X-Git-Url: http://mmka.chem.univ.gda.pl/gitweb/?p=unres.git;a=blobdiff_plain;f=source%2Funres%2Fsrc_CSA_DiL%2Fchainbuild.F;fp=source%2Funres%2Fsrc_CSA_DiL%2Fchainbuild.F;h=0000000000000000000000000000000000000000;hp=45a1a53837e28da1c8198f61d4d9973d13076818;hb=de4bc5453ea46e111d936cb85e1758ed21c08fcd;hpb=b75425747e3e2b448ca5e0ef8367712e1f339124 diff --git a/source/unres/src_CSA_DiL/chainbuild.F b/source/unres/src_CSA_DiL/chainbuild.F deleted file mode 100644 index 45a1a53..0000000 --- a/source/unres/src_CSA_DiL/chainbuild.F +++ /dev/null @@ -1,274 +0,0 @@ - subroutine chainbuild -C -C Build the virtual polypeptide chain. Side-chain centroids are moveable. -C As of 2/17/95. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.LOCAL' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.NAMES' - include 'COMMON.INTERACT' - logical lprn -C Set lprn=.true. for debugging - lprn = .false. -C -C Define the origin and orientation of the coordinate system and locate the -C first three CA's and SC(2). -C - call orig_frame -* -* Build the alpha-carbon chain. -* - do i=4,nres - call locate_next_res(i) - enddo -C -C First and last SC must coincide with the corresponding CA. -C - do j=1,3 - dc(j,nres+1)=0.0D0 - dc_norm(j,nres+1)=0.0D0 - dc(j,nres+nres)=0.0D0 - dc_norm(j,nres+nres)=0.0D0 - c(j,nres+1)=c(j,1) - c(j,nres+nres)=c(j,nres) - enddo -* -* Temporary diagnosis -* - if (lprn) then - - call cartprint - write (iout,'(/a)') 'Recalculated internal coordinates' - do i=2,nres-1 - do j=1,3 - c(j,maxres2)=0.5D0*(c(j,i-1)+c(j,i+1)) - enddo - be=0.0D0 - if (i.gt.3) be=rad2deg*beta(i-3,i-2,i-1,i) - be1=rad2deg*beta(nres+i,i,maxres2,i+1) - alfai=0.0D0 - if (i.gt.2) alfai=rad2deg*alpha(i-2,i-1,i) - write (iout,1212) restyp(itype(i)),i,dist(i-1,i), - & alfai,be,dist(nres+i,i),rad2deg*alpha(nres+i,i,maxres2),be1 - enddo - 1212 format (a3,'(',i3,')',2(f10.5,2f10.2)) - - endif - - return - end -c------------------------------------------------------------------------- - subroutine orig_frame -C -C Define the origin and orientation of the coordinate system and locate -C the first three atoms. -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.LOCAL' - include 'COMMON.GEO' - include 'COMMON.VAR' - cost=dcos(theta(3)) - sint=dsin(theta(3)) - t(1,1,1)=-cost - t(1,2,1)=-sint - t(1,3,1)= 0.0D0 - t(2,1,1)=-sint - t(2,2,1)= cost - t(2,3,1)= 0.0D0 - t(3,1,1)= 0.0D0 - t(3,2,1)= 0.0D0 - t(3,3,1)= 1.0D0 - r(1,1,1)= 1.0D0 - r(1,2,1)= 0.0D0 - r(1,3,1)= 0.0D0 - r(2,1,1)= 0.0D0 - r(2,2,1)= 1.0D0 - r(2,3,1)= 0.0D0 - r(3,1,1)= 0.0D0 - r(3,2,1)= 0.0D0 - r(3,3,1)= 1.0D0 - do i=1,3 - do j=1,3 - rt(i,j,1)=t(i,j,1) - enddo - enddo - do i=1,3 - do j=1,3 - prod(i,j,1)=0.0D0 - prod(i,j,2)=t(i,j,1) - enddo - prod(i,i,1)=1.0D0 - enddo - c(1,1)=0.0D0 - c(2,1)=0.0D0 - c(3,1)=0.0D0 - c(1,2)=vbld(2) - c(2,2)=0.0D0 - c(3,2)=0.0D0 - dc(1,0)=0.0d0 - dc(2,0)=0.0D0 - dc(3,0)=0.0D0 - dc(1,1)=vbld(2) - dc(2,1)=0.0D0 - dc(3,1)=0.0D0 - dc_norm(1,0)=0.0D0 - dc_norm(2,0)=0.0D0 - dc_norm(3,0)=0.0D0 - dc_norm(1,1)=1.0D0 - dc_norm(2,1)=0.0D0 - dc_norm(3,1)=0.0D0 - do j=1,3 - dc_norm(j,2)=prod(j,1,2) - dc(j,2)=vbld(3)*prod(j,1,2) - c(j,3)=c(j,2)+dc(j,2) - enddo - call locate_side_chain(2) - return - end -c----------------------------------------------------------------------------- - subroutine locate_next_res(i) -C -C Locate CA(i) and SC(i-1) -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.LOCAL' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.NAMES' - include 'COMMON.INTERACT' -C -C Define the rotation matrices corresponding to CA(i) -C -#ifdef OSF - theti=theta(i) - if (theti.ne.theti) theti=100.0 - phii=phi(i) - if (phii.ne.phii) phii=180.0 -#else - theti=theta(i) - phii=phi(i) -#endif - cost=dcos(theti) - sint=dsin(theti) - cosphi=dcos(phii) - sinphi=dsin(phii) -* Define the matrices of the rotation about the virtual-bond valence angles -* theta, T(i,j,k), virtual-bond dihedral angles gamma (miscalled PHI in this -* program), R(i,j,k), and, the cumulative matrices of rotation RT - t(1,1,i-2)=-cost - t(1,2,i-2)=-sint - t(1,3,i-2)= 0.0D0 - t(2,1,i-2)=-sint - t(2,2,i-2)= cost - t(2,3,i-2)= 0.0D0 - t(3,1,i-2)= 0.0D0 - t(3,2,i-2)= 0.0D0 - t(3,3,i-2)= 1.0D0 - r(1,1,i-2)= 1.0D0 - r(1,2,i-2)= 0.0D0 - r(1,3,i-2)= 0.0D0 - r(2,1,i-2)= 0.0D0 - r(2,2,i-2)=-cosphi - r(2,3,i-2)= sinphi - r(3,1,i-2)= 0.0D0 - r(3,2,i-2)= sinphi - r(3,3,i-2)= cosphi - rt(1,1,i-2)=-cost - rt(1,2,i-2)=-sint - rt(1,3,i-2)=0.0D0 - rt(2,1,i-2)=sint*cosphi - rt(2,2,i-2)=-cost*cosphi - rt(2,3,i-2)=sinphi - rt(3,1,i-2)=-sint*sinphi - rt(3,2,i-2)=cost*sinphi - rt(3,3,i-2)=cosphi - call matmult(prod(1,1,i-2),rt(1,1,i-2),prod(1,1,i-1)) - do j=1,3 - dc_norm(j,i-1)=prod(j,1,i-1) - dc(j,i-1)=vbld(i)*prod(j,1,i-1) - c(j,i)=c(j,i-1)+dc(j,i-1) - enddo -cd print '(2i3,2(3f10.5,5x))', i-1,i,(dc(j,i-1),j=1,3),(c(j,i),j=1,3) -C -C Now calculate the coordinates of SC(i-1) -C - call locate_side_chain(i-1) - return - end -c----------------------------------------------------------------------------- - subroutine locate_side_chain(i) -C -C Locate the side-chain centroid i, 1 < i < NRES. Put in C(*,NRES+i). -C - implicit real*8 (a-h,o-z) - include 'DIMENSIONS' - include 'COMMON.CHAIN' - include 'COMMON.LOCAL' - include 'COMMON.GEO' - include 'COMMON.VAR' - include 'COMMON.IOUNITS' - include 'COMMON.NAMES' - include 'COMMON.INTERACT' - dimension xx(3) - -c dsci=dsc(itype(i)) -c dsci_inv=dsc_inv(itype(i)) - dsci=vbld(i+nres) - dsci_inv=vbld_inv(i+nres) -#ifdef OSF - alphi=alph(i) - omegi=omeg(i) - if (alphi.ne.alphi) alphi=100.0 - if (omegi.ne.omegi) omegi=-100.0 -#else - alphi=alph(i) - omegi=omeg(i) -#endif - cosalphi=dcos(alphi) - sinalphi=dsin(alphi) - cosomegi=dcos(omegi) - sinomegi=dsin(omegi) - xp= dsci*cosalphi - yp= dsci*sinalphi*cosomegi - zp=-dsci*sinalphi*sinomegi -* Now we have to rotate the coordinate system by 180-theta(i)/2 so as to get its -* X-axis aligned with the vector DC(*,i) - theta2=pi-0.5D0*theta(i+1) - cost2=dcos(theta2) - sint2=dsin(theta2) - xx(1)= xp*cost2+yp*sint2 - xx(2)=-xp*sint2+yp*cost2 - xx(3)= zp -cd print '(a3,i3,3f10.5,5x,3f10.5)',restyp(itype(i)),i, -cd & xp,yp,zp,(xx(k),k=1,3) - do j=1,3 - xloc(j,i)=xx(j) - enddo -* Bring the SC vectors to the common coordinate system. - xx(1)=xloc(1,i) - xx(2)=xloc(2,i)*r(2,2,i-1)+xloc(3,i)*r(2,3,i-1) - xx(3)=xloc(2,i)*r(3,2,i-1)+xloc(3,i)*r(3,3,i-1) - do j=1,3 - xrot(j,i)=xx(j) - enddo - do j=1,3 - rj=0.0D0 - do k=1,3 - rj=rj+prod(j,k,i-1)*xx(k) - enddo - dc(j,nres+i)=rj - dc_norm(j,nres+i)=rj*dsci_inv - c(j,nres+i)=c(j,i)+rj - enddo - return - end