce(var) -cde if (check_var(var,info)) then -cde write(iout,*) 'error after dist',ico -cde call var_to_geom(nvar,var) -cde call chainbuild -cde call write_pdb(12000+in_pdb+ico*1000,'after dist',etot) -cde endif - write(iout,*)'SUMSL DIST return code is',iretcode,' eval ',nfun - ieval=ieval+nfun - -#ifdef MPI - time1=MPI_WTIME() -#else - time1=tcpu() -#endif - write (iout,'(a,f6.2,f8.2,a)')' Time for dist min.',time1-time0, - & nfun/(time1-time0),' eval/s' -cde call etotal(energy(0)) -cde write(iout,*) 'N7 after dist',energy(0) - call flush(iout) - - if (debug) then - call var_to_geom(nvar,var) - call chainbuild - call write_pdb(in_pdb,linia,etot) - endif -c -c reset constrains -c - nhpb= nhpb0 - link_start=1 - link_end=nhpb - wstrain=wstrain0 - - return - end -c-------------------------------------------------------- - subroutine softreg - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.GEO' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - include 'COMMON.VAR' - include 'COMMON.CONTROL' - include 'COMMON.SBRIDGE' - include 'COMMON.FFIELD' - include 'COMMON.MINIM' - include 'COMMON.INTERACT' -c - include 'COMMON.DISTFIT' - integer iff(maxres) - double precision time0,time1 - double precision energy(0:n_ene),ee - double precision var(maxvar) - integer ieval -c - logical debug,ltest,fail - character*50 linia -c - linia='test' - debug=.true. - in_pdb=0 - - - -c------------------------ -c -c freeze sec.elements -c - do i=1,nres - mask_phi(i)=1 - mask_theta(i)=1 - mask_side(i)=1 - iff(i)=0 - enddo - - do j=1,nbfrag - do i=bfrag(1,j),bfrag(2,j) - mask_phi(i)=0 - mask_theta(i)=0 - iff(i)=1 - enddo - if (bfrag(3,j).le.bfrag(4,j)) then - do i=bfrag(3,j),bfrag(4,j) - mask_phi(i)=0 - mask_theta(i)=0 - iff(i)=1 - enddo - else - do i=bfrag(4,j),bfrag(3,j) - mask_phi(i)=0 - mask_theta(i)=0 - iff(i)=1 - enddo - endif - enddo - do j=1,nhfrag - do i=hfrag(1,j),hfrag(2,j) - mask_phi(i)=0 - mask_theta(i)=0 - iff(i)=1 - enddo - enddo - mask_r=.true. - - - - nhpb0=nhpb -c -c store dist. constrains -c - do i=1,nres-3 - do j=i+3,nres - if ( iff(i).eq.1.and.iff(j).eq.1 ) then - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=0.1 - dhpb(nhpb)=DIST(i,j) - endif - enddo - enddo - call hpb_partition - - if (debug) then - call chainbuild - call write_pdb(100+in_pdb,'input reg. structure',0d0) - endif - - - ipot0=ipot - maxmin0=maxmin - maxfun0=maxfun - wstrain0=wstrain - wang0=wang -c -c run soft pot. optimization -c - ipot=6 - wang=3.0 - maxmin=2000 - maxfun=4000 - call geom_to_var(nvar,var) -#ifdef MPI - time0=MPI_WTIME() -#else - time0=tcpu() -#endif - call minimize(etot,var,iretcode,nfun) - - write(iout,*)'SUMSL return code is',iretcode,' eval SOFT',nfun -#ifdef MPI - time1=MPI_WTIME() -#else - time1=tcpu() -#endif - write (iout,'(a,f6.2,f8.2,a)')' Time for soft min.',time1-time0, - & nfun/(time1-time0),' SOFT eval/s' - if (debug) then - call var_to_geom(nvar,var) - call chainbuild - call write_pdb(300+in_pdb,'soft structure',etot) - endif -c -c run full UNRES optimization with constrains and frozen 2D -c the same variables as soft pot. optimizatio -c - ipot=ipot0 - wang=wang0 - maxmin=maxmin0 - maxfun=maxfun0 -#ifdef MPI - time0=MPI_WTIME() -#else - time0=tcpu() -#endif - call minimize(etot,var,iretcode,nfun) - write(iout,*)'SUMSL MASK DIST return code is',iretcode, - & ' eval ',nfun - ieval=nfun - -#ifdef MPI - time1=MPI_WTIME() -#else - time1=tcpu() -#endif - write (iout,'(a,f6.2,f8.2,a)') - & ' Time for mask dist min.',time1-time0, - & nfun/(time1-time0),' eval/s' - if (debug) then - call var_to_geom(nvar,var) - call chainbuild - call write_pdb(400+in_pdb,'mask & dist',etot) - endif -c -c switch off constrains and -c run full UNRES optimization with frozen 2D -c - -c -c reset constrains -c - nhpb_c=nhpb - nhpb=nhpb0 - link_start=1 - link_end=nhpb - wstrain=wstrain0 - - -#ifdef MPI - time0=MPI_WTIME() -#else - time0=tcpu() -#endif - call minimize(etot,var,iretcode,nfun) - write(iout,*)'SUMSL MASK return code is',iretcode,' eval ',nfun - ieval=ieval+nfun - -#ifdef MPI - time1=MPI_WTIME() -#else - time1=tcpu() -#endif - write (iout,'(a,f6.2,f8.2,a)')' Time for mask min.',time1-time0, - & nfun/(time1-time0),' eval/s' - - - if (debug) then - call var_to_geom(nvar,var) - call chainbuild - call write_pdb(500+in_pdb,'mask 2d frozen',etot) - endif - - mask_r=.false. - - -c -c run full UNRES optimization with constrains and NO frozen 2D -c - - nhpb=nhpb_c - link_start=1 - link_end=nhpb - maxfun=maxfun0/5 - - do ico=1,5 - - wstrain=wstrain0/ico - -#ifdef MPI - time0=MPI_WTIME() -#else - time0=tcpu() -#endif - call minimize(etot,var,iretcode,nfun) - write(iout,'(a10,f6.3,a14,i3,a6,i5)') - & ' SUMSL DIST',wstrain,' return code is',iretcode, - & ' eval ',nfun - ieval=nfun - -#ifdef MPI - time1=MPI_WTIME() -#else - time1=tcpu() -#endif - write (iout,'(a,f6.2,f8.2,a)') - & ' Time for dist min.',time1-time0, - & nfun/(time1-time0),' eval/s' - if (debug) then - call var_to_geom(nvar,var) - call chainbuild - call write_pdb(600+in_pdb+ico,'dist cons',etot) - endif - - enddo -c - nhpb=nhpb0 - link_start=1 - link_end=nhpb - wstrain=wstrain0 - maxfun=maxfun0 - - -c - if (minim) then -#ifdef MPI - time0=MPI_WTIME() -#else - time0=tcpu() -#endif - call minimize(etot,var,iretcode,nfun) - write(iout,*)'------------------------------------------------' - write(iout,*)'SUMSL return code is',iretcode,' eval ',nfun, - & '+ DIST eval',ieval - -#ifdef MPI - time1=MPI_WTIME() -#else - time1=tcpu() -#endif - write (iout,'(a,f6.2,f8.2,a)')' Time for full min.',time1-time0, - & nfun/(time1-time0),' eval/s' - - - call var_to_geom(nvar,var) - call chainbuild - call write_pdb(999,'full min',etot) - endif - - return - end - - - subroutine beta_slide(i1,i2,i3,i4,i5,ieval,ij) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.IOUNITS' - include 'COMMON.DISTFIT' - include 'COMMON.SBRIDGE' - include 'COMMON.CONTROL' - include 'COMMON.FFIELD' - include 'COMMON.MINIM' - include 'COMMON.CHAIN' - double precision time0,time1 - double precision energy(0:n_ene),ee - double precision var(maxvar) - integer jdata(5),isec(maxres) -c - jdata(1)=i1 - jdata(2)=i2 - jdata(3)=i3 - jdata(4)=i4 - jdata(5)=i5 - - call secondary2(.false.) - - do i=1,nres - isec(i)=0 - enddo - do j=1,nbfrag - do i=bfrag(1,j),bfrag(2,j) - isec(i)=1 - enddo - do i=bfrag(4,j),bfrag(3,j),sign(1,bfrag(3,j)-bfrag(4,j)) - isec(i)=1 - enddo - enddo - do j=1,nhfrag - do i=hfrag(1,j),hfrag(2,j) - isec(i)=2 - enddo - enddo - -c -c cut strands at the ends -c - if (jdata(2)-jdata(1).gt.3) then - jdata(1)=jdata(1)+1 - jdata(2)=jdata(2)-1 - if (jdata(3).lt.jdata(4)) then - jdata(3)=jdata(3)+1 - jdata(4)=jdata(4)-1 - else - jdata(3)=jdata(3)-1 - jdata(4)=jdata(4)+1 - endif - endif - -cv call chainbuild -cv call etotal(energy(0)) -cv etot=energy(0) -cv write(iout,*) nnt,nct,etot -cv call write_pdb(ij*100,'first structure',etot) -cv write(iout,*) 'N16 test',(jdata(i),i=1,5) - -c------------------------ -c generate constrains -c - ishift=jdata(5)-2 - if(ishift.eq.0) ishift=-2 - nhpb0=nhpb - call chainbuild - do i=jdata(1),jdata(2) - isec(i)=-1 - if(jdata(4).gt.jdata(3))then - do j=jdata(3)+i-jdata(1)-2,jdata(3)+i-jdata(1)+2 - isec(j)=-1 -cd print *,i,j,j+ishift - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=1000.0 - dhpb(nhpb)=DIST(i,j+ishift) - enddo - else - do j=jdata(3)-i+jdata(1)+2,jdata(3)-i+jdata(1)-2,-1 - isec(j)=-1 -cd print *,i,j,j+ishift - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=1000.0 - dhpb(nhpb)=DIST(i,j+ishift) - enddo - endif - enddo - - do i=nnt,nct-2 - do j=i+2,nct - if(isec(i).gt.0.or.isec(j).gt.0) then -cd print *,i,j - nhpb=nhpb+1 - ihpb(nhpb)=i - jhpb(nhpb)=j - forcon(nhpb)=0.1 - dhpb(nhpb)=DIST(i,j) - endif - enddo - enddo - - call hpb_partition - - call geom_to_var(nvar,var) - maxfun0=maxfun - wstrain0=wstrain - maxfun=4000/5 - - do ico=1,5 - - wstrain=wstrain0/ico - - call minimize(etot,var,iretcode,nfun) - write(iout,'(a10,f6.3,a14,i3,a6,i5)') - & ' SUMSL DIST',wstrain,' return code is',iretcode, - & ' eval ',nfun - ieval=ieval+nfun - - enddo -c - nhpb=nhpb0 - call hpb_partition - wstrain=wstrain0 - maxfun=maxfun0 -c -cd print *,etot - wscloc0=wscloc - wscloc=10.0 - call sc_move(nnt,nct,100,100d0,nft_sc,etot) - wscloc=wscloc0 -cv call chainbuild -cv call etotal(energy(0)) -cv etot=energy(0) -cv call write_pdb(ij*100+10,'sc_move',etot) -cd call intout -cd print *,nft_sc,etot - - return - end - - subroutine beta_zip(i1,i2,ieval,ij) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.INTERACT' - include 'COMMON.IOUNITS' - include 'COMMON.DISTFIT' - include 'COMMON.SBRIDGE' - include 'COMMON.CONTROL' - include 'COMMON.FFIELD' - include 'COMMON.MINIM' - include 'COMMON.CHAIN' - double precision time0,time1 - double precision energy(0:n_ene),ee - double precision var(maxvar) - character*10 test - -cv call chainbuild -cv call etotal(energy(0)) -cv etot=energy(0) -cv write(test,'(2i5)') i1,i2 -cv call write_pdb(ij*100,test,etot) -cv write(iout,*) 'N17 test',i1,i2,etot,ij - -c -c generate constrains -c - nhpb0=nhpb - nhpb=nhpb+1 - ihpb(nhpb)=i1 - jhpb(nhpb)=i2 - forcon(nhpb)=1000.0 - dhpb(nhpb)=4.0 - - call hpb_partition - - call geom_to_var(nvar,var) - maxfun0=maxfun - wstrain0=wstrain - maxfun=1000/5 - - do ico=1,5 - wstrain=wstrain0/ico - call minimize(etot,var,iretcode,nfun) - write(iout,'(a10,f6.3,a14,i3,a6,i5)') - & ' SUMSL DIST',wstrain,' return code is',iretcode, - & ' eval ',nfun - ieval=ieval+nfun -c do not comment the next line - call var_to_geom(nvar,var) -cv call chainbuild -cv call write_pdb(ij*100+ico,'dist cons',etot) - enddo - - nhpb=nhpb0 - call hpb_partition - wstrain=wstrain0 - maxfun=maxfun0 - -cv call etotal(energy(0)) -cv etot=energy(0) -cv write(iout,*) 'N17 test end',i1,i2,etot,ij - - - return - end diff --git a/source/unres/src_CSA_DiL/timing.F b/source/unres/src_CSA_DiL/timing.F deleted file mode 100644 index 340ff3d..0000000 --- a/source/unres/src_CSA_DiL/timing.F +++ /dev/null @@ -1,340 +0,0 @@ -C $Date: 1994/10/05 16:41:52 $ -C $Revision: 2.2 $ -C -C -C - subroutine set_timers -c - implicit none - double precision tcpu - include 'COMMON.TIME1' -#ifdef MP - include 'mpif.h' -#endif -C Diminish the assigned time limit a little so that there is some time to -C end a batch job -c timlim=batime-150.0 -C Calculate the initial time, if it is not zero (e.g. for the SUN). - stime=tcpu() -#ifdef MPI - walltime=MPI_WTIME() - time_reduce=0.0d0 - time_allreduce=0.0d0 - time_bcast=0.0d0 - time_gather=0.0d0 - time_sendrecv=0.0d0 - time_scatter=0.0d0 - time_scatter_fmat=0.0d0 - time_scatter_ginv=0.0d0 - time_scatter_fmatmult=0.0d0 - time_scatter_ginvmult=0.0d0 - time_barrier_e=0.0d0 - time_barrier_g=0.0d0 - time_enecalc=0.0d0 - time_sumene=0.0d0 - time_lagrangian=0.0d0 - time_sumgradient=0.0d0 - time_intcartderiv=0.0d0 - time_inttocart=0.0d0 - time_ginvmult=0.0d0 - time_fricmatmult=0.0d0 - time_cartgrad=0.0d0 - time_bcastc=0.0d0 - time_bcast7=0.0d0 - time_bcastw=0.0d0 - time_intfcart=0.0d0 - time_vec=0.0d0 - time_mat=0.0d0 - time_fric=0.0d0 - time_stoch=0.0d0 - time_fricmatmult=0.0d0 - time_fsample=0.0d0 -#endif -cd print *,' in SET_TIMERS stime=',stime - return - end -C------------------------------------------------------------------------------ - logical function stopx(nf) -C This function returns .true. if one of the following reasons to exit SUMSL -C occurs. The "reason" code is stored in WHATSUP passed thru a COMMON block: -C -C... WHATSUP = 0 - go on, no reason to stop. Stopx will return .false. -C... 1 - Time up in current node; -C... 2 - STOP signal was received from another node because the -C... node's task was accomplished (parallel only); -C... -1 - STOP signal was received from another node because of error; -C... -2 - STOP signal was received from another node, because -C... the node's time was up. - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - integer nf - logical ovrtim -#ifdef MP - include 'mpif.h' - include 'COMMON.INFO' -#endif - include 'COMMON.IOUNITS' - include 'COMMON.TIME1' - integer Kwita - -cd print *,'Processor',MyID,' NF=',nf -#ifndef MPI - if (ovrtim()) then -C Finish if time is up. - stopx = .true. - WhatsUp=1 -#ifdef MPL - else if (mod(nf,100).eq.0) then -C Other processors might have finished. Check this every 100th function -C evaluation. -C Master checks if any other processor has sent accepted conformation(s) to it. - if (MyID.ne.MasterID) call receive_mcm_info - if (MyID.eq.MasterID) call receive_conf -cd print *,'Processor ',MyID,' is checking STOP: nf=',nf - call recv_stop_sig(Kwita) - if (Kwita.eq.-1) then - write (iout,'(a,i4,a,i5)') 'Processor', - & MyID,' has received STOP signal in STOPX; NF=',nf - write (*,'(a,i4,a,i5)') 'Processor', - & MyID,' has received STOP signal in STOPX; NF=',nf - stopx=.true. - WhatsUp=2 - elseif (Kwita.eq.-2) then - write (iout,*) - & 'Processor',MyID,' received TIMEUP-STOP signal in SUMSL.' - write (*,*) - & 'Processor',MyID,' received TIMEUP-STOP signal in SUMSL.' - WhatsUp=-2 - stopx=.true. - else if (Kwita.eq.-3) then - write (iout,*) - & 'Processor',MyID,' received ERROR-STOP signal in SUMSL.' - write (*,*) - & 'Processor',MyID,' received ERROR-STOP signal in SUMSL.' - WhatsUp=-1 - stopx=.true. - else - stopx=.false. - WhatsUp=0 - endif -#endif - else - stopx = .false. - WhatsUp=0 - endif -#else - stopx=.false. -#endif - -#ifdef OSF -c Check for FOUND_NAN flag - if (FOUND_NAN) then - write(iout,*)" *** stopx : Found a NaN" - stopx=.true. - endif -#endif - - return - end -C-------------------------------------------------------------------------- - logical function ovrtim() - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.TIME1' - include 'COMMON.SETUP' - include 'COMMON.CONTROL' - real*8 tcpu -#ifdef MPI - include "mpif.h" - curtim = MPI_Wtime()-walltime -#else - curtim= tcpu() -#endif -C curtim is the current time in seconds. -c write (iout,*) "curtim",curtim," timlim",timlim," safety",safety - if (curtim .ge. timlim - safety) then - if (me.eq.king .or. .not. out1file) - & write (iout,'(a,f10.2,a,f10.2,a,f10.2,a)') - & "***************** Elapsed time (",curtim, - & " s) is within the safety limit (",safety, - & " s) of the allocated time (",timlim," s). Terminating." - ovrtim=.true. - else - ovrtim=.false. - endif - return - end -************************************************************************** - double precision function tcpu() - include 'COMMON.TIME1' -#ifdef ES9000 -**************************** -C Next definition for EAGLE (ibm-es9000) - real*8 micseconds - integer rcode - tcpu=cputime(micseconds,rcode) - tcpu=(micseconds/1.0E6) - stime -**************************** -#endif -#ifdef SUN -**************************** -C Next definitions for sun - REAL*8 ECPU,ETIME,ETCPU - dimension tarray(2) - tcpu=etime(tarray) - tcpu=tarray(1) -**************************** -#endif -#ifdef KSR -**************************** -C Next definitions for ksr -C this function uses the ksr timer ALL_SECONDS from the PMON library to -C return the elapsed time in seconds - tcpu= all_seconds() - stime -**************************** -#endif -#ifdef SGI -**************************** -C Next definitions for sgi - real timar(2), etime - seconds = etime(timar) -Cd print *,'seconds=',seconds,' stime=',stime -C usrsec = timar(1) -C syssec = timar(2) - tcpu=seconds - stime -**************************** -#endif - -#ifdef LINUX -**************************** -C Next definitions for sgi - real timar(2), etime - seconds = etime(timar) -Cd print *,'seconds=',seconds,' stime=',stime -C usrsec = timar(1) -C syssec = timar(2) - tcpu=seconds - stime -**************************** -#endif - - -#ifdef CRAY -**************************** -C Next definitions for Cray -C call date(curdat) -C curdat=curdat(1:9) -C call clock(curtim) -C curtim=curtim(1:8) - cpusec = second() - tcpu=cpusec - stime -**************************** -#endif -#ifdef AIX -**************************** -C Next definitions for RS6000 - integer*4 i1,mclock - i1 = mclock() - tcpu = (i1+0.0D0)/100.0D0 -#endif -#ifdef WINPGI -**************************** -c next definitions for windows NT Digital fortran - real time_real - call cpu_time(time_real) - tcpu = time_real -#endif -#ifdef WINIFL -**************************** -c next definitions for windows NT Digital fortran - real time_real - call cpu_time(time_real) - tcpu = time_real -#endif - - return - end -C--------------------------------------------------------------------------- - subroutine dajczas(rntime,hrtime,mintime,sectime) - include 'COMMON.IOUNITS' - real*8 rntime,hrtime,mintime,sectime - hrtime=rntime/3600.0D0 - hrtime=aint(hrtime) - mintime=aint((rntime-3600.0D0*hrtime)/60.0D0) - sectime=aint((rntime-3600.0D0*hrtime-60.0D0*mintime)+0.5D0) - if (sectime.eq.60.0D0) then - sectime=0.0D0 - mintime=mintime+1.0D0 - endif - ihr=hrtime - imn=mintime - isc=sectime - write (iout,328) ihr,imn,isc - 328 FORMAT(//'***** Computation time: ',I4 ,' hours ',I2 , - 1 ' minutes ', I2 ,' seconds *****') - return - end -C--------------------------------------------------------------------------- - subroutine print_detailed_timing - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.IOUNITS' - include 'COMMON.TIME1' - include 'COMMON.SETUP' -c time1=MPI_WTIME() - write (iout,'(80(1h=)/a/(80(1h=)))') - & "Details of FG communication time" - write (*,'(7(a40,1pe15.5/),40(1h-)/a40,1pe15.5/80(1h=))') - & "BROADCAST:",time_bcast,"REDUCE:",time_reduce, - & "GATHER:",time_gather, - & "SCATTER:",time_scatter,"SENDRECV:",time_sendrecv, - & "BARRIER ene",time_barrier_e, - & "BARRIER grad",time_barrier_g, - & "TOTAL:", - & time_bcast+time_reduce+time_gather+time_scatter+time_sendrecv - write (*,*) fg_rank,myrank, - & ': Total wall clock time',time1-walltime,' sec' - write (*,*) "Processor",fg_rank,myrank, - & ": BROADCAST time",time_bcast," REDUCE time", - & time_reduce," GATHER time",time_gather," SCATTER time", - & time_scatter, - & " SCATTER fmatmult",time_scatter_fmatmult, - & " SCATTER ginvmult",time_scatter_ginvmult, - & " SCATTER fmat",time_scatter_fmat, - & " SCATTER ginv",time_scatter_ginv, - & " SENDRECV",time_sendrecv, - & " BARRIER ene",time_barrier_e, - & " BARRIER GRAD",time_barrier_g, - & " BCAST7",time_bcast7," BCASTC",time_bcastc, - & " BCASTW",time_bcastw," ALLREDUCE",time_allreduce, - & " TOTAL", - & time_bcast+time_reduce+time_gather+time_scatter+ - & time_sendrecv+time_barrier+time_bcastc - write (*,*) "Processor",fg_rank,myrank," enecalc",time_enecalc - write (*,*) "Processor",fg_rank,myrank," sumene",time_sumene - write (*,*) "Processor",fg_rank,myrank," intfromcart", - & time_intfcart - write (*,*) "Processor",fg_rank,myrank," vecandderiv", - & time_vec - write (*,*) "Processor",fg_rank,myrank," setmatrices", - & time_mat - write (*,*) "Processor",fg_rank,myrank," ginvmult", - & time_ginvmult - write (*,*) "Processor",fg_rank,myrank," fricmatmult", - & time_fricmatmult - write (*,*) "Processor",fg_rank,myrank," inttocart", - & time_inttocart - write (*,*) "Processor",fg_rank,myrank," sumgradient", - & time_sumgradient - write (*,*) "Processor",fg_rank,myrank," intcartderiv", - & time_intcartderiv - if (fg_rank.eq.0) then - write (*,*) "Processor",fg_rank,myrank," lagrangian", - & time_lagrangian - write (*,*) "Processor",fg_rank,myrank," cartgrad", - & time_cartgrad - endif - return - end diff --git a/source/unres/src_CSA_DiL/together.F b/source/unres/src_CSA_DiL/together.F deleted file mode 100644 index 099c469..0000000 --- a/source/unres/src_CSA_DiL/together.F +++ /dev/null @@ -1,1294 +0,0 @@ -#ifdef MPI - Subroutine together -c feeds tasks for parallel processing - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - real ran1,ran2 - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.TIME1' - include 'COMMON.SETUP' - include 'COMMON.VAR' - include 'COMMON.GEO' - include 'COMMON.CONTROL' - include 'COMMON.SBRIDGE' - real tcpu - double precision time_start,time_start_c,time0f,time0i - logical ovrtim,sync_iter,timeout,flag,timeout1 - dimension muster(mpi_status_size) - dimension t100(0:100),indx(mxio) - dimension xout(maxvar),eout(mxch*(mxch+1)/2+1),ind(9) - dimension cout(2) - parameter (rad=1.745329252d-2) - -cccccccccccccccccccccccccccccccccccccccccccccccc - IF (ME.EQ.KING) THEN - - time0f=MPI_WTIME() - ilastnstep=1 - sync_iter=.false. - numch=1 - nrmsdb=0 - nrmsdb1=0 - rmsdbc1c=rmsdbc1 - nstep=0 - call csa_read - call make_array - - if(iref.ne.0) call from_int(1,0,idum) - -c To minimize input conformation (bank conformation) -c Output to $mol.reminimized - if (irestart.lt.0) then - call read_bank(0,nft,cutdifr) - if (irestart.lt.-10) then - p_cut=nres*4.d0 - call prune_bank(p_cut) - return - endif - call reminimize(jlee) - return - endif - - if (irestart.eq.0) then - call initial_write - nbank=nconf - ntbank=nconf - if (ntbankm.eq.0) ntbank=0 - nstep=0 - nft=0 - do i=1,mxio - ibank(i)=0 - jbank(i)=0 - enddo - else - call restart_write -c!bankt call read_bankt(jlee,nft,cutdifr) - call read_bank(jlee,nft,cutdifr) - call read_rbank(jlee,adif) - if(iref.ne.0) call from_int(1,0,idum) - endif - - nstmax=nstmax+nstep - ntrial=n1+n2+n3+n4+n5+n6+n7+n8 - ntry=ntrial+1 - ntry=ntry*nseed - -c ntrial : number of trial conformations per seed. -c ntry : total number of trial conformations including seed conformations. - - idum2=-123 -#ifdef G77 - imax=2**30-1 -#else - imax=2**31-1 -#endif - ENDIF - - call mpi_bcast(jend,1,mpi_integer,0,CG_COMM,ierr) -cccccccccccccccccccccccccccccccccccccccc - do 300 jlee=1,jend -cccccccccccccccccccccccccccccccccccccccc - 331 continue - IF (ME.EQ.KING) THEN - if(sync_iter) goto 333 - idum=- ran2(idum2)*imax - if(jlee.lt.jstart) goto 300 - -C Restart the random number generator for conformation generation - - if(irestart.gt.0) then - idum2=idum2+nstep - if(idum2.le.0) idum2=-idum2+1 - idum=- ran2(idum2)*imax - endif - - idumm=idum - call vrndst(idumm) - - open(icsa_seed,file=csa_seed,status="old") - write(icsa_seed,*) "jlee : ",jlee - close(icsa_seed) - - call history_append - write(icsa_history,*) "number of procs is ",nodes - write(icsa_history,*) jlee,idum,idum2 - close(icsa_history) - -cccccccccccccccccccccccccccccccccccccccccccccccc - 333 icycle=0 - - call history_append - write(icsa_history,*) "nbank is ",nbank - close(icsa_history) - - if(irestart.eq.1) goto 111 - if(irestart.eq.2) then - icycle=0 - do i=1,nbank - ibank(i)=1 - enddo - do i=nbank+1,nbank+nconf - ibank(i)=0 - enddo - endif - -c start energy minimization - nconfr=max0(nconf+nadd,nodes-1) - if (sync_iter) nconf_in=0 -c king-emperor - feed input and sort output - write (iout,*) "NCONF_IN",nconf_in - m=0 - if (nconf_in.gt.0) then -c al 7/2/00 - added possibility to read in some of the initial conformations - do m=1,nconf_in - read (intin,'(i5)',end=11,err=12) iconf - 12 continue - write (iout,*) "write READ_ANGLES",iconf,m - call read_angles(intin,*11) - if (iref.eq.0) then - mm=m - else - mm=m+1 - endif - do j=2,nres-1 - dihang_in(1,j,1,mm)=theta(j+1) - dihang_in(2,j,1,mm)=phi(j+2) - dihang_in(3,j,1,mm)=alph(j) - dihang_in(4,j,1,mm)=omeg(j) - enddo - enddo ! m - goto 13 - 11 write (iout,*) nconf_in," conformations requested, but only", - & m-1," found in the angle file." - nconf_in=m-1 - 13 continue - m=nconf_in - write (iout,*) nconf_in, - & " initial conformations have been read in." - endif - if (iref.eq.0) then - if (nconfr.gt.nconf_in) then - call make_ranvar(nconfr,m,idum) - write (iout,*) nconfr-nconf_in, - & " conformations have been generated randomly." - endif - else - nconfr=nconfr*2 - call from_int(nconfr,m,idum) -c call from_pdb(nconfr,idum) - endif - write (iout,*) 'Exitted from make_ranvar nconfr=',nconfr - write (*,*) 'Exitted from make_ranvar nconfr=',nconfr - do m=1,nconfr - write (iout,*) 'Initial conformation',m - write(iout,'(8f10.4)') (rad2deg*dihang_in(1,j,1,m),j=2,nres-1) - write(iout,'(8f10.4)') (rad2deg*dihang_in(2,j,1,m),j=2,nres-1) - write(iout,'(8f10.4)') (rad2deg*dihang_in(3,j,1,m),j=2,nres-1) - write(iout,'(8f10.4)') (rad2deg*dihang_in(4,j,1,m),j=2,nres-1) - enddo - write(iout,*)'Calling FEEDIN NCONF',nconfr - time1i=MPI_WTIME() - call feedin(nconfr,nft) - write (iout,*) ' Time for first bank min.',MPI_WTIME()-time1i - call history_append - write(icsa_history,*) jlee,nft,nbank - write(icsa_history,851) (etot(i),i=1,nconfr) - write(icsa_history,850) (rmsn(i),i=1,nconfr) - write(icsa_history,850) (pncn(i),i=1,nconfr) - write(icsa_history,*) - close(icsa_history) - ELSE -c To minimize input conformation (bank conformation) -c Output to $mol.reminimized - if (irestart.lt.0) then - call reminimize(jlee) - return - endif - if (irestart.eq.1) goto 111 -c soldier - perform energy minimization - 334 call minim_jlee - - - ENDIF - -ccccccccccccccccccccccccccccccccccc -c need to syncronize all procs - call mpi_barrier(CG_COMM,ierr) - if (ierr.ne.0) then - print *, ' cannot synchronize MPI' - stop - endif -ccccccccccccccccccccccccccccccccccc - - IF (ME.EQ.KING) THEN - -c print *,"ok after minim" - nstep=nstep+nconf - if(irestart.eq.2) then - nbank=nbank+nconf -c ntbank=ntbank+nconf - if(ntbank.gt.ntbankm) ntbank=ntbankm - endif -c print *,"ok before indexx" - if(iref.eq.0) then - call indexx(nconfr,etot,indx) - else -c cc/al 7/6/00 - do k=1,nconfr - indx(k)=k - enddo - call indexx(nconfr-nconf_in,rmsn(nconf_in+1),indx(nconf_in+1)) - do k=nconf_in+1,nconfr - indx(k)=indx(k)+nconf_in - enddo -c cc/al -c call indexx(nconfr,rmsn,indx) - endif -c print *,"ok after indexx" - do im=1,nconf - m=indx(im) - if (m.gt.mxio .or. m.lt.1) then - write (iout,*) 'Dimension ERROR in TOGEHER: IM',im,' M',m - call mpi_abort(mpi_comm_world,ierror,ierrcode) - endif - jbank(im+nbank-nconf)=0 - bene(im+nbank-nconf)=etot(m) - rene(im+nbank-nconf)=etot(m) -c!bankt btene(im)=etot(m) -c - brmsn(im+nbank-nconf)=rmsn(m) - bpncn(im+nbank-nconf)=pncn(m) - rrmsn(im+nbank-nconf)=rmsn(m) - rpncn(im+nbank-nconf)=pncn(m) - if (im+nbank-nconf.gt.mxio .or. im+nbank-nconf.lt.1) then - write (iout,*) 'Dimension ERROR in TOGEHER: IM',im, - & ' NBANK',nbank,' NCONF',nconf,' IM+NBANK-NCONF',im+nbank-nconf - call mpi_abort(mpi_comm_world,ierror,ierrcode) - endif - do k=1,numch - do j=2,nres-1 - do i=1,4 - bvar(i,j,k,im+nbank-nconf)=dihang(i,j,k,m) - rvar(i,j,k,im+nbank-nconf)=dihang(i,j,k,m) -c!bankt btvar(i,j,k,im)=dihang(i,j,k,m) -c - enddo - enddo - enddo - if(iref.eq.1) then - if(brmsn(im+nbank-nconf).gt.rmscut.or. - & bpncn(im+nbank-nconf).lt.pnccut) ibank(im+nbank-nconf)=9 - endif - if(vdisulf) then - bvar_ns(im+nbank-nconf)=ns-2*nss - k=0 - do i=1,ns - j=1 - do while( iss(i).ne.ihpb(j)-nres .and. - & iss(i).ne.jhpb(j)-nres .and. j.le.nss) - j=j+1 - enddo - if (j.gt.nss) then - k=k+1 - bvar_s(k,im+nbank-nconf)=iss(i) - endif - enddo - endif - bvar_nss(im+nbank-nconf)=nss - do i=1,nss - bvar_ss(1,i,im+nbank-nconf)=ihpb(i) - bvar_ss(2,i,im+nbank-nconf)=jhpb(i) - enddo - enddo - ENDIF - - 111 continue - - IF (ME.EQ.KING) THEN - - call find_max - call find_min - - if (tm_score) then - call get_diff_p - else - call get_diff - endif - if(nbank.eq.nconf.and.irestart.eq.0) then - adif=avedif - endif - - write (iout,*) "AVEDIF",avedif - cutdif=adif/cut1 - ctdif1=adif/cut2 - -cd print *,"adif,xctdif,cutdifr" -cd print *,adif,xctdif,cutdifr - nst=ntotal/ntrial/nseed - xctdif=(cutdif/ctdif1)**(-1.0/nst) - if(irestart.ge.1) call estimate_cutdif(adif,xctdif,cutdifr) -c print *,"ok after estimate" - - irestart=0 - - call write_rbank(jlee,adif,nft) - call write_bank(jlee,nft) -c!bankt call write_bankt(jlee,nft) -c call write_bank1(jlee) - call history_append - write(icsa_history,*) "xctdif: ", xctdif,nst,adif/cut1,ctdif1 - write(icsa_history,851) (bene(i),i=1,nbank) - write(icsa_history,850) (brmsn(i),i=1,nbank) - write(icsa_history,850) (bpncn(i),i=1,nbank) - close(icsa_history) - 850 format(10f8.3) - 851 format(5e15.6) - - ifar=nseed/4*3+1 - ifar=nseed+1 - ENDIF - - - finished=.false. - iter = 0 - irecv = 0 - isent =0 - ifrom= 0 - time0i=MPI_WTIME() - time1i=time0i - time_start_c=time0i - if (.not.sync_iter) then - time_start=time0i - nft00=nft - else - sync_iter=.false. - endif - nft00_c=nft - nft0i=nft -ccccccccccccccccccccccccccccccccccccccc - do while (.not. finished) -ccccccccccccccccccccccccccccccccccccccc -crc print *,"iter ", iter,' isent=',isent - - IF (ME.EQ.KING) THEN -c start energy minimization - - if (isent.eq.0) then -c king-emperor - select seeds & make var & feed input -cd print *,'generating new conf',ntrial,MPI_WTIME() - call select_is(nseed,ifar,idum) - - open(icsa_seed,file=csa_seed,status="old") - write(icsa_seed,39) - & jlee,icycle,nstep,(is(i),bene(is(i)),i=1,nseed) - close(icsa_seed) - call history_append - write(icsa_history,40) jlee,icycle,nstep,cutdif,ibmin,ibmax, - * ebmin,ebmax,nft,iuse,nbank,ntbank - close(icsa_history) - - - - call make_var(ntry,idum,iter) -cd print *,'new trial generated',ntrial,MPI_WTIME() - time2i=MPI_WTIME() - write (iout,'(a20,i4,f12.2)') - & 'Time for make trial',iter+1,time2i-time1i - endif - -crc write(iout,*)'1:Calling FEEDIN NTRY',NTRY,' ntrial',ntrial -crc call feedin(ntry,nft) - - isent=isent+1 - if (isent.ge.nodes.or.iter.gt.0) then -ct print *,'waiting ',MPI_WTIME() - irecv=irecv+1 - call recv(0,ifrom,xout,eout,ind,timeout) -ct print *,' ',irecv,' received from',ifrom,MPI_WTIME() - - if(tm_score) then - nft=nft+ind(3) - movernx(irecv)=iabs(ind(5)) - call getx(ind,xout,eout,cout,rad,iw_pdb,irecv) - if(vdisulf) then - nss_out(irecv)=nss - do i=1,nss - iss_out(i,irecv)=ihpb(i) - jss_out(i,irecv)=jhpb(i) - enddo - endif - if(iw_pdb.gt.0) - & call write_csa_pdb(xout,eout,nft,irecv,iw_pdb) - endif - - if(tm_score.and.eout(1).lt.ebmax) then - if(iref.eq.0 .or. - & (rmsn(irecv).le.rmscut.and.pncn(irecv).ge.pnccut)) - & call refresh_bank_master_tmscore(ifrom,eout(1),irecv) - endif - else - ifrom=ifrom+1 - endif - -ct print *,'sending to',ifrom,MPI_WTIME() - call send(isent,ifrom,iter) -ct print *,isent,' sent ',MPI_WTIME() - -c store results ----------------------------------------------- - if ((isent.ge.nodes.or.iter.gt.0).and..not.tm_score) then - nft=nft+ind(3) - movernx(irecv)=iabs(ind(5)) - call getx(ind,xout,eout,cout,rad,iw_pdb,irecv) - if(vdisulf) then - nss_out(irecv)=nss - do i=1,nss - iss_out(i,irecv)=ihpb(i) - jss_out(i,irecv)=jhpb(i) - enddo - endif - if(iw_pdb.gt.0) - & call write_csa_pdb(xout,eout,nft,irecv,iw_pdb) - endif -c-------------------------------------------------------------- - if (isent.eq.ntry) then - time1i=MPI_WTIME() - write (iout,'(a18,f12.2,a14,f10.2)') - & 'Nonsetup time ',time1i-time_start_c, - & ' sec, Eval/s =',(nft-nft00_c)/(time1i-time_start_c) - write (iout,'(a14,i4,f12.2,a14,f10.2)') - & 'Time for iter ',iter+1,time1i-time0i, - & ' sec, Eval/s =',(nft-nft0i)/(time1i-time0i) - time0i=time1i - nft0i=nft - cutdif=cutdif*xctdif - if(cutdif.lt.ctdif1) cutdif=ctdif1 - if (iter.eq.0) then - print *,'UPDATING ',ntry-nodes+1,irecv - write(iout,*) 'UPDATING ',ntry-nodes+1 - iter=iter+1 -c----------------- call update(ntry-nodes+1) ------------------- - nstep=nstep+ntry-nseed-(nodes-1) - if (tm_score) then -ctm call refresh_bank(ntry) - call print_mv_stat - do i=0,mxmv - do j=1,3 - nstatnx_tot(i,j)=nstatnx_tot(i,j)+nstatnx(i,j) - nstatnx(i,j)=0 - enddo - enddo - else - call refresh_bank(ntry-nodes+1) - endif -c!bankt call refresh_bankt(ntry-nodes+1) - else -c----------------- call update(ntry) --------------------------- - iter=iter+1 - print *,'UPDATING ',ntry,irecv - write(iout,*) 'UPDATING ',ntry - nstep=nstep+ntry-nseed - if (tm_score) then -ctm call refresh_bank(ntry) - call print_mv_stat - do i=0,mxmv - do j=1,3 - nstatnx_tot(i,j)=nstatnx_tot(i,j)+nstatnx(i,j) - nstatnx(i,j)=0 - enddo - enddo - else - call refresh_bank(ntry) - endif -c!bankt call refresh_bankt(ntry) - endif -c----------------------------------------------------------------- - - call write_bank(jlee,nft) -c!bankt call write_bankt(jlee,nft) - call find_min - - time1i=MPI_WTIME() - write (iout,'(a20,i4,f12.2)') - & 'Time for refresh ',iter,time1i-time0i - - if(ebmin.lt.estop) finished=.true. - if(icycle.gt.icmax) then - call write_bank1(jlee) - do i=1,nbank -c ibank(i)=2 - ibank(i)=1 - enddo - nbank=nbank+nconf - if(nbank.gt.nbankm) then - nbank=nbank-nconf - finished=.true. - else -crc goto 333 - sync_iter=.true. - endif - endif - if(nstep.gt.nstmax) finished=.true. - - if(finished.or.sync_iter) then - do ij=1,nodes-1 - call recv(1,ifrom,xout,eout,ind,timeout) - if (timeout) then - nstep=nstep+ij-1 - print *,'ERROR worker is not responding' - write(iout,*) 'ERROR worker is not responding' - time1i=MPI_WTIME()-time_start_c - print *,'End of cycle, master time for ',iter,' iters ', - & time1i,'sec, Eval/s ',(nft-nft00_c)/time1i - write (iout,*) 'End of cycle, master time for ',iter, - & ' iters ',time1i,' sec' - write (iout,*) 'Total eval/s ',(nft-nft00_c)/time1i - print *,'UPDATING ',ij-1 - write(iout,*) 'UPDATING ',ij-1 - call flush(iout) - call refresh_bank(ij-1) -c!bankt call refresh_bankt(ij-1) - goto 1002 - endif -c print *,'node ',ifrom,' finished ',ij,nft - write(iout,*) 'node ',ifrom,' finished ',ij,nft - call flush(iout) - nft=nft+ind(3) - movernx(ij)=iabs(ind(5)) - call getx(ind,xout,eout,cout,rad,iw_pdb,ij) - if(vdisulf) then - nss_out(ij)=nss - do i=1,nss - iss_out(i,ij)=ihpb(i) - jss_out(i,ij)=jhpb(i) - enddo - endif - if(iw_pdb.gt.0) - & call write_csa_pdb(xout,eout,nft,ij,iw_pdb) - enddo - nstep=nstep+nodes-1 -crc print *,'---------bcast finished--------',finished - time1i=MPI_WTIME()-time_start_c - print *,'End of cycle, master time for ',iter,' iters ', - & time1i,'sec, Eval/s ',(nft-nft00_c)/time1i - write (iout,*) 'End of cycle, master time for ',iter, - & ' iters ',time1i,' sec' - write (iout,*) 'Total eval/s ',(nft-nft00_c)/time1i - -ctimeout call mpi_bcast(finished,1,mpi_logical,0,CG_COMM,ierr) -ctimeout call mpi_bcast(sync_iter,1,mpi_logical,0, -ctimeout & CG_COMM,ierr) - do ij=1,nodes-1 - tstart=MPI_WTIME() - call mpi_issend(finished,1,mpi_logical,ij,idchar, - & CG_COMM,ireq,ierr) - call mpi_issend(sync_iter,1,mpi_logical,ij,idchar, - & CG_COMM,ireq2,ierr) - flag=.false. - timeout1=.false. - do while(.not. (flag .or. timeout1)) - call MPI_TEST(ireq2,flag,muster,ierr) - tend1=MPI_WTIME() - if(tend1-tstart.gt.60) then - print *,'ERROR worker ',ij,' is not responding' - write(iout,*) 'ERROR worker ',ij,' is not responding' - timeout1=.true. - endif - enddo - if(timeout1) then - write(iout,*) 'worker ',ij,' NOT OK ',tend1-tstart - timeout=.true. - else - write(iout,*) 'worker ',ij,' OK ',tend1-tstart - endif - enddo - print *,'UPDATING ',nodes-1,ij - write(iout,*) 'UPDATING ',nodes-1 - call refresh_bank(nodes-1) -c!bankt call refresh_bankt(nodes-1) - 1002 continue - call write_bank(jlee,nft) -c!bankt call write_bankt(jlee,nft) - call find_min - - do i=0,mxmv - do j=1,3 - nstatnx_tot(i,j)=nstatnx_tot(i,j)+nstatnx(i,j) - nstatnx(i,j)=0 - enddo - enddo - - write(iout,*)'### Total stats:' - do i=0,mxmv - if(nstatnx_tot(i,1).ne.0) then - if (i.le.9) then - write(iout,'(a5,i1,a7,i6,a7,i4,a5,i4,a5,f5.1)') - & '### N',i,' total=',nstatnx_tot(i,1), - & ' close=',nstatnx_tot(i,2),' far=',nstatnx_tot(i,3),'%acc', - & (nstatnx_tot(i,2)+nstatnx_tot(i,3))*100.0/nstatnx_tot(i,1) - else - write(iout,'(a4,i2,a7,i6,a7,i4,a5,i4,a5,f5.1)') - & '###N',i,' total=',nstatnx_tot(i,1), - & ' close=',nstatnx_tot(i,2),' far=',nstatnx_tot(i,3),'%acc', - & (nstatnx_tot(i,2)+nstatnx_tot(i,3))*100.0/nstatnx_tot(i,1) - endif - else - if (i.le.9) then - write(iout,'(a5,i1,a7,i6,a7,i4,a5,i4,a5,f5.1)') - & '### N',i,' total=',nstatnx_tot(i,1), - & ' close=',nstatnx_tot(i,2),' far=',nstatnx_tot(i,3), - & ' %acc',0.0 - else - write(iout,'(a4,i2,a7,i6,a7,i4,a5,i4,a5,f5.1)') - & '###N',i,' total=',nstatnx_tot(i,1), - & ' close=',nstatnx_tot(i,2),' far=',nstatnx_tot(i,3), - & ' %acc',0.0 - endif - endif - enddo - - endif - if(sync_iter) goto 331 - - 39 format(2i3,i7,5(i4,f8.3,1x),19(/,13x,5(i4,f8.3,1x))) - 40 format(2i2,i8,f8.1,2i4,2(1pe14.5),i10,3i4) - 43 format(10i8) - 44 format('jlee =',i3,':',4f10.1,' E =',f15.5,i7,i10) - - isent=0 - irecv=0 - endif - ELSE - if (tm_score) then - call get_diff_p - endif -c soldier - perform energy minimization - call minim_jlee - print *,'End of minim, proc',me,'time ',MPI_WTIME()-time_start - write (iout,*) 'End of minim, proc',me,'time ', - & MPI_WTIME()-time_start - call flush(iout) -ctimeout call mpi_bcast(finished,1,mpi_logical,0,CG_COMM,ierr) -ctimeout call mpi_bcast(sync_iter,1,mpi_logical,0,CG_COMM,ierr) - call mpi_recv(finished,1,mpi_logical,0,idchar, - * CG_COMM,muster,ierr) - call mpi_recv(sync_iter,1,mpi_logical,0,idchar, - * CG_COMM,muster,ierr) - if(sync_iter) goto 331 - ENDIF - -ccccccccccccccccccccccccccccccccccccccc - enddo -ccccccccccccccccccccccccccccccccccccccc - - IF (ME.EQ.KING) THEN - call history_append - write(icsa_history,40) jlee,icycle,nstep,cutdif,ibmin,ibmax, - * ebmin,ebmax,nft,iuse,nbank,ntbank - - write(icsa_history,44) jlee,0.0,0.0,0.0, - & 0.0,ebmin,nstep,nft - write(icsa_history,*) - close(icsa_history) - - time1i=MPI_WTIME()-time_start - print *,'End of RUN, master time ', - & time1i,'sec, Eval/s ',(nft-nft00)/time1i - write (iout,*) 'End of RUN, master time ', - & time1i,' sec' - write (iout,*) 'Total eval/s ',(nft-nft00)/time1i - - if(timeout) then - write(iout,*) '!!!! ERROR worker was not responding' - write(iout,*) '!!!! cannot finish work normally' - write(iout,*) 'Processor0 is calling MPI_ABORT' - print *,'!!!! ERROR worker was not responding' - print *,'!!!! cannot finish work normally' - print *,'Processor0 is calling MPI_ABORT' - call flush(iout) - call mpi_abort(mpi_comm_world, 111, ierr) - endif - ENDIF - -cccccccccccccccccccccccccccccc - 300 continue -cccccccccccccccccccccccccccccc - - return - end -#else - Subroutine together -c feeds tasks for parallel processing - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - write (iout,*) "Unsupported option for the serial version" - return - end -#endif -#ifdef MPI -c------------------------------------------------- - subroutine feedin(nconf,nft) -c sends out starting conformations and receives results of energy minimization - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.CONTROL' - include 'mpif.h' - dimension xin(maxvar),xout(maxvar),eout(mxch*(mxch+1)/2+1), - * cout(2),ind(9),info(12) - dimension muster(mpi_status_size) - include 'COMMON.SETUP' - parameter (rad=1.745329252d-2) - - print *,'FEEDIN: NCONF=',nconf - mm=0 -cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc - if (nconf .lt. nodes-1) then - write (*,*) 'FATAL ERROR in FEEDIN, nconf < nodes -1', - & nconf,nodes-1 - write (iout,*) 'FATAL ERROR in FEEDIN, nconf < nodes -1', - & nconf,nodes-1 - call mpi_abort(mpi_comm_world,ierror,ierrcode) - endif - do n=1,nconf -c pull out external and internal variables for next start - call putx(xin,n,rad) -! write (iout,*) 'XIN from FEEDIN N=',n -! write(iout,'(8f10.4)') (xin(j),j=1,nvar) - mm=mm+1 - if (mm.lt.nodes) then -c feed task to soldier -! print *, ' sending input for start # ',n - info(1)=n - info(2)=-1 - info(3)=0 - info(4)=0 - info(5)=0 - info(6)=0 - call mpi_send(info,12,mpi_integer,mm,idint,CG_COMM, - * ierr) - call mpi_send(xin,nvar,mpi_double_precision,mm, - * idreal,CG_COMM,ierr) - else -c find an available soldier - call mpi_recv(ind,9,mpi_integer,mpi_any_source,idint, - * CG_COMM,muster,ierr) -! print *, ' receiving output from start # ',ind(1) - man=muster(mpi_source) -c receive final energies and variables - nft=nft+ind(3) - call mpi_recv(eout,1,mpi_double_precision, - * man,idreal,CG_COMM,muster,ierr) -! print *,eout -#ifdef CO_BIAS - call mpi_recv(co,1,mpi_double_precision, - * man,idreal,CG_COMM,muster,ierr) - write (iout,'(a15,f3.2,$)') ' BIAS by contact order*100 ',co -#endif - call mpi_recv(xout,nvar,mpi_double_precision, - * man,idreal,CG_COMM,muster,ierr) -! print *,nvar , ierr -c feed next task to soldier -! print *, ' sending input for start # ',n - info(1)=n - info(2)=-1 - info(3)=0 - info(4)=0 - info(5)=0 - info(6)=0 - info(7)=0 - info(8)=0 - info(9)=0 - call mpi_send(info,12,mpi_integer,man,idint,CG_COMM, - * ierr) - call mpi_send(xin,nvar,mpi_double_precision,man, - * idreal,CG_COMM,ierr) -c retrieve latest results - call getx(ind,xout,eout,cout,rad,iw_pdb,ind(1)) - if(iw_pdb.gt.0) - & call write_csa_pdb(xout,eout,nft,ind(1),iw_pdb) - endif - enddo -cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc -c no more input -cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc - do j=1,nodes-1 -c wait for a soldier - call mpi_recv(ind,9,mpi_integer,mpi_any_source,idint, - * CG_COMM,muster,ierr) -crc if (ierr.ne.0) go to 30 -! print *, ' receiving output from start # ',ind(1) - man=muster(mpi_source) -c receive final energies and variables - nft=nft+ind(3) - call mpi_recv(eout,1, - * mpi_double_precision,man,idreal, - * CG_COMM,muster,ierr) -! print *,eout -#ifdef CO_BIAS - call mpi_recv(co,1,mpi_double_precision, - * man,idreal,CG_COMM,muster,ierr) - write (iout,'(a15,f3.2,$)') ' BIAS by contact order*100 ',co -#endif -crc if (ierr.ne.0) go to 30 - call mpi_recv(xout,nvar,mpi_double_precision, - * man,idreal,CG_COMM,muster,ierr) -! print *,nvar , ierr -crc if (ierr.ne.0) go to 30 -c halt soldier - info(1)=0 - info(2)=-1 - info(3)=0 - info(4)=0 - info(5)=0 - info(6)=0 - call mpi_send(info,12,mpi_integer,man,idint,CG_COMM, - * ierr) -c retrieve results - call getx(ind,xout,eout,cout,rad,iw_pdb,ind(1)) - if(iw_pdb.gt.0) - & call write_csa_pdb(xout,eout,nft,ind(1),iw_pdb) - enddo -cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc - return - 10 print *, ' dispatching error' - call mpi_abort(mpi_comm_world,ierror,ierrcode) - return - 20 print *, ' communication error' - call mpi_abort(mpi_comm_world,ierror,ierrcode) - return - 30 print *, ' receiving error' - call mpi_abort(mpi_comm_world,ierror,ierrcode) - return - end -cccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine getx(ind,xout,eout,cout,rad,iw_pdb,k) -c receives and stores data from soldiers - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.CONTACTS' - dimension ind(9),xout(maxvar),eout(mxch*(mxch+1)/2+1) - dimension cout(2) -cjlee - double precision przes(3),obr(3,3) - logical non_conv -cjlee - iw_pdb=2 - if (k.gt.mxio .or. k.lt.1) then - write (iout,*) - & 'ERROR - dimensions of ANGMIN have been exceeded K=',k - call mpi_abort(mpi_comm_world,ierror,ierrcode) - endif -c store ind() - do j=1,9 - indb(k,j)=ind(j) - enddo -c store energies - etot(k)=eout(1) -c retrieve dihedral angles etc - call var_to_geom(nvar,xout) - do j=2,nres-1 - dihang(1,j,1,k)=theta(j+1) - dihang(2,j,1,k)=phi(j+2) - dihang(3,j,1,k)=alph(j) - dihang(4,j,1,k)=omeg(j) - enddo - dihang(2,nres-1,1,k)=0.0d0 -cjlee - if(iref.eq.0) then - iw_pdb=1 -cd write(iout,'(i3,a3,i4,i5,a6,1pe12.4,a4,i3,i4)') -cd & ind(2),' e ',ind(3),ind(1),' etot ',etot(k),' mv ', -cd & ind(5),ind(4) - return - endif - call chainbuild -c call dihang_to_c(dihang(1,1,1,k)) -c call fitsq(rms,c(1,1),crefjlee(1,1),nres,przes,obr,non_conv) -c call fitsq(rms,c(1,2),crefjlee(1,2),nres-1,przes,obr,non_conv) -c call fitsq(rms,c(1,nstart_seq),crefjlee(1,nstart_sup), -c & nsup,przes,obr,non_conv) -c rmsn(k)=dsqrt(rms) - - call rmsd_csa(rmsn(k)) - call contact(.false.,ncont,icont,co) - pncn(k)=contact_fract(ncont,ncont_ref,icont,icont_ref) - -cd write(iout,'(i3,a3,i4,i5,a6,1pe12.4,a5 -cd & ,0pf5.2,a5,f5.1,a,f6.3,a4,i3,i4)') -cd & ind(2),' e ',ind(3),ind(1),' etot ',etot(k),' rms ', -cd & rmsn(k),' %NC ',pncn(k)*100,' cont.order',co,' mv ', -cd & ind(5),ind(4) - - - if (rmsn(k).gt.rmscut.or.pncn(k).lt.pnccut) iw_pdb=0 - return - end -cccccccccccccccccccccccccccccccccccccccccccccccccc - subroutine putx(xin,n,rad) -c gets starting variables - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - dimension xin(maxvar) - -c pull out starting values for variables -! write (iout,*)'PUTX: N=',n - do m=1,numch -! write (iout,'(8f10.4)') (dihang_in(1,j,m,n),j=2,nres-1) -! write (iout,'(8f10.4)') (dihang_in(2,j,m,n),j=2,nres-1) -! write (iout,'(8f10.4)') (dihang_in(3,j,m,n),j=2,nres-1) -! write (iout,'(8f10.4)') (dihang_in(4,j,m,n),j=2,nres-1) - do j=2,nres-1 - theta(j+1)=dihang_in(1,j,m,n) - phi(j+2)=dihang_in(2,j,m,n) - alph(j)=dihang_in(3,j,m,n) - omeg(j)=dihang_in(4,j,m,n) - enddo - enddo -c set up array of variables - call geom_to_var(nvar,xin) -! write (iout,*) 'xin in PUTX N=',n -! call intout -! write (iout,'(8f10.4)') (xin(i),i=1,nvar) - return - end -c-------------------------------------------------------- - subroutine putx2(xin,iff,n) -c gets starting variables - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.VAR' - include 'COMMON.CHAIN' - include 'COMMON.IOUNITS' - dimension xin(maxvar),iff(maxres) - -c pull out starting values for variables - do m=1,numch - do j=2,nres-1 - theta(j+1)=dihang_in2(1,j,m,n) - phi(j+2)=dihang_in2(2,j,m,n) - alph(j)=dihang_in2(3,j,m,n) - omeg(j)=dihang_in2(4,j,m,n) - enddo - enddo -c set up array of variables - call geom_to_var(nvar,xin) - - do i=1,nres - iff(i)=iff_in(i,n) - enddo - return - end - -c------------------------------------------------------- - subroutine prune_bank(p_cut) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.TIME1' - include 'COMMON.SETUP' -c--------------------------- -c This subroutine prunes bank conformations using p_cut -c--------------------------- - - nprune=0 - nprune=nprune+1 - m=1 - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang(i,j,k,nprune)=bvar(i,j,k,m) - enddo - enddo - enddo - bene(nprune)=bene(m) - brmsn(nprune)=brmsn(m) - bpncn(nprune)=bpncn(m) - - do m=2,nbank - ddmin=9.d190 - do ip=1,nprune - call get_diff12(dihang(1,1,1,ip),bvar(1,1,1,m),diff) - if(diff.lt.p_cut) goto 100 - if(diff.lt.ddmin) ddmin=diff - enddo - nprune=nprune+1 - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang(i,j,k,nprune)=bvar(i,j,k,m) - enddo - enddo - enddo - bene(nprune)=bene(m) - brmsn(nprune)=brmsn(m) - bpncn(nprune)=bpncn(m) - 100 continue - write (iout,*) 'Pruning :',m,nprune,p_cut,ddmin - enddo - nbank=nprune - print *, 'Pruning :',m,nprune,p_cut - call write_bank(0,0) - - return - end -c------------------------------------------------------- - - subroutine reminimize(jlee) - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - include 'COMMON.CSA' - include 'COMMON.BANK' - include 'COMMON.IOUNITS' - include 'COMMON.CHAIN' - include 'COMMON.TIME1' - include 'COMMON.SETUP' -c--------------------------- -c This subroutine re-minimizes bank conformations: -c--------------------------- - - ntry=nbank - - call find_max - call find_min - - if (me.eq.king) then - open(icsa_history,file=csa_history,status="old") - write(icsa_history,*) "Re-minimization",nodes,"nodes" - write(icsa_history,851) (bene(i),i=1,nbank) - write(icsa_history,40) jlee,icycle,nstep,cutdif,ibmin,ibmax, - * ebmin,ebmax,nft,iuse,nbank,ntbank - close(icsa_history) - do index=1,ntry - do k=1,numch - do j=2,nres-1 - do i=1,4 - dihang_in(i,j,k,index)=bvar(i,j,k,index) - enddo - enddo - enddo - enddo - nft=0 - call feedin(ntry,nft) - else - call minim_jlee - endif - - call find_max - call find_min - - if (me.eq.king) then - do i=1,ntry - call replace_bvar(i,i) - enddo - open(icsa_history,file=csa_history,status="old") - write(icsa_history,40) jlee,icycle,nstep,cutdif,ibmin,ibmax, - * ebmin,ebmax,nft,iuse,nbank,ntbank - write(icsa_history,851) (bene(i),i=1,nbank) - close(icsa_history) - call write_bank_reminimized(jlee,nft) - endif - - 40 format(2i2,i8,f8.1,2i4,2(1pe14.5),i10,3i4) - 851 format(5e15.6) - 850 format(5e15.10) -c 850 format(10f8.3) - - return - end -c------------------------------------------------------- - subroutine send(n,mm,it) -c sends out starting conformation for minimization - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.CONTROL' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'mpif.h' - dimension xin(maxvar),xout(maxvar),eout(mxch*(mxch+1)/2+1), - * cout(2),ind(8),xin2(maxvar),iff(maxres),info(12) - dimension muster(mpi_status_size) - include 'COMMON.SETUP' - parameter (rad=1.745329252d-2) - - if (isend2(n).eq.0) then -c pull out external and internal variables for next start - call putx(xin,n,rad) - info(1)=n - info(2)=it - info(3)=movenx(n) - info(4)=nss_in(n) - info(5)=parent(1,n) - info(6)=parent(2,n) - - if (movenx(n).eq.14.or.movenx(n).eq.17) then - info(7)=idata(1,n) - info(8)=idata(2,n) - else if (movenx(n).eq.16) then - info(7)=idata(1,n) - info(8)=idata(2,n) - info(10)=idata(3,n) - info(11)=idata(4,n) - info(12)=idata(5,n) - else - info(7)=0 - info(8)=0 - info(10)=0 - info(11)=0 - info(12)=0 - endif - - if (movenx(n).eq.15) then - info(9)=parent(3,n) - else - info(9)=0 - endif - call mpi_send(info,12,mpi_integer,mm,idint,CG_COMM, - * ierr) - call mpi_send(xin,nvar,mpi_double_precision,mm, - * idreal,CG_COMM,ierr) - else -c distfit & minimization for n7 move - info(1)=-n - info(2)=it - info(3)=movenx(n) - info(4)=nss_in(n) - info(5)=parent(1,n) - info(6)=parent(2,n) - info(7)=0 - info(8)=0 - info(9)=0 - call mpi_send(info,12,mpi_integer,mm,idint,CG_COMM, - * ierr) - call putx2(xin,iff,isend2(n)) - call mpi_send(xin,nvar,mpi_double_precision,mm, - * idreal,CG_COMM,ierr) - call mpi_send(iff,nres,mpi_integer,mm, - * idint,CG_COMM,ierr) - call putx(xin2,n,rad) - call mpi_send(xin2,nvar,mpi_double_precision,mm, - * idreal,CG_COMM,ierr) - endif - if (vdisulf.and.nss_in(n).ne.0) then - call mpi_send(iss_in(1,n),nss_in(n),mpi_integer,mm, - * idint,CG_COMM,ierr) - call mpi_send(jss_in(1,n),nss_in(n),mpi_integer,mm, - * idint,CG_COMM,ierr) - endif - return - end -c------------------------------------------------- - - subroutine recv(ihalt,man,xout,eout,ind,tout) -c receives results of energy minimization - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.CONTROL' - include 'COMMON.SBRIDGE' - include 'COMMON.BANK' - include 'COMMON.CHAIN' - include 'mpif.h' - dimension xin(maxvar),xout(maxvar),eout(mxch*(mxch+1)/2+1), - * cout(2),ind(9),info(12) - dimension muster(mpi_status_size) - include 'COMMON.SETUP' - logical tout,flag - double precision twait,tstart,tend1 - parameter(twait=600.0d0) - -c find an available soldier - tout=.false. - flag=.false. - tstart=MPI_WTIME() - do while(.not. (flag .or. tout)) - call MPI_IPROBE(mpi_any_source,idint,CG_COMM,flag, - * muster,ierr) - tend1=MPI_WTIME() - if(tend1-tstart.gt.twait .and. ihalt.eq.1) tout=.true. -c_error if(tend1-tstart.gt.twait) tout=.true. - enddo - if (tout) then - write(iout,*) 'ERROR = timeout for recv ',tend1-tstart - call flush(iout) - return - endif - man=muster(mpi_source) - -ctimeout call mpi_recv(ind,9,mpi_integer,mpi_any_source,idint, -ctimeout * CG_COMM,muster,ierr) -! print *, ' receiving output from start # ',ind(1) -ct print *,'receiving ',MPI_WTIME() -ctimeout man=muster(mpi_source) - call mpi_recv(ind,9,mpi_integer,man,idint, - * CG_COMM,muster,ierr) -ctimeout -c receive final energies and variables - call mpi_recv(eout,1,mpi_double_precision, - * man,idreal,CG_COMM,muster,ierr) -! print *,eout -#ifdef CO_BIAS - call mpi_recv(co,1,mpi_double_precision, - * man,idreal,CG_COMM,muster,ierr) - write (iout,'(a15,f3.2,$)') ' BIAS by contact order*100 ',co -#endif - call mpi_recv(xout,nvar,mpi_double_precision, - * man,idreal,CG_COMM,muster,ierr) -! print *,nvar , ierr - if(vdisulf) nss=ind(6) - if(vdisulf.and.nss.ne.0) then - call mpi_recv(ihpb,nss,mpi_integer, - * man,idint,CG_COMM,muster,ierr) - call mpi_recv(jhpb,nss,mpi_integer, - * man,idint,CG_COMM,muster,ierr) - endif -c halt soldier - if(ihalt.eq.1) then -c print *,'sending halt to ',man - write(iout,*) 'sending halt to ',man - info(1)=0 - info(2)=0 - call mpi_send(info,12,mpi_integer,man,idint,CG_COMM,ierr) - endif - return - end - -c---------------------------------------------------------- - subroutine history_append - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - -#if defined(AIX) || defined(PGI) - open(icsa_history,file=csa_history,position="append") -#else - open(icsa_history,file=csa_history,access="append") -#endif - return - end -#endif diff --git a/source/unres/src_CSA_DiL/unres_csa.F b/source/unres/src_CSA_DiL/unres_csa.F deleted file mode 100644 index ce55133..0000000 --- a/source/unres/src_CSA_DiL/unres_csa.F +++ /dev/null @@ -1,556 +0,0 @@ -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC -C C -C U N R E S C -C C -C Program to carry out conformational search of proteins in an united-residue C -C approximation. C -C C -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - - -#ifdef MPI - include 'mpif.h' - include 'COMMON.SETUP' -#endif - include 'COMMON.TIME1' - include 'COMMON.INTERACT' - include 'COMMON.NAMES' - include 'COMMON.GEO' - include 'COMMON.HEADER' - include 'COMMON.CONTROL' - include 'COMMON.CONTACTS' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.FFIELD' -c include 'COMMON.REMD' -c include 'COMMON.MD' - include 'COMMON.SBRIDGE' - double precision hrtime,mintime,sectime - character*64 text_mode_calc(-2:14) /'test', - & 'SC rotamer distribution', - & 'Energy evaluation or minimization', - & 'Regularization of PDB structure', - & 'Threading of a sequence on PDB structures', - & 'Monte Carlo (with minimization) ', - & 'Energy minimization of multiple conformations', - & 'Checking energy gradient', - & 'Entropic sampling Monte Carlo (with minimization)', - & 'Energy map', - & 'CSA calculations', - & 'Not used 9', - & 'Not used 10', - & 'Soft regularization of PDB structure', - & 'Mesoscopic molecular dynamics (MD) ', - & 'Not used 13', - & 'Replica exchange molecular dynamics (REMD)'/ - external ilen - -c call memmon_print_usage() - - call init_task - if (me.eq.king) - & write(iout,*)'### LAST MODIFIED 11/03/09 1:19PM by czarek' - if (me.eq.king) call cinfo -C Read force field parameters and job setup data - call readrtns - call flush(iout) -C - if (me.eq.king .or. .not. out1file) then - write (iout,'(2a/)') - & text_mode_calc(modecalc)(:ilen(text_mode_calc(modecalc))), - & ' calculation.' - if (minim) write (iout,'(a)') - & 'Conformations will be energy-minimized.' - write (iout,'(80(1h*)/)') - endif - call flush(iout) -C -c if (modecalc.eq.-2) then -c call test -c stop -c else if (modecalc.eq.-1) then -c write(iout,*) "call check_sc_map next" -c call check_bond -c stop -c endif -#ifdef MPI - if (fg_rank.gt.0) then -C Fine-grain slaves just do energy and gradient components. - call ergastulum ! slave workhouse in Latin - else -#endif - if (modecalc.eq.0) then - call exec_eeval_or_minim -c else if (modecalc.eq.1) then -c call exec_regularize -c else if (modecalc.eq.2) then -c call exec_thread -c else if (modecalc.eq.3 .or. modecalc .eq.6) then -c call exec_MC - else if (modecalc.eq.4) then - call exec_mult_eeval_or_minim - else if (modecalc.eq.5) then - call exec_checkgrad -c else if (ModeCalc.eq.7) then -c call exec_map - else if (ModeCalc.eq.8) then - call exec_CSA -c else if (modecalc.eq.11) then -c call exec_softreg -c else if (modecalc.eq.12) then -c call exec_MD -c else if (modecalc.eq.14) then -c call exec_MREMD - else - write (iout,'(a)') 'This calculation type is not supported', - & ModeCalc - endif -#ifdef MPI - endif -C Finish task. - if (fg_rank.eq.0) call finish_task -c call memmon_print_usage() -#ifdef TIMING - call print_detailed_timing -#endif - call MPI_Finalize(ierr) - stop 'Bye Bye...' -#else - call dajczas(tcpu(),hrtime,mintime,sectime) - stop '********** Program terminated normally.' -#endif - end -c--------------------------------------------------------------------------- - subroutine exec_eeval_or_minim - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.SETUP' - include 'COMMON.TIME1' - include 'COMMON.INTERACT' - include 'COMMON.NAMES' - include 'COMMON.GEO' - include 'COMMON.HEADER' - include 'COMMON.CONTROL' - include 'COMMON.CONTACTS' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.FFIELD' -c include 'COMMON.REMD' -c include 'COMMON.MD' - include 'COMMON.SBRIDGE' - common /srutu/ icall - double precision energy(0:n_ene) - double precision energy_long(0:n_ene),energy_short(0:n_ene) - double precision varia(maxvar) - if (indpdb.eq.0) call chainbuild -c time00=MPI_Wtime() - call chainbuild_cart -c if (split_ene) then -c print *,"Processor",myrank," after chainbuild" -c icall=1 -c call etotal_long(energy_long(0)) -c write (iout,*) "Printing long range energy" -c call enerprint(energy_long(0)) -c call etotal_short(energy_short(0)) -c write (iout,*) "Printing short range energy" -c call enerprint(energy_short(0)) -c do i=0,n_ene -c energy(i)=energy_long(i)+energy_short(i) -c write (iout,*) i,energy_long(i),energy_short(i),energy(i) -c enddo -c write (iout,*) "Printing long+short range energy" -c call enerprint(energy(0)) -c endif - call etotal(energy(0)) -c time_ene=MPI_Wtime()-time00 - write (iout,*) "Time for energy evaluation",time_ene - print *,"after etotal" - etota = energy(0) - etot =etota - call enerprint(energy(0)) -c call hairpin(.true.,nharp,iharp) -c call secondary2(.true.) - if (minim) then - - if (dccart) then - print *, 'Calling MINIM_DC' -c time1=MPI_WTIME() - call minim_dc(etot,iretcode,nfun) - else - if (indpdb.ne.0) then - call bond_regular - call chainbuild - endif - call geom_to_var(nvar,varia) - print *,'Calling MINIMIZE.' -c time1=MPI_WTIME() - call minimize(etot,varia,iretcode,nfun) - endif - print *,'SUMSL return code is',iretcode,' eval ',nfun -c evals=nfun/(MPI_WTIME()-time1) - print *,'# eval/s',evals - print *,'refstr=',refstr -c call hairpin(.true.,nharp,iharp) -c call secondary2(.true.) - call etotal(energy(0)) - etot = energy(0) - call enerprint(energy(0)) - - call intout - call briefout(0,etot) - if (refstr) call rms_nac_nnc(rms,frac,frac_nn,co,.true.) - write (iout,'(a,i3)') 'SUMSL return code:',iretcode - write (iout,'(a,i20)') '# of energy evaluations:',nfun+1 - write (iout,'(a,f16.3)')'# of energy evaluations/sec:',evals - else - print *,'refstr=',refstr - if (refstr) call rms_nac_nnc(rms,frac,frac_nn,co,.true.) - call briefout(0,etot) - endif - if (outpdb) call pdbout(etot,titel(:32),ipdb) - if (outmol2) call mol2out(etot,titel(:32)) - return - end - - subroutine exec_checkgrad - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' -#ifdef MPI - include 'mpif.h' -#endif - include 'COMMON.SETUP' - include 'COMMON.TIME1' - include 'COMMON.INTERACT' - include 'COMMON.NAMES' - include 'COMMON.GEO' - include 'COMMON.HEADER' - include 'COMMON.CONTROL' - include 'COMMON.CONTACTS' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.FFIELD' -c include 'COMMON.REMD' - include 'COMMON.MD_' - include 'COMMON.SBRIDGE' - common /srutu/ icall - double precision energy(0:max_ene) -c do i=2,nres -c vbld(i)=vbld(i)+ran_number(-0.1d0,0.1d0) -c if (itype(i).ne.10) -c & vbld(i+nres)=vbld(i+nres)+ran_number(-0.001d0,0.001d0) -c enddo - if (indpdb.eq.0) call chainbuild -c do i=0,nres -c do j=1,3 -c dc(j,i)=dc(j,i)+ran_number(-0.2d0,0.2d0) -c enddo -c enddo -c do i=1,nres-1 -c if (itype(i).ne.10) then -c do j=1,3 -c dc(j,i+nres)=dc(j,i+nres)+ran_number(-0.2d0,0.2d0) -c enddo -c endif -c enddo -c do j=1,3 -c dc(j,0)=ran_number(-0.2d0,0.2d0) -c enddo - usampl=.true. - totT=1.d0 - eq_time=0.0d0 -c call read_fragments -c read(inp,*) t_bath -c call rescale_weights(t_bath) - call chainbuild_cart - call cartprint - call intout - icall=1 - call etotal(energy(0)) - etot = energy(0) - call enerprint(energy(0)) - write (iout,*) "Uconst",Uconst," Uconst_back",uconst_back - print *,'icheckgrad=',icheckgrad - goto (10,20,30) icheckgrad - 10 call check_ecartint - return - 20 call check_cartgrad - return - 30 call check_eint - return - end -c--------------------------------------------------------------------------- - subroutine exec_CSA -#ifdef MPI - include "mpif.h" -#endif - include 'DIMENSIONS' - include 'COMMON.IOUNITS' -C Conformational Space Annealling programmed by Jooyoung Lee. -C This method works only with parallel machines! -#ifdef MPI - call together -#else - write (iout,*) "CSA works on parallel machines only" -#endif - return - end -c--------------------------------------------------------------------------- -#ifdef MPI - subroutine exec_mult_eeval_or_minim - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'mpif.h' - integer muster(mpi_status_size) - include 'COMMON.SETUP' - include 'COMMON.TIME1' - include 'COMMON.INTERACT' - include 'COMMON.NAMES' - include 'COMMON.GEO' - include 'COMMON.HEADER' - include 'COMMON.CONTROL' - include 'COMMON.CONTACTS' - include 'COMMON.CHAIN' - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.FFIELD' - include 'COMMON.SBRIDGE' - double precision varia(maxvar) - integer ind(6) - double precision energy(0:n_ene) - logical eof - eof=.false. - - if(me.ne.king) then - call minim_mcmf - return - endif - - close (intin) - open(intin,file=intinname,status='old') - write (istat,'(a5,100a12)')"# ", - & (wname(print_order(i)),i=1,nprint_ene) - if (refstr) then - write (istat,'(a5,100a12)')"# ", - & (ename(print_order(i)),i=1,nprint_ene), - & "ETOT total","RMSD","nat.contact","nnt.contact", - & "cont.order","TMscore" - else - write (istat,'(a5,100a12)')"# ", - & (ename(print_order(i)),i=1,nprint_ene),"ETOT total" - endif - - if (.not.minim) then - do while (.not. eof) - if (read_cart) then - read (intin,'(e15.10,e15.5)',end=1100,err=1100) time,ene - call read_x(intin,*11) -c Broadcast the order to compute internal coordinates to the slaves. - if (nfgtasks.gt.1) - & call MPI_Bcast(6,1,MPI_INTEGER,king,FG_COMM,IERROR) - call int_from_cart1(.false.) - else - read (intin,'(i5)',end=1100,err=1100) iconf - call read_angles(intin,*11) - call geom_to_var(nvar,varia) - call chainbuild - endif - write (iout,'(a,i7)') 'Conformation #',iconf - call etotal(energy(0)) - call briefout(iconf,energy(0)) - call enerprint(energy(0)) - etot=energy(0) - if (refstr) then - call rms_nac_nnc(rms,frac,frac_nn,co,.true.) - call calc_tmscore(tm,.true.) - write (istat,'(i5,100(f12.3))') iconf, - & (energy(print_order(i)),i=1,nprint_ene),etot, - & rms,frac,frac_nn,co,tm - else - write (istat,'(i5,100(f12.3))') iconf, - & (energy(print_order(i)),i=1,nprint_ene),etot - endif - enddo -1100 continue - goto 1101 - endif - - mm=0 - imm=0 - nft=0 - ene0=0.0d0 - n=0 - iconf=0 - do while (.not. eof) - mm=mm+1 - if (mm.lt.nodes) then - if (read_cart) then - read (intin,'(e15.10,e15.5)',end=11,err=11) time,ene - call read_x(intin,*11) -c Broadcast the order to compute internal coordinates to the slaves. - if (nfgtasks.gt.1) - & call MPI_Bcast(6,1,MPI_INTEGER,king,FG_COMM,IERROR) - call int_from_cart1(.false.) - else - read (intin,'(i5)',end=11,err=11) iconf - call read_angles(intin,*11) - call geom_to_var(nvar,varia) - call chainbuild - endif - - n=n+1 - write (iout,*) 'Conformation #',iconf,' read' - imm=imm+1 - ind(1)=1 - ind(2)=n - ind(3)=0 - ind(4)=0 - ind(5)=0 - ind(6)=0 - ene0=0.0d0 - call mpi_send(ind,6,mpi_integer,mm,idint,CG_COMM, - * ierr) - call mpi_send(varia,nvar,mpi_double_precision,mm, - * idreal,CG_COMM,ierr) - call mpi_send(ene0,1,mpi_double_precision,mm, - * idreal,CG_COMM,ierr) -c print *,'task ',n,' sent to worker ',mm,nvar - else - call mpi_recv(ind,6,mpi_integer,mpi_any_source,idint, - * CG_COMM,muster,ierr) - man=muster(mpi_source) -c print *,'receiving result from worker ',man,' (',iii1,iii,')' - call mpi_recv(varia,nvar,mpi_double_precision, - * man,idreal,CG_COMM,muster,ierr) - call mpi_recv(ene,1, - * mpi_double_precision,man,idreal, - * CG_COMM,muster,ierr) - call mpi_recv(ene0,1, - * mpi_double_precision,man,idreal, - * CG_COMM,muster,ierr) -c print *,'result received from worker ',man,' sending now' - - call var_to_geom(nvar,varia) - call chainbuild - call etotal(energy(0)) - iconf=ind(2) - write (iout,*) - write (iout,*) - write (iout,*) 'Conformation #',iconf," sumsl return code ", - & ind(5) - - etot=energy(0) - call enerprint(energy(0)) - call briefout(iconf,etot) - if (refstr) then - call rms_nac_nnc(rms,frac,frac_nn,co,.true.) - call calc_tmscore(tm,.true.) - write (istat,'(i5,100(f12.3))') iconf, - & (energy(print_order(i)),i=1,nprint_ene),etot, - & rms,frac,frac_nn,co,tm - else - write (istat,'(i5,100(f12.3))') iconf, - & (energy(print_order(i)),i=1,nprint_ene),etot - endif - - imm=imm-1 - if (read_cart) then - read (intin,'(e15.10,e15.5)',end=11,err=11) time,ene - call read_x(intin,*11) -c Broadcast the order to compute internal coordinates to the slaves. - if (nfgtasks.gt.1) - & call MPI_Bcast(6,1,MPI_INTEGER,king,FG_COMM,IERROR) - call int_from_cart1(.false.) - else - read (intin,'(i5)',end=11,err=11) iconf - call read_angles(intin,*11) - call geom_to_var(nvar,varia) - call chainbuild - endif - n=n+1 - write (iout,*) 'Conformation #',iconf,' read' - imm=imm+1 - ind(1)=1 - ind(2)=n - ind(3)=0 - ind(4)=0 - ind(5)=0 - ind(6)=0 - call mpi_send(ind,6,mpi_integer,man,idint,CG_COMM, - * ierr) - call mpi_send(varia,nvar,mpi_double_precision,man, - * idreal,CG_COMM,ierr) - call mpi_send(ene0,1,mpi_double_precision,man, - * idreal,CG_COMM,ierr) - nf_mcmf=nf_mcmf+ind(4) - nmin=nmin+1 - endif - enddo -11 continue - do j=1,imm - call mpi_recv(ind,6,mpi_integer,mpi_any_source,idint, - * CG_COMM,muster,ierr) - man=muster(mpi_source) - call mpi_recv(varia,nvar,mpi_double_precision, - * man,idreal,CG_COMM,muster,ierr) - call mpi_recv(ene,1, - * mpi_double_precision,man,idreal, - * CG_COMM,muster,ierr) - call mpi_recv(ene0,1, - * mpi_double_precision,man,idreal, - * CG_COMM,muster,ierr) - - call var_to_geom(nvar,varia) - call chainbuild - call etotal(energy(0)) - iconf=ind(2) - write (iout,*) - write (iout,*) - write (iout,*) 'Conformation #',iconf," sumsl return code ", - & ind(5) - - etot=energy(0) - call enerprint(energy(0)) - call briefout(iconf,etot) - if (refstr) then - call rms_nac_nnc(rms,frac,frac_nn,co,.true.) - call calc_tmscore(tm,.true.) - write (istat,'(i5,100(f12.3))') iconf, - & (energy(print_order(i)),i=1,nprint_ene),etot, - & rms,frac,frac_nn,co,tm - else - write (istat,'(i5,100(f12.3))') iconf, - & (energy(print_order(i)),i=1,nprint_ene),etot - endif - nmin=nmin+1 - enddo -1101 continue - do i=1, nodes-1 - ind(1)=0 - ind(2)=0 - ind(3)=0 - ind(4)=0 - ind(5)=0 - ind(6)=0 - call mpi_send(ind,6,mpi_integer,i,idint,CG_COMM, - * ierr) - enddo - return - end -#else - subroutine exec_mult_eeval_or_minim - include 'DIMENSIONS' - include 'COMMON.IOUNITS' - write (iout,*) "Unsupported option in serial version" - return - end -#endif -c--------------------------------------------------------------------------- - -- 1.7.9.5