X-Git-Url: http://mmka.chem.univ.gda.pl/gitweb/?p=unres.git;a=blobdiff_plain;f=source%2Funres%2Fsrc_MD-M%2Fenergy_p_new_barrier.F;h=3192819a6f9604ac0bfc9832271d8fb23cda5575;hp=439fb8134683b231c4a5540b6b270c99e0bd09e8;hb=8df996bdc4bc56846b3799e9a2d47c24a9273125;hpb=ad2687da4ea0c0ddde6c400a60c4817a689b3dff diff --git a/source/unres/src_MD-M/energy_p_new_barrier.F b/source/unres/src_MD-M/energy_p_new_barrier.F index 439fb81..3192819 100644 --- a/source/unres/src_MD-M/energy_p_new_barrier.F +++ b/source/unres/src_MD-M/energy_p_new_barrier.F @@ -99,6 +99,7 @@ c endif C C Compute the side-chain and electrostatic interaction energy C +C print *,ipot goto (101,102,103,104,105,106) ipot C Lennard-Jones potential. 101 call elj(evdw) @@ -112,6 +113,7 @@ C Berne-Pechukas potential (dilated LJ, angular dependence). goto 107 C Gay-Berne potential (shifted LJ, angular dependence). 104 call egb(evdw) +C print *,"bylem w egb" goto 107 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence). 105 call egbv(evdw) @@ -199,6 +201,7 @@ c print *,"Processor",myrank," computed UB" C C Calculate the SC local energy. C +C print *,"TU DOCHODZE?" call esc(escloc) c print *,"Processor",myrank," computed USC" C @@ -229,6 +232,7 @@ C else esccor=0.0d0 endif +C print *,"PRZED MULIt" c print *,"Processor",myrank," computed Usccorr" C C 12/1/95 Multi-body terms @@ -261,6 +265,19 @@ C after the equilibration time Uconst=0.0d0 Uconst_back=0.0d0 endif +C 01/27/2015 added by adasko +C the energy component below is energy transfer into lipid environment +C based on partition function +C print *,"przed lipidami" + if (wliptran.gt.0) then + call Eliptransfer(eliptran) + endif +C print *,"za lipidami" + if (AFMlog.gt.0) then + call AFMforce(Eafmforce) + else if (selfguide.gt.0) then + call AFMvel(Eafmforce) + endif #ifdef TIMING time_enecalc=time_enecalc+MPI_Wtime()-time00 #endif @@ -302,6 +319,8 @@ C energia(17)=estr energia(20)=Uconst+Uconst_back energia(21)=esccor + energia(22)=eliptran + energia(23)=Eafmforce c Here are the energies showed per procesor if the are more processors c per molecule then we sum it up in sum_energy subroutine c print *," Processor",myrank," calls SUM_ENERGY" @@ -393,20 +412,23 @@ cMS$ATTRIBUTES C :: proc_proc estr=energia(17) Uconst=energia(20) esccor=energia(21) + eliptran=energia(22) + Eafmforce=energia(23) #ifdef SPLITELE etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1 & +wang*ebe+wtor*etors+wscloc*escloc & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5 & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3 & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d - & +wbond*estr+Uconst+wsccor*esccor + & +wbond*estr+Uconst+wsccor*esccor+wliptran*eliptran+Eafmforce #else etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1) & +wang*ebe+wtor*etors+wscloc*escloc & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5 & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3 & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d - & +wbond*estr+Uconst+wsccor*esccor + & +wbond*estr+Uconst+wsccor*esccor+wliptran*eliptran + & +Eafmforce #endif energia(0)=etot c detecting NaNQ @@ -443,8 +465,9 @@ cMS$ATTRIBUTES C :: proc_proc #ifdef MPI include 'mpif.h' #endif - double precision gradbufc(3,maxres),gradbufx(3,maxres), - & glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres) + double precision gradbufc(3,-1:maxres),gradbufx(3,-1:maxres), + & glocbuf(4*maxres),gradbufc_sum(3,-1:maxres) + & ,gloc_scbuf(3,-1:maxres) include 'COMMON.SETUP' include 'COMMON.IOUNITS' include 'COMMON.FFIELD' @@ -497,7 +520,7 @@ c enddo call flush(iout) #endif #ifdef SPLITELE - do i=1,nct + do i=0,nct do j=1,3 gradbufc(j,i)=wsc*gvdwc(j,i)+ & wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+ @@ -508,10 +531,13 @@ c enddo & wcorr6*gradcorr6_long(j,i)+ & wturn6*gcorr6_turn_long(j,i)+ & wstrain*ghpbc(j,i) + & +wliptran*gliptranc(j,i) + & +gradafm(j,i) + enddo enddo #else - do i=1,nct + do i=0,nct do j=1,3 gradbufc(j,i)=wsc*gvdwc(j,i)+ & wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+ @@ -523,6 +549,9 @@ c enddo & wcorr6*gradcorr6_long(j,i)+ & wturn6*gcorr6_turn_long(j,i)+ & wstrain*ghpbc(j,i) + & +wliptran*gliptranc(j,i) + & +gradafm(j,i) + enddo enddo #endif @@ -536,7 +565,7 @@ c enddo enddo call flush(iout) #endif - do i=1,nres + do i=0,nres do j=1,3 gradbufc_sum(j,i)=gradbufc(j,i) enddo @@ -579,7 +608,7 @@ c enddo do j=1,3 gradbufc(j,nres-1)=gradbufc_sum(j,nres) enddo - do i=nres-2,nnt,-1 + do i=nres-2,-1,-1 do j=1,3 gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1) enddo @@ -600,7 +629,7 @@ c enddo enddo call flush(iout) #endif - do i=1,nres + do i=-1,nres do j=1,3 gradbufc_sum(j,i)=gradbufc(j,i) gradbufc(j,i)=0.0d0 @@ -609,7 +638,7 @@ c enddo do j=1,3 gradbufc(j,nres-1)=gradbufc_sum(j,nres) enddo - do i=nres-2,nnt,-1 + do i=nres-2,-1,-1 do j=1,3 gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1) enddo @@ -637,7 +666,7 @@ c enddo do k=1,3 gradbufc(k,nres)=0.0d0 enddo - do i=1,nct + do i=-1,nct do j=1,3 #ifdef SPLITELE gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+ @@ -658,6 +687,8 @@ c enddo & wturn6*gcorr6_turn(j,i)+ & wsccor*gsccorc(j,i) & +wscloc*gscloc(j,i) + & +wliptran*gliptranc(j,i) + & +gradafm(j,i) #else gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+ & wel_loc*gel_loc(j,i)+ @@ -677,12 +708,16 @@ c enddo & wturn6*gcorr6_turn(j,i)+ & wsccor*gsccorc(j,i) & +wscloc*gscloc(j,i) + & +wliptran*gliptranc(j,i) + & +gradafm(j,i) + #endif gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+ & wbond*gradbx(j,i)+ & wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+ & wsccor*gsccorx(j,i) & +wscloc*gsclocx(j,i) + & +wliptran*gliptranx(j,i) enddo enddo #ifdef DEBUG @@ -971,6 +1006,8 @@ C------------------------------------------------------------------------ estr=energia(17) Uconst=energia(20) esccor=energia(21) + eliptran=energia(22) + Eafmforce=energia(23) #ifdef SPLITELE write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp, & estr,wbond,ebe,wang, @@ -979,7 +1016,7 @@ C------------------------------------------------------------------------ & ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3, & eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor, & edihcnstr,ebr*nss, - & Uconst,etot + & Uconst,eliptran,wliptran,Eafmforce,etot 10 format (/'Virtual-chain energies:'// & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ @@ -1003,7 +1040,10 @@ C------------------------------------------------------------------------ & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/ & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ & 'UCONST= ',1pE16.6,' (Constraint energy)'/ + & 'ELT=',1pE16.6, ' WEIGHT=',1pD16.6,' (Lipid transfer energy)'/ + & 'EAFM= ',1pE16.6,' (atomic-force microscopy)'/ & 'ETOT= ',1pE16.6,' (total)') + #else write (iout,10) evdw,wsc,evdw2,wscp,ees,welec, & estr,wbond,ebe,wang, @@ -1011,7 +1051,7 @@ C------------------------------------------------------------------------ & ecorr,wcorr, & ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3, & eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr, - & ebr*nss,Uconst,etot + & ebr*nss,Uconst,eliptran,wliptran,Eafmforc,etot 10 format (/'Virtual-chain energies:'// & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ @@ -1034,6 +1074,8 @@ C------------------------------------------------------------------------ & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/ & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ & 'UCONST=',1pE16.6,' (Constraint energy)'/ + & 'ELT=',1pE16.6, ' WEIGHT=',1pD16.6,' (Lipid transfer energy)'/ + & 'EAFM= ',1pE16.6,' (atomic-force microscopy)'/ & 'ETOT= ',1pE16.6,' (total)') #endif return @@ -1088,13 +1130,14 @@ C Change 12/1/95 to calculate four-body interactions c write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj eps0ij=eps(itypi,itypj) fac=rrij**expon2 - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) +C have you changed here? + e1=fac*fac*aa + e2=fac*bb evdwij=e1+e2 cd sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) cd epsi=bb(itypi,itypj)**2/aa(itypi,itypj) cd write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)') -cd & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj), +cd & restyp(itypi),i,restyp(itypj),j,a(itypi,itypj), cd & bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm, cd & (c(k,i),k=1,3),(c(k,j),k=1,3) evdw=evdw+evdwij @@ -1238,8 +1281,9 @@ C rij=1.0D0/r_inv_ij r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj)) fac=r_shift_inv**expon - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) +C have you changed here? + e1=fac*fac*aa + e2=fac*bb evdwij=e_augm+e1+e2 cd sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) cd epsi=bb(itypi,itypj)**2/aa(itypi,itypj) @@ -1365,17 +1409,18 @@ C Calculate the angle-dependent terms of energy & contributions to derivatives. call sc_angular C Calculate whole angle-dependent part of epsilon and contributions C to its derivatives +C have you changed here? fac=(rrij*sigsq)**expon2 - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) + e1=fac*fac*aa + e2=fac*bb evdwij=eps1*eps2rt*eps3rt*(e1+e2) eps2der=evdwij*eps3rt eps3der=evdwij*eps2rt evdwij=evdwij*eps2rt*eps3rt evdw=evdw+evdwij if (lprn) then - sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) - epsi=bb(itypi,itypj)**2/aa(itypi,itypj) + sigm=dabs(aa/bb)**(1.0D0/6.0D0) + epsi=bb**2/aa cd write (iout,'(2(a3,i3,2x),15(0pf7.3))') cd & restyp(itypi),i,restyp(itypj),j, cd & epsi,sigm,chi1,chi2,chip1,chip2, @@ -1425,7 +1470,7 @@ C integer xshift,yshift,zshift evdw=0.0D0 ccccc energy_dec=.false. -c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon +C print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 lprn=.false. c if (icall.eq.0) lprn=.false. @@ -1473,6 +1518,35 @@ c endif if (yi.lt.0) yi=yi+boxysize zi=mod(zi,boxzsize) if (zi.lt.0) zi=zi+boxzsize +C define scaling factor for lipids + +C if (positi.le.0) positi=positi+boxzsize +C print *,i +C first for peptide groups +c for each residue check if it is in lipid or lipid water border area + if ((zi.gt.bordlipbot) + &.and.(zi.lt.bordliptop)) then +C the energy transfer exist + if (zi.lt.buflipbot) then +C what fraction I am in + fracinbuf=1.0d0- + & ((zi-bordlipbot)/lipbufthick) +C lipbufthick is thickenes of lipid buffore + sslipi=sscalelip(fracinbuf) + ssgradlipi=-sscagradlip(fracinbuf)/lipbufthick + elseif (zi.gt.bufliptop) then + fracinbuf=1.0d0-((bordliptop-zi)/lipbufthick) + sslipi=sscalelip(fracinbuf) + ssgradlipi=sscagradlip(fracinbuf)/lipbufthick + else + sslipi=1.0d0 + ssgradlipi=0.0 + endif + else + sslipi=0.0d0 + ssgradlipi=0.0 + endif + C xi=xi+xshift*boxxsize C yi=yi+yshift*boxysize C zi=zi+zshift*boxzsize @@ -1557,6 +1631,36 @@ c endif if (yj.lt.0) yj=yj+boxysize zj=mod(zj,boxzsize) if (zj.lt.0) zj=zj+boxzsize + if ((zj.gt.bordlipbot) + &.and.(zj.lt.bordliptop)) then +C the energy transfer exist + if (zj.lt.buflipbot) then +C what fraction I am in + fracinbuf=1.0d0- + & ((zj-bordlipbot)/lipbufthick) +C lipbufthick is thickenes of lipid buffore + sslipj=sscalelip(fracinbuf) + ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick + elseif (zj.gt.bufliptop) then + fracinbuf=1.0d0-((bordliptop-zj)/lipbufthick) + sslipj=sscalelip(fracinbuf) + ssgradlipj=sscagradlip(fracinbuf)/lipbufthick + else + sslipj=1.0d0 + ssgradlipj=0.0 + endif + else + sslipj=0.0d0 + ssgradlipj=0.0 + endif + aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +aa_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0 + bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +bb_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0 +C if (aa.ne.aa_aq(itypi,itypj)) write(63,'(2e10.5)') +C &(aa-aa_aq(itypi,itypj)),(bb-bb_aq(itypi,itypj)) +C if (ssgradlipj.gt.0.0d0) print *,"??WTF??" +C print *,sslipi,sslipj,bordlipbot,zi,zj dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 xj_safe=xj yj_safe=yj @@ -1625,18 +1729,24 @@ cd & rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) c--------------------------------------------------------------- rij_shift=1.0D0/rij_shift fac=rij_shift**expon - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) +C here to start with +C if (c(i,3).gt. + faclip=fac + e1=fac*fac*aa + e2=fac*bb evdwij=eps1*eps2rt*eps3rt*(e1+e2) eps2der=evdwij*eps3rt eps3der=evdwij*eps2rt +C write(63,'(2i3,2e10.3,2f10.5)') i,j,aa,bb, evdwij, +C &((sslipi+sslipj)/2.0d0+ +C &(2.0d0-sslipi-sslipj)/2.0d0) c write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt, c & " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2 evdwij=evdwij*eps2rt*eps3rt evdw=evdw+evdwij*sss if (lprn) then - sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) - epsi=bb(itypi,itypj)**2/aa(itypi,itypj) + sigm=dabs(aa/bb)**(1.0D0/6.0D0) + epsi=bb**2/aa write (iout,'(2(a3,i3,2x),17(0pf7.3))') & restyp(itypi),i,restyp(itypj),j, & epsi,sigm,chi1,chi2,chip1,chip2, @@ -1658,12 +1768,20 @@ c & evdwij,fac,sigma(itypi,itypj),expon fac=fac+evdwij/sss*sssgrad/sigma(itypi,itypj)*rij c fac=0.0d0 C Calculate the radial part of the gradient + gg_lipi(3)=eps1*(eps2rt*eps2rt) + &*(eps3rt*eps3rt)*sss/2.0d0*(faclip*faclip* + & (aa_lip(itypi,itypj)-aa_aq(itypi,itypj)) + &+faclip*(bb_lip(itypi,itypj)-bb_aq(itypi,itypj))) + gg_lipj(3)=ssgradlipj*gg_lipi(3) + gg_lipi(3)=gg_lipi(3)*ssgradlipi +C gg_lipi(3)=0.0d0 +C gg_lipj(3)=0.0d0 gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac C Calculate angular part of the gradient. call sc_grad - endif ! sss + endif ENDIF ! dyn_ss enddo ! j enddo ! iint @@ -1707,6 +1825,41 @@ c if (icall.eq.0) lprn=.true. xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) + xi=mod(xi,boxxsize) + if (xi.lt.0) xi=xi+boxxsize + yi=mod(yi,boxysize) + if (yi.lt.0) yi=yi+boxysize + zi=mod(zi,boxzsize) + if (zi.lt.0) zi=zi+boxzsize +C define scaling factor for lipids + +C if (positi.le.0) positi=positi+boxzsize +C print *,i +C first for peptide groups +c for each residue check if it is in lipid or lipid water border area + if ((zi.gt.bordlipbot) + &.and.(zi.lt.bordliptop)) then +C the energy transfer exist + if (zi.lt.buflipbot) then +C what fraction I am in + fracinbuf=1.0d0- + & ((zi-bordlipbot)/lipbufthick) +C lipbufthick is thickenes of lipid buffore + sslipi=sscalelip(fracinbuf) + ssgradlipi=-sscagradlip(fracinbuf)/lipbufthick + elseif (zi.gt.bufliptop) then + fracinbuf=1.0d0-((bordliptop-zi)/lipbufthick) + sslipi=sscalelip(fracinbuf) + ssgradlipi=sscagradlip(fracinbuf)/lipbufthick + else + sslipi=1.0d0 + ssgradlipi=0.0 + endif + else + sslipi=0.0d0 + ssgradlipi=0.0 + endif + dxi=dc_norm(1,nres+i) dyi=dc_norm(2,nres+i) dzi=dc_norm(3,nres+i) @@ -1743,9 +1896,74 @@ c chip12=0.0D0 c alf1=0.0D0 c alf2=0.0D0 c alf12=0.0D0 - xj=c(1,nres+j)-xi - yj=c(2,nres+j)-yi - zj=c(3,nres+j)-zi +C xj=c(1,nres+j)-xi +C yj=c(2,nres+j)-yi +C zj=c(3,nres+j)-zi + xj=mod(xj,boxxsize) + if (xj.lt.0) xj=xj+boxxsize + yj=mod(yj,boxysize) + if (yj.lt.0) yj=yj+boxysize + zj=mod(zj,boxzsize) + if (zj.lt.0) zj=zj+boxzsize + if ((zj.gt.bordlipbot) + &.and.(zj.lt.bordliptop)) then +C the energy transfer exist + if (zj.lt.buflipbot) then +C what fraction I am in + fracinbuf=1.0d0- + & ((zj-bordlipbot)/lipbufthick) +C lipbufthick is thickenes of lipid buffore + sslipj=sscalelip(fracinbuf) + ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick + elseif (zj.gt.bufliptop) then + fracinbuf=1.0d0-((bordliptop-zj)/lipbufthick) + sslipj=sscalelip(fracinbuf) + ssgradlipj=sscagradlip(fracinbuf)/lipbufthick + else + sslipj=1.0d0 + ssgradlipj=0.0 + endif + else + sslipj=0.0d0 + ssgradlipj=0.0 + endif + aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +aa_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0 + bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +bb_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0 +C if (aa.ne.aa_aq(itypi,itypj)) write(63,'2e10.5') +C &(aa-aa_aq(itypi,itypj)),(bb-bb_aq(itypi,itypj)) + dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + xj_safe=xj + yj_safe=yj + zj_safe=zj + subchap=0 + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 + xj=xj_safe+xshift*boxxsize + yj=yj_safe+yshift*boxysize + zj=zj_safe+zshift*boxzsize + dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + if(dist_temp.lt.dist_init) then + dist_init=dist_temp + xj_temp=xj + yj_temp=yj + zj_temp=zj + subchap=1 + endif + enddo + enddo + enddo + if (subchap.eq.1) then + xj=xj_temp-xi + yj=yj_temp-yi + zj=zj_temp-zi + else + xj=xj_safe-xi + yj=yj_safe-yi + zj=zj_safe-zi + endif dxj=dc_norm(1,nres+j) dyj=dc_norm(2,nres+j) dzj=dc_norm(3,nres+j) @@ -1766,8 +1984,8 @@ C I hate to put IF's in the loops, but here don't have another choice!!!! c--------------------------------------------------------------- rij_shift=1.0D0/rij_shift fac=rij_shift**expon - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) + e1=fac*fac*aa + e2=fac*bb evdwij=eps1*eps2rt*eps3rt*(e1+e2) eps2der=evdwij*eps3rt eps3der=evdwij*eps2rt @@ -1776,8 +1994,8 @@ c--------------------------------------------------------------- evdwij=evdwij*eps2rt*eps3rt evdw=evdw+evdwij+e_augm if (lprn) then - sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) - epsi=bb(itypi,itypj)**2/aa(itypi,itypj) + sigm=dabs(aa/bb)**(1.0D0/6.0D0) + epsi=bb**2/aa write (iout,'(2(a3,i3,2x),17(0pf7.3))') & restyp(itypi),i,restyp(itypj),j, & epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0), @@ -1791,6 +2009,7 @@ C Calculate gradient components. fac=-expon*(e1+evdwij)*rij_shift sigder=fac*sigder fac=rij*fac-2*expon*rrij*e_augm + fac=fac+evdwij/sss*sssgrad/sigma(itypi,itypj)*rij C Calculate the radial part of the gradient gg(1)=xj*fac gg(2)=yj*fac @@ -1901,10 +2120,10 @@ c write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12 enddo c write (iout,*) "gg",(gg(k),k=1,3) do k=1,3 - gvdwx(k,i)=gvdwx(k,i)-gg(k) + gvdwx(k,i)=gvdwx(k,i)-gg(k)+gg_lipi(k) & +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i)) & +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv*sss - gvdwx(k,j)=gvdwx(k,j)+gg(k) + gvdwx(k,j)=gvdwx(k,j)+gg(k)+gg_lipj(k) & +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j)) & +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv*sss c write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i)) @@ -1921,8 +2140,8 @@ cgrad gvdwc(l,k)=gvdwc(l,k)+gg(l) cgrad enddo cgrad enddo do l=1,3 - gvdwc(l,i)=gvdwc(l,i)-gg(l) - gvdwc(l,j)=gvdwc(l,j)+gg(l) + gvdwc(l,i)=gvdwc(l,i)-gg(l)+gg_lipi(l) + gvdwc(l,j)=gvdwc(l,j)+gg(l)+gg_lipj(l) enddo return end @@ -3063,6 +3282,8 @@ C Loop over i,i+2 and i,i+3 pairs of the peptide groups C C 14/01/2014 TURN3,TUNR4 does no go under periodic boundry condition do i=iturn3_start,iturn3_end + if (i.le.1) cycle +C write(iout,*) "tu jest i",i if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1 C changes suggested by Ana to avoid out of bounds & .or.((i+4).gt.nres) @@ -3097,6 +3318,7 @@ C end of changes by Ana num_cont_hb(i)=num_conti enddo do i=iturn4_start,iturn4_end + if (i.le.1) cycle if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1 C changes suggested by Ana to avoid out of bounds & .or.((i+5).gt.nres) @@ -3164,6 +3386,7 @@ c c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3 c do i=iatel_s,iatel_e + if (i.le.1) cycle if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1 C changes suggested by Ana to avoid out of bounds & .or.((i+2).gt.nres) @@ -3220,7 +3443,8 @@ c endif c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) num_conti=num_cont_hb(i) do j=ielstart(i),ielend(i) -c write (iout,*) i,j,itype(i),itype(j) +C write (iout,*) i,j + if (j.le.1) cycle if (itype(j).eq.ntyp1.or. itype(j+1).eq.ntyp1 C changes suggested by Ana to avoid out of bounds & .or.((j+2).gt.nres) @@ -4907,8 +5131,8 @@ c write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj, c & dhpb(i),dhpb1(i),forcon(i) C 24/11/03 AL: SS bridges handled separately because of introducing a specific C distance and angle dependent SS bond potential. - if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and. - & iabs(itype(jjj)).eq.1) then +C if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and. +C & iabs(itype(jjj)).eq.1) then cmc if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds if (.not.dyn_ss .and. i.le.nss) then @@ -4956,7 +5180,6 @@ cgrad enddo ghpbc(k,iii)=ghpbc(k,iii)-ggg(k) enddo endif - endif enddo ehpb=0.5D0*ehpb return @@ -9919,4 +10142,199 @@ crc print *,((prod(i,j),i=1,2),j=1,2) return end +CCC---------------------------------------------- + subroutine Eliptransfer(eliptran) + implicit real*8 (a-h,o-z) + include 'DIMENSIONS' + include 'COMMON.GEO' + include 'COMMON.VAR' + include 'COMMON.LOCAL' + include 'COMMON.CHAIN' + include 'COMMON.DERIV' + include 'COMMON.NAMES' + include 'COMMON.INTERACT' + include 'COMMON.IOUNITS' + include 'COMMON.CALC' + include 'COMMON.CONTROL' + include 'COMMON.SPLITELE' + include 'COMMON.SBRIDGE' +C this is done by Adasko +C print *,"wchodze" +C structure of box: +C water +C--bordliptop-- buffore starts +C--bufliptop--- here true lipid starts +C lipid +C--buflipbot--- lipid ends buffore starts +C--bordlipbot--buffore ends + eliptran=0.0 + do i=ilip_start,ilip_end +C do i=1,1 + if (itype(i).eq.ntyp1) cycle + + positi=(mod(((c(3,i)+c(3,i+1))/2.0d0),boxzsize)) + if (positi.le.0) positi=positi+boxzsize +C print *,i +C first for peptide groups +c for each residue check if it is in lipid or lipid water border area + if ((positi.gt.bordlipbot) + &.and.(positi.lt.bordliptop)) then +C the energy transfer exist + if (positi.lt.buflipbot) then +C what fraction I am in + fracinbuf=1.0d0- + & ((positi-bordlipbot)/lipbufthick) +C lipbufthick is thickenes of lipid buffore + sslip=sscalelip(fracinbuf) + ssgradlip=-sscagradlip(fracinbuf)/lipbufthick + eliptran=eliptran+sslip*pepliptran + gliptranc(3,i)=gliptranc(3,i)+ssgradlip*pepliptran/2.0d0 + gliptranc(3,i-1)=gliptranc(3,i-1)+ssgradlip*pepliptran/2.0d0 +C gliptranc(3,i-2)=gliptranc(3,i)+ssgradlip*pepliptran + +C print *,"doing sccale for lower part" +C print *,i,sslip,fracinbuf,ssgradlip + elseif (positi.gt.bufliptop) then + fracinbuf=1.0d0-((bordliptop-positi)/lipbufthick) + sslip=sscalelip(fracinbuf) + ssgradlip=sscagradlip(fracinbuf)/lipbufthick + eliptran=eliptran+sslip*pepliptran + gliptranc(3,i)=gliptranc(3,i)+ssgradlip*pepliptran/2.0d0 + gliptranc(3,i-1)=gliptranc(3,i-1)+ssgradlip*pepliptran/2.0d0 +C gliptranc(3,i-2)=gliptranc(3,i)+ssgradlip*pepliptran +C print *, "doing sscalefor top part" +C print *,i,sslip,fracinbuf,ssgradlip + else + eliptran=eliptran+pepliptran +C print *,"I am in true lipid" + endif +C else +C eliptran=elpitran+0.0 ! I am in water + endif + enddo +C print *, "nic nie bylo w lipidzie?" +C now multiply all by the peptide group transfer factor +C eliptran=eliptran*pepliptran +C now the same for side chains +CV do i=1,1 + do i=ilip_start,ilip_end + if (itype(i).eq.ntyp1) cycle + positi=(mod(c(3,i+nres),boxzsize)) + if (positi.le.0) positi=positi+boxzsize +C print *,mod(c(3,i+nres),boxzsize),bordlipbot,bordliptop +c for each residue check if it is in lipid or lipid water border area +C respos=mod(c(3,i+nres),boxzsize) +C print *,positi,bordlipbot,buflipbot + if ((positi.gt.bordlipbot) + & .and.(positi.lt.bordliptop)) then +C the energy transfer exist + if (positi.lt.buflipbot) then + fracinbuf=1.0d0- + & ((positi-bordlipbot)/lipbufthick) +C lipbufthick is thickenes of lipid buffore + sslip=sscalelip(fracinbuf) + ssgradlip=-sscagradlip(fracinbuf)/lipbufthick + eliptran=eliptran+sslip*liptranene(itype(i)) + gliptranx(3,i)=gliptranx(3,i) + &+ssgradlip*liptranene(itype(i)) + gliptranc(3,i-1)= gliptranc(3,i-1) + &+ssgradlip*liptranene(itype(i)) +C print *,"doing sccale for lower part" + elseif (positi.gt.bufliptop) then + fracinbuf=1.0d0- + &((bordliptop-positi)/lipbufthick) + sslip=sscalelip(fracinbuf) + ssgradlip=sscagradlip(fracinbuf)/lipbufthick + eliptran=eliptran+sslip*liptranene(itype(i)) + gliptranx(3,i)=gliptranx(3,i) + &+ssgradlip*liptranene(itype(i)) + gliptranc(3,i-1)= gliptranc(3,i-1) + &+ssgradlip*liptranene(itype(i)) +C print *, "doing sscalefor top part",sslip,fracinbuf + else + eliptran=eliptran+liptranene(itype(i)) +C print *,"I am in true lipid" + endif + endif ! if in lipid or buffor +C else +C eliptran=elpitran+0.0 ! I am in water + enddo + return + end +C--------------------------------------------------------- +C AFM soubroutine for constant force + subroutine AFMforce(Eafmforce) + implicit real*8 (a-h,o-z) + include 'DIMENSIONS' + include 'COMMON.GEO' + include 'COMMON.VAR' + include 'COMMON.LOCAL' + include 'COMMON.CHAIN' + include 'COMMON.DERIV' + include 'COMMON.NAMES' + include 'COMMON.INTERACT' + include 'COMMON.IOUNITS' + include 'COMMON.CALC' + include 'COMMON.CONTROL' + include 'COMMON.SPLITELE' + include 'COMMON.SBRIDGE' + real*8 diffafm(3) + dist=0.0d0 + Eafmforce=0.0d0 + do i=1,3 + diffafm(i)=c(i,afmend)-c(i,afmbeg) + dist=dist+diffafm(i)**2 + enddo + dist=dsqrt(dist) + Eafmforce=-forceAFMconst*(dist-distafminit) + do i=1,3 + gradafm(i,afmend-1)=-forceAFMconst*diffafm(i)/dist + gradafm(i,afmbeg-1)=forceAFMconst*diffafm(i)/dist + enddo +C print *,'AFM',Eafmforce + return + end +C--------------------------------------------------------- +C AFM subroutine with pseudoconstant velocity + subroutine AFMvel(Eafmforce) + implicit real*8 (a-h,o-z) + include 'DIMENSIONS' + include 'COMMON.GEO' + include 'COMMON.VAR' + include 'COMMON.LOCAL' + include 'COMMON.CHAIN' + include 'COMMON.DERIV' + include 'COMMON.NAMES' + include 'COMMON.INTERACT' + include 'COMMON.IOUNITS' + include 'COMMON.CALC' + include 'COMMON.CONTROL' + include 'COMMON.SPLITELE' + include 'COMMON.SBRIDGE' + real*8 diffafm(3) +C Only for check grad COMMENT if not used for checkgrad +C totT=3.0d0 +C-------------------------------------------------------- +C print *,"wchodze" + dist=0.0d0 + Eafmforce=0.0d0 + do i=1,3 + diffafm(i)=c(i,afmend)-c(i,afmbeg) + dist=dist+diffafm(i)**2 + enddo + dist=dsqrt(dist) + Eafmforce=0.5d0*forceAFMconst + & *(distafminit+totTafm*velAFMconst-dist)**2 +C Eafmforce=-forceAFMconst*(dist-distafminit) + do i=1,3 + gradafm(i,afmend-1)=-forceAFMconst* + &(distafminit+totTafm*velAFMconst-dist) + &*diffafm(i)/dist + gradafm(i,afmbeg-1)=forceAFMconst* + &(distafminit+totTafm*velAFMconst-dist) + &*diffafm(i)/dist + enddo +C print *,'AFM',Eafmforce,totTafm*velAFMconst,dist + return + end