From: Cezary Czaplewski Date: Sun, 22 Mar 2020 22:30:26 +0000 (+0100) Subject: Adam's update from okeanos X-Git-Url: http://mmka.chem.univ.gda.pl/gitweb/?p=unres.git;a=commitdiff_plain;h=5836ecdab5a8b95f079bbf6e07374dee3fce8a26 Adam's update from okeanos --- diff --git a/source/cluster/wham/src-M-SAXS-homology/energy_p_new.F b/source/cluster/wham/src-M-SAXS-homology/energy_p_new.F index f599f70..c2d7f85 100644 --- a/source/cluster/wham/src-M-SAXS-homology/energy_p_new.F +++ b/source/cluster/wham/src-M-SAXS-homology/energy_p_new.F @@ -130,8 +130,10 @@ C if (wliptran.gt.0) then call Eliptransfer(eliptran) + else + eliptran=0.0d0 endif - +#ifdef FOURBODY C C 12/1/95 Multi-body terms C @@ -153,6 +155,7 @@ c write (iout,*) ecorr,ecorr5,ecorr6,eturn6 c write (iout,*) "Calling multibody_hbond" call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1) endif +#endif c write (iout,*) "NSAXS",nsaxs if (nsaxs.gt.0 .and. saxs_mode.eq.0) then call e_saxs(Esaxs_constr) @@ -189,8 +192,10 @@ c write(iout,*)'edfab is finished!', wdfa_beta,edfabet & +welec*fact(1)*ees & +fact(1)*wvdwpp*evdw1 & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc - & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5 - & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4 + & +wstrain*ehpb + & +wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5 + & +wcorr6*fact(5)*ecorr6 + & +wturn4*fact(3)*eello_turn4 & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6 & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d & +wbond*estr+wsccor*fact(1)*esccor+ethetacnstr @@ -505,10 +510,17 @@ C Bartek #ifdef SPLITELE write(iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),evdw1,wvdwpp, & estr,wbond,ebe,wang,escloc,wscloc,etors,wtor*fact(1), - & etors_d,wtor_d*fact(2),ehpb,wstrain,ecorr,wcorr*fact(3), - & ecorr5,wcorr5*fact(4),ecorr6,wcorr6*fact(5),eel_loc, + & etors_d,wtor_d*fact(2),ehpb,wstrain, +#ifdef FOURBODY + & ecorr,wcorr*fact(3), + & ecorr5,wcorr5*fact(4),ecorr6,wcorr6*fact(5), +#endif + & eel_loc, & wel_loc*fact(2),eello_turn3,wturn3*fact(2), - & eello_turn4,wturn4*fact(3),eello_turn6,wturn6*fact(5), + & eello_turn4,wturn4*fact(3), +#ifdef FOURBODY + & eello_turn6,wturn6*fact(5), +#endif & esccor,wsccor*fact(1),edihcnstr, & ethetacnstr,ebr*nss,Uconst,wumb,eliptran,wliptran,Eafmforc, & etube,wtube,esaxs,wsaxs,ehomology_constr, @@ -527,13 +539,17 @@ C Bartek & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/ & 'EHBP= ',1pE16.6,' WEIGHT=',1pE16.6, & ' (SS bridges & dist. cnstr.)'/ +#ifdef FOURBODY & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ +#endif & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/ & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/ & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/ +#ifdef FOURBODY & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/ +#endif & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/ & 'EDIHC= ',1pE16.6,' (virtual-bond dihedral angle restraints)'/ & 'ETHETC=',1pE16.6,' (virtual-bond angle restraints)'/ @@ -553,10 +569,16 @@ C Bartek #else write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1), & estr,wbond,ebe,wang,escloc,wscloc,etors,wtor*fact(1), - & etors_d,wtor_d*fact(2),ehpb,wstrain,ecorr,wcorr*fact(3), + & etors_d,wtor_d*fact(2),ehpb, +#ifdef FOURBODY + & wstrain,ecorr,wcorr*fact(3), & ecorr5,wcorr5*fact(4),ecorr6,wcorr6*fact(5), +#endif & eel_loc,wel_loc*fact(2),eello_turn3,wturn3*fact(2), - & eello_turn4,wturn4*fact(3),eello_turn6,wturn6*fact(5), + & eello_turn4,wturn4*fact(3), +#ifdef FOURBODY + & eello_turn6,wturn6*fact(5), +#endif & esccor,wsccor*fact(1),edihcnstr, & ethetacnstr,ebr*nss,Uconst,wumb,eliptran,wliptran,Eafmforc, & etube,wtube,esaxs,wsaxs,ehomology_constr, @@ -574,13 +596,17 @@ C Bartek & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/ & 'EHBP= ',1pE16.6,' WEIGHT=',1pE16.6, & ' (SS bridges & dist. restr.)'/ +#ifdef FOURBODY & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ +#endif & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/ & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/ & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/ +#ifdef FOURBODY & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/ +#endif & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/ & 'EDIHC= ',1pE16.6,' (virtual-bond dihedral angle restraints)'/ & 'ETHETC=',1pE16.6,' (virtual-bond angle restraints)'/ @@ -619,7 +645,10 @@ C include 'COMMON.SBRIDGE' include 'COMMON.NAMES' include 'COMMON.IOUNITS' +#ifdef FOURBODY include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' +#endif dimension gg(3) integer icant external icant @@ -658,6 +687,10 @@ cd & 'iend=',iend(i,iint) C Change 12/1/95 to calculate four-body interactions rij=xj*xj+yj*yj+zj*zj rrij=1.0D0/rij + sqrij=dsqrt(rij) + sss1=sscale(sqrij) + if (sss1.eq.0.0d0) cycle + sssgrad1=sscagrad(sqrij) c write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj eps0ij=eps(itypi,itypj) fac=rrij**expon2 @@ -677,15 +710,16 @@ cd & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj), cd & bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm, cd & (c(k,i),k=1,3),(c(k,j),k=1,3) if (bb.gt.0.0d0) then - evdw=evdw+evdwij + evdw=evdw+sss1*evdwij else - evdw_t=evdw_t+evdwij + evdw_t=evdw_t+sss1*evdwij endif if (calc_grad) then C C Calculate the components of the gradient in DC and X C - fac=-rrij*(e1+evdwij) + fac=-rrij*(e1+evdwij)*sss1 + & +evdwij*sssgrad1/sqrij/expon gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac @@ -699,6 +733,7 @@ C enddo enddo endif +#ifdef FOURBODY C C 12/1/95, revised on 5/20/97 C @@ -755,10 +790,13 @@ cd write (iout,'(2i3,3f10.5)') cd & i,j,(gacont(kk,num_conti,i),kk=1,3) endif endif +#endif enddo ! j enddo ! iint +#ifdef FOURBODY C Change 12/1/95 num_cont(i)=num_conti +#endif enddo ! i if (calc_grad) then do i=1,nct @@ -830,6 +868,9 @@ C e_augm=augm(itypi,itypj)*fac_augm r_inv_ij=dsqrt(rrij) rij=1.0D0/r_inv_ij + sss1=sscale(rij) + if (sss1.eq.0.0d0) cycle + sssgrad1=sscagrad(rij) r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj)) fac=r_shift_inv**expon e1=fac*fac*aa @@ -847,15 +888,16 @@ cd & bb(itypi,itypj),augm(itypi,itypj),epsi,sigm, cd & sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij, cd & (c(k,i),k=1,3),(c(k,j),k=1,3) if (bb.gt.0.0d0) then - evdw=evdw+evdwij + evdw=evdw+evdwij*sss1 else - evdw_t=evdw_t+evdwij + evdw_t=evdw_t+evdwij*sss1 endif if (calc_grad) then C C Calculate the components of the gradient in DC and X C - fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2) + fac=(-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2))*sss1 + & +evdwij*sssgrad1*r_inv_ij/expon gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac @@ -1230,8 +1272,8 @@ C finding the closest c write (iout,*) i,j,xj,yj,zj rrij=1.0D0/(xj*xj+yj*yj+zj*zj) rij=dsqrt(rrij) - sss=sscale((1.0d0/rij)/sigma(itypi,itypj)) - sssgrad=sscagrad((1.0d0/rij)/sigma(itypi,itypj)) + sss=sscale(1.0d0/rij)) + sssgrad=sscagrad(1.0d0/rij) if (sss.le.0.0) cycle C Calculate angle-dependent terms of energy and contributions to their C derivatives. @@ -1387,6 +1429,9 @@ c alf12=0.0D0 dzj=dc_norm(3,nres+j) rrij=1.0D0/(xj*xj+yj*yj+zj*zj) rij=dsqrt(rrij) + sss=sscale(1.0d0/rij) + if (sss.eq.0.0d0) cycle + sssgrad=sscagrad(1.0d0/rij) C Calculate angle-dependent terms of energy and contributions to their C derivatives. call sc_angular @@ -1411,9 +1456,9 @@ c--------------------------------------------------------------- e_augm=augm(itypi,itypj)*fac_augm evdwij=evdwij*eps2rt*eps3rt if (bb.gt.0.0d0) then - evdw=evdw+evdwij+e_augm + evdw=evdw+(evdwij+e_augm)*sss else - evdw_t=evdw_t+evdwij+e_augm + evdw_t=evdw_t+(evdwij+e_augm)*sss endif ij=icant(itypi,itypj) aux=eps1*eps2rt**2*eps3rt**2 @@ -1439,6 +1484,7 @@ C Calculate gradient components. fac=-expon*(e1+evdwij)*rij_shift sigder=fac*sigder fac=rij*fac-2*expon*rrij*e_augm + fac=fac+(evdwij+e_augm)*sssgrad/sss*rij C Calculate the radial part of the gradient gg(1)=xj*fac gg(2)=yj*fac @@ -1717,6 +1763,7 @@ C-------------------------------------------------------------------------- include 'COMMON.TORSION' include 'COMMON.VECTORS' include 'COMMON.FFIELD' + include 'COMMON.CORRMAT' double precision auxvec(2),auxmat(2,2) C C Compute the virtual-bond-torsional-angle dependent quantities needed @@ -1943,6 +1990,7 @@ c & EE(1,2,iti),EE(2,2,i) c write(iout,*) "Macierz EUG", c & eug(1,1,i-2),eug(1,2,i-2),eug(2,1,i-2), c & eug(2,2,i-2) +#ifdef FOURBODY if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) & then call matmat2(CC(1,1,i-2),Ug(1,1,i-2),CUg(1,1,i-2)) @@ -1951,6 +1999,7 @@ c & eug(2,2,i-2) call matvec2(Ctilde(1,1,i-1),obrot(1,i-2),Ctobr(1,i-2)) call matvec2(Dtilde(1,1,i-2),obrot2(1,i-2),Dtobr2(1,i-2)) endif +#endif else do k=1,2 Ub2(k,i-2)=0.0d0 @@ -1992,6 +2041,7 @@ c if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then #endif cd write (iout,*) 'mu1',mu1(:,i-2) cd write (iout,*) 'mu2',mu2(:,i-2) +#ifdef FOURBODY if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0) & then if (calc_grad) then @@ -2014,7 +2064,9 @@ C Vectors and matrices dependent on a single virtual-bond dihedral. call matmat2(EUgder(1,1,i-2),DD(1,1,i-1),EUgDder(1,1,i-2)) endif endif +#endif enddo +#ifdef FOURBODY C Matrices dependent on two consecutive virtual-bond dihedrals. C The order of matrices is from left to right. if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0) @@ -2032,6 +2084,7 @@ C The order of matrices is from left to right. call transpose2(DtUg2der(1,1,i-1),auxmat(1,1)) call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i)) endif +#endif enddo endif return @@ -2058,7 +2111,11 @@ C include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' +#ifdef FOURBODY include 'COMMON.CONTACTS' + include 'COMMON.CONTMAP' +#endif + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VECTORS' include 'COMMON.FFIELD' @@ -2131,9 +2188,11 @@ cd enddo eello_turn3=0.0d0 eello_turn4=0.0d0 ind=0 +#ifdef FOURBODY do i=1,nres num_cont_hb(i)=0 enddo +#endif cd print '(a)','Enter EELEC' c write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e c call flush(iout) @@ -2185,7 +2244,9 @@ c end if num_conti=0 call eelecij(i,i+2,ees,evdw1,eel_loc) if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3) +#ifdef FOURBODY num_cont_hb(i)=num_conti +#endif enddo do i=iturn4_start,iturn4_end if (i.lt.1) cycle @@ -2241,12 +2302,16 @@ c endif zmedi=mod(zmedi,boxzsize) if (zmedi.lt.0) zmedi=zmedi+boxzsize +#ifdef FOURBODY num_conti=num_cont_hb(i) +#endif c write(iout,*) "JESTEM W PETLI" call eelecij(i,i+3,ees,evdw1,eel_loc) if (wturn4.gt.0.0d0 .and. itype(i+2).ne.ntyp1) & call eturn4(i,eello_turn4) +#ifdef FOURBODY num_cont_hb(i)=num_conti +#endif enddo ! i C Loop over all neighbouring boxes C do xshift=-1,1 @@ -2313,7 +2378,9 @@ c go to 166 c endif c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) +#ifdef FOURBODY num_conti=num_cont_hb(i) +#endif C I TU KURWA do j=ielstart(i),ielend(i) C do j=16,17 @@ -2329,7 +2396,9 @@ c & .or.itype(j-1).eq.ntyp1 &) cycle call eelecij(i,j,ees,evdw1,eel_loc) enddo ! j +#ifdef FOURBODY num_cont_hb(i)=num_conti +#endif enddo ! i C enddo ! zshift C enddo ! yshift @@ -2360,7 +2429,11 @@ C------------------------------------------------------------------------------- include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' +#ifdef FOURBODY include 'COMMON.CONTACTS' + include 'COMMON.CONTMAP' +#endif + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VECTORS' include 'COMMON.FFIELD' @@ -2478,8 +2551,9 @@ C yj=yj-ymedi C zj=zj-zmedi rij=xj*xj+yj*yj+zj*zj - sss=sscale(sqrt(rij)) - sssgrad=sscagrad(sqrt(rij)) + sss=sscale(sqrt(rij)) + if (sss.eq.0.0d0) return + sssgrad=sscagrad(sqrt(rij)) c write (iout,*) "ij",i,j," rij",sqrt(rij)," r_cut",r_cut, c & " rlamb",rlamb," sss",sss c if (sss.gt.0.0d0) then @@ -2647,9 +2721,10 @@ cgrad gelc(l,k)=gelc(l,k)+ggg(l) cgrad enddo cgrad enddo if (sss.gt.0.0) then - ggg(1)=facvdw*xj+sssgrad*rmij*evdwij*xj - ggg(2)=facvdw*yj+sssgrad*rmij*evdwij*yj - ggg(3)=facvdw*zj+sssgrad*rmij*evdwij*zj + facvdw=facvdw+sssgrad*rmij*evdwij + ggg(1)=facvdw*xj + ggg(2)=facvdw*yj + ggg(3)=facvdw*zj else ggg(1)=0.0 ggg(2)=0.0 @@ -2676,10 +2751,11 @@ cgrad enddo endif ! calc_grad #else C MARYSIA - facvdw=(ev1+evdwij)*sss + facvdw=(ev1+evdwij) facel=(el1+eesij) fac1=fac - fac=-3*rrmij*(facvdw+facvdw+facel) + fac=-3*rrmij*(facvdw+facvdw+facel)*sss + & +(evdwij+eesij)*sssgrad*rrmij erij(1)=xj*rmij erij(2)=yj*rmij erij(3)=zj*rmij @@ -3002,7 +3078,7 @@ c if (eel_loc_ij.ne.0) c & write (iout,'(a4,2i4,8f9.5)')'chuj', c & i,j,a22,muij(1),a23,muij(2),a32,muij(3),a33,muij(4) - eel_loc=eel_loc+eel_loc_ij + eel_loc=eel_loc+eel_loc_ij*sss C Now derivative over eel_loc if (calc_grad) then if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and. @@ -3059,7 +3135,7 @@ C Calculate patrial derivative for theta angle & +a23*gmuij1(2) & +a32*gmuij1(3) & +a33*gmuij1(4)) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss c write(iout,*) "derivative over thatai" c write(iout,*) a22*gmuij1(1), a23*gmuij1(2) ,a32*gmuij1(3), c & a33*gmuij1(4) @@ -3075,7 +3151,7 @@ c & a33*gmuij2(4) & +a33*gmuij2(4) gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+ & geel_loc_ij*wel_loc - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss c Derivative over j residue geel_loc_ji=a22*gmuji1(1) @@ -3100,7 +3176,7 @@ c write(iout,*) a22*gmuji2(1), a23*gmuji2(2) ,a32*gmuji2(3), c & a33*gmuji2(4) gloc(nphi+j-1,icg)=gloc(nphi+j-1,icg)+ & geel_loc_ji*wel_loc - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss #endif cd write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij @@ -3116,10 +3192,14 @@ C Partial derivatives in virtual-bond dihedral angles gamma & +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)) & *fac_shield(i)*fac_shield(j) C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2) + aux=eel_loc_ij/sss*sssgrad*rmij + ggg(1)=aux*xj + ggg(2)=aux*yj + ggg(3)=aux*zj do l=1,3 - ggg(l)=(agg(l,1)*muij(1)+ + ggg(l)=ggg(l)+(agg(l,1)*muij(1)+ & agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l) gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l) cgrad ghalf=0.5d0*ggg(l) @@ -3156,6 +3236,7 @@ C Remaining derivatives of eello C Change 12/26/95 to calculate four-body contributions to H-bonding energy c if (j.gt.i+1 .and. num_conti.le.maxconts) then +#ifdef FOURBODY if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0 & .and. num_conti.le.maxconts) then c write (iout,*) i,j," entered corr" @@ -3295,11 +3376,17 @@ cd fprimcont=0.0D0 gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k) enddo gggp(1)=gggp(1)+ees0pijp*xj + & +ees0p(num_conti,i)/sss*rmij*xj*sssgrad gggp(2)=gggp(2)+ees0pijp*yj + & +ees0p(num_conti,i)/sss*rmij*yj*sssgrad gggp(3)=gggp(3)+ees0pijp*zj + & +ees0p(num_conti,i)/sss*rmij*zj*sssgrad gggm(1)=gggm(1)+ees0mijp*xj + & +ees0m(num_conti,i)/sss*rmij*xj*sssgrad gggm(2)=gggm(2)+ees0mijp*yj + & +ees0m(num_conti,i)/sss*rmij*yj*sssgrad gggm(3)=gggm(3)+ees0mijp*zj + & +ees0m(num_conti,i)/sss*rmij*zj*sssgrad C Derivatives due to the contact function gacont_hbr(1,num_conti,i)=fprimcont*xj gacont_hbr(2,num_conti,i)=fprimcont*yj @@ -3314,29 +3401,29 @@ cgrad ghalfm=0.5D0*gggm(k) gacontp_hb1(k,num_conti,i)=!ghalfp & +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i)) & + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontp_hb2(k,num_conti,i)=!ghalfp & +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j)) & + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontp_hb3(k,num_conti,i)=gggp(k) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontm_hb1(k,num_conti,i)=!ghalfm & +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i)) & + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontm_hb2(k,num_conti,i)=!ghalfm & +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j)) & + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontm_hb3(k,num_conti,i)=gggm(k) & *fac_shield(i)*fac_shield(j) - +*sss enddo C Diagnostics. Comment out or remove after debugging! cdiag do k=1,3 @@ -3354,6 +3441,7 @@ cdiag enddo endif ! num_conti.le.maxconts endif ! fcont.gt.0 endif ! j.gt.i+1 +#endif if (calc_grad) then if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then do k=1,4 @@ -6270,6 +6358,7 @@ c gsccor_loc(i-3)=gloci enddo return end +#ifdef FOURBODY c------------------------------------------------------------------------------ subroutine multibody(ecorr) C This subroutine calculates multi-body contributions to energy following @@ -6282,6 +6371,8 @@ C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added. include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' double precision gx(3),gx1(3) logical lprn @@ -6336,6 +6427,8 @@ c------------------------------------------------------------------------------ include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' double precision gx(3),gx1(3) logical lprn lprn=.false. @@ -6377,6 +6470,8 @@ C This subroutine calculates multi-body contributions to hydrogen-bonding include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' double precision gx(3),gx1(3) logical lprn,ldone @@ -6449,6 +6544,8 @@ C This subroutine calculates multi-body contributions to hydrogen-bonding include 'COMMON.LOCAL' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.CHAIN' include 'COMMON.CONTROL' include 'COMMON.SHIELD' @@ -6605,6 +6702,8 @@ c------------------------------------------------------------------------------ include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.SHIELD' include 'COMMON.CONTROL' double precision gx(3),gx1(3) @@ -6780,6 +6879,8 @@ C--------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -6845,6 +6946,8 @@ C include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -7223,6 +7326,8 @@ C--------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -7337,6 +7442,8 @@ C--------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -7753,6 +7860,8 @@ c-------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -7895,6 +8004,8 @@ c-------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -8001,6 +8112,8 @@ c---------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -8188,6 +8301,8 @@ c---------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -8305,6 +8420,8 @@ c---------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -8551,6 +8668,8 @@ c---------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -8871,7 +8990,7 @@ cd write (2,*) 'ekont',ekont cd write (2,*) 'eel_turn6',ekont*eel_turn6 return end - +#endif crc------------------------------------------------- CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC subroutine Eliptransfer(eliptran) diff --git a/source/unres/src-HCD-5D/COMMON.SPLITELE b/source/unres/src-HCD-5D/COMMON.SPLITELE index a2f0447..5e88fef 100644 --- a/source/unres/src-HCD-5D/COMMON.SPLITELE +++ b/source/unres/src-HCD-5D/COMMON.SPLITELE @@ -1,2 +1,2 @@ - double precision r_cut,rlamb - common /splitele/ r_cut,rlamb + double precision r_cut_int,r_cut_respa,rlamb + common /splitele/ r_cut_int,r_cut_respa,rlamb diff --git a/source/unres/src-HCD-5D/COMMON.VECTORS b/source/unres/src-HCD-5D/COMMON.VECTORS index d880c24..04e9847 100644 --- a/source/unres/src-HCD-5D/COMMON.VECTORS +++ b/source/unres/src-HCD-5D/COMMON.VECTORS @@ -1,3 +1,4 @@ + double precision uy,uz,uygrad,uzgrad common /vectors/ uy(3,maxres),uz(3,maxres), & uygrad(3,3,2,maxres),uzgrad(3,3,2,maxres) diff --git a/source/unres/src-HCD-5D/MD_A-MTS.F b/source/unres/src-HCD-5D/MD_A-MTS.F index 76bec98..ca52aaa 100644 --- a/source/unres/src-HCD-5D/MD_A-MTS.F +++ b/source/unres/src-HCD-5D/MD_A-MTS.F @@ -1111,9 +1111,12 @@ c Applying velocity Verlet algorithm - step 1 to coordinates d_t_new(j,0)=d_t_old(j,0)+adt2 d_t(j,0)=d_t_old(j,0)+adt enddo - do i=nnt,nct-1 + do i=nnt,nct-1 C SPYTAC ADAMA C do i=0,nres +#ifdef DEBUG + write (iout,*) "i",i," d_a_old",(d_a_old(j,i),j=1,3) +#endif do j=1,3 adt=d_a_old(j,i)*d_time adt2=0.5d0*adt @@ -1645,6 +1648,12 @@ c Set up the initial conditions of a MD simulation include 'COMMON.NAMES' include 'COMMON.REMD' include 'COMMON.TIME1' +#ifdef LBFGS + character*9 status + integer niter + common /lbfgstat/ status,niter,nfun +#endif + integer n_model_try,list_model_try(max_template),k double precision tt0 real*8 energia_long(0:n_ene), & energia_short(0:n_ene),vcm(3),incr(3) @@ -1823,7 +1832,8 @@ c Removing the velocity of the center of mass endif call flush(iout) write (iout,*) "init_MD before initial structure REST ",rest - if (.not.rest) then + if (.not.rest) then + 122 continue if (iranconf.ne.0) then c 8/22/17 AL Loop to produce a low-energy random conformation do iranmin=1,10 @@ -1901,64 +1911,105 @@ c 8/22/17 AL Loop to produce a low-energy random conformation 44 continue else if (preminim) then if (start_from_model) then - i_model=iran_num(1,constr_homology) - write (iout,*) 'starting from model ',i_model - do i=1,2*nres - do j=1,3 - c(j,i)=chomo(j,i,i_model) + n_model_try=0 + do while (fail .and. n_model_try.lt.constr_homology) + do + i_model=iran_num(1,constr_homology) + do k=1,n_model_try + if (i_model.eq.list_model_try(k)) exit + enddo + if (k.gt.n_model_try) exit enddo - enddo - call int_from_cart(.true.,.false.) - call sc_loc_geom(.false.) - do i=1,nres-1 - do j=1,3 - dc(j,i)=c(j,i+1)-c(j,i) - dc_norm(j,i)=dc(j,i)*vbld_inv(i+1) + n_model_try=n_model_try+1 + list_model_try(n_model_try)=i_model + write (iout,*) 'starting from model ',i_model + do i=1,2*nres + do j=1,3 + c(j,i)=chomo(j,i,i_model) + enddo enddo - enddo - do i=2,nres-1 - do j=1,3 - dc(j,i+nres)=c(j,i+nres)-c(j,i) - dc_norm(j,i+nres)=dc(j,i+nres)*vbld_inv(i+nres) + call int_from_cart(.true.,.false.) + call sc_loc_geom(.false.) + do i=1,nres-1 + do j=1,3 + dc(j,i)=c(j,i+1)-c(j,i) + dc_norm(j,i)=dc(j,i)*vbld_inv(i+1) + enddo enddo - enddo - endif + do i=2,nres-1 + do j=1,3 + dc(j,i+nres)=c(j,i+nres)-c(j,i) + dc_norm(j,i+nres)=dc(j,i+nres)*vbld_inv(i+nres) + enddo + enddo + if (me.eq.king.or..not.out1file) then + write (iout,*) "Energies before removing overlaps" + call etotal(energia(0)) + call enerprint(energia(0)) + endif ! Remove SC overlaps if requested - if (overlapsc) then - write (iout,*) 'Calling OVERLAP_SC' - call overlap_sc(fail) - endif + if (overlapsc) then + write (iout,*) 'Calling OVERLAP_SC' + call overlap_sc(fail) + if (fail) then + write (iout,*) + & "Failed to remove overlap from model",i_model + cycle + endif + endif +#ifdef SEARCHSC + if (me.eq.king.or..not.out1file) then + write (iout,*) "Energies after removing overlaps" + call etotal(energia(0)) + call enerprint(energia(0)) + endif ! Search for better SC rotamers if requested - if (searchsc) then - call sc_move(2,nres-1,10,1d10,nft_sc,etot) - print *,'SC_move',nft_sc,etot - if (me.eq.king.or..not.out1file) - & write(iout,*) 'SC_move',nft_sc,etot + if (searchsc) then + call sc_move(2,nres-1,10,1d10,nft_sc,etot) + print *,'SC_move',nft_sc,etot + if (me.eq.king.or..not.out1file) + & write(iout,*) 'SC_move',nft_sc,etot + endif + call etotal(energia(0)) +#endif + enddo + if (n_model_try.gt.constr_homology) then + write (iout,*) + & "All models have irreparable overlaps. Trying randoms starts." + iranconf=1 + goto 122 + endif endif - call etotal(energia(0)) C 8/22/17 AL Minimize initial structure if (dccart) then if (me.eq.king.or..not.out1file) write(iout,*) - & 'Minimizing initial PDB structure: Calling MINIM_DC' + & 'Minimizing initial PDB structure: Calling MINIM_DC' call minim_dc(etot,iretcode,nfun) else call geom_to_var(nvar,varia) if(me.eq.king.or..not.out1file) write (iout,*) - & 'Minimizing initial PDB structure: Calling MINIMIZE.' + & 'Minimizing initial PDB structure: Calling MINIMIZE.' call minimize(etot,varia,iretcode,nfun) call var_to_geom(nvar,varia) - endif - if (me.eq.king.or..not.out1file) +#ifdef LBFGS + if (me.eq.king.or..not.out1file) + & write(iout,*) 'LBFGS return code is ',status,' eval ',nfun + if(me.eq.king.or..not.out1file) + & write(iout,*) 'LBFGS return code is ',status,' eval ',nfun +#else + if (me.eq.king.or..not.out1file) & write(iout,*) 'SUMSL return code is',iretcode,' eval ',nfun - if(me.eq.king.or..not.out1file) + if(me.eq.king.or..not.out1file) & write(iout,*) 'SUMSL return code is',iretcode,' eval ',nfun +#endif + endif endif - endif + endif ! .not. rest call chainbuild_cart call kinetic(EK) if (tbf) then call verlet_bath - endif + endif kinetic_T=2.0d0/(dimen3*Rb)*EK if(me.eq.king.or..not.out1file)then call cartprint @@ -2330,6 +2381,13 @@ c & chain_border(2,ichain-1) & d_t(:,chain_border1(1,ichain)-1)+d_t(:,chain_border(2,ichain-1)) d_t(:,chain_border(2,ichain-1))=0.0d0 enddo + do ichain=2,nchain + write (iout,*) "chain",ichain,chain_border1(1,ichain)-1, + & chain_border(2,ichain-1) + d_t(:,chain_border1(1,ichain)-1)= + & d_t(:,chain_border1(1,ichain)-1)+d_t(:,chain_border(2,ichain-1)) + d_t(:,chain_border(2,ichain-1))=0.0d0 + enddo #else ibeg=0 c do j=1,3 diff --git a/source/unres/src-HCD-5D/Makefile_MPICH_ifort-okeanos b/source/unres/src-HCD-5D/Makefile_MPICH_ifort-okeanos index fb434ea..a7ea506 100644 --- a/source/unres/src-HCD-5D/Makefile_MPICH_ifort-okeanos +++ b/source/unres/src-HCD-5D/Makefile_MPICH_ifort-okeanos @@ -96,7 +96,7 @@ NEWCORR: ${object} xdrf/libxdrf.a NEWCORR5D: CPPFLAGS = -DPROCOR -DLINUX -DPGI -DAMD64 -DUNRES -DISNAN -DMP -DMPI \ -DSPLITELE -DLANG0 -DNEWCORR -DCORRCD -DFIVEDIAG -DLBFGS #-DMYGAUSS #-DTIMING NEWCORR5D: BIN = ~/bin/unres-ms_ifort_MPICH-okeanos_SC-HCD5-40.exe -NEWCORR5D: ${object} ${object_lbfgs} fdisy.o fdiag.o machpd.o kinetic_CASC.o xdrf/libxdrf.a +NEWCORR5D: ${object_lbfgs} ${object} fdisy.o fdiag.o machpd.o kinetic_CASC.o xdrf/libxdrf.a gcc -o compinfo compinfo.c ./compinfo | true ${FC} ${FFLAGS} cinfo.f diff --git a/source/unres/src-HCD-5D/check_ecartint_CASC_NC.F b/source/unres/src-HCD-5D/check_ecartint_CASC_NC.F new file mode 100644 index 0000000..51386f8 --- /dev/null +++ b/source/unres/src-HCD-5D/check_ecartint_CASC_NC.F @@ -0,0 +1,256 @@ + subroutine check_ecartint +! Check the gradient of the energy in Cartesian coordinates. + implicit none + include 'DIMENSIONS' + include 'COMMON.CONTROL' + include 'COMMON.CHAIN' + include 'COMMON.INTERACT' + include 'COMMON.DERIV' + include 'COMMON.IOUNITS' + include 'COMMON.VAR' + include 'COMMON.CONTACTS' + include 'COMMON.MD' + include 'COMMON.LOCAL' + include 'COMMON.SPLITELE' + integer icall + common /srutu/ icall + double precision ggg(6),ggg1(6),cc(3),xx(3),ddc(3),ddx(3), + & x(maxvar),g(maxvar) + double precision dcnorm_safe(3),dxnorm_safe(3) + double precision grad_s(6,0:maxres),grad_s1(6,0:maxres) + double precision phi_temp(maxres),theta_temp(maxres), + & alph_temp(maxres),omeg_temp(maxres) + double precision ddc1(3),ddcn(3),dcnorm_safe1(3),dcnorm_safe2(3) + double precision energia(0:n_ene),energia1(0:n_ene) + integer uiparm(1) + double precision urparm(1) + double precision fdum + external fdum + integer i,j,k,nf + double precision etot,etot1,etot2,etot11,etot12,etot21,etot22 + double precision dist,alpha,beta + icg=1 + nf=0 + nfl=0 + call intout +! call intcartderiv +! call checkintcartgrad + call zerograd + aincr=1.0D-5 + write(iout,*) 'Calling CHECK_ECARTINT.' + nf=0 + icall=0 + write (iout,*) "Before geom_to_var" + call geom_to_var(nvar,x) + write (iout,*) "after geom_to_var" + write (iout,*) "split_ene ",split_ene + call flush(iout) + if (.not.split_ene) then + write(iout,*) 'Calling CHECK_ECARTINT if' + call etotal(energia) +!elwrite(iout,*) 'Calling CHECK_ECARTINT if' + etot=energia(0) + write (iout,*) "etot",etot + call enerprint(energia(0)) + call flush(iout) +!el call enerprint(energia) +!elwrite(iout,*) 'Calling CHECK_ECARTINT if' +c call flush(iout) +c write (iout,*) "enter cartgrad" +c call flush(iout) + call cartgrad +c Transform the gradient to the CA-SC basis + call grad_transform +!elwrite(iout,*) 'Calling CHECK_ECARTINT if' +c write (iout,*) "exit cartgrad" +c call flush(iout) + icall =1 +c do i=1,nres +c write (iout,'(i5,3f10.5)') i,(gradxorr(j,i),j=1,3) +c enddo + do j=1,3 + grad_s(j,0)=gcart(j,0) + enddo +!elwrite(iout,*) 'Calling CHECK_ECARTINT if' + do i=1,nres + do j=1,3 + grad_s(j,i)=gcart(j,i) + grad_s(j+3,i)=gxcart(j,i) + enddo + enddo + else +c write(iout,*) 'Calling CHECK_ECARTIN else.' +!- split gradient check + call zerograd + call etotal_long(energia) + call enerprint(energia(0)) +!el call enerprint(energia) +c call flush(iout) +c write (iout,*) "enter cartgrad" +c call flush(iout) + call cartgrad +c Transform the gradient to CA-SC coordinates + call grad_transform +c write (iout,*) "exit cartgrad" +c call flush(iout) + icall =1 + write (iout,*) "longrange grad" + do i=1,nres + write (iout,'(i5,3f10.5,5x,3f10.5)') i,(gcart(j,i),j=1,3), + & (gxcart(j,i),j=1,3) + enddo + do j=1,3 + grad_s(j,0)=gcart(j,0) + enddo + do i=1,nres + do j=1,3 + grad_s(j,i)=gcart(j,i) + grad_s(j+3,i)=gxcart(j,i) + enddo + enddo + call zerograd + call etotal_short(energia) + call enerprint(energia(0)) + call flush(iout) +c write (iout,*) "enter cartgrad" +c call flush(iout) + call cartgrad +c write (iout,*) "exit cartgrad" +c call flush(iout) +c Transform the gradient to CA-SC basis + call grad_transform + icall =1 + write (iout,*) "shortrange grad" + do i=1,nres + write (iout,'(i5,3f10.5,5x,3f10.5)') i,(gcart(j,i),j=1,3), + & (gxcart(j,i),j=1,3) + enddo + do j=1,3 + grad_s1(j,0)=gcart(j,0) + enddo + do i=1,nres + do j=1,3 + grad_s1(j,i)=gcart(j,i) + grad_s1(j+3,i)=gxcart(j,i) + enddo + enddo + endif + write (iout,'(/a/)') 'Gradient in virtual-bond and SC vectors' +! do i=1,nres +c do i=nnt,nct + do i=1,nres + do j=1,3 + if (nnt.gt.1 .and. i.eq.nnt) ddc1(j)=c(j,1) + if (nct.lt.nres .and. i.eq.nct) ddcn(j)=c(j,nres) + ddc(j)=c(j,i) + ddx(j)=c(j,i+nres) + dcnorm_safe1(j)=dc_norm(j,i-1) + dcnorm_safe2(j)=dc_norm(j,i) + dxnorm_safe(j)=dc_norm(j,i+nres) + enddo + do j=1,3 + c(j,i)=ddc(j)+aincr + if (nnt.gt.1 .and. i.eq.nnt) c(j,1)=c(j,1)+aincr + if (nct.lt.nres .and. i.eq.nct) c(j,nres)=c(j,nres)+aincr + if (i.gt.1) dc(j,i-1)=c(j,i)-c(j,i-1) + dc(j,i)=c(j,i+1)-c(j,i) + dc(j,i+nres)=c(j,i+nres)-c(j,i) + call int_from_cart1(.false.) + if (.not.split_ene) then + call etotal(energia1) + etot1=energia1(0) +c write (iout,*) "ij",i,j," etot1",etot1 + else +!- split gradient + call etotal_long(energia1) + etot11=energia1(0) + call etotal_short(energia1) + etot12=energia1(0) + endif +!- end split gradient +! write(iout,'(2i5,2(a,f15.10))')i,j," etot",etot," etot1",etot1 + c(j,i)=ddc(j)-aincr + if (nnt.gt.1 .and. i.eq.nnt) c(j,1)=ddc1(j)-aincr + if (nct.lt.nres .and. i.eq.nct) c(j,nres)=ddcn(j)-aincr + if (i.gt.1) dc(j,i-1)=c(j,i)-c(j,i-1) + dc(j,i)=c(j,i+1)-c(j,i) + dc(j,i+nres)=c(j,i+nres)-c(j,i) + call int_from_cart1(.false.) + if (.not.split_ene) then + call etotal(energia1) + etot2=energia1(0) +c write (iout,*) "ij",i,j," etot2",etot2 + ggg(j)=(etot1-etot2)/(2*aincr) + else +!- split gradient + call etotal_long(energia1) + etot21=energia1(0) + ggg(j)=(etot11-etot21)/(2*aincr) + call etotal_short(energia1) + etot22=energia1(0) + ggg1(j)=(etot12-etot22)/(2*aincr) +!- end split gradient +! write (iout,*) "etot21",etot21," etot22",etot22 + endif +! write(iout,'(2i5,2(a,f15.10))')i,j," etot",etot," etot2",etot2 + c(j,i)=ddc(j) + if (nnt.gt.1 .and. i.eq.nnt) c(j,1)=ddc1(j) + if (nct.lt.nres .and. i.eq.nct) c(j,nres)=ddcn(j) + if (i.gt.1) dc(j,i-1)=c(j,i)-c(j,i-1) + dc(j,i)=c(j,i+1)-c(j,i) + dc(j,i+nres)=c(j,i+nres)-c(j,i) + dc_norm(j,i-1)=dcnorm_safe1(j) + dc_norm(j,i)=dcnorm_safe2(j) + dc_norm(j,i+nres)=dxnorm_safe(j) + enddo + do j=1,3 + c(j,i+nres)=ddx(j)+aincr + dc(j,i+nres)=c(j,i+nres)-c(j,i) + call int_from_cart1(.false.) + if (.not.split_ene) then + call etotal(energia1) + etot1=energia1(0) + else +!- split gradient + call etotal_long(energia1) + etot11=energia1(0) + call etotal_short(energia1) + etot12=energia1(0) + endif +!- end split gradient + c(j,i+nres)=ddx(j)-aincr + dc(j,i+nres)=c(j,i+nres)-c(j,i) + call int_from_cart1(.false.) + if (.not.split_ene) then + call etotal(energia1) + etot2=energia1(0) + ggg(j+3)=(etot1-etot2)/(2*aincr) + else +!- split gradient + call etotal_long(energia1) + etot21=energia1(0) + ggg(j+3)=(etot11-etot21)/(2*aincr) + call etotal_short(energia1) + etot22=energia1(0) + ggg1(j+3)=(etot12-etot22)/(2*aincr) +!- end split gradient + endif +! write(iout,'(2i5,2(a,f15.10))')i,j," etot",etot," etot2",etot2 + c(j,i+nres)=ddx(j) + dc(j,i+nres)=c(j,i+nres)-c(j,i) + dc_norm(j,i+nres)=dxnorm_safe(j) + call int_from_cart1(.false.) + enddo + write (iout,'(i3,6(1pe12.5)/3x,6(1pe12.5)/3x,6(1pe12.5)/)') + & i,(ggg(k),k=1,6),(grad_s(k,i),k=1,6),(ggg(k)/grad_s(k,i),k=1,6) + if (split_ene) then + write (iout,'(i3,6(1pe12.5)/3x,6(1pe12.5)/3x,6(1pe12.5)/)') + & i,(ggg1(k),k=1,6),(grad_s1(k,i),k=1,6),(ggg1(k)/grad_s1(k,i), + & k=1,6) + write (iout,'(i3,6(1pe12.5)/3x,6(1pe12.5)/3x,6(1pe12.5)/)') + & i,(ggg(k)+ggg1(k),k=1,6),(grad_s(k,i)+grad_s1(k,i),k=1,6), + & ((ggg(k)+ggg1(k))/(grad_s(k,i)+grad_s1(k,i)),k=1,6) + endif + enddo + return + end diff --git a/source/unres/src-HCD-5D/checkder_p.F b/source/unres/src-HCD-5D/checkder_p.F index e7f0c1c..48eedda 100644 --- a/source/unres/src-HCD-5D/checkder_p.F +++ b/source/unres/src-HCD-5D/checkder_p.F @@ -88,265 +88,6 @@ C Check the gradient of the energy in Cartesian coordinates. enddo return end -#ifdef FIVEDIAG -!----------------------------------------------------------------------------- - subroutine check_ecartint -! Check the gradient of the energy in Cartesian coordinates. - implicit none - include 'DIMENSIONS' - include 'COMMON.CONTROL' - include 'COMMON.CHAIN' - include 'COMMON.INTERACT' - include 'COMMON.DERIV' - include 'COMMON.IOUNITS' - include 'COMMON.VAR' - include 'COMMON.CONTACTS' - include 'COMMON.MD' - include 'COMMON.LOCAL' - include 'COMMON.SPLITELE' - integer icall - common /srutu/ icall - double precision ggg(6),ggg1(6),cc(3),xx(3),ddc(3),ddx(3), - & x(maxvar),g(maxvar) - double precision dcnorm_safe(3),dxnorm_safe(3) - double precision grad_s(6,0:maxres),grad_s1(6,0:maxres) - double precision phi_temp(maxres),theta_temp(maxres), - & alph_temp(maxres),omeg_temp(maxres) - double precision ddc1(3),ddcn(3),dcnorm_safe1(3),dcnorm_safe2(3) - double precision energia(0:n_ene),energia1(0:n_ene) - integer uiparm(1) - double precision urparm(1) - double precision fdum - external fdum - integer i,j,k,nf - double precision etot,etot1,etot2,etot11,etot12,etot21,etot22 - double precision dist,alpha,beta - icg=1 - nf=0 - nfl=0 - call intout -! call intcartderiv -! call checkintcartgrad - call zerograd - aincr=1.0D-5 - write(iout,*) 'Calling CHECK_ECARTINT.' - nf=0 - icall=0 - write (iout,*) "Before geom_to_var" - call geom_to_var(nvar,x) - write (iout,*) "after geom_to_var" - write (iout,*) "split_ene ",split_ene - call flush(iout) - if (.not.split_ene) then - write(iout,*) 'Calling CHECK_ECARTINT if' - call etotal(energia) -!elwrite(iout,*) 'Calling CHECK_ECARTINT if' - etot=energia(0) - write (iout,*) "etot",etot - call enerprint(energia(0)) - call flush(iout) -!el call enerprint(energia) -!elwrite(iout,*) 'Calling CHECK_ECARTINT if' -c call flush(iout) -c write (iout,*) "enter cartgrad" -c call flush(iout) - call cartgrad -c Transform the gradient to the CA-SC basis - call grad_transform -!elwrite(iout,*) 'Calling CHECK_ECARTINT if' -c write (iout,*) "exit cartgrad" -c call flush(iout) - icall =1 -c do i=1,nres -c write (iout,'(i5,3f10.5)') i,(gradxorr(j,i),j=1,3) -c enddo - do j=1,3 - grad_s(j,0)=gcart(j,0) - enddo -!elwrite(iout,*) 'Calling CHECK_ECARTINT if' - do i=1,nres - do j=1,3 - grad_s(j,i)=gcart(j,i) - grad_s(j+3,i)=gxcart(j,i) - enddo - enddo - else -c write(iout,*) 'Calling CHECK_ECARTIN else.' -!- split gradient check - call zerograd - call etotal_long(energia) - call enerprint(energia(0)) -!el call enerprint(energia) -c call flush(iout) -c write (iout,*) "enter cartgrad" -c call flush(iout) - call cartgrad -c Transform the gradient to CA-SC coordinates - call grad_transform -c write (iout,*) "exit cartgrad" -c call flush(iout) - icall =1 - write (iout,*) "longrange grad" - do i=1,nres - write (iout,'(i5,3f10.5,5x,3f10.5)') i,(gcart(j,i),j=1,3), - & (gxcart(j,i),j=1,3) - enddo - do j=1,3 - grad_s(j,0)=gcart(j,0) - enddo - do i=1,nres - do j=1,3 - grad_s(j,i)=gcart(j,i) - grad_s(j+3,i)=gxcart(j,i) - enddo - enddo - call zerograd - call etotal_short(energia) - call enerprint(energia(0)) - call flush(iout) -c write (iout,*) "enter cartgrad" -c call flush(iout) - call cartgrad -c write (iout,*) "exit cartgrad" -c call flush(iout) -c Transform the gradient to CA-SC basis - call grad_transform - icall =1 - write (iout,*) "shortrange grad" - do i=1,nres - write (iout,'(i5,3f10.5,5x,3f10.5)') i,(gcart(j,i),j=1,3), - & (gxcart(j,i),j=1,3) - enddo - do j=1,3 - grad_s1(j,0)=gcart(j,0) - enddo - do i=1,nres - do j=1,3 - grad_s1(j,i)=gcart(j,i) - grad_s1(j+3,i)=gxcart(j,i) - enddo - enddo - endif - write (iout,'(/a/)') 'Gradient in virtual-bond and SC vectors' -! do i=1,nres -c do i=nnt,nct - do i=1,nres - do j=1,3 - if (nnt.gt.1 .and. i.eq.nnt) ddc1(j)=c(j,1) - if (nct.lt.nres .and. i.eq.nct) ddcn(j)=c(j,nres) - ddc(j)=c(j,i) - ddx(j)=c(j,i+nres) - dcnorm_safe1(j)=dc_norm(j,i-1) - dcnorm_safe2(j)=dc_norm(j,i) - dxnorm_safe(j)=dc_norm(j,i+nres) - enddo - do j=1,3 - c(j,i)=ddc(j)+aincr - if (nnt.gt.1 .and. i.eq.nnt) c(j,1)=c(j,1)+aincr - if (nct.lt.nres .and. i.eq.nct) c(j,nres)=c(j,nres)+aincr - if (i.gt.1) dc(j,i-1)=c(j,i)-c(j,i-1) - dc(j,i)=c(j,i+1)-c(j,i) - dc(j,i+nres)=c(j,i+nres)-c(j,i) - call int_from_cart1(.false.) - if (.not.split_ene) then - call etotal(energia1) - etot1=energia1(0) -c write (iout,*) "ij",i,j," etot1",etot1 - else -!- split gradient - call etotal_long(energia1) - etot11=energia1(0) - call etotal_short(energia1) - etot12=energia1(0) - endif -!- end split gradient -! write(iout,'(2i5,2(a,f15.10))')i,j," etot",etot," etot1",etot1 - c(j,i)=ddc(j)-aincr - if (nnt.gt.1 .and. i.eq.nnt) c(j,1)=ddc1(j)-aincr - if (nct.lt.nres .and. i.eq.nct) c(j,nres)=ddcn(j)-aincr - if (i.gt.1) dc(j,i-1)=c(j,i)-c(j,i-1) - dc(j,i)=c(j,i+1)-c(j,i) - dc(j,i+nres)=c(j,i+nres)-c(j,i) - call int_from_cart1(.false.) - if (.not.split_ene) then - call etotal(energia1) - etot2=energia1(0) -c write (iout,*) "ij",i,j," etot2",etot2 - ggg(j)=(etot1-etot2)/(2*aincr) - else -!- split gradient - call etotal_long(energia1) - etot21=energia1(0) - ggg(j)=(etot11-etot21)/(2*aincr) - call etotal_short(energia1) - etot22=energia1(0) - ggg1(j)=(etot12-etot22)/(2*aincr) -!- end split gradient -! write (iout,*) "etot21",etot21," etot22",etot22 - endif -! write(iout,'(2i5,2(a,f15.10))')i,j," etot",etot," etot2",etot2 - c(j,i)=ddc(j) - if (nnt.gt.1 .and. i.eq.nnt) c(j,1)=ddc1(j) - if (nct.lt.nres .and. i.eq.nct) c(j,nres)=ddcn(j) - if (i.gt.1) dc(j,i-1)=c(j,i)-c(j,i-1) - dc(j,i)=c(j,i+1)-c(j,i) - dc(j,i+nres)=c(j,i+nres)-c(j,i) - dc_norm(j,i-1)=dcnorm_safe1(j) - dc_norm(j,i)=dcnorm_safe2(j) - dc_norm(j,i+nres)=dxnorm_safe(j) - enddo - do j=1,3 - c(j,i+nres)=ddx(j)+aincr - dc(j,i+nres)=c(j,i+nres)-c(j,i) - call int_from_cart1(.false.) - if (.not.split_ene) then - call etotal(energia1) - etot1=energia1(0) - else -!- split gradient - call etotal_long(energia1) - etot11=energia1(0) - call etotal_short(energia1) - etot12=energia1(0) - endif -!- end split gradient - c(j,i+nres)=ddx(j)-aincr - dc(j,i+nres)=c(j,i+nres)-c(j,i) - call int_from_cart1(.false.) - if (.not.split_ene) then - call etotal(energia1) - etot2=energia1(0) - ggg(j+3)=(etot1-etot2)/(2*aincr) - else -!- split gradient - call etotal_long(energia1) - etot21=energia1(0) - ggg(j+3)=(etot11-etot21)/(2*aincr) - call etotal_short(energia1) - etot22=energia1(0) - ggg1(j+3)=(etot12-etot22)/(2*aincr) -!- end split gradient - endif -! write(iout,'(2i5,2(a,f15.10))')i,j," etot",etot," etot2",etot2 - c(j,i+nres)=ddx(j) - dc(j,i+nres)=c(j,i+nres)-c(j,i) - dc_norm(j,i+nres)=dxnorm_safe(j) - call int_from_cart1(.false.) - enddo - write (iout,'(i3,6(1pe12.5)/3x,6(1pe12.5)/3x,6(1pe12.5)/)') - & i,(ggg(k),k=1,6),(grad_s(k,i),k=1,6),(ggg(k)/grad_s(k,i),k=1,6) - if (split_ene) then - write (iout,'(i3,6(1pe12.5)/3x,6(1pe12.5)/3x,6(1pe12.5)/)') - & i,(ggg1(k),k=1,6),(grad_s1(k,i),k=1,6),(ggg1(k)/grad_s1(k,i), - & k=1,6) - write (iout,'(i3,6(1pe12.5)/3x,6(1pe12.5)/3x,6(1pe12.5)/)') - & i,(ggg(k)+ggg1(k),k=1,6),(grad_s(k,i)+grad_s1(k,i),k=1,6), - & ((ggg(k)+ggg1(k))/(grad_s(k,i)+grad_s1(k,i)),k=1,6) - endif - enddo - return - end -#else c---------------------------------------------------------------------------- subroutine check_ecartint C Check the gradient of the energy in Cartesian coordinates. @@ -426,15 +167,15 @@ c call flush(iout) call etotal_long(energia(0)) call enerprint(energia(0)) call flush(iout) - write (iout,*) "enter cartgrad" - call flush(iout) +c write (iout,*) "enter cartgrad" +c call flush(iout) call cartgrad - write (iout,*) "exit cartgrad" - call flush(iout) +c write (iout,*) "exit cartgrad" +c call flush(iout) icall =1 write (iout,*) "longrange grad" do i=1,nres - write (iout,'(i5,3f10.5,5x,3f10.5)') i,(gcart(j,i),j=1,3), + write (iout,'(i4,3e12.4,3x,3e12.4)') i,(gcart(j,i),j=1,3), & (gxcart(j,i),j=1,3) enddo do j=1,3 @@ -450,15 +191,15 @@ c call flush(iout) call etotal_short(energia(0)) call enerprint(energia(0)) call flush(iout) - write (iout,*) "enter cartgrad" - call flush(iout) +c write (iout,*) "enter cartgrad" +c call flush(iout) call cartgrad - write (iout,*) "exit cartgrad" - call flush(iout) +c write (iout,*) "exit cartgrad" +c call flush(iout) icall =1 write (iout,*) "shortrange grad" do i=1,nres - write (iout,'(i5,3f10.5,5x,3f10.5)') i,(gcart(j,i),j=1,3), + write (iout,'(i4,3e12.4,3x,3e12.4)') i,(gcart(j,i),j=1,3), & (gxcart(j,i),j=1,3) enddo do j=1,3 @@ -592,7 +333,6 @@ c write(iout,'(2i5,2(a,f15.10))')i,j," etot",etot," etot2",etot2 enddo return end -#endif c------------------------------------------------------------------------- subroutine int_from_cart1(lprn) implicit none diff --git a/source/unres/src-HCD-5D/elecont.f b/source/unres/src-HCD-5D/elecont.f index 00ce016..690fd44 100644 --- a/source/unres/src-HCD-5D/elecont.f +++ b/source/unres/src-HCD-5D/elecont.f @@ -62,6 +62,7 @@ c write (iout,*) "i",xmedi,ymedi,zmedi if (zmedi.lt.0) zmedi=zmedi+boxzsize c write (iout,*) "i",xmedi,ymedi,zmedi do 4 j=i+2,nct-1 +c write (iout,*) "i",i," j",j if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1) goto 4 ind=ind+1 iteli=itel(i) @@ -121,8 +122,6 @@ c & dist_temp," dist_init",dist_init zj=zj_safe-zmedi endif rij=xj*xj+yj*yj+zj*zj - sss=sscale(sqrt(rij)) - sssgrad=sscagrad(sqrt(rij)) rrmij=1.0/(xj*xj+yj*yj+zj*zj) rmij=sqrt(rrmij) r3ij=rrmij*rmij @@ -148,7 +147,6 @@ c & dist_temp," dist_init",dist_init econt(ncont)=eesij endif ees=ees+eesij - evdw=evdw+evdwij*sss c write (iout,*) "i"," j",j," rij",dsqrt(rij)," eesij",eesij 4 continue 1 continue diff --git a/source/unres/src-HCD-5D/energy_p_new-sep_barrier.F b/source/unres/src-HCD-5D/energy_p_new-sep_barrier.F index 253dd88..93fe9ab 100644 --- a/source/unres/src-HCD-5D/energy_p_new-sep_barrier.F +++ b/source/unres/src-HCD-5D/energy_p_new-sep_barrier.F @@ -30,9 +30,9 @@ C endif end C----------------------------------------------------------------------- - double precision function sscale(r) + double precision function sscale(r,r_cut) implicit none - double precision r,gamm + double precision r,r_cut,gamm include "COMMON.SPLITELE" if(r.lt.r_cut-rlamb) then sscale=1.0d0 @@ -45,9 +45,9 @@ C----------------------------------------------------------------------- return end C----------------------------------------------------------------------- - double precision function sscagrad(r) + double precision function sscagrad(r,r_cut) implicit none - double precision r,gamm + double precision r,r_cut,gamm include "COMMON.SPLITELE" if(r.lt.r_cut-rlamb) then sscagrad=0.0d0 @@ -65,9 +65,8 @@ C C This subroutine calculates the interaction energy of nonbonded side chains C assuming the LJ potential of interaction. C - implicit real*8 (a-h,o-z) + implicit none include 'DIMENSIONS' - parameter (accur=1.0d-10) include 'COMMON.GEO' include 'COMMON.VAR' include 'COMMON.LOCAL' @@ -78,8 +77,14 @@ C include 'COMMON.SBRIDGE' include 'COMMON.NAMES' include 'COMMON.IOUNITS' + include "COMMON.SPLITELE" c include 'COMMON.CONTACTS' - dimension gg(3) + double precision gg(3) + double precision evdw,evdwij + integer i,j,k,itypi,itypj,itypi1,num_conti,iint + double precision xi,yi,zi,xj,yj,zj,rij,eps0ij,fac,e1,e2,rrij, + & sigij,r0ij,rcut,sss1,sssgrad1,sqrij + double precision sscale,sscagrad c write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e @@ -102,19 +107,27 @@ cd & 'iend=',iend(i,iint) yj=c(2,nres+j)-yi zj=c(3,nres+j)-zi rij=xj*xj+yj*yj+zj*zj - sss=sscale(dsqrt(rij)/sigma(itypi,itypj)) + sqrij=dsqrt(rrij) + eps0ij=eps(itypi,itypj) + sss1=sscale(sqrij,r_cut_int) + if (sss1.eq.0.0d0) cycle + sssgrad1=sscagrad(sqrij,r_cut_int) + sssgrad= + & sscagrad(sqrij/sigma(itypi,itypj),r_cut_respa) + sss=sscale(sqrij/sigma(itypi,itypj),r_cut_respa) if (sss.lt.1.0d0) then rrij=1.0D0/rij - eps0ij=eps(itypi,itypj) fac=rrij**expon2 e1=fac*fac*aa e2=fac*bb evdwij=e1+e2 - evdw=evdw+(1.0d0-sss)*evdwij + evdw=evdw+(1.0d0-sss)*sss1*evdwij/sqrij/expon C C Calculate the components of the gradient in DC and X C - fac=-rrij*(e1+evdwij)*(1.0d0-sss) + fac=-rrij*(e1+evdwij)*(1.0d0-sss)*sss1 + & +evdwij*(-sss1*sssgrad/sigma(itypi,itypj) + & +(1.0d0-sss)*sssgrad1)/sqrij gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac @@ -151,9 +164,8 @@ C C This subroutine calculates the interaction energy of nonbonded side chains C assuming the LJ potential of interaction. C - implicit real*8 (a-h,o-z) + implicit none include 'DIMENSIONS' - parameter (accur=1.0d-10) include 'COMMON.GEO' include 'COMMON.VAR' include 'COMMON.LOCAL' @@ -164,8 +176,14 @@ C include 'COMMON.SBRIDGE' include 'COMMON.NAMES' include 'COMMON.IOUNITS' + include "COMMON.SPLITELE" c include 'COMMON.CONTACTS' - dimension gg(3) + double precision gg(3) + double precision evdw,evdwij + integer i,j,k,itypi,itypj,itypi1,num_conti,iint + double precision xi,yi,zi,xj,yj,zj,rij,eps0ij,fac,e1,e2,rrij, + & sigij,r0ij,rcut,sqrij,sss1,sssgrad1 + double precision sscale,sscagrad c write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e @@ -191,8 +209,11 @@ cd & 'iend=',iend(i,iint) zj=c(3,nres+j)-zi C Change 12/1/95 to calculate four-body interactions rij=xj*xj+yj*yj+zj*zj - sss=sscale(dsqrt(rij)/sigma(itypi,itypj)) + sqrij=dsqrt(rij) + sss=sscale(sqrij/sigma(itypi,itypj),r_cut_respa) if (sss.gt.0.0d0) then + sssgrad= + & sscagrad(sqrij/sigma(itypi,itypj),r_cut_respa) rrij=1.0D0/rij eps0ij=eps(itypi,itypj) fac=rrij**expon2 @@ -203,7 +224,7 @@ C Change 12/1/95 to calculate four-body interactions C C Calculate the components of the gradient in DC and X C - fac=-rrij*(e1+evdwij)*sss + fac=-rrij*(e1+evdwij)*sss+evdwij*sssgrad/sqrij/expon gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac @@ -240,7 +261,7 @@ C C This subroutine calculates the interaction energy of nonbonded side chains C assuming the LJK potential of interaction. C - implicit real*8 (a-h,o-z) + implicit none include 'DIMENSIONS' include 'COMMON.GEO' include 'COMMON.VAR' @@ -250,8 +271,14 @@ C include 'COMMON.INTERACT' include 'COMMON.IOUNITS' include 'COMMON.NAMES' - dimension gg(3) + include "COMMON.SPLITELE" + double precision gg(3) + double precision evdw,evdwij + integer i,j,k,itypi,itypj,itypi1,iint + double precision xi,yi,zi,xj,yj,zj,rij,eps0ij,fac,e1,e2,rrij, + & fac_augm,e_augm,r_inv_ij,r_shift_inv,sss1,sssgrad1 logical scheck + double precision sscale,sscagrad c print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e @@ -276,8 +303,13 @@ C e_augm=augm(itypi,itypj)*fac_augm r_inv_ij=dsqrt(rrij) rij=1.0D0/r_inv_ij - sss=sscale(rij/sigma(itypi,itypj)) + sss1=sscale(rij,r_cut_int) + if (sss1.eq.0.0d0) cycle + sssgrad1=sscagrad(rij,r_cut_int) + sss=sscale(rij/sigma(itypi,itypj),r_cut_respa) if (sss.lt.1.0d0) then + sssgrad= + & sscagrad(rij/sigma(itypi,itypj),r_cut_respa) r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj)) fac=r_shift_inv**expon e1=fac*fac*aa @@ -290,12 +322,14 @@ cd & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj), cd & bb(itypi,itypj),augm(itypi,itypj),epsi,sigm, cd & sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij, cd & (c(k,i),k=1,3),(c(k,j),k=1,3) - evdw=evdw+(1.0d0-sss)*evdwij + evdw=evdw+(1.0d0-sss)*sss1*evdwij C C Calculate the components of the gradient in DC and X C fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2) - fac=fac*(1.0d0-sss) + fac=fac*(1.0d0-sss)*sss1 + & +evdwij*(-sss1*sssgrad/sigma(itypi,itypj) + & +(1.0d0-sss)*sssgrad1)*r_inv_ij/expon gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac @@ -333,8 +367,14 @@ C include 'COMMON.INTERACT' include 'COMMON.IOUNITS' include 'COMMON.NAMES' - dimension gg(3) + include "COMMON.SPLITELE" + double precision gg(3) + double precision evdw,evdwij + integer i,j,k,itypi,itypj,itypi1,iint + double precision xi,yi,zi,xj,yj,zj,rij,eps0ij,fac,e1,e2,rrij, + & fac_augm,e_augm,r_inv_ij,r_shift_inv,sss1,sssgrad1 logical scheck + double precision sscale,sscagrad c print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e @@ -359,7 +399,7 @@ C e_augm=augm(itypi,itypj)*fac_augm r_inv_ij=dsqrt(rrij) rij=1.0D0/r_inv_ij - sss=sscale(rij/sigma(itypi,itypj)) + sss=sscale(rij/sigma(itypi,itypj),r_cut_respa) if (sss.gt.0.0d0) then r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj)) fac=r_shift_inv**expon @@ -378,6 +418,7 @@ C C Calculate the components of the gradient in DC and X C fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2) + & +evdwij*sssgrad/sigma(itypi,itypj)*r_inv_ij/expon fac=fac*sss gg(1)=xj*fac gg(2)=yj*fac @@ -406,7 +447,7 @@ C C This subroutine calculates the interaction energy of nonbonded side chains C assuming the Berne-Pechukas potential of interaction. C - implicit real*8 (a-h,o-z) + implicit none include 'DIMENSIONS' include 'COMMON.GEO' include 'COMMON.VAR' @@ -417,7 +458,14 @@ C include 'COMMON.INTERACT' include 'COMMON.IOUNITS' include 'COMMON.CALC' + include "COMMON.SPLITELE" + integer icall common /srutu/ icall + double precision evdw + integer itypi,itypj,itypi1,iint,ind + double precision eps0ij,epsi,sigm,fac,e1,e2,rrij,xi,yi,zi + double precision sss1,sssgrad1 + double precision sscale,sscagrad c double precision rrsave(maxdim) logical lprn evdw=0.0D0 @@ -468,10 +516,13 @@ c dscj_inv=dsc_inv(itypj) dzj=dc_norm(3,nres+j) rrij=1.0D0/(xj*xj+yj*yj+zj*zj) rij=dsqrt(rrij) - sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj))) - + sss1=sscale(1.0d0/rij,r_cut_int) + if (sss1.eq.0.0d0) cycle + sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)),r_cut_respa) if (sss.lt.1.0d0) then - + sssgrad= + & sscagrad(1.0d0/(rij*sigmaii(itypi,itypj)),r_cut_respa) + sssgrad1=sscagrad(1.0d0/rij,r_cut_int) C Calculate the angle-dependent terms of energy & contributions to derivatives. call sc_angular C Calculate whole angle-dependent part of epsilon and contributions @@ -483,7 +534,7 @@ C to its derivatives eps2der=evdwij*eps3rt eps3der=evdwij*eps2rt evdwij=evdwij*eps2rt*eps3rt - evdw=evdw+evdwij*(1.0d0-sss) + evdw=evdw+evdwij*(1.0d0-sss)*sss1 if (lprn) then sigm=dabs(aa/bb)**(1.0D0/6.0D0) epsi=bb**2/aa @@ -498,14 +549,15 @@ C Calculate gradient components. e1=e1*eps1*eps2rt**2*eps3rt**2 fac=-expon*(e1+evdwij) sigder=fac/sigsq - fac=rrij*fac + fac=(fac+evdwij*(sss1/(1.0d0-sss)*sssgrad/ + & sigmaii(itypi,itypj)+(1.0d0-sss)/sss1*sssgrad1))*rij C Calculate radial part of the gradient gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac C Calculate the angular part of the gradient and sum add the contributions C to the appropriate components of the Cartesian gradient. - call sc_grad_scale(1.0d0-sss) + call sc_grad_scale((1.0d0-sss)*sss1) endif enddo ! j enddo ! iint @@ -530,7 +582,13 @@ C include 'COMMON.INTERACT' include 'COMMON.IOUNITS' include 'COMMON.CALC' + include "COMMON.SPLITELE" + integer icall common /srutu/ icall + double precision evdw + integer itypi,itypj,itypi1,iint,ind + double precision eps0ij,epsi,sigm,fac,e1,e2,rrij,xi,yi,zi + double precision sscale,sscagrad c double precision rrsave(maxdim) logical lprn evdw=0.0D0 @@ -581,7 +639,7 @@ c dscj_inv=dsc_inv(itypj) dzj=dc_norm(3,nres+j) rrij=1.0D0/(xj*xj+yj*yj+zj*zj) rij=dsqrt(rrij) - sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj))) + sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)),r_cut_respa) if (sss.gt.0.0d0) then @@ -611,7 +669,7 @@ C Calculate gradient components. e1=e1*eps1*eps2rt**2*eps3rt**2 fac=-expon*(e1+evdwij) sigder=fac/sigsq - fac=rrij*fac + fac=(fac+evdwij*sssgrad/sss/sigmaii(itypi,itypj))*rrij C Calculate radial part of the gradient gg(1)=xj*fac gg(2)=yj*fac @@ -632,7 +690,7 @@ C C This subroutine calculates the interaction energy of nonbonded side chains C assuming the Gay-Berne potential of interaction. C - implicit real*8 (a-h,o-z) + implicit none include 'DIMENSIONS' include 'COMMON.GEO' include 'COMMON.VAR' @@ -644,8 +702,17 @@ C include 'COMMON.IOUNITS' include 'COMMON.CALC' include 'COMMON.CONTROL' + include "COMMON.SPLITELE" logical lprn integer xshift,yshift,zshift + double precision evdw + integer itypi,itypj,itypi1,iint,ind + double precision eps0ij,epsi,sigm,fac,e1,e2,rrij,xi,yi,zi + double precision fracinbuf,sslipi,evdwij_przed_tri,sig0ij, + & sslipj,ssgradlipj,ssgradlipi,dist_init,xj_safe,yj_safe,zj_safe, + & xj_temp,yj_temp,zj_temp,dist_temp,sig,rij_shift,faclip + double precision dist,sscale,sscagrad,sscagradlip,sscalelip + double precision subchap,sss1,sssgrad1 evdw=0.0D0 ccccc energy_dec=.false. c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon @@ -699,81 +766,81 @@ c write (iout,*) "i",i," j", j," itype",itype(i),itype(j) xj=c(1,nres+j) yj=c(2,nres+j) zj=c(3,nres+j) - xj=mod(xj,boxxsize) - if (xj.lt.0) xj=xj+boxxsize - yj=mod(yj,boxysize) - if (yj.lt.0) yj=yj+boxysize - zj=mod(zj,boxzsize) - if (zj.lt.0) zj=zj+boxzsize - if ((zj.gt.bordlipbot) - &.and.(zj.lt.bordliptop)) then + xj=mod(xj,boxxsize) + if (xj.lt.0) xj=xj+boxxsize + yj=mod(yj,boxysize) + if (yj.lt.0) yj=yj+boxysize + zj=mod(zj,boxzsize) + if (zj.lt.0) zj=zj+boxzsize + if ((zj.gt.bordlipbot).and.(zj.lt.bordliptop)) then C the energy transfer exist - if (zj.lt.buflipbot) then + if (zj.lt.buflipbot) then C what fraction I am in - fracinbuf=1.0d0- - & ((positi-bordlipbot)/lipbufthick) + fracinbuf=1.0d0-((zi-bordlipbot)/lipbufthick) C lipbufthick is thickenes of lipid buffore - sslipj=sscalelip(fracinbuf) - ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick - elseif (zi.gt.bufliptop) then - fracinbuf=1.0d0-((bordliptop-positi)/lipbufthick) - sslipj=sscalelip(fracinbuf) - ssgradlipj=sscagradlip(fracinbuf)/lipbufthick - else - sslipj=1.0d0 - ssgradlipj=0.0 - endif - else - sslipj=0.0d0 - ssgradlipj=0.0 - endif - aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 - & +aa_aq(itypi,itypj)*(2.0d0-sslipi+sslipj)/2.0d0 - bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 - & +bb_aq(itypi,itypj)*(2.0d0-sslipi+sslipj)/2.0d0 - - dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 - xj_safe=xj - yj_safe=yj - zj_safe=zj - subchap=0 - do xshift=-1,1 - do yshift=-1,1 - do zshift=-1,1 - xj=xj_safe+xshift*boxxsize - yj=yj_safe+yshift*boxysize - zj=zj_safe+zshift*boxzsize - dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 - if(dist_temp.lt.dist_init) then - dist_init=dist_temp - xj_temp=xj - yj_temp=yj - zj_temp=zj - subchap=1 - endif - enddo - enddo - enddo - if (subchap.eq.1) then - xj=xj_temp-xi - yj=yj_temp-yi - zj=zj_temp-zi - else - xj=xj_safe-xi - yj=yj_safe-yi - zj=zj_safe-zi - endif - dxj=dc_norm(1,nres+j) - dyj=dc_norm(2,nres+j) - dzj=dc_norm(3,nres+j) - rrij=1.0D0/(xj*xj+yj*yj+zj*zj) - rij=dsqrt(rrij) - sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj))) - sssgrad=sscagrad((1.0d0/rij)/sigmaii(itypi,itypj)) - if (sss.lt.1.0d0) then - + sslipj=sscalelip(fracinbuf) + ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick + else if (zi.gt.bufliptop) then + fracinbuf=1.0d0-((bordliptop-zi)/lipbufthick) + sslipj=sscalelip(fracinbuf) + ssgradlipj=sscagradlip(fracinbuf)/lipbufthick + else + sslipj=1.0d0 + ssgradlipj=0.0 + endif + else + sslipj=0.0d0 + ssgradlipj=0.0 + endif + aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +aa_aq(itypi,itypj)*(2.0d0-sslipi+sslipj)/2.0d0 + bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +bb_aq(itypi,itypj)*(2.0d0-sslipi+sslipj)/2.0d0 + dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + xj_safe=xj + yj_safe=yj + zj_safe=zj + subchap=0 + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 + xj=xj_safe+xshift*boxxsize + yj=yj_safe+yshift*boxysize + zj=zj_safe+zshift*boxzsize + dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + if (dist_temp.lt.dist_init) then + dist_init=dist_temp + xj_temp=xj + yj_temp=yj + zj_temp=zj + subchap=1 + endif + enddo + enddo + enddo + if (subchap.eq.1) then + xj=xj_temp-xi + yj=yj_temp-yi + zj=zj_temp-zi + else + xj=xj_safe-xi + yj=yj_safe-yi + zj=zj_safe-zi + endif + dxj=dc_norm(1,nres+j) + dyj=dc_norm(2,nres+j) + dzj=dc_norm(3,nres+j) + rrij=1.0D0/(xj*xj+yj*yj+zj*zj) + rij=dsqrt(rrij) + sss1=sscale(1.0d0/rij,r_cut_int) + if (sss1.eq.0.0d0) cycle + sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)),r_cut_respa) + if (sss.lt.1.0d0) then C Calculate angle-dependent terms of energy and contributions to their C derivatives. + sssgrad= + & sscagrad((1.0d0/rij)/sigmaii(itypi,itypj),r_cut_respa) + sssgrad1=sscagrad(1.0d0/rij,r_cut_int) call sc_angular sigsq=1.0D0/sigsq sig=sig0ij*dsqrt(sigsq) @@ -800,7 +867,7 @@ c--------------------------------------------------------------- c write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt, c & " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2 evdwij=evdwij*eps2rt*eps3rt - evdw=evdw+evdwij*(1.0d0-sss) + evdw=evdw+evdwij*(1.0d0-sss)*sss1 if (lprn) then sigm=dabs(aa/bb)**(1.0D0/6.0D0) epsi=bb**2/aa @@ -812,15 +879,15 @@ c & " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2 & evdwij endif - if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') - & 'evdw',i,j,evdwij + if (energy_dec) write (iout,'(a6,2i5,4f10.5)') + & 'evdw',i,j,rij,sss,sss1,evdwij C Calculate gradient components. e1=e1*eps1*eps2rt**2*eps3rt**2 fac=-expon*(e1+evdwij)*rij_shift sigder=fac*sigder - fac=rij*fac - fac=fac+evdwij/(1.0-sss)*(-sssgrad)/sigmaii(itypi,itypj)*rij + fac=(fac+evdwij*(-sss1*sssgrad/(1.0d0-sss) + & /sigmaii(itypi,itypj)+(1.0d0-sss)*sssgrad1/sss1))*rij c fac=0.0d0 C Calculate the radial part of the gradient gg(1)=xj*fac @@ -829,7 +896,7 @@ C Calculate the radial part of the gradient gg_lipi(3)=ssgradlipi*evdwij gg_lipj(3)=ssgradlipj*evdwij C Calculate angular part of the gradient. - call sc_grad_scale(1.0d0-sss) + call sc_grad_scale((1.0d0-sss)*sss1) endif enddo ! j enddo ! iint @@ -844,7 +911,7 @@ C C This subroutine calculates the interaction energy of nonbonded side chains C assuming the Gay-Berne potential of interaction. C - implicit real*8 (a-h,o-z) + implicit none include 'DIMENSIONS' include 'COMMON.GEO' include 'COMMON.VAR' @@ -856,8 +923,17 @@ C include 'COMMON.IOUNITS' include 'COMMON.CALC' include 'COMMON.CONTROL' + include "COMMON.SPLITELE" logical lprn integer xshift,yshift,zshift + double precision evdw + integer itypi,itypj,itypi1,iint,ind + double precision eps0ij,epsi,sigm,fac,e1,e2,rrij,xi,yi,zi + double precision fracinbuf,sslipi,evdwij_przed_tri,sig0ij, + & sslipj,ssgradlipj,ssgradlipi,dist_init,xj_safe,yj_safe,zj_safe, + & xj_temp,yj_temp,zj_temp,dist_temp,sig,rij_shift,faclip + double precision dist,sscale,sscagrad,sscagradlip,sscalelip + double precision subchap evdw=0.0D0 ccccc energy_dec=.false. c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon @@ -911,76 +987,74 @@ c write (iout,*) "i",i," j", j," itype",itype(i),itype(j) xj=c(1,nres+j) yj=c(2,nres+j) zj=c(3,nres+j) - xj=mod(xj,boxxsize) - if (xj.lt.0) xj=xj+boxxsize - yj=mod(yj,boxysize) - if (yj.lt.0) yj=yj+boxysize - zj=mod(zj,boxzsize) - if (zj.lt.0) zj=zj+boxzsize - if ((zj.gt.bordlipbot) - &.and.(zj.lt.bordliptop)) then + xj=mod(xj,boxxsize) + if (xj.lt.0) xj=xj+boxxsize + yj=mod(yj,boxysize) + if (yj.lt.0) yj=yj+boxysize + zj=mod(zj,boxzsize) + if (zj.lt.0) zj=zj+boxzsize + if ((zj.gt.bordlipbot).and.(zj.lt.bordliptop)) then C the energy transfer exist - if (zj.lt.buflipbot) then + if (zj.lt.buflipbot) then C what fraction I am in - fracinbuf=1.0d0- - & ((positi-bordlipbot)/lipbufthick) + fracinbuf=1.0d0-((zi-bordlipbot)/lipbufthick) C lipbufthick is thickenes of lipid buffore - sslipj=sscalelip(fracinbuf) - ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick - elseif (zi.gt.bufliptop) then - fracinbuf=1.0d0-((bordliptop-positi)/lipbufthick) - sslipj=sscalelip(fracinbuf) - ssgradlipj=sscagradlip(fracinbuf)/lipbufthick - else - sslipj=1.0d0 - ssgradlipj=0.0 - endif - else - sslipj=0.0d0 - ssgradlipj=0.0 - endif - aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 - & +aa_aq(itypi,itypj)*(2.0d0-sslipi+sslipj)/2.0d0 - bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 - & +bb_aq(itypi,itypj)*(2.0d0-sslipi+sslipj)/2.0d0 - dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 - xj_safe=xj - yj_safe=yj - zj_safe=zj - subchap=0 - do xshift=-1,1 - do yshift=-1,1 - do zshift=-1,1 - xj=xj_safe+xshift*boxxsize - yj=yj_safe+yshift*boxysize - zj=zj_safe+zshift*boxzsize - dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 - if(dist_temp.lt.dist_init) then - dist_init=dist_temp - xj_temp=xj - yj_temp=yj - zj_temp=zj - subchap=1 - endif - enddo - enddo - enddo - if (subchap.eq.1) then - xj=xj_temp-xi - yj=yj_temp-yi - zj=zj_temp-zi - else - xj=xj_safe-xi - yj=yj_safe-yi - zj=zj_safe-zi - endif + sslipj=sscalelip(fracinbuf) + ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick + elseif (zi.gt.bufliptop) then + fracinbuf=1.0d0-((bordliptop-zi)/lipbufthick) + sslipj=sscalelip(fracinbuf) + ssgradlipj=sscagradlip(fracinbuf)/lipbufthick + else + sslipj=1.0d0 + ssgradlipj=0.0 + endif + else + sslipj=0.0d0 + ssgradlipj=0.0 + endif + aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +aa_aq(itypi,itypj)*(2.0d0-sslipi+sslipj)/2.0d0 + bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +bb_aq(itypi,itypj)*(2.0d0-sslipi+sslipj)/2.0d0 + dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + xj_safe=xj + yj_safe=yj + zj_safe=zj + subchap=0 + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 + xj=xj_safe+xshift*boxxsize + yj=yj_safe+yshift*boxysize + zj=zj_safe+zshift*boxzsize + dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + if(dist_temp.lt.dist_init) then + dist_init=dist_temp + xj_temp=xj + yj_temp=yj + zj_temp=zj + subchap=1 + endif + enddo + enddo + enddo + if (subchap.eq.1) then + xj=xj_temp-xi + yj=yj_temp-yi + zj=zj_temp-zi + else + xj=xj_safe-xi + yj=yj_safe-yi + zj=zj_safe-zi + endif dxj=dc_norm(1,nres+j) dyj=dc_norm(2,nres+j) dzj=dc_norm(3,nres+j) rrij=1.0D0/(xj*xj+yj*yj+zj*zj) rij=dsqrt(rrij) - sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj))) - sssgrad=sscagrad((1.0d0/rij)/sigmaii(itypi,itypj)) + sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)),r_cut_respa) + sssgrad=sscagrad((1.0d0/rij)/sigmaii(itypi,itypj),r_cut_respa) if (sss.gt.0.0d0) then C Calculate angle-dependent terms of energy and contributions to their @@ -1030,8 +1104,7 @@ C Calculate gradient components. e1=e1*eps1*eps2rt**2*eps3rt**2 fac=-expon*(e1+evdwij)*rij_shift sigder=fac*sigder - fac=rij*fac - fac=fac+evdwij/sss*sssgrad/sigmaii(itypi,itypj)*rij + fac=(fac+evdwij*sssgrad/sss/sigmaii(itypi,itypj))*rij c fac=0.0d0 C Calculate the radial part of the gradient gg(1)=xj*fac @@ -1066,8 +1139,18 @@ C include 'COMMON.INTERACT' include 'COMMON.IOUNITS' include 'COMMON.CALC' + include "COMMON.SPLITELE" + integer icall common /srutu/ icall logical lprn + integer itypi,itypj,itypi1,iint,ind + double precision eps0ij,epsi,sigm,fac,e1,e2,rrij,r0ij, + & xi,yi,zi,fac_augm,e_augm + double precision fracinbuf,sslipi,evdwij_przed_tri,sig0ij, + & sslipj,ssgradlipj,ssgradlipi,dist_init,xj_safe,yj_safe,zj_safe, + & xj_temp,yj_temp,zj_temp,dist_temp,sig,rij_shift,faclip + double precision dist,sscale,sscagrad,sscagradlip,sscalelip + double precision sss1,sssgrad1 evdw=0.0D0 c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 @@ -1116,9 +1199,13 @@ c dscj_inv=dsc_inv(itypj) rrij=1.0D0/(xj*xj+yj*yj+zj*zj) rij=dsqrt(rrij) - sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj))) + sss1=sscale(1.0d0/rij,r_cut_int) + if (sss1.eq.0.0d0) cycle if (sss.lt.1.0d0) then + sssgrad= + & sscagrad((1.0d0/rij)/sigmaii(itypi,itypj),r_cut_respa) + sssgrad1=sscagrad(1.0d0/rij,r_cut_int) C Calculate angle-dependent terms of energy and contributions to their C derivatives. @@ -1143,7 +1230,7 @@ c--------------------------------------------------------------- fac_augm=rrij**expon e_augm=augm(itypi,itypj)*fac_augm evdwij=evdwij*eps2rt*eps3rt - evdw=evdw+(evdwij+e_augm)*(1.0d0-sss) + evdw=evdw+(evdwij+e_augm)*sss1*(1.0d0-sss) if (lprn) then sigm=dabs(aa/bb)**(1.0D0/6.0D0) epsi=bb**2/aa @@ -1160,12 +1247,15 @@ C Calculate gradient components. fac=-expon*(e1+evdwij)*rij_shift sigder=fac*sigder fac=rij*fac-2*expon*rrij*e_augm + fac=fac+(evdwij+e_augm)* + & (-sss1*sssgrad/(1.0d0-sss)/sigmaii(itypi,itypj) + & +(1.0d0-sss)*sssgrad1/sss1)*rij C Calculate the radial part of the gradient gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac C Calculate angular part of the gradient. - call sc_grad_scale(1.0d0-sss) + call sc_grad_scale((1.0d0-sss)*sss1) endif enddo ! j enddo ! iint @@ -1177,7 +1267,7 @@ C C This subroutine calculates the interaction energy of nonbonded side chains C assuming the Gay-Berne-Vorobjev potential of interaction. C - implicit real*8 (a-h,o-z) + implicit none include 'DIMENSIONS' include 'COMMON.GEO' include 'COMMON.VAR' @@ -1188,8 +1278,18 @@ C include 'COMMON.INTERACT' include 'COMMON.IOUNITS' include 'COMMON.CALC' + include "COMMON.SPLITELE" + integer icall common /srutu/ icall logical lprn + integer itypi,itypj,itypi1,iint,ind + double precision eps0ij,epsi,sigm,fac,e1,e2,rrij,r0ij, + & xi,yi,zi,fac_augm,e_augm + double precision evdw + double precision fracinbuf,sslipi,evdwij_przed_tri,sig0ij, + & sslipj,ssgradlipj,ssgradlipi,dist_init,xj_safe,yj_safe,zj_safe, + & xj_temp,yj_temp,zj_temp,dist_temp,sig,rij_shift,faclip + double precision dist,sscale,sscagrad,sscagradlip,sscalelip evdw=0.0D0 c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 @@ -1238,7 +1338,7 @@ c dscj_inv=dsc_inv(itypj) rrij=1.0D0/(xj*xj+yj*yj+zj*zj) rij=dsqrt(rrij) - sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj))) + sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)),r_cut_respa) if (sss.gt.0.0d0) then @@ -1281,7 +1381,8 @@ C Calculate gradient components. e1=e1*eps1*eps2rt**2*eps3rt**2 fac=-expon*(e1+evdwij)*rij_shift sigder=fac*sigder - fac=rij*fac-2*expon*rrij*e_augm + fac=rij*fac-2*expon*rrij*e_augm+ + & (evdwij+e_augm)*sssgrad/sigmaii(itypi,itypj)/sss*rij C Calculate the radial part of the gradient gg(1)=xj*fac gg(2)=yj*fac @@ -1301,6 +1402,7 @@ C---------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.CALC' include 'COMMON.IOUNITS' + include "COMMON.SPLITELE" double precision dcosom1(3),dcosom2(3) double precision scalfac eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1 @@ -1378,6 +1480,7 @@ C include 'COMMON.FFIELD' include 'COMMON.TIME1' include 'COMMON.SHIELD' + include "COMMON.SPLITELE" dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3), & erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3) double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4), @@ -1573,7 +1676,7 @@ cd print *,"Processor",fg_rank," t_eelecij",t_eelecij end C------------------------------------------------------------------------------- subroutine eelecij_scale(i,j,ees,evdw1,eel_loc) - implicit real*8 (a-h,o-z) + implicit none include 'DIMENSIONS' #ifdef MPI include "mpif.h" @@ -1596,15 +1699,38 @@ C------------------------------------------------------------------------------- include 'COMMON.FFIELD' include 'COMMON.TIME1' include 'COMMON.SHIELD' + include "COMMON.SPLITELE" integer xshift,yshift,zshift - dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3), + double precision ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3), & erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3) double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4), & aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4),gmuij1(4),gmuji1(4), & gmuij2(4),gmuji2(4) + integer j1,j2,num_conti common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33, & dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi, & num_conti,j1,j2 + integer k,i,j,iteli,itelj,kkk,l,kkll,m,isubchap,ind,itypi,itypj + integer ilist,iresshield + double precision rlocshield + double precision ael6i,rrmij,rmij,r0ij,fcont,fprimcont,ees0tmp + double precision ees,evdw1,eel_loc,aaa,bbb,ael3i + double precision dxj,dyj,dzj,dx_normj,dy_normj,dz_normj,xj,yj,zj, + & rij,r3ij,r6ij,cosa,cosb,cosg,fac,ev1,ev2,fac3,fac4, + & evdwij,el1,el2,eesij,ees0ij,facvdw,facel,fac1,ecosa, + & ecosb,ecosg,ury,urz,vry,vrz,facr,a22der,a23der,a32der, + & a33der,eel_loc_ij,cosa4,wij,cosbg1,cosbg2,ees0pij, + & ees0pij1,ees0mij,ees0mij1,fac3p,ees0mijp,ees0pijp, + & ecosa1,ecosb1,ecosg1,ecosa2,ecosb2,ecosg2,ecosap,ecosbp, + & ecosgp,ecosam,ecosbm,ecosgm,ghalf,geel_loc_ij,geel_loc_ji, + & dxi,dyi,dzi,a22,a23,a32,a33 + double precision dist_init,xmedi,ymedi,zmedi,xj_safe,yj_safe, + & zj_safe,xj_temp,yj_temp,zj_temp,dist_temp,dx_normi,dy_normi, + & dz_normi,aux + double precision sss1,sssgrad1 + double precision sscale,sscagrad + double precision scalar + c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions #ifdef MOMENT double precision scal_el /1.0d0/ @@ -1619,29 +1745,29 @@ C 13-go grudnia roku pamietnego... c time00=MPI_Wtime() cd write (iout,*) "eelecij",i,j C print *,"WCHODZE2" - ind=ind+1 - iteli=itel(i) - itelj=itel(j) - if (j.eq.i+2 .and. itelj.eq.2) iteli=2 - aaa=app(iteli,itelj) - bbb=bpp(iteli,itelj) - ael6i=ael6(iteli,itelj) - ael3i=ael3(iteli,itelj) - dxj=dc(1,j) - dyj=dc(2,j) - dzj=dc(3,j) - dx_normj=dc_norm(1,j) - dy_normj=dc_norm(2,j) - dz_normj=dc_norm(3,j) - xj=c(1,j)+0.5D0*dxj - yj=c(2,j)+0.5D0*dyj - zj=c(3,j)+0.5D0*dzj - xj=mod(xj,boxxsize) - if (xj.lt.0) xj=xj+boxxsize - yj=mod(yj,boxysize) - if (yj.lt.0) yj=yj+boxysize - zj=mod(zj,boxzsize) - if (zj.lt.0) zj=zj+boxzsize + ind=ind+1 + iteli=itel(i) + itelj=itel(j) + if (j.eq.i+2 .and. itelj.eq.2) iteli=2 + aaa=app(iteli,itelj) + bbb=bpp(iteli,itelj) + ael6i=ael6(iteli,itelj) + ael3i=ael3(iteli,itelj) + dxj=dc(1,j) + dyj=dc(2,j) + dzj=dc(3,j) + dx_normj=dc_norm(1,j) + dy_normj=dc_norm(2,j) + dz_normj=dc_norm(3,j) + xj=c(1,j)+0.5D0*dxj + yj=c(2,j)+0.5D0*dyj + zj=c(3,j)+0.5D0*dzj + xj=mod(xj,boxxsize) + if (xj.lt.0) xj=xj+boxxsize + yj=mod(yj,boxysize) + if (yj.lt.0) yj=yj+boxysize + zj=mod(zj,boxzsize) + if (zj.lt.0) zj=zj+boxzsize dist_init=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2 xj_safe=xj yj_safe=yj @@ -1661,89 +1787,101 @@ C print *,"WCHODZE2" zj_temp=zj isubchap=1 endif - enddo - enddo - enddo - if (isubchap.eq.1) then - xj=xj_temp-xmedi - yj=yj_temp-ymedi - zj=zj_temp-zmedi - else - xj=xj_safe-xmedi - yj=yj_safe-ymedi - zj=zj_safe-zmedi - endif + enddo + enddo + enddo + if (isubchap.eq.1) then + xj=xj_temp-xmedi + yj=yj_temp-ymedi + zj=zj_temp-zmedi + else + xj=xj_safe-xmedi + yj=yj_safe-ymedi + zj=zj_safe-zmedi + endif - rij=xj*xj+yj*yj+zj*zj - rrmij=1.0D0/rij - rij=dsqrt(rij) - rmij=1.0D0/rij + rij=xj*xj+yj*yj+zj*zj + rrmij=1.0D0/rij + rij=dsqrt(rij) + rmij=1.0D0/rij c For extracting the short-range part of Evdwpp - sss=sscale(rij/rpp(iteli,itelj)) - sssgrad=sscagrad(rij/rpp(iteli,itelj)) - r3ij=rrmij*rmij - r6ij=r3ij*r3ij - cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj - cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij - cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij - fac=cosa-3.0D0*cosb*cosg - ev1=aaa*r6ij*r6ij + sss1=sscale(rij,r_cut_int) + if (sss1.eq.0.0d0) return + sss=sscale(rij/rpp(iteli,itelj),r_cut_respa) + sssgrad=sscagrad(rij/rpp(iteli,itelj),r_cut_respa) + sssgrad1=sscagrad(rij,r_cut_int) + r3ij=rrmij*rmij + r6ij=r3ij*r3ij + cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj + cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij + cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij + fac=cosa-3.0D0*cosb*cosg + ev1=aaa*r6ij*r6ij c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions - if (j.eq.i+2) ev1=scal_el*ev1 - ev2=bbb*r6ij - fac3=ael6i*r6ij - fac4=ael3i*r3ij - evdwij=ev1+ev2 - if (shield_mode.eq.0) then - fac_shield(i)=1.0 - fac_shield(j)=1.0 - endif - el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)) - el2=fac4*fac - el1=el1*fac_shield(i)**2*fac_shield(j)**2 - el2=el2*fac_shield(i)**2*fac_shield(j)**2 - eesij=el1+el2 + if (j.eq.i+2) ev1=scal_el*ev1 + ev2=bbb*r6ij + fac3=ael6i*r6ij + fac4=ael3i*r3ij + evdwij=ev1+ev2 + if (shield_mode.eq.0) then + fac_shield(i)=1.0 + fac_shield(j)=1.0 + endif + el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)) + el2=fac4*fac + el1=el1*fac_shield(i)**2*fac_shield(j)**2 + el2=el2*fac_shield(i)**2*fac_shield(j)**2 + eesij=el1+el2 C 12/26/95 - for the evaluation of multi-body H-bonding interactions - ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg) - ees=ees+eesij - evdw1=evdw1+evdwij*(1.0d0-sss) + ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg) + ees=ees+eesij*sss1 + evdw1=evdw1+evdwij*(1.0d0-sss)*sss1 cd write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)') cd & iteli,i,itelj,j,aaa,bbb,ael6i,ael3i, cd & 1.0D0/dsqrt(rrmij),evdwij,eesij, cd & xmedi,ymedi,zmedi,xj,yj,zj - if (energy_dec) then - write (iout,'(a6,2i5,0pf7.3,f7.3)') 'evdw1',i,j,evdwij,sss - write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij - endif + if (energy_dec) then + write (iout,'(a6,2i5,0pf7.3,2f7.3)') + & 'evdw1',i,j,evdwij,sss,sss1 + write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij + endif C C Calculate contributions to the Cartesian gradient. C #ifdef SPLITELE - facvdw=-6*rrmij*(ev1+evdwij)*(1.0d0-sss) - facel=-3*rrmij*(el1+eesij) - fac1=fac - erij(1)=xj*rmij - erij(2)=yj*rmij - erij(3)=zj*rmij + facvdw=-6*rrmij*(ev1+evdwij)*(1.0d0-sss)*sss1 +c & *((sslipi+sslipj)/2.0d0*lipscale**2+1.0d0) + facel=-3*rrmij*(el1+eesij)*sss1 +c & *((sslipi+sslipj)/2.0d0*lipscale**2+1.0d0) + fac1=fac + erij(1)=xj*rmij + erij(2)=yj*rmij + erij(3)=zj*rmij * * Radial derivatives. First process both termini of the fragment (i,j) * - ggg(1)=facel*xj - ggg(2)=facel*yj - ggg(3)=facel*zj - if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and. + aux=facel+sssgrad1*(1.0d0-sss)*eesij*rmij +c & *((sslipi+sslipj)/2.0d0*lipscale**2+1.0d0) + ggg(1)=aux*xj + ggg(2)=aux*yj + ggg(3)=aux*zj +c ggg(1)=facel*xj +c ggg(2)=facel*yj +c ggg(3)=facel*zj + if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and. & (shield_mode.gt.0)) then C print *,i,j - do ilist=1,ishield_list(i) - iresshield=shield_list(ilist,i) - do k=1,3 - rlocshield=grad_shield_side(k,ilist,i)*eesij/fac_shield(i) - & *2.0 + do ilist=1,ishield_list(i) + iresshield=shield_list(ilist,i) + do k=1,3 + rlocshield=grad_shield_side(k,ilist,i)*eesij*sss1 + & /fac_shield(i)*2.0*sss1 gshieldx(k,iresshield)=gshieldx(k,iresshield)+ & rlocshield - & +grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)*2.0 + & +grad_shield_loc(k,ilist,i)*eesij*sss1/fac_shield(i)*2.0 + & *sss1 gshieldc(k,iresshield-1)=gshieldc(k,iresshield-1)+rlocshield C gshieldc_loc(k,iresshield)=gshieldc_loc(k,iresshield) C & +grad_shield_loc(k,ilist,i)*eesij/fac_shield(i) @@ -1760,32 +1898,32 @@ C & -grad_shield_loc(k,ilist,i)*eesij/fac_shield(i) C C enddo C endif - enddo enddo - do ilist=1,ishield_list(j) - iresshield=shield_list(ilist,j) - do k=1,3 + enddo + do ilist=1,ishield_list(j) + iresshield=shield_list(ilist,j) + do k=1,3 rlocshield=grad_shield_side(k,ilist,j)*eesij/fac_shield(j) - & *2.0 + & *2.0*sss1 gshieldx(k,iresshield)=gshieldx(k,iresshield)+ - & rlocshield - & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)*2.0 + & rlocshield + & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)*2.0*sss1 gshieldc(k,iresshield-1)=gshieldc(k,iresshield-1)+rlocshield - enddo enddo + enddo - do k=1,3 - gshieldc(k,i)=gshieldc(k,i)+ - & grad_shield(k,i)*eesij/fac_shield(i)*2.0 - gshieldc(k,j)=gshieldc(k,j)+ - & grad_shield(k,j)*eesij/fac_shield(j)*2.0 - gshieldc(k,i-1)=gshieldc(k,i-1)+ - & grad_shield(k,i)*eesij/fac_shield(i)*2.0 - gshieldc(k,j-1)=gshieldc(k,j-1)+ - & grad_shield(k,j)*eesij/fac_shield(j)*2.0 + do k=1,3 + gshieldc(k,i)=gshieldc(k,i)+ + & grad_shield(k,i)*eesij/fac_shield(i)*2.0*sss1 + gshieldc(k,j)=gshieldc(k,j)+ + & grad_shield(k,j)*eesij/fac_shield(j)*2.0*sss1 + gshieldc(k,i-1)=gshieldc(k,i-1)+ + & grad_shield(k,i)*eesij/fac_shield(i)*2.0*sss1 + gshieldc(k,j-1)=gshieldc(k,j-1)+ + & grad_shield(k,j)*eesij/fac_shield(j)*2.0*sss1 - enddo - endif + enddo + endif c do k=1,3 c ghalf=0.5D0*ggg(k) @@ -1793,10 +1931,12 @@ c gelc(k,i)=gelc(k,i)+ghalf c gelc(k,j)=gelc(k,j)+ghalf c enddo c 9/28/08 AL Gradient compotents will be summed only at the end - do k=1,3 - gelc_long(k,j)=gelc_long(k,j)+ggg(k) - gelc_long(k,i)=gelc_long(k,i)-ggg(k) - enddo + do k=1,3 + gelc_long(k,j)=gelc_long(k,j)+ggg(k) + gelc_long(k,i)=gelc_long(k,i)-ggg(k) + enddo +c gelc_long(3,i)=gelc_long(3,i)+ +c ssgradlipi*eesij/2.0d0*lipscale**2*sss1 * * Loop over residues i+1 thru j-1. * @@ -1805,19 +1945,22 @@ cgrad do l=1,3 cgrad gelc(l,k)=gelc(l,k)+ggg(l) cgrad enddo cgrad enddo - ggg(1)=facvdw*xj-sssgrad*rmij*evdwij*xj/rpp(iteli,itelj) - ggg(2)=facvdw*yj-sssgrad*rmij*evdwij*yj/rpp(iteli,itelj) - ggg(3)=facvdw*zj-sssgrad*rmij*evdwij*zj/rpp(iteli,itelj) + facvdw=facvdw+ + & (-sss1*sssgrad/rpp(iteli,itelj)+(1.0d0-sss)*sssgrad1)*rmij*evdwij +c & *((sslipi+sslipj)/2.0d0*lipscale**2+1.0d0) + ggg(1)=facvdw*xj + ggg(2)=facvdw*yj + ggg(3)=facvdw*zj c do k=1,3 c ghalf=0.5D0*ggg(k) c gvdwpp(k,i)=gvdwpp(k,i)+ghalf c gvdwpp(k,j)=gvdwpp(k,j)+ghalf c enddo c 9/28/08 AL Gradient compotents will be summed only at the end - do k=1,3 - gvdwpp(k,j)=gvdwpp(k,j)+ggg(k) - gvdwpp(k,i)=gvdwpp(k,i)-ggg(k) - enddo + do k=1,3 + gvdwpp(k,j)=gvdwpp(k,j)+ggg(k) + gvdwpp(k,i)=gvdwpp(k,i)-ggg(k) + enddo * * Loop over residues i+1 thru j-1. * @@ -1827,29 +1970,40 @@ cgrad gvdwpp(l,k)=gvdwpp(l,k)+ggg(l) cgrad enddo cgrad enddo #else - facvdw=ev1+evdwij*(1.0d0-sss) - facel=el1+eesij - fac1=fac - fac=-3*rrmij*(facvdw+facvdw+facel) - erij(1)=xj*rmij - erij(2)=yj*rmij - erij(3)=zj*rmij + facvdw=-6*rrmij*(ev1+evdwij)*(1.0d0-sss)*sss1 +c & *((sslipi+sslipj)/2.0d0*lipscale**2+1.0d0) + facel=-3*rrmij*(el1+eesij)*sss1 +c & *((sslipi+sslipj)/2.0d0*lipscale**2+1.0d0) + +c facvdw=ev1+evdwij*(1.0d0-sss)*sss1 +c facel=el1+eesij + fac1=fac + fac=-3*rrmij*(facvdw+facvdw+facel) + erij(1)=xj*rmij + erij(2)=yj*rmij + erij(3)=zj*rmij * * Radial derivatives. First process both termini of the fragment (i,j) * - ggg(1)=fac*xj - ggg(2)=fac*yj - ggg(3)=fac*zj + aux=fac+(sssgrad1*(1.0d0-sss)-sssgrad*sss1/rpp(iteli,itelj)) + & *eesij*rmij +c & *((sslipi+sslipj)/2.0d0*lipscale**2+1.0d0) + ggg(1)=aux*xj + ggg(2)=aux*yj + ggg(3)=axu*zj +c ggg(1)=fac*xj +c ggg(2)=fac*yj +c ggg(3)=fac*zj c do k=1,3 c ghalf=0.5D0*ggg(k) c gelc(k,i)=gelc(k,i)+ghalf c gelc(k,j)=gelc(k,j)+ghalf c enddo c 9/28/08 AL Gradient compotents will be summed only at the end - do k=1,3 - gelc_long(k,j)=gelc(k,j)+ggg(k) - gelc_long(k,i)=gelc(k,i)-ggg(k) - enddo + do k=1,3 + gelc_long(k,j)=gelc(k,j)+ggg(k) + gelc_long(k,i)=gelc(k,i)-ggg(k) + enddo * * Loop over residues i+1 thru j-1. * @@ -1862,33 +2016,36 @@ c 9/28/08 AL Gradient compotents will be summed only at the end C ggg(1)=facvdw*xj C ggg(2)=facvdw*yj C ggg(3)=facvdw*zj - ggg(1)=facvdw*xj-sssgrad*rmij*evdwij*xj/rpp(iteli,itelj) - ggg(2)=facvdw*yj-sssgrad*rmij*evdwij*yj/rpp(iteli,itelj) - ggg(3)=facvdw*zj-sssgrad*rmij*evdwij*zj/rpp(iteli,itelj) - do k=1,3 - gvdwpp(k,j)=gvdwpp(k,j)+ggg(k) - gvdwpp(k,i)=gvdwpp(k,i)-ggg(k) - enddo + facvdw=facvdw + & (-sssgrad*sss1/rpp(iteli,itelj)+sssgrad1*(1.0d0-sss))*rmij*evdwij + ggg(1)=facvdw*xj + ggg(2)=facvdw*yj + ggg(3)=facvdw*zj + do k=1,3 + gvdwpp(k,j)=gvdwpp(k,j)+ggg(k) + gvdwpp(k,i)=gvdwpp(k,i)-ggg(k) + enddo #endif * * Angular part * - ecosa=2.0D0*fac3*fac1+fac4 - fac4=-3.0D0*fac4 - fac3=-6.0D0*fac3 - ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4) - ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4) - do k=1,3 - dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb) - dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg) - enddo + ecosa=2.0D0*fac3*fac1+fac4 + fac4=-3.0D0*fac4 + fac3=-6.0D0*fac3 + ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4) + ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4) + do k=1,3 + dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb) + dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg) + enddo cd print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3), cd & (dcosg(k),k=1,3) - do k=1,3 - ggg(k)=(ecosb*dcosb(k)+ecosg*dcosg(k))* - & fac_shield(i)**2*fac_shield(j)**2 + do k=1,3 + ggg(k)=(ecosb*dcosb(k)+ecosg*dcosg(k))*sss1 + & *fac_shield(i)**2*fac_shield(j)**2 +c & *((sslipi+sslipj)/2.0d0*lipscale**2+1.0d0) - enddo + enddo c do k=1,3 c ghalf=0.5D0*ggg(k) c gelc(k,i)=gelc(k,i)+ghalf @@ -1903,22 +2060,24 @@ cgrad do l=1,3 cgrad gelc(l,k)=gelc(l,k)+ggg(l) cgrad enddo cgrad enddo - do k=1,3 - gelc(k,i)=gelc(k,i) - & +((ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i)) - & + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)) - & *fac_shield(i)**2*fac_shield(j)**2 + do k=1,3 + gelc(k,i)=gelc(k,i) + & +((ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i)) + & +ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1))*sss1 + & *fac_shield(i)**2*fac_shield(j)**2 +c & *((sslipi+sslipj)/2.0d0*lipscale**2+1.0d0) - gelc(k,j)=gelc(k,j) - & +((ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j)) - & + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)) - & *fac_shield(i)**2*fac_shield(j)**2 - gelc_long(k,j)=gelc_long(k,j)+ggg(k) - gelc_long(k,i)=gelc_long(k,i)-ggg(k) - enddo - IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 - & .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 - & .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN + gelc(k,j)=gelc(k,j) + & +((ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j)) + & +ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1))*sss1 + & *fac_shield(i)**2*fac_shield(j)**2 +c & *((sslipi+sslipj)/2.0d0*lipscale**2+1.0d0) + gelc_long(k,j)=gelc_long(k,j)+ggg(k) + gelc_long(k,i)=gelc_long(k,i)-ggg(k) + enddo + IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 + & .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 + & .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN C C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction C energy of a peptide unit is assumed in the form of a second-order @@ -1926,44 +2085,44 @@ C Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al. C Macromolecules, 1974, 7, 797-806 for definition). This correlation terms C are computed for EVERY pair of non-contiguous peptide groups. C - if (j.lt.nres-1) then - j1=j+1 - j2=j-1 - else - j1=j-1 - j2=j-2 - endif - kkk=0 - do k=1,2 - do l=1,2 - kkk=kkk+1 - muij(kkk)=mu(k,i)*mu(l,j) + if (j.lt.nres-1) then + j1=j+1 + j2=j-1 + else + j1=j-1 + j2=j-2 + endif + kkk=0 + do k=1,2 + do l=1,2 + kkk=kkk+1 + muij(kkk)=mu(k,i)*mu(l,j) #ifdef NEWCORR - gmuij1(kkk)=gtb1(k,i+1)*mu(l,j) + gmuij1(kkk)=gtb1(k,i+1)*mu(l,j) c write(iout,*) 'k=',k,i,gtb1(k,i+1),gtb1(k,i+1)*mu(l,j) - gmuij2(kkk)=gUb2(k,i)*mu(l,j) - gmuji1(kkk)=mu(k,i)*gtb1(l,j+1) + gmuij2(kkk)=gUb2(k,i)*mu(l,j) + gmuji1(kkk)=mu(k,i)*gtb1(l,j+1) c write(iout,*) 'l=',l,j,gtb1(l,j+1),gtb1(l,j+1)*mu(k,i) - gmuji2(kkk)=mu(k,i)*gUb2(l,j) + gmuji2(kkk)=mu(k,i)*gUb2(l,j) #endif - enddo - enddo + enddo + enddo cd write (iout,*) 'EELEC: i',i,' j',j cd write (iout,*) 'j',j,' j1',j1,' j2',j2 cd write(iout,*) 'muij',muij - ury=scalar(uy(1,i),erij) - urz=scalar(uz(1,i),erij) - vry=scalar(uy(1,j),erij) - vrz=scalar(uz(1,j),erij) - a22=scalar(uy(1,i),uy(1,j))-3*ury*vry - a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz - a32=scalar(uz(1,i),uy(1,j))-3*urz*vry - a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz - fac=dsqrt(-ael6i)*r3ij - a22=a22*fac - a23=a23*fac - a32=a32*fac - a33=a33*fac + ury=scalar(uy(1,i),erij) + urz=scalar(uz(1,i),erij) + vry=scalar(uy(1,j),erij) + vrz=scalar(uz(1,j),erij) + a22=scalar(uy(1,i),uy(1,j))-3*ury*vry + a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz + a32=scalar(uz(1,i),uy(1,j))-3*urz*vry + a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz + fac=dsqrt(-ael6i)*r3ij + a22=a22*fac + a23=a23*fac + a32=a32*fac + a33=a33*fac cd write (iout,'(4i5,4f10.5)') cd & i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33 cd write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij @@ -1976,101 +2135,113 @@ cd write (iout,'(4f10.5)') ury,urz,vry,vrz cd write (iout,'(9f10.5/)') cd & fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij C Derivatives of the elements of A in virtual-bond vectors - call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1)) - do k=1,3 - uryg(k,1)=scalar(erder(1,k),uy(1,i)) - uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1)) - uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1)) - urzg(k,1)=scalar(erder(1,k),uz(1,i)) - urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1)) - urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1)) - vryg(k,1)=scalar(erder(1,k),uy(1,j)) - vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1)) - vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1)) - vrzg(k,1)=scalar(erder(1,k),uz(1,j)) - vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1)) - vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1)) - enddo + call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1)) + do k=1,3 + uryg(k,1)=scalar(erder(1,k),uy(1,i)) + uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1)) + uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1)) + urzg(k,1)=scalar(erder(1,k),uz(1,i)) + urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1)) + urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1)) + vryg(k,1)=scalar(erder(1,k),uy(1,j)) + vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1)) + vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1)) + vrzg(k,1)=scalar(erder(1,k),uz(1,j)) + vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1)) + vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1)) + enddo C Compute radial contributions to the gradient - facr=-3.0d0*rrmij - a22der=a22*facr - a23der=a23*facr - a32der=a32*facr - a33der=a33*facr - agg(1,1)=a22der*xj - agg(2,1)=a22der*yj - agg(3,1)=a22der*zj - agg(1,2)=a23der*xj - agg(2,2)=a23der*yj - agg(3,2)=a23der*zj - agg(1,3)=a32der*xj - agg(2,3)=a32der*yj - agg(3,3)=a32der*zj - agg(1,4)=a33der*xj - agg(2,4)=a33der*yj - agg(3,4)=a33der*zj + facr=-3.0d0*rrmij + a22der=a22*facr + a23der=a23*facr + a32der=a32*facr + a33der=a33*facr + agg(1,1)=a22der*xj + agg(2,1)=a22der*yj + agg(3,1)=a22der*zj + agg(1,2)=a23der*xj + agg(2,2)=a23der*yj + agg(3,2)=a23der*zj + agg(1,3)=a32der*xj + agg(2,3)=a32der*yj + agg(3,3)=a32der*zj + agg(1,4)=a33der*xj + agg(2,4)=a33der*yj + agg(3,4)=a33der*zj C Add the contributions coming from er - fac3=-3.0d0*fac - do k=1,3 - agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury) - agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury) - agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz) - agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz) - enddo - do k=1,3 + fac3=-3.0d0*fac + do k=1,3 + agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury) + agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury) + agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz) + agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz) + enddo + do k=1,3 C Derivatives in DC(i) cgrad ghalf1=0.5d0*agg(k,1) cgrad ghalf2=0.5d0*agg(k,2) cgrad ghalf3=0.5d0*agg(k,3) cgrad ghalf4=0.5d0*agg(k,4) - aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j)) - & -3.0d0*uryg(k,2)*vry)!+ghalf1 - aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j)) - & -3.0d0*uryg(k,2)*vrz)!+ghalf2 - aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j)) - & -3.0d0*urzg(k,2)*vry)!+ghalf3 - aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j)) - & -3.0d0*urzg(k,2)*vrz)!+ghalf4 + aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j)) + & -3.0d0*uryg(k,2)*vry)!+ghalf1 + aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j)) + & -3.0d0*uryg(k,2)*vrz)!+ghalf2 + aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j)) + & -3.0d0*urzg(k,2)*vry)!+ghalf3 + aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j)) + & -3.0d0*urzg(k,2)*vrz)!+ghalf4 C Derivatives in DC(i+1) - aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j)) - & -3.0d0*uryg(k,3)*vry)!+agg(k,1) - aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j)) - & -3.0d0*uryg(k,3)*vrz)!+agg(k,2) - aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j)) - & -3.0d0*urzg(k,3)*vry)!+agg(k,3) - aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j)) - & -3.0d0*urzg(k,3)*vrz)!+agg(k,4) + aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j)) + & -3.0d0*uryg(k,3)*vry)!+agg(k,1) + aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j)) + & -3.0d0*uryg(k,3)*vrz)!+agg(k,2) + aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j)) + & -3.0d0*urzg(k,3)*vry)!+agg(k,3) + aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j)) + & -3.0d0*urzg(k,3)*vrz)!+agg(k,4) C Derivatives in DC(j) - aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i)) - & -3.0d0*vryg(k,2)*ury)!+ghalf1 - aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i)) - & -3.0d0*vrzg(k,2)*ury)!+ghalf2 - aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i)) - & -3.0d0*vryg(k,2)*urz)!+ghalf3 - aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) - & -3.0d0*vrzg(k,2)*urz)!+ghalf4 + aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i)) + & -3.0d0*vryg(k,2)*ury)!+ghalf1 + aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i)) + & -3.0d0*vrzg(k,2)*ury)!+ghalf2 + aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i)) + & -3.0d0*vryg(k,2)*urz)!+ghalf3 + aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) + & -3.0d0*vrzg(k,2)*urz)!+ghalf4 C Derivatives in DC(j+1) or DC(nres-1) - aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i)) - & -3.0d0*vryg(k,3)*ury) - aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i)) - & -3.0d0*vrzg(k,3)*ury) - aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i)) - & -3.0d0*vryg(k,3)*urz) - aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) - & -3.0d0*vrzg(k,3)*urz) + aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i)) + & -3.0d0*vryg(k,3)*ury) + aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i)) + & -3.0d0*vrzg(k,3)*ury) + aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i)) + & -3.0d0*vryg(k,3)*urz) + aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) + & -3.0d0*vrzg(k,3)*urz) cgrad if (j.eq.nres-1 .and. i.lt.j-2) then cgrad do l=1,4 cgrad aggj1(k,l)=aggj1(k,l)+agg(k,l) cgrad enddo cgrad endif + enddo + acipa(1,1)=a22 + acipa(1,2)=a23 + acipa(2,1)=a32 + acipa(2,2)=a33 + a22=-a22 + a23=-a23 + do l=1,2 + do k=1,3 + agg(k,l)=-agg(k,l) + aggi(k,l)=-aggi(k,l) + aggi1(k,l)=-aggi1(k,l) + aggj(k,l)=-aggj(k,l) + aggj1(k,l)=-aggj1(k,l) enddo - acipa(1,1)=a22 - acipa(1,2)=a23 - acipa(2,1)=a32 - acipa(2,2)=a33 + enddo + if (j.lt.nres-1) then a22=-a22 - a23=-a23 - do l=1,2 + a32=-a32 + do l=1,3,2 do k=1,3 agg(k,l)=-agg(k,l) aggi(k,l)=-aggi(k,l) @@ -2079,56 +2250,44 @@ cgrad endif aggj1(k,l)=-aggj1(k,l) enddo enddo - if (j.lt.nres-1) then - a22=-a22 - a32=-a32 - do l=1,3,2 - do k=1,3 - agg(k,l)=-agg(k,l) - aggi(k,l)=-aggi(k,l) - aggi1(k,l)=-aggi1(k,l) - aggj(k,l)=-aggj(k,l) - aggj1(k,l)=-aggj1(k,l) - enddo + else + a22=-a22 + a23=-a23 + a32=-a32 + a33=-a33 + do l=1,4 + do k=1,3 + agg(k,l)=-agg(k,l) + aggi(k,l)=-aggi(k,l) + aggi1(k,l)=-aggi1(k,l) + aggj(k,l)=-aggj(k,l) + aggj1(k,l)=-aggj1(k,l) enddo - else - a22=-a22 - a23=-a23 - a32=-a32 - a33=-a33 - do l=1,4 - do k=1,3 - agg(k,l)=-agg(k,l) - aggi(k,l)=-aggi(k,l) - aggi1(k,l)=-aggi1(k,l) - aggj(k,l)=-aggj(k,l) - aggj1(k,l)=-aggj1(k,l) - enddo - enddo - endif - ENDIF ! WCORR - IF (wel_loc.gt.0.0d0) THEN + enddo + endif + ENDIF ! WCORR + IF (wel_loc.gt.0.0d0) THEN C Contribution to the local-electrostatic energy coming from the i-j pair - eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3) - & +a33*muij(4) -cd write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij + eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3) + & +a33*muij(4) +cd write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij - if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') - & 'eelloc',i,j,eel_loc_ij + if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') + & 'eelloc',i,j,eel_loc_ij - if (shield_mode.eq.0) then - fac_shield(i)=1.0 - fac_shield(j)=1.0 -C else -C fac_shield(i)=0.4 -C fac_shield(j)=0.6 - endif - eel_loc_ij=eel_loc_ij - & *fac_shield(i)*fac_shield(j) - eel_loc=eel_loc+eel_loc_ij + if (shield_mode.eq.0) then + fac_shield(i)=1.0 + fac_shield(j)=1.0 +C else +C fac_shield(i)=0.4 +C fac_shield(j)=0.6 + endif + eel_loc_ij=eel_loc_ij + & *fac_shield(i)*fac_shield(j)*sss1 + eel_loc=eel_loc+eel_loc_ij - if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and. + if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and. & (shield_mode.gt.0)) then C print *,i,j @@ -2140,7 +2299,7 @@ C print *,i,j C & *2.0 gshieldx_ll(k,iresshield)=gshieldx_ll(k,iresshield)+ & rlocshield - & +grad_shield_loc(k,ilist,i)*eel_loc_ij/fac_shield(i) + & +grad_shield_loc(k,ilist,i)*eel_loc_ij/fac_shield(i) gshieldc_ll(k,iresshield-1)=gshieldc_ll(k,iresshield-1) & +rlocshield enddo @@ -2153,7 +2312,7 @@ C & *2.0 C & *2.0 gshieldx_ll(k,iresshield)=gshieldx_ll(k,iresshield)+ & rlocshield - & +grad_shield_loc(k,ilist,j)*eel_loc_ij/fac_shield(j) + & +grad_shield_loc(k,ilist,j)*eel_loc_ij/fac_shield(j) gshieldc_ll(k,iresshield-1)=gshieldc_ll(k,iresshield-1) & +rlocshield @@ -2169,34 +2328,34 @@ C & *2.0 & grad_shield(k,i)*eel_loc_ij/fac_shield(i) gshieldc_ll(k,j-1)=gshieldc_ll(k,j-1)+ & grad_shield(k,j)*eel_loc_ij/fac_shield(j) - enddo - endif + enddo + endif #ifdef NEWCORR - geel_loc_ij=(a22*gmuij1(1) + geel_loc_ij=(a22*gmuij1(1) & +a23*gmuij1(2) & +a32*gmuij1(3) & +a33*gmuij1(4)) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss1 c write(iout,*) "derivative over thatai" c write(iout,*) a22*gmuij1(1), a23*gmuij1(2) ,a32*gmuij1(3), c & a33*gmuij1(4) - gloc(nphi+i,icg)=gloc(nphi+i,icg)+ + gloc(nphi+i,icg)=gloc(nphi+i,icg)+ & geel_loc_ij*wel_loc c write(iout,*) "derivative over thatai-1" c write(iout,*) a22*gmuij2(1), a23*gmuij2(2) ,a32*gmuij2(3), c & a33*gmuij2(4) - geel_loc_ij= + geel_loc_ij= & a22*gmuij2(1) & +a23*gmuij2(2) & +a32*gmuij2(3) & +a33*gmuij2(4) - gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+ + gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+ & geel_loc_ij*wel_loc - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss1 c Derivative over j residue - geel_loc_ji=a22*gmuji1(1) + geel_loc_ji=a22*gmuji1(1) & +a23*gmuji1(2) & +a32*gmuji1(3) & +a33*gmuji1(4) @@ -2206,9 +2365,9 @@ c & a33*gmuji1(4) gloc(nphi+j,icg)=gloc(nphi+j,icg)+ & geel_loc_ji*wel_loc - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss1 - geel_loc_ji= + geel_loc_ji= & +a22*gmuji2(1) & +a23*gmuji2(2) & +a32*gmuji2(3) @@ -2216,148 +2375,171 @@ c & a33*gmuji1(4) c write(iout,*) "derivative over thataj-1" c write(iout,*) a22*gmuji2(1), a23*gmuji2(2) ,a32*gmuji2(3), c & a33*gmuji2(4) - gloc(nphi+j-1,icg)=gloc(nphi+j-1,icg)+ - & geel_loc_ji*wel_loc - & *fac_shield(i)*fac_shield(j) + gloc(nphi+j-1,icg)=gloc(nphi+j-1,icg)+ + & geel_loc_ji*wel_loc + & *fac_shield(i)*fac_shield(j)*sss1 #endif -cC Partial derivatives in virtual-bond dihedral angles gamma - if (i.gt.1) +cC Paral derivatives in virtual-bond dihedral angles gamma + if (i.gt.1) & gel_loc_loc(i-1)=gel_loc_loc(i-1)+ - & (a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j) - & +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)) - & *fac_shield(i)*fac_shield(j) + & (a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j) + & +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)) + & *fac_shield(i)*fac_shield(j)*sss1 +c & *fac_shield(i)*fac_shield(j) +c & *((sslipi+sslipj)/2.0d0*lipscale+1.0d0) - gel_loc_loc(j-1)=gel_loc_loc(j-1)+ - & (a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j) - & +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)) - & *fac_shield(i)*fac_shield(j) + + gel_loc_loc(j-1)=gel_loc_loc(j-1)+ + & (a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j) + & +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)) + & *fac_shield(i)*fac_shield(j)*sss1 +c & *fac_shield(i)*fac_shield(j) +c & *((sslipi+sslipj)/2.0d0*lipscale+1.0d0) C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2) - do l=1,3 - ggg(l)=(agg(l,1)*muij(1)+ - & agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)) - & *fac_shield(i)*fac_shield(j) + aux=eel_loc_ij/sss1*sssgrad1*rmij + ggg(1)=aux*xj + ggg(2)=aux*yj + ggg(3)=aux*zj + do l=1,3 + ggg(l)=ggg(l)+(agg(l,1)*muij(1)+ + & agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)) + & *fac_shield(i)*fac_shield(j)*sss1 +c & *fac_shield(i)*fac_shield(j) +c & *((sslipi+sslipj)/2.0d0*lipscale+1.0d0) - gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l) - gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l) -cgrad ghalf=0.5d0*ggg(l) -cgrad gel_loc(l,i)=gel_loc(l,i)+ghalf -cgrad gel_loc(l,j)=gel_loc(l,j)+ghalf - enddo + gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l) + gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l) +cgrad ghalf=0.5d0*ggg(l) +cgrad gel_loc(l,i)=gel_loc(l,i)+ghalf +cgrad gel_loc(l,j)=gel_loc(l,j)+ghalf + enddo cgrad do k=i+1,j2 cgrad do l=1,3 cgrad gel_loc(l,k)=gel_loc(l,k)+ggg(l) cgrad enddo cgrad enddo C Remaining derivatives of eello - do l=1,3 - gel_loc(l,i)=gel_loc(l,i)+(aggi(l,1)*muij(1)+ - & aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)) - & *fac_shield(i)*fac_shield(j) +c gel_loc_long(3,j)=gel_loc_long(3,j)+ & +c ssgradlipj*eel_loc_ij/2.0d0*lipscale/ & +c ((sslipi+sslipj)/2.0d0*lipscale+1.0d0)*sss_ele_cut +c +c gel_loc_long(3,i)=gel_loc_long(3,i)+ & +c ssgradlipi*eel_loc_ij/2.0d0*lipscale/ & +c ((sslipi+sslipj)/2.0d0*lipscale+1.0d0)*sss_ele_cut - gel_loc(l,i+1)=gel_loc(l,i+1)+(aggi1(l,1)*muij(1)+ - & aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)) - & *fac_shield(i)*fac_shield(j) + do l=1,3 + gel_loc(l,i)=gel_loc(l,i)+(aggi(l,1)*muij(1)+ + & aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)) + & *fac_shield(i)*fac_shield(j)*sss1 +c & *((sslipi+sslipj)/2.0d0*lipscale+1.0d0) - gel_loc(l,j)=gel_loc(l,j)+(aggj(l,1)*muij(1)+ - & aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)) - & *fac_shield(i)*fac_shield(j) + gel_loc(l,i+1)=gel_loc(l,i+1)+(aggi1(l,1)*muij(1)+ + & aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)) + & *fac_shield(i)*fac_shield(j)*sss1 +c & *((sslipi+sslipj)/2.0d0*lipscale+1.0d0) - gel_loc(l,j1)=gel_loc(l,j1)+(aggj1(l,1)*muij(1)+ - & aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)) - & *fac_shield(i)*fac_shield(j) + gel_loc(l,j)=gel_loc(l,j)+(aggj(l,1)*muij(1)+ + & aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)) + & *fac_shield(i)*fac_shield(j)*sss1 +c & *((sslipi+sslipj)/2.0d0*lipscale+1.0d0) - enddo - ENDIF + gel_loc(l,j1)=gel_loc(l,j1)+(aggj1(l,1)*muij(1)+ + & aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)) + & *fac_shield(i)*fac_shield(j)*sss1 +c & *((sslipi+sslipj)/2.0d0*lipscale+1.0d0) + + enddo + ENDIF #ifdef FOURBODY C Change 12/26/95 to calculate four-body contributions to H-bonding energy c if (j.gt.i+1 .and. num_conti.le.maxconts) then - if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0 - & .and. num_conti.le.maxconts) then + if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0 + & .and. num_conti.le.maxconts) then c write (iout,*) i,j," entered corr" C C Calculate the contact function. The ith column of the array JCONT will C contain the numbers of atoms that make contacts with the atom I (of numbers C greater than I). The arrays FACONT and GACONT will contain the values of C the contact function and its derivative. -c r0ij=1.02D0*rpp(iteli,itelj) -c r0ij=1.11D0*rpp(iteli,itelj) - r0ij=2.20D0*rpp(iteli,itelj) -c r0ij=1.55D0*rpp(iteli,itelj) - call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont) - if (fcont.gt.0.0D0) then - num_conti=num_conti+1 - if (num_conti.gt.maxconts) then - write (iout,*) 'WARNING - max. # of contacts exceeded;', - & ' will skip next contacts for this conf.' - else - jcont_hb(num_conti,i)=j -cd write (iout,*) "i",i," j",j," num_conti",num_conti, -cd & " jcont_hb",jcont_hb(num_conti,i) - IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. - & wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN +c r0ij=1.02D0*rpp(iteli,itelj) +c r0ij=1.11D0*rpp(iteli,itelj) + r0ij=2.20D0*rpp(iteli,itelj) +c r0ij=1.55D0*rpp(iteli,itelj) + call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont) + if (fcont.gt.0.0D0) then + num_conti=num_conti+1 + if (num_conti.gt.maxconts) then + write (iout,*) 'WARNING - max. # of contacts exceeded;', + & ' will skip next contacts for this conf.' + else + jcont_hb(num_conti,i)=j +cd write (iout,*) "i",i," j",j," num_conti",num_conti, +cd " jcont_hb",jcont_hb(num_conti,i) + IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. + & wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el C terms. - d_cont(num_conti,i)=rij + d_cont(num_conti,i)=rij cd write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij C --- Electrostatic-interaction matrix --- - a_chuj(1,1,num_conti,i)=a22 - a_chuj(1,2,num_conti,i)=a23 - a_chuj(2,1,num_conti,i)=a32 - a_chuj(2,2,num_conti,i)=a33 + a_chuj(1,1,num_conti,i)=a22 + a_chuj(1,2,num_conti,i)=a23 + a_chuj(2,1,num_conti,i)=a32 + a_chuj(2,2,num_conti,i)=a33 C --- Gradient of rij - do kkk=1,3 - grij_hb_cont(kkk,num_conti,i)=erij(kkk) - enddo - kkll=0 - do k=1,2 - do l=1,2 - kkll=kkll+1 - do m=1,3 - a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll) - a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll) - a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll) - a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll) - a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll) - enddo + do kkk=1,3 + grij_hb_cont(kkk,num_conti,i)=erij(kkk) + enddo + kkll=0 + do k=1,2 + do l=1,2 + kkll=kkll+1 + do m=1,3 + a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll) + a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll) + a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll) + a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll) + a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll) enddo enddo - ENDIF - IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN + enddo + ENDIF + IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN C Calculate contact energies - cosa4=4.0D0*cosa - wij=cosa-3.0D0*cosb*cosg - cosbg1=cosb+cosg - cosbg2=cosb-cosg -c fac3=dsqrt(-ael6i)/r0ij**3 - fac3=dsqrt(-ael6i)*r3ij -c ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1) - ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1 - if (ees0tmp.gt.0) then - ees0pij=dsqrt(ees0tmp) - else - ees0pij=0 - endif -c ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2) - ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2 - if (ees0tmp.gt.0) then - ees0mij=dsqrt(ees0tmp) - else - ees0mij=0 - endif -c ees0mij=0.0D0 - if (shield_mode.eq.0) then + cosa4=4.0D0*cosa + wij=cosa-3.0D0*cosb*cosg + cosbg1=cosb+cosg + cosbg2=cosb-cosg +c fac3=dsqrt(-ael6i)/r0ij**3 + fac3=dsqrt(-ael6i)*r3ij +c ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1) + ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1 + if (ees0tmp.gt.0) then + ees0pij=dsqrt(ees0tmp) + else + ees0pij=0 + endif +c ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2) + ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2 + if (ees0tmp.gt.0) then + ees0mij=dsqrt(ees0tmp) + else + ees0mij=0 + endif +c ees0mij=0.0D0 + if (shield_mode.eq.0) then fac_shield(i)=1.0d0 fac_shield(j)=1.0d0 - else + else ees0plist(num_conti,i)=j C fac_shield(i)=0.4d0 C fac_shield(j)=0.6d0 - endif - ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij) - & *fac_shield(i)*fac_shield(j) - ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij) - & *fac_shield(i)*fac_shield(j) + endif + ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij) + & *fac_shield(i)*fac_shield(j)*sss1 + ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij) + & *fac_shield(i)*fac_shield(j)*sss1 C Diagnostics. Comment out or remove after debugging! c ees0p(num_conti,i)=0.5D0*fac3*ees0pij @@ -2367,24 +2549,24 @@ C End diagnostics. c write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij, c & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont C Angular derivatives of the contact function - ees0pij1=fac3/ees0pij - ees0mij1=fac3/ees0mij - fac3p=-3.0D0*fac3*rrmij - ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij) - ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij) -c ees0mij1=0.0D0 - ecosa1= ees0pij1*( 1.0D0+0.5D0*wij) - ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1) - ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1) - ecosa2= ees0mij1*(-1.0D0+0.5D0*wij) - ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) - ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2) - ecosap=ecosa1+ecosa2 - ecosbp=ecosb1+ecosb2 - ecosgp=ecosg1+ecosg2 - ecosam=ecosa1-ecosa2 - ecosbm=ecosb1-ecosb2 - ecosgm=ecosg1-ecosg2 + ees0pij1=fac3/ees0pij + ees0mij1=fac3/ees0mij + fac3p=-3.0D0*fac3*rrmij + ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij) + ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij) +c ees0mij1=0.0D0 + ecosa1= ees0pij1*( 1.0D0+0.5D0*wij) + ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1) + ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1) + ecosa2= ees0mij1*(-1.0D0+0.5D0*wij) + ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) + ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2) + ecosap=ecosa1+ecosa2 + ecosbp=ecosb1+ecosb2 + ecosgp=ecosg1+ecosg2 + ecosam=ecosa1-ecosa2 + ecosbm=ecosb1-ecosb2 + ecosgm=ecosg1-ecosg2 C Diagnostics c ecosap=ecosa1 c ecosbp=ecosb1 @@ -2393,85 +2575,91 @@ c ecosam=0.0D0 c ecosbm=0.0D0 c ecosgm=0.0D0 C End diagnostics - facont_hb(num_conti,i)=fcont - fprimcont=fprimcont/rij + facont_hb(num_conti,i)=fcont + fprimcont=fprimcont/rij cd facont_hb(num_conti,i)=1.0D0 C Following line is for diagnostics. cd fprimcont=0.0D0 - do k=1,3 - dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb) - dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg) - enddo - do k=1,3 - gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k) - gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k) - enddo - gggp(1)=gggp(1)+ees0pijp*xj - gggp(2)=gggp(2)+ees0pijp*yj - gggp(3)=gggp(3)+ees0pijp*zj - gggm(1)=gggm(1)+ees0mijp*xj - gggm(2)=gggm(2)+ees0mijp*yj - gggm(3)=gggm(3)+ees0mijp*zj + do k=1,3 + dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb) + dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg) + enddo + do k=1,3 + gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k) + gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k) + enddo + gggp(1)=gggp(1)+ees0pijp*xj + & +ees0p(num_conti,i)/sss1*rmij*xj*sssgrad1 + gggp(2)=gggp(2)+ees0pijp*yj + & +ees0p(num_conti,i)/sss1*rmij*yj*sssgrad1 + gggp(3)=gggp(3)+ees0pijp*zj + & +ees0p(num_conti,i)/sss1*rmij*zj*sssgrad1 + gggm(1)=gggm(1)+ees0mijp*xj + & +ees0m(num_conti,i)/sss1*rmij*xj*sssgrad1 + gggm(2)=gggm(2)+ees0mijp*yj + & +ees0m(num_conti,i)/sss1*rmij*yj*sssgrad1 + gggm(3)=gggm(3)+ees0mijp*zj + & +ees0m(num_conti,i)/sss1*rmij*zj*sssgrad1 C Derivatives due to the contact function - gacont_hbr(1,num_conti,i)=fprimcont*xj - gacont_hbr(2,num_conti,i)=fprimcont*yj - gacont_hbr(3,num_conti,i)=fprimcont*zj - do k=1,3 + gacont_hbr(1,num_conti,i)=fprimcont*xj + gacont_hbr(2,num_conti,i)=fprimcont*yj + gacont_hbr(3,num_conti,i)=fprimcont*zj + do k=1,3 c c 10/24/08 cgrad and ! comments indicate the parts of the code removed c following the change of gradient-summation algorithm. c cgrad ghalfp=0.5D0*gggp(k) cgrad ghalfm=0.5D0*gggm(k) - gacontp_hb1(k,num_conti,i)=!ghalfp - & +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i)) - & + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1) - & *fac_shield(i)*fac_shield(j) + gacontp_hb1(k,num_conti,i)=!ghalfp + & +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i)) + & + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1) + & *sss1*fac_shield(i)*fac_shield(j) - gacontp_hb2(k,num_conti,i)=!ghalfp - & +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j)) - & + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1) - & *fac_shield(i)*fac_shield(j) + gacontp_hb2(k,num_conti,i)=!ghalfp + & +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j)) + & + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1) + & *sss1*fac_shield(i)*fac_shield(j) - gacontp_hb3(k,num_conti,i)=gggp(k) - & *fac_shield(i)*fac_shield(j) + gacontp_hb3(k,num_conti,i)=gggp(k) + & *sss1*fac_shield(i)*fac_shield(j) - gacontm_hb1(k,num_conti,i)=!ghalfm - & +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i)) - & + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1) - & *fac_shield(i)*fac_shield(j) + gacontm_hb1(k,num_conti,i)=!ghalfm + & +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i)) + & + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1) + & *sss1*fac_shield(i)*fac_shield(j) - gacontm_hb2(k,num_conti,i)=!ghalfm - & +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j)) - & + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1) - & *fac_shield(i)*fac_shield(j) + gacontm_hb2(k,num_conti,i)=!ghalfm + & +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j)) + & + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1) + & *sss1*fac_shield(i)*fac_shield(j) - gacontm_hb3(k,num_conti,i)=gggm(k) - & *fac_shield(i)*fac_shield(j) + gacontm_hb3(k,num_conti,i)=gggm(k) + & *sss1*fac_shield(i)*fac_shield(j) - enddo - ENDIF ! wcorr - endif ! num_conti.le.maxconts - endif ! fcont.gt.0 - endif ! j.gt.i+1 -#endif - if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then - do k=1,4 - do l=1,3 - ghalf=0.5d0*agg(l,k) - aggi(l,k)=aggi(l,k)+ghalf - aggi1(l,k)=aggi1(l,k)+agg(l,k) - aggj(l,k)=aggj(l,k)+ghalf enddo + ENDIF ! wcorr + endif ! num_conti.le.maxconts + endif ! fcont.gt.0 + endif ! j.gt.i+1 +#endif + if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then + do k=1,4 + do l=1,3 + ghalf=0.5d0*agg(l,k) + aggi(l,k)=aggi(l,k)+ghalf + aggi1(l,k)=aggi1(l,k)+agg(l,k) + aggj(l,k)=aggj(l,k)+ghalf + enddo + enddo + if (j.eq.nres-1 .and. i.lt.j-2) then + do k=1,4 + do l=1,3 + aggj1(l,k)=aggj1(l,k)+agg(l,k) enddo - if (j.eq.nres-1 .and. i.lt.j-2) then - do k=1,4 - do l=1,3 - aggj1(l,k)=aggj1(l,k)+agg(l,k) - enddo - enddo - endif - endif + enddo + endif + endif c t_eelecij=t_eelecij+MPI_Wtime()-time00 return end @@ -2480,7 +2668,7 @@ C----------------------------------------------------------------------- C C Compute Evdwpp C - implicit real*8 (a-h,o-z) + implicit none include 'DIMENSIONS' include 'COMMON.CONTROL' include 'COMMON.IOUNITS' @@ -2494,7 +2682,8 @@ c include 'COMMON.CONTACTS' include 'COMMON.TORSION' include 'COMMON.VECTORS' include 'COMMON.FFIELD' - dimension ggg(3) + include "COMMON.SPLITELE" + double precision ggg(3) integer xshift,yshift,zshift c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions #ifdef MOMENT @@ -2503,6 +2692,14 @@ c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions double precision scal_el /0.5d0/ #endif c write (iout,*) "evdwpp_short" + integer i,j,k,iteli,itelj,num_conti,ind,isubchap + double precision dxi,dyi,dzi,dxj,dyj,dzj,aaa,bbb + double precision xj,yj,zj,rij,rrmij,r3ij,r6ij,evdw1, + & dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi, + & dx_normj,dy_normj,dz_normj,rmij,ev1,ev2,evdwij,facvdw + double precision xj_safe,yj_safe,zj_safe,xj_temp,yj_temp,zj_temp, + & dist_temp, dist_init,sss_grad + double precision sscale,sscagrad evdw1=0.0D0 C print *,"WCHODZE" c write (iout,*) "iatel_s_vdw",iatel_s_vdw, @@ -2519,12 +2716,12 @@ c call flush(iout) xmedi=c(1,i)+0.5d0*dxi ymedi=c(2,i)+0.5d0*dyi zmedi=c(3,i)+0.5d0*dzi - xmedi=mod(xmedi,boxxsize) - if (xmedi.lt.0.0d0) xmedi=xmedi+boxxsize - ymedi=mod(ymedi,boxysize) - if (ymedi.lt.0.0d0) ymedi=ymedi+boxysize - zmedi=mod(zmedi,boxzsize) - if (zmedi.lt.0.0d0) zmedi=zmedi+boxzsize + xmedi=mod(xmedi,boxxsize) + if (xmedi.lt.0.0d0) xmedi=xmedi+boxxsize + ymedi=mod(ymedi,boxysize) + if (ymedi.lt.0.0d0) ymedi=ymedi+boxysize + zmedi=mod(zmedi,boxzsize) + if (zmedi.lt.0.0d0) zmedi=zmedi+boxzsize num_conti=0 c write (iout,*) 'i',i,' ielstart',ielstart_vdw(i), c & ' ielend',ielend_vdw(i) @@ -2552,44 +2749,44 @@ c call flush(iout) if (yj.lt.0) yj=yj+boxysize zj=mod(zj,boxzsize) if (zj.lt.0) zj=zj+boxzsize - dist_init=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2 - xj_safe=xj - yj_safe=yj - zj_safe=zj - isubchap=0 - do xshift=-1,1 - do yshift=-1,1 - do zshift=-1,1 - xj=xj_safe+xshift*boxxsize - yj=yj_safe+yshift*boxysize - zj=zj_safe+zshift*boxzsize - dist_temp=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2 - if(dist_temp.lt.dist_init) then - dist_init=dist_temp - xj_temp=xj - yj_temp=yj - zj_temp=zj - isubchap=1 - endif - enddo - enddo - enddo - if (isubchap.eq.1) then - xj=xj_temp-xmedi - yj=yj_temp-ymedi - zj=zj_temp-zmedi - else - xj=xj_safe-xmedi - yj=yj_safe-ymedi - zj=zj_safe-zmedi - endif + dist_init=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2 + xj_safe=xj + yj_safe=yj + zj_safe=zj + isubchap=0 + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 + xj=xj_safe+xshift*boxxsize + yj=yj_safe+yshift*boxysize + zj=zj_safe+zshift*boxzsize + dist_temp=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2 + if(dist_temp.lt.dist_init) then + dist_init=dist_temp + xj_temp=xj + yj_temp=yj + zj_temp=zj + isubchap=1 + endif + enddo + enddo + enddo + if (isubchap.eq.1) then + xj=xj_temp-xmedi + yj=yj_temp-ymedi + zj=zj_temp-zmedi + else + xj=xj_safe-xmedi + yj=yj_safe-ymedi + zj=zj_safe-zmedi + endif rij=xj*xj+yj*yj+zj*zj rrmij=1.0D0/rij rij=dsqrt(rij) c sss=sscale(rij/rpp(iteli,itelj)) c sssgrad=sscagrad(rij/rpp(iteli,itelj)) - sss=sscale(rij) - sssgrad=sscagrad(rij) + sss=sscale(rij/rpp(iteli,itelj),r_cut_respa) + sssgrad=sscagrad(rij/rpp(iteli,itelj),r_cut_respa) if (sss.gt.0.0d0) then rmij=1.0D0/rij r3ij=rrmij*rmij @@ -2609,9 +2806,9 @@ C C Calculate contributions to the Cartesian gradient. C facvdw=-6*rrmij*(ev1+evdwij)*sss - ggg(1)=facvdw*xj+sssgrad*rmij*evdwij*xj/rpp(iteli,itelj) - ggg(2)=facvdw*yj+sssgrad*rmij*evdwij*yj/rpp(iteli,itelj) - ggg(3)=facvdw*zj+sssgrad*rmij*evdwij*zj/rpp(iteli,itelj) + ggg(1)=facvdw*xj+sssgrad*rmij*evdwij*xj/rpp(iteli,itelj) + ggg(2)=facvdw*yj+sssgrad*rmij*evdwij*yj/rpp(iteli,itelj) + ggg(3)=facvdw*zj+sssgrad*rmij*evdwij*zj/rpp(iteli,itelj) C ggg(1)=facvdw*xj C ggg(2)=facvdw*yj C ggg(3)=facvdw*zj @@ -2642,10 +2839,18 @@ C include 'COMMON.FFIELD' include 'COMMON.IOUNITS' include 'COMMON.CONTROL' + include "COMMON.SPLITELE" logical lprint_short common /shortcheck/ lprint_short - dimension ggg(3) + double precision ggg(3) integer xshift,yshift,zshift + integer i,iint,j,k,iteli,itypj,subchap + double precision xi,yi,zi,xj,yj,zj,rrij,sss1,sssgrad1, + & fac,e1,e2,rij + double precision evdw2,evdw2_14,evdwij + double precision xj_safe,yj_safe,zj_safe,xj_temp,yj_temp,zj_temp, + & dist_temp, dist_init + double precision sscale,sscagrad if (energy_dec) write (iout,*) "escp_long:",r_cut,rlamb evdw2=0.0D0 evdw2_14=0.0d0 @@ -2660,12 +2865,13 @@ c & ' iatscp_e=',iatscp_e xi=0.5D0*(c(1,i)+c(1,i+1)) yi=0.5D0*(c(2,i)+c(2,i+1)) zi=0.5D0*(c(3,i)+c(3,i+1)) - xi=mod(xi,boxxsize) - if (xi.lt.0) xi=xi+boxxsize - yi=mod(yi,boxysize) - if (yi.lt.0) yi=yi+boxysize - zi=mod(zi,boxzsize) - if (zi.lt.0) zi=zi+boxzsize + xi=mod(xi,boxxsize) + if (xi.lt.0) xi=xi+boxxsize + yi=mod(yi,boxysize) + if (yi.lt.0) yi=yi+boxysize + zi=mod(zi,boxzsize) + if (zi.lt.0) zi=zi+boxzsize + do iint=1,nscp_gr(i) do j=iscpstart(i,iint),iscpend(i,iint) @@ -2687,14 +2893,14 @@ c corrected by AL zj=mod(zj,boxzsize) if (zj.lt.0) zj=zj+boxzsize c end correction - dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 - xj_safe=xj - yj_safe=yj - zj_safe=zj - subchap=0 - do xshift=-1,1 - do yshift=-1,1 - do zshift=-1,1 + dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + xj_safe=xj + yj_safe=yj + zj_safe=zj + subchap=0 + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 xj=xj_safe+xshift*boxxsize yj=yj_safe+yshift*boxysize zj=zj_safe+zshift*boxzsize @@ -2706,23 +2912,27 @@ c end correction zj_temp=zj subchap=1 endif - enddo - enddo - enddo - if (subchap.eq.1) then - xj=xj_temp-xi - yj=yj_temp-yi - zj=zj_temp-zi - else - xj=xj_safe-xi - yj=yj_safe-yi - zj=zj_safe-zi - endif + enddo + enddo + enddo + if (subchap.eq.1) then + xj=xj_temp-xi + yj=yj_temp-yi + zj=zj_temp-zi + else + xj=xj_safe-xi + yj=yj_safe-yi + zj=zj_safe-zi + endif rrij=1.0D0/(xj*xj+yj*yj+zj*zj) - sss=sscale(1.0d0/(dsqrt(rrij)*rscp(itypj,iteli))) - sssgrad=sscagrad(1.0d0/(dsqrt(rrij)*rscp(itypj,iteli))) + sss1=sscale(1.0d0/(dsqrt(rrij)),r_cut_int) + if (sss1.eq.0) cycle + sss=sscale(1.0d0/(dsqrt(rrij)*rscp(itypj,iteli)),r_cut_respa) + sssgrad= + & sscagrad(1.0d0/(dsqrt(rrij)*rscp(itypj,iteli)),r_cut_respa) + sssgrad1=sscagrad(1.0d0/dsqrt(rrij),r_cut_int) if (energy_dec) write (iout,*) "rrij",1.0d0/dsqrt(rrij), & " rscp",rscp(itypj,iteli)," subchap",subchap," sss",sss if (sss.lt.1.0d0) then @@ -2732,18 +2942,19 @@ c end correction if (iabs(j-i) .le. 2) then e1=scal14*e1 e2=scal14*e2 - evdw2_14=evdw2_14+(e1+e2)*(1.0d0-sss) + evdw2_14=evdw2_14+(e1+e2)*(1.0d0-sss)*sss1 endif evdwij=e1+e2 - evdw2=evdw2+evdwij*(1.0d0-sss) + evdw2=evdw2+evdwij*(1.0d0-sss)*sss1 if (energy_dec) write (iout,'(a6,2i5,2(0pf7.3))') & 'evdw2',i,j,sss,evdwij C C Calculate contributions to the gradient in the virtual-bond and SC vectors. C - fac=-(evdwij+e1)*rrij*(1.0d0-sss) - fac=fac-(evdwij)*sssgrad*dsqrt(rrij)/rscp(itypj,iteli) + fac=-(evdwij+e1)*rrij*(1.0d0-sss)*sss1 + fac=fac+evdwij*dsqrt(rrij)*(-sssgrad/rscp(itypj,iteli) + & +sssgrad1)/expon ggg(1)=xj*fac ggg(2)=yj*fac ggg(3)=zj*fac @@ -2787,7 +2998,7 @@ C This subroutine calculates the excluded-volume interaction energy between C peptide-group centers and side chains and its gradient in virtual-bond and C side-chain vectors. C - implicit real*8 (a-h,o-z) + implicit none include 'DIMENSIONS' include 'COMMON.GEO' include 'COMMON.VAR' @@ -2798,29 +3009,37 @@ C include 'COMMON.FFIELD' include 'COMMON.IOUNITS' include 'COMMON.CONTROL' + include "COMMON.SPLITELE" integer xshift,yshift,zshift logical lprint_short common /shortcheck/ lprint_short - dimension ggg(3) + integer i,iint,j,k,iteli,itypj,subchap + double precision xi,yi,zi,xj,yj,zj,rrij,sss1,sssgrad1, + & fac,e1,e2,rij + double precision evdw2,evdw2_14,evdwij + double precision xj_safe,yj_safe,zj_safe,xj_temp,yj_temp,zj_temp, + & dist_temp, dist_init + double precision ggg(3) + double precision sscale,sscagrad evdw2=0.0D0 evdw2_14=0.0d0 cd print '(a)','Enter ESCP' c if (lprint_short) c & write (iout,*) 'ESCP_SHORT iatscp_s=',iatscp_s, c & ' iatscp_e=',iatscp_e - if (energy_dec) write (iout,*) "escp_short:",r_cut,rlamb + if (energy_dec) write (iout,*) "escp_short:",r_cut_int,rlamb do i=iatscp_s,iatscp_e if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle iteli=itel(i) xi=0.5D0*(c(1,i)+c(1,i+1)) yi=0.5D0*(c(2,i)+c(2,i+1)) zi=0.5D0*(c(3,i)+c(3,i+1)) - xi=mod(xi,boxxsize) - if (xi.lt.0) xi=xi+boxxsize - yi=mod(yi,boxysize) - if (yi.lt.0) yi=yi+boxysize - zi=mod(zi,boxzsize) - if (zi.lt.0) zi=zi+boxzsize + xi=mod(xi,boxxsize) + if (xi.lt.0) xi=xi+boxxsize + yi=mod(yi,boxysize) + if (yi.lt.0) yi=yi+boxysize + zi=mod(zi,boxzsize) + if (zi.lt.0) zi=zi+boxzsize c if (lprint_short) c & write (iout,*) "i",i," itype",itype(i),itype(i+1), @@ -2848,18 +3067,18 @@ c corrected by AL zj=mod(zj,boxzsize) if (zj.lt.0) zj=zj+boxzsize c end correction - dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 c if (lprint_short) then c write (iout,*) i,j,xi,yi,zi,xj,yj,zj c write (iout,*) "dist_init",dsqrt(dist_init) c endif - xj_safe=xj - yj_safe=yj - zj_safe=zj - subchap=0 - do xshift=-1,1 - do yshift=-1,1 - do zshift=-1,1 + xj_safe=xj + yj_safe=yj + zj_safe=zj + subchap=0 + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 xj=xj_safe+xshift*boxxsize yj=yj_safe+yshift*boxysize zj=zj_safe+zshift*boxzsize @@ -2871,24 +3090,25 @@ c endif zj_temp=zj subchap=1 endif - enddo - enddo - enddo + enddo + enddo + enddo c if (lprint_short) write (iout,*) "dist_temp",dsqrt(dist_temp) - if (subchap.eq.1) then - xj=xj_temp-xi - yj=yj_temp-yi - zj=zj_temp-zi - else - xj=xj_safe-xi - yj=yj_safe-yi - zj=zj_safe-zi - endif + if (subchap.eq.1) then + xj=xj_temp-xi + yj=yj_temp-yi + zj=zj_temp-zi + else + xj=xj_safe-xi + yj=yj_safe-yi + zj=zj_safe-zi + endif rrij=1.0D0/(xj*xj+yj*yj+zj*zj) c sss=sscale(1.0d0/(dsqrt(rrij)*rscp(itypj,iteli))) c sssgrad=sscagrad(1.0d0/(dsqrt(rrij)*rscp(itypj,iteli))) - sss=sscale(1.0d0/(dsqrt(rrij))) - sssgrad=sscagrad(1.0d0/(dsqrt(rrij))) + sss=sscale(1.0d0/(dsqrt(rrij)*rscp(itypj,iteli)),r_cut_respa) + sssgrad=sscagrad(1.0d0/(dsqrt(rrij)*rscp(itypj,iteli)), + & r_cut_respa) if (energy_dec) write (iout,*) "rrij",1.0d0/dsqrt(rrij), & " rscp",rscp(itypj,iteli)," subchap",subchap," sss",sss c if (lprint_short) write (iout,*) "rij",1.0/dsqrt(rrij), @@ -2911,7 +3131,7 @@ C C Calculate contributions to the gradient in the virtual-bond and SC vectors. C fac=-(evdwij+e1)*rrij*sss - fac=fac+(evdwij)*sssgrad*dsqrt(rrij)/rscp(itypj,iteli) + fac=fac+evdwij*sssgrad*dsqrt(rrij)/rscp(itypj,iteli)/expon ggg(1)=xj*fac ggg(2)=yj*fac ggg(3)=zj*fac diff --git a/source/unres/src-HCD-5D/energy_p_new_barrier.F b/source/unres/src-HCD-5D/energy_p_new_barrier.F index b36b9a8..2a588bd 100644 --- a/source/unres/src-HCD-5D/energy_p_new_barrier.F +++ b/source/unres/src-HCD-5D/energy_p_new_barrier.F @@ -66,7 +66,8 @@ C FG slaves as WEIGHTS array. weights_(17)=wbond weights_(18)=scal14 weights_(21)=wsccor - weights_(22)=wtube + weights_(22)=wliptran + weights_(25)=wtube weights_(26)=wsaxs weights_(28)=wdfa_dist weights_(29)=wdfa_tor @@ -98,7 +99,8 @@ C FG slaves receive the WEIGHTS array wbond=weights(17) scal14=weights(18) wsccor=weights(21) - wtube=weights(22) + wliptran=weights(22) + wtube=weights(25) wsaxs=weights(26) wdfa_dist=weights_(28) wdfa_tor=weights_(29) @@ -387,6 +389,8 @@ C based on partition function C print *,"przed lipidami" if (wliptran.gt.0) then call Eliptransfer(eliptran) + else + eliptran=0.0d0 endif C print *,"za lipidami" if (AFMlog.gt.0) then @@ -1449,6 +1453,7 @@ C include 'COMMON.SBRIDGE' include 'COMMON.NAMES' include 'COMMON.IOUNITS' + include 'COMMON.SPLITELE' #ifdef FOURBODY include 'COMMON.CONTACTS' include 'COMMON.CONTMAT' @@ -1457,8 +1462,9 @@ C double precision evdw,evdwij integer i,j,k,itypi,itypj,itypi1,num_conti,iint double precision xi,yi,zi,xj,yj,zj,rij,eps0ij,fac,e1,e2,rrij, - & sigij,r0ij,rcut + & sigij,r0ij,rcut,sqrij,sss1,sssgrad1 double precision fcont,fprimcont + double precision sscale,sscagrad c write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e @@ -1485,6 +1491,11 @@ cd & 'iend=',iend(i,iint) C Change 12/1/95 to calculate four-body interactions rij=xj*xj+yj*yj+zj*zj rrij=1.0D0/rij + sqrij=dsqrt(rij) + sss1=sscale(sqrij,r_cut_int) + if (sss1.eq.0.0d0) cycle + sssgrad1=sscagrad(sqrij,r_cut_int) + c write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj eps0ij=eps(itypi,itypj) fac=rrij**expon2 @@ -1498,11 +1509,12 @@ cd write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)') cd & restyp(itypi),i,restyp(itypj),j,a(itypi,itypj), cd & bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm, cd & (c(k,i),k=1,3),(c(k,j),k=1,3) - evdw=evdw+evdwij + evdw=evdw+sss1*evdwij C C Calculate the components of the gradient in DC and X C - fac=-rrij*(e1+evdwij) + fac=-rrij*(e1+evdwij)*sss1 + & +evdwij*sssgrad1/sqrij/expon gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac @@ -1615,12 +1627,14 @@ C include 'COMMON.INTERACT' include 'COMMON.IOUNITS' include 'COMMON.NAMES' + include 'COMMON.SPLITELE' double precision gg(3) double precision evdw,evdwij integer i,j,k,itypi,itypj,itypi1,iint double precision xi,yi,zi,xj,yj,zj,rij,eps0ij,fac,e1,e2,rrij, - & fac_augm,e_augm,r_inv_ij,r_shift_inv + & fac_augm,e_augm,r_inv_ij,r_shift_inv,sss1,sssgrad1 logical scheck + double precision sscale,sscagrad c print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e @@ -1645,6 +1659,9 @@ C e_augm=augm(itypi,itypj)*fac_augm r_inv_ij=dsqrt(rrij) rij=1.0D0/r_inv_ij + sss1=sscale(rij,r_cut_int) + if (sss1.eq.0.0d0) cycle + sssgrad1=sscagrad(rij,r_cut_int) r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj)) fac=r_shift_inv**expon C have you changed here? @@ -1658,11 +1675,12 @@ cd & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj), cd & bb(itypi,itypj),augm(itypi,itypj),epsi,sigm, cd & sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij, cd & (c(k,i),k=1,3),(c(k,j),k=1,3) - evdw=evdw+evdwij + evdw=evdw+evdwij*sss1 C C Calculate the components of the gradient in DC and X C fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2) + & +evdwij*sssgrad1*r_inv_ij/expon gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac @@ -1705,11 +1723,14 @@ C include 'COMMON.INTERACT' include 'COMMON.IOUNITS' include 'COMMON.CALC' + include 'COMMON.SPLITELE' integer icall common /srutu/ icall double precision evdw integer itypi,itypj,itypi1,iint,ind - double precision eps0ij,epsi,sigm,fac,e1,e2,rrij,xi,yi,zi + double precision eps0ij,epsi,sigm,fac,e1,e2,rrij,xi,yi,zi, + & sss1,sssgrad1 + double precision sscale,sscagrad c double precision rrsave(maxdim) logical lprn evdw=0.0D0 @@ -1775,6 +1796,9 @@ cd else cd rrij=rrsave(ind) cd endif rij=dsqrt(rrij) + sss1=sscale(1.0d0/rij,r_cut_int) + if (sss1.eq.0.0d0) cycle + sssgrad1=sscagrad(1.0d0/rij,r_cut_int) C Calculate the angle-dependent terms of energy & contributions to derivatives. call sc_angular C Calculate whole angle-dependent part of epsilon and contributions @@ -1787,7 +1811,7 @@ C have you changed here? eps2der=evdwij*eps3rt eps3der=evdwij*eps2rt evdwij=evdwij*eps2rt*eps3rt - evdw=evdw+evdwij + evdw=evdw+sss1*evdwij if (lprn) then sigm=dabs(aa/bb)**(1.0D0/6.0D0) epsi=bb**2/aa @@ -1803,6 +1827,7 @@ C Calculate gradient components. fac=-expon*(e1+evdwij) sigder=fac/sigsq fac=rrij*fac + & +evdwij*sssgrad1/sss1*rij C Calculate radial part of the gradient gg(1)=xj*fac gg(2)=yj*fac @@ -2107,12 +2132,11 @@ c write (iout,*) "j",j," dc_norm", c & dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j) rrij=1.0D0/(xj*xj+yj*yj+zj*zj) rij=dsqrt(rrij) - sss=sscale((1.0d0/rij)/sigma(itypi,itypj)) - sssgrad=sscagrad((1.0d0/rij)/sigma(itypi,itypj)) - + sss=sscale(1.0d0/rij,r_cut_int) c write (iout,'(a7,4f8.3)') c & "ssscale",sss,((1.0d0/rij)/sigma(itypi,itypj)),r_cut,rlamb - if (sss.gt.0.0d0) then + if (sss.eq.0.0d0) cycle + sssgrad=sscagrad(1.0d0/rij,r_cut_int) C Calculate angle-dependent terms of energy and contributions to their C derivatives. call sc_angular @@ -2159,8 +2183,8 @@ c & " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2 & evdwij endif - if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') - & 'evdw',i,j,evdwij + if (energy_dec) write (iout,'(a,2i5,3f10.5)') + & 'r sss evdw',i,j,rij,sss,evdwij C Calculate gradient components. e1=e1*eps1*eps2rt**2*eps3rt**2 @@ -2169,13 +2193,13 @@ C Calculate gradient components. fac=rij*fac c print '(2i4,6f8.4)',i,j,sss,sssgrad* c & evdwij,fac,sigma(itypi,itypj),expon - fac=fac+evdwij/sss*sssgrad/sigma(itypi,itypj)*rij + fac=fac+evdwij*sssgrad/sss*rij c fac=0.0d0 C Calculate the radial part of the gradient gg_lipi(3)=eps1*(eps2rt*eps2rt) - &*(eps3rt*eps3rt)*sss/2.0d0*(faclip*faclip* - & (aa_lip(itypi,itypj)-aa_aq(itypi,itypj)) - &+faclip*(bb_lip(itypi,itypj)-bb_aq(itypi,itypj))) + & *(eps3rt*eps3rt)*sss/2.0d0*(faclip*faclip* + & (aa_lip(itypi,itypj)-aa_aq(itypi,itypj)) + & +faclip*(bb_lip(itypi,itypj)-bb_aq(itypi,itypj))) gg_lipj(3)=ssgradlipj*gg_lipi(3) gg_lipi(3)=gg_lipi(3)*ssgradlipi C gg_lipi(3)=0.0d0 @@ -2184,8 +2208,8 @@ C gg_lipj(3)=0.0d0 gg(2)=yj*fac gg(3)=zj*fac C Calculate angular part of the gradient. +c call sc_grad_scale(sss) call sc_grad - endif ENDIF ! dyn_ss enddo ! j enddo ! iint @@ -2214,6 +2238,7 @@ C include 'COMMON.INTERACT' include 'COMMON.IOUNITS' include 'COMMON.CALC' + include 'COMMON.SPLITELE' integer xshift,yshift,zshift,subchap integer icall common /srutu/ icall @@ -2224,7 +2249,7 @@ C & xi,yi,zi,fac_augm,e_augm double precision fracinbuf,sslipi,evdwij_przed_tri,sig0ij, & sslipj,ssgradlipj,ssgradlipi,dist_init,xj_safe,yj_safe,zj_safe, - & xj_temp,yj_temp,zj_temp,dist_temp,sig,rij_shift,faclip + & xj_temp,yj_temp,zj_temp,dist_temp,sig,rij_shift,faclip,sssgrad1 double precision dist,sscale,sscagrad,sscagradlip,sscalelip evdw=0.0D0 c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon @@ -2384,6 +2409,9 @@ C write(iout,*) "tu,", i,j,aa,bb,aa_lip(itypi,itypj),sslipi,sslipj dzj=dc_norm(3,nres+j) rrij=1.0D0/(xj*xj+yj*yj+zj*zj) rij=dsqrt(rrij) + sss=sscale(1.0d0/rij,r_cut_int) + if (sss.eq.0.0d0) cycle + sssgrad=sscagrad(1.0d0/rij,r_cut_int) C Calculate angle-dependent terms of energy and contributions to their C derivatives. call sc_angular @@ -2424,12 +2452,13 @@ C Calculate gradient components. fac=-expon*(e1+evdwij)*rij_shift sigder=fac*sigder fac=rij*fac-2*expon*rrij*e_augm - fac=fac+evdwij/sss*sssgrad/sigma(itypi,itypj)*rij + fac=fac+(evdwij+e_augm)*sssgrad/sss*rij C Calculate the radial part of the gradient gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac C Calculate angular part of the gradient. +c call sc_grad_scale(sss) call sc_grad enddo ! j enddo ! iint @@ -2734,8 +2763,8 @@ c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) zj=zj_safe-zmedi endif rij=xj*xj+yj*yj+zj*zj - sss=sscale(sqrt(rij)) - sssgrad=sscagrad(sqrt(rij)) + sss=sscale(sqrt(rij),r_cut_int) + sssgrad=sscagrad(sqrt(rij),r_cut_int) if (rij.lt.r0ijsq) then evdw1ij=0.25d0*(rij-r0ijsq)**2 fac=rij-r0ijsq @@ -3909,7 +3938,7 @@ cd print *,"Processor",fg_rank," t_eelecij",t_eelecij end C------------------------------------------------------------------------------- subroutine eelecij(i,j,ees,evdw1,eel_loc) - implicit real*8 (a-h,o-z) + implicit none include 'DIMENSIONS' #ifdef MPI include "mpif.h" @@ -3933,14 +3962,33 @@ C------------------------------------------------------------------------------- include 'COMMON.TIME1' include 'COMMON.SPLITELE' include 'COMMON.SHIELD' - dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3), + double precision ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3), & erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3) double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4), & aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4),gmuij1(4),gmuji1(4), & gmuij2(4),gmuji2(4) + double precision dxi,dyi,dzi + double precision dx_normi,dy_normi,dz_normi,aux + integer j1,j2,lll,num_conti common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33, & dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi, & num_conti,j1,j2 + integer k,i,j,iteli,itelj,kkk,l,kkll,m,isubchap,ilist,iresshield + double precision ael6i,rrmij,rmij,r0ij,fcont,fprimcont,ees0tmp + double precision ees,evdw1,eel_loc,aaa,bbb,ael3i + double precision dxj,dyj,dzj,dx_normj,dy_normj,dz_normj,xj,yj,zj, + & rij,r3ij,r6ij,cosa,cosb,cosg,fac,ev1,ev2,fac3,fac4, + & evdwij,el1,el2,eesij,ees0ij,facvdw,facel,fac1,ecosa, + & ecosb,ecosg,ury,urz,vry,vrz,facr,a22der,a23der,a32der, + & a33der,eel_loc_ij,cosa4,wij,cosbg1,cosbg2,ees0pij, + & ees0pij1,ees0mij,ees0mij1,fac3p,ees0mijp,ees0pijp, + & ecosa1,ecosb1,ecosg1,ecosa2,ecosb2,ecosg2,ecosap,ecosbp, + & ecosgp,ecosam,ecosbm,ecosgm,ghalf,rlocshield + double precision a22,a23,a32,a33,geel_loc_ij,geel_loc_ji + double precision dist_init,xj_safe,yj_safe,zj_safe, + & xj_temp,yj_temp,zj_temp,dist_temp,xmedi,ymedi,zmedi + double precision sscale,sscagrad,scalar + c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions #ifdef MOMENT double precision scal_el /1.0d0/ @@ -4044,8 +4092,9 @@ C yj=yj-ymedi C zj=zj-zmedi rij=xj*xj+yj*yj+zj*zj - sss=sscale(sqrt(rij)) - sssgrad=sscagrad(sqrt(rij)) + sss=sscale(dsqrt(rij),r_cut_int) + if (sss.eq.0.0d0) return + sssgrad=sscagrad(dsqrt(rij),r_cut_int) c if (sss.gt.0.0d0) then rrmij=1.0D0/rij rij=dsqrt(rij) @@ -4080,7 +4129,7 @@ C fac_shield(j)=0.6 fac_shield(i)=1.0 fac_shield(j)=1.0 eesij=(el1+el2) - ees=ees+eesij + ees=ees+eesij*sss endif evdw1=evdw1+evdwij*sss cd write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)') @@ -4089,11 +4138,10 @@ cd & 1.0D0/dsqrt(rrmij),evdwij,eesij, cd & xmedi,ymedi,zmedi,xj,yj,zj if (energy_dec) then - write (iout,'(a6,2i5,0pf7.3,2i5,3e11.3)') - &'evdw1',i,j,evdwij - &,iteli,itelj,aaa,evdw1,sss - write (iout,'(a6,2i5,0pf7.3,2f8.3)') 'ees',i,j,eesij, - &fac_shield(i),fac_shield(j) + write (iout,'(a6,2i5,0pf7.3,2i5,e11.3,3f10.5)') + & 'evdw1',i,j,evdwij,iteli,itelj,aaa,evdw1,sss,rij + write (iout,'(a6,2i5,0pf7.3,2f8.3)') 'ees',i,j,eesij, + & fac_shield(i),fac_shield(j) endif C @@ -4110,9 +4158,10 @@ C * * Radial derivatives. First process both termini of the fragment (i,j) * - ggg(1)=facel*xj - ggg(2)=facel*yj - ggg(3)=facel*zj + aux=facel*sss+rmij*sssgrad*eesij + ggg(1)=aux*xj + ggg(2)=aux*yj + ggg(3)=aux*zj if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and. & (shield_mode.gt.0)) then C print *,i,j @@ -4146,10 +4195,10 @@ C endif iresshield=shield_list(ilist,j) do k=1,3 rlocshield=grad_shield_side(k,ilist,j)*eesij/fac_shield(j) - & *2.0 + & *2.0*sss gshieldx(k,iresshield)=gshieldx(k,iresshield)+ & rlocshield - & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)*2.0 + & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)*2.0*sss gshieldc(k,iresshield-1)=gshieldc(k,iresshield-1)+rlocshield C & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j) @@ -4172,13 +4221,13 @@ C endif do k=1,3 gshieldc(k,i)=gshieldc(k,i)+ - & grad_shield(k,i)*eesij/fac_shield(i)*2.0 + & grad_shield(k,i)*eesij/fac_shield(i)*2.0*sss gshieldc(k,j)=gshieldc(k,j)+ - & grad_shield(k,j)*eesij/fac_shield(j)*2.0 + & grad_shield(k,j)*eesij/fac_shield(j)*2.0*sss gshieldc(k,i-1)=gshieldc(k,i-1)+ - & grad_shield(k,i)*eesij/fac_shield(i)*2.0 + & grad_shield(k,i)*eesij/fac_shield(i)*2.0*sss gshieldc(k,j-1)=gshieldc(k,j-1)+ - & grad_shield(k,j)*eesij/fac_shield(j)*2.0 + & grad_shield(k,j)*eesij/fac_shield(j)*2.0*sss enddo endif @@ -4209,15 +4258,10 @@ cgrad do l=1,3 cgrad gelc(l,k)=gelc(l,k)+ggg(l) cgrad enddo cgrad enddo - if (sss.gt.0.0) then - ggg(1)=facvdw*xj+sssgrad*rmij*evdwij*xj - ggg(2)=facvdw*yj+sssgrad*rmij*evdwij*yj - ggg(3)=facvdw*zj+sssgrad*rmij*evdwij*zj - else - ggg(1)=0.0 - ggg(2)=0.0 - ggg(3)=0.0 - endif + facvdw=facvdw+sssgrad*rmij*evdwij + ggg(1)=facvdw*xj + ggg(2)=facvdw*yj + ggg(3)=facvdw*zj c do k=1,3 c ghalf=0.5D0*ggg(k) c gvdwpp(k,i)=gvdwpp(k,i)+ghalf @@ -4238,10 +4282,11 @@ cgrad enddo cgrad enddo #else C MARYSIA - facvdw=(ev1+evdwij)*sss + facvdw=(ev1+evdwij) facel=(el1+eesij) fac1=fac - fac=-3*rrmij*(facvdw+facvdw+facel) + fac=-3*rrmij*(facvdw+facvdw+facel)*sss + & +(evdwij+eesij)*sssgrad*rrmij erij(1)=xj*rmij erij(2)=yj*rmij erij(3)=zj*rmij @@ -4297,7 +4342,7 @@ cd print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3), cd & (dcosg(k),k=1,3) do k=1,3 ggg(k)=(ecosb*dcosb(k)+ecosg*dcosg(k))* - & fac_shield(i)**2*fac_shield(j)**2 + & fac_shield(i)**2*fac_shield(j)**2*sss enddo c do k=1,3 c ghalf=0.5D0*ggg(k) @@ -4317,11 +4362,11 @@ C print *,"before22", gelc_long(1,i), gelc_long(1,j) do k=1,3 gelc(k,i)=gelc(k,i) & +((ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i)) - & + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)) + & + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1))*sss & *fac_shield(i)**2*fac_shield(j)**2 gelc(k,j)=gelc(k,j) & +((ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j)) - & + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)) + & + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1))*sss & *fac_shield(i)**2*fac_shield(j)**2 gelc_long(k,j)=gelc_long(k,j)+ggg(k) gelc_long(k,i)=gelc_long(k,i)-ggg(k) @@ -4557,7 +4602,7 @@ C fac_shield(i)=0.4 C fac_shield(j)=0.6 endif eel_loc_ij=eel_loc_ij - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss c if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') c & 'eelloc',i,j,eel_loc_ij C Now derivative over eel_loc @@ -4615,7 +4660,7 @@ C Calculate patrial derivative for theta angle & +a23*gmuij1(2) & +a32*gmuij1(3) & +a33*gmuij1(4)) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss c write(iout,*) "derivative over thatai" c write(iout,*) a22*gmuij1(1), a23*gmuij1(2) ,a32*gmuij1(3), c & a33*gmuij1(4) @@ -4631,7 +4676,7 @@ c & a33*gmuij2(4) & +a33*gmuij2(4) gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+ & geel_loc_ij*wel_loc - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss c Derivative over j residue geel_loc_ji=a22*gmuji1(1) @@ -4644,7 +4689,7 @@ c & a33*gmuji1(4) gloc(nphi+j,icg)=gloc(nphi+j,icg)+ & geel_loc_ji*wel_loc - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss geel_loc_ji= & +a22*gmuji2(1) @@ -4656,7 +4701,7 @@ c write(iout,*) a22*gmuji2(1), a23*gmuji2(2) ,a32*gmuji2(3), c & a33*gmuji2(4) gloc(nphi+j-1,icg)=gloc(nphi+j-1,icg)+ & geel_loc_ji*wel_loc - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss #endif cd write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij @@ -4672,17 +4717,21 @@ C Partial derivatives in virtual-bond dihedral angles gamma & gel_loc_loc(i-1)=gel_loc_loc(i-1)+ & (a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j) & +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gel_loc_loc(j-1)=gel_loc_loc(j-1)+ & (a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j) & +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2) + aux=eel_loc_ij/sss*sssgrad*rmij + ggg(1)=aux*xj + ggg(2)=aux*yj + ggg(3)=aux*zj do l=1,3 - ggg(l)=(agg(l,1)*muij(1)+ + ggg(l)=ggg(l)+(agg(l,1)*muij(1)+ & agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l) gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l) cgrad ghalf=0.5d0*ggg(l) @@ -4698,19 +4747,19 @@ C Remaining derivatives of eello do l=1,3 gel_loc(l,i)=gel_loc(l,i)+(aggi(l,1)*muij(1)+ & aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gel_loc(l,i+1)=gel_loc(l,i+1)+(aggi1(l,1)*muij(1)+ & aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gel_loc(l,j)=gel_loc(l,j)+(aggj(l,1)*muij(1)+ & aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gel_loc(l,j1)=gel_loc(l,j1)+(aggj1(l,1)*muij(1)+ & aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss enddo ENDIF @@ -4800,9 +4849,9 @@ C fac_shield(i)=0.4d0 C fac_shield(j)=0.6d0 endif ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss C Diagnostics. Comment out or remove after debugging! c ees0p(num_conti,i)=0.5D0*fac3*ees0pij c ees0m(num_conti,i)=0.5D0*fac3*ees0mij @@ -4851,11 +4900,17 @@ cd fprimcont=0.0D0 gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k) enddo gggp(1)=gggp(1)+ees0pijp*xj + & +ees0p(num_conti,i)/sss*rmij*xj*sssgrad gggp(2)=gggp(2)+ees0pijp*yj + & +ees0p(num_conti,i)/sss*rmij*yj*sssgrad gggp(3)=gggp(3)+ees0pijp*zj + & +ees0p(num_conti,i)/sss*rmij*zj*sssgrad gggm(1)=gggm(1)+ees0mijp*xj + & +ees0m(num_conti,i)/sss*rmij*xj*sssgrad gggm(2)=gggm(2)+ees0mijp*yj + & +ees0m(num_conti,i)/sss*rmij*yj*sssgrad gggm(3)=gggm(3)+ees0mijp*zj + & +ees0m(num_conti,i)/sss*rmij*zj*sssgrad C Derivatives due to the contact function gacont_hbr(1,num_conti,i)=fprimcont*xj gacont_hbr(2,num_conti,i)=fprimcont*yj @@ -4870,28 +4925,28 @@ cgrad ghalfm=0.5D0*gggm(k) gacontp_hb1(k,num_conti,i)=!ghalfp & +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i)) & + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontp_hb2(k,num_conti,i)=!ghalfp & +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j)) & + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontp_hb3(k,num_conti,i)=gggp(k) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontm_hb1(k,num_conti,i)=!ghalfm & +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i)) & + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontm_hb2(k,num_conti,i)=!ghalfm & +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j)) & + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontm_hb3(k,num_conti,i)=gggm(k) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss enddo C Diagnostics. Comment out or remove after debugging! @@ -5672,7 +5727,7 @@ C This subroutine calculates the excluded-volume interaction energy between C peptide-group centers and side chains and its gradient in virtual-bond and C side-chain vectors. C - implicit real*8 (a-h,o-z) + implicit none include 'DIMENSIONS' include 'COMMON.GEO' include 'COMMON.VAR' @@ -5685,7 +5740,14 @@ C include 'COMMON.CONTROL' include 'COMMON.SPLITELE' integer xshift,yshift,zshift - dimension ggg(3) + double precision ggg(3) + integer i,iint,j,k,iteli,itypj,subchap + double precision xi,yi,zi,xj,yj,zj,rrij,sss1,sssgrad1, + & fac,e1,e2,rij + double precision evdw2,evdw2_14,evdwij + double precision xj_safe,yj_safe,zj_safe,xj_temp,yj_temp,zj_temp, + & dist_temp, dist_init + double precision sscale,sscagrad evdw2=0.0D0 evdw2_14=0.0d0 c print *,boxxsize,boxysize,boxzsize,'wymiary pudla' @@ -5694,7 +5756,7 @@ cd write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e C do xshift=-1,1 C do yshift=-1,1 C do zshift=-1,1 - if (energy_dec) write (iout,*) "escp:",r_cut,rlamb + if (energy_dec) write (iout,*) "escp:",r_cut_int,rlamb do i=iatscp_s,iatscp_e if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle iteli=itel(i) @@ -5816,11 +5878,11 @@ CHERE IS THE CALCULATION WHICH MIRROR IMAGE IS THE CLOSEST ONE c print *,xj,yj,zj,'polozenie j' rrij=1.0D0/(xj*xj+yj*yj+zj*zj) c print *,rrij - sss=sscale(1.0d0/(dsqrt(rrij))) + sss=sscale(1.0d0/(dsqrt(rrij)),r_cut_int) c print *,r_cut,1.0d0/dsqrt(rrij),sss,'tu patrz' c if (sss.eq.0) print *,'czasem jest OK' if (sss.le.0.0d0) cycle - sssgrad=sscagrad(1.0d0/(dsqrt(rrij))) + sssgrad=sscagrad(1.0d0/(dsqrt(rrij)),r_cut_int) fac=rrij**expon2 e1=fac*fac*aad(itypj,iteli) e2=fac*bad(itypj,iteli) @@ -5831,8 +5893,9 @@ c if (sss.eq.0) print *,'czasem jest OK' endif evdwij=e1+e2 evdw2=evdw2+evdwij*sss - if (energy_dec) write (iout,'(a6,2i5,0pf7.3,2i3,3e11.3)') - & 'evdw2',i,j,evdwij,iteli,itypj,fac,aad(itypj,iteli), + if (energy_dec) write (iout,'(a6,2i5,3f7.3,2i3,3e11.3)') + & 'evdw2',i,j,1.0d0/dsqrt(rrij),sss, + & evdwij,iteli,itypj,fac,aad(itypj,iteli), & bad(itypj,iteli) C C Calculate contributions to the gradient in the virtual-bond and SC vectors. @@ -7224,7 +7287,8 @@ c & sumene4, c & dscp1,dscp2,sumene c sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) escloc = escloc + sumene -c write (2,*) "i",i," escloc",sumene,escloc,it,itype(i) + if (energy_dec) write (2,*) "i",i," itype",itype(i)," it",it, + & " escloc",sumene,escloc,it,itype(i) c & ,zz,xx,yy c#define DEBUG #ifdef DEBUG diff --git a/source/unres/src-HCD-5D/energy_p_new_barrier.F.safe b/source/unres/src-HCD-5D/energy_p_new_barrier.F.safe index 6479878..ae8e449 100644 --- a/source/unres/src-HCD-5D/energy_p_new_barrier.F.safe +++ b/source/unres/src-HCD-5D/energy_p_new_barrier.F.safe @@ -324,6 +324,7 @@ C else esccor=0.0d0 endif +#ifdef FOURBODY C print *,"PRZED MULIt" c print *,"Processor",myrank," computed Usccorr" C @@ -352,6 +353,7 @@ c write (iout,*) "MULTIBODY_HB ecorr",ecorr,ecorr5,ecorr6,n_corr, c & n_corr1 c call flush(iout) endif +#endif c print *,"Processor",myrank," computed Ucorr" c write (iout,*) "nsaxs",nsaxs," saxs_mode",saxs_mode if (nsaxs.gt.0 .and. saxs_mode.eq.0) then @@ -1314,9 +1316,16 @@ C Bartek write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp, & estr,wbond,ebe,wang, & escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain, +#ifdef FOURBODY & ecorr,wcorr, - & ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3, - & eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,edihcnstr, + & ecorr5,wcorr5,ecorr6,wcorr6, +#endif + & eel_loc,wel_loc,eello_turn3,wturn3, + & eello_turn4,wturn4, +#ifdef FOURBODY + & eello_turn6,wturn6, +#endif + & esccor,wsccor,edihcnstr, & ethetacnstr,ebr*nss,Uconst,wumb,eliptran,wliptran,Eafmforce, & etube,wtube,esaxs,wsaxs,ehomology_constr, & edfadis,wdfa_dist,edfator,wdfa_tor,edfanei,wdfa_nei, @@ -1334,13 +1343,17 @@ C Bartek & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/ & 'EHBP= ',1pE16.6,' WEIGHT=',1pE16.6, & ' (SS bridges & dist. cnstr.)'/ +#ifdef FOURBODY & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ +#endif & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/ & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/ & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/ +#ifdef FOURBODY & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/ +#endif & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/ & 'EDIHC= ',1pE16.6,' (virtual-bond dihedral angle restraints)'/ & 'ETHETC=',1pE16.6,' (virtual-bond angle restraints)'/ @@ -1361,9 +1374,16 @@ C Bartek write (iout,10) evdw,wsc,evdw2,wscp,ees,welec, & estr,wbond,ebe,wang, & escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain, +#ifdef FOURBODY & ecorr,wcorr, - & ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3, - & eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,edihcnstr, + & ecorr5,wcorr5,ecorr6,wcorr6, +#endif + & eel_loc,wel_loc,eello_turn3,wturn3, + & eello_turn4,wturn4, +#ifdef FOURBODY + & eello_turn6,wturn6, +#endif + & esccor,wsccor,edihcnstr, & ethetacnstr,ebr*nss,Uconst,wumb,eliptran,wliptran,Eafmforc, & etube,wtube,esaxs,wsaxs,ehomology_constr, & edfadis,wdfa_dist,edfator,wdfa_tor,edfanei,wdfa_nei, @@ -1380,13 +1400,17 @@ C Bartek & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/ & 'EHBP= ',1pE16.6,' WEIGHT=',1pE16.6, & ' (SS bridges & dist. restr.)'/ +#ifdef FOURBODY & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ +#endif & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/ & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/ & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/ +#ifdef FOURBODY & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/ +#endif & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/ & 'EDIHC= ',1pE16.6,' (virtual-bond dihedral angle restraints)'/ & 'ETHETC=',1pE16.6,' (virtual-bond angle restraints)'/ @@ -1425,7 +1449,10 @@ C include 'COMMON.SBRIDGE' include 'COMMON.NAMES' include 'COMMON.IOUNITS' +#ifdef FOURBODY include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' +#endif double precision gg(3) double precision evdw,evdwij integer i,j,k,itypi,itypj,itypi1,num_conti,iint @@ -1491,6 +1518,7 @@ cgrad gvdwc(l,k)=gvdwc(l,k)+gg(l) cgrad enddo cgrad enddo C +#ifdef FOURBODY C 12/1/95, revised on 5/20/97 C C Calculate the contact function. The ith column of the array JCONT will @@ -1546,10 +1574,13 @@ cd write (iout,'(2i3,3f10.5)') cd & i,j,(gacont(kk,num_conti,i),kk=1,3) endif endif +#endif enddo ! j enddo ! iint C Change 12/1/95 +#ifdef FOURBODY num_cont(i)=num_conti +#endif enddo ! i do i=1,nct do j=1,3 @@ -2076,8 +2107,8 @@ c write (iout,*) "j",j," dc_norm", c & dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j) rrij=1.0D0/(xj*xj+yj*yj+zj*zj) rij=dsqrt(rrij) - sss=sscale((1.0d0/rij)/sigma(itypi,itypj)) - sssgrad=sscagrad((1.0d0/rij)/sigma(itypi,itypj)) + sss=sscale(1.0d0/rij,r_cut_int) + sssgrad=sscagrad(1.0d0/rij,r_cut_int) c write (iout,'(a7,4f8.3)') c & "ssscale",sss,((1.0d0/rij)/sigma(itypi,itypj)),r_cut,rlamb @@ -2138,7 +2169,7 @@ C Calculate gradient components. fac=rij*fac c print '(2i4,6f8.4)',i,j,sss,sssgrad* c & evdwij,fac,sigma(itypi,itypj),expon - fac=fac+evdwij/sss*sssgrad/sigma(itypi,itypj)*rij + fac=fac+evdwij/sss*sssgrad*rij c fac=0.0d0 C Calculate the radial part of the gradient gg_lipi(3)=eps1*(eps2rt*eps2rt) @@ -2548,7 +2579,7 @@ C include 'COMMON.SBRIDGE' include 'COMMON.NAMES' include 'COMMON.IOUNITS' - include 'COMMON.CONTACTS' +c include 'COMMON.CONTACTS' dimension gg(3) cd print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct evdw=0.0D0 @@ -2622,7 +2653,7 @@ C include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' +c include 'COMMON.CONTACTS' include 'COMMON.TORSION' include 'COMMON.VECTORS' include 'COMMON.FFIELD' @@ -2703,8 +2734,8 @@ c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) zj=zj_safe-zmedi endif rij=xj*xj+yj*yj+zj*zj - sss=sscale(sqrt(rij)) - sssgrad=sscagrad(sqrt(rij)) + sss=sscale(sqrt(rij),r_cut_int) + sssgrad=sscagrad(sqrt(rij),r_cut_int) if (rij.lt.r0ijsq) then evdw1ij=0.25d0*(rij-r0ijsq)**2 fac=rij-r0ijsq @@ -2946,7 +2977,7 @@ C-------------------------------------------------------------------------- include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VECTORS' include 'COMMON.FFIELD' @@ -2962,18 +2993,26 @@ c write(iout,*) "itype2loc",itype2loc #else do i=3,nres+1 #endif - if (i.gt. nnt+2 .and. i.lt.nct+2) then + ii=ireschain(i-2) +c write (iout,*) "i",i,i-2," ii",ii + if (ii.eq.0) cycle + innt=chain_border(1,ii) + inct=chain_border(2,ii) +c write (iout,*) "i",i,i-2," ii",ii," innt",innt," inct",inct +c if (i.gt. nnt+2 .and. i.lt.nct+2) then + if (i.gt. innt+2 .and. i.lt.inct+2) then iti = itype2loc(itype(i-2)) else iti=nloctyp endif c if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then - if (i.gt. nnt+1 .and. i.lt.nct+1) then + if (i.gt. innt+1 .and. i.lt.inct+1) then iti1 = itype2loc(itype(i-1)) else iti1=nloctyp endif - write(iout,*),"i",i,i-2," iti",iti," iti1",iti1 +c write(iout,*),"i",i,i-2," iti",itype(i-2),iti, +c & " iti1",itype(i-1),iti1 #ifdef NEWCORR cost1=dcos(theta(i-1)) sint1=dsin(theta(i-1)) @@ -3039,7 +3078,8 @@ c b2tilde(2,i-2)=-b2(2,i-2) write (iout,*) 'theta=', theta(i-1) #endif #else - if (i.gt. nnt+2 .and. i.lt.nct+2) then + if (i.gt. innt+2 .and. i.lt.inct+2) then +c if (i.gt. nnt+2 .and. i.lt.nct+2) then iti = itype2loc(itype(i-2)) else iti=nloctyp @@ -3084,12 +3124,14 @@ c write(iout,*) 'b2=',(b2(k,i-2),k=1,2) #endif enddo + mu=0.0d0 #ifdef PARMAT do i=ivec_start+2,ivec_end+2 #else do i=3,nres+1 #endif - if (i .lt. nres+1) then +c if (itype(i-1).eq.ntyp1 .and. itype(i).eq.ntyp1) cycle + if (i .lt. nres+1 .and. itype(i-1).lt.ntyp1) then sin1=dsin(phi(i)) cos1=dcos(phi(i)) sintab(i-2)=sin1 @@ -3126,7 +3168,7 @@ c Ug2(2,1,i-2)=0.0d0 Ug2(2,2,i-2)=0.0d0 endif - if (i .gt. 3 .and. i .lt. nres+1) then + if (i .gt. 3) then obrot_der(1,i-2)=-sin1 obrot_der(2,i-2)= cos1 Ugder(1,1,i-2)= sin1 @@ -3156,7 +3198,8 @@ c Ug2der(2,2,i-2)=0.0d0 endif c if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then - if (i.gt. nnt+2 .and. i.lt.nct+2) then +c if (i.gt. nnt+2 .and. i.lt.nct+2) then + if (i.gt.nnt+2 .and.i.lt.nct+2) then iti = itype2loc(itype(i-2)) else iti=nloctyp @@ -3185,6 +3228,7 @@ c & EE(1,2,iti),EE(2,2,i) c write(iout,*) "Macierz EUG", c & eug(1,1,i-2),eug(1,2,i-2),eug(2,1,i-2), c & eug(2,2,i-2) +#ifdef FOURBODY if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) & then call matmat2(CC(1,1,i-2),Ug(1,1,i-2),CUg(1,1,i-2)) @@ -3193,6 +3237,7 @@ c & eug(2,2,i-2) call matvec2(Ctilde(1,1,i-1),obrot(1,i-2),Ctobr(1,i-2)) call matvec2(Dtilde(1,1,i-2),obrot2(1,i-2),Dtobr2(1,i-2)) endif +#endif else do k=1,2 Ub2(k,i-2)=0.0d0 @@ -3226,7 +3271,6 @@ c if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then c mu(k,i-2)=b1(k,i-1) c mu(k,i-2)=Ub2(k,i-2) enddo -#define MUOUT #ifdef MUOUT write (iout,'(2hmu,i3,3f8.1,12f10.5)') i-2,rad2deg*theta(i-1), & rad2deg*theta(i),rad2deg*phi(i),mu(1,i-2),mu(2,i-2), @@ -3235,10 +3279,10 @@ c mu(k,i-2)=Ub2(k,i-2) & +dsqrt(b1(1,i-1)**2+b1(2,i-1)**2), & ((ee(l,k,i-2),l=1,2),k=1,2) #endif -#undef MUOUT cd write (iout,*) 'mu1',mu1(:,i-2) cd write (iout,*) 'mu2',mu2(:,i-2) cd write (iout,*) 'mu',i-2,mu(:,i-2) +#ifdef FOURBODY if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0) & then call matmat2(CC(1,1,i-1),Ugder(1,1,i-2),CUgder(1,1,i-2)) @@ -3257,7 +3301,9 @@ C Vectors and matrices dependent on a single virtual-bond dihedral. call matmat2(EUg(1,1,i-2),DD(1,1,i-1),EUgD(1,1,i-2)) call matmat2(EUgder(1,1,i-2),DD(1,1,i-1),EUgDder(1,1,i-2)) endif +#endif enddo +#ifdef FOURBODY C Matrices dependent on two consecutive virtual-bond dihedrals. C The order of matrices is from left to right. if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0) @@ -3274,6 +3320,7 @@ c do i=max0(ivec_start,2),ivec_end call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i)) enddo endif +#endif #if defined(MPI) && defined(PARMAT) #ifdef DEBUG c if (fg_rank.eq.0) then @@ -3342,6 +3389,7 @@ c & " ivec_count",(ivec_count(i),i=0,nfgtasks-1) call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1), & MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0), & MPI_DOUBLE_PRECISION,FG_COMM1,IERR) +#ifdef FOURBODY if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) & then call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1), @@ -3417,6 +3465,7 @@ c & " ivec_count",(ivec_count(i),i=0,nfgtasks-1) & MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0), & MPI_MAT2,FG_COMM1,IERR) endif +#endif #else c Passes matrix info through the ring isend=fg_rank1 @@ -3461,6 +3510,7 @@ c call flush(iout) & iprev,6600+irecv,FG_COMM,status,IERR) c write (iout,*) "Gather PRECOMP12" c call flush(iout) +#ifdef FOURBODY if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) & then call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1, @@ -3480,6 +3530,7 @@ c call flush(iout) & Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1, & MPI_PRECOMP23(lenrecv), & iprev,9900+irecv,FG_COMM,status,IERR) +#endif c write (iout,*) "Gather PRECOMP23" c call flush(iout) endif @@ -3555,7 +3606,11 @@ C include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' +#ifdef FOURBODY include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' +#endif + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VECTORS' include 'COMMON.FFIELD' @@ -3628,9 +3683,11 @@ cd enddo eello_turn3=0.0d0 eello_turn4=0.0d0 ind=0 +#ifdef FOURBODY do i=1,nres num_cont_hb(i)=0 enddo +#endif cd print '(a)','Enter EELEC' cd write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e do i=1,nres @@ -3680,7 +3737,9 @@ c end if num_conti=0 call eelecij(i,i+2,ees,evdw1,eel_loc) if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3) +#ifdef FOURBODY num_cont_hb(i)=num_conti +#endif enddo do i=iturn4_start,iturn4_end if (i.lt.1) cycle @@ -3736,12 +3795,16 @@ c endif zmedi=mod(zmedi,boxzsize) if (zmedi.lt.0) zmedi=zmedi+boxzsize +#ifdef FOURBODY num_conti=num_cont_hb(i) +#endif c write(iout,*) "JESTEM W PETLI" call eelecij(i,i+3,ees,evdw1,eel_loc) if (wturn4.gt.0.0d0 .and. itype(i+2).ne.ntyp1) & call eturn4(i,eello_turn4) +#ifdef FOURBODY num_cont_hb(i)=num_conti +#endif enddo ! i C Loop over all neighbouring boxes C do xshift=-1,1 @@ -3808,7 +3871,9 @@ c go to 166 c endif c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) +#ifdef FOURBODY num_conti=num_cont_hb(i) +#endif C I TU KURWA do j=ielstart(i),ielend(i) C do j=16,17 @@ -3824,7 +3889,9 @@ c & .or.itype(j-1).eq.ntyp1 &) cycle call eelecij(i,j,ees,evdw1,eel_loc) enddo ! j +#ifdef FOURBODY num_cont_hb(i)=num_conti +#endif enddo ! i C enddo ! zshift C enddo ! yshift @@ -3855,7 +3922,11 @@ C------------------------------------------------------------------------------- include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' +#ifdef FOURBODY include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' +#endif + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VECTORS' include 'COMMON.FFIELD' @@ -3973,8 +4044,8 @@ C yj=yj-ymedi C zj=zj-zmedi rij=xj*xj+yj*yj+zj*zj - sss=sscale(sqrt(rij)) - sssgrad=sscagrad(sqrt(rij)) + sss=sscale(sqrt(rij),r_cut_int) + sssgrad=sscagrad(sqrt(rij),r_cut_int) c if (sss.gt.0.0d0) then rrmij=1.0D0/rij rij=dsqrt(rij) @@ -4645,6 +4716,7 @@ C Remaining derivatives of eello ENDIF C Change 12/26/95 to calculate four-body contributions to H-bonding energy c if (j.gt.i+1 .and. num_conti.le.maxconts) then +#ifdef FOURBODY if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0 & .and. num_conti.le.maxconts) then c write (iout,*) i,j," entered corr" @@ -4835,6 +4907,7 @@ cdiag enddo endif ! num_conti.le.maxconts endif ! fcont.gt.0 endif ! j.gt.i+1 +#endif if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then do k=1,4 do l=1,3 @@ -4867,7 +4940,7 @@ C Third- and fourth-order contributions from turns include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VECTORS' include 'COMMON.FFIELD' @@ -5050,7 +5123,7 @@ C Third- and fourth-order contributions from turns include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VECTORS' include 'COMMON.FFIELD' @@ -5621,7 +5694,7 @@ cd write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e C do xshift=-1,1 C do yshift=-1,1 C do zshift=-1,1 - if (energy_dec) write (iout,*) "escp:",r_cut,rlamb + if (energy_dec) write (iout,*) "escp:",r_cut_int,rlamb do i=iatscp_s,iatscp_e if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle iteli=itel(i) @@ -5743,11 +5816,11 @@ CHERE IS THE CALCULATION WHICH MIRROR IMAGE IS THE CLOSEST ONE c print *,xj,yj,zj,'polozenie j' rrij=1.0D0/(xj*xj+yj*yj+zj*zj) c print *,rrij - sss=sscale(1.0d0/(dsqrt(rrij))) + sss=sscale(1.0d0/(dsqrt(rrij)),r_cut_int) c print *,r_cut,1.0d0/dsqrt(rrij),sss,'tu patrz' c if (sss.eq.0) print *,'czasem jest OK' if (sss.le.0.0d0) cycle - sssgrad=sscagrad(1.0d0/(dsqrt(rrij))) + sssgrad=sscagrad(1.0d0/(dsqrt(rrij)),r_cut_int) fac=rrij**expon2 e1=fac*fac*aad(itypj,iteli) e2=fac*bad(itypj,iteli) @@ -6174,6 +6247,12 @@ c estr=0.0d0 estr1=0.0d0 do i=ibondp_start,ibondp_end +c 3/4/2020 Adam: removed dummy bond graient if Calpha and SC coords are +c used +#ifdef FIVEDIAG + if (itype(i-1).eq.ntyp1 .or. itype(i).eq.ntyp1) cycle + diff = vbld(i)-vbldp0 +#else if (itype(i-1).eq.ntyp1 .and. itype(i).eq.ntyp1) cycle c estr1=estr1+gnmr1(vbld(i),-1.0d0,distchainmax) c do j=1,3 @@ -6184,15 +6263,16 @@ c if (energy_dec) write(iout,*) c & "estr1",i,gnmr1(vbld(i),-1.0d0,distchainmax) c else C Checking if it involves dummy (NH3+ or COO-) group - if (itype(i-1).eq.ntyp1 .or. itype(i).eq.ntyp1) then + if (itype(i-1).eq.ntyp1 .or. itype(i).eq.ntyp1) then C YES vbldpDUM is the equlibrium length of spring for Dummy atom - diff = vbld(i)-vbldpDUM - if (energy_dec) write(iout,*) "dum_bond",i,diff - else -C NO vbldp0 is the equlibrium lenght of spring for peptide group - diff = vbld(i)-vbldp0 - endif - if (energy_dec) write (iout,'(a7,i5,4f7.3)') + diff = vbld(i)-vbldpDUM + if (energy_dec) write(iout,*) "dum_bond",i,diff + else +C NO vbldp0 is the equlibrium length of spring for peptide group + diff = vbld(i)-vbldp0 + endif +#endif + if (energy_dec) write (iout,'(a7,i5,4f7.3)') & "estr bb",i,vbld(i),vbldp0,diff,AKP*diff*diff estr=estr+diff*diff do j=1,3 @@ -7144,7 +7224,8 @@ c & sumene4, c & dscp1,dscp2,sumene c sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) escloc = escloc + sumene -c write (2,*) "i",i," escloc",sumene,escloc,it,itype(i) + if (energy_dec) write (2,*) "i",i," itype",itype(i)," it",it, + & " escloc",sumene,escloc,it,itype(i) c & ,zz,xx,yy c#define DEBUG #ifdef DEBUG @@ -8709,6 +8790,7 @@ c write (iout,*) "EBACK_SC_COR",i,v1ij*cosphi+v2ij*sinphi,intertyp return end +#ifdef FOURBODY c---------------------------------------------------------------------------- subroutine multibody(ecorr) C This subroutine calculates multi-body contributions to energy following @@ -8721,6 +8803,8 @@ C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added. include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' double precision gx(3),gx1(3) logical lprn @@ -8775,6 +8859,8 @@ c------------------------------------------------------------------------------ include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.SHIELD' double precision gx(3),gx1(3) logical lprn @@ -8829,6 +8915,8 @@ C This subroutine calculates multi-body contributions to hydrogen-bonding include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.CONTROL' include 'COMMON.LOCAL' double precision gx(3),gx1(3),time00 @@ -9122,6 +9210,8 @@ c------------------------------------------------------------------------------ parameter (max_cont=maxconts) parameter (max_dim=26) include "COMMON.CONTACTS" + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' double precision zapas(max_dim,maxconts,max_fg_procs), & zapas_recv(max_dim,maxconts,max_fg_procs) common /przechowalnia/ zapas @@ -9193,6 +9283,8 @@ C This subroutine calculates multi-body contributions to hydrogen-bonding include 'COMMON.LOCAL' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.CHAIN' include 'COMMON.CONTROL' include 'COMMON.SHIELD' @@ -9563,6 +9655,8 @@ c------------------------------------------------------------------------------ parameter (max_cont=maxconts) parameter (max_dim=70) include "COMMON.CONTACTS" + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' double precision zapas(max_dim,maxconts,max_fg_procs), & zapas_recv(max_dim,maxconts,max_fg_procs) common /przechowalnia/ zapas @@ -9616,6 +9710,8 @@ c------------------------------------------------------------------------------ include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.SHIELD' include 'COMMON.CONTROL' double precision gx(3),gx1(3) @@ -9791,6 +9887,8 @@ C--------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -9856,6 +9954,8 @@ C include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -10242,6 +10342,8 @@ C--------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -10363,6 +10465,8 @@ C--------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -10767,6 +10871,8 @@ c-------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -10907,6 +11013,8 @@ c-------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -11011,6 +11119,8 @@ c---------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -11196,6 +11306,8 @@ c---------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -11311,6 +11423,8 @@ c---------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -11555,6 +11669,8 @@ c---------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -11873,8 +11989,8 @@ cd write (2,*) 'ekont',ekont cd write (2,*) 'eel_turn6',ekont*eel_turn6 return end - C----------------------------------------------------------------------------- +#endif double precision function scalar(u,v) !DIR$ INLINEALWAYS scalar #ifndef OSF diff --git a/source/unres/src-HCD-5D/energy_split-sep.F b/source/unres/src-HCD-5D/energy_split-sep.F index c4f6dd4..1b033a5 100644 --- a/source/unres/src-HCD-5D/energy_split-sep.F +++ b/source/unres/src-HCD-5D/energy_split-sep.F @@ -75,7 +75,13 @@ C FG slaves as WEIGHTS array. weights_(17)=wbond weights_(18)=scal14 weights_(21)=wsccor + weights_(22)=wliptran + weights_(25)=wtube weights_(26)=wsaxs + weights_(28)=wdfa_dist + weights_(29)=wdfa_tor + weights_(30)=wdfa_nei + weights_(31)=wdfa_beta C FG Master broadcasts the WEIGHTS_ array call MPI_Bcast(weights_(1),n_ene, & MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR) @@ -102,7 +108,13 @@ C FG slaves receive the WEIGHTS array wbond=weights(17) scal14=weights(18) wsccor=weights(21) + wliptran=weights(22) + wtube=weights(25) wsaxs=weights(26) + wdfa_dist=weights_(28) + wdfa_tor=weights_(29) + wdfa_nei=weights_(30) + wdfa_beta=weights_(31) endif call MPI_Bcast(dc(1,1),6*nres,MPI_DOUBLE_PRECISION, & king,FG_COMM,IERR) @@ -498,6 +510,13 @@ C energy function etors=0.0d0 endif edihcnstr=0.0d0 +c Lipid transfer + if (wliptran.gt.0) then + call Eliptransfer(eliptran) + else + eliptran=0.0d0 + endif + if (ndih_constr.gt.0) call etor_constr(edihcnstr) c print *,"Processor",myrank," computed Utor" C diff --git a/source/unres/src-HCD-5D/gen_rand_conf.F b/source/unres/src-HCD-5D/gen_rand_conf.F index 9ab2480..3e662cc 100644 --- a/source/unres/src-HCD-5D/gen_rand_conf.F +++ b/source/unres/src-HCD-5D/gen_rand_conf.F @@ -804,8 +804,8 @@ c overlapping residues left, or false otherwise (success) call chainbuild_extconf call overlap_sc_list(ioverlap,ioverlap_last) -c write (iout,*) 'Overlaping residues ',ioverlap_last, -c & (ioverlap(j),j=1,ioverlap_last) + write (iout,*) 'Overlaping residues ',ioverlap_last, + & (ioverlap(j),j=1,ioverlap_last) enddo if (k.le.1000.and.ioverlap_last.eq.0) then @@ -845,6 +845,7 @@ c & (ioverlap(j),j=1,ioverlap_last) integer ioverlap(maxres),ioverlap_last data redfac /0.5D0/ + write (iout,*) "overlap_sc_list" ioverlap_last=0 C Check for SC-SC overlaps and mark residues c print *,'>>overlap_sc nnt=',nnt,' nct=',nct @@ -901,11 +902,11 @@ c & ,rcomp ct if ( 1.0/rij .lt. redfac*rcomp .or. ct & rij_shift.le.0.0D0 ) then +c write (iout,'(a,i3,a,i3,a,f10.5,a,3f10.5)') +c & 'overlap SC-SC: i=',i,' j=',j, +c & ' dist=',dist(nres+i,nres+j),' rcomp=', +c & rcomp,1.0/rij,rij_shift if ( rij_shift.le.0.0D0 ) then -cd write (iout,'(a,i3,a,i3,a,f10.5,a,3f10.5)') -cd & 'overlap SC-SC: i=',i,' j=',j, -cd & ' dist=',dist(nres+i,nres+j),' rcomp=', -cd & rcomp,1.0/rij,rij_shift ioverlap_last=ioverlap_last+1 ioverlap(ioverlap_last)=i do k=1,ioverlap_last-1 diff --git a/source/unres/src-HCD-5D/gradient_p.F b/source/unres/src-HCD-5D/gradient_p.F index 82b8c34..adafa53 100644 --- a/source/unres/src-HCD-5D/gradient_p.F +++ b/source/unres/src-HCD-5D/gradient_p.F @@ -335,6 +335,11 @@ c--------------------------------------------------------------------------- integer i,j,kk #ifdef DEBUG write (iout,*)"Converting virtual-bond gradient to CA/SC gradient" + write (iout,*) "dC/dX gradient" + do i=0,nres + write (iout,'(i5,3f10.5,5x,3f10.5)') i,(gcart(j,i),j=1,3), + & (gxcart(j,i),j=1,3) + enddo #endif do i=nres,1,-1 do j=1,3 @@ -345,17 +350,24 @@ c--------------------------------------------------------------------------- ! (gcart_new(j,i),j=1,3),(gxcart(j,i),j=1,3) enddo ! Correction: dummy residues - if (nnt.gt.1) then - do j=1,3 - gcart(j,nnt)=gcart(j,nnt)+gcart(j,1) - enddo - endif - if (nct.lt.nres) then - do j=1,3 -! gcart_new(j,nct)=gcart_new(j,nct)+gcart_new(j,nres) - gcart(j,nct)=gcart(j,nct)+gcart(j,nres) - enddo - endif + do i=2,nres + if (itype(i-1).eq.ntyp1 .and. itype(i).ne.ntyp1) then + gcart(:,i)=gcart(:,i)+gcart(:,i-1) + else if (itype(i-1).ne.ntyp1 .and. itype(i).eq.ntyp1) then + gcart(:,i-1)=gcart(:,i-1)+gcart(:,i) + endif + enddo +c if (nnt.gt.1) then +c do j=1,3 +c gcart(j,nnt)=gcart(j,nnt)+gcart(j,1) +c enddo +c endif +c if (nct.lt.nres) then +c do j=1,3 +c! gcart_new(j,nct)=gcart_new(j,nct)+gcart_new(j,nres) +c gcart(j,nct)=gcart(j,nct)+gcart(j,nres) +c enddo +c endif #ifdef DEBUG write (iout,*) "CA/SC gradient" do i=1,nres diff --git a/source/unres/src-HCD-5D/lagrangian_lesyng.F b/source/unres/src-HCD-5D/lagrangian_lesyng.F index 6a6967a..f57a432 100644 --- a/source/unres/src-HCD-5D/lagrangian_lesyng.F +++ b/source/unres/src-HCD-5D/lagrangian_lesyng.F @@ -38,7 +38,7 @@ c------------------------------------------------------------------------- integer i,j,ind double precision zapas(MAXRES6),muca_factor - logical lprn /.true./ + logical lprn /.false./ integer itime common /cipiszcze/ itime #ifdef FIVEDIAG @@ -58,7 +58,7 @@ c------------------------------------------------------------------------- d_a=0.0d0 if (lprn) then write (iout,*) "Potential forces backbone" - do i=nnt,nct + do i=1,nres write (iout,'(i5,3e15.5,5x,3e15.5)')i,(-gcart(j,i),j=1,3) enddo write (iout,*) "Potential forces sidechain" @@ -161,6 +161,8 @@ c write (iout,*) "Shifting accelerations" d_a(:,0)=d_a(:,1) d_a(:,1)=0.0d0 endif +#define CHUJ +#ifdef CHUJ do ichain=2,nchain c write (iout,*) "ichain",chain_border1(1,ichain)-1, c & chain_border1(1,ichain) @@ -175,6 +177,7 @@ c & chain_border(2,ichain-1) & d_a(:,chain_border1(1,ichain)-1)+d_a(:,chain_border(2,ichain-1)) d_a(:,chain_border(2,ichain-1))=0.0d0 enddo +#endif #else inct_prev=0 do j=1,3 @@ -187,20 +190,6 @@ c & chain_border(2,ichain-1) d_a(j,inct_prev)=d_a(j,innt)-aaux(j) enddo inct_prev=inct+1 -#ifdef DEBUG - do i=innt,inct - if (itype(i).eq.10 .or. itype(i).eq.ntyp1) then - do j=1,3 - d_a(j,i)=d_a(j,i+1)-d_a(j,i) - enddo - else - do j=1,3 - d_a(j,i+nres)=d_a(j,i+nres)-d_a(j,i) - d_a(j,i)=d_a(j,i+1)-d_a(j,i) - enddo - end if - enddo -#else do i=innt,inct if (itype(i).ne.10) then do j=1,3 @@ -216,17 +205,16 @@ c & chain_border(2,ichain-1) d_a(j,i)=d_a(j,i+1)-d_a(j,i) enddo enddo -#endif enddo #endif if (lprn) then write(iout,*) 'acceleration 3D FIVEDIAG in dC and dX' - do i=0,nct-1 + do i=0,nres write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_a(j,i),j=1,3) enddo do i=nnt,nct write (iout,'(i3,3f10.5,3x,3f10.5)') - & i+nres,(d_a(j,i+nres),j=1,3) + & i,(d_a(j,i+nres),j=1,3) enddo endif #else diff --git a/source/unres/src-HCD-5D/minimize_p.F b/source/unres/src-HCD-5D/minimize_p.F index 377bc47..a56e4f8 100644 --- a/source/unres/src-HCD-5D/minimize_p.F +++ b/source/unres/src-HCD-5D/minimize_p.F @@ -566,6 +566,7 @@ c---------------------------------------------------------- #endif double precision g(maxvar),f1 integer nvarx + double precision energia(0:n_ene) #ifdef LBFGS maxiter=maxmin coordtype='CARTESIAN' @@ -635,6 +636,9 @@ c v(25)=4.0D0 enddo nvarx=k write (iout,*) "Variables set up nvarx",nvarx + write (iout,*) "Before energy minimization" + call etotal(energia(0)) + call enerprint(energia(0)) #ifdef LBFGS c c From tinker diff --git a/source/unres/src-HCD-5D/moments.F b/source/unres/src-HCD-5D/moments.F index bbc0f27..4f57331 100644 --- a/source/unres/src-HCD-5D/moments.F +++ b/source/unres/src-HCD-5D/moments.F @@ -183,7 +183,8 @@ c Resetting the velocities #ifdef FIVEDIAG do i=nnt,nct-1 write (iout,*) itype(i+1),itype(i) - if (itype(i+1).ne.ntyp1 .and. itype(i).eq.ntyp1) cycle + if (itype(i+1).ne.ntyp1 .and. itype(i).eq.ntyp1 .or. + & itype(i).ne.ntyp1 .and. itype(i+1).eq.ntyp1) cycle call vecpr(vrot(1),dc(1,i),vp) do j=1,3 d_t(j,i)=d_t(j,i)-vp(j) diff --git a/source/unres/src-HCD-5D/readrtns_CSA.F b/source/unres/src-HCD-5D/readrtns_CSA.F index cd60d6e..4765a41 100644 --- a/source/unres/src-HCD-5D/readrtns_CSA.F +++ b/source/unres/src-HCD-5D/readrtns_CSA.F @@ -304,9 +304,16 @@ C Reading the dimensions of box in x,y,z coordinates call reada(controlcard,'BOXX',boxxsize,100.0d0) call reada(controlcard,'BOXY',boxysize,100.0d0) call reada(controlcard,'BOXZ',boxzsize,100.0d0) + write(iout,*) "Periodic box dimensions",boxxsize,boxysize,boxzsize c Cutoff range for interactions - call reada(controlcard,"R_CUT",r_cut,15.0d0) + call reada(controlcard,"R_CUT_INT",r_cut_int,25.0d0) + call reada(controlcard,"R_CUT_RESPA",r_cut_respa,2.0d0) call reada(controlcard,"LAMBDA",rlamb,0.3d0) + write (iout,*) "Cutoff on interactions",r_cut_int + write (iout,*) + & "Cutoff in switching short and long range interactions in RESPA", + & r_cut_respa + write (iout,*) "lambda in switch function",rlamb call reada(controlcard,"LIPTHICK",lipthick,0.0d0) call reada(controlcard,"LIPAQBUF",lipbufthick,0.0d0) if (lipthick.gt.0.0d0) then @@ -544,7 +551,7 @@ c if performing umbrella sampling, fragments constrained are read from the frag & "A-MTS algorithm used; initial time step for fast-varying", & " short-range forces split into",ntime_split," steps." write (iout,'(a,f5.2,a,f5.2)') "Short-range force cutoff", - & r_cut," lambda",rlamb + & r_cut_respa," lambda",rlamb endif write (iout,'(2a,f10.5)') & "Maximum acceleration threshold to reduce the time step", @@ -3603,7 +3610,7 @@ c write (iout,*) "c(",j,i,") =",c(j,i) enddo enddo call int_from_cart(.true.,.false.) - call sc_loc_geom(.true.) + call sc_loc_geom(.false.) do i=1,nres thetaref(i)=theta(i) phiref(i)=phi(i) diff --git a/source/wham/src-M-SAXS-homology/COMMON.CONTMAT b/source/wham/src-M-SAXS-homology/COMMON.CONTMAT new file mode 100644 index 0000000..e681360 --- /dev/null +++ b/source/wham/src-M-SAXS-homology/COMMON.CONTMAT @@ -0,0 +1,39 @@ +C Change 12/1/95 - common block CONTACTS1 included. + common /contacts1/ facont(maxconts,maxres), + & gacont(3,maxconts,maxres), + & num_cont(maxres),jcont(maxconts,maxres) +C 12/26/95 - H-bonding contacts + double precision gacontp_hb1,gacontp_hb2,gacontp_hb3,gacont_hbr, + & gacontm_hb1,gacontm_hb2,gacontm_hb3,grij_hb_cont,facont_hb, + & ees0p,ees0m,d_cont + integer num_cont_hb,jcont_hb + common /contacts_hb/ + & gacontp_hb1(3,maxconts,maxres),gacontp_hb2(3,maxconts,maxres), + & gacontp_hb3(3,maxconts,maxres), + & gacontm_hb1(3,maxconts,maxres),gacontm_hb2(3,maxconts,maxres), + & gacontm_hb3(3,maxconts,maxres), + & gacont_hbr(3,maxconts,maxres), + & grij_hb_cont(3,maxconts,maxres), + & facont_hb(maxconts,maxres),ees0p(maxconts,maxres), + & ees0m(maxconts,maxres),d_cont(maxconts,maxres), + & num_cont_hb(maxres),jcont_hb(maxconts,maxres) +C 9/23/99 Added improper rotation matrices and matrices of dipole-dipole +C interactions +c 7/25/08 Commented out; not needed when cumulants used +C Interactions of pseudo-dipoles generated by loc-el interactions. +c double precision dip,dipderg,dipderx +c common /dipint/ dip(4,maxconts,maxres),dipderg(4,maxconts,maxres), +c & dipderx(3,5,4,maxconts,maxres) +C 12/13/2008 (again Poland-Jaruzel war anniversary) +C RE: Parallelization of 4th and higher order loc-el correlations + integer ncont_sent,ncont_recv,iint_sent,iisent_local, + & itask_cont_from,itask_cont_to,ntask_cont_from,ntask_cont_to, + & nat_sent,iat_sent,iint_sent_local + integer iturn3_sent,iturn4_sent,iturn3_sent_local, + & iturn4_sent_local + common /contdistrib/ ncont_sent(maxres),ncont_recv(maxres), + & iint_sent(4,maxres,maxres),iint_sent_local(4,maxres,maxres), + & nat_sent,iat_sent(maxres),itask_cont_from(0:max_fg_procs-1), + & itask_cont_to(0:max_fg_procs-1),ntask_cont_from,ntask_cont_to, + & iturn3_sent(4,maxres),iturn4_sent(4,maxres), + & iturn3_sent_local(4,maxres),iturn4_sent_local(4,maxres) diff --git a/source/wham/src-M-SAXS-homology/COMMON.CORRMAT b/source/wham/src-M-SAXS-homology/COMMON.CORRMAT new file mode 100644 index 0000000..5f154e0 --- /dev/null +++ b/source/wham/src-M-SAXS-homology/COMMON.CORRMAT @@ -0,0 +1,47 @@ +C 10/30/99 Added other pre-computed vectors and matrices needed +C to calculate three - six-order el-loc correlation terms + double precision Ug,Ugder,Ug2,Ug2der,obrot,obrot2,obrot_der, + & obrot2_der,Ub2,Ub2der,mu,muder,EUg,EUgder,CUg,CUgder,gmu,gUb2, + & DUg,DUgder,DtUg2,DtUg2der,Ctobr,Ctobrder,Dtobr2,Dtobr2der, + & gtEug + common /rotat/ Ug(2,2,maxres),Ugder(2,2,maxres),Ug2(2,2,maxres), + & Ug2der(2,2,maxres),obrot(2,maxres),obrot2(2,maxres), + & obrot_der(2,maxres),obrot2_der(2,maxres) +C This common block contains vectors and matrices dependent on a single +C amino-acid residue. + common /precomp1/ mu(2,maxres),muder(2,maxres),Ub2(2,maxres), + & gmu(2,maxres),gUb2(2,maxres), + & Ub2der(2,maxres),Ctobr(2,maxres),Ctobrder(2,maxres), + & Dtobr2(2,maxres),Dtobr2der(2,maxres), + & EUg(2,2,maxres),EUgder(2,2,maxres),CUg(2,2,maxres), + & CUgder(2,2,maxres),DUg(2,2,maxres),Dugder(2,2,maxres), + & DtUg2(2,2,maxres),DtUg2der(2,2,maxres),gtEUg(2,2,maxres) +C This common block contains vectors and matrices dependent on two +C consecutive amino-acid residues. + double precision Ug2Db1t,Ug2Db1tder,CUgb2,CUgb2der,EUgC, + & EUgCder,EUgD,EUgDder,DtUg2EUg,DtUg2EUgder,Ug2DtEUg,Ug2DtEUgder + common /precomp2/ Ug2Db1t(2,maxres),Ug2Db1tder(2,maxres), + & CUgb2(2,maxres),CUgb2der(2,maxres),EUgC(2,2,maxres), + & EUgCder(2,2,maxres),EUgD(2,2,maxres),EUgDder(2,2,maxres), + & DtUg2EUg(2,2,maxres),Ug2DtEUg(2,2,maxres), + & Ug2DtEUgder(2,2,2,maxres),DtUg2EUgder(2,2,2,maxres) + double precision costab,sintab,costab2,sintab2 + common /rotat_old/ costab(maxres),sintab(maxres), + & costab2(maxres),sintab2(maxres) +C This common block contains dipole-interaction matrices and their +C Cartesian derivatives. + double precision a_chuj,a_chuj_der + common /dipmat/ a_chuj(2,2,maxconts,maxres), + & a_chuj_der(2,2,3,5,maxconts,maxres) + double precision AEA,AEAderg,AEAderx,AECA,AECAderg,AECAderx, + & ADtEA,ADtEAderg,ADtEAderx,AEAb1,AEAb1derg,AEAb1derx, + & AEAb2,AEAb2derg,AEAb2derx,g_contij,ekont,EAEA,EAEAderg,EAEAderx, + & ADtEA1,AdTEA1derg,ADtEA1derx + common /diploc/ AEA(2,2,2),AEAderg(2,2,2),AEAderx(2,2,3,5,2,2), + & EAEA(2,2,2), EAEAderg(2,2,2,2), EAEAderx(2,2,3,5,2,2), + & AECA(2,2,2),AECAderg(2,2,2),AECAderx(2,2,3,5,2,2), + & ADtEA(2,2,2),ADtEAderg(2,2,2,2),ADtEAderx(2,2,3,5,2,2), + & ADtEA1(2,2,2),ADtEA1derg(2,2,2,2),ADtEA1derx(2,2,3,5,2,2), + & AEAb1(2,2,2),AEAb1derg(2,2,2),AEAb1derx(2,3,5,2,2,2), + & AEAb2(2,2,2),AEAb2derg(2,2,2,2),AEAb2derx(2,3,5,2,2,2), + & g_contij(3,2),ekont diff --git a/source/wham/src-M-SAXS-homology/Makefile_MPICH_ifort-okeanos b/source/wham/src-M-SAXS-homology/Makefile_MPICH_ifort-okeanos index 28f86e7..034a517 100644 --- a/source/wham/src-M-SAXS-homology/Makefile_MPICH_ifort-okeanos +++ b/source/wham/src-M-SAXS-homology/Makefile_MPICH_ifort-okeanos @@ -1,9 +1,9 @@ BIN = ~/bin FC = ftn -OPT = -mcmodel=medium -shared-intel -O3 -dynamic +#OPT = -mcmodel=medium -shared-intel -O3 -dynamic #OPT = -O3 -intel-static -mcmodel=medium #OPT = -O3 -ip -w -#OPT = -g -CB -mcmodel=medium -shared-intel -dynamic +OPT = -g -CB -mcmodel=medium -shared-intel -dynamic FFLAGS = ${OPT} -c -I. -I./include_unres -I$(INSTALL_DIR)/include LIBS = -L$(INSTALL_DIR)/lib -lmpich xdrf/libxdrf.a @@ -127,7 +127,7 @@ NEWCORR: ${objects} ${objects_compar} xdrf/libxdrf.a ./compinfo ${FC} -c ${FFLAGS} cinfo.f $(FC) ${OPT} ${objects} ${objects_compar} cinfo.o \ - ${LIBS} -o ${BIN}/wham_ifort_KCC_MPICH-okeanos_NEWCORR-SAXS-homology.exe + ${LIBS} -o ${BIN}/wham_ifort_KCC_MPICH-okeanos_NEWCORR-SAXS-homology-D.exe NEWCORR_DFA: CPPFLAGS = -DMPI -DLINUX -DUNRES -DSPLITELE -DPROCOR -DNEWCORR -DCORRCD -DDFA -DPGI -DISNAN -DAMD64 -DWHAM -DDFA NEWCORR_DFA: ${objects} ${objects_compar} dfa.o xdrf/libxdrf.a @@ -135,7 +135,7 @@ NEWCORR_DFA: ${objects} ${objects_compar} dfa.o xdrf/libxdrf.a ./compinfo ${FC} -c ${FFLAGS} cinfo.f $(FC) ${OPT} ${objects} ${objects_compar} dfa.o cinfo.o \ - ${LIBS} -o ${BIN}/wham_ifort_KCC_MPICH-okeanos_NEWCORR-SAXS-homology-DFA.exe + ${LIBS} -o ${BIN}/wham_ifort_KCC_MPICH-okeanos_NEWCORR-SAXS-homology-DFA-D.exe xdrf/libxdrf.a: cd xdrf && make diff --git a/source/wham/src-M-SAXS-homology/cxread.F b/source/wham/src-M-SAXS-homology/cxread.F index e3e5fcb..cd29176 100644 --- a/source/wham/src-M-SAXS-homology/cxread.F +++ b/source/wham/src-M-SAXS-homology/cxread.F @@ -300,6 +300,7 @@ c & bprotfile_temp(:ilen(bprotfile_temp)) write (iout,'(8f10.5)') ((c(j,i),j=1,3),i=1,nres) write (iout,'(8f10.5)') ((c(j,i+nres),j=1,3),i=nnt,nct) write (iout,*) "Internal coordinates" + call intout write (iout,'(8f10.4)') (vbld(k),k=nnt+1,nct) write (iout,'(8f10.4)') (vbld(k),k=nres+nnt,nres+nct) write (iout,'(8f10.4)') (rad2deg*theta(k),k=3,nres) diff --git a/source/wham/src-M-SAXS-homology/energy_p_new.F b/source/wham/src-M-SAXS-homology/energy_p_new.F index 6abf7f0..5360778 100644 --- a/source/wham/src-M-SAXS-homology/energy_p_new.F +++ b/source/wham/src-M-SAXS-homology/energy_p_new.F @@ -124,12 +124,18 @@ C endif c print *,"Processor",myrank," computed Utord" C - call eback_sc_corr(esccor) + if (wsccor.gt.0.0d0) then + call eback_sc_corr(esccor) + else + esccor=0.0d0 + endif if (wliptran.gt.0) then call Eliptransfer(eliptran) + else + eliptran=0.0d0 endif - +#ifdef FOURBODY C C 12/1/95 Multi-body terms C @@ -151,6 +157,7 @@ c write (iout,*) ecorr,ecorr5,ecorr6,eturn6 c write (iout,*) "Calling multibody_hbond" call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1) endif +#endif c write (iout,*) "From Esaxs: Esaxs_constr",Esaxs_constr if (nsaxs.gt.0 .and. saxs_mode.eq.0) then call e_saxs(Esaxs_constr) @@ -506,10 +513,17 @@ C Bartek #ifdef SPLITELE write(iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),evdw1,wvdwpp, & estr,wbond,ebe,wang,escloc,wscloc,etors,wtor*fact(1), - & etors_d,wtor_d*fact(2),ehpb,wstrain,ecorr,wcorr*fact(3), - & ecorr5,wcorr5*fact(4),ecorr6,wcorr6*fact(5),eel_loc, + & etors_d,wtor_d*fact(2),ehpb,wstrain, +#ifdef FOURBODY + & ecorr,wcorr*fact(3), + & ecorr5,wcorr5*fact(4),ecorr6,wcorr6*fact(5), +#endif + & eel_loc, & wel_loc*fact(2),eello_turn3,wturn3*fact(2), - & eello_turn4,wturn4*fact(3),eello_turn6,wturn6*fact(5), + & eello_turn4,wturn4*fact(3), +#ifdef FOURBODY + & eello_turn6,wturn6*fact(5), +#endif & esccor,wsccor*fact(1),edihcnstr, & ethetacnstr,ebr*nss,Uconst,wumb,eliptran,wliptran,Eafmforc, & etube,wtube,esaxs,wsaxs,ehomology_constr, @@ -528,13 +542,17 @@ C Bartek & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/ & 'EHBP= ',1pE16.6,' WEIGHT=',1pE16.6, & ' (SS bridges & dist. cnstr.)'/ +#ifdef FOURBODY & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ +#endif & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/ & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/ & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/ +#ifdef FOURBODY & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/ +#endif & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/ & 'EDIHC= ',1pE16.6,' (virtual-bond dihedral angle restraints)'/ & 'ETHETC=',1pE16.6,' (virtual-bond angle restraints)'/ @@ -554,10 +572,16 @@ C Bartek #else write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1), & estr,wbond,ebe,wang,escloc,wscloc,etors,wtor*fact(1), - & etors_d,wtor_d*fact(2),ehpb,wstrain,ecorr,wcorr*fact(3), + & etors_d,wtor_d*fact(2),ehpb,wstrain, +#ifdef FOURBODY + & ecorr,wcorr*fact(3), & ecorr5,wcorr5*fact(4),ecorr6,wcorr6*fact(5), +#endif & eel_loc,wel_loc*fact(2),eello_turn3,wturn3*fact(2), - & eello_turn4,wturn4*fact(3),eello_turn6,wturn6*fact(5), + & eello_turn4,wturn4*fact(3), +#ifdef FOURBODY + & eello_turn6,wturn6*fact(5), +#endif & esccor,wsccor*fact(1),edihcnstr, & ethetacnstr,ebr*nss,Uconst,wumb,eliptran,wliptran,Eafmforc, & etube,wtube,esaxs,wsaxs,ehomology_constr, @@ -575,13 +599,17 @@ C Bartek & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/ & 'EHBP= ',1pE16.6,' WEIGHT=',1pE16.6, & ' (SS bridges & dist. restr.)'/ +#ifdef FOURBODY & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/ +#endif & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/ & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/ & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/ +#ifdef FOURBODY & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/ +#endif & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/ & 'EDIHC= ',1pE16.6,' (virtual-bond dihedral angle restraints)'/ & 'ETHETC=',1pE16.6,' (virtual-bond angle restraints)'/ @@ -622,7 +650,10 @@ C include 'COMMON.SBRIDGE' include 'COMMON.NAMES' include 'COMMON.IOUNITS' +#ifdef FOURBODY include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' +#endif dimension gg(3) integer icant external icant @@ -661,6 +692,10 @@ cd & 'iend=',iend(i,iint) C Change 12/1/95 to calculate four-body interactions rij=xj*xj+yj*yj+zj*zj rrij=1.0D0/rij + sqrij=dsqrt(rij) + sss1=sscale(sqrij) + if (sss1.eq.0.0d0) cycle + sssgrad1=sscagrad(sqrij) c write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj eps0ij=eps(itypi,itypj) fac=rrij**expon2 @@ -680,15 +715,16 @@ cd & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj), cd & bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm, cd & (c(k,i),k=1,3),(c(k,j),k=1,3) if (bb.gt.0.0d0) then - evdw=evdw+evdwij + evdw=evdw+sss1*evdwij else - evdw_t=evdw_t+evdwij + evdw_t=evdw_t+sss1*evdwij endif if (calc_grad) then C C Calculate the components of the gradient in DC and X C - fac=-rrij*(e1+evdwij) + fac=-rrij*(e1+evdwij)*sss1 + & +evdwij*sssgrad1/sqrij/expon gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac @@ -702,6 +738,7 @@ C enddo enddo endif +#ifdef FOURBODY C C 12/1/95, revised on 5/20/97 C @@ -758,10 +795,13 @@ cd write (iout,'(2i3,3f10.5)') cd & i,j,(gacont(kk,num_conti,i),kk=1,3) endif endif +#endif enddo ! j enddo ! iint +#ifdef FOURBODY C Change 12/1/95 num_cont(i)=num_conti +#endif enddo ! i if (calc_grad) then do i=1,nct @@ -835,6 +875,9 @@ C e_augm=augm(itypi,itypj)*fac_augm r_inv_ij=dsqrt(rrij) rij=1.0D0/r_inv_ij + sss1=sscale(rij) + if (sss1.eq.0.0d0) cycle + sssgrad1=sscagrad(rij) r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj)) fac=r_shift_inv**expon e1=fac*fac*aa @@ -852,15 +895,16 @@ cd & bb(itypi,itypj),augm(itypi,itypj),epsi,sigm, cd & sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij, cd & (c(k,i),k=1,3),(c(k,j),k=1,3) if (bb.gt.0.0d0) then - evdw=evdw+evdwij + evdw=evdw+evdwij*sss1 else - evdw_t=evdw_t+evdwij + evdw_t=evdw_t+evdwij*sss1 endif if (calc_grad) then C C Calculate the components of the gradient in DC and X C - fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2) + fac=(-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2))*sss1 + & +evdwij*sssgrad1*r_inv_ij/expon gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac @@ -978,6 +1022,10 @@ cd else cd rrij=rrsave(ind) cd endif rij=dsqrt(rrij) + sss1=sscale(1.0d0/rij) + if (sss1.eq.0.0d0) cycle + sssgrad1=sscagrad(1.0d0/rij) + C Calculate the angle-dependent terms of energy & contributions to derivatives. call sc_angular C Calculate whole angle-dependent part of epsilon and contributions @@ -995,9 +1043,9 @@ C to its derivatives & /dabs(eps(itypi,itypj)) eneps_temp(2,ij)=eneps_temp(2,ij)+e2*aux/eps(itypi,itypj) if (bb.gt.0.0d0) then - evdw=evdw+evdwij + evdw=evdw+sss1*evdwij else - evdw_t=evdw_t+evdwij + evdw_t=evdw_t+sss1*evdwij endif if (calc_grad) then if (lprn) then @@ -1015,6 +1063,7 @@ C Calculate gradient components. fac=-expon*(e1+evdwij) sigder=fac/sigsq fac=rrij*fac + & +evdwij*sssgrad1/sss1*rij C Calculate radial part of the gradient gg(1)=xj*fac gg(2)=yj*fac @@ -1240,8 +1289,8 @@ C finding the closest c write (iout,*) i,j,xj,yj,zj rrij=1.0D0/(xj*xj+yj*yj+zj*zj) rij=dsqrt(rrij) - sss=sscale((1.0d0/rij)/sigma(itypi,itypj)) - sssgrad=sscagrad((1.0d0/rij)/sigma(itypi,itypj)) + sss=sscale(1.0d0/rij) + sssgrad=sscagrad(1.0d0/rij) if (sss.le.0.0) cycle C Calculate angle-dependent terms of energy and contributions to their C derivatives. @@ -1401,6 +1450,9 @@ c alf12=0.0D0 dzj=dc_norm(3,nres+j) rrij=1.0D0/(xj*xj+yj*yj+zj*zj) rij=dsqrt(rrij) + sss=sscale(1.0d0/rij) + if (sss.eq.0.0d0) cycle + sssgrad=sscagrad(1.0d0/rij) C Calculate angle-dependent terms of energy and contributions to their C derivatives. call sc_angular @@ -1425,9 +1477,9 @@ c--------------------------------------------------------------- e_augm=augm(itypi,itypj)*fac_augm evdwij=evdwij*eps2rt*eps3rt if (bb.gt.0.0d0) then - evdw=evdw+evdwij+e_augm + evdw=evdw+(evdwij+e_augm)*sss else - evdw_t=evdw_t+evdwij+e_augm + evdw_t=evdw_t+(evdwij+e_augm)*sss endif ij=icant(itypi,itypj) aux=eps1*eps2rt**2*eps3rt**2 @@ -1453,6 +1505,7 @@ C Calculate gradient components. fac=-expon*(e1+evdwij)*rij_shift sigder=fac*sigder fac=rij*fac-2*expon*rrij*e_augm + fac=fac+(evdwij+e_augm)*sssgrad/sss*rij C Calculate the radial part of the gradient gg(1)=xj*fac gg(2)=yj*fac @@ -1730,7 +1783,7 @@ C-------------------------------------------------------------------------- include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' - include 'COMMON.CONTACTS' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VECTORS' include 'COMMON.FFIELD' @@ -1962,6 +2015,7 @@ c & EE(1,2,iti),EE(2,2,i) c write(iout,*) "Macierz EUG", c & eug(1,1,i-2),eug(1,2,i-2),eug(2,1,i-2), c & eug(2,2,i-2) +#ifdef FOURBODY if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) & then call matmat2(CC(1,1,i-2),Ug(1,1,i-2),CUg(1,1,i-2)) @@ -1970,6 +2024,7 @@ c & eug(2,2,i-2) call matvec2(Ctilde(1,1,i-1),obrot(1,i-2),Ctobr(1,i-2)) call matvec2(Dtilde(1,1,i-2),obrot2(1,i-2),Dtobr2(1,i-2)) endif +#endif else do k=1,2 Ub2(k,i-2)=0.0d0 @@ -2011,6 +2066,7 @@ c if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then #endif cd write (iout,*) 'mu1',mu1(:,i-2) cd write (iout,*) 'mu2',mu2(:,i-2) +#ifdef FOURBODY if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0) & then if (calc_grad) then @@ -2033,7 +2089,9 @@ C Vectors and matrices dependent on a single virtual-bond dihedral. call matmat2(EUgder(1,1,i-2),DD(1,1,i-1),EUgDder(1,1,i-2)) endif endif +#endif enddo +#ifdef FOURBODY C Matrices dependent on two consecutive virtual-bond dihedrals. C The order of matrices is from left to right. if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0) @@ -2053,6 +2111,7 @@ C The order of matrices is from left to right. endif enddo endif +#endif return end C-------------------------------------------------------------------------- @@ -2078,7 +2137,11 @@ C include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' +#ifdef FOURBODY include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' +#endif + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VECTORS' include 'COMMON.FFIELD' @@ -2151,9 +2214,11 @@ cd enddo eello_turn3=0.0d0 eello_turn4=0.0d0 ind=0 +#ifdef FOURBODY do i=1,nres num_cont_hb(i)=0 enddo +#endif cd print '(a)','Enter EELEC' cd write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e do i=1,nres @@ -2204,7 +2269,9 @@ c end if num_conti=0 call eelecij(i,i+2,ees,evdw1,eel_loc) if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3) +#ifdef FOURBODY num_cont_hb(i)=num_conti +#endif enddo do i=iturn4_start,iturn4_end if (i.lt.1) cycle @@ -2259,13 +2326,16 @@ c endif if (ymedi.lt.0) ymedi=ymedi+boxysize zmedi=mod(zmedi,boxzsize) if (zmedi.lt.0) zmedi=zmedi+boxzsize - +#ifdef FOURBODY num_conti=num_cont_hb(i) +#endif c write(iout,*) "JESTEM W PETLI" call eelecij(i,i+3,ees,evdw1,eel_loc) if (wturn4.gt.0.0d0 .and. itype(i+2).ne.ntyp1) & call eturn4(i,eello_turn4) +#ifdef FOURBODY num_cont_hb(i)=num_conti +#endif enddo ! i C Loop over all neighbouring boxes C do xshift=-1,1 @@ -2332,7 +2402,9 @@ c go to 166 c endif c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) +#ifdef FOURBODY num_conti=num_cont_hb(i) +#endif C I TU KURWA do j=ielstart(i),ielend(i) C do j=16,17 @@ -2348,7 +2420,9 @@ c & .or.itype(j-1).eq.ntyp1 &) cycle call eelecij(i,j,ees,evdw1,eel_loc) enddo ! j +#ifdef FOURBODY num_cont_hb(i)=num_conti +#endif enddo ! i C enddo ! zshift C enddo ! yshift @@ -2380,7 +2454,11 @@ C------------------------------------------------------------------------------- include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' +#ifdef FOURBODY include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' +#endif + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VECTORS' include 'COMMON.FFIELD' @@ -2498,8 +2576,9 @@ C yj=yj-ymedi C zj=zj-zmedi rij=xj*xj+yj*yj+zj*zj - sss=sscale(sqrt(rij)) - sssgrad=sscagrad(sqrt(rij)) + sss=sscale(sqrt(rij)) + if (sss.eq.0.0d0) return + sssgrad=sscagrad(sqrt(rij)) c write (iout,*) "ij",i,j," rij",sqrt(rij)," r_cut",r_cut, c & " rlamb",rlamb," sss",sss c if (sss.gt.0.0d0) then @@ -2667,9 +2746,10 @@ cgrad gelc(l,k)=gelc(l,k)+ggg(l) cgrad enddo cgrad enddo if (sss.gt.0.0) then - ggg(1)=facvdw*xj+sssgrad*rmij*evdwij*xj - ggg(2)=facvdw*yj+sssgrad*rmij*evdwij*yj - ggg(3)=facvdw*zj+sssgrad*rmij*evdwij*zj + facvdw=facvdw+sssgrad*rmij*evdwij + ggg(1)=facvdw*xj + ggg(2)=facvdw*yj + ggg(3)=facvdw*zj else ggg(1)=0.0 ggg(2)=0.0 @@ -2696,10 +2776,11 @@ cgrad enddo endif ! calc_grad #else C MARYSIA - facvdw=(ev1+evdwij)*sss + facvdw=(ev1+evdwij) facel=(el1+eesij) fac1=fac - fac=-3*rrmij*(facvdw+facvdw+facel) + fac=-3*rrmij*(facvdw+facvdw+facel)*sss + & +(evdwij+eesij)*sssgrad*rrmij erij(1)=xj*rmij erij(2)=yj*rmij erij(3)=zj*rmij @@ -3015,7 +3096,7 @@ C fac_shield(i)=0.4 C fac_shield(j)=0.6 endif eel_loc_ij=eel_loc_ij - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') & 'eelloc',i,j,eel_loc_ij c if (eel_loc_ij.ne.0) @@ -3079,7 +3160,7 @@ C Calculate patrial derivative for theta angle & +a23*gmuij1(2) & +a32*gmuij1(3) & +a33*gmuij1(4)) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss c write(iout,*) "derivative over thatai" c write(iout,*) a22*gmuij1(1), a23*gmuij1(2) ,a32*gmuij1(3), c & a33*gmuij1(4) @@ -3095,7 +3176,7 @@ c & a33*gmuij2(4) & +a33*gmuij2(4) gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+ & geel_loc_ij*wel_loc - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss c Derivative over j residue geel_loc_ji=a22*gmuji1(1) @@ -3120,7 +3201,7 @@ c write(iout,*) a22*gmuji2(1), a23*gmuji2(2) ,a32*gmuji2(3), c & a33*gmuji2(4) gloc(nphi+j-1,icg)=gloc(nphi+j-1,icg)+ & geel_loc_ji*wel_loc - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss #endif cd write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij @@ -3136,10 +3217,14 @@ C Partial derivatives in virtual-bond dihedral angles gamma & +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)) & *fac_shield(i)*fac_shield(j) C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2) + aux=eel_loc_ij/sss*sssgrad*rmij + ggg(1)=aux*xj + ggg(2)=aux*yj + ggg(3)=aux*zj do l=1,3 - ggg(l)=(agg(l,1)*muij(1)+ + ggg(l)=ggg(l)+(agg(l,1)*muij(1)+ & agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l) gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l) cgrad ghalf=0.5d0*ggg(l) @@ -3176,6 +3261,7 @@ C Remaining derivatives of eello C Change 12/26/95 to calculate four-body contributions to H-bonding energy c if (j.gt.i+1 .and. num_conti.le.maxconts) then +#ifdef FOURBODY if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0 & .and. num_conti.le.maxconts) then c write (iout,*) i,j," entered corr" @@ -3315,11 +3401,17 @@ cd fprimcont=0.0D0 gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k) enddo gggp(1)=gggp(1)+ees0pijp*xj + & +ees0p(num_conti,i)/sss*rmij*xj*sssgrad gggp(2)=gggp(2)+ees0pijp*yj + & +ees0p(num_conti,i)/sss*rmij*yj*sssgrad gggp(3)=gggp(3)+ees0pijp*zj + & +ees0p(num_conti,i)/sss*rmij*zj*sssgrad gggm(1)=gggm(1)+ees0mijp*xj + & +ees0m(num_conti,i)/sss*rmij*xj*sssgrad gggm(2)=gggm(2)+ees0mijp*yj + & +ees0m(num_conti,i)/sss*rmij*yj*sssgrad gggm(3)=gggm(3)+ees0mijp*zj + & +ees0m(num_conti,i)/sss*rmij*zj*sssgrad C Derivatives due to the contact function gacont_hbr(1,num_conti,i)=fprimcont*xj gacont_hbr(2,num_conti,i)=fprimcont*yj @@ -3334,28 +3426,28 @@ cgrad ghalfm=0.5D0*gggm(k) gacontp_hb1(k,num_conti,i)=!ghalfp & +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i)) & + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontp_hb2(k,num_conti,i)=!ghalfp & +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j)) & + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontp_hb3(k,num_conti,i)=gggp(k) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontm_hb1(k,num_conti,i)=!ghalfm & +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i)) & + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontm_hb2(k,num_conti,i)=!ghalfm & +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j)) & + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss gacontm_hb3(k,num_conti,i)=gggm(k) - & *fac_shield(i)*fac_shield(j) + & *fac_shield(i)*fac_shield(j)*sss enddo C Diagnostics. Comment out or remove after debugging! @@ -3374,6 +3466,7 @@ cdiag enddo endif ! num_conti.le.maxconts endif ! fcont.gt.0 endif ! j.gt.i+1 +#endif if (calc_grad) then if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then do k=1,4 @@ -3415,6 +3508,7 @@ C Third- and fourth-order contributions from turns include 'COMMON.FFIELD' include 'COMMON.CONTROL' include 'COMMON.SHIELD' + include 'COMMON.CORRMAT' dimension ggg(3) double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2), & e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2), @@ -3603,6 +3697,7 @@ C Third- and fourth-order contributions from turns include 'COMMON.FFIELD' include 'COMMON.CONTROL' include 'COMMON.SHIELD' + include 'COMMON.CORRMAT' dimension ggg(3) double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2), & e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2), @@ -6934,6 +7029,7 @@ c gsccor_loc(i-3)=gloci enddo return end +#ifdef FOURBODY c------------------------------------------------------------------------------ subroutine multibody(ecorr) C This subroutine calculates multi-body contributions to energy following @@ -6946,6 +7042,8 @@ C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added. include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' double precision gx(3),gx1(3) logical lprn @@ -7000,6 +7098,8 @@ c------------------------------------------------------------------------------ include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' double precision gx(3),gx1(3) logical lprn lprn=.false. @@ -7042,6 +7142,8 @@ C This subroutine calculates multi-body contributions to hydrogen-bonding include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' double precision gx(3),gx1(3) logical lprn,ldone @@ -7115,6 +7217,8 @@ C This subroutine calculates multi-body contributions to hydrogen-bonding include 'COMMON.LOCAL' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.CHAIN' include 'COMMON.CONTROL' include 'COMMON.SHIELD' @@ -7272,6 +7376,8 @@ c------------------------------------------------------------------------------ include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.SHIELD' include 'COMMON.CONTROL' double precision gx(3),gx1(3) @@ -7448,6 +7554,8 @@ C--------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -7514,6 +7622,8 @@ C include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -7893,6 +8003,8 @@ C--------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -8008,6 +8120,8 @@ C--------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -8425,6 +8539,8 @@ c-------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -8568,6 +8684,8 @@ c-------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -8675,6 +8793,8 @@ c---------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -8863,6 +8983,8 @@ c---------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -8981,6 +9103,8 @@ c---------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -9228,6 +9352,8 @@ c---------------------------------------------------------------------------- include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' + include 'COMMON.CONTMAT' + include 'COMMON.CORRMAT' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' @@ -9548,7 +9674,7 @@ cd write (2,*) 'ekont',ekont cd write (2,*) 'eel_turn6',ekont*eel_turn6 return end - +#endif crc------------------------------------------------- CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC subroutine Eliptransfer(eliptran) diff --git a/source/wham/src-M-SAXS-homology/include_unres/COMMON.CONTACTS b/source/wham/src-M-SAXS-homology/include_unres/COMMON.CONTACTS index 4525a07..871e353 100644 --- a/source/wham/src-M-SAXS-homology/include_unres/COMMON.CONTACTS +++ b/source/wham/src-M-SAXS-homology/include_unres/COMMON.CONTACTS @@ -3,69 +3,3 @@ C Change 12/1/95 - common block CONTACTS1 included. double precision facont,gacont common /contacts/ ncont,ncont_ref,icont(2,maxcont), & icont_ref(2,maxcont) - common /contacts1/ facont(maxconts,maxres), - & gacont(3,maxconts,maxres), - & num_cont(maxres),jcont(maxconts,maxres) -C 12/26/95 - H-bonding contacts - common /contacts_hb/ - & gacontp_hb1(3,maxconts,maxres),gacontp_hb2(3,maxconts,maxres), - & gacontp_hb3(3,maxconts,maxres), - & gacontm_hb1(3,maxconts,maxres),gacontm_hb2(3,maxconts,maxres), - & gacontm_hb3(3,maxconts,maxres), - & gacont_hbr(3,maxconts,maxres), - & grij_hb_cont(3,maxconts,maxres), - & facont_hb(maxconts,maxres),ees0p(maxconts,maxres), - & ees0m(maxconts,maxres),d_cont(maxconts,maxres), - & num_cont_hb(maxres),jcont_hb(maxconts,maxres) -C 9/23/99 Added improper rotation matrices and matrices of dipole-dipole -C interactions -C Interactions of pseudo-dipoles generated by loc-el interactions. - double precision dip,dipderg,dipderx - common /dipint/ dip(4,maxconts,maxres),dipderg(4,maxconts,maxres), - & dipderx(3,5,4,maxconts,maxres) -C 10/30/99 Added other pre-computed vectors and matrices needed -C to calculate three - six-order el-loc correlation terms - double precision Ug,Ugder,Ug2,Ug2der,obrot,obrot2,obrot_der, - & obrot2_der,Ub2,Ub2der,mu,muder,EUg,EUgder,CUg,CUgder,gmu,gUb2, - & DUg,DUgder,DtUg2,DtUg2der,Ctobr,Ctobrder,Dtobr2,Dtobr2der, - & gtEUg - common /rotat/ Ug(2,2,maxres),Ugder(2,2,maxres),Ug2(2,2,maxres), - & Ug2der(2,2,maxres),obrot(2,maxres),obrot2(2,maxres), - & obrot_der(2,maxres),obrot2_der(2,maxres) -C This common block contains vectors and matrices dependent on a single -C amino-acid residue. - common /precomp1/ Ub2(2,maxres),Ub2der(2,maxres),mu(2,maxres), - & gmu(2,maxres),gUb2(2,maxres), - & EUg(2,2,maxres),EUgder(2,2,maxres),CUg(2,2,maxres), - & CUgder(2,2,maxres),DUg(2,2,maxres),Dugder(2,2,maxres), - & DtUg2(2,2,maxres),DtUg2der(2,2,maxres),Ctobr(2,maxres), - & Ctobrder(2,maxres),Dtobr2(2,maxres),Dtobr2der(2,maxres), - & gtEUg(2,2,maxres) -C This common block contains vectors and matrices dependent on two -C consecutive amino-acid residues. - double precision Ug2Db1t,Ug2Db1tder,CUgb2,CUgb2der,EUgC, - & EUgCder,EUgD,EUgDder,DtUg2EUg,DtUg2EUgder - common /precomp2/ Ug2Db1t(2,maxres),Ug2Db1tder(2,maxres), - & CUgb2(2,maxres),CUgb2der(2,maxres),EUgC(2,2,maxres), - & EUgCder(2,2,maxres),EUgD(2,2,maxres),EUgDder(2,2,maxres), - & DtUg2EUg(2,2,maxres),DtUg2EUgder(2,2,2,maxres), - & Ug2DtEUg(2,2,maxres),Ug2DtEUgder(2,2,2,maxres) - double precision costab,sintab,costab2,sintab2 - common /rotat_old/ costab(maxres),sintab(maxres), - & costab2(maxres),sintab2(maxres),muder(2,maxres) -C This common block contains dipole-interaction matrices and their -C Cartesian derivatives. - double precision a_chuj,a_chuj_der - common /dipmat/ a_chuj(2,2,maxconts,maxres), - & a_chuj_der(2,2,3,5,maxconts,maxres) - double precision AEA,AEAderg,AEAderx,AECA,AECAderg,AECAderx, - & ADtEA,ADtEAderg,ADtEAderx,AEAb1,AEAb1derg,AEAb1derx, - & AEAb2,AEAb2derg,AEAb2derx - common /diploc/ AEA(2,2,2),AEAderg(2,2,2),AEAderx(2,2,3,5,2,2), - & EAEA(2,2,2), EAEAderg(2,2,2,2), EAEAderx(2,2,3,5,2,2), - & AECA(2,2,2),AECAderg(2,2,2),AECAderx(2,2,3,5,2,2), - & ADtEA(2,2,2),ADtEAderg(2,2,2,2),ADtEAderx(2,2,3,5,2,2), - & ADtEA1(2,2,2),ADtEA1derg(2,2,2,2),ADtEA1derx(2,2,3,5,2,2), - & AEAb1(2,2,2),AEAb1derg(2,2,2),AEAb1derx(2,3,5,2,2,2), - & AEAb2(2,2,2),AEAb2derg(2,2,2,2),AEAb2derx(2,3,5,2,2,2), - & g_contij(3,2),ekont diff --git a/source/wham/src-M-SAXS-homology/include_unres/COMMON.CONTACTS.safe b/source/wham/src-M-SAXS-homology/include_unres/COMMON.CONTACTS.safe new file mode 100644 index 0000000..4525a07 --- /dev/null +++ b/source/wham/src-M-SAXS-homology/include_unres/COMMON.CONTACTS.safe @@ -0,0 +1,71 @@ +C Change 12/1/95 - common block CONTACTS1 included. + integer ncont,ncont_ref,icont,icont_ref,num_cont,jcont + double precision facont,gacont + common /contacts/ ncont,ncont_ref,icont(2,maxcont), + & icont_ref(2,maxcont) + common /contacts1/ facont(maxconts,maxres), + & gacont(3,maxconts,maxres), + & num_cont(maxres),jcont(maxconts,maxres) +C 12/26/95 - H-bonding contacts + common /contacts_hb/ + & gacontp_hb1(3,maxconts,maxres),gacontp_hb2(3,maxconts,maxres), + & gacontp_hb3(3,maxconts,maxres), + & gacontm_hb1(3,maxconts,maxres),gacontm_hb2(3,maxconts,maxres), + & gacontm_hb3(3,maxconts,maxres), + & gacont_hbr(3,maxconts,maxres), + & grij_hb_cont(3,maxconts,maxres), + & facont_hb(maxconts,maxres),ees0p(maxconts,maxres), + & ees0m(maxconts,maxres),d_cont(maxconts,maxres), + & num_cont_hb(maxres),jcont_hb(maxconts,maxres) +C 9/23/99 Added improper rotation matrices and matrices of dipole-dipole +C interactions +C Interactions of pseudo-dipoles generated by loc-el interactions. + double precision dip,dipderg,dipderx + common /dipint/ dip(4,maxconts,maxres),dipderg(4,maxconts,maxres), + & dipderx(3,5,4,maxconts,maxres) +C 10/30/99 Added other pre-computed vectors and matrices needed +C to calculate three - six-order el-loc correlation terms + double precision Ug,Ugder,Ug2,Ug2der,obrot,obrot2,obrot_der, + & obrot2_der,Ub2,Ub2der,mu,muder,EUg,EUgder,CUg,CUgder,gmu,gUb2, + & DUg,DUgder,DtUg2,DtUg2der,Ctobr,Ctobrder,Dtobr2,Dtobr2der, + & gtEUg + common /rotat/ Ug(2,2,maxres),Ugder(2,2,maxres),Ug2(2,2,maxres), + & Ug2der(2,2,maxres),obrot(2,maxres),obrot2(2,maxres), + & obrot_der(2,maxres),obrot2_der(2,maxres) +C This common block contains vectors and matrices dependent on a single +C amino-acid residue. + common /precomp1/ Ub2(2,maxres),Ub2der(2,maxres),mu(2,maxres), + & gmu(2,maxres),gUb2(2,maxres), + & EUg(2,2,maxres),EUgder(2,2,maxres),CUg(2,2,maxres), + & CUgder(2,2,maxres),DUg(2,2,maxres),Dugder(2,2,maxres), + & DtUg2(2,2,maxres),DtUg2der(2,2,maxres),Ctobr(2,maxres), + & Ctobrder(2,maxres),Dtobr2(2,maxres),Dtobr2der(2,maxres), + & gtEUg(2,2,maxres) +C This common block contains vectors and matrices dependent on two +C consecutive amino-acid residues. + double precision Ug2Db1t,Ug2Db1tder,CUgb2,CUgb2der,EUgC, + & EUgCder,EUgD,EUgDder,DtUg2EUg,DtUg2EUgder + common /precomp2/ Ug2Db1t(2,maxres),Ug2Db1tder(2,maxres), + & CUgb2(2,maxres),CUgb2der(2,maxres),EUgC(2,2,maxres), + & EUgCder(2,2,maxres),EUgD(2,2,maxres),EUgDder(2,2,maxres), + & DtUg2EUg(2,2,maxres),DtUg2EUgder(2,2,2,maxres), + & Ug2DtEUg(2,2,maxres),Ug2DtEUgder(2,2,2,maxres) + double precision costab,sintab,costab2,sintab2 + common /rotat_old/ costab(maxres),sintab(maxres), + & costab2(maxres),sintab2(maxres),muder(2,maxres) +C This common block contains dipole-interaction matrices and their +C Cartesian derivatives. + double precision a_chuj,a_chuj_der + common /dipmat/ a_chuj(2,2,maxconts,maxres), + & a_chuj_der(2,2,3,5,maxconts,maxres) + double precision AEA,AEAderg,AEAderx,AECA,AECAderg,AECAderx, + & ADtEA,ADtEAderg,ADtEAderx,AEAb1,AEAb1derg,AEAb1derx, + & AEAb2,AEAb2derg,AEAb2derx + common /diploc/ AEA(2,2,2),AEAderg(2,2,2),AEAderx(2,2,3,5,2,2), + & EAEA(2,2,2), EAEAderg(2,2,2,2), EAEAderx(2,2,3,5,2,2), + & AECA(2,2,2),AECAderg(2,2,2),AECAderx(2,2,3,5,2,2), + & ADtEA(2,2,2),ADtEAderg(2,2,2,2),ADtEAderx(2,2,3,5,2,2), + & ADtEA1(2,2,2),ADtEA1derg(2,2,2,2),ADtEA1derx(2,2,3,5,2,2), + & AEAb1(2,2,2),AEAb1derg(2,2,2),AEAb1derx(2,3,5,2,2,2), + & AEAb2(2,2,2),AEAb2derg(2,2,2,2),AEAb2derx(2,3,5,2,2,2), + & g_contij(3,2),ekont diff --git a/source/wham/src-M-SAXS-homology/include_unres/COMMON.CONTMAT b/source/wham/src-M-SAXS-homology/include_unres/COMMON.CONTMAT new file mode 100644 index 0000000..e681360 --- /dev/null +++ b/source/wham/src-M-SAXS-homology/include_unres/COMMON.CONTMAT @@ -0,0 +1,39 @@ +C Change 12/1/95 - common block CONTACTS1 included. + common /contacts1/ facont(maxconts,maxres), + & gacont(3,maxconts,maxres), + & num_cont(maxres),jcont(maxconts,maxres) +C 12/26/95 - H-bonding contacts + double precision gacontp_hb1,gacontp_hb2,gacontp_hb3,gacont_hbr, + & gacontm_hb1,gacontm_hb2,gacontm_hb3,grij_hb_cont,facont_hb, + & ees0p,ees0m,d_cont + integer num_cont_hb,jcont_hb + common /contacts_hb/ + & gacontp_hb1(3,maxconts,maxres),gacontp_hb2(3,maxconts,maxres), + & gacontp_hb3(3,maxconts,maxres), + & gacontm_hb1(3,maxconts,maxres),gacontm_hb2(3,maxconts,maxres), + & gacontm_hb3(3,maxconts,maxres), + & gacont_hbr(3,maxconts,maxres), + & grij_hb_cont(3,maxconts,maxres), + & facont_hb(maxconts,maxres),ees0p(maxconts,maxres), + & ees0m(maxconts,maxres),d_cont(maxconts,maxres), + & num_cont_hb(maxres),jcont_hb(maxconts,maxres) +C 9/23/99 Added improper rotation matrices and matrices of dipole-dipole +C interactions +c 7/25/08 Commented out; not needed when cumulants used +C Interactions of pseudo-dipoles generated by loc-el interactions. +c double precision dip,dipderg,dipderx +c common /dipint/ dip(4,maxconts,maxres),dipderg(4,maxconts,maxres), +c & dipderx(3,5,4,maxconts,maxres) +C 12/13/2008 (again Poland-Jaruzel war anniversary) +C RE: Parallelization of 4th and higher order loc-el correlations + integer ncont_sent,ncont_recv,iint_sent,iisent_local, + & itask_cont_from,itask_cont_to,ntask_cont_from,ntask_cont_to, + & nat_sent,iat_sent,iint_sent_local + integer iturn3_sent,iturn4_sent,iturn3_sent_local, + & iturn4_sent_local + common /contdistrib/ ncont_sent(maxres),ncont_recv(maxres), + & iint_sent(4,maxres,maxres),iint_sent_local(4,maxres,maxres), + & nat_sent,iat_sent(maxres),itask_cont_from(0:max_fg_procs-1), + & itask_cont_to(0:max_fg_procs-1),ntask_cont_from,ntask_cont_to, + & iturn3_sent(4,maxres),iturn4_sent(4,maxres), + & iturn3_sent_local(4,maxres),iturn4_sent_local(4,maxres) diff --git a/source/wham/src-M-SAXS-homology/include_unres/COMMON.CORRMAT b/source/wham/src-M-SAXS-homology/include_unres/COMMON.CORRMAT new file mode 100644 index 0000000..5f154e0 --- /dev/null +++ b/source/wham/src-M-SAXS-homology/include_unres/COMMON.CORRMAT @@ -0,0 +1,47 @@ +C 10/30/99 Added other pre-computed vectors and matrices needed +C to calculate three - six-order el-loc correlation terms + double precision Ug,Ugder,Ug2,Ug2der,obrot,obrot2,obrot_der, + & obrot2_der,Ub2,Ub2der,mu,muder,EUg,EUgder,CUg,CUgder,gmu,gUb2, + & DUg,DUgder,DtUg2,DtUg2der,Ctobr,Ctobrder,Dtobr2,Dtobr2der, + & gtEug + common /rotat/ Ug(2,2,maxres),Ugder(2,2,maxres),Ug2(2,2,maxres), + & Ug2der(2,2,maxres),obrot(2,maxres),obrot2(2,maxres), + & obrot_der(2,maxres),obrot2_der(2,maxres) +C This common block contains vectors and matrices dependent on a single +C amino-acid residue. + common /precomp1/ mu(2,maxres),muder(2,maxres),Ub2(2,maxres), + & gmu(2,maxres),gUb2(2,maxres), + & Ub2der(2,maxres),Ctobr(2,maxres),Ctobrder(2,maxres), + & Dtobr2(2,maxres),Dtobr2der(2,maxres), + & EUg(2,2,maxres),EUgder(2,2,maxres),CUg(2,2,maxres), + & CUgder(2,2,maxres),DUg(2,2,maxres),Dugder(2,2,maxres), + & DtUg2(2,2,maxres),DtUg2der(2,2,maxres),gtEUg(2,2,maxres) +C This common block contains vectors and matrices dependent on two +C consecutive amino-acid residues. + double precision Ug2Db1t,Ug2Db1tder,CUgb2,CUgb2der,EUgC, + & EUgCder,EUgD,EUgDder,DtUg2EUg,DtUg2EUgder,Ug2DtEUg,Ug2DtEUgder + common /precomp2/ Ug2Db1t(2,maxres),Ug2Db1tder(2,maxres), + & CUgb2(2,maxres),CUgb2der(2,maxres),EUgC(2,2,maxres), + & EUgCder(2,2,maxres),EUgD(2,2,maxres),EUgDder(2,2,maxres), + & DtUg2EUg(2,2,maxres),Ug2DtEUg(2,2,maxres), + & Ug2DtEUgder(2,2,2,maxres),DtUg2EUgder(2,2,2,maxres) + double precision costab,sintab,costab2,sintab2 + common /rotat_old/ costab(maxres),sintab(maxres), + & costab2(maxres),sintab2(maxres) +C This common block contains dipole-interaction matrices and their +C Cartesian derivatives. + double precision a_chuj,a_chuj_der + common /dipmat/ a_chuj(2,2,maxconts,maxres), + & a_chuj_der(2,2,3,5,maxconts,maxres) + double precision AEA,AEAderg,AEAderx,AECA,AECAderg,AECAderx, + & ADtEA,ADtEAderg,ADtEAderx,AEAb1,AEAb1derg,AEAb1derx, + & AEAb2,AEAb2derg,AEAb2derx,g_contij,ekont,EAEA,EAEAderg,EAEAderx, + & ADtEA1,AdTEA1derg,ADtEA1derx + common /diploc/ AEA(2,2,2),AEAderg(2,2,2),AEAderx(2,2,3,5,2,2), + & EAEA(2,2,2), EAEAderg(2,2,2,2), EAEAderx(2,2,3,5,2,2), + & AECA(2,2,2),AECAderg(2,2,2),AECAderx(2,2,3,5,2,2), + & ADtEA(2,2,2),ADtEAderg(2,2,2,2),ADtEAderx(2,2,3,5,2,2), + & ADtEA1(2,2,2),ADtEA1derg(2,2,2,2),ADtEA1derx(2,2,3,5,2,2), + & AEAb1(2,2,2),AEAb1derg(2,2,2),AEAb1derx(2,3,5,2,2,2), + & AEAb2(2,2,2),AEAb2derg(2,2,2,2),AEAb2derx(2,3,5,2,2,2), + & g_contij(3,2),ekont diff --git a/source/wham/src-M-SAXS-homology/read_constr_homology.F b/source/wham/src-M-SAXS-homology/read_constr_homology.F index ebd23a9..7884fd5 100644 --- a/source/wham/src-M-SAXS-homology/read_constr_homology.F +++ b/source/wham/src-M-SAXS-homology/read_constr_homology.F @@ -38,9 +38,11 @@ c & sigma_odl_temp(maxres,maxres,max_template) c c FP - Nov. 2014 Temporary specifications for new vars c - double precision rescore_tmp,x12,y12,z12,rescore2_tmp + double precision rescore_tmp,x12,y12,z12,rescore2_tmp, + & rescore3_tmp double precision, dimension (max_template,maxres) :: rescore double precision, dimension (max_template,maxres) :: rescore2 + double precision, dimension (max_template,maxres) :: rescore3 character*24 tpl_k_rescore c ----------------------------------------------------------------- c Reading multiple PDB ref structures and calculation of retraints @@ -182,14 +184,16 @@ c write(iout,*) "tpl_k_rescore - ",tpl_k_rescore do irec=nnt,nct ! loop for reading res sim if (read2sigma) then read (ientin,*,end=1401) i_tmp,rescore2_tmp,rescore_tmp, - & idomain_tmp + & idomain_tmp, + & rescore3_tmp,idomain_tmp i_tmp=i_tmp+nnt-1 idomain(k,i_tmp)=idomain_tmp rescore(k,i_tmp)=rescore_tmp rescore2(k,i_tmp)=rescore2_tmp + rescore3(k,i_tmp)=rescore3_tmp write(iout,'(a7,i5,2f10.5,i5)') "rescore", & i_tmp,rescore2_tmp,rescore_tmp, - & idomain_tmp + & rescore3_tmp,idomain_tmp else idomain(k,irec)=1 read (ientin,*,end=1401) rescore_tmp @@ -355,7 +359,8 @@ c write (iout,*) "xxtpl(",k,i,") =",xxtpl(k,i) c write (iout,*) "yytpl(",k,i,") =",yytpl(k,i) c write (iout,*) "zztpl(",k,i,") =",zztpl(k,i) c write(iout,*) "rescore(",k,i,") =",rescore(k,i) - sigma_d(k,i)=rescore(k,i) ! right expression ? +c sigma_d(k,i)=rescore(k,i) ! right expression ? + sigma_d(k,i)=rescore3(k,i) ! right expression ? if (sigma_d(k,i).ne.0) & sigma_d(k,i)=1.0d0/(sigma_d(k,i)*sigma_d(k,i))