X-Git-Url: http://mmka.chem.univ.gda.pl/gitweb/?a=blobdiff_plain;f=source%2Funres%2Fsrc_MD%2Fenergy_p_new_barrier.F;h=236fdc2234948352bd42d3527d40b43765a5489c;hb=8568fc505b3e0d3f39901e7cf9de933603c71011;hp=9803d937d7825e83a01fe40415cf307bf9be960f;hpb=0f4f26d0c1647eceedba57fb57664a89916aa44c;p=unres.git diff --git a/source/unres/src_MD/energy_p_new_barrier.F b/source/unres/src_MD/energy_p_new_barrier.F index 9803d93..236fdc2 100644 --- a/source/unres/src_MD/energy_p_new_barrier.F +++ b/source/unres/src_MD/energy_p_new_barrier.F @@ -263,7 +263,7 @@ cd print *,'nterm=',nterm edihcnstr=0 endif - if (constr_homology.ge.1) then + if (constr_homology.ge.1.and.waga_homology(iset).ne.0d0) then call e_modeller(ehomology_constr) c print *,'iset=',iset,'me=',me,ehomology_constr, c & 'Processor',fg_rank,' CG group',kolor, @@ -822,7 +822,7 @@ c enddo #endif enddo enddo - if (constr_homology.gt.0) then + if (constr_homology.gt.0.and.waga_homology(iset).ne.0d0) then do i=1,nct do j=1,3 gradc(j,i,icg)=gradc(j,i,icg)+duscdiff(j,i) @@ -1781,9 +1781,10 @@ c & " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2 & evdwij endif - if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') - & 'evdw',i,j,evdwij - + if (energy_dec) then + write (iout,'(a6,2i5,0pf7.3)') 'evdw',i,j,evdwij + call flush(iout) + endif C Calculate gradient components. e1=e1*eps1*eps2rt**2*eps3rt**2 fac=-expon*(e1+evdwij)*rij_shift @@ -3894,6 +3895,7 @@ C Derivatives in gamma(i+1) gel_loc_turn3(i+1)=gel_loc_turn3(i+1) & +0.5d0*(pizda(1,1)+pizda(2,2)) C Cartesian derivatives +!DIR$ UNROLL(0) do l=1,3 c ghalf1=0.5d0*agg(l,1) c ghalf2=0.5d0*agg(l,2) @@ -4360,10 +4362,16 @@ C include 'COMMON.VAR' include 'COMMON.INTERACT' include 'COMMON.IOUNITS' + include 'COMMON.CONTROL' dimension ggg(3) ehpb=0.0D0 + do i=1,3 + ggg(i)=0.0d0 + enddo +C write (iout,*) ,"link_end",link_end,constr_dist cd write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr -cd write(iout,*)'link_start=',link_start,' link_end=',link_end +c write(iout,*)'link_start=',link_start,' link_end=',link_end, +c & " constr_dist",constr_dist if (link_end.eq.0) return do i=link_start,link_end C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a @@ -4382,82 +4390,81 @@ c write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj, c & dhpb(i),dhpb1(i),forcon(i) C 24/11/03 AL: SS bridges handled separately because of introducing a specific C distance and angle dependent SS bond potential. +C if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and. +C & iabs(itype(jjj)).eq.1) then cmc if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds if (.not.dyn_ss .and. i.le.nss) then C 15/02/13 CC dynamic SSbond - additional check - if (ii.gt.nres - & .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then - call ssbond_ene(iii,jjj,eij) - ehpb=ehpb+2*eij + if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and. + & iabs(itype(jjj)).eq.1) then + call ssbond_ene(iii,jjj,eij) + ehpb=ehpb+2*eij endif cd write (iout,*) "eij",eij - else if (ii.gt.nres .and. jj.gt.nres) then -c Restraints from contact prediction - dd=dist(ii,jj) - if (dhpb1(i).gt.0.0d0) then - ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) - fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd -c write (iout,*) "beta nmr", -c & dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) - else - dd=dist(ii,jj) - rdis=dd-dhpb(i) -C Get the force constant corresponding to this distance. - waga=forcon(i) -C Calculate the contribution to energy. - ehpb=ehpb+waga*rdis*rdis -c write (iout,*) "beta reg",dd,waga*rdis*rdis -C -C Evaluate gradient. -C - fac=waga*rdis/dd - endif - do j=1,3 - ggg(j)=fac*(c(j,jj)-c(j,ii)) - enddo - do j=1,3 - ghpbx(j,iii)=ghpbx(j,iii)-ggg(j) - ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j) - enddo - do k=1,3 - ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k) - ghpbc(k,iii)=ghpbc(k,iii)-ggg(k) - enddo - else +cd & ' waga=',waga,' fac=',fac +! else if (ii.gt.nres .and. jj.gt.nres) then + else C Calculate the distance between the two points and its difference from the C target distance. dd=dist(ii,jj) - if (dhpb1(i).gt.0.0d0) then - ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) + if (irestr_type(i).eq.11) then + ehpb=ehpb+fordepth(i)!**4.0d0 + & *rlornmr1(dd,dhpb(i),dhpb1(i),forcon(i)) + fac=fordepth(i)!**4.0d0 + & *rlornmr1prim(dd,dhpb(i),dhpb1(i),forcon(i))/dd + if (energy_dec) write (iout,'(a6,2i5,6f10.3,i5)') + & "edisL",ii,jj,dd,dhpb(i),dhpb1(i),forcon(i),fordepth(i), + & ehpb,irestr_type(i) + else if (irestr_type(i).eq.10) then +c AL 6//19/2018 cross-link restraints + xdis = 0.5d0*(dd/forcon(i))**2 + expdis = dexp(-xdis) +c aux=(dhpb(i)+dhpb1(i)*xdis)*expdis+fordepth(i) + aux=(dhpb(i)+dhpb1(i)*xdis*xdis)*expdis+fordepth(i) +c write (iout,*)"HERE: xdis",xdis," expdis",expdis," aux",aux, +c & " wboltzd",wboltzd + ehpb=ehpb-wboltzd*xlscore(i)*dlog(aux) +c fac=-wboltzd*(dhpb1(i)*(1.0d0-xdis)-dhpb(i)) + fac=-wboltzd*xlscore(i)*(dhpb1(i)*(2.0d0-xdis)*xdis-dhpb(i)) + & *expdis/(aux*forcon(i)**2) + if (energy_dec) write(iout,'(a6,2i5,6f10.3,i5)') + & "edisX",ii,jj,dd,dhpb(i),dhpb1(i),forcon(i),fordepth(i), + & -wboltzd*xlscore(i)*dlog(aux),irestr_type(i) + else if (irestr_type(i).eq.2) then +c Quartic restraints + ehpb=ehpb+forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) + if (energy_dec) write(iout,'(a6,2i5,5f10.3,i5)') + & "edisQ",ii,jj,dd,dhpb(i),dhpb1(i),forcon(i), + & forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)),irestr_type(i) fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd -c write (iout,*) "alph nmr", -c & dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) else +c Quadratic restraints rdis=dd-dhpb(i) C Get the force constant corresponding to this distance. waga=forcon(i) C Calculate the contribution to energy. - ehpb=ehpb+waga*rdis*rdis -c write (iout,*) "alpha reg",dd,waga*rdis*rdis + ehpb=ehpb+0.5d0*waga*rdis*rdis + if (energy_dec) write(iout,'(a6,2i5,5f10.3,i5)') + & "edisS",ii,jj,dd,dhpb(i),dhpb1(i),forcon(i), + & 0.5d0*waga*rdis*rdis,irestr_type(i) C C Evaluate gradient. C fac=waga*rdis/dd endif -cd print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd, -cd & ' waga=',waga,' fac=',fac - do j=1,3 - ggg(j)=fac*(c(j,jj)-c(j,ii)) - enddo +c Calculate Cartesian gradient + do j=1,3 + ggg(j)=fac*(c(j,jj)-c(j,ii)) + enddo cd print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3) C If this is a SC-SC distance, we need to calculate the contributions to the C Cartesian gradient in the SC vectors (ghpbx). if (iii.lt.ii) then - do j=1,3 - ghpbx(j,iii)=ghpbx(j,iii)-ggg(j) - ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j) - enddo + do j=1,3 + ghpbx(j,iii)=ghpbx(j,iii)-ggg(j) + ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j) + enddo endif cgrad do j=iii,jjj-1 cgrad do k=1,3 @@ -4470,7 +4477,6 @@ cgrad enddo enddo endif enddo - ehpb=0.5D0*ehpb return end C-------------------------------------------------------------------------- @@ -4604,9 +4610,12 @@ c diff=vbld(i+nres)-vbldsc0(1,iti) c write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff, c & AKSC(1,iti),AKSC(1,iti)*diff*diff - if (energy_dec) write (iout,*) - & "estr sc",i,iti,vbld(i+nres),vbldsc0(1,iti),diff, - & AKSC(1,iti),AKSC(1,iti)*diff*diff + if (energy_dec) then + write (iout,*) + & "estr sc",i,iti,vbld(i+nres),vbldsc0(1,iti),diff, + & AKSC(1,iti),AKSC(1,iti)*diff*diff + call flush(iout) + endif estr=estr+0.5d0*AKSC(1,iti)*diff*diff do j=1,3 gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres) @@ -4899,7 +4908,7 @@ c & " ithet_end",ithet_end sinkt(k)=dsin(k*theti2) enddo C if (i.gt.3) then - if (i.gt.3 .and. itype(i-3).ne.ntyp1) then + if (i.gt.3 .and. itype(max0(i-3,1)).ne.ntyp1) then #ifdef OSF phii=phi(i) if (phii.ne.phii) phii=150.0 @@ -5488,7 +5497,8 @@ c & sumene4, c & dscp1,dscp2,sumene c sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) escloc = escloc + sumene -c write (2,*) "i",i," escloc",sumene,escloc + if (energy_dec) write (iout,'(a6,i5,0pf7.3)') + & 'escloc',i,sumene #ifdef DEBUG C C This section to check the numerical derivatives of the energy of ith side @@ -6025,7 +6035,7 @@ c c - do i=1,19 + do i=1,max_template distancek(i)=9999999.9 enddo @@ -6044,9 +6054,13 @@ c write(iout,*) "waga_theta",waga_theta,"waga_d",waga_d j = jres_homo(ii) dij=dist(i,j) c write (iout,*) "dij(",i,j,") =",dij + nexl=0 do k=1,constr_homology c write(iout,*) ii,k,i,j,l_homo(k,ii),dij,odl(k,ii) - if(.not.l_homo(k,ii)) cycle + if(.not.l_homo(k,ii)) then + nexl=nexl+1 + cycle + endif distance(k)=odl(k,ii)-dij c write (iout,*) "distance(",k,") =",distance(k) c @@ -6065,8 +6079,20 @@ c & (distance(k)**2+sigma_odlir(k,ii)**2)) endif enddo +c write (iout,*) "distance: ii",ii," nexl",nexl - min_odl=minval(distancek) + +c min_odl=minval(distancek) + do kk=1,constr_homology + if(l_homo(kk,ii)) then + min_odl=distancek(kk) + exit + endif + enddo + do kk=1,constr_homology + if(l_homo(kk,ii) .and. distancek(kk).lt.min_odl) + & min_odl=distancek(kk) + enddo c write (iout,* )"min_odl",min_odl #ifdef DEBUG write (iout,*) "ij dij",i,j,dij @@ -6074,7 +6100,15 @@ c write (iout,* )"min_odl",min_odl write (iout,*) "distancek",(distancek(k),k=1,constr_homology) write (iout,* )"min_odl",min_odl #endif +#ifdef OLDRESTR odleg2=0.0d0 +#else + if (waga_dist.ge.0.0d0) then + odleg2=nexl + else + odleg2=0.0d0 + endif +#endif do k=1,constr_homology c Nie wiem po co to liczycie jeszcze raz! c odleg3=-waga_dist(iset)*((distance(i,j,k)**2)/ @@ -6217,10 +6251,10 @@ c write (iout,*) idihconstr_start_homo,idihconstr_end_homo enddo #endif do i=idihconstr_start_homo,idihconstr_end_homo - kat2=0.0d0 c betai=beta(i,i+1,i+2,i+3) - betai = phi(i+3) + betai = phi(i) c write (iout,*) "betai =",betai + kat2=0.0d0 do k=1,constr_homology dih_diff(k)=pinorm(dih(k,i)-betai) c write (iout,*) "dih_diff(",k,") =",dih_diff(k) @@ -6228,13 +6262,16 @@ c if (dih_diff(i,k).gt.3.14159) dih_diff(i,k)= c & -(6.28318-dih_diff(i,k)) c if (dih_diff(i,k).lt.-3.14159) dih_diff(i,k)= c & 6.28318+dih_diff(i,k) - +#ifdef OLD_DIHED kat3=-0.5d0*dih_diff(k)**2*sigma_dih(k,i) ! waga_angle rmvd from Gaussian argument +#else + kat3=(dcos(dih_diff(k))-1)*sigma_dih(k,i) ! waga_angle rmvd from Gaussian argument +#endif c kat3=-0.5d0*waga_angle*dih_diff(k)**2*sigma_dih(k,i) gdih(k)=dexp(kat3) kat2=kat2+gdih(k) -c write(iout,*) "kat2=", kat2, "exp(kat3)=", exp(kat3) -c write(*,*)"" +c write(iout,*) "i",i," k",k," sigma",sigma_dih(k,i), +c & " kat2=", kat2, "gdih=",gdih(k) enddo c write (iout,*) "gdih",(gdih(k),k=1,constr_homology) ! exps c write (iout,*) "i",i," betai",betai," kat2",kat2 ! sum of exps @@ -6256,7 +6293,11 @@ c ---------------------------------------------------------------------- sum_gdih=kat2 sum_sgdih=0.0d0 do k=1,constr_homology +#ifdef OLD_DIHED sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i) ! waga_angle rmvd +#else + sgdih=-gdih(k)*dsin(dih_diff(k))*sigma_dih(k,i) ! waga_angle rmvd +#endif c sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)*waga_angle sum_sgdih=sum_sgdih+sgdih enddo @@ -6266,7 +6307,7 @@ c grad_dih3=sum_sgdih/sum_gdih c write(iout,*)i,k,gdih,sgdih,beta(i+1,i+2,i+3,i+4),grad_dih3 ccc write(iout,747) "GRAD_KAT_1", i, nphi, icg, grad_dih3, ccc & gloc(nphi+i-3,icg) - gloc(i,icg)=gloc(i,icg)+grad_dih3 + gloc(i-3,icg)=gloc(i-3,icg)+grad_dih3 c if (i.eq.25) then c write(iout,*) "i",i,"icg",icg,"gloc(",i,icg,")",gloc(i,icg) c endif @@ -6335,7 +6376,9 @@ c utheta_i=-0.5d0*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta rmvd from Gaussian argument c utheta_i=-0.5d0*waga_theta*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta? gtheta(k)=dexp(utheta_i) ! + min_utheta_i? - gutheta_i=gutheta_i+dexp(utheta_i) ! Sum of Gaussians (pk) + gutheta_i=gutheta_i+gtheta(k) ! Sum of Gaussians (pk) +c write (iout,*) "i",i," k",k," sigma_theta",sigma_theta(k,i), +c & " gtheta",gtheta(k) c Gradient for single Gaussian restraint in subr Econstr_back c dutheta(j-2)=dutheta(j-2)+wfrag_back(1,i,iset)*dtheta_i/(ii-1) c @@ -6407,7 +6450,9 @@ c c usc_diff(i)=-0.5d0*waga_d*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i) ! waga_d? c uscdiffk(k)=usc_diff(i) guscdiff2(k)=dexp(usc_diff_i) ! without min_scdiff - guscdiff(i)=guscdiff(i)+dexp(usc_diff_i) !Sum of Gaussians (pk) +c write(iout,*) "i",i," k",k," sigma_d",sigma_d(k,i), +c & " guscdiff2",guscdiff2(k) + guscdiff(i)=guscdiff(i)+guscdiff2(k) !Sum of Gaussians (pk) c write (iout,'(i5,6f10.5)') j,xxtab(j),yytab(j),zztab(j), c & xxref(j),yyref(j),zzref(j) enddo @@ -6679,7 +6724,6 @@ c lprn=.true. c write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor esccor=0.0D0 do i=itau_start,itau_end - esccor_ii=0.0D0 if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle isccori=isccortyp(itype(i-2)) isccori1=isccortyp(itype(i-1)) @@ -6692,6 +6736,7 @@ c(see comment below) do intertyp=1,3 !intertyp + esccor_ii=0.0D0 cc Added 09 May 2012 (Adasko) cc Intertyp means interaction type of backbone mainchain correlation: c 1 = SC...Ca...Ca...Ca @@ -6713,9 +6758,12 @@ c 3 = SC...Ca...Ca...SCi v2ij=v2sccor(j,intertyp,isccori,isccori1) cosphi=dcos(j*tauangle(intertyp,i)) sinphi=dsin(j*tauangle(intertyp,i)) + if (energy_dec) esccor_ii=esccor_ii+v1ij*cosphi+v2ij*sinphi esccor=esccor+v1ij*cosphi+v2ij*sinphi gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi) enddo + if (energy_dec) write (iout,'(a6,i5,i2,0pf7.3)') + & 'esccor',i,intertyp,esccor_ii gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci c write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi c &gloc_sc(intertyp,i-3,icg)