X-Git-Url: http://mmka.chem.univ.gda.pl/gitweb/?a=blobdiff_plain;f=source%2Fwham%2Fsrc-M%2Fparmread.F;h=8db78b903b36cf65028ebd91513c1dfbba3c9c80;hb=d305127baa0f7e25ecb5422e6e0e34aa15db4776;hp=b2b64d5c5ae8c394eb45e1a08d08bbcd4a99b6f3;hpb=0c311441c65bffd482824c807e444e85e220d9da;p=unres.git diff --git a/source/wham/src-M/parmread.F b/source/wham/src-M/parmread.F index b2b64d5..8db78b9 100644 --- a/source/wham/src-M/parmread.F +++ b/source/wham/src-M/parmread.F @@ -21,6 +21,8 @@ C include 'COMMON.SCCOR' include 'COMMON.SCROT' include 'COMMON.FREE' + include 'COMMON.SHIELD' + include 'COMMON.CONTROL' character*1 t1,t2,t3 character*1 onelett(4) /"G","A","P","D"/ character*1 toronelet(-2:2) /"p","a","G","A","P"/ @@ -35,6 +37,8 @@ C character*16 key integer iparm double precision ip,mp + character*6 res1 +C write (iout,*) "KURWA" C C Body C @@ -55,6 +59,66 @@ C Assign virtual-bond length write (iout,*) "iparm",iparm," myparm",myparm c If reading not own parameters, skip assignment + call reada(controlcard,"D0CM",d0cm,3.78d0) + call reada(controlcard,"AKCM",akcm,15.1d0) + call reada(controlcard,"AKTH",akth,11.0d0) + call reada(controlcard,"AKCT",akct,12.0d0) + call reada(controlcard,"V1SS",v1ss,-1.08d0) + call reada(controlcard,"V2SS",v2ss,7.61d0) + call reada(controlcard,"V3SS",v3ss,13.7d0) + call reada(controlcard,"EBR",ebr,-5.50D0) + call reada(controlcard,"DTRISS",dtriss,1.0D0) + call reada(controlcard,"ATRISS",atriss,0.3D0) + call reada(controlcard,"BTRISS",btriss,0.02D0) + call reada(controlcard,"CTRISS",ctriss,1.0D0) + dyn_ss=(index(controlcard,'DYN_SS').gt.0) + write(iout,*) "ATRISS",atriss + write(iout,*) "BTRISS",btriss + write(iout,*) "CTRISS",ctriss + write(iout,*) "DTRISS",dtriss + +C do i=1,maxres +C dyn_ss_mask(i)=.false. +C enddo +C ebr=-12.0D0 +c +c Old arbitrary potential - commented out. +c +c dbr= 4.20D0 +c fbr= 3.30D0 +c +c Constants of the disulfide-bond potential determined based on the RHF/6-31G** +c energy surface of diethyl disulfide. +c A. Liwo and U. Kozlowska, 11/24/03 +c + D0CM = 3.78d0 + AKCM = 15.1d0 + AKTH = 11.0d0 + AKCT = 12.0d0 + V1SS =-1.08d0 + V2SS = 7.61d0 + V3SS = 13.7d0 + + do i=1,maxres-1 + do j=i+1,maxres + dyn_ssbond_ij(i,j)=1.0d300 + enddo + enddo + call reada(controlcard,"HT",Ht,0.0D0) +C if (dyn_ss) then +C ss_depth=ebr/wsc-0.25*eps(1,1) +C write(iout,*) HT,wsc,eps(1,1),'KURWA' +C Ht=Ht/wsc-0.25*eps(1,1) + +C akcm=akcm*whpb/wsc +C akth=akth*whpb/wsc +C akct=akct*whpb/wsc +C v1ss=v1ss*whpb/wsc +C v2ss=v2ss*whpb/wsc +C v3ss=v3ss*whpb/wsc +C else +C ss_depth=ebr/whpb-0.25*eps(1,1)*wsc/whpb +C endif if (iparm.eq.myparm .or. .not.separate_parset) then @@ -78,7 +142,10 @@ c wvdwpp=ww(16) wbond=ww(18) wsccor=ww(19) - + whpb=ww(15) + wstrain=ww(15) + wliptran=ww(22) + wshield=ww(25) endif call card_concat(controlcard,.false.) @@ -150,7 +217,7 @@ c Read the virtual-bond parameters, masses, and moments of inertia c and Stokes' radii of the peptide group and side chains c #ifdef CRYST_BOND - read (ibond,*) vbldp0,akp + read (ibond,*) vbldp0,vbldpdum,akp do i=1,ntyp nbondterm(i)=1 read (ibond,*) vbldsc0(1,i),aksc(1,i) @@ -162,7 +229,7 @@ c endif enddo #else - read (ibond,*) ijunk,vbldp0,akp,rjunk + read (ibond,*) ijunk,vbldp0,vbldpdum,akp,rjunk do i=1,ntyp read (ibond,*) nbondterm(i),(vbldsc0(j,i),aksc(j,i),abond0(j,i), & j=1,nbondterm(i)) @@ -188,6 +255,11 @@ c enddo enddo endif + read(iliptranpar,*) pepliptran + do i=1,ntyp + read(iliptranpar,*) liptranene(i) + enddo + close(iliptranpar) #ifdef CRYST_THETA C C Read the parameters of the probability distribution/energy expression @@ -295,6 +367,7 @@ C C Read the parameters of Utheta determined from ab initio surfaces C Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203 C + write (iout,*) "tu dochodze" read (ithep,*) nthetyp,ntheterm,ntheterm2, & ntheterm3,nsingle,ndouble nntheterm=max0(ntheterm,ntheterm2,ntheterm3) @@ -302,6 +375,7 @@ C do i=-ntyp1,-1 ithetyp(i)=-ithetyp(-i) enddo + write (iout,*) "tu dochodze" do iblock=1,2 do i=-maxthetyp,maxthetyp do j=-maxthetyp,maxthetyp @@ -330,11 +404,13 @@ C enddo enddo enddo +C write (iout,*) "KURWA1" do iblock=1,2 do i=0,nthetyp do j=-nthetyp,nthetyp do k=-nthetyp,nthetyp read (ithep,'(6a)') res1 + write(iout,*) res1,i,j,k read (ithep,*) aa0thet(i,j,k,iblock) read (ithep,*)(aathet(l,i,j,k,iblock),l=1,ntheterm) read (ithep,*) @@ -352,6 +428,7 @@ C enddo enddo enddo +C write(iout,*) "KURWA1.1" C C For dummy ends assign glycine-type coefficients of theta-only terms; the C coefficients of theta-and-gamma-dependent terms are zero. @@ -371,6 +448,7 @@ C aa0thet(nthetyp+1,i,nthetyp+1,iblock)=0.0d0 enddo enddo +C write(iout,*) "KURWA1.5" C Substitution for D aminoacids from symmetry. do iblock=1,2 do i=-nthetyp,0 @@ -420,14 +498,14 @@ C write (iout,'(//a,10x,a)') " l","a[l]" write (iout,'(i2,1pe15.5)') 0,aa0thet(i,j,k,iblock) write (iout,'(i2,1pe15.5)') - & (l,aathet(l,i,j,k),l=1,ntheterm) + & (l,aathet(l,i,j,k,iblock),l=1,ntheterm) do l=1,ntheterm2 write (iout,'(//2h m,4(9x,a,3h[m,i1,1h]))') & "b",l,"c",l,"d",l,"e",l do m=1,nsingle write (iout,'(i2,4(1pe15.5))') m, - & bbthet(m,l,i,j,k),ccthet(m,l,i,j,k,iblock), - & ddthet(m,l,i,j,k),eethet(m,l,i,j,k,iblock) + & bbthet(m,l,i,j,k,iblock),ccthet(m,l,i,j,k,iblock), + & ddthet(m,l,i,j,k,iblock),eethet(m,l,i,j,k,iblock) enddo enddo do l=1,ntheterm3 @@ -449,7 +527,7 @@ C call flush(iout) endif #endif - +C write(iout,*) 'KURWA2' #ifdef CRYST_SC C C Read the parameters of the probability distribution/energy expression @@ -557,6 +635,7 @@ C enddo #endif close(irotam) +C write (iout,*) 'KURWAKURWA' #ifdef CRYST_TOR C C Read torsional parameters in old format @@ -980,8 +1059,10 @@ C bpp (i,j)=-2.0D0*epp(i,j)*rri ael6(i,j)=elpp6(i,j)*4.2D0**6 ael3(i,j)=elpp3(i,j)*4.2D0**3 + lprint=.true. if (lprint) write(iout,'(2i3,4(1pe15.4))')i,j,app(i,j),bpp(i,j), & ael6(i,j),ael3(i,j) + lprint=.false. enddo enddo C @@ -1022,13 +1103,25 @@ C----------------------- LJK potential -------------------------------- endif goto 50 C---------------------- GB or BP potential ----------------------------- - 30 read (isidep,*)((eps(i,j),j=i,ntyp),i=1,ntyp), - & (sigma0(i),i=1,ntyp),(sigii(i),i=1,ntyp),(chip0(i),i=1,ntyp), - & (alp(i),i=1,ntyp) + 30 do i=1,ntyp + read (isidep,*)(eps(i,j),j=i,ntyp) + enddo + read (isidep,*)(sigma0(i),i=1,ntyp) + read (isidep,*)(sigii(i),i=1,ntyp) + read (isidep,*)(chip(i),i=1,ntyp) + read (isidep,*)(alp(i),i=1,ntyp) + do i=1,ntyp + read (isidep,*)(epslip(i,j),j=i,ntyp) +C write(iout,*) "WARNING!!",i,ntyp + write(iout,*) "epslip", i, (epslip(i,j),j=i,ntyp) +C do j=1,ntyp +C epslip(i,j)=epslip(i,j)+0.05d0 +C enddo + enddo C For the GB potential convert sigma'**2 into chi' if (ipot.eq.4) then do i=1,ntyp - chip(i)=(chip0(i)-1.0D0)/(chip0(i)+1.0D0) + chip(i)=(chip(i)-1.0D0)/(chip(i)+1.0D0) enddo endif if (lprint) then @@ -1063,6 +1156,7 @@ C Calculate the "working" parameters of SC interactions. do i=2,ntyp do j=1,i-1 eps(i,j)=eps(j,i) + epslip(i,j)=epslip(j,i) enddo enddo do i=1,ntyp @@ -1080,6 +1174,7 @@ C Calculate the "working" parameters of SC interactions. do i=1,ntyp do j=i,ntyp epsij=eps(i,j) + epsijlip=epslip(i,j) if (ipot.eq.1 .or. ipot.eq.3 .or. ipot.eq.4) then rrij=sigma(i,j) else @@ -1091,10 +1186,16 @@ C Calculate the "working" parameters of SC interactions. epsij=eps(i,j) sigeps=dsign(1.0D0,epsij) epsij=dabs(epsij) - aa(i,j)=epsij*rrij*rrij - bb(i,j)=-sigeps*epsij*rrij - aa(j,i)=aa(i,j) - bb(j,i)=bb(i,j) + aa_aq(i,j)=epsij*rrij*rrij + bb_aq(i,j)=-sigeps*epsij*rrij + aa_aq(j,i)=aa_aq(i,j) + bb_aq(j,i)=bb_aq(i,j) + sigeps=dsign(1.0D0,epsijlip) + epsijlip=dabs(epsijlip) + aa_lip(i,j)=epsijlip*rrij*rrij + bb_lip(i,j)=-sigeps*epsijlip*rrij + aa_lip(j,i)=aa_lip(i,j) + bb_lip(j,i)=bb_lip(i,j) if (ipot.gt.2) then sigt1sq=sigma0(i)**2 sigt2sq=sigma0(j)**2 @@ -1183,7 +1284,7 @@ C C C Define the constants of the disulfide bridge C - ebr=-5.50D0 +C ebr=-12.0D0 c c Old arbitrary potential - commented out. c @@ -1194,21 +1295,53 @@ c Constants of the disulfide-bond potential determined based on the RHF/6-31G** c energy surface of diethyl disulfide. c A. Liwo and U. Kozlowska, 11/24/03 c - D0CM = 3.78d0 - AKCM = 15.1d0 - AKTH = 11.0d0 - AKCT = 12.0d0 - V1SS =-1.08d0 - V2SS = 7.61d0 - V3SS = 13.7d0 +C D0CM = 3.78d0 +C AKCM = 15.1d0 +C AKTH = 11.0d0 +C AKCT = 12.0d0 +C V1SS =-1.08d0 +C V2SS = 7.61d0 +C V3SS = 13.7d0 + write (iout,*) dyn_ss,'dyndyn' + if (dyn_ss) then + ss_depth=ebr/wsc-0.25*eps(1,1) +C write(iout,*) akcm,whpb,wsc,'KURWA' + Ht=Ht/wsc-0.25*eps(1,1) - if (lprint) then + akcm=akcm*whpb/wsc + akth=akth*whpb/wsc + akct=akct*whpb/wsc + v1ss=v1ss*whpb/wsc + v2ss=v2ss*whpb/wsc + v3ss=v3ss*whpb/wsc + else + ss_depth=ebr/whpb-0.25*eps(1,1)*wsc/whpb + endif + +C if (lprint) then write (iout,'(/a)') "Disulfide bridge parameters:" write (iout,'(a,f10.2)') 'S-S bridge energy: ',ebr write (iout,'(2(a,f10.2))') 'd0cm:',d0cm,' akcm:',akcm write (iout,'(2(a,f10.2))') 'akth:',akth,' akct:',akct write (iout,'(3(a,f10.2))') 'v1ss:',v1ss,' v2ss:',v2ss, & ' v3ss:',v3ss - endif +C endif + if (shield_mode.gt.0) then + pi=3.141592d0 +C VSolvSphere the volume of solving sphere +C print *,pi,"pi" +C rpp(1,1) is the energy r0 for peptide group contact and will be used for it +C there will be no distinction between proline peptide group and normal peptide +C group in case of shielding parameters + VSolvSphere=4.0/3.0*pi*rpp(1,1)**3 + VSolvSphere_div=VSolvSphere-4.0/3.0*pi*(rpp(1,1)/2.0)**3 + write (iout,*) VSolvSphere,VSolvSphere_div +C long axis of side chain + do i=1,ntyp + long_r_sidechain(i)=vbldsc0(1,i) + short_r_sidechain(i)=sigma0(i) + enddo + buff_shield=1.0d0 + endif return end