X-Git-Url: http://mmka.chem.univ.gda.pl/gitweb/?a=blobdiff_plain;f=source%2Funres%2Fsrc_MD-M%2Fenergy_p_new_barrier.F;h=ea2fe9e313792eb6e44c511643a8ab390014394e;hb=c987a84c8742686406ea6b8807c9132098dc567e;hp=209726583b02033008626d99022a4bef61b4ef82;hpb=af72f8e89a5d33f0d86ba898d6c5bbbda4b25b84;p=unres.git diff --git a/source/unres/src_MD-M/energy_p_new_barrier.F b/source/unres/src_MD-M/energy_p_new_barrier.F index 2097265..ea2fe9e 100644 --- a/source/unres/src_MD-M/energy_p_new_barrier.F +++ b/source/unres/src_MD-M/energy_p_new_barrier.F @@ -24,6 +24,7 @@ cMS$ATTRIBUTES C :: proc_proc include 'COMMON.MD' include 'COMMON.CONTROL' include 'COMMON.TIME1' + include 'COMMON.SPLITELE' #ifdef MPI c print*,"ETOTAL Processor",fg_rank," absolute rank",myrank, c & " nfgtasks",nfgtasks @@ -54,6 +55,7 @@ C FG slaves as WEIGHTS array. weights_(17)=wbond weights_(18)=scal14 weights_(21)=wsccor + weights_(25)=wsaxs C FG Master broadcasts the WEIGHTS_ array call MPI_Bcast(weights_(1),n_ene, & MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR) @@ -80,6 +82,7 @@ C FG slaves receive the WEIGHTS array wbond=weights(17) scal14=weights(18) wsccor=weights(21) + wsaxs=weights(25) endif time_Bcast=time_Bcast+MPI_Wtime()-time00 time_Bcastw=time_Bcastw+MPI_Wtime()-time00 @@ -98,6 +101,7 @@ c endif C C Compute the side-chain and electrostatic interaction energy C +C print *,ipot goto (101,102,103,104,105,106) ipot C Lennard-Jones potential. 101 call elj(evdw) @@ -111,6 +115,7 @@ C Berne-Pechukas potential (dilated LJ, angular dependence). goto 107 C Gay-Berne potential (shifted LJ, angular dependence). 104 call egb(evdw) +C print *,"bylem w egb" goto 107 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence). 105 call egbv(evdw) @@ -156,7 +161,7 @@ c print *,"Processor",myrank," left VEC_AND_DERIV" eello_turn4=0.0d0 endif else -c write (iout,*) "Soft-spheer ELEC potential" + write (iout,*) "Soft-spheer ELEC potential" call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3, & eello_turn4) endif @@ -198,6 +203,7 @@ c print *,"Processor",myrank," computed UB" C C Calculate the SC local energy. C +C print *,"TU DOCHODZE?" call esc(escloc) c print *,"Processor",myrank," computed USC" C @@ -210,6 +216,18 @@ cd print *,'nterm=',nterm etors=0 edihcnstr=0 endif + + if (constr_homology.ge.1) then + call e_modeller(ehomology_constr) +c print *,'iset=',iset,'me=',me,ehomology_constr, +c & 'Processor',fg_rank,' CG group',kolor, +c & ' absolute rank',MyRank + else + ehomology_constr=0.0d0 + endif + + +c write(iout,*) ehomology_constr c print *,"Processor",myrank," computed Utor" C C 6/23/01 Calculate double-torsional energy @@ -228,6 +246,7 @@ C else esccor=0.0d0 endif +C print *,"PRZED MULIt" c print *,"Processor",myrank," computed Usccorr" C C 12/1/95 Multi-body terms @@ -249,6 +268,16 @@ cd &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6 call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1) cd write (iout,*) "multibody_hb ecorr",ecorr endif +c write (iout,*) "nsaxs",nsaxs," saxs_mode",saxs_mode + if (nsaxs.gt.0 .and. saxs_mode.eq.0) then + call e_saxs(Esaxs_constr) +c write (iout,*) "From Esaxs: Esaxs_constr",Esaxs_constr + else if (nsaxs.gt.0 .and. saxs_mode.gt.0) then + call e_saxsC(Esaxs_constr) +c write (iout,*) "From EsaxsC: Esaxs_constr",Esaxs_constr + else + Esaxs_constr = 0.0d0 + endif c print *,"Processor",myrank," computed Ucorr" C C If performing constraint dynamics, call the constraint energy @@ -260,6 +289,19 @@ C after the equilibration time Uconst=0.0d0 Uconst_back=0.0d0 endif +C 01/27/2015 added by adasko +C the energy component below is energy transfer into lipid environment +C based on partition function +C print *,"przed lipidami" + if (wliptran.gt.0) then + call Eliptransfer(eliptran) + endif +C print *,"za lipidami" + if (AFMlog.gt.0) then + call AFMforce(Eafmforce) + else if (selfguide.gt.0) then + call AFMvel(Eafmforce) + endif #ifdef TIMING time_enecalc=time_enecalc+MPI_Wtime()-time00 #endif @@ -301,6 +343,12 @@ C energia(17)=estr energia(20)=Uconst+Uconst_back energia(21)=esccor + energia(22)=eliptran + energia(23)=Eafmforce + energia(24)=ehomology_constr + energia(25)=Esaxs_constr +c Here are the energies showed per procesor if the are more processors +c per molecule then we sum it up in sum_energy subroutine c print *," Processor",myrank," calls SUM_ENERGY" call sum_energy(energia,.true.) if (dyn_ss) call dyn_set_nss @@ -390,20 +438,29 @@ cMS$ATTRIBUTES C :: proc_proc estr=energia(17) Uconst=energia(20) esccor=energia(21) + eliptran=energia(22) + Eafmforce=energia(23) + ehomology_constr=energia(24) + esaxs_constr=energia(25) +c write (iout,*) "sum_energy esaxs_constr",esaxs_constr, +c & " wsaxs",wsaxs #ifdef SPLITELE etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1 & +wang*ebe+wtor*etors+wscloc*escloc & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5 & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3 & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d - & +wbond*estr+Uconst+wsccor*esccor + & +wbond*estr+Uconst+wsccor*esccor+ehomology_constr + & +wsaxs*esaxs_constr+wliptran*eliptran+Eafmforce #else etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1) & +wang*ebe+wtor*etors+wscloc*escloc & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5 & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3 & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d - & +wbond*estr+Uconst+wsccor*esccor + & +wbond*estr+Uconst+wsccor*esccor+ehomology_constr + & +wsaxs*esaxs_constr+wliptran*eliptran + & +Eafmforce #endif energia(0)=etot c detecting NaNQ @@ -440,8 +497,9 @@ cMS$ATTRIBUTES C :: proc_proc #ifdef MPI include 'mpif.h' #endif - double precision gradbufc(3,maxres),gradbufx(3,maxres), - & glocbuf(4*maxres),gradbufc_sum(3,maxres) + double precision gradbufc(3,-1:maxres),gradbufx(3,-1:maxres), + & glocbuf(4*maxres),gradbufc_sum(3,-1:maxres) + & ,gloc_scbuf(3,-1:maxres) include 'COMMON.SETUP' include 'COMMON.IOUNITS' include 'COMMON.FFIELD' @@ -453,17 +511,27 @@ cMS$ATTRIBUTES C :: proc_proc include 'COMMON.CONTROL' include 'COMMON.TIME1' include 'COMMON.MAXGRAD' + include 'COMMON.SCCOR' + include 'COMMON.MD' #ifdef TIMING time01=MPI_Wtime() #endif #ifdef DEBUG write (iout,*) "sum_gradient gvdwc, gvdwx" - do i=1,nres - write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') + do i=0,nres + write (iout,'(i3,3e15.5,5x,3e15.5)') & i,(gvdwx(j,i),j=1,3),(gvdwc(j,i),j=1,3) enddo call flush(iout) #endif +#ifdef DEBUG + write (iout,*) "sum_gradient gsaxsc, gsaxsx" + do i=0,nres + write (iout,'(i3,3e15.5,5x,3e15.5)') + & i,(gsaxsc(j,i),j=1,3),(gsaxsx(j,i),j=1,3) + enddo + call flush(iout) +#endif #ifdef MPI C FG slaves call the following matching MPI_Bcast in ERGASTULUM if (nfgtasks.gt.1 .and. fg_rank.eq.0) @@ -493,7 +561,7 @@ c enddo call flush(iout) #endif #ifdef SPLITELE - do i=1,nct + do i=0,nct do j=1,3 gradbufc(j,i)=wsc*gvdwc(j,i)+ & wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+ @@ -503,11 +571,15 @@ c enddo & wcorr5*gradcorr5_long(j,i)+ & wcorr6*gradcorr6_long(j,i)+ & wturn6*gcorr6_turn_long(j,i)+ - & wstrain*ghpbc(j,i) + & wstrain*ghpbc(j,i)+ + & wsaxs*gsaxsc(j,i) + & +wliptran*gliptranc(j,i) + & +gradafm(j,i) + enddo enddo #else - do i=1,nct + do i=0,nct do j=1,3 gradbufc(j,i)=wsc*gvdwc(j,i)+ & wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+ @@ -518,7 +590,11 @@ c enddo & wcorr5*gradcorr5_long(j,i)+ & wcorr6*gradcorr6_long(j,i)+ & wturn6*gcorr6_turn_long(j,i)+ - & wstrain*ghpbc(j,i) + & wstrain*ghpbc(j,i)+ + & wsaxs*gsaxsc(j,i) + & +wliptran*gliptranc(j,i) + & +gradafm(j,i) + enddo enddo #endif @@ -532,7 +608,7 @@ c enddo enddo call flush(iout) #endif - do i=1,nres + do i=0,nres do j=1,3 gradbufc_sum(j,i)=gradbufc(j,i) enddo @@ -575,7 +651,8 @@ c enddo do j=1,3 gradbufc(j,nres-1)=gradbufc_sum(j,nres) enddo - do i=nres-2,nnt,-1 + do i=nres-2,0,-1 +c do i=nres-2,nnt,-1 do j=1,3 gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1) enddo @@ -583,7 +660,7 @@ c enddo #ifdef DEBUG write (iout,*) "gradbufc after summing" do i=1,nres - write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3) + write (iout,'(i3,3e15.5)') i,(gradbufc(j,i),j=1,3) enddo call flush(iout) #endif @@ -591,12 +668,12 @@ c enddo #endif #ifdef DEBUG write (iout,*) "gradbufc" - do i=1,nres - write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3) + do i=0,nres + write (iout,'(i3,3e15.5)') i,(gradbufc(j,i),j=1,3) enddo call flush(iout) #endif - do i=1,nres + do i=-1,nres do j=1,3 gradbufc_sum(j,i)=gradbufc(j,i) gradbufc(j,i)=0.0d0 @@ -605,7 +682,8 @@ c enddo do j=1,3 gradbufc(j,nres-1)=gradbufc_sum(j,nres) enddo - do i=nres-2,nnt,-1 + do i=nres-2,0,-1 +c do i=nres-2,nnt,-1 do j=1,3 gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1) enddo @@ -622,8 +700,8 @@ c enddo c enddo #ifdef DEBUG write (iout,*) "gradbufc after summing" - do i=1,nres - write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3) + do i=0,nres + write (iout,'(i3,3e15.5)') i,(gradbufc(j,i),j=1,3) enddo call flush(iout) #endif @@ -633,7 +711,7 @@ c enddo do k=1,3 gradbufc(k,nres)=0.0d0 enddo - do i=1,nct + do i=-1,nct do j=1,3 #ifdef SPLITELE gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+ @@ -654,11 +732,13 @@ c enddo & wturn6*gcorr6_turn(j,i)+ & wsccor*gsccorc(j,i) & +wscloc*gscloc(j,i) + & +wliptran*gliptranc(j,i) + & +gradafm(j,i) #else gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+ & wel_loc*gel_loc(j,i)+ & 0.5d0*(wscp*gvdwc_scpp(j,i)+ - & welec*gelc_long(j,i) + & welec*gelc_long(j,i) + & wel_loc*gel_loc_long(j,i)+ & wcorr*gcorr_long(j,i)+ & wcorr5*gradcorr5_long(j,i)+ @@ -673,14 +753,27 @@ c enddo & wturn6*gcorr6_turn(j,i)+ & wsccor*gsccorc(j,i) & +wscloc*gscloc(j,i) + & +wliptran*gliptranc(j,i) + & +gradafm(j,i) + #endif gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+ & wbond*gradbx(j,i)+ - & wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+ - & wsccor*gsccorx(j,i) + & wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i) + & +wsaxs*gsaxsx(j,i) + & +wsccor*gsccorx(j,i) & +wscloc*gsclocx(j,i) + & +wliptran*gliptranx(j,i) enddo enddo + if (constr_homology.gt.0) then + do i=1,nct + do j=1,3 + gradc(j,i,icg)=gradc(j,i,icg)+duscdiff(j,i) + gradx(j,i,icg)=gradx(j,i,icg)+duscdiffx(j,i) + enddo + enddo + endif #ifdef DEBUG write (iout,*) "gloc before adding corr" do i=1,4*nres @@ -695,7 +788,6 @@ c enddo & +wturn3*gel_loc_turn3(i) & +wturn6*gel_loc_turn6(i) & +wel_loc*gel_loc_loc(i) - & +wsccor*gsccor_loc(i) enddo #ifdef DEBUG write (iout,*) "gloc after adding corr" @@ -714,6 +806,21 @@ c enddo do i=1,4*nres glocbuf(i)=gloc(i,icg) enddo +c#define DEBUG +#ifdef DEBUG + write (iout,*) "gloc_sc before reduce" + do i=1,nres + do j=1,1 + write (iout,*) i,j,gloc_sc(j,i,icg) + enddo + enddo +#endif +c#undef DEBUG + do i=1,nres + do j=1,3 + gloc_scbuf(j,i)=gloc_sc(j,i,icg) + enddo + enddo time00=MPI_Wtime() call MPI_Barrier(FG_COMM,IERR) time_barrier_g=time_barrier_g+MPI_Wtime()-time00 @@ -725,6 +832,19 @@ c enddo call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres, & MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR) time_reduce=time_reduce+MPI_Wtime()-time00 + call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres, + & MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR) + time_reduce=time_reduce+MPI_Wtime()-time00 +c#define DEBUG +#ifdef DEBUG + write (iout,*) "gloc_sc after reduce" + do i=1,nres + do j=1,1 + write (iout,*) i,j,gloc_sc(j,i,icg) + enddo + enddo +#endif +c#undef DEBUG #ifdef DEBUG write (iout,*) "gloc after reduce" do i=1,4*nres @@ -838,7 +958,7 @@ c #ifdef DEBUG write (iout,*) "gradc gradx gloc" do i=1,nres - write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') + write (iout,'(i5,3e15.5,5x,3e15.5,5x,e15.5)') & i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg) enddo #endif @@ -940,6 +1060,10 @@ C------------------------------------------------------------------------ estr=energia(17) Uconst=energia(20) esccor=energia(21) + ehomology_constr=energia(24) + esaxs_constr=energia(25) + eliptran=energia(22) + Eafmforce=energia(23) #ifdef SPLITELE write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp, & estr,wbond,ebe,wang, @@ -947,8 +1071,8 @@ C------------------------------------------------------------------------ & ecorr,wcorr, & ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3, & eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor, - & edihcnstr,ebr*nss, - & Uconst,etot + & edihcnstr,ehomology_constr,esaxs_constr*wsaxs, ebr*nss, + & Uconst,eliptran,wliptran,Eafmforce,etot 10 format (/'Virtual-chain energies:'// & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ @@ -959,7 +1083,7 @@ C------------------------------------------------------------------------ & 'ESC= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/ & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/ & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/ - & 'EHBP= ',1pE16.6,' WEIGHT=',1pD16.6, + & 'EHPB= ',1pE16.6,' WEIGHT=',1pD16.6, & ' (SS bridges & dist. cnstr.)'/ & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/ & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/ @@ -970,9 +1094,14 @@ C------------------------------------------------------------------------ & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/ & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/ & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/ + & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/ + & 'E_SAXS=',1pE16.6,' (SAXS restraints)'/ & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ & 'UCONST= ',1pE16.6,' (Constraint energy)'/ + & 'ELT=',1pE16.6, ' WEIGHT=',1pD16.6,' (Lipid transfer energy)'/ + & 'EAFM= ',1pE16.6,' (atomic-force microscopy)'/ & 'ETOT= ',1pE16.6,' (total)') + #else write (iout,10) evdw,wsc,evdw2,wscp,ees,welec, & estr,wbond,ebe,wang, @@ -980,7 +1109,9 @@ C------------------------------------------------------------------------ & ecorr,wcorr, & ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3, & eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr, - & ebr*nss,Uconst,etot + & ehomology_constr,esaxs_constr*wsaxs,ebr*nss,Uconst, + & eliptran,wliptran,Eafmforc, + & etot 10 format (/'Virtual-chain energies:'// & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ @@ -1001,8 +1132,12 @@ C------------------------------------------------------------------------ & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/ & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/ & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/ + & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/ + & 'E_SAXS=',1pE16.6,' (SAXS restraints)'/ & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ & 'UCONST=',1pE16.6,' (Constraint energy)'/ + & 'ELT=',1pE16.6, ' WEIGHT=',1pD16.6,' (Lipid transfer energy)'/ + & 'EAFM= ',1pE16.6,' (atomic-force microscopy)'/ & 'ETOT= ',1pE16.6,' (total)') #endif return @@ -1031,9 +1166,9 @@ C c write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1046,8 +1181,8 @@ C cd write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint), cd & 'iend=',iend(i,iint) do j=istart(i,iint),iend(i,iint) - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi zj=c(3,nres+j)-zi @@ -1057,13 +1192,14 @@ C Change 12/1/95 to calculate four-body interactions c write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj eps0ij=eps(itypi,itypj) fac=rrij**expon2 - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) +C have you changed here? + e1=fac*fac*aa + e2=fac*bb evdwij=e1+e2 cd sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) cd epsi=bb(itypi,itypj)**2/aa(itypi,itypj) cd write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)') -cd & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj), +cd & restyp(itypi),i,restyp(itypj),j,a(itypi,itypj), cd & bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm, cd & (c(k,i),k=1,3),(c(k,j),k=1,3) evdw=evdw+evdwij @@ -1184,9 +1320,9 @@ C c print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1195,8 +1331,8 @@ C Calculate SC interaction energy. C do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi zj=c(3,nres+j)-zi @@ -1207,8 +1343,9 @@ C rij=1.0D0/r_inv_ij r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj)) fac=r_shift_inv**expon - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) +C have you changed here? + e1=fac*fac*aa + e2=fac*bb evdwij=e_augm+e1+e2 cd sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) cd epsi=bb(itypi,itypj)**2/aa(itypi,itypj) @@ -1277,9 +1414,9 @@ c else c endif ind=0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1294,8 +1431,8 @@ C do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) ind=ind+1 - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle c dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) chi1=chi(itypi,itypj) @@ -1334,17 +1471,18 @@ C Calculate the angle-dependent terms of energy & contributions to derivatives. call sc_angular C Calculate whole angle-dependent part of epsilon and contributions C to its derivatives +C have you changed here? fac=(rrij*sigsq)**expon2 - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) + e1=fac*fac*aa + e2=fac*bb evdwij=eps1*eps2rt*eps3rt*(e1+e2) eps2der=evdwij*eps3rt eps3der=evdwij*eps2rt evdwij=evdwij*eps2rt*eps3rt evdw=evdw+evdwij if (lprn) then - sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) - epsi=bb(itypi,itypj)**2/aa(itypi,itypj) + sigm=dabs(aa/bb)**(1.0D0/6.0D0) + epsi=bb**2/aa cd write (iout,'(2(a3,i3,2x),15(0pf7.3))') cd & restyp(itypi),i,restyp(itypj),j, cd & epsi,sigm,chi1,chi2,chip1,chip2, @@ -1388,22 +1526,93 @@ C include 'COMMON.IOUNITS' include 'COMMON.CALC' include 'COMMON.CONTROL' + include 'COMMON.SPLITELE' include 'COMMON.SBRIDGE' logical lprn + integer xshift,yshift,zshift evdw=0.0D0 ccccc energy_dec=.false. -c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon +C print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 lprn=.false. c if (icall.eq.0) lprn=.false. ind=0 +C the loop over all 27 posible neigbours (for xshift=0,yshift=0,zshift=0 +C we have the original box) +C do xshift=-1,1 +C do yshift=-1,1 +C do zshift=-1,1 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) +C Return atom into box, boxxsize is size of box in x dimension +c 134 continue +c if (xi.gt.((xshift+0.5d0)*boxxsize)) xi=xi-boxxsize +c if (xi.lt.((xshift-0.5d0)*boxxsize)) xi=xi+boxxsize +C Condition for being inside the proper box +c if ((xi.gt.((xshift+0.5d0)*boxxsize)).or. +c & (xi.lt.((xshift-0.5d0)*boxxsize))) then +c go to 134 +c endif +c 135 continue +c if (yi.gt.((yshift+0.5d0)*boxysize)) yi=yi-boxysize +c if (yi.lt.((yshift-0.5d0)*boxysize)) yi=yi+boxysize +C Condition for being inside the proper box +c if ((yi.gt.((yshift+0.5d0)*boxysize)).or. +c & (yi.lt.((yshift-0.5d0)*boxysize))) then +c go to 135 +c endif +c 136 continue +c if (zi.gt.((zshift+0.5d0)*boxzsize)) zi=zi-boxzsize +c if (zi.lt.((zshift-0.5d0)*boxzsize)) zi=zi+boxzsize +C Condition for being inside the proper box +c if ((zi.gt.((zshift+0.5d0)*boxzsize)).or. +c & (zi.lt.((zshift-0.5d0)*boxzsize))) then +c go to 136 +c endif + xi=mod(xi,boxxsize) + if (xi.lt.0) xi=xi+boxxsize + yi=mod(yi,boxysize) + if (yi.lt.0) yi=yi+boxysize + zi=mod(zi,boxzsize) + if (zi.lt.0) zi=zi+boxzsize +C define scaling factor for lipids + +C if (positi.le.0) positi=positi+boxzsize +C print *,i +C first for peptide groups +c for each residue check if it is in lipid or lipid water border area + if ((zi.gt.bordlipbot) + &.and.(zi.lt.bordliptop)) then +C the energy transfer exist + if (zi.lt.buflipbot) then +C what fraction I am in + fracinbuf=1.0d0- + & ((zi-bordlipbot)/lipbufthick) +C lipbufthick is thickenes of lipid buffore + sslipi=sscalelip(fracinbuf) + ssgradlipi=-sscagradlip(fracinbuf)/lipbufthick + elseif (zi.gt.bufliptop) then + fracinbuf=1.0d0-((bordliptop-zi)/lipbufthick) + sslipi=sscalelip(fracinbuf) + ssgradlipi=sscagradlip(fracinbuf)/lipbufthick + else + sslipi=1.0d0 + ssgradlipi=0.0 + endif + else + sslipi=0.0d0 + ssgradlipi=0.0 + endif + +C xi=xi+xshift*boxxsize +C yi=yi+yshift*boxysize +C zi=zi+zshift*boxzsize + dxi=dc_norm(1,nres+i) dyi=dc_norm(2,nres+i) dzi=dc_norm(3,nres+i) @@ -1423,8 +1632,8 @@ C & 'evdw',i,j,evdwij,' ss' ELSE ind=ind+1 - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle c dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) c write (iout,*) "j",j,dsc_inv(itypj),dscj_inv, @@ -1450,17 +1659,118 @@ c chip12=0.0D0 c alf1=0.0D0 c alf2=0.0D0 c alf12=0.0D0 - xj=c(1,nres+j)-xi - yj=c(2,nres+j)-yi - zj=c(3,nres+j)-zi + xj=c(1,nres+j) + yj=c(2,nres+j) + zj=c(3,nres+j) +C Return atom J into box the original box +c 137 continue +c if (xj.gt.((0.5d0)*boxxsize)) xj=xj-boxxsize +c if (xj.lt.((-0.5d0)*boxxsize)) xj=xj+boxxsize +C Condition for being inside the proper box +c if ((xj.gt.((0.5d0)*boxxsize)).or. +c & (xj.lt.((-0.5d0)*boxxsize))) then +c go to 137 +c endif +c 138 continue +c if (yj.gt.((0.5d0)*boxysize)) yj=yj-boxysize +c if (yj.lt.((-0.5d0)*boxysize)) yj=yj+boxysize +C Condition for being inside the proper box +c if ((yj.gt.((0.5d0)*boxysize)).or. +c & (yj.lt.((-0.5d0)*boxysize))) then +c go to 138 +c endif +c 139 continue +c if (zj.gt.((0.5d0)*boxzsize)) zj=zj-boxzsize +c if (zj.lt.((-0.5d0)*boxzsize)) zj=zj+boxzsize +C Condition for being inside the proper box +c if ((zj.gt.((0.5d0)*boxzsize)).or. +c & (zj.lt.((-0.5d0)*boxzsize))) then +c go to 139 +c endif + xj=mod(xj,boxxsize) + if (xj.lt.0) xj=xj+boxxsize + yj=mod(yj,boxysize) + if (yj.lt.0) yj=yj+boxysize + zj=mod(zj,boxzsize) + if (zj.lt.0) zj=zj+boxzsize + if ((zj.gt.bordlipbot) + &.and.(zj.lt.bordliptop)) then +C the energy transfer exist + if (zj.lt.buflipbot) then +C what fraction I am in + fracinbuf=1.0d0- + & ((zj-bordlipbot)/lipbufthick) +C lipbufthick is thickenes of lipid buffore + sslipj=sscalelip(fracinbuf) + ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick + elseif (zj.gt.bufliptop) then + fracinbuf=1.0d0-((bordliptop-zj)/lipbufthick) + sslipj=sscalelip(fracinbuf) + ssgradlipj=sscagradlip(fracinbuf)/lipbufthick + else + sslipj=1.0d0 + ssgradlipj=0.0 + endif + else + sslipj=0.0d0 + ssgradlipj=0.0 + endif + aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +aa_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0 + bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +bb_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0 +C if (aa.ne.aa_aq(itypi,itypj)) write(63,'(2e10.5)') +C &(aa-aa_aq(itypi,itypj)),(bb-bb_aq(itypi,itypj)) +C if (ssgradlipj.gt.0.0d0) print *,"??WTF??" +C print *,sslipi,sslipj,bordlipbot,zi,zj + dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + xj_safe=xj + yj_safe=yj + zj_safe=zj + subchap=0 + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 + xj=xj_safe+xshift*boxxsize + yj=yj_safe+yshift*boxysize + zj=zj_safe+zshift*boxzsize + dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + if(dist_temp.lt.dist_init) then + dist_init=dist_temp + xj_temp=xj + yj_temp=yj + zj_temp=zj + subchap=1 + endif + enddo + enddo + enddo + if (subchap.eq.1) then + xj=xj_temp-xi + yj=yj_temp-yi + zj=zj_temp-zi + else + xj=xj_safe-xi + yj=yj_safe-yi + zj=zj_safe-zi + endif dxj=dc_norm(1,nres+j) dyj=dc_norm(2,nres+j) dzj=dc_norm(3,nres+j) +C xj=xj-xi +C yj=yj-yi +C zj=zj-zi c write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi c write (iout,*) "j",j," dc_norm", c & dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j) rrij=1.0D0/(xj*xj+yj*yj+zj*zj) rij=dsqrt(rrij) + sss=sscale((1.0d0/rij)/sigma(itypi,itypj)) + sssgrad=sscagrad((1.0d0/rij)/sigma(itypi,itypj)) + +c write (iout,'(a7,4f8.3)') +c & "ssscale",sss,((1.0d0/rij)/sigma(itypi,itypj)),r_cut,rlamb + if (sss.gt.0.0d0) then C Calculate angle-dependent terms of energy and contributions to their C derivatives. call sc_angular @@ -1481,18 +1791,24 @@ cd & rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) c--------------------------------------------------------------- rij_shift=1.0D0/rij_shift fac=rij_shift**expon - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) +C here to start with +C if (c(i,3).gt. + faclip=fac + e1=fac*fac*aa + e2=fac*bb evdwij=eps1*eps2rt*eps3rt*(e1+e2) eps2der=evdwij*eps3rt eps3der=evdwij*eps2rt +C write(63,'(2i3,2e10.3,2f10.5)') i,j,aa,bb, evdwij, +C &((sslipi+sslipj)/2.0d0+ +C &(2.0d0-sslipi-sslipj)/2.0d0) c write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt, c & " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2 evdwij=evdwij*eps2rt*eps3rt - evdw=evdw+evdwij + evdw=evdw+evdwij*sss if (lprn) then - sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) - epsi=bb(itypi,itypj)**2/aa(itypi,itypj) + sigm=dabs(aa/bb)**(1.0D0/6.0D0) + epsi=bb**2/aa write (iout,'(2(a3,i3,2x),17(0pf7.3))') & restyp(itypi),i,restyp(itypj),j, & epsi,sigm,chi1,chi2,chip1,chip2, @@ -1509,17 +1825,32 @@ C Calculate gradient components. fac=-expon*(e1+evdwij)*rij_shift sigder=fac*sigder fac=rij*fac +c print '(2i4,6f8.4)',i,j,sss,sssgrad* +c & evdwij,fac,sigma(itypi,itypj),expon + fac=fac+evdwij/sss*sssgrad/sigma(itypi,itypj)*rij c fac=0.0d0 C Calculate the radial part of the gradient + gg_lipi(3)=eps1*(eps2rt*eps2rt) + &*(eps3rt*eps3rt)*sss/2.0d0*(faclip*faclip* + & (aa_lip(itypi,itypj)-aa_aq(itypi,itypj)) + &+faclip*(bb_lip(itypi,itypj)-bb_aq(itypi,itypj))) + gg_lipj(3)=ssgradlipj*gg_lipi(3) + gg_lipi(3)=gg_lipi(3)*ssgradlipi +C gg_lipi(3)=0.0d0 +C gg_lipj(3)=0.0d0 gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac C Calculate angular part of the gradient. call sc_grad + endif ENDIF ! dyn_ss enddo ! j enddo ! iint enddo ! i +C enddo ! zshift +C enddo ! yshift +C enddo ! xshift c write (iout,*) "Number of loop steps in EGB:",ind cccc energy_dec=.false. return @@ -1550,12 +1881,47 @@ c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon c if (icall.eq.0) lprn=.true. ind=0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) + xi=mod(xi,boxxsize) + if (xi.lt.0) xi=xi+boxxsize + yi=mod(yi,boxysize) + if (yi.lt.0) yi=yi+boxysize + zi=mod(zi,boxzsize) + if (zi.lt.0) zi=zi+boxzsize +C define scaling factor for lipids + +C if (positi.le.0) positi=positi+boxzsize +C print *,i +C first for peptide groups +c for each residue check if it is in lipid or lipid water border area + if ((zi.gt.bordlipbot) + &.and.(zi.lt.bordliptop)) then +C the energy transfer exist + if (zi.lt.buflipbot) then +C what fraction I am in + fracinbuf=1.0d0- + & ((zi-bordlipbot)/lipbufthick) +C lipbufthick is thickenes of lipid buffore + sslipi=sscalelip(fracinbuf) + ssgradlipi=-sscagradlip(fracinbuf)/lipbufthick + elseif (zi.gt.bufliptop) then + fracinbuf=1.0d0-((bordliptop-zi)/lipbufthick) + sslipi=sscalelip(fracinbuf) + ssgradlipi=sscagradlip(fracinbuf)/lipbufthick + else + sslipi=1.0d0 + ssgradlipi=0.0 + endif + else + sslipi=0.0d0 + ssgradlipi=0.0 + endif + dxi=dc_norm(1,nres+i) dyi=dc_norm(2,nres+i) dzi=dc_norm(3,nres+i) @@ -1567,8 +1933,8 @@ C do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) ind=ind+1 - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle c dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) sig0ij=sigma(itypi,itypj) @@ -1592,9 +1958,74 @@ c chip12=0.0D0 c alf1=0.0D0 c alf2=0.0D0 c alf12=0.0D0 - xj=c(1,nres+j)-xi - yj=c(2,nres+j)-yi - zj=c(3,nres+j)-zi +C xj=c(1,nres+j)-xi +C yj=c(2,nres+j)-yi +C zj=c(3,nres+j)-zi + xj=mod(xj,boxxsize) + if (xj.lt.0) xj=xj+boxxsize + yj=mod(yj,boxysize) + if (yj.lt.0) yj=yj+boxysize + zj=mod(zj,boxzsize) + if (zj.lt.0) zj=zj+boxzsize + if ((zj.gt.bordlipbot) + &.and.(zj.lt.bordliptop)) then +C the energy transfer exist + if (zj.lt.buflipbot) then +C what fraction I am in + fracinbuf=1.0d0- + & ((zj-bordlipbot)/lipbufthick) +C lipbufthick is thickenes of lipid buffore + sslipj=sscalelip(fracinbuf) + ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick + elseif (zj.gt.bufliptop) then + fracinbuf=1.0d0-((bordliptop-zj)/lipbufthick) + sslipj=sscalelip(fracinbuf) + ssgradlipj=sscagradlip(fracinbuf)/lipbufthick + else + sslipj=1.0d0 + ssgradlipj=0.0 + endif + else + sslipj=0.0d0 + ssgradlipj=0.0 + endif + aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +aa_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0 + bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +bb_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0 +C if (aa.ne.aa_aq(itypi,itypj)) write(63,'2e10.5') +C &(aa-aa_aq(itypi,itypj)),(bb-bb_aq(itypi,itypj)) + dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + xj_safe=xj + yj_safe=yj + zj_safe=zj + subchap=0 + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 + xj=xj_safe+xshift*boxxsize + yj=yj_safe+yshift*boxysize + zj=zj_safe+zshift*boxzsize + dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + if(dist_temp.lt.dist_init) then + dist_init=dist_temp + xj_temp=xj + yj_temp=yj + zj_temp=zj + subchap=1 + endif + enddo + enddo + enddo + if (subchap.eq.1) then + xj=xj_temp-xi + yj=yj_temp-yi + zj=zj_temp-zi + else + xj=xj_safe-xi + yj=yj_safe-yi + zj=zj_safe-zi + endif dxj=dc_norm(1,nres+j) dyj=dc_norm(2,nres+j) dzj=dc_norm(3,nres+j) @@ -1615,8 +2046,8 @@ C I hate to put IF's in the loops, but here don't have another choice!!!! c--------------------------------------------------------------- rij_shift=1.0D0/rij_shift fac=rij_shift**expon - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) + e1=fac*fac*aa + e2=fac*bb evdwij=eps1*eps2rt*eps3rt*(e1+e2) eps2der=evdwij*eps3rt eps3der=evdwij*eps2rt @@ -1625,8 +2056,8 @@ c--------------------------------------------------------------- evdwij=evdwij*eps2rt*eps3rt evdw=evdw+evdwij+e_augm if (lprn) then - sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) - epsi=bb(itypi,itypj)**2/aa(itypi,itypj) + sigm=dabs(aa/bb)**(1.0D0/6.0D0) + epsi=bb**2/aa write (iout,'(2(a3,i3,2x),17(0pf7.3))') & restyp(itypi),i,restyp(itypj),j, & epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0), @@ -1640,6 +2071,7 @@ C Calculate gradient components. fac=-expon*(e1+evdwij)*rij_shift sigder=fac*sigder fac=rij*fac-2*expon*rrij*e_augm + fac=fac+evdwij/sss*sssgrad/sigma(itypi,itypj)*rij C Calculate the radial part of the gradient gg(1)=xj*fac gg(2)=yj*fac @@ -1727,6 +2159,7 @@ C---------------------------------------------------------------------------- include 'COMMON.CALC' include 'COMMON.IOUNITS' double precision dcosom1(3),dcosom2(3) +cc print *,'sss=',sss eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1 eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2 eom12=evdwij*eps1_om12+eps2der*eps2rt_om12 @@ -1745,16 +2178,16 @@ c write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12 dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k)) enddo do k=1,3 - gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k) + gg(k)=(gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k))*sss enddo c write (iout,*) "gg",(gg(k),k=1,3) do k=1,3 - gvdwx(k,i)=gvdwx(k,i)-gg(k) + gvdwx(k,i)=gvdwx(k,i)-gg(k)+gg_lipi(k) & +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i)) - & +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv - gvdwx(k,j)=gvdwx(k,j)+gg(k) + & +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv*sss + gvdwx(k,j)=gvdwx(k,j)+gg(k)+gg_lipj(k) & +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j)) - & +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv + & +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv*sss c write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i)) c & +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv c write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j)) @@ -1769,8 +2202,8 @@ cgrad gvdwc(l,k)=gvdwc(l,k)+gg(l) cgrad enddo cgrad enddo do l=1,3 - gvdwc(l,i)=gvdwc(l,i)-gg(l) - gvdwc(l,j)=gvdwc(l,j)+gg(l) + gvdwc(l,i)=gvdwc(l,i)-gg(l)+gg_lipi(l) + gvdwc(l,j)=gvdwc(l,j)+gg(l)+gg_lipj(l) enddo return end @@ -1798,9 +2231,9 @@ C cd print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct evdw=0.0D0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1811,8 +2244,8 @@ C cd write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint), cd & 'iend=',iend(i,iint) do j=istart(i,iint),iend(i,iint) - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi zj=c(3,nres+j)-zi @@ -1872,7 +2305,7 @@ C include 'COMMON.VECTORS' include 'COMMON.FFIELD' dimension ggg(3) -cd write(iout,*) 'In EELEC_soft_sphere' +C write(iout,*) 'In EELEC_soft_sphere' ees=0.0D0 evdw1=0.0D0 eel_loc=0.0d0 @@ -1880,17 +2313,23 @@ cd write(iout,*) 'In EELEC_soft_sphere' eello_turn4=0.0d0 ind=0 do i=iatel_s,iatel_e - if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle + if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) xmedi=c(1,i)+0.5d0*dxi ymedi=c(2,i)+0.5d0*dyi zmedi=c(3,i)+0.5d0*dzi + xmedi=mod(xmedi,boxxsize) + if (xmedi.lt.0) xmedi=xmedi+boxxsize + ymedi=mod(ymedi,boxysize) + if (ymedi.lt.0) ymedi=ymedi+boxysize + zmedi=mod(zmedi,boxzsize) + if (zmedi.lt.0) zmedi=zmedi+boxzsize num_conti=0 c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) do j=ielstart(i),ielend(i) - if (itype(j).eq.21 .or. itype(j+1).eq.21) cycle + if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1) cycle ind=ind+1 iteli=itel(i) itelj=itel(j) @@ -1900,10 +2339,49 @@ c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) dxj=dc(1,j) dyj=dc(2,j) dzj=dc(3,j) - xj=c(1,j)+0.5D0*dxj-xmedi - yj=c(2,j)+0.5D0*dyj-ymedi - zj=c(3,j)+0.5D0*dzj-zmedi + xj=c(1,j)+0.5D0*dxj + yj=c(2,j)+0.5D0*dyj + zj=c(3,j)+0.5D0*dzj + xj=mod(xj,boxxsize) + if (xj.lt.0) xj=xj+boxxsize + yj=mod(yj,boxysize) + if (yj.lt.0) yj=yj+boxysize + zj=mod(zj,boxzsize) + if (zj.lt.0) zj=zj+boxzsize + dist_init=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2 + xj_safe=xj + yj_safe=yj + zj_safe=zj + isubchap=0 + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 + xj=xj_safe+xshift*boxxsize + yj=yj_safe+yshift*boxysize + zj=zj_safe+zshift*boxzsize + dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + if(dist_temp.lt.dist_init) then + dist_init=dist_temp + xj_temp=xj + yj_temp=yj + zj_temp=zj + isubchap=1 + endif + enddo + enddo + enddo + if (isubchap.eq.1) then + xj=xj_temp-xmedi + yj=yj_temp-ymedi + zj=zj_temp-zmedi + else + xj=xj_safe-xmedi + yj=yj_safe-ymedi + zj=zj_safe-zmedi + endif rij=xj*xj+yj*yj+zj*zj + sss=sscale(sqrt(rij)) + sssgrad=sscagrad(sqrt(rij)) if (rij.lt.r0ijsq) then evdw1ij=0.25d0*(rij-r0ijsq)**2 fac=rij-r0ijsq @@ -1911,13 +2389,13 @@ c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) evdw1ij=0.0d0 fac=0.0d0 endif - evdw1=evdw1+evdw1ij + evdw1=evdw1+evdw1ij*sss C C Calculate contributions to the Cartesian gradient. C - ggg(1)=fac*xj - ggg(2)=fac*yj - ggg(3)=fac*zj + ggg(1)=fac*xj*sssgrad + ggg(2)=fac*yj*sssgrad + ggg(3)=fac*zj*sssgrad do k=1,3 gvdwpp(k,i)=gvdwpp(k,i)-ggg(k) gvdwpp(k,j)=gvdwpp(k,j)+ggg(k) @@ -2236,6 +2714,98 @@ C C Compute the virtual-bond-torsional-angle dependent quantities needed C to calculate the el-loc multibody terms of various order. C +c write(iout,*) 'nphi=',nphi,nres +#ifdef PARMAT + do i=ivec_start+2,ivec_end+2 +#else + do i=3,nres+1 +#endif +#ifdef NEWCORR + if (i.gt. nnt+2 .and. i.lt.nct+2) then + iti = itortyp(itype(i-2)) + else + iti=ntortyp+1 + endif +c if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then + if (i.gt. nnt+1 .and. i.lt.nct+1) then + iti1 = itortyp(itype(i-1)) + else + iti1=ntortyp+1 + endif +c write(iout,*),i + b1(1,i-2)=bnew1(1,1,iti)*dsin(theta(i-1)/2.0) + & +bnew1(2,1,iti)*dsin(theta(i-1)) + & +bnew1(3,1,iti)*dcos(theta(i-1)/2.0) + gtb1(1,i-2)=bnew1(1,1,iti)*dcos(theta(i-1)/2.0d0)/2.0d0 + & +bnew1(2,1,iti)*dcos(theta(i-1)) + & -bnew1(3,1,iti)*dsin(theta(i-1)/2.0d0)/2.0d0 +c & +bnew1(3,1,iti)*sin(alpha(i))*cos(beta(i)) +c &*(cos(theta(i)/2.0) + b2(1,i-2)=bnew2(1,1,iti)*dsin(theta(i-1)/2.0) + & +bnew2(2,1,iti)*dsin(theta(i-1)) + & +bnew2(3,1,iti)*dcos(theta(i-1)/2.0) +c & +bnew2(3,1,iti)*sin(alpha(i))*cos(beta(i)) +c &*(cos(theta(i)/2.0) + gtb2(1,i-2)=bnew2(1,1,iti)*dcos(theta(i-1)/2.0d0)/2.0d0 + & +bnew2(2,1,iti)*dcos(theta(i-1)) + & -bnew2(3,1,iti)*dsin(theta(i-1)/2.0d0)/2.0d0 +c if (ggb1(1,i).eq.0.0d0) then +c write(iout,*) 'i=',i,ggb1(1,i), +c &bnew1(1,1,iti)*cos(theta(i)/2.0)/2.0, +c &bnew1(2,1,iti)*cos(theta(i)), +c &bnew1(3,1,iti)*sin(theta(i)/2.0)/2.0 +c endif + b1(2,i-2)=bnew1(1,2,iti) + gtb1(2,i-2)=0.0 + b2(2,i-2)=bnew2(1,2,iti) + gtb2(2,i-2)=0.0 + EE(1,1,i-2)=eenew(1,iti)*dcos(theta(i-1)) + EE(1,2,i-2)=eeold(1,2,iti) + EE(2,1,i-2)=eeold(2,1,iti) + EE(2,2,i-2)=eeold(2,2,iti) + gtEE(1,1,i-2)=-eenew(1,iti)*dsin(theta(i-1)) + gtEE(1,2,i-2)=0.0d0 + gtEE(2,2,i-2)=0.0d0 + gtEE(2,1,i-2)=0.0d0 +c EE(2,2,iti)=0.0d0 +c EE(1,2,iti)=0.5d0*eenew(1,iti) +c EE(2,1,iti)=0.5d0*eenew(1,iti) +c b1(2,iti)=bnew1(1,2,iti)*sin(alpha(i))*sin(beta(i)) +c b2(2,iti)=bnew2(1,2,iti)*sin(alpha(i))*sin(beta(i)) + b1tilde(1,i-2)=b1(1,i-2) + b1tilde(2,i-2)=-b1(2,i-2) + b2tilde(1,i-2)=b2(1,i-2) + b2tilde(2,i-2)=-b2(2,i-2) +c write (iout,*) 'i=',i-2,gtb1(2,i-2),gtb1(1,i-2) +c write(iout,*) 'b1=',b1(1,i-2) +c write (iout,*) 'theta=', theta(i-1) + enddo +#else + if (i.gt. nnt+2 .and. i.lt.nct+2) then + iti = itortyp(itype(i-2)) + else + iti=ntortyp+1 + endif +c if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then + if (i.gt. nnt+1 .and. i.lt.nct+1) then + iti1 = itortyp(itype(i-1)) + else + iti1=ntortyp+1 + endif + b1(1,i-2)=b(3,iti) + b1(2,i-2)=b(5,iti) + b2(1,i-2)=b(2,iti) + b2(2,i-2)=b(4,iti) + b1tilde(1,i-2)=b1(1,i-2) + b1tilde(2,i-2)=-b1(2,i-2) + b2tilde(1,i-2)=b2(1,i-2) + b2tilde(2,i-2)=-b2(2,i-2) + EE(1,2,i-2)=eeold(1,2,iti) + EE(2,1,i-2)=eeold(2,1,iti) + EE(2,2,i-2)=eeold(2,2,iti) + EE(1,1,i-2)=eeold(1,1,iti) + enddo +#endif #ifdef PARMAT do i=ivec_start+2,ivec_end+2 #else @@ -2311,22 +2881,33 @@ c if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then if (i.gt. nnt+2 .and. i.lt.nct+2) then iti = itortyp(itype(i-2)) else - iti=ntortyp+1 + iti=ntortyp endif c if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then if (i.gt. nnt+1 .and. i.lt.nct+1) then iti1 = itortyp(itype(i-1)) else - iti1=ntortyp+1 + iti1=ntortyp endif cd write (iout,*) '*******i',i,' iti1',iti cd write (iout,*) 'b1',b1(:,iti) cd write (iout,*) 'b2',b2(:,iti) -cd write (iout,*) 'Ug',Ug(:,:,i-2) +cd write (iout,*) "phi(",i,")=",phi(i)," sin1",sin1," cos1",cos1 +cd write (iout,*) 'Ug',Ug(:,:,i-2) c if (i .gt. iatel_s+2) then if (i .gt. nnt+2) then - call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2)) - call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2)) + call matvec2(Ug(1,1,i-2),b2(1,i-2),Ub2(1,i-2)) +#ifdef NEWCORR + call matvec2(Ug(1,1,i-2),gtb2(1,i-2),gUb2(1,i-2)) +c write (iout,*) Ug(1,1,i-2),gtb2(1,i-2),gUb2(1,i-2),"chuj" +#endif +c write(iout,*) "co jest kurwa", iti, EE(1,1,iti),EE(2,1,iti), +c & EE(1,2,iti),EE(2,2,iti) + call matmat2(EE(1,1,i-2),Ug(1,1,i-2),EUg(1,1,i-2)) + call matmat2(gtEE(1,1,i-2),Ug(1,1,i-2),gtEUg(1,1,i-2)) +c write(iout,*) "Macierz EUG", +c & eug(1,1,i-2),eug(1,2,i-2),eug(2,1,i-2), +c & eug(2,2,i-2) if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) & then call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2)) @@ -2348,21 +2929,30 @@ c if (i .gt. iatel_s+2) then enddo enddo endif - call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2)) - call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2)) + call matvec2(Ugder(1,1,i-2),b2(1,i-2),Ub2der(1,i-2)) + call matmat2(EE(1,1,i-2),Ugder(1,1,i-2),EUgder(1,1,i-2)) do k=1,2 muder(k,i-2)=Ub2der(k,i-2) enddo c if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then if (i.gt. nnt+1 .and. i.lt.nct+1) then - iti1 = itortyp(itype(i-1)) + if (itype(i-1).le.ntyp) then + iti1 = itortyp(itype(i-1)) + else + iti1=ntortyp + endif else - iti1=ntortyp+1 + iti1=ntortyp endif do k=1,2 - mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1) + mu(k,i-2)=Ub2(k,i-2)+b1(k,i-1) enddo -cd write (iout,*) 'mu ',mu(:,i-2) +C write (iout,*) 'mumu',i,b1(1,i-1),Ub2(1,i-2) +cd write (iout,*) 'mu ',mu(:,i-2),i-2 +cd write (iout,*) 'b1 ',b1(:,i-1),i-2 +cd write (iout,*) 'Ub2 ',Ub2(:,i-2),i-2 +cd write (iout,*) 'Ug ',Ug(:,:,i-2),i-2 +cd write (iout,*) 'b2 ',b2(:,i-2),i-2 cd write (iout,*) 'mu1',mu1(:,i-2) cd write (iout,*) 'mu2',mu2(:,i-2) if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0) @@ -2373,7 +2963,7 @@ cd write (iout,*) 'mu2',mu2(:,i-2) call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2)) call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2)) C Vectors and matrices dependent on a single virtual-bond dihedral. - call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1)) + call matvec2(DD(1,1,iti),b1tilde(1,i-1),auxvec(1)) call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2)) @@ -2686,10 +3276,11 @@ C include 'COMMON.VECTORS' include 'COMMON.FFIELD' include 'COMMON.TIME1' + include 'COMMON.SPLITELE' dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3), & erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3) double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4), - & aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4) + & aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4),gmuij(4) common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33, & dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi, & num_conti,j1,j2 @@ -2768,9 +3359,23 @@ c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms C C Loop over i,i+2 and i,i+3 pairs of the peptide groups C +C 14/01/2014 TURN3,TUNR4 does no go under periodic boundry condition do i=iturn3_start,iturn3_end - if (itype(i).eq.21 .or. itype(i+1).eq.21 - & .or. itype(i+2).eq.21 .or. itype(i+3).eq.21) cycle +CAna if (i.le.1) cycle +C write(iout,*) "tu jest i",i + if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1 +C changes suggested by Ana to avoid out of bounds +CAna & .or.((i+4).gt.nres) +CAna & .or.((i-1).le.0) +C end of changes by Ana + & .or. itype(i+2).eq.ntyp1 + & .or. itype(i+3).eq.ntyp1) cycle +CAna if(i.gt.1)then +CAna if(itype(i-1).eq.ntyp1)cycle +CAna end if +CAna if(i.LT.nres-3)then +CAna if (itype(i+4).eq.ntyp1) cycle +CAna end if dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -2780,15 +3385,30 @@ C xmedi=c(1,i)+0.5d0*dxi ymedi=c(2,i)+0.5d0*dyi zmedi=c(3,i)+0.5d0*dzi + xmedi=mod(xmedi,boxxsize) + if (xmedi.lt.0) xmedi=xmedi+boxxsize + ymedi=mod(ymedi,boxysize) + if (ymedi.lt.0) ymedi=ymedi+boxysize + zmedi=mod(zmedi,boxzsize) + if (zmedi.lt.0) zmedi=zmedi+boxzsize num_conti=0 call eelecij(i,i+2,ees,evdw1,eel_loc) if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3) num_cont_hb(i)=num_conti enddo do i=iturn4_start,iturn4_end - if (itype(i).eq.21 .or. itype(i+1).eq.21 - & .or. itype(i+3).eq.21 - & .or. itype(i+4).eq.21) cycle +cAna if (i.le.1) cycle + if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1 +C changes suggested by Ana to avoid out of bounds +cAna & .or.((i+5).gt.nres) +cAna & .or.((i-1).le.0) +C end of changes suggested by Ana + & .or. itype(i+3).eq.ntyp1 + & .or. itype(i+4).eq.ntyp1 +cAna & .or. itype(i+5).eq.ntyp1 +cAna & .or. itype(i).eq.ntyp1 +cAna & .or. itype(i-1).eq.ntyp1 + & ) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -2798,17 +3418,62 @@ C xmedi=c(1,i)+0.5d0*dxi ymedi=c(2,i)+0.5d0*dyi zmedi=c(3,i)+0.5d0*dzi +C Return atom into box, boxxsize is size of box in x dimension +c 194 continue +c if (xmedi.gt.((0.5d0)*boxxsize)) xmedi=xmedi-boxxsize +c if (xmedi.lt.((-0.5d0)*boxxsize)) xmedi=xmedi+boxxsize +C Condition for being inside the proper box +c if ((xmedi.gt.((0.5d0)*boxxsize)).or. +c & (xmedi.lt.((-0.5d0)*boxxsize))) then +c go to 194 +c endif +c 195 continue +c if (ymedi.gt.((0.5d0)*boxysize)) ymedi=ymedi-boxysize +c if (ymedi.lt.((-0.5d0)*boxysize)) ymedi=ymedi+boxysize +C Condition for being inside the proper box +c if ((ymedi.gt.((0.5d0)*boxysize)).or. +c & (ymedi.lt.((-0.5d0)*boxysize))) then +c go to 195 +c endif +c 196 continue +c if (zmedi.gt.((0.5d0)*boxzsize)) zmedi=zmedi-boxzsize +c if (zmedi.lt.((-0.5d0)*boxzsize)) zmedi=zmedi+boxzsize +C Condition for being inside the proper box +c if ((zmedi.gt.((0.5d0)*boxzsize)).or. +c & (zmedi.lt.((-0.5d0)*boxzsize))) then +c go to 196 +c endif + xmedi=mod(xmedi,boxxsize) + if (xmedi.lt.0) xmedi=xmedi+boxxsize + ymedi=mod(ymedi,boxysize) + if (ymedi.lt.0) ymedi=ymedi+boxysize + zmedi=mod(zmedi,boxzsize) + if (zmedi.lt.0) zmedi=zmedi+boxzsize + num_conti=num_cont_hb(i) +c write(iout,*) "JESTEM W PETLI" call eelecij(i,i+3,ees,evdw1,eel_loc) - if (wturn4.gt.0.0d0 .and. itype(i+2).ne.21) + if (wturn4.gt.0.0d0 .and. itype(i+2).ne.ntyp1) & call eturn4(i,eello_turn4) num_cont_hb(i)=num_conti enddo ! i +C Loop over all neighbouring boxes +C do xshift=-1,1 +C do yshift=-1,1 +C do zshift=-1,1 c c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3 c do i=iatel_s,iatel_e - if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle +cAna if (i.le.1) cycle + if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1 +C changes suggested by Ana to avoid out of bounds +cAna & .or.((i+2).gt.nres) +cAna & .or.((i-1).le.0) +C end of changes by Ana +cAna & .or. itype(i+2).eq.ntyp1 +cAna & .or. itype(i-1).eq.ntyp1 + & ) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -2818,15 +3483,63 @@ c xmedi=c(1,i)+0.5d0*dxi ymedi=c(2,i)+0.5d0*dyi zmedi=c(3,i)+0.5d0*dzi + xmedi=mod(xmedi,boxxsize) + if (xmedi.lt.0) xmedi=xmedi+boxxsize + ymedi=mod(ymedi,boxysize) + if (ymedi.lt.0) ymedi=ymedi+boxysize + zmedi=mod(zmedi,boxzsize) + if (zmedi.lt.0) zmedi=zmedi+boxzsize +C xmedi=xmedi+xshift*boxxsize +C ymedi=ymedi+yshift*boxysize +C zmedi=zmedi+zshift*boxzsize + +C Return tom into box, boxxsize is size of box in x dimension +c 164 continue +c if (xmedi.gt.((xshift+0.5d0)*boxxsize)) xmedi=xmedi-boxxsize +c if (xmedi.lt.((xshift-0.5d0)*boxxsize)) xmedi=xmedi+boxxsize +C Condition for being inside the proper box +c if ((xmedi.gt.((xshift+0.5d0)*boxxsize)).or. +c & (xmedi.lt.((xshift-0.5d0)*boxxsize))) then +c go to 164 +c endif +c 165 continue +c if (ymedi.gt.((yshift+0.5d0)*boxysize)) ymedi=ymedi-boxysize +c if (ymedi.lt.((yshift-0.5d0)*boxysize)) ymedi=ymedi+boxysize +C Condition for being inside the proper box +c if ((ymedi.gt.((yshift+0.5d0)*boxysize)).or. +c & (ymedi.lt.((yshift-0.5d0)*boxysize))) then +c go to 165 +c endif +c 166 continue +c if (zmedi.gt.((zshift+0.5d0)*boxzsize)) zmedi=zmedi-boxzsize +c if (zmedi.lt.((zshift-0.5d0)*boxzsize)) zmedi=zmedi+boxzsize +cC Condition for being inside the proper box +c if ((zmedi.gt.((zshift+0.5d0)*boxzsize)).or. +c & (zmedi.lt.((zshift-0.5d0)*boxzsize))) then +c go to 166 +c endif + c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) num_conti=num_cont_hb(i) do j=ielstart(i),ielend(i) -c write (iout,*) i,j,itype(i),itype(j) - if (itype(j).eq.21 .or. itype(j+1).eq.21) cycle +C write (iout,*) i,j +cAna if (j.le.1) cycle + if (itype(j).eq.ntyp1.or. itype(j+1).eq.ntyp1 +C changes suggested by Ana to avoid out of bounds +cAna & .or.((j+2).gt.nres) +cAna & .or.((j-1).le.0) +C end of changes by Ana +cAna & .or.itype(j+2).eq.ntyp1 +cAna & .or.itype(j-1).eq.ntyp1 + &) cycle call eelecij(i,j,ees,evdw1,eel_loc) enddo ! j num_cont_hb(i)=num_conti enddo ! i +C enddo ! zshift +C enddo ! yshift +C enddo ! xshift + c write (iout,*) "Number of loop steps in EELEC:",ind cd do i=1,nres cd write (iout,'(i3,3f10.5,5x,3f10.5)') @@ -2857,10 +3570,12 @@ C------------------------------------------------------------------------------- include 'COMMON.VECTORS' include 'COMMON.FFIELD' include 'COMMON.TIME1' + include 'COMMON.SPLITELE' dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3), & erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3) double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4), - & aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4) + & aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4),gmuij1(4),gmuji1(4), + & gmuij2(4),gmuji2(4) common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33, & dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi, & num_conti,j1,j2 @@ -2891,10 +3606,84 @@ c ind=ind+1 dx_normj=dc_norm(1,j) dy_normj=dc_norm(2,j) dz_normj=dc_norm(3,j) - xj=c(1,j)+0.5D0*dxj-xmedi - yj=c(2,j)+0.5D0*dyj-ymedi - zj=c(3,j)+0.5D0*dzj-zmedi +C xj=c(1,j)+0.5D0*dxj-xmedi +C yj=c(2,j)+0.5D0*dyj-ymedi +C zj=c(3,j)+0.5D0*dzj-zmedi + xj=c(1,j)+0.5D0*dxj + yj=c(2,j)+0.5D0*dyj + zj=c(3,j)+0.5D0*dzj + xj=mod(xj,boxxsize) + if (xj.lt.0) xj=xj+boxxsize + yj=mod(yj,boxysize) + if (yj.lt.0) yj=yj+boxysize + zj=mod(zj,boxzsize) + if (zj.lt.0) zj=zj+boxzsize + if ((zj.lt.0).or.(xj.lt.0).or.(yj.lt.0)) write (*,*) "CHUJ" + dist_init=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2 + xj_safe=xj + yj_safe=yj + zj_safe=zj + isubchap=0 + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 + xj=xj_safe+xshift*boxxsize + yj=yj_safe+yshift*boxysize + zj=zj_safe+zshift*boxzsize + dist_temp=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2 + if(dist_temp.lt.dist_init) then + dist_init=dist_temp + xj_temp=xj + yj_temp=yj + zj_temp=zj + isubchap=1 + endif + enddo + enddo + enddo + if (isubchap.eq.1) then + xj=xj_temp-xmedi + yj=yj_temp-ymedi + zj=zj_temp-zmedi + else + xj=xj_safe-xmedi + yj=yj_safe-ymedi + zj=zj_safe-zmedi + endif +C if ((i+3).lt.j) then !this condition keeps for turn3 and turn4 not subject to PBC +c 174 continue +c if (xj.gt.((0.5d0)*boxxsize)) xj=xj-boxxsize +c if (xj.lt.((-0.5d0)*boxxsize)) xj=xj+boxxsize +C Condition for being inside the proper box +c if ((xj.gt.((0.5d0)*boxxsize)).or. +c & (xj.lt.((-0.5d0)*boxxsize))) then +c go to 174 +c endif +c 175 continue +c if (yj.gt.((0.5d0)*boxysize)) yj=yj-boxysize +c if (yj.lt.((-0.5d0)*boxysize)) yj=yj+boxysize +C Condition for being inside the proper box +c if ((yj.gt.((0.5d0)*boxysize)).or. +c & (yj.lt.((-0.5d0)*boxysize))) then +c go to 175 +c endif +c 176 continue +c if (zj.gt.((0.5d0)*boxzsize)) zj=zj-boxzsize +c if (zj.lt.((-0.5d0)*boxzsize)) zj=zj+boxzsize +C Condition for being inside the proper box +c if ((zj.gt.((0.5d0)*boxzsize)).or. +c & (zj.lt.((-0.5d0)*boxzsize))) then +c go to 176 +c endif +C endif !endPBC condintion +C xj=xj-xmedi +C yj=yj-ymedi +C zj=zj-zmedi rij=xj*xj+yj*yj+zj*zj + + sss=sscale(sqrt(rij)) + sssgrad=sscagrad(sqrt(rij)) +c if (sss.gt.0.0d0) then rrmij=1.0D0/rij rij=dsqrt(rij) rmij=1.0D0/rij @@ -2910,21 +3699,24 @@ c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions ev2=bbb*r6ij fac3=ael6i*r6ij fac4=ael3i*r3ij - evdwij=ev1+ev2 + evdwij=(ev1+ev2) el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)) el2=fac4*fac - eesij=el1+el2 +C MARYSIA + eesij=(el1+el2) C 12/26/95 - for the evaluation of multi-body H-bonding interactions ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg) ees=ees+eesij - evdw1=evdw1+evdwij + evdw1=evdw1+evdwij*sss cd write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)') cd & iteli,i,itelj,j,aaa,bbb,ael6i,ael3i, cd & 1.0D0/dsqrt(rrmij),evdwij,eesij, cd & xmedi,ymedi,zmedi,xj,yj,zj if (energy_dec) then - write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij + write (iout,'(a6,2i5,0pf7.3,2i5,2e11.3)') + &'evdw1',i,j,evdwij +c &,iteli,itelj,aaa,evdw1 write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij endif @@ -2932,7 +3724,7 @@ C C Calculate contributions to the Cartesian gradient. C #ifdef SPLITELE - facvdw=-6*rrmij*(ev1+evdwij) + facvdw=-6*rrmij*(ev1+evdwij)*sss facel=-3*rrmij*(el1+eesij) fac1=fac erij(1)=xj*rmij @@ -2962,9 +3754,15 @@ cgrad do l=1,3 cgrad gelc(l,k)=gelc(l,k)+ggg(l) cgrad enddo cgrad enddo - ggg(1)=facvdw*xj - ggg(2)=facvdw*yj - ggg(3)=facvdw*zj + if (sss.gt.0.0) then + ggg(1)=facvdw*xj+sssgrad*rmij*evdwij*xj + ggg(2)=facvdw*yj+sssgrad*rmij*evdwij*yj + ggg(3)=facvdw*zj+sssgrad*rmij*evdwij*zj + else + ggg(1)=0.0 + ggg(2)=0.0 + ggg(3)=0.0 + endif c do k=1,3 c ghalf=0.5D0*ggg(k) c gvdwpp(k,i)=gvdwpp(k,i)+ghalf @@ -2984,8 +3782,9 @@ cgrad gvdwpp(l,k)=gvdwpp(l,k)+ggg(l) cgrad enddo cgrad enddo #else - facvdw=ev1+evdwij - facel=el1+eesij +C MARYSIA + facvdw=(ev1+evdwij)*sss + facel=(el1+eesij) fac1=fac fac=-3*rrmij*(facvdw+facvdw+facel) erij(1)=xj*rmij @@ -3016,9 +3815,9 @@ cgrad gelc(l,k)=gelc(l,k)+ggg(l) cgrad enddo cgrad enddo c 9/28/08 AL Gradient compotents will be summed only at the end - ggg(1)=facvdw*xj - ggg(2)=facvdw*yj - ggg(3)=facvdw*zj + ggg(1)=facvdw*xj+sssgrad*rmij*evdwij*xj + ggg(2)=facvdw*yj+sssgrad*rmij*evdwij*yj + ggg(3)=facvdw*zj+sssgrad*rmij*evdwij*zj do k=1,3 gvdwpp(k,j)=gvdwpp(k,j)+ggg(k) gvdwpp(k,i)=gvdwpp(k,i)-ggg(k) @@ -3057,14 +3856,16 @@ cgrad enddo cgrad enddo do k=1,3 gelc(k,i)=gelc(k,i) - & +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i)) - & + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1) + & +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i)) + & + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1) gelc(k,j)=gelc(k,j) - & +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j)) - & + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1) + & +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j)) + & + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1) gelc_long(k,j)=gelc_long(k,j)+ggg(k) gelc_long(k,i)=gelc_long(k,i)-ggg(k) enddo +C MARYSIA +c endif !sscale IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 & .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 & .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN @@ -3075,6 +3876,7 @@ C Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al. C Macromolecules, 1974, 7, 797-806 for definition). This correlation terms C are computed for EVERY pair of non-contiguous peptide groups. C + if (j.lt.nres-1) then j1=j+1 j2=j-1 @@ -3083,10 +3885,20 @@ C j2=j-2 endif kkk=0 + lll=0 do k=1,2 do l=1,2 kkk=kkk+1 muij(kkk)=mu(k,i)*mu(l,j) +c write(iout,*) 'mumu=', mu(k,i),mu(l,j),i,j,k,l +#ifdef NEWCORR + gmuij1(kkk)=gtb1(k,i+1)*mu(l,j) +c write(iout,*) 'k=',k,i,gtb1(k,i+1),gtb1(k,i+1)*mu(l,j) + gmuij2(kkk)=gUb2(k,i)*mu(l,j) + gmuji1(kkk)=mu(k,i)*gtb1(l,j+1) +c write(iout,*) 'l=',l,j,gtb1(l,j+1),gtb1(l,j+1)*mu(k,i) + gmuji2(kkk)=mu(k,i)*gUb2(l,j) +#endif enddo enddo cd write (iout,*) 'EELEC: i',i,' j',j @@ -3252,10 +4064,59 @@ cgrad endif C Contribution to the local-electrostatic energy coming from the i-j pair eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3) & +a33*muij(4) +c write (iout,*) 'i',i,' j',j,itype(i),itype(j), +c & ' eel_loc_ij',eel_loc_ij +C write(iout,*) 'muije=',i,j,muij(1),muij(2),muij(3),muij(4) +C Calculate patrial derivative for theta angle +#ifdef NEWCORR + geel_loc_ij=a22*gmuij1(1) + & +a23*gmuij1(2) + & +a32*gmuij1(3) + & +a33*gmuij1(4) +c write(iout,*) "derivative over thatai" +c write(iout,*) a22*gmuij1(1), a23*gmuij1(2) ,a32*gmuij1(3), +c & a33*gmuij1(4) + gloc(nphi+i,icg)=gloc(nphi+i,icg)+ + & geel_loc_ij*wel_loc +c write(iout,*) "derivative over thatai-1" +c write(iout,*) a22*gmuij2(1), a23*gmuij2(2) ,a32*gmuij2(3), +c & a33*gmuij2(4) + geel_loc_ij= + & a22*gmuij2(1) + & +a23*gmuij2(2) + & +a32*gmuij2(3) + & +a33*gmuij2(4) + gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+ + & geel_loc_ij*wel_loc +c Derivative over j residue + geel_loc_ji=a22*gmuji1(1) + & +a23*gmuji1(2) + & +a32*gmuji1(3) + & +a33*gmuji1(4) +c write(iout,*) "derivative over thataj" +c write(iout,*) a22*gmuji1(1), a23*gmuji1(2) ,a32*gmuji1(3), +c & a33*gmuji1(4) + + gloc(nphi+j,icg)=gloc(nphi+j,icg)+ + & geel_loc_ji*wel_loc + geel_loc_ji= + & +a22*gmuji2(1) + & +a23*gmuji2(2) + & +a32*gmuji2(3) + & +a33*gmuji2(4) +c write(iout,*) "derivative over thataj-1" +c write(iout,*) a22*gmuji2(1), a23*gmuji2(2) ,a32*gmuji2(3), +c & a33*gmuji2(4) + gloc(nphi+j-1,icg)=gloc(nphi+j-1,icg)+ + & geel_loc_ji*wel_loc +#endif cd write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') & 'eelloc',i,j,eel_loc_ij +c if (eel_loc_ij.ne.0) +c & write (iout,'(a4,2i4,8f9.5)')'chuj', +c & i,j,a22,muij(1),a23,muij(2),a32,muij(3),a33,muij(4) eel_loc=eel_loc+eel_loc_ij C Partial derivatives in virtual-bond dihedral angles gamma @@ -3283,14 +4144,14 @@ cgrad enddo cgrad enddo C Remaining derivatives of eello do l=1,3 - gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+ - & aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4) - gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+ - & aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4) - gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+ - & aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4) - gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+ - & aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4) + gel_loc(l,i)=gel_loc(l,i)+(aggi(l,1)*muij(1)+ + & aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)) + gel_loc(l,i+1)=gel_loc(l,i+1)+(aggi1(l,1)*muij(1)+ + & aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)) + gel_loc(l,j)=gel_loc(l,j)+(aggj(l,1)*muij(1)+ + & aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)) + gel_loc(l,j1)=gel_loc(l,j1)+(aggj1(l,1)*muij(1)+ + & aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)) enddo ENDIF C Change 12/26/95 to calculate four-body contributions to H-bonding energy @@ -3503,7 +4364,9 @@ C Third- and fourth-order contributions from turns dimension ggg(3) double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2), & e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2), - & e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2) + & e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2),gpizda1(2,2), + & gpizda2(2,2),auxgmat1(2,2),auxgmatt1(2,2), + & auxgmat2(2,2),auxgmatt2(2,2) double precision agg(3,4),aggi(3,4),aggi1(3,4), & aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2) common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33, @@ -3527,9 +4390,24 @@ C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC cd call checkint_turn3(i,a_temp,eello_turn3_num) call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1)) +c auxalary matices for theta gradient +c auxalary matrix for i+1 and constant i+2 + call matmat2(gtEUg(1,1,i+1),EUg(1,1,i+2),auxgmat1(1,1)) +c auxalary matrix for i+2 and constant i+1 + call matmat2(EUg(1,1,i+1),gtEUg(1,1,i+2),auxgmat2(1,1)) call transpose2(auxmat(1,1),auxmat1(1,1)) + call transpose2(auxgmat1(1,1),auxgmatt1(1,1)) + call transpose2(auxgmat2(1,1),auxgmatt2(1,1)) call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1)) + call matmat2(a_temp(1,1),auxgmatt1(1,1),gpizda1(1,1)) + call matmat2(a_temp(1,1),auxgmatt2(1,1),gpizda2(1,1)) eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2)) +C Derivatives in theta + gloc(nphi+i,icg)=gloc(nphi+i,icg) + & +0.5d0*(gpizda1(1,1)+gpizda1(2,2))*wturn3 + gloc(nphi+i+1,icg)=gloc(nphi+i+1,icg) + & +0.5d0*(gpizda2(1,1)+gpizda2(2,2))*wturn3 + if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') & 'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2)) cd write (2,*) 'i,',i,' j',j,'eello_turn3', @@ -3547,6 +4425,7 @@ C Derivatives in gamma(i+1) gel_loc_turn3(i+1)=gel_loc_turn3(i+1) & +0.5d0*(pizda(1,1)+pizda(2,2)) C Cartesian derivatives +!DIR$ UNROLL(0) do l=1,3 c ghalf1=0.5d0*agg(l,1) c ghalf2=0.5d0*agg(l,2) @@ -3603,7 +4482,11 @@ C Third- and fourth-order contributions from turns dimension ggg(3) double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2), & e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2), - & e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2) + & e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2),auxgvec(2), + & auxgEvec1(2),auxgEvec2(2),auxgEvec3(2), + & gte1t(2,2),gte2t(2,2),gte3t(2,2), + & gte1a(2,2),gtae3(2,2),gtae3e2(2,2), ae3gte2(2,2), + & gtEpizda1(2,2),gtEpizda2(2,2),gtEpizda3(2,2) double precision agg(3,4),aggi(3,4),aggi1(3,4), & aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2) common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33, @@ -3623,6 +4506,7 @@ C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC cd call checkint_turn4(i,a_temp,eello_turn4_num) c write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2 +c write(iout,*)"WCHODZE W PROGRAM" a_temp(1,1)=a22 a_temp(1,2)=a23 a_temp(2,1)=a32 @@ -3634,32 +4518,100 @@ c write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3 call transpose2(EUg(1,1,i+1),e1t(1,1)) call transpose2(Eug(1,1,i+2),e2t(1,1)) call transpose2(Eug(1,1,i+3),e3t(1,1)) +C Ematrix derivative in theta + call transpose2(gtEUg(1,1,i+1),gte1t(1,1)) + call transpose2(gtEug(1,1,i+2),gte2t(1,1)) + call transpose2(gtEug(1,1,i+3),gte3t(1,1)) call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1)) +c eta1 in derivative theta + call matmat2(gte1t(1,1),a_temp(1,1),gte1a(1,1)) call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) +c auxgvec is derivative of Ub2 so i+3 theta + call matvec2(e1a(1,1),gUb2(1,i+3),auxgvec(1)) +c auxalary matrix of E i+1 + call matvec2(gte1a(1,1),Ub2(1,i+3),auxgEvec1(1)) +c s1=0.0 +c gs1=0.0 + s1=scalar2(b1(1,i+2),auxvec(1)) +c derivative of theta i+2 with constant i+3 + gs23=scalar2(gtb1(1,i+2),auxvec(1)) +c derivative of theta i+2 with constant i+2 + gs32=scalar2(b1(1,i+2),auxgvec(1)) +c derivative of E matix in theta of i+1 + gsE13=scalar2(b1(1,i+2),auxgEvec1(1)) + call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1)) +c ea31 in derivative theta + call matmat2(a_temp(1,1),gte3t(1,1),gtae3(1,1)) call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) +c auxilary matrix auxgvec of Ub2 with constant E matirx + call matvec2(ae3(1,1),gUb2(1,i+2),auxgvec(1)) +c auxilary matrix auxgEvec1 of E matix with Ub2 constant + call matvec2(gtae3(1,1),Ub2(1,i+2),auxgEvec3(1)) + +c s2=0.0 +c gs2=0.0 + s2=scalar2(b1(1,i+1),auxvec(1)) +c derivative of theta i+1 with constant i+3 + gs13=scalar2(gtb1(1,i+1),auxvec(1)) +c derivative of theta i+2 with constant i+1 + gs21=scalar2(b1(1,i+1),auxgvec(1)) +c derivative of theta i+3 with constant i+1 + gsE31=scalar2(b1(1,i+1),auxgEvec3(1)) +c write(iout,*) gs1,gs2,'i=',i,auxgvec(1),gUb2(1,i+2),gtb1(1,i+2), +c & gtb1(1,i+1) call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1)) +c two derivatives over diffetent matrices +c gtae3e2 is derivative over i+3 + call matmat2(gtae3(1,1),e2t(1,1),gtae3e2(1,1)) +c ae3gte2 is derivative over i+2 + call matmat2(ae3(1,1),gte2t(1,1),ae3gte2(1,1)) call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1)) +c three possible derivative over theta E matices +c i+1 + call matmat2(ae3e2(1,1),gte1t(1,1),gtEpizda1(1,1)) +c i+2 + call matmat2(ae3gte2(1,1),e1t(1,1),gtEpizda2(1,1)) +c i+3 + call matmat2(gtae3e2(1,1),e1t(1,1),gtEpizda3(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) + + gsEE1=0.5d0*(gtEpizda1(1,1)+gtEpizda1(2,2)) + gsEE2=0.5d0*(gtEpizda2(1,1)+gtEpizda2(2,2)) + gsEE3=0.5d0*(gtEpizda3(1,1)+gtEpizda3(2,2)) + eello_turn4=eello_turn4-(s1+s2+s3) - if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') - & 'eturn4',i,j,-(s1+s2+s3) +c write(iout,*)'chujOWO', auxvec(1),b1(1,iti2) +c if (energy_dec) write (iout,'(a6,2i5,0pf7.3,3f7.3)') +c & 'eturn4',i,j,-(s1+s2+s3),s1,s2,s3 cd write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3), cd & ' eello_turn4_num',8*eello_turn4_num +#ifdef NEWCORR + gloc(nphi+i,icg)=gloc(nphi+i,icg) + & -(gs13+gsE13+gsEE1)*wturn4 + gloc(nphi+i+1,icg)= gloc(nphi+i+1,icg) + & -(gs23+gs21+gsEE2)*wturn4 + gloc(nphi+i+2,icg)= gloc(nphi+i+2,icg) + & -(gs32+gsE31+gsEE3)*wturn4 +c gloc(nphi+i+1,icg)=gloc(nphi+i+1,icg)- +c & gs2 +#endif + if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') + & 'eturn4',i,j,-(s1+s2+s3) +c write (iout,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3), +c & ' eello_turn4_num',8*eello_turn4_num C Derivatives in gamma(i) call transpose2(EUgder(1,1,i+1),e1tder(1,1)) call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1)) call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+2),auxvec(1)) call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3) C Derivatives in gamma(i+1) call transpose2(EUgder(1,1,i+2),e2tder(1,1)) call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1)) call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) @@ -3667,10 +4619,10 @@ C Derivatives in gamma(i+1) C Derivatives in gamma(i+2) call transpose2(EUgder(1,1,i+3),e3tder(1,1)) call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+2),auxvec(1)) call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1)) call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1)) call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) @@ -3685,10 +4637,10 @@ C Derivatives of this turn contributions in DC(i+2) a_temp(2,2)=agg(l,4) call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1)) call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+2),auxvec(1)) call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1)) call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1)) call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) @@ -3704,10 +4656,10 @@ C Remaining derivatives of this turn contribution a_temp(2,2)=aggi(l,4) call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1)) call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+2),auxvec(1)) call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1)) call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1)) call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) @@ -3718,10 +4670,10 @@ C Remaining derivatives of this turn contribution a_temp(2,2)=aggi1(l,4) call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1)) call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+2),auxvec(1)) call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1)) call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1)) call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) @@ -3732,10 +4684,10 @@ C Remaining derivatives of this turn contribution a_temp(2,2)=aggj(l,4) call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1)) call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+2),auxvec(1)) call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1)) call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1)) call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) @@ -3746,10 +4698,10 @@ C Remaining derivatives of this turn contribution a_temp(2,2)=aggj1(l,4) call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1)) call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+2),auxvec(1)) call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1)) call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1)) call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) @@ -3815,27 +4767,128 @@ C r0_scp=4.5d0 cd print '(a)','Enter ESCP' cd write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e +C do xshift=-1,1 +C do yshift=-1,1 +C do zshift=-1,1 do i=iatscp_s,iatscp_e - if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle + if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle iteli=itel(i) xi=0.5D0*(c(1,i)+c(1,i+1)) yi=0.5D0*(c(2,i)+c(2,i+1)) zi=0.5D0*(c(3,i)+c(3,i+1)) - +C Return atom into box, boxxsize is size of box in x dimension +c 134 continue +c if (xi.gt.((xshift+0.5d0)*boxxsize)) xi=xi-boxxsize +c if (xi.lt.((xshift-0.5d0)*boxxsize)) xi=xi+boxxsize +C Condition for being inside the proper box +c if ((xi.gt.((xshift+0.5d0)*boxxsize)).or. +c & (xi.lt.((xshift-0.5d0)*boxxsize))) then +c go to 134 +c endif +c 135 continue +c if (yi.gt.((yshift+0.5d0)*boxysize)) yi=yi-boxysize +c if (yi.lt.((yshift-0.5d0)*boxysize)) yi=yi+boxysize +C Condition for being inside the proper box +c if ((yi.gt.((yshift+0.5d0)*boxysize)).or. +c & (yi.lt.((yshift-0.5d0)*boxysize))) then +c go to 135 +c c endif +c 136 continue +c if (zi.gt.((zshift+0.5d0)*boxzsize)) zi=zi-boxzsize +c if (zi.lt.((zshift-0.5d0)*boxzsize)) zi=zi+boxzsize +cC Condition for being inside the proper box +c if ((zi.gt.((zshift+0.5d0)*boxzsize)).or. +c & (zi.lt.((zshift-0.5d0)*boxzsize))) then +c go to 136 +c endif + xi=mod(xi,boxxsize) + if (xi.lt.0) xi=xi+boxxsize + yi=mod(yi,boxysize) + if (yi.lt.0) yi=yi+boxysize + zi=mod(zi,boxzsize) + if (zi.lt.0) zi=zi+boxzsize +C xi=xi+xshift*boxxsize +C yi=yi+yshift*boxysize +C zi=zi+zshift*boxzsize do iint=1,nscp_gr(i) do j=iscpstart(i,iint),iscpend(i,iint) - if (itype(j).eq.21) cycle - itypj=itype(j) + if (itype(j).eq.ntyp1) cycle + itypj=iabs(itype(j)) C Uncomment following three lines for SC-p interactions c xj=c(1,nres+j)-xi c yj=c(2,nres+j)-yi c zj=c(3,nres+j)-zi C Uncomment following three lines for Ca-p interactions - xj=c(1,j)-xi - yj=c(2,j)-yi - zj=c(3,j)-zi + xj=c(1,j) + yj=c(2,j) + zj=c(3,j) +c 174 continue +c if (xj.gt.((0.5d0)*boxxsize)) xj=xj-boxxsize +c if (xj.lt.((-0.5d0)*boxxsize)) xj=xj+boxxsize +C Condition for being inside the proper box +c if ((xj.gt.((0.5d0)*boxxsize)).or. +c & (xj.lt.((-0.5d0)*boxxsize))) then +c go to 174 +c endif +c 175 continue +c if (yj.gt.((0.5d0)*boxysize)) yj=yj-boxysize +c if (yj.lt.((-0.5d0)*boxysize)) yj=yj+boxysize +cC Condition for being inside the proper box +c if ((yj.gt.((0.5d0)*boxysize)).or. +c & (yj.lt.((-0.5d0)*boxysize))) then +c go to 175 +c endif +c 176 continue +c if (zj.gt.((0.5d0)*boxzsize)) zj=zj-boxzsize +c if (zj.lt.((-0.5d0)*boxzsize)) zj=zj+boxzsize +C Condition for being inside the proper box +c if ((zj.gt.((0.5d0)*boxzsize)).or. +c & (zj.lt.((-0.5d0)*boxzsize))) then +c go to 176 + xj=mod(xj,boxxsize) + if (xj.lt.0) xj=xj+boxxsize + yj=mod(yj,boxysize) + if (yj.lt.0) yj=yj+boxysize + zj=mod(zj,boxzsize) + if (zj.lt.0) zj=zj+boxzsize + dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + xj_safe=xj + yj_safe=yj + zj_safe=zj + subchap=0 + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 + xj=xj_safe+xshift*boxxsize + yj=yj_safe+yshift*boxysize + zj=zj_safe+zshift*boxzsize + dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + if(dist_temp.lt.dist_init) then + dist_init=dist_temp + xj_temp=xj + yj_temp=yj + zj_temp=zj + subchap=1 + endif + enddo + enddo + enddo + if (subchap.eq.1) then + xj=xj_temp-xi + yj=yj_temp-yi + zj=zj_temp-zi + else + xj=xj_safe-xi + yj=yj_safe-yi + zj=zj_safe-zi + endif +c c endif +C xj=xj-xi +C yj=yj-yi +C zj=zj-zi rij=xj*xj+yj*yj+zj*zj + r0ij=r0_scp r0ijsq=r0ij*r0ij if (rij.lt.r0ijsq) then @@ -3886,6 +4939,9 @@ cgrad enddo enddo ! iint enddo ! i +C enddo !zshift +C enddo !yshift +C enddo !xshift return end C----------------------------------------------------------------------------- @@ -3906,48 +4962,160 @@ C include 'COMMON.FFIELD' include 'COMMON.IOUNITS' include 'COMMON.CONTROL' + include 'COMMON.SPLITELE' dimension ggg(3) evdw2=0.0D0 evdw2_14=0.0d0 +c print *,boxxsize,boxysize,boxzsize,'wymiary pudla' cd print '(a)','Enter ESCP' cd write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e +C do xshift=-1,1 +C do yshift=-1,1 +C do zshift=-1,1 do i=iatscp_s,iatscp_e - if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle + if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle iteli=itel(i) xi=0.5D0*(c(1,i)+c(1,i+1)) yi=0.5D0*(c(2,i)+c(2,i+1)) zi=0.5D0*(c(3,i)+c(3,i+1)) + xi=mod(xi,boxxsize) + if (xi.lt.0) xi=xi+boxxsize + yi=mod(yi,boxysize) + if (yi.lt.0) yi=yi+boxysize + zi=mod(zi,boxzsize) + if (zi.lt.0) zi=zi+boxzsize +c xi=xi+xshift*boxxsize +c yi=yi+yshift*boxysize +c zi=zi+zshift*boxzsize +c print *,xi,yi,zi,'polozenie i' +C Return atom into box, boxxsize is size of box in x dimension +c 134 continue +c if (xi.gt.((xshift+0.5d0)*boxxsize)) xi=xi-boxxsize +c if (xi.lt.((xshift-0.5d0)*boxxsize)) xi=xi+boxxsize +C Condition for being inside the proper box +c if ((xi.gt.((xshift+0.5d0)*boxxsize)).or. +c & (xi.lt.((xshift-0.5d0)*boxxsize))) then +c go to 134 +c endif +c 135 continue +c print *,xi,boxxsize,"pierwszy" +c if (yi.gt.((yshift+0.5d0)*boxysize)) yi=yi-boxysize +c if (yi.lt.((yshift-0.5d0)*boxysize)) yi=yi+boxysize +C Condition for being inside the proper box +c if ((yi.gt.((yshift+0.5d0)*boxysize)).or. +c & (yi.lt.((yshift-0.5d0)*boxysize))) then +c go to 135 +c endif +c 136 continue +c if (zi.gt.((zshift+0.5d0)*boxzsize)) zi=zi-boxzsize +c if (zi.lt.((zshift-0.5d0)*boxzsize)) zi=zi+boxzsize +C Condition for being inside the proper box +c if ((zi.gt.((zshift+0.5d0)*boxzsize)).or. +c & (zi.lt.((zshift-0.5d0)*boxzsize))) then +c go to 136 +c endif do iint=1,nscp_gr(i) do j=iscpstart(i,iint),iscpend(i,iint) - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle C Uncomment following three lines for SC-p interactions c xj=c(1,nres+j)-xi c yj=c(2,nres+j)-yi c zj=c(3,nres+j)-zi C Uncomment following three lines for Ca-p interactions - xj=c(1,j)-xi - yj=c(2,j)-yi - zj=c(3,j)-zi + xj=c(1,j) + yj=c(2,j) + zj=c(3,j) + xj=mod(xj,boxxsize) + if (xj.lt.0) xj=xj+boxxsize + yj=mod(yj,boxysize) + if (yj.lt.0) yj=yj+boxysize + zj=mod(zj,boxzsize) + if (zj.lt.0) zj=zj+boxzsize +c 174 continue +c if (xj.gt.((0.5d0)*boxxsize)) xj=xj-boxxsize +c if (xj.lt.((-0.5d0)*boxxsize)) xj=xj+boxxsize +C Condition for being inside the proper box +c if ((xj.gt.((0.5d0)*boxxsize)).or. +c & (xj.lt.((-0.5d0)*boxxsize))) then +c go to 174 +c endif +c 175 continue +c if (yj.gt.((0.5d0)*boxysize)) yj=yj-boxysize +c if (yj.lt.((-0.5d0)*boxysize)) yj=yj+boxysize +cC Condition for being inside the proper box +c if ((yj.gt.((0.5d0)*boxysize)).or. +c & (yj.lt.((-0.5d0)*boxysize))) then +c go to 175 +c endif +c 176 continue +c if (zj.gt.((0.5d0)*boxzsize)) zj=zj-boxzsize +c if (zj.lt.((-0.5d0)*boxzsize)) zj=zj+boxzsize +C Condition for being inside the proper box +c if ((zj.gt.((0.5d0)*boxzsize)).or. +c & (zj.lt.((-0.5d0)*boxzsize))) then +c go to 176 +c endif +CHERE IS THE CALCULATION WHICH MIRROR IMAGE IS THE CLOSEST ONE + dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + xj_safe=xj + yj_safe=yj + zj_safe=zj + subchap=0 + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 + xj=xj_safe+xshift*boxxsize + yj=yj_safe+yshift*boxysize + zj=zj_safe+zshift*boxzsize + dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + if(dist_temp.lt.dist_init) then + dist_init=dist_temp + xj_temp=xj + yj_temp=yj + zj_temp=zj + subchap=1 + endif + enddo + enddo + enddo + if (subchap.eq.1) then + xj=xj_temp-xi + yj=yj_temp-yi + zj=zj_temp-zi + else + xj=xj_safe-xi + yj=yj_safe-yi + zj=zj_safe-zi + endif +c print *,xj,yj,zj,'polozenie j' rrij=1.0D0/(xj*xj+yj*yj+zj*zj) +c print *,rrij + sss=sscale(1.0d0/(dsqrt(rrij))) +c print *,r_cut,1.0d0/dsqrt(rrij),sss,'tu patrz' +c if (sss.eq.0) print *,'czasem jest OK' + if (sss.le.0.0d0) cycle + sssgrad=sscagrad(1.0d0/(dsqrt(rrij))) fac=rrij**expon2 e1=fac*fac*aad(itypj,iteli) e2=fac*bad(itypj,iteli) if (iabs(j-i) .le. 2) then e1=scal14*e1 e2=scal14*e2 - evdw2_14=evdw2_14+e1+e2 + evdw2_14=evdw2_14+(e1+e2)*sss endif evdwij=e1+e2 - evdw2=evdw2+evdwij - if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') + evdw2=evdw2+evdwij*sss + if (energy_dec) write (iout,'(a6,2i5,0pf7.3,2i3,3e11.3)') & 'evdw2',i,j,evdwij +c & ,iteli,itypj,fac,aad(itypj,iteli),bad(itypj,iteli) C C Calculate contributions to the gradient in the virtual-bond and SC vectors. C - fac=-(evdwij+e1)*rrij + fac=-(evdwij+e1)*rrij*sss + fac=fac+(evdwij)*sssgrad*dsqrt(rrij)/expon ggg(1)=xj*fac ggg(2)=yj*fac ggg(3)=zj*fac @@ -3982,10 +5150,14 @@ cgrad enddo gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k) gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k) enddo - enddo +c endif !endif for sscale cutoff + enddo ! j enddo ! iint enddo ! i +c enddo !zshift +c enddo !yshift +c enddo !xshift do i=1,nct do j=1,3 gvdwc_scp(j,i)=expon*gvdwc_scp(j,i) @@ -4039,6 +5211,8 @@ c write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj, c & dhpb(i),dhpb1(i),forcon(i) C 24/11/03 AL: SS bridges handled separately because of introducing a specific C distance and angle dependent SS bond potential. +C if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and. +C & iabs(itype(jjj)).eq.1) then cmc if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds if (.not.dyn_ss .and. i.le.nss) then @@ -4109,7 +5283,7 @@ C include 'COMMON.VAR' include 'COMMON.IOUNITS' double precision erij(3),dcosom1(3),dcosom2(3),gg(3) - itypi=itype(i) + itypi=iabs(itype(i)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -4118,7 +5292,7 @@ C dzi=dc_norm(3,nres+i) c dsci_inv=dsc_inv(itypi) dsci_inv=vbld_inv(nres+i) - itypj=itype(j) + itypj=iabs(itype(j)) c dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(nres+j) xj=c(1,nres+j)-xi @@ -4200,36 +5374,43 @@ c estr=0.0d0 estr1=0.0d0 do i=ibondp_start,ibondp_end - if (itype(i-1).eq.21 .or. itype(i).eq.21) then - estr1=estr1+gnmr1(vbld(i),-1.0d0,distchainmax) - do j=1,3 - gradb(j,i-1)=gnmr1prim(vbld(i),-1.0d0,distchainmax) - & *dc(j,i-1)/vbld(i) - enddo - if (energy_dec) write(iout,*) - & "estr1",i,gnmr1(vbld(i),-1.0d0,distchainmax) - else + if (itype(i-1).eq.ntyp1 .and. itype(i).eq.ntyp1) cycle +c estr1=estr1+gnmr1(vbld(i),-1.0d0,distchainmax) +c do j=1,3 +c gradb(j,i-1)=gnmr1prim(vbld(i),-1.0d0,distchainmax) +c & *dc(j,i-1)/vbld(i) +c enddo +c if (energy_dec) write(iout,*) +c & "estr1",i,gnmr1(vbld(i),-1.0d0,distchainmax) +c else +C Checking if it involves dummy (NH3+ or COO-) group + if (itype(i-1).eq.ntyp1 .or. itype(i).eq.ntyp1) then +C YES vbldpDUM is the equlibrium length of spring for Dummy atom + diff = vbld(i)-vbldpDUM + else +C NO vbldp0 is the equlibrium lenght of spring for peptide group diff = vbld(i)-vbldp0 - if (energy_dec) write (iout,*) + endif + if (energy_dec) write (iout,'(a7,i5,4f7.3)') & "estr bb",i,vbld(i),vbldp0,diff,AKP*diff*diff estr=estr+diff*diff do j=1,3 gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i) enddo c write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3) - endif +c endif enddo estr=0.5d0*AKP*estr+estr1 c c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included c do i=ibond_start,ibond_end - iti=itype(i) - if (iti.ne.10 .and. iti.ne.21) then + iti=iabs(itype(i)) + if (iti.ne.10 .and. iti.ne.ntyp1) then nbi=nbondterm(iti) if (nbi.eq.1) then diff=vbld(i+nres)-vbldsc0(1,iti) - if (energy_dec) write (iout,*) + if (energy_dec) write (iout,*) & "estr sc",i,iti,vbld(i+nres),vbldsc0(1,iti),diff, & AKSC(1,iti),AKSC(1,iti)*diff*diff estr=estr+0.5d0*AKSC(1,iti)*diff*diff @@ -4298,11 +5479,25 @@ c time12=1.0d0 etheta=0.0D0 c write (*,'(a,i2)') 'EBEND ICG=',icg do i=ithet_start,ithet_end - if (itype(i-1).eq.21) cycle + if ((itype(i-1).eq.ntyp1).or.itype(i-2).eq.ntyp1 + & .or.itype(i).eq.ntyp1) cycle C Zero the energy function and its derivative at 0 or pi. call splinthet(theta(i),0.5d0*delta,ss,ssd) it=itype(i-1) - if (i.gt.3 .and. itype(i-2).ne.21) then + ichir1=isign(1,itype(i-2)) + ichir2=isign(1,itype(i)) + if (itype(i-2).eq.10) ichir1=isign(1,itype(i-1)) + if (itype(i).eq.10) ichir2=isign(1,itype(i-1)) + if (itype(i-1).eq.10) then + itype1=isign(10,itype(i-2)) + ichir11=isign(1,itype(i-2)) + ichir12=isign(1,itype(i-2)) + itype2=isign(10,itype(i)) + ichir21=isign(1,itype(i)) + ichir22=isign(1,itype(i)) + endif + + if (i.gt.3 .and. itype(i-3).ne.ntyp1) then #ifdef OSF phii=phi(i) if (phii.ne.phii) phii=150.0 @@ -4315,7 +5510,7 @@ C Zero the energy function and its derivative at 0 or pi. y(1)=0.0D0 y(2)=0.0D0 endif - if (i.lt.nres .and. itype(i).ne.21) then + if (i.lt.nres .and. itype(i+1).ne.ntyp1) then #ifdef OSF phii1=phi(i+1) if (phii1.ne.phii1) phii1=150.0 @@ -4323,8 +5518,8 @@ C Zero the energy function and its derivative at 0 or pi. z(1)=cos(phii1) #else phii1=phi(i+1) - z(1)=dcos(phii1) #endif + z(1)=dcos(phii1) z(2)=dsin(phii1) else z(1)=0.0D0 @@ -4335,15 +5530,28 @@ C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2). C In following comments this theta will be referred to as t_c. thet_pred_mean=0.0d0 do k=1,2 - athetk=athet(k,it) - bthetk=bthet(k,it) - thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k) + athetk=athet(k,it,ichir1,ichir2) + bthetk=bthet(k,it,ichir1,ichir2) + if (it.eq.10) then + athetk=athet(k,itype1,ichir11,ichir12) + bthetk=bthet(k,itype2,ichir21,ichir22) + endif + thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k) +c write(iout,*) 'chuj tu', y(k),z(k) enddo dthett=thet_pred_mean*ssd thet_pred_mean=thet_pred_mean*ss+a0thet(it) C Derivatives of the "mean" values in gamma1 and gamma2. - dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss - dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss + dthetg1=(-athet(1,it,ichir1,ichir2)*y(2) + &+athet(2,it,ichir1,ichir2)*y(1))*ss + dthetg2=(-bthet(1,it,ichir1,ichir2)*z(2) + & +bthet(2,it,ichir1,ichir2)*z(1))*ss + if (it.eq.10) then + dthetg1=(-athet(1,itype1,ichir11,ichir12)*y(2) + &+athet(2,itype1,ichir11,ichir12)*y(1))*ss + dthetg2=(-bthet(1,itype2,ichir21,ichir22)*z(2) + & +bthet(2,itype2,ichir21,ichir22)*z(1))*ss + endif if (theta(i).gt.pi-delta) then call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0, & E_tc0) @@ -4366,11 +5574,11 @@ C Derivatives of the "mean" values in gamma1 and gamma2. & E_theta,E_tc) endif etheta=etheta+ethetai - if (energy_dec) write (iout,'(a6,i5,0pf7.3)') - & 'ebend',i,ethetai + if (energy_dec) write (iout,'(a6,i5,0pf7.3,f7.3,i5)') + & 'ebend',i,ethetai,theta(i),itype(i) if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1 if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2 - gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett) + gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)+gloc(nphi+i-2,icg) enddo C Ufff.... We've done all this!!! return @@ -4388,7 +5596,8 @@ C--------------------------------------------------------------------------- C Calculate the contributions to both Gaussian lobes. C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time) C The "polynomial part" of the "standard deviation" of this part of -C the distribution. +C the distributioni. +ccc write (iout,*) thetai,thet_pred_mean sig=polthet(3,it) do j=2,0,-1 sig=sig*thet_pred_mean+polthet(j,it) @@ -4418,6 +5627,7 @@ C Following variable is sigma(t_c)**(-2) delthe0=thetai-theta0i term1=-0.5D0*sigcsq*delthec*delthec term2=-0.5D0*sig0inv*delthe0*delthe0 +C write (iout,*)'term1',term1,term2,sigcsq,delthec,sig0inv,delthe0 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and C NaNs in taking the logarithm. We extract the largest exponent which is added C to the energy (this being the log of the distribution) at the end of energy @@ -4445,6 +5655,7 @@ C Contribution of the bending energy from this theta is just the -log of C the sum of the contributions from the two lobes and the pre-exponential C factor. Simple enough, isn't it? ethetai=(-dlog(termexp)-termm+dlog(termpre)) +C write (iout,*) 'termexp',termexp,termm,termpre,i C NOW the derivatives!!! C 6/6/97 Take into account the deformation. E_theta=(delthec*sigcsq*term1 @@ -4511,37 +5722,45 @@ C logical lprn /.false./, lprn1 /.false./ etheta=0.0D0 do i=ithet_start,ithet_end - if (itype(i-1).eq.21) cycle +c if (i.eq.2) cycle +c print *,i,itype(i-1),itype(i),itype(i-2) + if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1) + & .or.(itype(i).eq.ntyp1)) cycle +C In current verion the ALL DUMMY ATOM POTENTIALS ARE OFF + + if (iabs(itype(i+1)).eq.20) iblock=2 + if (iabs(itype(i+1)).ne.20) iblock=1 dethetai=0.0d0 dephii=0.0d0 dephii1=0.0d0 theti2=0.5d0*theta(i) - ityp2=ithetyp(itype(i-1)) + ityp2=ithetyp((itype(i-1))) do k=1,nntheterm coskt(k)=dcos(k*theti2) sinkt(k)=dsin(k*theti2) enddo - if (i.gt.3 .and. itype(i-2).ne.21) then + if (i.gt.3 .and. itype(max0(i-3,1)).ne.ntyp1) then #ifdef OSF phii=phi(i) if (phii.ne.phii) phii=150.0 #else phii=phi(i) #endif - ityp1=ithetyp(itype(i-2)) + ityp1=ithetyp((itype(i-2))) +C propagation of chirality for glycine type do k=1,nsingle cosph1(k)=dcos(k*phii) sinph1(k)=dsin(k*phii) enddo else phii=0.0d0 - ityp1=nthetyp+1 + ityp1=ithetyp(itype(i-2)) do k=1,nsingle cosph1(k)=0.0d0 sinph1(k)=0.0d0 enddo endif - if (i.lt.nres .and. itype(i).ne.21) then + if (i.lt.nres .and. itype(i+1).ne.ntyp1) then #ifdef OSF phii1=phi(i+1) if (phii1.ne.phii1) phii1=150.0 @@ -4549,20 +5768,20 @@ C #else phii1=phi(i+1) #endif - ityp3=ithetyp(itype(i)) + ityp3=ithetyp((itype(i))) do k=1,nsingle cosph2(k)=dcos(k*phii1) sinph2(k)=dsin(k*phii1) enddo else phii1=0.0d0 - ityp3=nthetyp+1 + ityp3=ithetyp(itype(i)) do k=1,nsingle cosph2(k)=0.0d0 sinph2(k)=0.0d0 enddo endif - ethetai=aa0thet(ityp1,ityp2,ityp3) + ethetai=aa0thet(ityp1,ityp2,ityp3,iblock) do k=1,ndouble do l=1,k-1 ccl=cosph1(l)*cosph2(k-l) @@ -4584,11 +5803,12 @@ C enddo endif do k=1,ntheterm - ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k) - dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3) + ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3,iblock)*sinkt(k) + dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3,iblock) & *coskt(k) if (lprn) - & write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3), + & write (iout,*) "k",k," + & aathet",aathet(k,ityp1,ityp2,ityp3,iblock), & " ethetai",ethetai enddo if (lprn) then @@ -4607,24 +5827,24 @@ C endif do m=1,ntheterm2 do k=1,nsingle - aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k) - & +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k) - & +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k) - & +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k) + aux=bbthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k) + & +ccthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph1(k) + & +ddthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph2(k) + & +eethet(k,m,ityp1,ityp2,ityp3,iblock)*sinph2(k) ethetai=ethetai+sinkt(m)*aux dethetai=dethetai+0.5d0*m*aux*coskt(m) dephii=dephii+k*sinkt(m)*( - & ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)- - & bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)) + & ccthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k)- + & bbthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph1(k)) dephii1=dephii1+k*sinkt(m)*( - & eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)- - & ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k)) + & eethet(k,m,ityp1,ityp2,ityp3,iblock)*cosph2(k)- + & ddthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph2(k)) if (lprn) & write (iout,*) "m",m," k",k," bbthet", - & bbthet(k,m,ityp1,ityp2,ityp3)," ccthet", - & ccthet(k,m,ityp1,ityp2,ityp3)," ddthet", - & ddthet(k,m,ityp1,ityp2,ityp3)," eethet", - & eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai + & bbthet(k,m,ityp1,ityp2,ityp3,iblock)," ccthet", + & ccthet(k,m,ityp1,ityp2,ityp3,iblock)," ddthet", + & ddthet(k,m,ityp1,ityp2,ityp3,iblock)," eethet", + & eethet(k,m,ityp1,ityp2,ityp3,iblock)," ethetai",ethetai enddo enddo if (lprn) @@ -4632,28 +5852,29 @@ C do m=1,ntheterm3 do k=2,ndouble do l=1,k-1 - aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+ - & ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+ - & ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+ - & ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l) + aux=ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)+ + & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l)+ + & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)+ + & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l) ethetai=ethetai+sinkt(m)*aux dethetai=dethetai+0.5d0*m*coskt(m)*aux dephii=dephii+l*sinkt(m)*( - & -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)- - & ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+ - & ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+ - & ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)) + & -ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)- + & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)+ + & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)+ + & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l)) dephii1=dephii1+(k-l)*sinkt(m)*( - & -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+ - & ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+ - & ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)- - & ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)) + & -ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)+ + & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)+ + & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)- + & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l)) if (lprn) then write (iout,*) "m",m," k",k," l",l," ffthet", - & ffthet(l,k,m,ityp1,ityp2,ityp3), - & ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet", - & ggthet(l,k,m,ityp1,ityp2,ityp3), - & ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai + & ffthet(l,k,m,ityp1,ityp2,ityp3,iblock), + & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)," ggthet", + & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock), + & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock), + & " ethetai",ethetai write (iout,*) cosph1ph2(l,k)*sinkt(m), & cosph1ph2(k,l)*sinkt(m), & sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m) @@ -4662,13 +5883,18 @@ C enddo enddo 10 continue - if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') +c lprn1=.true. + if (lprn1) + & write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') & i,theta(i)*rad2deg,phii*rad2deg, & phii1*rad2deg,ethetai +c lprn1=.false. etheta=etheta+ethetai + if (energy_dec) write (iout,'(a6,i5,0pf7.3)') + & 'ebend',i,ethetai if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1 - gloc(nphi+i-2,icg)=wang*dethetai + gloc(nphi+i-2,icg)=wang*dethetai+gloc(nphi+i-2,icg) enddo return end @@ -4699,9 +5925,9 @@ C ALPHA and OMEGA. c write (iout,'(a)') 'ESC' do i=loc_start,loc_end it=itype(i) - if (it.eq.21) cycle + if (it.eq.ntyp1) cycle if (it.eq.10) goto 1 - nlobit=nlob(it) + nlobit=nlob(iabs(it)) c print *,'i=',i,' it=',it,' nlobit=',nlobit c write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad theti=theta(i+1)-pipol @@ -4858,11 +6084,11 @@ C Compute the contribution to SC energy and derivatives do j=1,nlobit #ifdef OSF - adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin + adexp=bsc(j,iabs(it))-0.5D0*contr(j,iii)+emin if(adexp.ne.adexp) adexp=1.0 expfac=dexp(adexp) #else - expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin) + expfac=dexp(bsc(j,iabs(it))-0.5D0*contr(j,iii)+emin) #endif cd print *,'j=',j,' expfac=',expfac escloc_i=escloc_i+expfac @@ -4944,7 +6170,7 @@ C Compute the contribution to SC energy and derivatives dersc12=0.0d0 do j=1,nlobit - expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin) + expfac=dexp(bsc(j,iabs(it))-0.5D0*contr(j)+emin) escloc_i=escloc_i+expfac do k=1,2 dersc(k)=dersc(k)+Ax(k,j)*expfac @@ -4998,7 +6224,7 @@ C delta=0.02d0*pi escloc=0.0D0 do i=loc_start,loc_end - if (itype(i).eq.21) cycle + if (itype(i).eq.ntyp1) cycle costtab(i+1) =dcos(theta(i+1)) sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1)) cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1))) @@ -5007,7 +6233,7 @@ C cosfac=dsqrt(cosfac2) sinfac2=0.5d0/(1.0d0-costtab(i+1)) sinfac=dsqrt(sinfac2) - it=itype(i) + it=iabs(itype(i)) if (it.eq.10) goto 1 c C Compute the axes of tghe local cartesian coordinates system; store in @@ -5025,7 +6251,7 @@ C & dc_norm(3,i+nres) y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac enddo do j = 1,3 - z_prime(j) = -uz(j,i-1) + z_prime(j) = -uz(j,i-1)*dsign(1.0d0,dfloat(itype(i))) enddo c write (2,*) "i",i c write (2,*) "x_prime",(x_prime(j),j=1,3) @@ -5057,7 +6283,7 @@ C C Compute the energy of the ith side cbain C c write (2,*) "xx",xx," yy",yy," zz",zz - it=itype(i) + it=iabs(itype(i)) do j = 1,65 x(j) = sc_parmin(j,it) enddo @@ -5065,7 +6291,7 @@ c write (2,*) "xx",xx," yy",yy," zz",zz Cc diagnostics - remove later xx1 = dcos(alph(2)) yy1 = dsin(alph(2))*dcos(omeg(2)) - zz1 = -dsin(alph(2))*dsin(omeg(2)) + zz1 = -dsign(1.0,dfloat(itype(i)))*dsin(alph(2))*dsin(omeg(2)) write(2,'(3f8.1,3f9.3,1x,3f9.3)') & alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz, & xx1,yy1,zz1 @@ -5107,7 +6333,11 @@ c & sumene4, c & dscp1,dscp2,sumene c sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) escloc = escloc + sumene -c write (2,*) "i",i," escloc",sumene,escloc + if (energy_dec) write (iout,'(a6,i5,0pf7.3)') + & 'escloc',i,sumene +c write (2,*) "i",i," escloc",sumene,escloc,it,itype(i) +c & ,zz,xx,yy +c#define DEBUG #ifdef DEBUG C C This section to check the numerical derivatives of the energy of ith side @@ -5151,6 +6381,7 @@ C End of diagnostics section. C C Compute the gradient of esc C +c zz=zz*dsign(1.0,dfloat(itype(i))) pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2 pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2 pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2 @@ -5175,7 +6406,7 @@ C & +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6) & +(pom1+pom2)*pom_dx #ifdef DEBUG - write(2,*), "de_dxx = ", de_dxx,de_dxx_num + write(2,*), "de_dxx = ", de_dxx,de_dxx_num,itype(i) #endif C sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz @@ -5190,7 +6421,7 @@ C & +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6) & +(pom1-pom2)*pom_dy #ifdef DEBUG - write(2,*), "de_dyy = ", de_dyy,de_dyy_num + write(2,*), "de_dyy = ", de_dyy,de_dyy_num,itype(i) #endif C de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy @@ -5202,15 +6433,16 @@ C & +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6) & + ( x(14) + 2*x(17)*zz+ x(18)*xx + x(20)*yy)*(s2+s2_6) #ifdef DEBUG - write(2,*), "de_dzz = ", de_dzz,de_dzz_num + write(2,*), "de_dzz = ", de_dzz,de_dzz_num,itype(i) #endif C de_dt = 0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) & -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6) & +pom1*pom_dt1+pom2*pom_dt2 #ifdef DEBUG - write(2,*), "de_dt = ", de_dt,de_dt_num + write(2,*), "de_dt = ", de_dt,de_dt_num,itype(i) #endif +c#undef DEBUG c C cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres)) @@ -5235,13 +6467,16 @@ c & (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i) dZZ_Ci1(k)=0.0d0 dZZ_Ci(k)=0.0d0 do j=1,3 - dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres) - dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres) + dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1) + & *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres) + dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1) + & *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres) enddo dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres)) dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres)) - dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres)) + dZZ_XYZ(k)=vbld_inv(i+nres)* + & (z_prime(k)-zz*dC_norm(k,i+nres)) c dt_dCi(k) = -dt_dCi(k)/sinttab(i+1) dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1) @@ -5426,10 +6661,10 @@ c lprn=.true. etors=0.0D0 do i=iphi_start,iphi_end etors_ii=0.0D0 - if (itype(i-2).eq.21 .or. itype(i-1).eq.21 - & .or. itype(i).eq.21) cycle - itori=itortyp(itype(i-2)) - itori1=itortyp(itype(i-1)) + if (itype(i-2).eq.ntyp1.or. itype(i-1).eq.ntyp1 + & .or. itype(i).eq.ntyp1 .or. itype(i-3).eq.ntyp1) cycle + itori=itortyp(itype(i-2)) + itori1=itortyp(itype(i-1)) phii=phi(i) gloci=0.0D0 C Proline-Proline pair is a special case... @@ -5496,6 +6731,15 @@ c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg) return end c------------------------------------------------------------------------------ +c LICZENIE WIEZOW Z ROWNANIA ENERGII MODELLERA + subroutine e_modeller(ehomology_constr) + ehomology_constr=0.0d0 + write (iout,*) "!!!!!UWAGA, JESTEM W DZIWNEJ PETLI, TEST!!!!!" + return + end +C !!!!!!!! NIE CZYTANE !!!!!!!!!!! + +c------------------------------------------------------------------------------ subroutine etor_d(etors_d) etors_d=0.0d0 return @@ -5523,17 +6767,29 @@ C Set lprn=.true. for debugging c lprn=.true. etors=0.0D0 do i=iphi_start,iphi_end - if (itype(i-2).eq.21 .or. itype(i-1).eq.21 - & .or. itype(i).eq.21) cycle - etors_ii=0.0D0 +C ANY TWO ARE DUMMY ATOMS in row CYCLE +c if (((itype(i-3).eq.ntyp1).and.(itype(i-2).eq.ntyp1)).or. +c & ((itype(i-2).eq.ntyp1).and.(itype(i-1).eq.ntyp1)) .or. +c & ((itype(i-1).eq.ntyp1).and.(itype(i).eq.ntyp1))) cycle + if (itype(i-2).eq.ntyp1.or. itype(i-1).eq.ntyp1 + & .or. itype(i).eq.ntyp1 .or. itype(i-3).eq.ntyp1) cycle +C In current verion the ALL DUMMY ATOM POTENTIALS ARE OFF +C For introducing the NH3+ and COO- group please check the etor_d for reference +C and guidance + etors_ii=0.0D0 + if (iabs(itype(i)).eq.20) then + iblock=2 + else + iblock=1 + endif itori=itortyp(itype(i-2)) itori1=itortyp(itype(i-1)) phii=phi(i) gloci=0.0D0 C Regular cosine and sine terms - do j=1,nterm(itori,itori1) - v1ij=v1(j,itori,itori1) - v2ij=v2(j,itori,itori1) + do j=1,nterm(itori,itori1,iblock) + v1ij=v1(j,itori,itori1,iblock) + v2ij=v2(j,itori,itori1,iblock) cosphi=dcos(j*phii) sinphi=dsin(j*phii) etors=etors+v1ij*cosphi+v2ij*sinphi @@ -5548,7 +6804,7 @@ C [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1 C cosphi=dcos(0.5d0*phii) sinphi=dsin(0.5d0*phii) - do j=1,nlor(itori,itori1) + do j=1,nlor(itori,itori1,iblock) vl1ij=vlor1(j,itori,itori1) vl2ij=vlor2(j,itori,itori1) vl3ij=vlor3(j,itori,itori1) @@ -5561,13 +6817,14 @@ C gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom enddo C Subtract the constant term - etors=etors-v0(itori,itori1) + etors=etors-v0(itori,itori1,iblock) if (energy_dec) write (iout,'(a6,i5,0pf7.3)') - & 'etor',i,etors_ii-v0(itori,itori1) + & 'etor',i,etors_ii-v0(itori,itori1,iblock) if (lprn) & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1, - & (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6) + & (v1(j,itori,itori1,iblock),j=1,6), + & (v2(j,itori,itori1,iblock),j=1,6) gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg) enddo @@ -5597,69 +6854,727 @@ cd write (iout,*) 'edihcnstr',edihcnstr return end c---------------------------------------------------------------------------- - subroutine etor_d(etors_d) -C 6/23/01 Compute double torsional energy +c MODELLER restraint function + subroutine e_modeller(ehomology_constr) implicit real*8 (a-h,o-z) include 'DIMENSIONS' - include 'COMMON.VAR' + + integer nnn, i, j, k, ki, irec, l + integer katy, odleglosci, test7 + real*8 odleg, odleg2, odleg3, kat, kat2, kat3, gdih(max_template) + real*8 Eval,Erot + real*8 distance(max_template),distancek(max_template), + & min_odl,godl(max_template),dih_diff(max_template) + +c +c FP - 30/10/2014 Temporary specifications for homology restraints +c + double precision utheta_i,gutheta_i,sum_gtheta,sum_sgtheta, + & sgtheta + double precision, dimension (maxres) :: guscdiff,usc_diff + double precision, dimension (max_template) :: + & gtheta,dscdiff,uscdiffk,guscdiff2,guscdiff3, + & theta_diff +c + + include 'COMMON.SBRIDGE' + include 'COMMON.CHAIN' include 'COMMON.GEO' + include 'COMMON.DERIV' include 'COMMON.LOCAL' - include 'COMMON.TORSION' include 'COMMON.INTERACT' - include 'COMMON.DERIV' - include 'COMMON.CHAIN' - include 'COMMON.NAMES' + include 'COMMON.VAR' include 'COMMON.IOUNITS' - include 'COMMON.FFIELD' - include 'COMMON.TORCNSTR' - logical lprn -C Set lprn=.true. for debugging - lprn=.false. -c lprn=.true. - etors_d=0.0D0 - do i=iphid_start,iphid_end - if (itype(i-2).eq.21 .or. itype(i-1).eq.21 - & .or. itype(i).eq.21 .or. itype(i+1).eq.21) cycle - itori=itortyp(itype(i-2)) - itori1=itortyp(itype(i-1)) - itori2=itortyp(itype(i)) - phii=phi(i) - phii1=phi(i+1) - gloci1=0.0D0 - gloci2=0.0D0 -C Regular cosine and sine terms - do j=1,ntermd_1(itori,itori1,itori2) - v1cij=v1c(1,j,itori,itori1,itori2) - v1sij=v1s(1,j,itori,itori1,itori2) - v2cij=v1c(2,j,itori,itori1,itori2) - v2sij=v1s(2,j,itori,itori1,itori2) - cosphi1=dcos(j*phii) - sinphi1=dsin(j*phii) - cosphi2=dcos(j*phii1) + include 'COMMON.MD' + include 'COMMON.CONTROL' +c +c From subroutine Econstr_back +c + include 'COMMON.NAMES' + include 'COMMON.TIME1' +c + + + do i=1,max_template + distancek(i)=9999999.9 + enddo + + + odleg=0.0d0 + +c Pseudo-energy and gradient from homology restraints (MODELLER-like +c function) +C AL 5/2/14 - Introduce list of restraints +c write(iout,*) "waga_theta",waga_theta,"waga_d",waga_d +#ifdef DEBUG + write(iout,*) "------- dist restrs start -------" +#endif + do ii = link_start_homo,link_end_homo + i = ires_homo(ii) + j = jres_homo(ii) + dij=dist(i,j) +c write (iout,*) "dij(",i,j,") =",dij + nexl=0 + do k=1,constr_homology +c write(iout,*) ii,k,i,j,l_homo(k,ii),dij,odl(k,ii) + if(.not.l_homo(k,ii)) then + nexl=nexl+1 + cycle + endif + distance(k)=odl(k,ii)-dij +c write (iout,*) "distance(",k,") =",distance(k) +c +c For Gaussian-type Urestr +c + distancek(k)=0.5d0*distance(k)**2*sigma_odl(k,ii) ! waga_dist rmvd from Gaussian argument +c write (iout,*) "sigma_odl(",k,ii,") =",sigma_odl(k,ii) +c write (iout,*) "distancek(",k,") =",distancek(k) +c distancek(k)=0.5d0*waga_dist*distance(k)**2*sigma_odl(k,ii) +c +c For Lorentzian-type Urestr +c + if (waga_dist.lt.0.0d0) then + sigma_odlir(k,ii)=dsqrt(1/sigma_odl(k,ii)) + distancek(k)=distance(k)**2/(sigma_odlir(k,ii)* + & (distance(k)**2+sigma_odlir(k,ii)**2)) + endif + enddo + +c min_odl=minval(distancek) + do kk=1,constr_homology + if(l_homo(kk,ii)) then + min_odl=distancek(kk) + exit + endif + enddo + do kk=1,constr_homology + if(l_homo(kk,ii) .and. distancek(kk).lt.min_odl) + & min_odl=distancek(kk) + enddo + +c write (iout,* )"min_odl",min_odl +#ifdef DEBUG + write (iout,*) "ij dij",i,j,dij + write (iout,*) "distance",(distance(k),k=1,constr_homology) + write (iout,*) "distancek",(distancek(k),k=1,constr_homology) + write (iout,* )"min_odl",min_odl +#endif +#ifdef OLDRESTR + odleg2=0.0d0 +#else + if (waga_dist.ge.0.0d0) then + odleg2=nexl + else + odleg2=0.0d0 + endif +#endif + do k=1,constr_homology +c Nie wiem po co to liczycie jeszcze raz! +c odleg3=-waga_dist(iset)*((distance(i,j,k)**2)/ +c & (2*(sigma_odl(i,j,k))**2)) + if(.not.l_homo(k,ii)) cycle + if (waga_dist.ge.0.0d0) then +c +c For Gaussian-type Urestr +c + godl(k)=dexp(-distancek(k)+min_odl) + odleg2=odleg2+godl(k) +c +c For Lorentzian-type Urestr +c + else + odleg2=odleg2+distancek(k) + endif + +ccc write(iout,779) i,j,k, "odleg2=",odleg2, "odleg3=", odleg3, +ccc & "dEXP(odleg3)=", dEXP(odleg3),"distance(i,j,k)^2=", +ccc & distance(i,j,k)**2, "dist(i+1,j+1)=", dist(i+1,j+1), +ccc & "sigma_odl(i,j,k)=", sigma_odl(i,j,k) + + enddo +c write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents +c write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps +#ifdef DEBUG + write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents + write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps +#endif + if (waga_dist.ge.0.0d0) then +c +c For Gaussian-type Urestr +c + odleg=odleg-dLOG(odleg2/constr_homology)+min_odl +c +c For Lorentzian-type Urestr +c + else + odleg=odleg+odleg2/constr_homology + endif +c +c write (iout,*) "odleg",odleg ! sum of -ln-s +c Gradient +c +c For Gaussian-type Urestr +c + if (waga_dist.ge.0.0d0) sum_godl=odleg2 + sum_sgodl=0.0d0 + do k=1,constr_homology +c godl=dexp(((-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2)) +c & *waga_dist)+min_odl +c sgodl=-godl(k)*distance(k)*sigma_odl(k,ii)*waga_dist +c + if(.not.l_homo(k,ii)) cycle + if (waga_dist.ge.0.0d0) then +c For Gaussian-type Urestr +c + sgodl=-godl(k)*distance(k)*sigma_odl(k,ii) ! waga_dist rmvd +c +c For Lorentzian-type Urestr +c + else + sgodl=-2*sigma_odlir(k,ii)*(distance(k)/(distance(k)**2+ + & sigma_odlir(k,ii)**2)**2) + endif + sum_sgodl=sum_sgodl+sgodl + +c sgodl2=sgodl2+sgodl +c write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE1" +c write(iout,*) "constr_homology=",constr_homology +c write(iout,*) i, j, k, "TEST K" + enddo + if (waga_dist.ge.0.0d0) then +c +c For Gaussian-type Urestr +c + grad_odl3=waga_homology(iset)*waga_dist + & *sum_sgodl/(sum_godl*dij) +c +c For Lorentzian-type Urestr +c + else +c Original grad expr modified by analogy w Gaussian-type Urestr grad +c grad_odl3=-waga_homology(iset)*waga_dist*sum_sgodl + grad_odl3=-waga_homology(iset)*waga_dist* + & sum_sgodl/(constr_homology*dij) + endif +c +c grad_odl3=sum_sgodl/(sum_godl*dij) + + +c write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE2" +c write(iout,*) (distance(i,j,k)**2), (2*(sigma_odl(i,j,k))**2), +c & (-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2)) + +ccc write(iout,*) godl, sgodl, grad_odl3 + +c grad_odl=grad_odl+grad_odl3 + + do jik=1,3 + ggodl=grad_odl3*(c(jik,i)-c(jik,j)) +ccc write(iout,*) c(jik,i+1), c(jik,j+1), (c(jik,i+1)-c(jik,j+1)) +ccc write(iout,746) "GRAD_ODL_1", i, j, jik, ggodl, +ccc & ghpbc(jik,i+1), ghpbc(jik,j+1) + ghpbc(jik,i)=ghpbc(jik,i)+ggodl + ghpbc(jik,j)=ghpbc(jik,j)-ggodl +ccc write(iout,746) "GRAD_ODL_2", i, j, jik, ggodl, +ccc & ghpbc(jik,i+1), ghpbc(jik,j+1) +c if (i.eq.25.and.j.eq.27) then +c write(iout,*) "jik",jik,"i",i,"j",j +c write(iout,*) "sum_sgodl",sum_sgodl,"sgodl",sgodl +c write(iout,*) "grad_odl3",grad_odl3 +c write(iout,*) "c(",jik,i,")",c(jik,i),"c(",jik,j,")",c(jik,j) +c write(iout,*) "ggodl",ggodl +c write(iout,*) "ghpbc(",jik,i,")", +c & ghpbc(jik,i),"ghpbc(",jik,j,")", +c & ghpbc(jik,j) +c endif + enddo +ccc write(iout,778)"TEST: odleg2=", odleg2, "DLOG(odleg2)=", +ccc & dLOG(odleg2),"-odleg=", -odleg + + enddo ! ii-loop for dist +#ifdef DEBUG + write(iout,*) "------- dist restrs end -------" +c if (waga_angle.eq.1.0d0 .or. waga_theta.eq.1.0d0 .or. +c & waga_d.eq.1.0d0) call sum_gradient +#endif +c Pseudo-energy and gradient from dihedral-angle restraints from +c homology templates +c write (iout,*) "End of distance loop" +c call flush(iout) + kat=0.0d0 +c write (iout,*) idihconstr_start_homo,idihconstr_end_homo +#ifdef DEBUG + write(iout,*) "------- dih restrs start -------" + do i=idihconstr_start_homo,idihconstr_end_homo + write (iout,*) "gloc_init(",i,icg,")",gloc(i,icg) + enddo +#endif + do i=idihconstr_start_homo,idihconstr_end_homo + kat2=0.0d0 +c betai=beta(i,i+1,i+2,i+3) + betai = phi(i) +c write (iout,*) "betai =",betai + do k=1,constr_homology + dih_diff(k)=pinorm(dih(k,i)-betai) +cd write (iout,'(a8,2i4,2f15.8)') "dih_diff",i,k,dih_diff(k) +cd & ,sigma_dih(k,i) +c if (dih_diff(i,k).gt.3.14159) dih_diff(i,k)= +c & -(6.28318-dih_diff(i,k)) +c if (dih_diff(i,k).lt.-3.14159) dih_diff(i,k)= +c & 6.28318+dih_diff(i,k) +#ifdef OLD_DIHED + kat3=-0.5d0*dih_diff(k)**2*sigma_dih(k,i) ! waga_angle rmvd from Gaussian argument +#else + kat3=(dcos(dih_diff(k))-1)*sigma_dih(k,i) ! waga_angle rmvd from Gaussian argument +#endif +c kat3=-0.5d0*waga_angle*dih_diff(k)**2*sigma_dih(k,i) + gdih(k)=dexp(kat3) + kat2=kat2+gdih(k) +c write(iout,*) "kat2=", kat2, "exp(kat3)=", exp(kat3) +c write(*,*)"" + enddo +c write (iout,*) "gdih",(gdih(k),k=1,constr_homology) ! exps +c write (iout,*) "i",i," betai",betai," kat2",kat2 ! sum of exps +#ifdef DEBUG + write (iout,*) "i",i," betai",betai," kat2",kat2 + write (iout,*) "gdih",(gdih(k),k=1,constr_homology) +#endif + if (kat2.le.1.0d-14) cycle + kat=kat-dLOG(kat2/constr_homology) +c write (iout,*) "kat",kat ! sum of -ln-s + +ccc write(iout,778)"TEST: kat2=", kat2, "DLOG(kat2)=", +ccc & dLOG(kat2), "-kat=", -kat + +c ---------------------------------------------------------------------- +c Gradient +c ---------------------------------------------------------------------- + + sum_gdih=kat2 + sum_sgdih=0.0d0 + do k=1,constr_homology +#ifdef OLD_DIHED + sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i) ! waga_angle rmvd +#else + sgdih=-gdih(k)*dsin(dih_diff(k))*sigma_dih(k,i) ! waga_angle rmvd +#endif +c sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)*waga_angle + sum_sgdih=sum_sgdih+sgdih + enddo +c grad_dih3=sum_sgdih/sum_gdih + grad_dih3=waga_homology(iset)*waga_angle*sum_sgdih/sum_gdih + +c write(iout,*)i,k,gdih,sgdih,beta(i+1,i+2,i+3,i+4),grad_dih3 +ccc write(iout,747) "GRAD_KAT_1", i, nphi, icg, grad_dih3, +ccc & gloc(nphi+i-3,icg) + gloc(i-3,icg)=gloc(i-3,icg)+grad_dih3 +c if (i.eq.25) then +c write(iout,*) "i",i,"icg",icg,"gloc(",i,icg,")",gloc(i,icg) +c endif +ccc write(iout,747) "GRAD_KAT_2", i, nphi, icg, grad_dih3, +ccc & gloc(nphi+i-3,icg) + + enddo ! i-loop for dih +#ifdef DEBUG + write(iout,*) "------- dih restrs end -------" +#endif + +c Pseudo-energy and gradient for theta angle restraints from +c homology templates +c FP 01/15 - inserted from econstr_local_test.F, loop structure +c adapted + +c +c For constr_homology reference structures (FP) +c +c Uconst_back_tot=0.0d0 + Eval=0.0d0 + Erot=0.0d0 +c Econstr_back legacy + do i=1,nres +c do i=ithet_start,ithet_end + dutheta(i)=0.0d0 +c enddo +c do i=loc_start,loc_end + do j=1,3 + duscdiff(j,i)=0.0d0 + duscdiffx(j,i)=0.0d0 + enddo + enddo +c +c do iref=1,nref +c write (iout,*) "ithet_start =",ithet_start,"ithet_end =",ithet_end +c write (iout,*) "waga_theta",waga_theta + if (waga_theta.gt.0.0d0) then +#ifdef DEBUG + write (iout,*) "usampl",usampl + write(iout,*) "------- theta restrs start -------" +c do i=ithet_start,ithet_end +c write (iout,*) "gloc_init(",nphi+i,icg,")",gloc(nphi+i,icg) +c enddo +#endif +c write (iout,*) "maxres",maxres,"nres",nres + + do i=ithet_start,ithet_end +c +c do i=1,nfrag_back +c ii = ifrag_back(2,i,iset)-ifrag_back(1,i,iset) +c +c Deviation of theta angles wrt constr_homology ref structures +c + utheta_i=0.0d0 ! argument of Gaussian for single k + gutheta_i=0.0d0 ! Sum of Gaussians over constr_homology ref structures +c do j=ifrag_back(1,i,iset)+2,ifrag_back(2,i,iset) ! original loop +c over residues in a fragment +c write (iout,*) "theta(",i,")=",theta(i) + do k=1,constr_homology +c +c dtheta_i=theta(j)-thetaref(j,iref) +c dtheta_i=thetaref(k,i)-theta(i) ! original form without indexing + theta_diff(k)=thetatpl(k,i)-theta(i) +cd write (iout,'(a8,2i4,2f15.8)') "theta_diff",i,k,theta_diff(k) +cd & ,sigma_theta(k,i) + +c + utheta_i=-0.5d0*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta rmvd from Gaussian argument +c utheta_i=-0.5d0*waga_theta*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta? + gtheta(k)=dexp(utheta_i) ! + min_utheta_i? + gutheta_i=gutheta_i+gtheta(k) ! Sum of Gaussians (pk) +c Gradient for single Gaussian restraint in subr Econstr_back +c dutheta(j-2)=dutheta(j-2)+wfrag_back(1,i,iset)*dtheta_i/(ii-1) +c + enddo +c write (iout,*) "gtheta",(gtheta(k),k=1,constr_homology) ! exps +c write (iout,*) "i",i," gutheta_i",gutheta_i ! sum of exps + +c +c Gradient for multiple Gaussian restraint + sum_gtheta=gutheta_i + sum_sgtheta=0.0d0 + do k=1,constr_homology +c New generalized expr for multiple Gaussian from Econstr_back + sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i) ! waga_theta rmvd +c +c sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i)*waga_theta ! right functional form? + sum_sgtheta=sum_sgtheta+sgtheta ! cum variable + enddo +c Final value of gradient using same var as in Econstr_back + gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg) + & +sum_sgtheta/sum_gtheta*waga_theta + & *waga_homology(iset) +c dutheta(i-2)=sum_sgtheta/sum_gtheta*waga_theta +c & *waga_homology(iset) +c dutheta(i)=sum_sgtheta/sum_gtheta +c +c Uconst_back=Uconst_back+waga_theta*utheta(i) ! waga_theta added as weight + Eval=Eval-dLOG(gutheta_i/constr_homology) +c write (iout,*) "utheta(",i,")=",utheta(i) ! -ln of sum of exps +c write (iout,*) "Uconst_back",Uconst_back ! sum of -ln-s +c Uconst_back=Uconst_back+utheta(i) + enddo ! (i-loop for theta) +#ifdef DEBUG + write(iout,*) "------- theta restrs end -------" +#endif + endif +c +c Deviation of local SC geometry +c +c Separation of two i-loops (instructed by AL - 11/3/2014) +c +c write (iout,*) "loc_start =",loc_start,"loc_end =",loc_end +c write (iout,*) "waga_d",waga_d + +#ifdef DEBUG + write(iout,*) "------- SC restrs start -------" + write (iout,*) "Initial duscdiff,duscdiffx" + do i=loc_start,loc_end + write (iout,*) i,(duscdiff(jik,i),jik=1,3), + & (duscdiffx(jik,i),jik=1,3) + enddo +#endif + do i=loc_start,loc_end + usc_diff_i=0.0d0 ! argument of Gaussian for single k + guscdiff(i)=0.0d0 ! Sum of Gaussians over constr_homology ref structures +c do j=ifrag_back(1,i,iset)+1,ifrag_back(2,i,iset)-1 ! Econstr_back legacy +c write(iout,*) "xxtab, yytab, zztab" +c write(iout,'(i5,3f8.2)') i,xxtab(i),yytab(i),zztab(i) + do k=1,constr_homology +c + dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str? +c Original sign inverted for calc of gradients (s. Econstr_back) + dyy=-yytpl(k,i)+yytab(i) ! ibid y + dzz=-zztpl(k,i)+zztab(i) ! ibid z +c write(iout,*) "dxx, dyy, dzz" +cd write(iout,'(2i5,4f8.2)') k,i,dxx,dyy,dzz,sigma_d(k,i) +c + usc_diff_i=-0.5d0*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i) ! waga_d rmvd from Gaussian argument +c usc_diff(i)=-0.5d0*waga_d*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i) ! waga_d? +c uscdiffk(k)=usc_diff(i) + guscdiff2(k)=dexp(usc_diff_i) ! without min_scdiff +c write(iout,*) "i",i," k",k," sigma_d",sigma_d(k,i), +c & " guscdiff2",guscdiff2(k) + guscdiff(i)=guscdiff(i)+guscdiff2(k) !Sum of Gaussians (pk) +c write (iout,'(i5,6f10.5)') j,xxtab(j),yytab(j),zztab(j), +c & xxref(j),yyref(j),zzref(j) + enddo +c +c Gradient +c +c Generalized expression for multiple Gaussian acc to that for a single +c Gaussian in Econstr_back as instructed by AL (FP - 03/11/2014) +c +c Original implementation +c sum_guscdiff=guscdiff(i) +c +c sum_sguscdiff=0.0d0 +c do k=1,constr_homology +c sguscdiff=-guscdiff2(k)*dscdiff(k)*sigma_d(k,i)*waga_d !waga_d? +c sguscdiff=-guscdiff3(k)*dscdiff(k)*sigma_d(k,i)*waga_d ! w min_uscdiff +c sum_sguscdiff=sum_sguscdiff+sguscdiff +c enddo +c +c Implementation of new expressions for gradient (Jan. 2015) +c +c grad_uscdiff=sum_sguscdiff/(sum_guscdiff*dtab) !? + do k=1,constr_homology +c +c New calculation of dxx, dyy, and dzz corrected by AL (07/11), was missing and wrong +c before. Now the drivatives should be correct +c + dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str? +c Original sign inverted for calc of gradients (s. Econstr_back) + dyy=-yytpl(k,i)+yytab(i) ! ibid y + dzz=-zztpl(k,i)+zztab(i) ! ibid z +c +c New implementation +c + sum_guscdiff=guscdiff2(k)*!(dsqrt(dxx*dxx+dyy*dyy+dzz*dzz))* -> wrong! + & sigma_d(k,i) ! for the grad wrt r' +c sum_sguscdiff=sum_sguscdiff+sum_guscdiff +c +c +c New implementation + sum_guscdiff = waga_homology(iset)*waga_d*sum_guscdiff + do jik=1,3 + duscdiff(jik,i-1)=duscdiff(jik,i-1)+ + & sum_guscdiff*(dXX_C1tab(jik,i)*dxx+ + & dYY_C1tab(jik,i)*dyy+dZZ_C1tab(jik,i)*dzz)/guscdiff(i) + duscdiff(jik,i)=duscdiff(jik,i)+ + & sum_guscdiff*(dXX_Ctab(jik,i)*dxx+ + & dYY_Ctab(jik,i)*dyy+dZZ_Ctab(jik,i)*dzz)/guscdiff(i) + duscdiffx(jik,i)=duscdiffx(jik,i)+ + & sum_guscdiff*(dXX_XYZtab(jik,i)*dxx+ + & dYY_XYZtab(jik,i)*dyy+dZZ_XYZtab(jik,i)*dzz)/guscdiff(i) +c +#ifdef DEBUG + write(iout,*) "jik",jik,"i",i + write(iout,*) "dxx, dyy, dzz" + write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz + write(iout,*) "guscdiff2(",k,")",guscdiff2(k) +c write(iout,*) "sum_sguscdiff",sum_sguscdiff +cc write(iout,*) "dXX_Ctab(",jik,i,")",dXX_Ctab(jik,i) +c write(iout,*) "dYY_Ctab(",jik,i,")",dYY_Ctab(jik,i) +c write(iout,*) "dZZ_Ctab(",jik,i,")",dZZ_Ctab(jik,i) +c write(iout,*) "dXX_C1tab(",jik,i,")",dXX_C1tab(jik,i) +c write(iout,*) "dYY_C1tab(",jik,i,")",dYY_C1tab(jik,i) +c write(iout,*) "dZZ_C1tab(",jik,i,")",dZZ_C1tab(jik,i) +c write(iout,*) "dXX_XYZtab(",jik,i,")",dXX_XYZtab(jik,i) +c write(iout,*) "dYY_XYZtab(",jik,i,")",dYY_XYZtab(jik,i) +c write(iout,*) "dZZ_XYZtab(",jik,i,")",dZZ_XYZtab(jik,i) +c write(iout,*) "duscdiff(",jik,i-1,")",duscdiff(jik,i-1) +c write(iout,*) "duscdiff(",jik,i,")",duscdiff(jik,i) +c write(iout,*) "duscdiffx(",jik,i,")",duscdiffx(jik,i) +c endif +#endif + enddo + enddo +c +c uscdiff(i)=-dLOG(guscdiff(i)/(ii-1)) ! Weighting by (ii-1) required? +c usc_diff(i)=-dLOG(guscdiff(i)/constr_homology) ! + min_uscdiff ? +c +c write (iout,*) i," uscdiff",uscdiff(i) +c +c Put together deviations from local geometry + +c Uconst_back=Uconst_back+wfrag_back(1,i,iset)*utheta(i)+ +c & wfrag_back(3,i,iset)*uscdiff(i) + Erot=Erot-dLOG(guscdiff(i)/constr_homology) +c write (iout,*) "usc_diff(",i,")=",usc_diff(i) ! -ln of sum of exps +c write (iout,*) "Uconst_back",Uconst_back ! cum sum of -ln-s +c Uconst_back=Uconst_back+usc_diff(i) +c +c Gradient of multiple Gaussian restraint (FP - 04/11/2014 - right?) +c +c New implment: multiplied by sum_sguscdiff +c + + enddo ! (i-loop for dscdiff) + +c endif + +#ifdef DEBUG + write(iout,*) "------- SC restrs end -------" + write (iout,*) "------ After SC loop in e_modeller ------" + do i=loc_start,loc_end + write (iout,*) "i",i," gradc",(gradc(j,i,icg),j=1,3) + write (iout,*) "i",i," gradx",(gradx(j,i,icg),j=1,3) + enddo + if (waga_theta.eq.1.0d0) then + write (iout,*) "in e_modeller after SC restr end: dutheta" + do i=ithet_start,ithet_end + write (iout,*) i,dutheta(i) + enddo + endif + if (waga_d.eq.1.0d0) then + write (iout,*) "e_modeller after SC loop: duscdiff/x" + do i=1,nres + write (iout,*) i,(duscdiff(j,i),j=1,3) + write (iout,*) i,(duscdiffx(j,i),j=1,3) + enddo + endif +#endif + +c Total energy from homology restraints +#ifdef DEBUG + write (iout,*) "odleg",odleg," kat",kat +#endif +c +c Addition of energy of theta angle and SC local geom over constr_homologs ref strs +c +c ehomology_constr=odleg+kat +c +c For Lorentzian-type Urestr +c + + if (waga_dist.ge.0.0d0) then +c +c For Gaussian-type Urestr +c + ehomology_constr=(waga_dist*odleg+waga_angle*kat+ + & waga_theta*Eval+waga_d*Erot)*waga_homology(iset) +c write (iout,*) "ehomology_constr=",ehomology_constr + else +c +c For Lorentzian-type Urestr +c + ehomology_constr=(-waga_dist*odleg+waga_angle*kat+ + & waga_theta*Eval+waga_d*Erot)*waga_homology(iset) +c write (iout,*) "ehomology_constr=",ehomology_constr + endif +#ifdef DEBUG + write (iout,*) "odleg",waga_dist,odleg," kat",waga_angle,kat, + & "Eval",waga_theta,eval, + & "Erot",waga_d,Erot + write (iout,*) "ehomology_constr",ehomology_constr +#endif + return +c +c FP 01/15 end +c + 748 format(a8,f12.3,a6,f12.3,a7,f12.3) + 747 format(a12,i4,i4,i4,f8.3,f8.3) + 746 format(a12,i4,i4,i4,f8.3,f8.3,f8.3) + 778 format(a7,1X,f10.3,1X,a4,1X,f10.3,1X,a5,1X,f10.3) + 779 format(i3,1X,i3,1X,i2,1X,a7,1X,f7.3,1X,a7,1X,f7.3,1X,a13,1X, + & f7.3,1X,a17,1X,f9.3,1X,a10,1X,f8.3,1X,a10,1X,f8.3) + end + +c------------------------------------------------------------------------------ + subroutine etor_d(etors_d) +C 6/23/01 Compute double torsional energy + implicit real*8 (a-h,o-z) + include 'DIMENSIONS' + include 'COMMON.VAR' + include 'COMMON.GEO' + include 'COMMON.LOCAL' + include 'COMMON.TORSION' + include 'COMMON.INTERACT' + include 'COMMON.DERIV' + include 'COMMON.CHAIN' + include 'COMMON.NAMES' + include 'COMMON.IOUNITS' + include 'COMMON.FFIELD' + include 'COMMON.TORCNSTR' + include 'COMMON.CONTROL' + logical lprn +C Set lprn=.true. for debugging + lprn=.false. +c lprn=.true. + etors_d=0.0D0 +c write(iout,*) "a tu??" + do i=iphid_start,iphid_end +C ANY TWO ARE DUMMY ATOMS in row CYCLE +C if (((itype(i-3).eq.ntyp1).and.(itype(i-2).eq.ntyp1)).or. +C & ((itype(i-2).eq.ntyp1).and.(itype(i-1).eq.ntyp1)).or. +C & ((itype(i-1).eq.ntyp1).and.(itype(i).eq.ntyp1)) .or. +C & ((itype(i).eq.ntyp1).and.(itype(i+1).eq.ntyp1))) cycle + if ((itype(i-2).eq.ntyp1).or.itype(i-3).eq.ntyp1.or. + & (itype(i-1).eq.ntyp1).or.(itype(i).eq.ntyp1).or. + & (itype(i+1).eq.ntyp1)) cycle +C In current verion the ALL DUMMY ATOM POTENTIALS ARE OFF + etors_d_ii=0.0D0 + itori=itortyp(itype(i-2)) + itori1=itortyp(itype(i-1)) + itori2=itortyp(itype(i)) + phii=phi(i) + phii1=phi(i+1) + gloci1=0.0D0 + gloci2=0.0D0 + iblock=1 + if (iabs(itype(i+1)).eq.20) iblock=2 +C Iblock=2 Proline type +C ADASKO: WHEN PARAMETERS FOR THIS TYPE OF BLOCKING GROUP IS READY UNCOMMENT +C CHECK WEATHER THERE IS NECCESITY FOR iblock=3 for COO- +C if (itype(i+1).eq.ntyp1) iblock=3 +C The problem of NH3+ group can be resolved by adding new parameters please note if there +C IS or IS NOT need for this +C IF Yes uncomment below and add to parmread.F appropriate changes and to v1cij and so on +C is (itype(i-3).eq.ntyp1) ntblock=2 +C ntblock is N-terminal blocking group + +C Regular cosine and sine terms + do j=1,ntermd_1(itori,itori1,itori2,iblock) +C Example of changes for NH3+ blocking group +C do j=1,ntermd_1(itori,itori1,itori2,iblock,ntblock) +C v1cij=v1c(1,j,itori,itori1,itori2,iblock,ntblock) + v1cij=v1c(1,j,itori,itori1,itori2,iblock) + v1sij=v1s(1,j,itori,itori1,itori2,iblock) + v2cij=v1c(2,j,itori,itori1,itori2,iblock) + v2sij=v1s(2,j,itori,itori1,itori2,iblock) + cosphi1=dcos(j*phii) + sinphi1=dsin(j*phii) + cosphi2=dcos(j*phii1) sinphi2=dsin(j*phii1) etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+ & v2cij*cosphi2+v2sij*sinphi2 + if (energy_dec) etors_d_ii=etors_d_ii+ + & v1cij*cosphi1+v1sij*sinphi1+v2cij*cosphi2+v2sij*sinphi2 gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1) gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2) enddo - do k=2,ntermd_2(itori,itori1,itori2) + do k=2,ntermd_2(itori,itori1,itori2,iblock) do l=1,k-1 - v1cdij = v2c(k,l,itori,itori1,itori2) - v2cdij = v2c(l,k,itori,itori1,itori2) - v1sdij = v2s(k,l,itori,itori1,itori2) - v2sdij = v2s(l,k,itori,itori1,itori2) + v1cdij = v2c(k,l,itori,itori1,itori2,iblock) + v2cdij = v2c(l,k,itori,itori1,itori2,iblock) + v1sdij = v2s(k,l,itori,itori1,itori2,iblock) + v2sdij = v2s(l,k,itori,itori1,itori2,iblock) cosphi1p2=dcos(l*phii+(k-l)*phii1) cosphi1m2=dcos(l*phii-(k-l)*phii1) sinphi1p2=dsin(l*phii+(k-l)*phii1) sinphi1m2=dsin(l*phii-(k-l)*phii1) etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+ & v1sdij*sinphi1p2+v2sdij*sinphi1m2 + if (energy_dec) etors_d_ii=etors_d_ii+ + & v1cdij*cosphi1p2+v2cdij*cosphi1m2+ + & v1sdij*sinphi1p2+v2sdij*sinphi1m2 gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2 & -v1cdij*sinphi1p2-v2cdij*sinphi1m2) gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2 & -v1cdij*sinphi1p2+v2cdij*sinphi1m2) enddo enddo + if (energy_dec) write (iout,'(a6,i5,0pf7.3)') + & 'etor_d',i,etors_d_ii gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1 gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2 enddo @@ -5692,29 +7607,56 @@ c amino-acid residues. C Set lprn=.true. for debugging lprn=.false. c lprn=.true. -c write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor +c write (iout,*) "EBACK_SC_COR",itau_start,itau_end esccor=0.0D0 - do i=iphi_start,iphi_end - if (itype(i-2).eq.21 .or. itype(i-1).eq.21) cycle - esccor_ii=0.0D0 - itori=itype(i-2) - itori1=itype(i-1) + do i=itau_start,itau_end + if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle + isccori=isccortyp(itype(i-2)) + isccori1=isccortyp(itype(i-1)) +c write (iout,*) "EBACK_SC_COR",i,nterm_sccor(isccori,isccori1) phii=phi(i) + do intertyp=1,3 !intertyp + esccor_ii=0.0D0 +cc Added 09 May 2012 (Adasko) +cc Intertyp means interaction type of backbone mainchain correlation: +c 1 = SC...Ca...Ca...Ca +c 2 = Ca...Ca...Ca...SC +c 3 = SC...Ca...Ca...SCi gloci=0.0D0 - do j=1,nterm_sccor - v1ij=v1sccor(j,itori,itori1) - v2ij=v2sccor(j,itori,itori1) - cosphi=dcos(j*phii) - sinphi=dsin(j*phii) + if (((intertyp.eq.3).and.((itype(i-2).eq.10).or. + & (itype(i-1).eq.10).or.(itype(i-2).eq.ntyp1).or. + & (itype(i-1).eq.ntyp1))) + & .or. ((intertyp.eq.1).and.((itype(i-2).eq.10) + & .or.(itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1) + & .or.(itype(i).eq.ntyp1))) + & .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or. + & (itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or. + & (itype(i-3).eq.ntyp1)))) cycle + if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.ntyp1)) cycle + if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.ntyp1)) + & cycle + do j=1,nterm_sccor(isccori,isccori1) + v1ij=v1sccor(j,intertyp,isccori,isccori1) + v2ij=v2sccor(j,intertyp,isccori,isccori1) + cosphi=dcos(j*tauangle(intertyp,i)) + sinphi=dsin(j*tauangle(intertyp,i)) + if (energy_dec) esccor_ii=esccor_ii+v1ij*cosphi+v2ij*sinphi esccor=esccor+v1ij*cosphi+v2ij*sinphi gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi) enddo + if (energy_dec) write (iout,'(a6,i5,i2,0pf7.3)') + & 'esccor',i,intertyp,esccor_ii +c write (iout,*) "EBACK_SC_COR",i,v1ij*cosphi+v2ij*sinphi,intertyp + gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci if (lprn) & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') - & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1, - & (v1sccor(j,itori,itori1),j=1,6),(v2sccor(j,itori,itori1),j=1,6) + & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,isccori,isccori1, + & (v1sccor(j,intertyp,isccori,isccori1),j=1,6) + & ,(v2sccor(j,intertyp,isccori,isccori1),j=1,6) gsccor_loc(i-3)=gsccor_loc(i-3)+gloci + enddo !intertyp enddo + return end c---------------------------------------------------------------------------- @@ -6719,15 +8661,15 @@ C--------------------------------------------------------------------------- if (j.lt.nres-1) then itj1 = itortyp(itype(j+1)) else - itj1=ntortyp+1 + itj1=ntortyp endif do iii=1,2 dipi(iii,1)=Ub2(iii,i) dipderi(iii)=Ub2der(iii,i) - dipi(iii,2)=b1(iii,iti1) + dipi(iii,2)=b1(iii,i+1) dipj(iii,1)=Ub2(iii,j) dipderj(iii)=Ub2der(iii,j) - dipj(iii,2)=b1(iii,itj1) + dipj(iii,2)=b1(iii,j+1) enddo kkk=0 do iii=1,2 @@ -6809,14 +8751,14 @@ C parallel orientation of the two CA-CA-CA frames. if (i.gt.1) then iti=itortyp(itype(i)) else - iti=ntortyp+1 + iti=ntortyp endif itk1=itortyp(itype(k+1)) itj=itortyp(itype(j)) if (l.lt.nres-1) then itl1=itortyp(itype(l+1)) else - itl1=ntortyp+1 + itl1=ntortyp endif C A1 kernel(j+1) A2T cd do iii=1,2 @@ -6907,26 +8849,26 @@ C They are needed only when the fifth- or the sixth-order cumulants are C indluded. IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN call transpose2(AEA(1,1,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1)) + call matvec2(auxmat(1,1),b1(1,i),AEAb1(1,1,1)) call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1)) call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1)) call transpose2(AEAderg(1,1,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1)) + call matvec2(auxmat(1,1),b1(1,i),AEAb1derg(1,1,1)) call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1)) - call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1)) - call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1)) + call matvec2(AEA(1,1,1),b1(1,k+1),AEAb1(1,2,1)) + call matvec2(AEAderg(1,1,1),b1(1,k+1),AEAb1derg(1,2,1)) call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1)) call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1)) call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1)) call transpose2(AEA(1,1,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2)) + call matvec2(auxmat(1,1),b1(1,j),AEAb1(1,1,2)) call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2)) call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2)) call transpose2(AEAderg(1,1,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2)) + call matvec2(auxmat(1,1),b1(1,j),AEAb1derg(1,1,2)) call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2)) - call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2)) - call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2)) + call matvec2(AEA(1,1,2),b1(1,l+1),AEAb1(1,2,2)) + call matvec2(AEAderg(1,1,2),b1(1,l+1),AEAb1derg(1,2,2)) call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2)) call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2)) call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2)) @@ -6935,20 +8877,20 @@ C Calculate the Cartesian derivatives of the vectors. do kkk=1,5 do lll=1,3 call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti), + call matvec2(auxmat(1,1),b1(1,i), & AEAb1derx(1,lll,kkk,iii,1,1)) call matvec2(auxmat(1,1),Ub2(1,i), & AEAb2derx(1,lll,kkk,iii,1,1)) - call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1), + call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,k+1), & AEAb1derx(1,lll,kkk,iii,2,1)) call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1), & AEAb2derx(1,lll,kkk,iii,2,1)) call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itj), + call matvec2(auxmat(1,1),b1(1,j), & AEAb1derx(1,lll,kkk,iii,1,2)) call matvec2(auxmat(1,1),Ub2(1,j), & AEAb2derx(1,lll,kkk,iii,1,2)) - call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1), + call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,l+1), & AEAb1derx(1,lll,kkk,iii,2,2)) call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1), & AEAb2derx(1,lll,kkk,iii,2,2)) @@ -6962,7 +8904,7 @@ C Antiparallel orientation of the two CA-CA-CA frames. if (i.gt.1) then iti=itortyp(itype(i)) else - iti=ntortyp+1 + iti=ntortyp endif itk1=itortyp(itype(k+1)) itl=itortyp(itype(l)) @@ -6970,7 +8912,7 @@ C Antiparallel orientation of the two CA-CA-CA frames. if (j.lt.nres-1) then itj1=itortyp(itype(j+1)) else - itj1=ntortyp+1 + itj1=ntortyp endif C A2 kernel(j-1)T A1T call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), @@ -7045,26 +8987,26 @@ C indluded. IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or. & (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN call transpose2(AEA(1,1,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1)) + call matvec2(auxmat(1,1),b1(1,i),AEAb1(1,1,1)) call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1)) call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1)) call transpose2(AEAderg(1,1,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1)) + call matvec2(auxmat(1,1),b1(1,i),AEAb1derg(1,1,1)) call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1)) - call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1)) - call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1)) + call matvec2(AEA(1,1,1),b1(1,k+1),AEAb1(1,2,1)) + call matvec2(AEAderg(1,1,1),b1(1,k+1),AEAb1derg(1,2,1)) call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1)) call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1)) call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1)) call transpose2(AEA(1,1,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2)) + call matvec2(auxmat(1,1),b1(1,j+1),AEAb1(1,1,2)) call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2)) call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2)) call transpose2(AEAderg(1,1,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2)) + call matvec2(auxmat(1,1),b1(1,l),AEAb1(1,1,2)) call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2)) - call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2)) - call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2)) + call matvec2(AEA(1,1,2),b1(1,j+1),AEAb1(1,2,2)) + call matvec2(AEAderg(1,1,2),b1(1,j+1),AEAb1derg(1,2,2)) call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2)) call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2)) call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2)) @@ -7073,20 +9015,20 @@ C Calculate the Cartesian derivatives of the vectors. do kkk=1,5 do lll=1,3 call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti), + call matvec2(auxmat(1,1),b1(1,i), & AEAb1derx(1,lll,kkk,iii,1,1)) call matvec2(auxmat(1,1),Ub2(1,i), & AEAb2derx(1,lll,kkk,iii,1,1)) - call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1), + call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,k+1), & AEAb1derx(1,lll,kkk,iii,2,1)) call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1), & AEAb2derx(1,lll,kkk,iii,2,1)) call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itl), + call matvec2(auxmat(1,1),b1(1,l), & AEAb1derx(1,lll,kkk,iii,1,2)) call matvec2(auxmat(1,1),Ub2(1,l), & AEAb2derx(1,lll,kkk,iii,1,2)) - call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1), + call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,j+1), & AEAb1derx(1,lll,kkk,iii,2,2)) call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j), & AEAb2derx(1,lll,kkk,iii,2,2)) @@ -7383,7 +9325,7 @@ C Contribution from graph II call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) - eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk)) + eello5_2=scalar2(AEAb1(1,2,1),b1(1,k)) & -0.5d0*scalar2(vv(1),Ctobr(1,k)) C Explicit gradient in virtual-dihedral angles. g_corr5_loc(k-1)=g_corr5_loc(k-1) @@ -7393,11 +9335,11 @@ C Explicit gradient in virtual-dihedral angles. vv(2)=pizda(2,1)-pizda(1,2) if (l.eq.j+1) then g_corr5_loc(l-1)=g_corr5_loc(l-1) - & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk)) + & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,k)) & -0.5d0*scalar2(vv(1),Ctobr(1,k))) else g_corr5_loc(j-1)=g_corr5_loc(j-1) - & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk)) + & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,k)) & -0.5d0*scalar2(vv(1),Ctobr(1,k))) endif C Cartesian gradient @@ -7409,7 +9351,7 @@ C Cartesian gradient vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) derx(lll,kkk,iii)=derx(lll,kkk,iii) - & +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk)) + & +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,k)) & -0.5d0*scalar2(vv(1),Ctobr(1,k)) enddo enddo @@ -7464,7 +9406,7 @@ cd1110 continue call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) - eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl)) + eello5_4=scalar2(AEAb1(1,2,2),b1(1,l)) & -0.5d0*scalar2(vv(1),Ctobr(1,l)) C Explicit gradient in virtual-dihedral angles. g_corr5_loc(l-1)=g_corr5_loc(l-1) @@ -7473,7 +9415,7 @@ C Explicit gradient in virtual-dihedral angles. vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) g_corr5_loc(k-1)=g_corr5_loc(k-1) - & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl)) + & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,l)) & -0.5d0*scalar2(vv(1),Ctobr(1,l))) C Cartesian gradient do iii=1,2 @@ -7484,7 +9426,7 @@ C Cartesian gradient vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) derx(lll,kkk,iii)=derx(lll,kkk,iii) - & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl)) + & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,l)) & -0.5d0*scalar2(vv(1),Ctobr(1,l)) enddo enddo @@ -7537,7 +9479,7 @@ C Contribution from graph IV call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) - eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj)) + eello5_4=scalar2(AEAb1(1,2,2),b1(1,j)) & -0.5d0*scalar2(vv(1),Ctobr(1,j)) C Explicit gradient in virtual-dihedral angles. g_corr5_loc(j-1)=g_corr5_loc(j-1) @@ -7546,7 +9488,7 @@ C Explicit gradient in virtual-dihedral angles. vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) g_corr5_loc(k-1)=g_corr5_loc(k-1) - & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj)) + & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,j)) & -0.5d0*scalar2(vv(1),Ctobr(1,j))) C Cartesian gradient do iii=1,2 @@ -7557,7 +9499,7 @@ C Cartesian gradient vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii) - & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj)) + & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,j)) & -0.5d0*scalar2(vv(1),Ctobr(1,j)) enddo enddo @@ -7839,8 +9781,8 @@ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC vv1(1)=pizda1(1,1)-pizda1(2,2) vv1(2)=pizda1(1,2)+pizda1(2,1) s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i)) - vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk) - vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk) + vv(1)=AEAb1(1,2,imat)*b1(1,k)-AEAb1(2,2,imat)*b1(2,k) + vv(2)=AEAb1(1,2,imat)*b1(2,k)+AEAb1(2,2,imat)*b1(1,k) s5=scalar2(vv(1),Dtobr2(1,i)) cd write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5 eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5) @@ -7853,8 +9795,8 @@ cd write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5 call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1)) vv1(1)=pizda1(1,1)-pizda1(2,2) vv1(2)=pizda1(1,2)+pizda1(2,1) - vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk) - vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk) + vv(1)=AEAb1derg(1,2,imat)*b1(1,k)-AEAb1derg(2,2,imat)*b1(2,k) + vv(2)=AEAb1derg(1,2,imat)*b1(2,k)+AEAb1derg(2,2,imat)*b1(1,k) if (l.eq.j+1) then g_corr6_loc(l-1)=g_corr6_loc(l-1) & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i)) @@ -7893,10 +9835,10 @@ cd write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5 vv1(1)=pizda1(1,1)-pizda1(2,2) vv1(2)=pizda1(1,2)+pizda1(2,1) s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i)) - vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk) - & -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk) - vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk) - & +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk) + vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,k) + & -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,k) + vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,k) + & +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,k) s5=scalar2(vv(1),Dtobr2(1,i)) derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5) enddo @@ -8124,22 +10066,22 @@ C energy moment and not to the cluster cumulant. if (j.lt.nres-1) then itj1=itortyp(itype(j+1)) else - itj1=ntortyp+1 + itj1=ntortyp endif itk=itortyp(itype(k)) itk1=itortyp(itype(k+1)) if (l.lt.nres-1) then itl1=itortyp(itype(l+1)) else - itl1=ntortyp+1 + itl1=ntortyp endif #ifdef MOMENT s1=dip(4,jj,i)*dip(4,kk,k) #endif - call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1)) - s2=0.5d0*scalar2(b1(1,itk),auxvec(1)) - call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1)) - s3=0.5d0*scalar2(b1(1,itj1),auxvec(1)) + call matvec2(AECA(1,1,1),b1(1,k+1),auxvec(1)) + s2=0.5d0*scalar2(b1(1,k),auxvec(1)) + call matvec2(AECA(1,1,2),b1(1,l+1),auxvec(1)) + s3=0.5d0*scalar2(b1(1,j+1),auxvec(1)) call transpose2(EE(1,1,itk),auxmat(1,1)) call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) @@ -8154,13 +10096,13 @@ cd & "sum",-(s2+s3+s4) #endif c eello6_graph3=-s4 C Derivatives in gamma(k-1) - call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1)) - s3=0.5d0*scalar2(b1(1,itj1),auxvec(1)) + call matvec2(AECAderg(1,1,2),b1(1,l+1),auxvec(1)) + s3=0.5d0*scalar2(b1(1,j+1),auxvec(1)) s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k)) g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4) C Derivatives in gamma(l-1) - call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1)) - s2=0.5d0*scalar2(b1(1,itk),auxvec(1)) + call matvec2(AECAderg(1,1,1),b1(1,k+1),auxvec(1)) + s2=0.5d0*scalar2(b1(1,k),auxvec(1)) call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) @@ -8177,12 +10119,12 @@ C Cartesian derivatives. s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k) endif #endif - call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1), + call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,k+1), & auxvec(1)) - s2=0.5d0*scalar2(b1(1,itk),auxvec(1)) - call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1), + s2=0.5d0*scalar2(b1(1,k),auxvec(1)) + call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,l+1), & auxvec(1)) - s3=0.5d0*scalar2(b1(1,itj1),auxvec(1)) + s3=0.5d0*scalar2(b1(1,j+1),auxvec(1)) call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1), & pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) @@ -8243,19 +10185,19 @@ cd write (2,*) 'eello_graph4: wturn6',wturn6 if (j.lt.nres-1) then itj1=itortyp(itype(j+1)) else - itj1=ntortyp+1 + itj1=ntortyp endif itk=itortyp(itype(k)) if (k.lt.nres-1) then itk1=itortyp(itype(k+1)) else - itk1=ntortyp+1 + itk1=ntortyp endif itl=itortyp(itype(l)) if (l.lt.nres-1) then itl1=itortyp(itype(l+1)) else - itl1=ntortyp+1 + itl1=ntortyp endif cd write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l cd write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk, @@ -8270,11 +10212,11 @@ cd & ' itl',itl,' itl1',itl1 call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1)) s2=0.5d0*scalar2(Ub2(1,i),auxvec(1)) if (j.eq.l+1) then - call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1)) + call matvec2(ADtEA1(1,1,3-imat),b1(1,j+1),auxvec1(1)) + s3=-0.5d0*scalar2(b1(1,j),auxvec1(1)) else - call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1)) + call matvec2(ADtEA1(1,1,3-imat),b1(1,l+1),auxvec1(1)) + s3=-0.5d0*scalar2(b1(1,l),auxvec1(1)) endif call transpose2(EUg(1,1,k),auxmat(1,1)) call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1)) @@ -8298,11 +10240,11 @@ C Derivatives in gamma(i-1) #endif s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1)) if (j.eq.l+1) then - call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1)) + call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,j+1),auxvec1(1)) + s3=-0.5d0*scalar2(b1(1,j),auxvec1(1)) else - call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1)) + call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,l+1),auxvec1(1)) + s3=-0.5d0*scalar2(b1(1,l),auxvec1(1)) endif s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i)) if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then @@ -8331,11 +10273,11 @@ C Derivatives in gamma(k-1) call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1)) s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1)) if (j.eq.l+1) then - call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1)) + call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,j+1),auxvec1(1)) + s3=-0.5d0*scalar2(b1(1,j),auxvec1(1)) else - call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1)) + call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,l+1),auxvec1(1)) + s3=-0.5d0*scalar2(b1(1,l),auxvec1(1)) endif call transpose2(EUgder(1,1,k),auxmat1(1,1)) call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1)) @@ -8401,12 +10343,12 @@ C Cartesian derivatives. s2=0.5d0*scalar2(Ub2(1,i),auxvec(1)) if (j.eq.l+1) then call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat), - & b1(1,itj1),auxvec(1)) - s3=-0.5d0*scalar2(b1(1,itj),auxvec(1)) + & b1(1,j+1),auxvec(1)) + s3=-0.5d0*scalar2(b1(1,j),auxvec(1)) else call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat), - & b1(1,itl1),auxvec(1)) - s3=-0.5d0*scalar2(b1(1,itl),auxvec(1)) + & b1(1,l+1),auxvec(1)) + s3=-0.5d0*scalar2(b1(1,l),auxvec(1)) endif call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1), & pizda(1,1)) @@ -8506,12 +10448,12 @@ cd write (2,*) 'eello6_5',eello6_5 #ifdef MOMENT call transpose2(AEA(1,1,1),auxmat(1,1)) call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1)) - ss1=scalar2(Ub2(1,i+2),b1(1,itl)) + ss1=scalar2(Ub2(1,i+2),b1(1,l)) s1 = (auxmat(1,1)+auxmat(2,2))*ss1 #endif - call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1)) + call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1(1)) call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1)) - s2 = scalar2(b1(1,itk),vtemp1(1)) + s2 = scalar2(b1(1,k),vtemp1(1)) #ifdef MOMENT call transpose2(AEA(1,1,2),atemp(1,1)) call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1)) @@ -8526,7 +10468,7 @@ cd write (2,*) 'eello6_5',eello6_5 call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1)) call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) - ss13 = scalar2(b1(1,itk),vtemp4(1)) + ss13 = scalar2(b1(1,k),vtemp4(1)) s13 = (gtemp(1,1)+gtemp(2,2))*ss13 #endif c write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13 @@ -8560,12 +10502,12 @@ C Derivatives in gamma(i+3) #ifdef MOMENT call transpose2(AEA(1,1,1),auxmatd(1,1)) call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1)) - ss1d=scalar2(Ub2der(1,i+2),b1(1,itl)) + ss1d=scalar2(Ub2der(1,i+2),b1(1,l)) s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d #endif - call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1)) + call matvec2(EUgder(1,1,i+2),b1(1,l),vtemp1d(1)) call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1)) - s2d = scalar2(b1(1,itk),vtemp1d(1)) + s2d = scalar2(b1(1,k),vtemp1d(1)) #ifdef MOMENT call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1)) s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1)) @@ -8613,9 +10555,9 @@ C Derivatives in gamma(i+5) call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1)) s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1 #endif - call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1)) + call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1d(1)) call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1)) - s2d = scalar2(b1(1,itk),vtemp1d(1)) + s2d = scalar2(b1(1,k),vtemp1d(1)) #ifdef MOMENT call transpose2(AEA(1,1,2),atempd(1,1)) call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1)) @@ -8625,7 +10567,7 @@ C Derivatives in gamma(i+5) s12d = scalar2(Ub2(1,i+2),vtemp3d(1)) #ifdef MOMENT call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) - ss13d = scalar2(b1(1,itk),vtemp4d(1)) + ss13d = scalar2(b1(1,k),vtemp4d(1)) s13d = (gtemp(1,1)+gtemp(2,2))*ss13d #endif c s1d=0.0d0 @@ -8649,10 +10591,10 @@ C Cartesian derivatives call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1)) s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1 #endif - call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1)) + call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1(1)) call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1), & vtemp1d(1)) - s2d = scalar2(b1(1,itk),vtemp1d(1)) + s2d = scalar2(b1(1,k),vtemp1d(1)) #ifdef MOMENT call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1)) call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1)) @@ -8696,7 +10638,7 @@ c s13d=0.0d0 derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4), & vtemp4d(1)) - ss13d = scalar2(b1(1,itk),vtemp4d(1)) + ss13d = scalar2(b1(1,k),vtemp4d(1)) s13d = (gtemp(1,1)+gtemp(2,2))*ss13d derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d enddo @@ -8932,4 +10874,613 @@ crc print *,((prod(i,j),i=1,2),j=1,2) return end +CCC---------------------------------------------- + subroutine Eliptransfer(eliptran) + implicit real*8 (a-h,o-z) + include 'DIMENSIONS' + include 'COMMON.GEO' + include 'COMMON.VAR' + include 'COMMON.LOCAL' + include 'COMMON.CHAIN' + include 'COMMON.DERIV' + include 'COMMON.NAMES' + include 'COMMON.INTERACT' + include 'COMMON.IOUNITS' + include 'COMMON.CALC' + include 'COMMON.CONTROL' + include 'COMMON.SPLITELE' + include 'COMMON.SBRIDGE' +C this is done by Adasko +C print *,"wchodze" +C structure of box: +C water +C--bordliptop-- buffore starts +C--bufliptop--- here true lipid starts +C lipid +C--buflipbot--- lipid ends buffore starts +C--bordlipbot--buffore ends + eliptran=0.0 + do i=ilip_start,ilip_end +C do i=1,1 + if (itype(i).eq.ntyp1) cycle + + positi=(mod(((c(3,i)+c(3,i+1))/2.0d0),boxzsize)) + if (positi.le.0) positi=positi+boxzsize +C print *,i +C first for peptide groups +c for each residue check if it is in lipid or lipid water border area + if ((positi.gt.bordlipbot) + &.and.(positi.lt.bordliptop)) then +C the energy transfer exist + if (positi.lt.buflipbot) then +C what fraction I am in + fracinbuf=1.0d0- + & ((positi-bordlipbot)/lipbufthick) +C lipbufthick is thickenes of lipid buffore + sslip=sscalelip(fracinbuf) + ssgradlip=-sscagradlip(fracinbuf)/lipbufthick + eliptran=eliptran+sslip*pepliptran + gliptranc(3,i)=gliptranc(3,i)+ssgradlip*pepliptran/2.0d0 + gliptranc(3,i-1)=gliptranc(3,i-1)+ssgradlip*pepliptran/2.0d0 +C gliptranc(3,i-2)=gliptranc(3,i)+ssgradlip*pepliptran + +C print *,"doing sccale for lower part" +C print *,i,sslip,fracinbuf,ssgradlip + elseif (positi.gt.bufliptop) then + fracinbuf=1.0d0-((bordliptop-positi)/lipbufthick) + sslip=sscalelip(fracinbuf) + ssgradlip=sscagradlip(fracinbuf)/lipbufthick + eliptran=eliptran+sslip*pepliptran + gliptranc(3,i)=gliptranc(3,i)+ssgradlip*pepliptran/2.0d0 + gliptranc(3,i-1)=gliptranc(3,i-1)+ssgradlip*pepliptran/2.0d0 +C gliptranc(3,i-2)=gliptranc(3,i)+ssgradlip*pepliptran +C print *, "doing sscalefor top part" +C print *,i,sslip,fracinbuf,ssgradlip + else + eliptran=eliptran+pepliptran +C print *,"I am in true lipid" + endif +C else +C eliptran=elpitran+0.0 ! I am in water + endif + enddo +C print *, "nic nie bylo w lipidzie?" +C now multiply all by the peptide group transfer factor +C eliptran=eliptran*pepliptran +C now the same for side chains +CV do i=1,1 + do i=ilip_start,ilip_end + if (itype(i).eq.ntyp1) cycle + positi=(mod(c(3,i+nres),boxzsize)) + if (positi.le.0) positi=positi+boxzsize +C print *,mod(c(3,i+nres),boxzsize),bordlipbot,bordliptop +c for each residue check if it is in lipid or lipid water border area +C respos=mod(c(3,i+nres),boxzsize) +C print *,positi,bordlipbot,buflipbot + if ((positi.gt.bordlipbot) + & .and.(positi.lt.bordliptop)) then +C the energy transfer exist + if (positi.lt.buflipbot) then + fracinbuf=1.0d0- + & ((positi-bordlipbot)/lipbufthick) +C lipbufthick is thickenes of lipid buffore + sslip=sscalelip(fracinbuf) + ssgradlip=-sscagradlip(fracinbuf)/lipbufthick + eliptran=eliptran+sslip*liptranene(itype(i)) + gliptranx(3,i)=gliptranx(3,i) + &+ssgradlip*liptranene(itype(i)) + gliptranc(3,i-1)= gliptranc(3,i-1) + &+ssgradlip*liptranene(itype(i)) +C print *,"doing sccale for lower part" + elseif (positi.gt.bufliptop) then + fracinbuf=1.0d0- + &((bordliptop-positi)/lipbufthick) + sslip=sscalelip(fracinbuf) + ssgradlip=sscagradlip(fracinbuf)/lipbufthick + eliptran=eliptran+sslip*liptranene(itype(i)) + gliptranx(3,i)=gliptranx(3,i) + &+ssgradlip*liptranene(itype(i)) + gliptranc(3,i-1)= gliptranc(3,i-1) + &+ssgradlip*liptranene(itype(i)) +C print *, "doing sscalefor top part",sslip,fracinbuf + else + eliptran=eliptran+liptranene(itype(i)) +C print *,"I am in true lipid" + endif + endif ! if in lipid or buffor +C else +C eliptran=elpitran+0.0 ! I am in water + enddo + return + end +C--------------------------------------------------------- +C AFM soubroutine for constant force + subroutine AFMforce(Eafmforce) + implicit real*8 (a-h,o-z) + include 'DIMENSIONS' + include 'COMMON.GEO' + include 'COMMON.VAR' + include 'COMMON.LOCAL' + include 'COMMON.CHAIN' + include 'COMMON.DERIV' + include 'COMMON.NAMES' + include 'COMMON.INTERACT' + include 'COMMON.IOUNITS' + include 'COMMON.CALC' + include 'COMMON.CONTROL' + include 'COMMON.SPLITELE' + include 'COMMON.SBRIDGE' + real*8 diffafm(3) + dist=0.0d0 + Eafmforce=0.0d0 + do i=1,3 + diffafm(i)=c(i,afmend)-c(i,afmbeg) + dist=dist+diffafm(i)**2 + enddo + dist=dsqrt(dist) + Eafmforce=-forceAFMconst*(dist-distafminit) + do i=1,3 + gradafm(i,afmend-1)=-forceAFMconst*diffafm(i)/dist + gradafm(i,afmbeg-1)=forceAFMconst*diffafm(i)/dist + enddo +C print *,'AFM',Eafmforce + return + end +C--------------------------------------------------------- +C AFM subroutine with pseudoconstant velocity + subroutine AFMvel(Eafmforce) + implicit real*8 (a-h,o-z) + include 'DIMENSIONS' + include 'COMMON.GEO' + include 'COMMON.VAR' + include 'COMMON.LOCAL' + include 'COMMON.CHAIN' + include 'COMMON.DERIV' + include 'COMMON.NAMES' + include 'COMMON.INTERACT' + include 'COMMON.IOUNITS' + include 'COMMON.CALC' + include 'COMMON.CONTROL' + include 'COMMON.SPLITELE' + include 'COMMON.SBRIDGE' + real*8 diffafm(3) +C Only for check grad COMMENT if not used for checkgrad +C totT=3.0d0 +C-------------------------------------------------------- +C print *,"wchodze" + dist=0.0d0 + Eafmforce=0.0d0 + do i=1,3 + diffafm(i)=c(i,afmend)-c(i,afmbeg) + dist=dist+diffafm(i)**2 + enddo + dist=dsqrt(dist) + Eafmforce=0.5d0*forceAFMconst + & *(distafminit+totTafm*velAFMconst-dist)**2 +C Eafmforce=-forceAFMconst*(dist-distafminit) + do i=1,3 + gradafm(i,afmend-1)=-forceAFMconst* + &(distafminit+totTafm*velAFMconst-dist) + &*diffafm(i)/dist + gradafm(i,afmbeg-1)=forceAFMconst* + &(distafminit+totTafm*velAFMconst-dist) + &*diffafm(i)/dist + enddo +C print *,'AFM',Eafmforce,totTafm*velAFMconst,dist + return + end +c---------------------------------------------------------------------------- + double precision function sscale2(r,r_cut,r0,rlamb) + implicit none + double precision r,gamm,r_cut,r0,rlamb,rr + rr = dabs(r-r0) +c write (2,*) "r",r," r_cut",r_cut," r0",r0," rlamb",rlamb +c write (2,*) "rr",rr + if(rr.lt.r_cut-rlamb) then + sscale2=1.0d0 + else if(rr.le.r_cut.and.rr.ge.r_cut-rlamb) then + gamm=(rr-(r_cut-rlamb))/rlamb + sscale2=1.0d0+gamm*gamm*(2*gamm-3.0d0) + else + sscale2=0d0 + endif + return + end +C----------------------------------------------------------------------- + double precision function sscalgrad2(r,r_cut,r0,rlamb) + implicit none + double precision r,gamm,r_cut,r0,rlamb,rr + rr = dabs(r-r0) + if(rr.lt.r_cut-rlamb) then + sscalgrad2=0.0d0 + else if(rr.le.r_cut.and.rr.ge.r_cut-rlamb) then + gamm=(rr-(r_cut-rlamb))/rlamb + if (r.ge.r0) then + sscalgrad2=gamm*(6*gamm-6.0d0)/rlamb + else + sscalgrad2=-gamm*(6*gamm-6.0d0)/rlamb + endif + else + sscalgrad2=0.0d0 + endif + return + end +c---------------------------------------------------------------------------- + subroutine e_saxs(Esaxs_constr) + implicit none + include 'DIMENSIONS' +#ifdef MPI + include "mpif.h" + include "COMMON.SETUP" + integer IERR +#endif + include 'COMMON.SBRIDGE' + include 'COMMON.CHAIN' + include 'COMMON.GEO' + include 'COMMON.DERIV' + include 'COMMON.LOCAL' + include 'COMMON.INTERACT' + include 'COMMON.VAR' + include 'COMMON.IOUNITS' + include 'COMMON.MD' + include 'COMMON.CONTROL' + include 'COMMON.NAMES' + include 'COMMON.TIME1' + include 'COMMON.FFIELD' +c + double precision Esaxs_constr + integer i,iint,j,k,l + double precision PgradC(maxSAXS,3,maxres), + & PgradX(maxSAXS,3,maxres),Pcalc(maxSAXS) +#ifdef MPI + double precision PgradC_(maxSAXS,3,maxres), + & PgradX_(maxSAXS,3,maxres),Pcalc_(maxSAXS) +#endif + double precision dk,dijCACA,dijCASC,dijSCCA,dijSCSC, + & sigma2CACA,sigma2CASC,sigma2SCCA,sigma2SCSC,expCACA,expCASC, + & expSCCA,expSCSC,CASCgrad,SCCAgrad,SCSCgrad,aux,auxC,auxC1, + & auxX,auxX1,CACAgrad,Cnorm + double precision sss2,ssgrad2,rrr,sscalgrad2,sscale2 + double precision dist + external dist +c SAXS restraint penalty function +#ifdef DEBUG + write(iout,*) "------- SAXS penalty function start -------" + write (iout,*) "nsaxs",nsaxs + write (iout,*) "Esaxs: iatsc_s",iatsc_s," iatsc_e",iatsc_e + write (iout,*) "Psaxs" + do i=1,nsaxs + write (iout,'(i5,e15.5)') i, Psaxs(i) + enddo +#endif + Esaxs_constr = 0.0d0 + do k=1,nsaxs + Pcalc(k)=0.0d0 + do j=1,nres + do l=1,3 + PgradC(k,l,j)=0.0d0 + PgradX(k,l,j)=0.0d0 + enddo + enddo + enddo + do i=iatsc_s,iatsc_e + if (itype(i).eq.ntyp1) cycle + do iint=1,nint_gr(i) + do j=istart(i,iint),iend(i,iint) + if (itype(j).eq.ntyp1) cycle +#ifdef ALLSAXS + dijCACA=dist(i,j) + dijCASC=dist(i,j+nres) + dijSCCA=dist(i+nres,j) + dijSCSC=dist(i+nres,j+nres) + sigma2CACA=2.0d0/(pstok**2) + sigma2CASC=4.0d0/(pstok**2+restok(itype(j))**2) + sigma2SCCA=4.0d0/(pstok**2+restok(itype(i))**2) + sigma2SCSC=4.0d0/(restok(itype(j))**2+restok(itype(i))**2) + do k=1,nsaxs + dk = distsaxs(k) + expCACA = dexp(-0.5d0*sigma2CACA*(dijCACA-dk)**2) + if (itype(j).ne.10) then + expCASC = dexp(-0.5d0*sigma2CASC*(dijCASC-dk)**2) + else + endif + expCASC = 0.0d0 + if (itype(i).ne.10) then + expSCCA = dexp(-0.5d0*sigma2SCCA*(dijSCCA-dk)**2) + else + expSCCA = 0.0d0 + endif + if (itype(i).ne.10 .and. itype(j).ne.10) then + expSCSC = dexp(-0.5d0*sigma2SCSC*(dijSCSC-dk)**2) + else + expSCSC = 0.0d0 + endif + Pcalc(k) = Pcalc(k)+expCACA+expCASC+expSCCA+expSCSC +#ifdef DEBUG + write(iout,*) "i j k Pcalc",i,j,Pcalc(k) +#endif + CACAgrad = sigma2CACA*(dijCACA-dk)*expCACA + CASCgrad = sigma2CASC*(dijCASC-dk)*expCASC + SCCAgrad = sigma2SCCA*(dijSCCA-dk)*expSCCA + SCSCgrad = sigma2SCSC*(dijSCSC-dk)*expSCSC + do l=1,3 +c CA CA + aux = CACAgrad*(C(l,j)-C(l,i))/dijCACA + PgradC(k,l,i) = PgradC(k,l,i)-aux + PgradC(k,l,j) = PgradC(k,l,j)+aux +c CA SC + if (itype(j).ne.10) then + aux = CASCgrad*(C(l,j+nres)-C(l,i))/dijCASC + PgradC(k,l,i) = PgradC(k,l,i)-aux + PgradC(k,l,j) = PgradC(k,l,j)+aux + PgradX(k,l,j) = PgradX(k,l,j)+aux + endif +c SC CA + if (itype(i).ne.10) then + aux = SCCAgrad*(C(l,j)-C(l,i+nres))/dijSCCA + PgradX(k,l,i) = PgradX(k,l,i)-aux + PgradC(k,l,i) = PgradC(k,l,i)-aux + PgradC(k,l,j) = PgradC(k,l,j)+aux + endif +c SC SC + if (itype(i).ne.10 .and. itype(j).ne.10) then + aux = SCSCgrad*(C(l,j+nres)-C(l,i+nres))/dijSCSC + PgradC(k,l,i) = PgradC(k,l,i)-aux + PgradC(k,l,j) = PgradC(k,l,j)+aux + PgradX(k,l,i) = PgradX(k,l,i)-aux + PgradX(k,l,j) = PgradX(k,l,j)+aux + endif + enddo ! l + enddo ! k +#else + dijCACA=dist(i,j) + sigma2CACA=scal_rad**2*0.25d0/ + & (restok(itype(j))**2+restok(itype(i))**2) + + IF (saxs_cutoff.eq.0) THEN + do k=1,nsaxs + dk = distsaxs(k) + expCACA = dexp(-0.5d0*sigma2CACA*(dijCACA-dk)**2) + Pcalc(k) = Pcalc(k)+expCACA + CACAgrad = sigma2CACA*(dijCACA-dk)*expCACA + do l=1,3 + aux = CACAgrad*(C(l,j)-C(l,i))/dijCACA + PgradC(k,l,i) = PgradC(k,l,i)-aux + PgradC(k,l,j) = PgradC(k,l,j)+aux + enddo ! l + enddo ! k + ELSE + rrr = saxs_cutoff*2.0d0/dsqrt(sigma2CACA) + do k=1,nsaxs + dk = distsaxs(k) +c write (2,*) "ijk",i,j,k + sss2 = sscale2(dijCACA,rrr,dk,0.3d0) + if (sss2.eq.0.0d0) cycle + ssgrad2 = sscalgrad2(dijCACA,rrr,dk,0.3d0) + if (energy_dec) write(iout,'(a4,3i5,5f10.4)') + & 'saxs',i,j,k,dijCACA,rrr,dk,sss2,ssgrad2 + expCACA = dexp(-0.5d0*sigma2CACA*(dijCACA-dk)**2)*sss2 + Pcalc(k) = Pcalc(k)+expCACA +#ifdef DEBUG + write(iout,*) "i j k Pcalc",i,j,Pcalc(k) +#endif + CACAgrad = -sigma2CACA*(dijCACA-dk)*expCACA+ + & ssgrad2*expCACA/sss2 + do l=1,3 +c CA CA + aux = CACAgrad*(C(l,j)-C(l,i))/dijCACA + PgradC(k,l,i) = PgradC(k,l,i)+aux + PgradC(k,l,j) = PgradC(k,l,j)-aux + enddo ! l + enddo ! k + ENDIF +#endif + enddo ! j + enddo ! iint + enddo ! i +#ifdef MPI + if (nfgtasks.gt.1) then + call MPI_Reduce(Pcalc(1),Pcalc_(1),nsaxs,MPI_DOUBLE_PRECISION, + & MPI_SUM,king,FG_COMM,IERR) + if (fg_rank.eq.king) then + do k=1,nsaxs + Pcalc(k) = Pcalc_(k) + enddo + endif + call MPI_Reduce(PgradC(k,1,1),PgradC_(k,1,1),3*maxsaxs*nres, + & MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR) + if (fg_rank.eq.king) then + do i=1,nres + do l=1,3 + do k=1,nsaxs + PgradC(k,l,i) = PgradC_(k,l,i) + enddo + enddo + enddo + endif +#ifdef ALLSAXS + call MPI_Reduce(PgradX(k,1,1),PgradX_(k,1,1),3*maxsaxs*nres, + & MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR) + if (fg_rank.eq.king) then + do i=1,nres + do l=1,3 + do k=1,nsaxs + PgradX(k,l,i) = PgradX_(k,l,i) + enddo + enddo + enddo + endif +#endif + endif +#endif +#ifdef MPI + if (fg_rank.eq.king) then +#endif + Cnorm = 0.0d0 + do k=1,nsaxs + Cnorm = Cnorm + Pcalc(k) + enddo + Esaxs_constr = dlog(Cnorm)-wsaxs0 + do k=1,nsaxs + if (Pcalc(k).gt.0.0d0) + & Esaxs_constr = Esaxs_constr - Psaxs(k)*dlog(Pcalc(k)) +#ifdef DEBUG + write (iout,*) "k",k," Esaxs_constr",Esaxs_constr +#endif + enddo +#ifdef DEBUG + write (iout,*) "Cnorm",Cnorm," Esaxs_constr",Esaxs_constr +#endif + do i=nnt,nct + do l=1,3 + auxC=0.0d0 + auxC1=0.0d0 + auxX=0.0d0 + auxX1=0.d0 + do k=1,nsaxs + if (Pcalc(k).gt.0) + & auxC = auxC +Psaxs(k)*PgradC(k,l,i)/Pcalc(k) + auxC1 = auxC1+PgradC(k,l,i) +#ifdef ALLSAXS + auxX = auxX +Psaxs(k)*PgradX(k,l,i)/Pcalc(k) + auxX1 = auxX1+PgradX(k,l,i) +#endif + enddo + gsaxsC(l,i) = auxC - auxC1/Cnorm +#ifdef ALLSAXS + gsaxsX(l,i) = auxX - auxX1/Cnorm +#endif +c write (iout,*) "l i",l,i," gradC",wsaxs*(auxC - auxC1/Cnorm), +c * " gradX",wsaxs*(auxX - auxX1/Cnorm) + enddo + enddo +#ifdef MPI + endif +#endif + return + end +c---------------------------------------------------------------------------- + subroutine e_saxsC(Esaxs_constr) + implicit none + include 'DIMENSIONS' +#ifdef MPI + include "mpif.h" + include "COMMON.SETUP" + integer IERR +#endif + include 'COMMON.SBRIDGE' + include 'COMMON.CHAIN' + include 'COMMON.GEO' + include 'COMMON.DERIV' + include 'COMMON.LOCAL' + include 'COMMON.INTERACT' + include 'COMMON.VAR' + include 'COMMON.IOUNITS' + include 'COMMON.MD' + include 'COMMON.CONTROL' + include 'COMMON.NAMES' + include 'COMMON.TIME1' + include 'COMMON.FFIELD' +c + double precision Esaxs_constr + integer i,iint,j,k,l + double precision PgradC(3,maxres),PgradX(3,maxres),Pcalc,logPtot +#ifdef MPI + double precision gsaxsc_(3,maxres),gsaxsx_(3,maxres),logPtot_ +#endif + double precision dk,dijCASPH,dijSCSPH, + & sigma2CA,sigma2SC,expCASPH,expSCSPH, + & CASPHgrad,SCSPHgrad,aux,auxC,auxC1, + & auxX,auxX1,Cnorm +c SAXS restraint penalty function +#ifdef DEBUG + write(iout,*) "------- SAXS penalty function start -------" + write (iout,*) "nsaxs",nsaxs + + do i=nnt,nct + print *,MyRank,"C",i,(C(j,i),j=1,3) + enddo + do i=nnt,nct + print *,MyRank,"CSaxs",i,(Csaxs(j,i),j=1,3) + enddo +#endif + Esaxs_constr = 0.0d0 + logPtot=0.0d0 + do j=isaxs_start,isaxs_end + Pcalc=0.0d0 + do i=1,nres + do l=1,3 + PgradC(l,i)=0.0d0 + PgradX(l,i)=0.0d0 + enddo + enddo + do i=nnt,nct + if (itype(i).eq.ntyp1) cycle + dijCASPH=0.0d0 + dijSCSPH=0.0d0 + do l=1,3 + dijCASPH=dijCASPH+(C(l,i)-Csaxs(l,j))**2 + enddo + if (itype(i).ne.10) then + do l=1,3 + dijSCSPH=dijSCSPH+(C(l,i+nres)-Csaxs(l,j))**2 + enddo + endif + sigma2CA=2.0d0/pstok**2 + sigma2SC=4.0d0/restok(itype(i))**2 + expCASPH = dexp(-0.5d0*sigma2CA*dijCASPH) + expSCSPH = dexp(-0.5d0*sigma2SC*dijSCSPH) + Pcalc = Pcalc+expCASPH+expSCSPH +#ifdef DEBUG + write(*,*) "processor i j Pcalc", + & MyRank,i,j,dijCASPH,dijSCSPH, Pcalc +#endif + CASPHgrad = sigma2CA*expCASPH + SCSPHgrad = sigma2SC*expSCSPH + do l=1,3 + aux = (C(l,i+nres)-Csaxs(l,j))*SCSPHgrad + PgradX(l,i) = PgradX(l,i) + aux + PgradC(l,i) = PgradC(l,i)+(C(l,i)-Csaxs(l,j))*CASPHgrad+aux + enddo ! l + enddo ! i + do i=nnt,nct + do l=1,3 + gsaxsc(l,i)=gsaxsc(l,i)+PgradC(l,i)/Pcalc + gsaxsx(l,i)=gsaxsx(l,i)+PgradX(l,i)/Pcalc + enddo + enddo + logPtot = logPtot - dlog(Pcalc) +c print *,"me",me,MyRank," j",j," logPcalc",-dlog(Pcalc), +c & " logPtot",logPtot + enddo ! j +#ifdef MPI + if (nfgtasks.gt.1) then +c write (iout,*) "logPtot before reduction",logPtot + call MPI_Reduce(logPtot,logPtot_,1,MPI_DOUBLE_PRECISION, + & MPI_SUM,king,FG_COMM,IERR) + logPtot = logPtot_ +c write (iout,*) "logPtot after reduction",logPtot + call MPI_Reduce(gsaxsC(1,1),gsaxsC_(1,1),3*nres, + & MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR) + if (fg_rank.eq.king) then + do i=1,nres + do l=1,3 + gsaxsC(l,i) = gsaxsC_(l,i) + enddo + enddo + endif + call MPI_Reduce(gsaxsX(1,1),gsaxsX_(1,1),3*nres, + & MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR) + if (fg_rank.eq.king) then + do i=1,nres + do l=1,3 + gsaxsX(l,i) = gsaxsX_(l,i) + enddo + enddo + endif + endif +#endif + Esaxs_constr = logPtot + return + end