X-Git-Url: http://mmka.chem.univ.gda.pl/gitweb/?a=blobdiff_plain;f=source%2Funres%2Fsrc_MD-M%2Fenergy_p_new_barrier.F;h=6976071a8cf67ae4f6238c48a62768e7861a0a41;hb=78c6b598700d2c701af6532afb20ebc905a0b8ef;hp=209726583b02033008626d99022a4bef61b4ef82;hpb=f5379d3246c4bd95e946c4d35d4a1c13e329c4cb;p=unres.git diff --git a/source/unres/src_MD-M/energy_p_new_barrier.F b/source/unres/src_MD-M/energy_p_new_barrier.F index 2097265..6976071 100644 --- a/source/unres/src_MD-M/energy_p_new_barrier.F +++ b/source/unres/src_MD-M/energy_p_new_barrier.F @@ -301,6 +301,8 @@ C energia(17)=estr energia(20)=Uconst+Uconst_back energia(21)=esccor +c Here are the energies showed per procesor if the are more processors +c per molecule then we sum it up in sum_energy subroutine c print *," Processor",myrank," calls SUM_ENERGY" call sum_energy(energia,.true.) if (dyn_ss) call dyn_set_nss @@ -441,7 +443,7 @@ cMS$ATTRIBUTES C :: proc_proc include 'mpif.h' #endif double precision gradbufc(3,maxres),gradbufx(3,maxres), - & glocbuf(4*maxres),gradbufc_sum(3,maxres) + & glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres) include 'COMMON.SETUP' include 'COMMON.IOUNITS' include 'COMMON.FFIELD' @@ -453,6 +455,7 @@ cMS$ATTRIBUTES C :: proc_proc include 'COMMON.CONTROL' include 'COMMON.TIME1' include 'COMMON.MAXGRAD' + include 'COMMON.SCCOR' #ifdef TIMING time01=MPI_Wtime() #endif @@ -695,7 +698,6 @@ c enddo & +wturn3*gel_loc_turn3(i) & +wturn6*gel_loc_turn6(i) & +wel_loc*gel_loc_loc(i) - & +wsccor*gsccor_loc(i) enddo #ifdef DEBUG write (iout,*) "gloc after adding corr" @@ -714,6 +716,21 @@ c enddo do i=1,4*nres glocbuf(i)=gloc(i,icg) enddo +#define DEBUG +#ifdef DEBUG + write (iout,*) "gloc_sc before reduce" + do i=1,nres + do j=1,1 + write (iout,*) i,j,gloc_sc(j,i,icg) + enddo + enddo +#endif +#undef DEBUG + do i=1,nres + do j=1,3 + gloc_scbuf(j,i)=gloc_sc(j,i,icg) + enddo + enddo time00=MPI_Wtime() call MPI_Barrier(FG_COMM,IERR) time_barrier_g=time_barrier_g+MPI_Wtime()-time00 @@ -725,6 +742,19 @@ c enddo call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres, & MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR) time_reduce=time_reduce+MPI_Wtime()-time00 + call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres, + & MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR) + time_reduce=time_reduce+MPI_Wtime()-time00 +#define DEBUG +#ifdef DEBUG + write (iout,*) "gloc_sc after reduce" + do i=1,nres + do j=1,1 + write (iout,*) i,j,gloc_sc(j,i,icg) + enddo + enddo +#endif +#undef DEBUG #ifdef DEBUG write (iout,*) "gloc after reduce" do i=1,4*nres @@ -1031,9 +1061,9 @@ C c write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1046,8 +1076,8 @@ C cd write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint), cd & 'iend=',iend(i,iint) do j=istart(i,iint),iend(i,iint) - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi zj=c(3,nres+j)-zi @@ -1184,9 +1214,9 @@ C c print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1195,8 +1225,8 @@ C Calculate SC interaction energy. C do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi zj=c(3,nres+j)-zi @@ -1277,9 +1307,9 @@ c else c endif ind=0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1294,8 +1324,8 @@ C do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) ind=ind+1 - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle c dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) chi1=chi(itypi,itypj) @@ -1398,9 +1428,9 @@ c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon c if (icall.eq.0) lprn=.false. ind=0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1423,8 +1453,8 @@ C & 'evdw',i,j,evdwij,' ss' ELSE ind=ind+1 - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle c dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) c write (iout,*) "j",j,dsc_inv(itypj),dscj_inv, @@ -1550,9 +1580,9 @@ c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon c if (icall.eq.0) lprn=.true. ind=0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1567,8 +1597,8 @@ C do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) ind=ind+1 - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle c dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) sig0ij=sigma(itypi,itypj) @@ -1798,9 +1828,9 @@ C cd print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct evdw=0.0D0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1811,8 +1841,8 @@ C cd write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint), cd & 'iend=',iend(i,iint) do j=istart(i,iint),iend(i,iint) - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi zj=c(3,nres+j)-zi @@ -1880,7 +1910,7 @@ cd write(iout,*) 'In EELEC_soft_sphere' eello_turn4=0.0d0 ind=0 do i=iatel_s,iatel_e - if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle + if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -1890,7 +1920,7 @@ cd write(iout,*) 'In EELEC_soft_sphere' num_conti=0 c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) do j=ielstart(i),ielend(i) - if (itype(j).eq.21 .or. itype(j+1).eq.21) cycle + if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1) cycle ind=ind+1 iteli=itel(i) itelj=itel(j) @@ -2236,11 +2266,78 @@ C C Compute the virtual-bond-torsional-angle dependent quantities needed C to calculate the el-loc multibody terms of various order. C +c write(iout,*) 'nphi=',nphi,nres +#ifdef PARMAT + do i=ivec_start+2,ivec_end+2 +#else + do i=3,nres+1 +#endif +#ifdef NEWCORR + if (i.gt. nnt+2 .and. i.lt.nct+2) then + iti = itortyp(itype(i-2)) + else + iti=ntortyp+1 + endif +c if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then + if (i.gt. nnt+1 .and. i.lt.nct+1) then + iti1 = itortyp(itype(i-1)) + else + iti1=ntortyp+1 + endif +c write(iout,*),i + b1(1,i-2)=bnew1(1,1,iti)*dsin(theta(i-1)/2.0) + & +bnew1(2,1,iti)*dsin(theta(i-1)) + & +bnew1(3,1,iti)*dcos(theta(i-1)/2.0) + gtb1(1,i-2)=bnew1(1,1,iti)*dcos(theta(i-1)/2.0d0)/2.0d0 + & +bnew1(2,1,iti)*dcos(theta(i-1)) + & -bnew1(3,1,iti)*dsin(theta(i-1)/2.0d0)/2.0d0 +c & +bnew1(3,1,iti)*sin(alpha(i))*cos(beta(i)) +c &*(cos(theta(i)/2.0) + b2(1,i-2)=bnew2(1,1,iti)*dsin(theta(i-1)/2.0) + & +bnew2(2,1,iti)*dsin(theta(i-1)) + & +bnew2(3,1,iti)*dcos(theta(i-1)/2.0) +c & +bnew2(3,1,iti)*sin(alpha(i))*cos(beta(i)) +c &*(cos(theta(i)/2.0) + gtb2(1,i-2)=bnew2(1,1,iti)*dcos(theta(i-1)/2.0d0)/2.0d0 + & +bnew2(2,1,iti)*dcos(theta(i-1)) + & -bnew2(3,1,iti)*dsin(theta(i-1)/2.0d0)/2.0d0 +c if (ggb1(1,i).eq.0.0d0) then +c write(iout,*) 'i=',i,ggb1(1,i), +c &bnew1(1,1,iti)*cos(theta(i)/2.0)/2.0, +c &bnew1(2,1,iti)*cos(theta(i)), +c &bnew1(3,1,iti)*sin(theta(i)/2.0)/2.0 +c endif + b1(2,i-2)=bnew1(1,2,iti) + gtb1(2,i-2)=0.0 + b2(2,i-2)=bnew2(1,2,iti) + gtb2(2,i-2)=0.0 + EE(1,1,i-2)=eenew(1,iti)*dcos(theta(i-1)) + EE(1,2,i-2)=eeold(1,2,iti) + EE(2,1,i-2)=eeold(2,1,iti) + EE(2,2,i-2)=eeold(2,2,iti) + gtEE(1,1,i-2)=-eenew(1,iti)*dsin(theta(i-1)) + gtEE(1,2,i-2)=0.0d0 + gtEE(2,2,i-2)=0.0d0 + gtEE(2,1,i-2)=0.0d0 +c EE(2,2,iti)=0.0d0 +c EE(1,2,iti)=0.5d0*eenew(1,iti) +c EE(2,1,iti)=0.5d0*eenew(1,iti) +c b1(2,iti)=bnew1(1,2,iti)*sin(alpha(i))*sin(beta(i)) +c b2(2,iti)=bnew2(1,2,iti)*sin(alpha(i))*sin(beta(i)) + b1tilde(1,i-2)=b1(1,i-2) + b1tilde(2,i-2)=-b1(2,i-2) + b2tilde(1,i-2)=b2(1,i-2) + b2tilde(2,i-2)=-b2(2,i-2) +c write (iout,*) 'i=',i-2,gtb1(2,i-2),gtb1(1,i-2) +c write(iout,*) 'b1=',b1(1,i-2) +c write (iout,*) 'theta=', theta(i-1) + enddo #ifdef PARMAT do i=ivec_start+2,ivec_end+2 #else do i=3,nres+1 #endif +#endif if (i .lt. nres+1) then sin1=dsin(phi(i)) cos1=dcos(phi(i)) @@ -2325,8 +2422,18 @@ cd write (iout,*) 'b2',b2(:,iti) cd write (iout,*) 'Ug',Ug(:,:,i-2) c if (i .gt. iatel_s+2) then if (i .gt. nnt+2) then - call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2)) - call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2)) + call matvec2(Ug(1,1,i-2),b2(1,i-2),Ub2(1,i-2)) +#ifdef NEWCORR + call matvec2(Ug(1,1,i-2),gtb2(1,i-2),gUb2(1,i-2)) +c write (iout,*) Ug(1,1,i-2),gtb2(1,i-2),gUb2(1,i-2),"chuj" +#endif +c write(iout,*) "co jest kurwa", iti, EE(1,1,iti),EE(2,1,iti), +c & EE(1,2,iti),EE(2,2,iti) + call matmat2(EE(1,1,i-2),Ug(1,1,i-2),EUg(1,1,i-2)) + call matmat2(gtEE(1,1,i-2),Ug(1,1,i-2),gtEUg(1,1,i-2)) +c write(iout,*) "Macierz EUG", +c & eug(1,1,i-2),eug(1,2,i-2),eug(2,1,i-2), +c & eug(2,2,i-2) if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) & then call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2)) @@ -2348,21 +2455,25 @@ c if (i .gt. iatel_s+2) then enddo enddo endif - call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2)) - call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2)) + call matvec2(Ugder(1,1,i-2),b2(1,i-2),Ub2der(1,i-2)) + call matmat2(EE(1,1,i-2),Ugder(1,1,i-2),EUgder(1,1,i-2)) do k=1,2 muder(k,i-2)=Ub2der(k,i-2) enddo c if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then if (i.gt. nnt+1 .and. i.lt.nct+1) then - iti1 = itortyp(itype(i-1)) + if (itype(i-1).le.ntyp) then + iti1 = itortyp(itype(i-1)) + else + iti1=ntortyp+1 + endif else iti1=ntortyp+1 endif do k=1,2 - mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1) + mu(k,i-2)=Ub2(k,i-2)+b1(k,i-1) enddo -cd write (iout,*) 'mu ',mu(:,i-2) +c write (iout,*) 'mu ',mu(:,i-2),i-2 cd write (iout,*) 'mu1',mu1(:,i-2) cd write (iout,*) 'mu2',mu2(:,i-2) if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0) @@ -2373,7 +2484,7 @@ cd write (iout,*) 'mu2',mu2(:,i-2) call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2)) call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2)) C Vectors and matrices dependent on a single virtual-bond dihedral. - call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1)) + call matvec2(DD(1,1,iti),b1tilde(1,i-1),auxvec(1)) call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2)) @@ -2689,7 +2800,7 @@ C dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3), & erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3) double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4), - & aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4) + & aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4),gmuij(4) common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33, & dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi, & num_conti,j1,j2 @@ -2769,8 +2880,8 @@ C C Loop over i,i+2 and i,i+3 pairs of the peptide groups C do i=iturn3_start,iturn3_end - if (itype(i).eq.21 .or. itype(i+1).eq.21 - & .or. itype(i+2).eq.21 .or. itype(i+3).eq.21) cycle + if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1 + & .or. itype(i+2).eq.ntyp1 .or. itype(i+3).eq.ntyp1) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -2786,9 +2897,9 @@ C num_cont_hb(i)=num_conti enddo do i=iturn4_start,iturn4_end - if (itype(i).eq.21 .or. itype(i+1).eq.21 - & .or. itype(i+3).eq.21 - & .or. itype(i+4).eq.21) cycle + if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1 + & .or. itype(i+3).eq.ntyp1 + & .or. itype(i+4).eq.ntyp1) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -2799,8 +2910,9 @@ C ymedi=c(2,i)+0.5d0*dyi zmedi=c(3,i)+0.5d0*dzi num_conti=num_cont_hb(i) +c write(iout,*) "JESTEM W PETLI" call eelecij(i,i+3,ees,evdw1,eel_loc) - if (wturn4.gt.0.0d0 .and. itype(i+2).ne.21) + if (wturn4.gt.0.0d0 .and. itype(i+2).ne.ntyp1) & call eturn4(i,eello_turn4) num_cont_hb(i)=num_conti enddo ! i @@ -2808,7 +2920,8 @@ c c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3 c do i=iatel_s,iatel_e - if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle +c do i=7,7 + if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -2821,8 +2934,9 @@ c c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) num_conti=num_cont_hb(i) do j=ielstart(i),ielend(i) -c write (iout,*) i,j,itype(i),itype(j) - if (itype(j).eq.21 .or. itype(j+1).eq.21) cycle +c do j=13,13 +c write (iout,*) 'tu wchodze',i,j,itype(i),itype(j) + if (itype(j).eq.ntyp1.or. itype(j+1).eq.ntyp1) cycle call eelecij(i,j,ees,evdw1,eel_loc) enddo ! j num_cont_hb(i)=num_conti @@ -2860,7 +2974,8 @@ C------------------------------------------------------------------------------- dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3), & erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3) double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4), - & aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4) + & aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4),gmuij1(4),gmuji1(4), + & gmuij2(4),gmuji2(4) common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33, & dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi, & num_conti,j1,j2 @@ -2924,7 +3039,9 @@ cd & 1.0D0/dsqrt(rrmij),evdwij,eesij, cd & xmedi,ymedi,zmedi,xj,yj,zj if (energy_dec) then - write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij + write (iout,'(a6,2i5,0pf7.3,2i5,2e11.3)') + &'evdw1',i,j,evdwij + &,iteli,itelj,aaa,evdw1 write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij endif @@ -3075,6 +3192,7 @@ C Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al. C Macromolecules, 1974, 7, 797-806 for definition). This correlation terms C are computed for EVERY pair of non-contiguous peptide groups. C + if (j.lt.nres-1) then j1=j+1 j2=j-1 @@ -3083,10 +3201,20 @@ C j2=j-2 endif kkk=0 + lll=0 do k=1,2 do l=1,2 kkk=kkk+1 muij(kkk)=mu(k,i)*mu(l,j) +c write(iout,*) 'mumu=', mu(k,i),mu(l,j),i,j,k,l +#ifdef NEWCORR + gmuij1(kkk)=gtb1(k,i+1)*mu(l,j) +c write(iout,*) 'k=',k,i,gtb1(k,i+1),gtb1(k,i+1)*mu(l,j) + gmuij2(kkk)=gUb2(k,i)*mu(l,j) + gmuji1(kkk)=mu(k,i)*gtb1(l,j+1) +c write(iout,*) 'l=',l,j,gtb1(l,j+1),gtb1(l,j+1)*mu(k,i) + gmuji2(kkk)=mu(k,i)*gUb2(l,j) +#endif enddo enddo cd write (iout,*) 'EELEC: i',i,' j',j @@ -3252,10 +3380,55 @@ cgrad endif C Contribution to the local-electrostatic energy coming from the i-j pair eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3) & +a33*muij(4) +c write(iout,*) 'muije=',muij(1),muij(2),muij(3),muij(4) +C Calculate patrial derivative for theta angle +#ifdef NEWCORR + geel_loc_ij=a22*gmuij1(1) + & +a23*gmuij1(2) + & +a32*gmuij1(3) + & +a33*gmuij1(4) +c write(iout,*) "derivative over thatai" +c write(iout,*) a22*gmuij1(1), a23*gmuij1(2) ,a32*gmuij1(3), +c & a33*gmuij1(4) + gloc(nphi+i,icg)=gloc(nphi+i,icg)+ + & geel_loc_ij*wel_loc +c write(iout,*) "derivative over thatai-1" +c write(iout,*) a22*gmuij2(1), a23*gmuij2(2) ,a32*gmuij2(3), +c & a33*gmuij2(4) + geel_loc_ij= + & a22*gmuij2(1) + & +a23*gmuij2(2) + & +a32*gmuij2(3) + & +a33*gmuij2(4) + gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+ + & geel_loc_ij*wel_loc +c Derivative over j residue + geel_loc_ji=a22*gmuji1(1) + & +a23*gmuji1(2) + & +a32*gmuji1(3) + & +a33*gmuji1(4) +c write(iout,*) "derivative over thataj" +c write(iout,*) a22*gmuji1(1), a23*gmuji1(2) ,a32*gmuji1(3), +c & a33*gmuji1(4) + + gloc(nphi+j,icg)=gloc(nphi+j,icg)+ + & geel_loc_ji*wel_loc + geel_loc_ji= + & +a22*gmuji2(1) + & +a23*gmuji2(2) + & +a32*gmuji2(3) + & +a33*gmuji2(4) +c write(iout,*) "derivative over thataj-1" +c write(iout,*) a22*gmuji2(1), a23*gmuji2(2) ,a32*gmuji2(3), +c & a33*gmuji2(4) + gloc(nphi+j-1,icg)=gloc(nphi+j-1,icg)+ + & geel_loc_ji*wel_loc +#endif cd write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') & 'eelloc',i,j,eel_loc_ij +c write (iout,*) a22,muij(1),a23,muij(2),a32,muij(3) eel_loc=eel_loc+eel_loc_ij C Partial derivatives in virtual-bond dihedral angles gamma @@ -3503,7 +3676,9 @@ C Third- and fourth-order contributions from turns dimension ggg(3) double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2), & e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2), - & e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2) + & e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2),gpizda1(2,2), + & gpizda2(2,2),auxgmat1(2,2),auxgmatt1(2,2), + & auxgmat2(2,2),auxgmatt2(2,2) double precision agg(3,4),aggi(3,4),aggi1(3,4), & aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2) common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33, @@ -3527,9 +3702,24 @@ C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC cd call checkint_turn3(i,a_temp,eello_turn3_num) call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1)) +c auxalary matices for theta gradient +c auxalary matrix for i+1 and constant i+2 + call matmat2(gtEUg(1,1,i+1),EUg(1,1,i+2),auxgmat1(1,1)) +c auxalary matrix for i+2 and constant i+1 + call matmat2(EUg(1,1,i+1),gtEUg(1,1,i+2),auxgmat2(1,1)) call transpose2(auxmat(1,1),auxmat1(1,1)) + call transpose2(auxgmat1(1,1),auxgmatt1(1,1)) + call transpose2(auxgmat2(1,1),auxgmatt2(1,1)) call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1)) + call matmat2(a_temp(1,1),auxgmatt1(1,1),gpizda1(1,1)) + call matmat2(a_temp(1,1),auxgmatt2(1,1),gpizda2(1,1)) eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2)) +C Derivatives in theta + gloc(nphi+i,icg)=gloc(nphi+i,icg) + & +0.5d0*(gpizda1(1,1)+gpizda1(2,2))*wturn3 + gloc(nphi+i+1,icg)=gloc(nphi+i+1,icg) + & +0.5d0*(gpizda2(1,1)+gpizda2(2,2))*wturn3 + if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') & 'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2)) cd write (2,*) 'i,',i,' j',j,'eello_turn3', @@ -3603,7 +3793,11 @@ C Third- and fourth-order contributions from turns dimension ggg(3) double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2), & e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2), - & e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2) + & e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2),auxgvec(2), + & auxgEvec1(2),auxgEvec2(2),auxgEvec3(2), + & gte1t(2,2),gte2t(2,2),gte3t(2,2), + & gte1a(2,2),gtae3(2,2),gtae3e2(2,2), ae3gte2(2,2), + & gtEpizda1(2,2),gtEpizda2(2,2),gtEpizda3(2,2) double precision agg(3,4),aggi(3,4),aggi1(3,4), & aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2) common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33, @@ -3623,6 +3817,7 @@ C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC cd call checkint_turn4(i,a_temp,eello_turn4_num) c write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2 +c write(iout,*)"WCHODZE W PROGRAM" a_temp(1,1)=a22 a_temp(1,2)=a23 a_temp(2,1)=a32 @@ -3634,32 +3829,95 @@ c write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3 call transpose2(EUg(1,1,i+1),e1t(1,1)) call transpose2(Eug(1,1,i+2),e2t(1,1)) call transpose2(Eug(1,1,i+3),e3t(1,1)) +C Ematrix derivative in theta + call transpose2(gtEUg(1,1,i+1),gte1t(1,1)) + call transpose2(gtEug(1,1,i+2),gte2t(1,1)) + call transpose2(gtEug(1,1,i+3),gte3t(1,1)) call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1)) +c eta1 in derivative theta + call matmat2(gte1t(1,1),a_temp(1,1),gte1a(1,1)) call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) +c auxgvec is derivative of Ub2 so i+3 theta + call matvec2(e1a(1,1),gUb2(1,i+3),auxgvec(1)) +c auxalary matrix of E i+1 + call matvec2(gte1a(1,1),Ub2(1,i+3),auxgEvec1(1)) +c s1=0.0 +c gs1=0.0 + s1=scalar2(b1(1,i+2),auxvec(1)) +c derivative of theta i+2 with constant i+3 + gs23=scalar2(gtb1(1,i+2),auxvec(1)) +c derivative of theta i+2 with constant i+2 + gs32=scalar2(b1(1,i+2),auxgvec(1)) +c derivative of E matix in theta of i+1 + gsE13=scalar2(b1(1,i+2),auxgEvec1(1)) + call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1)) +c ea31 in derivative theta + call matmat2(a_temp(1,1),gte3t(1,1),gtae3(1,1)) call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) +c auxilary matrix auxgvec of Ub2 with constant E matirx + call matvec2(ae3(1,1),gUb2(1,i+2),auxgvec(1)) +c auxilary matrix auxgEvec1 of E matix with Ub2 constant + call matvec2(gtae3(1,1),Ub2(1,i+2),auxgEvec3(1)) + +c s2=0.0 +c gs2=0.0 + s2=scalar2(b1(1,i+1),auxvec(1)) +c derivative of theta i+1 with constant i+3 + gs13=scalar2(gtb1(1,i+1),auxvec(1)) +c derivative of theta i+2 with constant i+1 + gs21=scalar2(b1(1,i+1),auxgvec(1)) +c derivative of theta i+3 with constant i+1 + gsE31=scalar2(b1(1,i+1),auxgEvec3(1)) +c write(iout,*) gs1,gs2,'i=',i,auxgvec(1),gUb2(1,i+2),gtb1(1,i+2), +c & gtb1(1,i+1) call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1)) +c two derivatives over diffetent matrices +c gtae3e2 is derivative over i+3 + call matmat2(gtae3(1,1),e2t(1,1),gtae3e2(1,1)) +c ae3gte2 is derivative over i+2 + call matmat2(ae3(1,1),gte2t(1,1),ae3gte2(1,1)) call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1)) +c three possible derivative over theta E matices +c i+1 + call matmat2(ae3e2(1,1),gte1t(1,1),gtEpizda1(1,1)) +c i+2 + call matmat2(ae3gte2(1,1),e1t(1,1),gtEpizda2(1,1)) +c i+3 + call matmat2(gtae3e2(1,1),e1t(1,1),gtEpizda3(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) + + gsEE1=0.5d0*(gtEpizda1(1,1)+gtEpizda1(2,2)) + gsEE2=0.5d0*(gtEpizda2(1,1)+gtEpizda2(2,2)) + gsEE3=0.5d0*(gtEpizda3(1,1)+gtEpizda3(2,2)) + eello_turn4=eello_turn4-(s1+s2+s3) +#ifdef NEWCORR + gloc(nphi+i,icg)=gloc(nphi+i,icg) + & -(gs13+gsE13+gsEE1)*wturn4 + gloc(nphi+i+1,icg)= gloc(nphi+i+1,icg) + & -(gs23+gs21+gsEE2)*wturn4 + gloc(nphi+i+2,icg)= gloc(nphi+i+2,icg) + & -(gs32+gsE31+gsEE3)*wturn4 +c gloc(nphi+i+1,icg)=gloc(nphi+i+1,icg)- +c & gs2 +#endif if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') & 'eturn4',i,j,-(s1+s2+s3) -cd write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3), -cd & ' eello_turn4_num',8*eello_turn4_num +c write (iout,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3), +c & ' eello_turn4_num',8*eello_turn4_num C Derivatives in gamma(i) call transpose2(EUgder(1,1,i+1),e1tder(1,1)) call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1)) call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+2),auxvec(1)) call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3) C Derivatives in gamma(i+1) call transpose2(EUgder(1,1,i+2),e2tder(1,1)) call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1)) call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) @@ -3667,10 +3925,10 @@ C Derivatives in gamma(i+1) C Derivatives in gamma(i+2) call transpose2(EUgder(1,1,i+3),e3tder(1,1)) call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+2),auxvec(1)) call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1)) call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1)) call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) @@ -3685,10 +3943,10 @@ C Derivatives of this turn contributions in DC(i+2) a_temp(2,2)=agg(l,4) call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1)) call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+2),auxvec(1)) call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1)) call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1)) call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) @@ -3704,10 +3962,10 @@ C Remaining derivatives of this turn contribution a_temp(2,2)=aggi(l,4) call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1)) call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+2),auxvec(1)) call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1)) call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1)) call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) @@ -3718,10 +3976,10 @@ C Remaining derivatives of this turn contribution a_temp(2,2)=aggi1(l,4) call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1)) call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+2),auxvec(1)) call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1)) call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1)) call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) @@ -3732,10 +3990,10 @@ C Remaining derivatives of this turn contribution a_temp(2,2)=aggj(l,4) call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1)) call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+2),auxvec(1)) call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1)) call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1)) call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) @@ -3746,10 +4004,10 @@ C Remaining derivatives of this turn contribution a_temp(2,2)=aggj1(l,4) call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1)) call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+2),auxvec(1)) call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1)) call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1)) call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) @@ -3816,7 +4074,7 @@ C cd print '(a)','Enter ESCP' cd write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e do i=iatscp_s,iatscp_e - if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle + if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle iteli=itel(i) xi=0.5D0*(c(1,i)+c(1,i+1)) yi=0.5D0*(c(2,i)+c(2,i+1)) @@ -3825,8 +4083,8 @@ cd write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e do iint=1,nscp_gr(i) do j=iscpstart(i,iint),iscpend(i,iint) - if (itype(j).eq.21) cycle - itypj=itype(j) + if (itype(j).eq.ntyp1) cycle + itypj=iabs(itype(j)) C Uncomment following three lines for SC-p interactions c xj=c(1,nres+j)-xi c yj=c(2,nres+j)-yi @@ -3912,7 +4170,7 @@ C cd print '(a)','Enter ESCP' cd write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e do i=iatscp_s,iatscp_e - if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle + if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle iteli=itel(i) xi=0.5D0*(c(1,i)+c(1,i+1)) yi=0.5D0*(c(2,i)+c(2,i+1)) @@ -3921,8 +4179,8 @@ cd write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e do iint=1,nscp_gr(i) do j=iscpstart(i,iint),iscpend(i,iint) - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle C Uncomment following three lines for SC-p interactions c xj=c(1,nres+j)-xi c yj=c(2,nres+j)-yi @@ -3942,8 +4200,9 @@ C Uncomment following three lines for Ca-p interactions endif evdwij=e1+e2 evdw2=evdw2+evdwij - if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') - & 'evdw2',i,j,evdwij + if (energy_dec) write (iout,'(a6,2i5,0pf7.3,2i3,3e11.3)') + & 'evdw2',i,j,evdwij,iteli,itypj,fac,aad(itypj,iteli), + & bad(itypj,iteli) C C Calculate contributions to the gradient in the virtual-bond and SC vectors. C @@ -4039,12 +4298,12 @@ c write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj, c & dhpb(i),dhpb1(i),forcon(i) C 24/11/03 AL: SS bridges handled separately because of introducing a specific C distance and angle dependent SS bond potential. + if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and. + & iabs(itype(jjj)).eq.1) then cmc if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds if (.not.dyn_ss .and. i.le.nss) then C 15/02/13 CC dynamic SSbond - additional check - if (ii.gt.nres - & .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then call ssbond_ene(iii,jjj,eij) ehpb=ehpb+2*eij endif @@ -4109,7 +4368,7 @@ C include 'COMMON.VAR' include 'COMMON.IOUNITS' double precision erij(3),dcosom1(3),dcosom2(3),gg(3) - itypi=itype(i) + itypi=iabs(itype(i)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -4118,7 +4377,7 @@ C dzi=dc_norm(3,nres+i) c dsci_inv=dsc_inv(itypi) dsci_inv=vbld_inv(nres+i) - itypj=itype(j) + itypj=iabs(itype(j)) c dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(nres+j) xj=c(1,nres+j)-xi @@ -4200,7 +4459,7 @@ c estr=0.0d0 estr1=0.0d0 do i=ibondp_start,ibondp_end - if (itype(i-1).eq.21 .or. itype(i).eq.21) then + if (itype(i-1).eq.ntyp1 .or. itype(i).eq.ntyp1) then estr1=estr1+gnmr1(vbld(i),-1.0d0,distchainmax) do j=1,3 gradb(j,i-1)=gnmr1prim(vbld(i),-1.0d0,distchainmax) @@ -4224,8 +4483,8 @@ c c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included c do i=ibond_start,ibond_end - iti=itype(i) - if (iti.ne.10 .and. iti.ne.21) then + iti=iabs(itype(i)) + if (iti.ne.10 .and. iti.ne.ntyp1) then nbi=nbondterm(iti) if (nbi.eq.1) then diff=vbld(i+nres)-vbldsc0(1,iti) @@ -4298,11 +4557,24 @@ c time12=1.0d0 etheta=0.0D0 c write (*,'(a,i2)') 'EBEND ICG=',icg do i=ithet_start,ithet_end - if (itype(i-1).eq.21) cycle + if (itype(i-1).eq.ntyp1) cycle C Zero the energy function and its derivative at 0 or pi. call splinthet(theta(i),0.5d0*delta,ss,ssd) it=itype(i-1) - if (i.gt.3 .and. itype(i-2).ne.21) then + ichir1=isign(1,itype(i-2)) + ichir2=isign(1,itype(i)) + if (itype(i-2).eq.10) ichir1=isign(1,itype(i-1)) + if (itype(i).eq.10) ichir2=isign(1,itype(i-1)) + if (itype(i-1).eq.10) then + itype1=isign(10,itype(i-2)) + ichir11=isign(1,itype(i-2)) + ichir12=isign(1,itype(i-2)) + itype2=isign(10,itype(i)) + ichir21=isign(1,itype(i)) + ichir22=isign(1,itype(i)) + endif + + if (i.gt.3 .and. itype(i-2).ne.ntyp1) then #ifdef OSF phii=phi(i) if (phii.ne.phii) phii=150.0 @@ -4315,7 +4587,7 @@ C Zero the energy function and its derivative at 0 or pi. y(1)=0.0D0 y(2)=0.0D0 endif - if (i.lt.nres .and. itype(i).ne.21) then + if (i.lt.nres .and. itype(i).ne.ntyp1) then #ifdef OSF phii1=phi(i+1) if (phii1.ne.phii1) phii1=150.0 @@ -4335,15 +4607,27 @@ C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2). C In following comments this theta will be referred to as t_c. thet_pred_mean=0.0d0 do k=1,2 - athetk=athet(k,it) - bthetk=bthet(k,it) - thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k) + athetk=athet(k,it,ichir1,ichir2) + bthetk=bthet(k,it,ichir1,ichir2) + if (it.eq.10) then + athetk=athet(k,itype1,ichir11,ichir12) + bthetk=bthet(k,itype2,ichir21,ichir22) + endif + thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k) enddo dthett=thet_pred_mean*ssd thet_pred_mean=thet_pred_mean*ss+a0thet(it) C Derivatives of the "mean" values in gamma1 and gamma2. - dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss - dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss + dthetg1=(-athet(1,it,ichir1,ichir2)*y(2) + &+athet(2,it,ichir1,ichir2)*y(1))*ss + dthetg2=(-bthet(1,it,ichir1,ichir2)*z(2) + & +bthet(2,it,ichir1,ichir2)*z(1))*ss + if (it.eq.10) then + dthetg1=(-athet(1,itype1,ichir11,ichir12)*y(2) + &+athet(2,itype1,ichir11,ichir12)*y(1))*ss + dthetg2=(-bthet(1,itype2,ichir21,ichir22)*z(2) + & +bthet(2,itype2,ichir21,ichir22)*z(1))*ss + endif if (theta(i).gt.pi-delta) then call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0, & E_tc0) @@ -4370,7 +4654,7 @@ C Derivatives of the "mean" values in gamma1 and gamma2. & 'ebend',i,ethetai if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1 if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2 - gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett) + gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)+gloc(nphi+i-2,icg) enddo C Ufff.... We've done all this!!! return @@ -4511,24 +4795,27 @@ C logical lprn /.false./, lprn1 /.false./ etheta=0.0D0 do i=ithet_start,ithet_end - if (itype(i-1).eq.21) cycle + if (itype(i-1).eq.ntyp1) cycle + if (iabs(itype(i+1)).eq.20) iblock=2 + if (iabs(itype(i+1)).ne.20) iblock=1 dethetai=0.0d0 dephii=0.0d0 dephii1=0.0d0 theti2=0.5d0*theta(i) - ityp2=ithetyp(itype(i-1)) + ityp2=ithetyp((itype(i-1))) do k=1,nntheterm coskt(k)=dcos(k*theti2) sinkt(k)=dsin(k*theti2) enddo - if (i.gt.3 .and. itype(i-2).ne.21) then + if (i.gt.3 .and. itype(i-2).ne.ntyp1) then #ifdef OSF phii=phi(i) if (phii.ne.phii) phii=150.0 #else phii=phi(i) #endif - ityp1=ithetyp(itype(i-2)) + ityp1=ithetyp((itype(i-2))) +C propagation of chirality for glycine type do k=1,nsingle cosph1(k)=dcos(k*phii) sinph1(k)=dsin(k*phii) @@ -4541,7 +4828,7 @@ C sinph1(k)=0.0d0 enddo endif - if (i.lt.nres .and. itype(i).ne.21) then + if (i.lt.nres .and. itype(i).ne.ntyp1) then #ifdef OSF phii1=phi(i+1) if (phii1.ne.phii1) phii1=150.0 @@ -4549,7 +4836,7 @@ C #else phii1=phi(i+1) #endif - ityp3=ithetyp(itype(i)) + ityp3=ithetyp((itype(i))) do k=1,nsingle cosph2(k)=dcos(k*phii1) sinph2(k)=dsin(k*phii1) @@ -4562,7 +4849,7 @@ C sinph2(k)=0.0d0 enddo endif - ethetai=aa0thet(ityp1,ityp2,ityp3) + ethetai=aa0thet(ityp1,ityp2,ityp3,iblock) do k=1,ndouble do l=1,k-1 ccl=cosph1(l)*cosph2(k-l) @@ -4584,11 +4871,12 @@ C enddo endif do k=1,ntheterm - ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k) - dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3) + ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3,iblock)*sinkt(k) + dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3,iblock) & *coskt(k) if (lprn) - & write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3), + & write (iout,*) "k",k," + & aathet",aathet(k,ityp1,ityp2,ityp3,iblock), & " ethetai",ethetai enddo if (lprn) then @@ -4607,24 +4895,24 @@ C endif do m=1,ntheterm2 do k=1,nsingle - aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k) - & +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k) - & +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k) - & +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k) + aux=bbthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k) + & +ccthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph1(k) + & +ddthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph2(k) + & +eethet(k,m,ityp1,ityp2,ityp3,iblock)*sinph2(k) ethetai=ethetai+sinkt(m)*aux dethetai=dethetai+0.5d0*m*aux*coskt(m) dephii=dephii+k*sinkt(m)*( - & ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)- - & bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)) + & ccthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k)- + & bbthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph1(k)) dephii1=dephii1+k*sinkt(m)*( - & eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)- - & ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k)) + & eethet(k,m,ityp1,ityp2,ityp3,iblock)*cosph2(k)- + & ddthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph2(k)) if (lprn) & write (iout,*) "m",m," k",k," bbthet", - & bbthet(k,m,ityp1,ityp2,ityp3)," ccthet", - & ccthet(k,m,ityp1,ityp2,ityp3)," ddthet", - & ddthet(k,m,ityp1,ityp2,ityp3)," eethet", - & eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai + & bbthet(k,m,ityp1,ityp2,ityp3,iblock)," ccthet", + & ccthet(k,m,ityp1,ityp2,ityp3,iblock)," ddthet", + & ddthet(k,m,ityp1,ityp2,ityp3,iblock)," eethet", + & eethet(k,m,ityp1,ityp2,ityp3,iblock)," ethetai",ethetai enddo enddo if (lprn) @@ -4632,28 +4920,29 @@ C do m=1,ntheterm3 do k=2,ndouble do l=1,k-1 - aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+ - & ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+ - & ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+ - & ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l) + aux=ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)+ + & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l)+ + & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)+ + & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l) ethetai=ethetai+sinkt(m)*aux dethetai=dethetai+0.5d0*m*coskt(m)*aux dephii=dephii+l*sinkt(m)*( - & -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)- - & ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+ - & ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+ - & ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)) + & -ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)- + & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)+ + & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)+ + & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l)) dephii1=dephii1+(k-l)*sinkt(m)*( - & -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+ - & ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+ - & ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)- - & ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)) + & -ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)+ + & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)+ + & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)- + & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l)) if (lprn) then write (iout,*) "m",m," k",k," l",l," ffthet", - & ffthet(l,k,m,ityp1,ityp2,ityp3), - & ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet", - & ggthet(l,k,m,ityp1,ityp2,ityp3), - & ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai + & ffthet(l,k,m,ityp1,ityp2,ityp3,iblock), + & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)," ggthet", + & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock), + & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock), + & " ethetai",ethetai write (iout,*) cosph1ph2(l,k)*sinkt(m), & cosph1ph2(k,l)*sinkt(m), & sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m) @@ -4662,13 +4951,16 @@ C enddo enddo 10 continue - if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') +c lprn1=.true. + if (lprn1) + & write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') & i,theta(i)*rad2deg,phii*rad2deg, & phii1*rad2deg,ethetai +c lprn1=.false. etheta=etheta+ethetai if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1 - gloc(nphi+i-2,icg)=wang*dethetai + gloc(nphi+i-2,icg)=wang*dethetai+gloc(nphi+i-2,icg) enddo return end @@ -4699,9 +4991,9 @@ C ALPHA and OMEGA. c write (iout,'(a)') 'ESC' do i=loc_start,loc_end it=itype(i) - if (it.eq.21) cycle + if (it.eq.ntyp1) cycle if (it.eq.10) goto 1 - nlobit=nlob(it) + nlobit=nlob(iabs(it)) c print *,'i=',i,' it=',it,' nlobit=',nlobit c write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad theti=theta(i+1)-pipol @@ -4858,11 +5150,11 @@ C Compute the contribution to SC energy and derivatives do j=1,nlobit #ifdef OSF - adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin + adexp=bsc(j,iabs(it))-0.5D0*contr(j,iii)+emin if(adexp.ne.adexp) adexp=1.0 expfac=dexp(adexp) #else - expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin) + expfac=dexp(bsc(j,iabs(it))-0.5D0*contr(j,iii)+emin) #endif cd print *,'j=',j,' expfac=',expfac escloc_i=escloc_i+expfac @@ -4944,7 +5236,7 @@ C Compute the contribution to SC energy and derivatives dersc12=0.0d0 do j=1,nlobit - expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin) + expfac=dexp(bsc(j,iabs(it))-0.5D0*contr(j)+emin) escloc_i=escloc_i+expfac do k=1,2 dersc(k)=dersc(k)+Ax(k,j)*expfac @@ -4998,7 +5290,7 @@ C delta=0.02d0*pi escloc=0.0D0 do i=loc_start,loc_end - if (itype(i).eq.21) cycle + if (itype(i).eq.ntyp1) cycle costtab(i+1) =dcos(theta(i+1)) sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1)) cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1))) @@ -5007,7 +5299,7 @@ C cosfac=dsqrt(cosfac2) sinfac2=0.5d0/(1.0d0-costtab(i+1)) sinfac=dsqrt(sinfac2) - it=itype(i) + it=iabs(itype(i)) if (it.eq.10) goto 1 c C Compute the axes of tghe local cartesian coordinates system; store in @@ -5025,7 +5317,7 @@ C & dc_norm(3,i+nres) y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac enddo do j = 1,3 - z_prime(j) = -uz(j,i-1) + z_prime(j) = -uz(j,i-1)*dsign(1.0d0,dfloat(itype(i))) enddo c write (2,*) "i",i c write (2,*) "x_prime",(x_prime(j),j=1,3) @@ -5057,7 +5349,7 @@ C C Compute the energy of the ith side cbain C c write (2,*) "xx",xx," yy",yy," zz",zz - it=itype(i) + it=iabs(itype(i)) do j = 1,65 x(j) = sc_parmin(j,it) enddo @@ -5065,7 +5357,7 @@ c write (2,*) "xx",xx," yy",yy," zz",zz Cc diagnostics - remove later xx1 = dcos(alph(2)) yy1 = dsin(alph(2))*dcos(omeg(2)) - zz1 = -dsin(alph(2))*dsin(omeg(2)) + zz1 = -dsign(1.0,dfloat(itype(i)))*dsin(alph(2))*dsin(omeg(2)) write(2,'(3f8.1,3f9.3,1x,3f9.3)') & alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz, & xx1,yy1,zz1 @@ -5107,7 +5399,9 @@ c & sumene4, c & dscp1,dscp2,sumene c sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) escloc = escloc + sumene -c write (2,*) "i",i," escloc",sumene,escloc +c write (2,*) "i",i," escloc",sumene,escloc,it,itype(i) +c & ,zz,xx,yy +c#define DEBUG #ifdef DEBUG C C This section to check the numerical derivatives of the energy of ith side @@ -5151,6 +5445,7 @@ C End of diagnostics section. C C Compute the gradient of esc C +c zz=zz*dsign(1.0,dfloat(itype(i))) pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2 pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2 pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2 @@ -5175,7 +5470,7 @@ C & +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6) & +(pom1+pom2)*pom_dx #ifdef DEBUG - write(2,*), "de_dxx = ", de_dxx,de_dxx_num + write(2,*), "de_dxx = ", de_dxx,de_dxx_num,itype(i) #endif C sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz @@ -5190,7 +5485,7 @@ C & +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6) & +(pom1-pom2)*pom_dy #ifdef DEBUG - write(2,*), "de_dyy = ", de_dyy,de_dyy_num + write(2,*), "de_dyy = ", de_dyy,de_dyy_num,itype(i) #endif C de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy @@ -5202,15 +5497,16 @@ C & +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6) & + ( x(14) + 2*x(17)*zz+ x(18)*xx + x(20)*yy)*(s2+s2_6) #ifdef DEBUG - write(2,*), "de_dzz = ", de_dzz,de_dzz_num + write(2,*), "de_dzz = ", de_dzz,de_dzz_num,itype(i) #endif C de_dt = 0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) & -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6) & +pom1*pom_dt1+pom2*pom_dt2 #ifdef DEBUG - write(2,*), "de_dt = ", de_dt,de_dt_num + write(2,*), "de_dt = ", de_dt,de_dt_num,itype(i) #endif +c#undef DEBUG c C cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres)) @@ -5235,13 +5531,16 @@ c & (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i) dZZ_Ci1(k)=0.0d0 dZZ_Ci(k)=0.0d0 do j=1,3 - dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres) - dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres) + dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1) + & *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres) + dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1) + & *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres) enddo dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres)) dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres)) - dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres)) + dZZ_XYZ(k)=vbld_inv(i+nres)* + & (z_prime(k)-zz*dC_norm(k,i+nres)) c dt_dCi(k) = -dt_dCi(k)/sinttab(i+1) dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1) @@ -5426,8 +5725,8 @@ c lprn=.true. etors=0.0D0 do i=iphi_start,iphi_end etors_ii=0.0D0 - if (itype(i-2).eq.21 .or. itype(i-1).eq.21 - & .or. itype(i).eq.21) cycle + if (itype(i-2).eq.ntyp1.or. itype(i-1).eq.ntyp1 + & .or. itype(i).eq.ntyp1) cycle itori=itortyp(itype(i-2)) itori1=itortyp(itype(i-1)) phii=phi(i) @@ -5523,17 +5822,22 @@ C Set lprn=.true. for debugging c lprn=.true. etors=0.0D0 do i=iphi_start,iphi_end - if (itype(i-2).eq.21 .or. itype(i-1).eq.21 - & .or. itype(i).eq.21) cycle - etors_ii=0.0D0 + if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1 + & .or. itype(i).eq.ntyp1) cycle + etors_ii=0.0D0 + if (iabs(itype(i)).eq.20) then + iblock=2 + else + iblock=1 + endif itori=itortyp(itype(i-2)) itori1=itortyp(itype(i-1)) phii=phi(i) gloci=0.0D0 C Regular cosine and sine terms - do j=1,nterm(itori,itori1) - v1ij=v1(j,itori,itori1) - v2ij=v2(j,itori,itori1) + do j=1,nterm(itori,itori1,iblock) + v1ij=v1(j,itori,itori1,iblock) + v2ij=v2(j,itori,itori1,iblock) cosphi=dcos(j*phii) sinphi=dsin(j*phii) etors=etors+v1ij*cosphi+v2ij*sinphi @@ -5548,7 +5852,7 @@ C [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1 C cosphi=dcos(0.5d0*phii) sinphi=dsin(0.5d0*phii) - do j=1,nlor(itori,itori1) + do j=1,nlor(itori,itori1,iblock) vl1ij=vlor1(j,itori,itori1) vl2ij=vlor2(j,itori,itori1) vl3ij=vlor3(j,itori,itori1) @@ -5561,13 +5865,14 @@ C gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom enddo C Subtract the constant term - etors=etors-v0(itori,itori1) + etors=etors-v0(itori,itori1,iblock) if (energy_dec) write (iout,'(a6,i5,0pf7.3)') - & 'etor',i,etors_ii-v0(itori,itori1) + & 'etor',i,etors_ii-v0(itori,itori1,iblock) if (lprn) & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1, - & (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6) + & (v1(j,itori,itori1,iblock),j=1,6), + & (v2(j,itori,itori1,iblock),j=1,6) gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg) enddo @@ -5617,9 +5922,10 @@ C Set lprn=.true. for debugging lprn=.false. c lprn=.true. etors_d=0.0D0 +c write(iout,*) "a tu??" do i=iphid_start,iphid_end - if (itype(i-2).eq.21 .or. itype(i-1).eq.21 - & .or. itype(i).eq.21 .or. itype(i+1).eq.21) cycle + if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1 + & .or. itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle itori=itortyp(itype(i-2)) itori1=itortyp(itype(i-1)) itori2=itortyp(itype(i)) @@ -5627,12 +5933,15 @@ c lprn=.true. phii1=phi(i+1) gloci1=0.0D0 gloci2=0.0D0 + iblock=1 + if (iabs(itype(i+1)).eq.20) iblock=2 + C Regular cosine and sine terms - do j=1,ntermd_1(itori,itori1,itori2) - v1cij=v1c(1,j,itori,itori1,itori2) - v1sij=v1s(1,j,itori,itori1,itori2) - v2cij=v1c(2,j,itori,itori1,itori2) - v2sij=v1s(2,j,itori,itori1,itori2) + do j=1,ntermd_1(itori,itori1,itori2,iblock) + v1cij=v1c(1,j,itori,itori1,itori2,iblock) + v1sij=v1s(1,j,itori,itori1,itori2,iblock) + v2cij=v1c(2,j,itori,itori1,itori2,iblock) + v2sij=v1s(2,j,itori,itori1,itori2,iblock) cosphi1=dcos(j*phii) sinphi1=dsin(j*phii) cosphi2=dcos(j*phii1) @@ -5642,12 +5951,12 @@ C Regular cosine and sine terms gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1) gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2) enddo - do k=2,ntermd_2(itori,itori1,itori2) + do k=2,ntermd_2(itori,itori1,itori2,iblock) do l=1,k-1 - v1cdij = v2c(k,l,itori,itori1,itori2) - v2cdij = v2c(l,k,itori,itori1,itori2) - v1sdij = v2s(k,l,itori,itori1,itori2) - v2sdij = v2s(l,k,itori,itori1,itori2) + v1cdij = v2c(k,l,itori,itori1,itori2,iblock) + v2cdij = v2c(l,k,itori,itori1,itori2,iblock) + v1sdij = v2s(k,l,itori,itori1,itori2,iblock) + v2sdij = v2s(l,k,itori,itori1,itori2,iblock) cosphi1p2=dcos(l*phii+(k-l)*phii1) cosphi1m2=dcos(l*phii-(k-l)*phii1) sinphi1p2=dsin(l*phii+(k-l)*phii1) @@ -5692,29 +6001,53 @@ c amino-acid residues. C Set lprn=.true. for debugging lprn=.false. c lprn=.true. -c write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor +c write (iout,*) "EBACK_SC_COR",itau_start,itau_end esccor=0.0D0 - do i=iphi_start,iphi_end - if (itype(i-2).eq.21 .or. itype(i-1).eq.21) cycle + do i=itau_start,itau_end + if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle esccor_ii=0.0D0 - itori=itype(i-2) - itori1=itype(i-1) + isccori=isccortyp(itype(i-2)) + isccori1=isccortyp(itype(i-1)) +c write (iout,*) "EBACK_SC_COR",i,nterm_sccor(isccori,isccori1) phii=phi(i) + do intertyp=1,3 !intertyp +cc Added 09 May 2012 (Adasko) +cc Intertyp means interaction type of backbone mainchain correlation: +c 1 = SC...Ca...Ca...Ca +c 2 = Ca...Ca...Ca...SC +c 3 = SC...Ca...Ca...SCi gloci=0.0D0 - do j=1,nterm_sccor - v1ij=v1sccor(j,itori,itori1) - v2ij=v2sccor(j,itori,itori1) - cosphi=dcos(j*phii) - sinphi=dsin(j*phii) + if (((intertyp.eq.3).and.((itype(i-2).eq.10).or. + & (itype(i-1).eq.10).or.(itype(i-2).eq.ntyp1).or. + & (itype(i-1).eq.ntyp1))) + & .or. ((intertyp.eq.1).and.((itype(i-2).eq.10) + & .or.(itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1) + & .or.(itype(i).eq.ntyp1))) + & .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or. + & (itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or. + & (itype(i-3).eq.ntyp1)))) cycle + if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.ntyp1)) cycle + if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.ntyp1)) + & cycle + do j=1,nterm_sccor(isccori,isccori1) + v1ij=v1sccor(j,intertyp,isccori,isccori1) + v2ij=v2sccor(j,intertyp,isccori,isccori1) + cosphi=dcos(j*tauangle(intertyp,i)) + sinphi=dsin(j*tauangle(intertyp,i)) esccor=esccor+v1ij*cosphi+v2ij*sinphi gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi) enddo +c write (iout,*) "EBACK_SC_COR",i,v1ij*cosphi+v2ij*sinphi,intertyp + gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci if (lprn) & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') - & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1, - & (v1sccor(j,itori,itori1),j=1,6),(v2sccor(j,itori,itori1),j=1,6) + & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,isccori,isccori1, + & (v1sccor(j,intertyp,isccori,isccori1),j=1,6) + & ,(v2sccor(j,intertyp,isccori,isccori1),j=1,6) gsccor_loc(i-3)=gsccor_loc(i-3)+gloci + enddo !intertyp enddo + return end c---------------------------------------------------------------------------- @@ -6724,10 +7057,10 @@ C--------------------------------------------------------------------------- do iii=1,2 dipi(iii,1)=Ub2(iii,i) dipderi(iii)=Ub2der(iii,i) - dipi(iii,2)=b1(iii,iti1) + dipi(iii,2)=b1(iii,i+1) dipj(iii,1)=Ub2(iii,j) dipderj(iii)=Ub2der(iii,j) - dipj(iii,2)=b1(iii,itj1) + dipj(iii,2)=b1(iii,j+1) enddo kkk=0 do iii=1,2 @@ -6907,26 +7240,26 @@ C They are needed only when the fifth- or the sixth-order cumulants are C indluded. IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN call transpose2(AEA(1,1,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1)) + call matvec2(auxmat(1,1),b1(1,i),AEAb1(1,1,1)) call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1)) call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1)) call transpose2(AEAderg(1,1,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1)) + call matvec2(auxmat(1,1),b1(1,i),AEAb1derg(1,1,1)) call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1)) - call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1)) - call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1)) + call matvec2(AEA(1,1,1),b1(1,k+1),AEAb1(1,2,1)) + call matvec2(AEAderg(1,1,1),b1(1,k+1),AEAb1derg(1,2,1)) call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1)) call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1)) call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1)) call transpose2(AEA(1,1,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2)) + call matvec2(auxmat(1,1),b1(1,j),AEAb1(1,1,2)) call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2)) call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2)) call transpose2(AEAderg(1,1,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2)) + call matvec2(auxmat(1,1),b1(1,j),AEAb1derg(1,1,2)) call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2)) - call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2)) - call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2)) + call matvec2(AEA(1,1,2),b1(1,l+1),AEAb1(1,2,2)) + call matvec2(AEAderg(1,1,2),b1(1,l+1),AEAb1derg(1,2,2)) call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2)) call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2)) call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2)) @@ -6935,20 +7268,20 @@ C Calculate the Cartesian derivatives of the vectors. do kkk=1,5 do lll=1,3 call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti), + call matvec2(auxmat(1,1),b1(1,i), & AEAb1derx(1,lll,kkk,iii,1,1)) call matvec2(auxmat(1,1),Ub2(1,i), & AEAb2derx(1,lll,kkk,iii,1,1)) - call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1), + call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,k+1), & AEAb1derx(1,lll,kkk,iii,2,1)) call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1), & AEAb2derx(1,lll,kkk,iii,2,1)) call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itj), + call matvec2(auxmat(1,1),b1(1,j), & AEAb1derx(1,lll,kkk,iii,1,2)) call matvec2(auxmat(1,1),Ub2(1,j), & AEAb2derx(1,lll,kkk,iii,1,2)) - call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1), + call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,l+1), & AEAb1derx(1,lll,kkk,iii,2,2)) call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1), & AEAb2derx(1,lll,kkk,iii,2,2)) @@ -7045,26 +7378,26 @@ C indluded. IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or. & (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN call transpose2(AEA(1,1,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1)) + call matvec2(auxmat(1,1),b1(1,i),AEAb1(1,1,1)) call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1)) call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1)) call transpose2(AEAderg(1,1,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1)) + call matvec2(auxmat(1,1),b1(1,i),AEAb1derg(1,1,1)) call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1)) - call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1)) - call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1)) + call matvec2(AEA(1,1,1),b1(1,k+1),AEAb1(1,2,1)) + call matvec2(AEAderg(1,1,1),b1(1,k+1),AEAb1derg(1,2,1)) call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1)) call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1)) call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1)) call transpose2(AEA(1,1,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2)) + call matvec2(auxmat(1,1),b1(1,j+1),AEAb1(1,1,2)) call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2)) call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2)) call transpose2(AEAderg(1,1,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2)) + call matvec2(auxmat(1,1),b1(1,l),AEAb1(1,1,2)) call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2)) - call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2)) - call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2)) + call matvec2(AEA(1,1,2),b1(1,j+1),AEAb1(1,2,2)) + call matvec2(AEAderg(1,1,2),b1(1,j+1),AEAb1derg(1,2,2)) call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2)) call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2)) call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2)) @@ -7073,20 +7406,20 @@ C Calculate the Cartesian derivatives of the vectors. do kkk=1,5 do lll=1,3 call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,iti), + call matvec2(auxmat(1,1),b1(1,i), & AEAb1derx(1,lll,kkk,iii,1,1)) call matvec2(auxmat(1,1),Ub2(1,i), & AEAb2derx(1,lll,kkk,iii,1,1)) - call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1), + call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,k+1), & AEAb1derx(1,lll,kkk,iii,2,1)) call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1), & AEAb2derx(1,lll,kkk,iii,2,1)) call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1)) - call matvec2(auxmat(1,1),b1(1,itl), + call matvec2(auxmat(1,1),b1(1,l), & AEAb1derx(1,lll,kkk,iii,1,2)) call matvec2(auxmat(1,1),Ub2(1,l), & AEAb2derx(1,lll,kkk,iii,1,2)) - call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1), + call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,j+1), & AEAb1derx(1,lll,kkk,iii,2,2)) call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j), & AEAb2derx(1,lll,kkk,iii,2,2)) @@ -7383,7 +7716,7 @@ C Contribution from graph II call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) - eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk)) + eello5_2=scalar2(AEAb1(1,2,1),b1(1,k)) & -0.5d0*scalar2(vv(1),Ctobr(1,k)) C Explicit gradient in virtual-dihedral angles. g_corr5_loc(k-1)=g_corr5_loc(k-1) @@ -7393,11 +7726,11 @@ C Explicit gradient in virtual-dihedral angles. vv(2)=pizda(2,1)-pizda(1,2) if (l.eq.j+1) then g_corr5_loc(l-1)=g_corr5_loc(l-1) - & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk)) + & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,k)) & -0.5d0*scalar2(vv(1),Ctobr(1,k))) else g_corr5_loc(j-1)=g_corr5_loc(j-1) - & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk)) + & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,k)) & -0.5d0*scalar2(vv(1),Ctobr(1,k))) endif C Cartesian gradient @@ -7409,7 +7742,7 @@ C Cartesian gradient vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) derx(lll,kkk,iii)=derx(lll,kkk,iii) - & +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk)) + & +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,k)) & -0.5d0*scalar2(vv(1),Ctobr(1,k)) enddo enddo @@ -7464,7 +7797,7 @@ cd1110 continue call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) - eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl)) + eello5_4=scalar2(AEAb1(1,2,2),b1(1,l)) & -0.5d0*scalar2(vv(1),Ctobr(1,l)) C Explicit gradient in virtual-dihedral angles. g_corr5_loc(l-1)=g_corr5_loc(l-1) @@ -7473,7 +7806,7 @@ C Explicit gradient in virtual-dihedral angles. vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) g_corr5_loc(k-1)=g_corr5_loc(k-1) - & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl)) + & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,l)) & -0.5d0*scalar2(vv(1),Ctobr(1,l))) C Cartesian gradient do iii=1,2 @@ -7484,7 +7817,7 @@ C Cartesian gradient vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) derx(lll,kkk,iii)=derx(lll,kkk,iii) - & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl)) + & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,l)) & -0.5d0*scalar2(vv(1),Ctobr(1,l)) enddo enddo @@ -7537,7 +7870,7 @@ C Contribution from graph IV call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) - eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj)) + eello5_4=scalar2(AEAb1(1,2,2),b1(1,j)) & -0.5d0*scalar2(vv(1),Ctobr(1,j)) C Explicit gradient in virtual-dihedral angles. g_corr5_loc(j-1)=g_corr5_loc(j-1) @@ -7546,7 +7879,7 @@ C Explicit gradient in virtual-dihedral angles. vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) g_corr5_loc(k-1)=g_corr5_loc(k-1) - & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj)) + & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,j)) & -0.5d0*scalar2(vv(1),Ctobr(1,j))) C Cartesian gradient do iii=1,2 @@ -7557,7 +7890,7 @@ C Cartesian gradient vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii) - & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj)) + & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,j)) & -0.5d0*scalar2(vv(1),Ctobr(1,j)) enddo enddo @@ -7839,8 +8172,8 @@ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC vv1(1)=pizda1(1,1)-pizda1(2,2) vv1(2)=pizda1(1,2)+pizda1(2,1) s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i)) - vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk) - vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk) + vv(1)=AEAb1(1,2,imat)*b1(1,k)-AEAb1(2,2,imat)*b1(2,k) + vv(2)=AEAb1(1,2,imat)*b1(2,k)+AEAb1(2,2,imat)*b1(1,k) s5=scalar2(vv(1),Dtobr2(1,i)) cd write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5 eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5) @@ -7853,8 +8186,8 @@ cd write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5 call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1)) vv1(1)=pizda1(1,1)-pizda1(2,2) vv1(2)=pizda1(1,2)+pizda1(2,1) - vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk) - vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk) + vv(1)=AEAb1derg(1,2,imat)*b1(1,k)-AEAb1derg(2,2,imat)*b1(2,k) + vv(2)=AEAb1derg(1,2,imat)*b1(2,k)+AEAb1derg(2,2,imat)*b1(1,k) if (l.eq.j+1) then g_corr6_loc(l-1)=g_corr6_loc(l-1) & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i)) @@ -7893,10 +8226,10 @@ cd write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5 vv1(1)=pizda1(1,1)-pizda1(2,2) vv1(2)=pizda1(1,2)+pizda1(2,1) s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i)) - vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk) - & -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk) - vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk) - & +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk) + vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,k) + & -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,k) + vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,k) + & +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,k) s5=scalar2(vv(1),Dtobr2(1,i)) derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5) enddo @@ -8136,10 +8469,10 @@ C energy moment and not to the cluster cumulant. #ifdef MOMENT s1=dip(4,jj,i)*dip(4,kk,k) #endif - call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1)) - s2=0.5d0*scalar2(b1(1,itk),auxvec(1)) - call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1)) - s3=0.5d0*scalar2(b1(1,itj1),auxvec(1)) + call matvec2(AECA(1,1,1),b1(1,k+1),auxvec(1)) + s2=0.5d0*scalar2(b1(1,k),auxvec(1)) + call matvec2(AECA(1,1,2),b1(1,l+1),auxvec(1)) + s3=0.5d0*scalar2(b1(1,j+1),auxvec(1)) call transpose2(EE(1,1,itk),auxmat(1,1)) call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) @@ -8154,13 +8487,13 @@ cd & "sum",-(s2+s3+s4) #endif c eello6_graph3=-s4 C Derivatives in gamma(k-1) - call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1)) - s3=0.5d0*scalar2(b1(1,itj1),auxvec(1)) + call matvec2(AECAderg(1,1,2),b1(1,l+1),auxvec(1)) + s3=0.5d0*scalar2(b1(1,j+1),auxvec(1)) s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k)) g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4) C Derivatives in gamma(l-1) - call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1)) - s2=0.5d0*scalar2(b1(1,itk),auxvec(1)) + call matvec2(AECAderg(1,1,1),b1(1,k+1),auxvec(1)) + s2=0.5d0*scalar2(b1(1,k),auxvec(1)) call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) @@ -8177,12 +8510,12 @@ C Cartesian derivatives. s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k) endif #endif - call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1), + call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,k+1), & auxvec(1)) - s2=0.5d0*scalar2(b1(1,itk),auxvec(1)) - call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1), + s2=0.5d0*scalar2(b1(1,k),auxvec(1)) + call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,l+1), & auxvec(1)) - s3=0.5d0*scalar2(b1(1,itj1),auxvec(1)) + s3=0.5d0*scalar2(b1(1,j+1),auxvec(1)) call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1), & pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) @@ -8270,11 +8603,11 @@ cd & ' itl',itl,' itl1',itl1 call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1)) s2=0.5d0*scalar2(Ub2(1,i),auxvec(1)) if (j.eq.l+1) then - call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1)) + call matvec2(ADtEA1(1,1,3-imat),b1(1,j+1),auxvec1(1)) + s3=-0.5d0*scalar2(b1(1,j),auxvec1(1)) else - call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1)) + call matvec2(ADtEA1(1,1,3-imat),b1(1,l+1),auxvec1(1)) + s3=-0.5d0*scalar2(b1(1,l),auxvec1(1)) endif call transpose2(EUg(1,1,k),auxmat(1,1)) call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1)) @@ -8298,11 +8631,11 @@ C Derivatives in gamma(i-1) #endif s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1)) if (j.eq.l+1) then - call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1)) + call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,j+1),auxvec1(1)) + s3=-0.5d0*scalar2(b1(1,j),auxvec1(1)) else - call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1)) + call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,l+1),auxvec1(1)) + s3=-0.5d0*scalar2(b1(1,l),auxvec1(1)) endif s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i)) if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then @@ -8331,11 +8664,11 @@ C Derivatives in gamma(k-1) call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1)) s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1)) if (j.eq.l+1) then - call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1)) + call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,j+1),auxvec1(1)) + s3=-0.5d0*scalar2(b1(1,j),auxvec1(1)) else - call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1)) - s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1)) + call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,l+1),auxvec1(1)) + s3=-0.5d0*scalar2(b1(1,l),auxvec1(1)) endif call transpose2(EUgder(1,1,k),auxmat1(1,1)) call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1)) @@ -8401,12 +8734,12 @@ C Cartesian derivatives. s2=0.5d0*scalar2(Ub2(1,i),auxvec(1)) if (j.eq.l+1) then call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat), - & b1(1,itj1),auxvec(1)) - s3=-0.5d0*scalar2(b1(1,itj),auxvec(1)) + & b1(1,j+1),auxvec(1)) + s3=-0.5d0*scalar2(b1(1,j),auxvec(1)) else call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat), - & b1(1,itl1),auxvec(1)) - s3=-0.5d0*scalar2(b1(1,itl),auxvec(1)) + & b1(1,l+1),auxvec(1)) + s3=-0.5d0*scalar2(b1(1,l),auxvec(1)) endif call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1), & pizda(1,1)) @@ -8506,12 +8839,12 @@ cd write (2,*) 'eello6_5',eello6_5 #ifdef MOMENT call transpose2(AEA(1,1,1),auxmat(1,1)) call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1)) - ss1=scalar2(Ub2(1,i+2),b1(1,itl)) + ss1=scalar2(Ub2(1,i+2),b1(1,l)) s1 = (auxmat(1,1)+auxmat(2,2))*ss1 #endif - call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1)) + call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1(1)) call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1)) - s2 = scalar2(b1(1,itk),vtemp1(1)) + s2 = scalar2(b1(1,k),vtemp1(1)) #ifdef MOMENT call transpose2(AEA(1,1,2),atemp(1,1)) call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1)) @@ -8526,7 +8859,7 @@ cd write (2,*) 'eello6_5',eello6_5 call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1)) call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) - ss13 = scalar2(b1(1,itk),vtemp4(1)) + ss13 = scalar2(b1(1,k),vtemp4(1)) s13 = (gtemp(1,1)+gtemp(2,2))*ss13 #endif c write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13 @@ -8560,12 +8893,12 @@ C Derivatives in gamma(i+3) #ifdef MOMENT call transpose2(AEA(1,1,1),auxmatd(1,1)) call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1)) - ss1d=scalar2(Ub2der(1,i+2),b1(1,itl)) + ss1d=scalar2(Ub2der(1,i+2),b1(1,l)) s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d #endif - call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1)) + call matvec2(EUgder(1,1,i+2),b1(1,l),vtemp1d(1)) call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1)) - s2d = scalar2(b1(1,itk),vtemp1d(1)) + s2d = scalar2(b1(1,k),vtemp1d(1)) #ifdef MOMENT call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1)) s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1)) @@ -8613,9 +8946,9 @@ C Derivatives in gamma(i+5) call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1)) s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1 #endif - call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1)) + call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1d(1)) call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1)) - s2d = scalar2(b1(1,itk),vtemp1d(1)) + s2d = scalar2(b1(1,k),vtemp1d(1)) #ifdef MOMENT call transpose2(AEA(1,1,2),atempd(1,1)) call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1)) @@ -8625,7 +8958,7 @@ C Derivatives in gamma(i+5) s12d = scalar2(Ub2(1,i+2),vtemp3d(1)) #ifdef MOMENT call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) - ss13d = scalar2(b1(1,itk),vtemp4d(1)) + ss13d = scalar2(b1(1,k),vtemp4d(1)) s13d = (gtemp(1,1)+gtemp(2,2))*ss13d #endif c s1d=0.0d0 @@ -8649,10 +8982,10 @@ C Cartesian derivatives call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1)) s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1 #endif - call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1)) + call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1(1)) call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1), & vtemp1d(1)) - s2d = scalar2(b1(1,itk),vtemp1d(1)) + s2d = scalar2(b1(1,k),vtemp1d(1)) #ifdef MOMENT call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1)) call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1)) @@ -8696,7 +9029,7 @@ c s13d=0.0d0 derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4), & vtemp4d(1)) - ss13d = scalar2(b1(1,itk),vtemp4d(1)) + ss13d = scalar2(b1(1,k),vtemp4d(1)) s13d = (gtemp(1,1)+gtemp(2,2))*ss13d derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d enddo