X-Git-Url: http://mmka.chem.univ.gda.pl/gitweb/?a=blobdiff_plain;f=source%2Funres%2Fsrc_MD-M%2Fenergy_p_new-sep_barrier.F;h=1c6470d0f8914cdaa5ab2b5737e1009bd983aa50;hb=d96a47c690dabd9c300b08916cd2811a37c3e5eb;hp=7d2d27f1f011e11a17b176ba0cd64a2eb53553f0;hpb=57a36a1183cb12334e9bc9ceacabbf038729d459;p=unres.git diff --git a/source/unres/src_MD-M/energy_p_new-sep_barrier.F b/source/unres/src_MD-M/energy_p_new-sep_barrier.F index 7d2d27f..1c6470d 100644 --- a/source/unres/src_MD-M/energy_p_new-sep_barrier.F +++ b/source/unres/src_MD-M/energy_p_new-sep_barrier.F @@ -1,4 +1,33 @@ C----------------------------------------------------------------------- + double precision function sscalelip(r) + double precision r,gamm + include "COMMON.SPLITELE" +C if(r.lt.r_cut-rlamb) then +C sscale=1.0d0 +C else if(r.le.r_cut.and.r.ge.r_cut-rlamb) then +C gamm=(r-(r_cut-rlamb))/rlamb + sscalelip=1.0d0+r*r*(2*r-3.0d0) +C else +C sscale=0d0 +C endif + return + end +C----------------------------------------------------------------------- + double precision function sscagradlip(r) + double precision r,gamm + include "COMMON.SPLITELE" +C if(r.lt.r_cut-rlamb) then +C sscagrad=0.0d0 +C else if(r.le.r_cut.and.r.ge.r_cut-rlamb) then +C gamm=(r-(r_cut-rlamb))/rlamb + sscagradlip=r*(6*r-6.0d0) +C else +C sscagrad=0.0d0 +C endif + return + end + +C----------------------------------------------------------------------- double precision function sscale(r) double precision r,gamm include "COMMON.SPLITELE" @@ -75,8 +104,8 @@ cd & 'iend=',iend(i,iint) rrij=1.0D0/rij eps0ij=eps(itypi,itypj) fac=rrij**expon2 - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) + e1=fac*fac*aa + e2=fac*bb evdwij=e1+e2 evdw=evdw+(1.0d0-sss)*evdwij C @@ -164,8 +193,8 @@ C Change 12/1/95 to calculate four-body interactions rrij=1.0D0/rij eps0ij=eps(itypi,itypj) fac=rrij**expon2 - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) + e1=fac*fac*aa + e2=fac*bb evdwij=e1+e2 evdw=evdw+sss*evdwij C @@ -248,8 +277,8 @@ C if (sss.lt.1.0d0) then r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj)) fac=r_shift_inv**expon - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) + e1=fac*fac*aa + e2=fac*bb evdwij=e_augm+e1+e2 cd sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) cd epsi=bb(itypi,itypj)**2/aa(itypi,itypj) @@ -331,8 +360,8 @@ C if (sss.gt.0.0d0) then r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj)) fac=r_shift_inv**expon - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) + e1=fac*fac*aa + e2=fac*bb evdwij=e_augm+e1+e2 cd sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) cd epsi=bb(itypi,itypj)**2/aa(itypi,itypj) @@ -445,16 +474,16 @@ C Calculate the angle-dependent terms of energy & contributions to derivatives. C Calculate whole angle-dependent part of epsilon and contributions C to its derivatives fac=(rrij*sigsq)**expon2 - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) + e1=fac*fac*aa + e2=fac*bb evdwij=eps1*eps2rt*eps3rt*(e1+e2) eps2der=evdwij*eps3rt eps3der=evdwij*eps2rt evdwij=evdwij*eps2rt*eps3rt evdw=evdw+evdwij*(1.0d0-sss) if (lprn) then - sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) - epsi=bb(itypi,itypj)**2/aa(itypi,itypj) + sigm=dabs(aa/bb)**(1.0D0/6.0D0) + epsi=bb**2/aa cd write (iout,'(2(a3,i3,2x),15(0pf7.3))') cd & restyp(itypi),i,restyp(itypj),j, cd & epsi,sigm,chi1,chi2,chip1,chip2, @@ -558,16 +587,16 @@ C Calculate the angle-dependent terms of energy & contributions to derivatives. C Calculate whole angle-dependent part of epsilon and contributions C to its derivatives fac=(rrij*sigsq)**expon2 - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) + e1=fac*fac*aa + e2=fac*bb evdwij=eps1*eps2rt*eps3rt*(e1+e2) eps2der=evdwij*eps3rt eps3der=evdwij*eps2rt evdwij=evdwij*eps2rt*eps3rt evdw=evdw+evdwij*sss if (lprn) then - sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) - epsi=bb(itypi,itypj)**2/aa(itypi,itypj) + sigm=dabs(aa/bb)**(1.0D0/6.0D0) + epsi=bb**2/aa cd write (iout,'(2(a3,i3,2x),15(0pf7.3))') cd & restyp(itypi),i,restyp(itypj),j, cd & epsi,sigm,chi1,chi2,chip1,chip2, @@ -672,6 +701,33 @@ c write (iout,*) "i",i," j", j," itype",itype(i),itype(j) if (yj.lt.0) yj=yj+boxysize zj=mod(zj,boxzsize) if (zj.lt.0) zj=zj+boxzsize + if ((zj.gt.bordlipbot) + &.and.(zj.lt.bordliptop)) then +C the energy transfer exist + if (zj.lt.buflipbot) then +C what fraction I am in + fracinbuf=1.0d0- + & ((positi-bordlipbot)/lipbufthick) +C lipbufthick is thickenes of lipid buffore + sslipj=sscalelip(fracinbuf) + ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick + elseif (zi.gt.bufliptop) then + fracinbuf=1.0d0-((bordliptop-positi)/lipbufthick) + sslipj=sscalelip(fracinbuf) + ssgradlipj=sscagradlip(fracinbuf)/lipbufthick + else + sslipj=1.0d0 + ssgradlipj=0.0 + endif + else + sslipj=0.0d0 + ssgradlipj=0.0 + endif + aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +aa_aq(itypi,itypj)*(2.0d0-sslipi+sslipj)/2.0d0 + bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +bb_aq(itypi,itypj)*(2.0d0-sslipi+sslipj)/2.0d0 + dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 xj_safe=xj yj_safe=yj @@ -732,8 +788,8 @@ cd & rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) c--------------------------------------------------------------- rij_shift=1.0D0/rij_shift fac=rij_shift**expon - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) + e1=fac*fac*aa + e2=fac*bb evdwij=eps1*eps2rt*eps3rt*(e1+e2) eps2der=evdwij*eps3rt eps3der=evdwij*eps2rt @@ -742,8 +798,8 @@ c & " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2 evdwij=evdwij*eps2rt*eps3rt evdw=evdw+evdwij*(1.0d0-sss) if (lprn) then - sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) - epsi=bb(itypi,itypj)**2/aa(itypi,itypj) + sigm=dabs(aa/bb)**(1.0D0/6.0D0) + epsi=bb**2/aa write (iout,'(2(a3,i3,2x),17(0pf7.3))') & restyp(itypi),i,restyp(itypj),j, & epsi,sigm,chi1,chi2,chip1,chip2, @@ -766,6 +822,8 @@ C Calculate the radial part of the gradient gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac + gg_lipi(3)=ssgradlipi*evdwij + gg_lipj(3)=ssgradlipj*evdwij C Calculate angular part of the gradient. call sc_grad_scale(1.0d0-sss) endif @@ -827,14 +885,16 @@ C Calculate SC interaction energy. C do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) +c write (iout,*) "i",i," j", j," itype",itype(i),itype(j) +c call flush(iout) ind=ind+1 itypj=itype(j) if (itypj.eq.ntyp1) cycle c dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) -c write (iout,*) "j",j,dsc_inv(itypj),dscj_inv, +c write (iout,*) "j",j,itypi,itypj,dsc_inv(itypj),dscj_inv, c & 1.0d0/vbld(j+nres) -c write (iout,*) "i",i," j", j," itype",itype(i),itype(j) +c call flush(iout) sig0ij=sigma(itypi,itypj) chi1=chi(itypi,itypj) chi2=chi(itypj,itypi) @@ -853,7 +913,37 @@ c write (iout,*) "i",i," j", j," itype",itype(i),itype(j) yj=mod(yj,boxysize) if (yj.lt.0) yj=yj+boxysize zj=mod(zj,boxzsize) +c write (iout,*) "After box" +c call flush(iout) if (zj.lt.0) zj=zj+boxzsize + if ((zj.gt.bordlipbot) + &.and.(zj.lt.bordliptop)) then +C the energy transfer exist + if (zj.lt.buflipbot) then +C what fraction I am in + fracinbuf=1.0d0- + & ((positi-bordlipbot)/lipbufthick) +C lipbufthick is thickenes of lipid buffore + sslipj=sscalelip(fracinbuf) + ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick + elseif (zi.gt.bufliptop) then + fracinbuf=1.0d0-((bordliptop-positi)/lipbufthick) + sslipj=sscalelip(fracinbuf) + ssgradlipj=sscagradlip(fracinbuf)/lipbufthick + else + sslipj=1.0d0 + ssgradlipj=0.0 + endif + else + sslipj=0.0d0 + ssgradlipj=0.0 + endif +c write (iout,*) "After lipid" +c call flush(iout) + aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +aa_aq(itypi,itypj)*(2.0d0-sslipi+sslipj)/2.0d0 + bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0 + & +bb_aq(itypi,itypj)*(2.0d0-sslipi+sslipj)/2.0d0 dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 xj_safe=xj yj_safe=yj @@ -897,6 +987,8 @@ c write (iout,*) "i",i," j", j," itype",itype(i),itype(j) C Calculate angle-dependent terms of energy and contributions to their C derivatives. call sc_angular +c write (iout,*) "After sc_angular" +c call flush(iout) sigsq=1.0D0/sigsq sig=sig0ij*dsqrt(sigsq) rij_shift=1.0D0/rij-sig+sig0ij @@ -905,37 +997,41 @@ c rij_shift=1.2*sig0ij C I hate to put IF's in the loops, but here don't have another choice!!!! if (rij_shift.le.0.0D0) then evdw=1.0D20 -cd write (iout,'(2(a3,i3,2x),17(0pf7.3))') -cd & restyp(itypi),i,restyp(itypj),j, -cd & rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) +c write (iout,'(2(a3,i3,2x),17(0pf7.3))') +c & restyp(itypi),i,restyp(itypj),j, +c & rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) return endif sigder=-sig*sigsq c--------------------------------------------------------------- rij_shift=1.0D0/rij_shift fac=rij_shift**expon - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) + e1=fac*fac*aa + e2=fac*bb evdwij=eps1*eps2rt*eps3rt*(e1+e2) eps2der=evdwij*eps3rt eps3der=evdwij*eps2rt c write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt, c & " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2 +c call flush(iout) evdwij=evdwij*eps2rt*eps3rt evdw=evdw+evdwij*sss if (lprn) then - sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) - epsi=bb(itypi,itypj)**2/aa(itypi,itypj) + sigm=dabs(aa/bb)**(1.0D0/6.0D0) + epsi=bb**2/aa write (iout,'(2(a3,i3,2x),17(0pf7.3))') & restyp(itypi),i,restyp(itypj),j, & epsi,sigm,chi1,chi2,chip1,chip2, & eps1,eps2rt**2,eps3rt**2,sig,sig0ij, & om1,om2,om12,1.0D0/rij,1.0D0/rij_shift, & evdwij + call flush(iout) endif - if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') - & 'evdw',i,j,evdwij + if (energy_dec) then + write (iout,'(a6,2i5,0pf7.3)') 'evdw',i,j,evdwij + call flush(iout) + endif C Calculate gradient components. e1=e1*eps1*eps2rt**2*eps3rt**2 @@ -948,8 +1044,14 @@ C Calculate the radial part of the gradient gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac + gg_lipi(3)=ssgradlipi*evdwij + gg_lipj(3)=ssgradlipj*evdwij +c write (iout,*) "Calling sc_grad_scale" +c call flush(iout) C Calculate angular part of the gradient. call sc_grad_scale(sss) +c write (iout,*) "After sc_grad_scale" +c call flush(iout) endif enddo ! j enddo ! iint @@ -1044,8 +1146,8 @@ C I hate to put IF's in the loops, but here don't have another choice!!!! c--------------------------------------------------------------- rij_shift=1.0D0/rij_shift fac=rij_shift**expon - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) + e1=fac*fac*aa + e2=fac*bb evdwij=eps1*eps2rt*eps3rt*(e1+e2) eps2der=evdwij*eps3rt eps3der=evdwij*eps2rt @@ -1054,8 +1156,8 @@ c--------------------------------------------------------------- evdwij=evdwij*eps2rt*eps3rt evdw=evdw+(evdwij+e_augm)*(1.0d0-sss) if (lprn) then - sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) - epsi=bb(itypi,itypj)**2/aa(itypi,itypj) + sigm=dabs(aa/bb)**(1.0D0/6.0D0) + epsi=bb**2/aa write (iout,'(2(a3,i3,2x),17(0pf7.3))') & restyp(itypi),i,restyp(itypj),j, & epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0), @@ -1166,8 +1268,8 @@ C I hate to put IF's in the loops, but here don't have another choice!!!! c--------------------------------------------------------------- rij_shift=1.0D0/rij_shift fac=rij_shift**expon - e1=fac*fac*aa(itypi,itypj) - e2=fac*bb(itypi,itypj) + e1=fac*fac*aa + e2=fac*bb evdwij=eps1*eps2rt*eps3rt*(e1+e2) eps2der=evdwij*eps3rt eps3der=evdwij*eps2rt @@ -1176,8 +1278,8 @@ c--------------------------------------------------------------- evdwij=evdwij*eps2rt*eps3rt evdw=evdw+(evdwij+e_augm)*sss if (lprn) then - sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) - epsi=bb(itypi,itypj)**2/aa(itypi,itypj) + sigm=dabs(aa/bb)**(1.0D0/6.0D0) + epsi=bb**2/aa write (iout,'(2(a3,i3,2x),17(0pf7.3))') & restyp(itypi),i,restyp(itypj),j, & epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0), @@ -1212,6 +1314,8 @@ C---------------------------------------------------------------------------- include 'COMMON.IOUNITS' double precision dcosom1(3),dcosom2(3) double precision scalfac +c write (iout,*) "sc_grad_scale",i,j,k,l +c call flush(iout) eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1 eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2 eom12=evdwij*eps1_om12+eps2der*eps2rt_om12 @@ -1234,10 +1338,10 @@ c write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12 enddo c write (iout,*) "gg",(gg(k),k=1,3) do k=1,3 - gvdwx(k,i)=gvdwx(k,i)-gg(k) + gvdwx(k,i)=gvdwx(k,i)-gg(k)+gg_lipi(k) & +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i)) & +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv*scalfac - gvdwx(k,j)=gvdwx(k,j)+gg(k) + gvdwx(k,j)=gvdwx(k,j)+gg(k)+gg_lipj(k) & +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j)) & +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv*scalfac c write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i)) @@ -1249,8 +1353,8 @@ C C Calculate the components of the gradient in DC and X C do l=1,3 - gvdwc(l,i)=gvdwc(l,i)-gg(l) - gvdwc(l,j)=gvdwc(l,j)+gg(l) + gvdwc(l,i)=gvdwc(l,i)-gg(l)+gg_lipi(l) + gvdwc(l,j)=gvdwc(l,j)+gg(l)+gg_lipj(l) enddo return end