X-Git-Url: http://mmka.chem.univ.gda.pl/gitweb/?a=blobdiff_plain;f=source%2Funres%2Fenergy.f90;h=881497c2a92458d65736a250df5997ddeae508dc;hb=3c2962eb07d557194f5368c06ed6a574a2f16e3b;hp=014ce416c2587d19e8e49bac685a38e95530f49d;hpb=5d299c1a16ab51f8206b8ee3b17c7bcabe9321b7;p=unres4.git diff --git a/source/unres/energy.f90 b/source/unres/energy.f90 index 014ce41..881497c 100644 --- a/source/unres/energy.f90 +++ b/source/unres/energy.f90 @@ -45,6 +45,7 @@ real(kind=8),dimension(:,:,:),allocatable :: gacont !(3,maxconts,maxres) integer,dimension(:),allocatable :: ishield_list integer,dimension(:,:),allocatable :: shield_list + real(kind=8),dimension(:),allocatable :: enetube,enecavtube ! ! 12/26/95 - H-bonding contacts ! common /contacts_hb/ @@ -123,7 +124,11 @@ gshieldc_ec,gshieldc_loc_ec,gshieldx_t3, & gshieldc_t3,gshieldc_loc_t3,gshieldx_t4,gshieldc_t4, & gshieldc_loc_t4,gshieldx_ll,gshieldc_ll,gshieldc_loc_ll,& - grad_shield !(3,maxres) + grad_shield,gg_tube,gg_tube_sc,gradafm !(3,maxres) +!-----------------------------NUCLEIC GRADIENT + real(kind=8),dimension(:,:),allocatable ::gradb_nucl,gradbx_nucl, & + gvdwpsb1,gelpp,gvdwpsb,gelsbc,gelsbx,gvdwsbx,gvdwsbc,gsbloc,& + gsblocx,gradcorr_nucl,gradxorr_nucl,gradcorr3_nucl,gradxorr3_nucl ! real(kind=8),dimension(:,:),allocatable :: gloc,gloc_x !(maxvar,2) real(kind=8),dimension(:,:),allocatable :: gel_loc,gel_loc_long,& gcorr3_turn,gcorr4_turn,gcorr6_turn,gradb,gradbx !(3,maxres) @@ -180,7 +185,8 @@ real(kind=8),dimension(:,:,:,:),allocatable :: uygrad,uzgrad !(3,3,2,maxres) !----------------------------------------------------------------------------- ! common /przechowalnia/ - real(kind=8),dimension(:,:,:),allocatable :: zapas !(max_dim,maxconts,max_fg_procs) + real(kind=8),dimension(:,:,:),allocatable :: zapas + real(kind=8),dimension(:,:,:,:),allocatable ::zapas2 !(max_dim,maxconts,max_fg_procs) real(kind=8),dimension(:,:,:),allocatable :: fromto !(3,3,maxdim)(maxdim=(maxres-1)*(maxres-2)/2) !----------------------------------------------------------------------------- !----------------------------------------------------------------------------- @@ -222,9 +228,13 @@ integer :: n_corr,n_corr1,ierror real(kind=8) :: etors,edihcnstr,etors_d,esccor,ehpb real(kind=8) :: evdw,evdw1,evdw2,evdw2_14,escloc,ees,eel_loc - real(kind=8) :: eello_turn3,eello_turn4,estr,ebe,eliptran + real(kind=8) :: eello_turn3,eello_turn4,estr,ebe,eliptran,etube, & + Eafmforce,ethetacnstr real(kind=8) :: ecorr,ecorr5,ecorr6,eturn6 - +! now energies for nulceic alone parameters + real(kind=8) :: evdwpp,eespp,evdwpsb,eelpsb,evdwsb,eelsb,estr_nucl,& + ebe_nucl,esbloc,etors_nucl,etors_d_nucl,ecorr_nucl,& + ecorr3_nucl #ifdef MPI real(kind=8) :: weights_(n_ene) !,time_Bcast,time_Bcastw ! shielding effect varibles for MPI @@ -307,7 +317,7 @@ #endif ! ! Compute the side-chain and electrostatic interaction energy - print *, "Before EVDW" +! print *, "Before EVDW" ! goto (101,102,103,104,105,106) ipot select case(ipot) ! Lennard-Jones potential. @@ -355,6 +365,7 @@ if (shield_mode.eq.2) then call set_shield_fac2 endif + print *,"AFTER EGB",ipot,evdw !mc !mc Sep-06: egb takes care of dynamic ss bonds too !mc @@ -370,7 +381,7 @@ ! print *,"Processor",myrank," left VEC_AND_DERIV" if (ipot.lt.6) then #ifdef SPLITELE - print *,"after ipot if", ipot +! print *,"after ipot if", ipot if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or. & wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0 & .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 & @@ -420,6 +431,7 @@ ! Calculate the bond-stretching energy ! call ebond(estr) + print *,"EBOND",estr ! write(iout,*) "in etotal afer ebond",ipot ! @@ -433,7 +445,7 @@ ! Calculate the virtual-bond-angle energy. ! if (wang.gt.0d0) then - call ebend(ebe) + call ebend(ebe,ethetacnstr) else ebe=0 endif @@ -520,7 +532,34 @@ else eliptran=0.0d0 endif - + if (fg_rank.eq.0) then + if (AFMlog.gt.0) then + call AFMforce(Eafmforce) + else if (selfguide.gt.0) then + call AFMvel(Eafmforce) + endif + endif + if (tubemode.eq.1) then + call calctube(etube) + else if (tubemode.eq.2) then + call calctube2(etube) + elseif (tubemode.eq.3) then + call calcnano(etube) + else + etube=0.0d0 + endif +!-------------------------------------------------------- + print *,"before",ees,evdw1,ecorr + call ebond_nucl(estr_nucl) + call ebend_nucl(ebe_nucl) + call etor_nucl(etors_nucl) + call esb_gb(evdwsb,eelsb) + call epp_nucl_sub(evdwpp,eespp) + call epsb(evdwpsb,eelpsb) + call esb(esbloc) + call multibody_hb_nucl(ecorr_nucl,ecorr3_nucl,n_corr,n_corr1) + + print *,"after ebend", ebe_nucl #ifdef TIMING time_enecalc=time_enecalc+MPI_Wtime()-time00 #endif @@ -563,6 +602,24 @@ energia(20)=Uconst+Uconst_back energia(21)=esccor energia(22)=eliptran + energia(23)=Eafmforce + energia(24)=ethetacnstr + energia(25)=etube +!--------------------------------------------------------------- + energia(26)=evdwpp + energia(27)=eespp + energia(28)=evdwpsb + energia(29)=eelpsb + energia(30)=evdwsb + energia(31)=eelsb + energia(32)=estr_nucl + energia(33)=ebe_nucl + energia(34)=esbloc + energia(35)=etors_nucl + energia(36)=etors_d_nucl + energia(37)=ecorr_nucl + energia(38)=ecorr3_nucl +!---------------------------------------------------------------------- ! Here are the energies showed per procesor if the are more processors ! per molecule then we sum it up in sum_energy subroutine ! print *," Processor",myrank," calls SUM_ENERGY" @@ -604,7 +661,11 @@ real(kind=8) :: evdw,evdw2,evdw2_14,ees,evdw1,ecorr,ecorr5,ecorr6 real(kind=8) :: eel_loc,eello_turn3,eello_turn4,eturn6,ebe,escloc real(kind=8) :: etors,etors_d,ehpb,edihcnstr,estr,esccor,etot, & - eliptran + eliptran,etube, Eafmforce,ethetacnstr + real(kind=8) :: evdwpp,eespp,evdwpsb,eelpsb,evdwsb,eelsb,estr_nucl,& + ebe_nucl,esbloc,etors_nucl,etors_d_nucl,ecorr_nucl,& + ecorr3_nucl + integer :: i #ifdef MPI integer :: ierr @@ -665,20 +726,48 @@ Uconst=energia(20) esccor=energia(21) eliptran=energia(22) + Eafmforce=energia(23) + ethetacnstr=energia(24) + etube=energia(25) + evdwpp=energia(26) + eespp=energia(27) + evdwpsb=energia(28) + eelpsb=energia(29) + evdwsb=energia(30) + eelsb=energia(31) + estr_nucl=energia(32) + ebe_nucl=energia(33) + esbloc=energia(34) + etors_nucl=energia(35) + etors_d_nucl=energia(36) + ecorr_nucl=energia(37) + ecorr3_nucl=energia(38) + + #ifdef SPLITELE etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1 & +wang*ebe+wtor*etors+wscloc*escloc & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5 & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3 & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d & - +wbond*estr+Uconst+wsccor*esccor+wliptran*eliptran + +wbond*estr+Uconst+wsccor*esccor+wliptran*eliptran+wtube*etube& + +Eafmforce+ethetacnstr & + +wbond_nucl*estr_nucl+wang_nucl*ebe_nucl& + +wvdwpp*evdwpp+welpp*eespp+wvdwpsb*evdwpsb+welpsb*eelpsb& + +wvdwsb*evdwsb+welsb*eelsb+wsbloc*esbloc+wtor_nucl*etors_nucl& + +wtor_d_nucl*etors_d_nucl+wcorr_nucl*ecorr_nucl+wcorr3_nucl*ecorr3_nucl #else etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1) & +wang*ebe+wtor*etors+wscloc*escloc & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5 & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3 & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d & - +wbond*estr+Uconst+wsccor*esccor+wliptran*eliptran + +wbond*estr+Uconst+wsccor*esccor+wliptran*eliptran+wtube*etube& + +Eafmforce+ethetacnstr & + +wbond_nucl*estr_nucl+wang_nucl*ebe_nucl& + +wvdwpp*evdwpp+welpp*eespp+wvdwpsb*evdwpsb+welpsb*eelpsb& + +wvdwsb*evdwsb+welsb*eelsb+wsbloc*esbloc+wtor_nucl*etors_nucl& + +wtor_d_nucl*etors_d_nucl+wcorr_nucl*ecorr_nucl+wcorr3_nucl*ecorr3_nucl #endif energia(0)=etot ! detecting NaNQ @@ -801,7 +890,11 @@ !el local variables real(kind=8) :: etot,evdw,evdw2,ees,evdw1,ecorr,ecorr5,ecorr6,eel_loc real(kind=8) :: eello_turn6,eello_turn3,eello_turn4,ebe,escloc - real(kind=8) :: etors,etors_d,ehpb,edihcnstr,estr,Uconst,esccor,eliptran + real(kind=8) :: etors,etors_d,ehpb,edihcnstr,estr,Uconst,esccor,eliptran,& + etube,ethetacnstr,Eafmforce + real(kind=8) :: evdwpp,eespp,evdwpsb,eelpsb,evdwsb,eelsb,estr_nucl,& + ebe_nucl,esbloc,etors_nucl,etors_d_nucl,ecorr_nucl,& + ecorr3_nucl etot=energia(0) evdw=energia(1) @@ -832,6 +925,22 @@ Uconst=energia(20) esccor=energia(21) eliptran=energia(22) + Eafmforce=energia(23) + ethetacnstr=energia(24) + etube=energia(25) + evdwpp=energia(26) + eespp=energia(27) + evdwpsb=energia(28) + eelpsb=energia(29) + evdwsb=energia(30) + eelsb=energia(31) + estr_nucl=energia(32) + ebe_nucl=energia(33) + esbloc=energia(34) + etors_nucl=energia(35) + etors_d_nucl=energia(36) + ecorr_nucl=energia(37) + ecorr3_nucl=energia(38) #ifdef SPLITELE write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,& @@ -840,8 +949,14 @@ ecorr,wcorr,& ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,& eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,& - edihcnstr,ebr*nss,& - Uconst,eliptran,wliptran,etot + edihcnstr,ethetacnstr,ebr*nss,& + Uconst,eliptran,wliptran,Eafmforce,etube,wtube, & ! till now protein + estr_nucl,wbond_nucl,ebe_nucl,wang_nucl, & + evdwpp,wvdwpp,eespp,welpp,evdwpsb,wvdwpsb,eelpsb,welpsb,& + evdwsb,wvdwsb,eelsb,welsb,esbloc,wsbloc,etors_nucl,wtor_nucl,& + etors_d_nucl,wtor_d_nucl,ecorr_nucl,wcorr_nucl,& + ecorr3_nucl,wcorr3_nucl, & + etot 10 format (/'Virtual-chain energies:'// & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ & @@ -863,9 +978,25 @@ 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/ & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/ & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/ & + 'ETHETC= ',1pE16.6,' (valence angle constraints)'/ & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ & 'UCONST= ',1pE16.6,' (Constraint energy)'/ & 'ELT=',1pE16.6, ' WEIGHT=',1pD16.6,' (Lipid transfer energy)'/& + 'EAFM= ',1pE16.6,' (atomic-force microscopy)'/ & + 'ETUBE=',1pE16.6, ' WEIGHT=',1pD16.6,' (cylindrical energy)'/ & + 'ESTR_nucl=',1pE16.6,' WEIGHT=',1pD16.6,' (stretching for nucleic)'/ & + 'EBE_nucl=',1pE16.6,' WEIGHT=',1pD16.6,' (bending for nucleic)'/ & + 'EVDW_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(phosphate-phosphate VDW)'/ & + 'EESPP_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(phosphate-phosphate elec)'/ & + 'EVDWPSB_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(phosphate-sugarbase VDW)'/ & + 'EESPSB_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(phosphate-sugarbase elec)'/ & + 'EVDWSB_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(sugarbase-sugarbase VDW)'/ & + 'EESSB_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(sugarbase-sugarbase elec)'/ & + 'ESBLOC_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(sugarbase rotamer)'/ & + 'ETORS_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(torsional)'/ & + 'ETORSD_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(double torsional)'/ & + 'ECORR_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(multibody 4th order)'/ & + 'ECORR3_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(multibody 3th order)'/ & 'ETOT= ',1pE16.6,' (total)') #else write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,& @@ -874,7 +1005,14 @@ ecorr,wcorr,& ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,& eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,edihcnstr,& - ebr*nss,Uconst,eliptran,wliptran,etot + ethetacnstr,ebr*nss,Uconst,eliptran,wliptran,Eafmforc, & + etube,wtube, & + estr_nucl,wbond_nucl, ebe_nucl,wang_nucl,& + evdwpp,wvdwpp,eespp,welpp,evdwpsb,wvdwpsb,eelpsb,welpsb& + evdwsb,wvdwsb,eelsb,welsb,esbloc,wsbloc,etors_nucl,wtor_nucl& + etors_d_nucl,wtor_d_nucl,ecorr_nucl,wcorr_nucl,& + ecorr3_nucl,wcorr3_nucl, & + etot 10 format (/'Virtual-chain energies:'// & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ & @@ -895,9 +1033,25 @@ 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/ & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/ & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/ & + 'ETHETC= ',1pE16.6,' (valence angle constraints)'/ & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ & 'UCONST=',1pE16.6,' (Constraint energy)'/ & 'ELT=',1pE16.6, ' WEIGHT=',1pD16.6,' (Lipid transfer energy)'/ & + 'EAFM= ',1pE16.6,' (atomic-force microscopy)'/ & + 'ETUBE=',1pE16.6, ' WEIGHT=',1pD16.6,' (cylindrical energy)'/ & + 'ESTR_nucl= ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching for nucleic)'/ & + 'EBE_nucl=',1pE16.6,' WEIGHT=',1pD16.6,' (bending for nucleic)'/ & + 'EVDW_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(phosphate-phosphate VDW)'/ & + 'EESPP_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(phosphate-phosphate elec)'/ & + 'EVDWPSB_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(phosphate-sugarbase VDW)'/ & + 'EESPSB_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(phosphate-sugarbase elec)'/ & + 'EVDWSB_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(sugarbase-sugarbase VDW)'/ & + 'EESSB_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(sugarbase-sugarbase elec)'/ & + 'ESBLOC_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(sugarbase rotamer)'/ & + 'ETORS_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(torsional)'/ & + 'ETORSD_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(double torsional)'/ & + 'ECORR_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(multibody 4th order)'/ & + 'ECORR3_nucl=',1pE16.6,' WEIGHT=',1pD16.6,'(multibody 3th order)'/ & 'ETOT= ',1pE16.6,' (total)') #endif return @@ -938,9 +1092,9 @@ ! allocate(gacont(3,nres/4,iatsc_s:iatsc_e)) !(3,maxconts,maxres) do i=iatsc_s,iatsc_e - itypi=iabs(itype(i)) + itypi=iabs(itype(i,1)) if (itypi.eq.ntyp1) cycle - itypi1=iabs(itype(i+1)) + itypi1=iabs(itype(i+1,1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -953,7 +1107,7 @@ !d write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint), !d & 'iend=',iend(i,iint) do j=istart(i,iint),iend(i,iint) - itypj=iabs(itype(j)) + itypj=iabs(itype(j,1)) if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi @@ -970,7 +1124,7 @@ !d sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) !d epsi=bb(itypi,itypj)**2/aa(itypi,itypj) !d write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)') -!d & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj), +!d & restyp(itypi,1),i,restyp(itypj,1),j,aa(itypi,itypj), !d & bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm, !d & (c(k,i),k=1,3),(c(k,j),k=1,3) evdw=evdw+evdwij @@ -1096,9 +1250,9 @@ ! print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e - itypi=iabs(itype(i)) + itypi=iabs(itype(i,1)) if (itypi.eq.ntyp1) cycle - itypi1=iabs(itype(i+1)) + itypi1=iabs(itype(i+1,1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1107,7 +1261,7 @@ ! do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) - itypj=iabs(itype(j)) + itypj=iabs(itype(j,1)) if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi @@ -1125,7 +1279,7 @@ !d sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) !d epsi=bb(itypi,itypj)**2/aa(itypi,itypj) !d write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)') -!d & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj), +!d & restyp(itypi,1),i,restyp(itypj,1),j,aa(itypi,itypj), !d & bb(itypi,itypj),augm(itypi,itypj),epsi,sigm, !d & sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij, !d & (c(k,i),k=1,3),(c(k,j),k=1,3) @@ -1197,9 +1351,9 @@ ! endif !el ind=0 do i=iatsc_s,iatsc_e - itypi=iabs(itype(i)) + itypi=iabs(itype(i,1)) if (itypi.eq.ntyp1) cycle - itypi1=iabs(itype(i+1)) + itypi1=iabs(itype(i+1,1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1214,7 +1368,7 @@ do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) !el ind=ind+1 - itypj=iabs(itype(j)) + itypj=iabs(itype(j,1)) if (itypj.eq.ntyp1) cycle ! dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) @@ -1266,7 +1420,7 @@ sigm=dabs(aa_aq(itypi,itypj)/bb_aq(itypi,itypj))**(1.0D0/6.0D0) epsi=bb_aq(itypi,itypj)**2/aa_aq(itypi,itypj) !d write (iout,'(2(a3,i3,2x),15(0pf7.3))') -!d & restyp(itypi),i,restyp(itypj),j, +!d & restyp(itypi,1),i,restyp(itypj,1),j, !d & epsi,sigm,chi1,chi2,chip1,chip2, !d & eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq), !d & om1,om2,om12,1.0D0/dsqrt(rrij), @@ -1328,10 +1482,11 @@ ! if (icall.eq.0) lprn=.false. !el ind=0 do i=iatsc_s,iatsc_e - print *,"I am in EVDW",i - itypi=iabs(itype(i)) +!C print *,"I am in EVDW",i + itypi=iabs(itype(i,1)) +! if (i.ne.47) cycle if (itypi.eq.ntyp1) cycle - itypi1=iabs(itype(i+1)) + itypi1=iabs(itype(i+1,1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1364,7 +1519,7 @@ sslipi=0.0d0 ssgradlipi=0.0 endif - print *, sslipi,ssgradlipi +! print *, sslipi,ssgradlipi dxi=dc_norm(1,nres+i) dyi=dc_norm(2,nres+i) dzi=dc_norm(3,nres+i) @@ -1384,15 +1539,37 @@ 'evdw',i,j,evdwij,' ss' ! if (energy_dec) write (iout,*) & ! 'evdw',i,j,evdwij,' ss' + do k=j+1,iend(i,iint) +!C search over all next residues + if (dyn_ss_mask(k)) then +!C check if they are cysteins +!C write(iout,*) 'k=',k + +!c write(iout,*) "PRZED TRI", evdwij +! evdwij_przed_tri=evdwij + call triple_ssbond_ene(i,j,k,evdwij) +!c if(evdwij_przed_tri.ne.evdwij) then +!c write (iout,*) "TRI:", evdwij, evdwij_przed_tri +!c endif + +!c write(iout,*) "PO TRI", evdwij +!C call the energy function that removes the artifical triple disulfide +!C bond the soubroutine is located in ssMD.F + evdw=evdw+evdwij + if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') & + 'evdw',i,j,evdwij,'tss' + endif!dyn_ss_mask(k) + enddo! k ELSE !el ind=ind+1 - itypj=iabs(itype(j)) + itypj=iabs(itype(j,1)) if (itypj.eq.ntyp1) cycle +! if (j.ne.78) cycle ! dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) ! write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,& ! 1.0d0/vbld(j+nres) !d -! write (iout,*) "i",i," j", j," itype",itype(i),itype(j) +! write (iout,*) "i",i," j", j," itype",itype(i,1),itype(j,1) sig0ij=sigma(itypi,itypj) chi1=chi(itypi,itypj) chi2=chi(itypj,itypi) @@ -1514,7 +1691,7 @@ if (rij_shift.le.0.0D0) then evdw=1.0D20 !d write (iout,'(2(a3,i3,2x),17(0pf7.3))') -!d & restyp(itypi),i,restyp(itypj),j, +!d & restyp(itypi,1),i,restyp(itypj,1),j, !d & rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) return endif @@ -1537,7 +1714,7 @@ sigm=dabs(aa/bb)**(1.0D0/6.0D0) epsi=bb**2/aa!(itypi,itypj) write (iout,'(2(a3,i3,2x),17(0pf7.3))') & - restyp(itypi),i,restyp(itypj),j, & + restyp(itypi,1),i,restyp(itypj,1),j, & epsi,sigm,chi1,chi2,chip1,chip2, & eps1,eps2rt**2,eps3rt**2,sig,sig0ij, & om1,om2,om12,1.0D0/rij,1.0D0/rij_shift, & @@ -1549,6 +1726,7 @@ !C print *,i,j,c(1,i),c(1,j),c(2,i),c(2,j),c(3,i),c(3,j) ! if (energy_dec) write (iout,*) & ! 'evdw',i,j,evdwij +! print *,"ZALAMKA", evdw ! Calculate gradient components. e1=e1*eps1*eps2rt**2*eps3rt**2 @@ -1581,6 +1759,7 @@ enddo ! j enddo ! iint enddo ! i +! print *,"ZALAMKA", evdw ! write (iout,*) "Number of loop steps in EGB:",ind !ccc energy_dec=.false. return @@ -1619,9 +1798,9 @@ ! if (icall.eq.0) lprn=.true. !el ind=0 do i=iatsc_s,iatsc_e - itypi=iabs(itype(i)) + itypi=iabs(itype(i,1)) if (itypi.eq.ntyp1) cycle - itypi1=iabs(itype(i+1)) + itypi1=iabs(itype(i+1,1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1636,7 +1815,7 @@ do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) !el ind=ind+1 - itypj=iabs(itype(j)) + itypj=iabs(itype(j,1)) if (itypj.eq.ntyp1) cycle ! dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) @@ -1698,7 +1877,7 @@ bb_aq(itypi,itypj))**(1.0D0/6.0D0) epsi=bb_aq(itypi,itypj)**2/aa_aq(itypi,itypj) write (iout,'(2(a3,i3,2x),17(0pf7.3))') & - restyp(itypi),i,restyp(itypj),j,& + restyp(itypi,1),i,restyp(itypj,1),j,& epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),& chi1,chi2,chip1,chip2,& eps1,eps2rt**2,eps3rt**2,& @@ -1751,9 +1930,9 @@ evdw=0.0D0 do i=iatsc_s,iatsc_e - itypi=iabs(itype(i)) + itypi=iabs(itype(i,1)) if (itypi.eq.ntyp1) cycle - itypi1=iabs(itype(i+1)) + itypi1=iabs(itype(i+1,1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -1764,7 +1943,7 @@ !d write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint), !d & 'iend=',iend(i,iint) do j=istart(i,iint),iend(i,iint) - itypj=iabs(itype(j)) + itypj=iabs(itype(j,1)) if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi @@ -1838,7 +2017,7 @@ eello_turn4=0.0d0 !el ind=0 do i=iatel_s,iatel_e - if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle + if (itype(i,1).eq.ntyp1 .or. itype(i+1,1).eq.ntyp1) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -1848,7 +2027,7 @@ num_conti=0 ! write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) do j=ielstart(i),ielend(i) - if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1) cycle + if (itype(j,1).eq.ntyp1 .or. itype(j+1,1).eq.ntyp1) cycle !el ind=ind+1 iteli=itel(i) itelj=itel(j) @@ -2281,17 +2460,17 @@ endif ! if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then if (i.gt. nnt+2 .and. i.lt.nct+2) then - iti = itortyp(itype(i-2)) + iti = itortyp(itype(i-2,1)) else iti=ntortyp+1 endif ! if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then if (i.gt. nnt+1 .and. i.lt.nct+1) then - iti1 = itortyp(itype(i-1)) + iti1 = itortyp(itype(i-1,1)) else iti1=ntortyp+1 endif -! print *,iti,i,"iti",iti1,itype(i-1),itype(i-2) +! print *,iti,i,"iti",iti1,itype(i-1,1),itype(i-2,1) !d write (iout,*) '*******i',i,' iti1',iti !d write (iout,*) 'b1',b1(:,iti) !d write (iout,*) 'b2',b2(:,iti) @@ -2328,8 +2507,8 @@ enddo ! if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then if (i.gt. nnt+1 .and. i.lt.nct+1) then - if (itype(i-1).le.ntyp) then - iti1 = itortyp(itype(i-1)) + if (itype(i-1,1).le.ntyp) then + iti1 = itortyp(itype(i-1,1)) else iti1=ntortyp+1 endif @@ -2628,7 +2807,7 @@ #endif #endif !d do i=1,nres -!d iti = itortyp(itype(i)) +!d iti = itortyp(itype(i,1)) !d write (iout,*) i !d do j=1,2 !d write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') @@ -2697,7 +2876,7 @@ !d write(iout,*) 'In EELEC' - print *,"IN EELEC" +! print *,"IN EELEC" !d do i=1,nloctyp !d write(iout,*) 'Type',i !d write(iout,*) 'B1',B1(:,i) @@ -2736,8 +2915,8 @@ ! write (iout,*) 'i',i,' fac',fac enddo endif - print *,wel_loc,"wel_loc",wcorr4,wcorr5,wcorr6,wturn3,wturn4, & - wturn6 +! print *,wel_loc,"wel_loc",wcorr4,wcorr5,wcorr6,wturn3,wturn4, & +! wturn6 if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 & .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. & wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then @@ -2753,7 +2932,7 @@ time_mat=time_mat+MPI_Wtime()-time01 #endif endif - print *, "after set matrices" +! print *, "after set matrices" !d do i=1,nres-1 !d write (iout,*) 'i=',i !d do k=1,3 @@ -2790,10 +2969,10 @@ ! - print *,"before iturn3 loop" +! print *,"before iturn3 loop" do i=iturn3_start,iturn3_end - if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1 & - .or. itype(i+2).eq.ntyp1 .or. itype(i+3).eq.ntyp1) cycle + if (itype(i,1).eq.ntyp1 .or. itype(i+1,1).eq.ntyp1 & + .or. itype(i+2,1).eq.ntyp1 .or. itype(i+3,1).eq.ntyp1) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -2832,15 +3011,15 @@ sslipi=0.0d0 ssgradlipi=0.0 endif - print *,i,sslipi,ssgradlipi +! print *,i,sslipi,ssgradlipi call eelecij(i,i+2,ees,evdw1,eel_loc) if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3) num_cont_hb(i)=num_conti enddo do i=iturn4_start,iturn4_end - if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1 & - .or. itype(i+3).eq.ntyp1 & - .or. itype(i+4).eq.ntyp1) cycle + if (itype(i,1).eq.ntyp1 .or. itype(i+1,1).eq.ntyp1 & + .or. itype(i+3,1).eq.ntyp1 & + .or. itype(i+4,1).eq.ntyp1) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -2881,15 +3060,16 @@ num_conti=num_cont_hb(i) call eelecij(i,i+3,ees,evdw1,eel_loc) - if (wturn4.gt.0.0d0 .and. itype(i+2).ne.ntyp1) & + if (wturn4.gt.0.0d0 .and. itype(i+2,1).ne.ntyp1) & call eturn4(i,eello_turn4) num_cont_hb(i)=num_conti enddo ! i ! ! Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3 ! + print *,"iatel_s,iatel_e,",iatel_s,iatel_e do i=iatel_s,iatel_e - if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle + if (itype(i,1).eq.ntyp1 .or. itype(i+1,1).eq.ntyp1) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -2931,8 +3111,8 @@ ! write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) num_conti=num_cont_hb(i) do j=ielstart(i),ielend(i) -! write (iout,*) i,j,itype(i),itype(j) - if (itype(j).eq.ntyp1.or. itype(j+1).eq.ntyp1) cycle +! write (iout,*) i,j,itype(i,1),itype(j,1) + if (itype(j,1).eq.ntyp1.or. itype(j+1,1).eq.ntyp1) cycle call eelecij(i,j,ees,evdw1,eel_loc) enddo ! j num_cont_hb(i)=num_conti @@ -3176,9 +3356,12 @@ ! ! Radial derivatives. First process both termini of the fragment (i,j) ! - ggg(1)=facel*xj+sss_ele_grad*rmij*eesij*xj - ggg(2)=facel*yj+sss_ele_grad*rmij*eesij*yj - ggg(3)=facel*zj+sss_ele_grad*rmij*eesij*zj + ggg(1)=facel*xj+sss_ele_grad*rmij*eesij*xj* & + ((sslipi+sslipj)/2.0d0*lipscale**2+1.0d0) + ggg(2)=facel*yj+sss_ele_grad*rmij*eesij*yj* & + ((sslipi+sslipj)/2.0d0*lipscale**2+1.0d0) + ggg(3)=facel*zj+sss_ele_grad*rmij*eesij*zj* & + ((sslipi+sslipj)/2.0d0*lipscale**2+1.0d0) if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and. & (shield_mode.gt.0)) then @@ -3431,7 +3614,7 @@ a32=a32*fac a33=a33*fac !d write (iout,'(4i5,4f10.5)') -!d & i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33 +!d & i,itortyp(itype(i,1)),j,itortyp(itype(j,1)),a22,a23,a32,a33 !d write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij !d write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i), !d & uy(:,j),uz(:,j) @@ -3685,7 +3868,10 @@ ggg(l)=(agg(l,1)*muij(1)+ & agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4))& *sss_ele_cut & - +eel_loc_ij*sss_ele_grad*rmij*xtemp(l) + *fac_shield(i)*fac_shield(j) & + *((sslipi+sslipj)/2.0d0*lipscale+1.0d0) & + +eel_loc_ij*sss_ele_grad*rmij*xtemp(l) + gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l) gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l) @@ -3695,11 +3881,11 @@ enddo gel_loc_long(3,j)=gel_loc_long(3,j)+ & ssgradlipj*eel_loc_ij/2.0d0*lipscale/ & - ((sslipi+sslipj)/2.0d0*lipscale+1.0d0) + ((sslipi+sslipj)/2.0d0*lipscale+1.0d0)*sss_ele_cut gel_loc_long(3,i)=gel_loc_long(3,i)+ & ssgradlipi*eel_loc_ij/2.0d0*lipscale/ & - ((sslipi+sslipj)/2.0d0*lipscale+1.0d0) + ((sslipi+sslipj)/2.0d0*lipscale+1.0d0)*sss_ele_cut !grad do k=i+1,j2 !grad do l=1,3 @@ -3710,21 +3896,33 @@ do l=1,3 gel_loc(l,i)=gel_loc(l,i)+(aggi(l,1)*muij(1)+ & aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4))& - *sss_ele_cut + *sss_ele_cut & + *fac_shield(i)*fac_shield(j) & + *((sslipi+sslipj)/2.0d0*lipscale+1.0d0) + !+eel_loc_ij*sss_ele_grad*rmij*xtemp(l) gel_loc(l,i+1)=gel_loc(l,i+1)+(aggi1(l,1)*muij(1)+ & aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3) & +aggi1(l,4)*muij(4))& - *sss_ele_cut + *sss_ele_cut & + *fac_shield(i)*fac_shield(j) & + *((sslipi+sslipj)/2.0d0*lipscale+1.0d0) + !+eel_loc_ij*sss_ele_grad*rmij*xtemp(l) gel_loc(l,j)=gel_loc(l,j)+(aggj(l,1)*muij(1)+ & aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4))& - *sss_ele_cut + *sss_ele_cut & + *fac_shield(i)*fac_shield(j) & + *((sslipi+sslipj)/2.0d0*lipscale+1.0d0) + !+eel_loc_ij*sss_ele_grad*rmij*xtemp(l) gel_loc(l,j1)=gel_loc(l,j1)+(aggj1(l,1)*muij(1)+ & aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3) & +aggj1(l,4)*muij(4))& - *sss_ele_cut + *sss_ele_cut & + *fac_shield(i)*fac_shield(j) & + *((sslipi+sslipj)/2.0d0*lipscale+1.0d0) + !+eel_loc_ij*sss_ele_grad*rmij*xtemp(l) enddo ENDIF @@ -4100,7 +4298,9 @@ call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1)) call transpose2(auxmat2(1,1),auxmat3(1,1)) call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1)) - gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2)) + gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))& + *fac_shield(i)*fac_shield(j) & + *((sslipi+sslipj)/2.0d0*lipscale+1.0d0) ! Derivatives in gamma(i+1) call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1)) call transpose2(auxmat2(1,1),auxmat3(1,1)) @@ -4247,9 +4447,9 @@ a_temp(1,2)=a23 a_temp(2,1)=a32 a_temp(2,2)=a33 - iti1=itortyp(itype(i+1)) - iti2=itortyp(itype(i+2)) - iti3=itortyp(itype(i+3)) + iti1=itortyp(itype(i+1,1)) + iti2=itortyp(itype(i+2,1)) + iti3=itortyp(itype(i+3,1)) ! write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3 call transpose2(EUg(1,1,i+1),e1t(1,1)) call transpose2(Eug(1,1,i+2),e2t(1,1)) @@ -4372,7 +4572,10 @@ call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) ggg(l)=-(s1+s2+s3) - gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3) + gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)& + *fac_shield(i)*fac_shield(j) & + *((sslipi+sslipj)/2.0d0*lipscale+1.0d0) + enddo endif ! Remaining derivatives of this turn contribution @@ -4515,7 +4718,7 @@ !d print '(a)','Enter ESCP' !d write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e do i=iatscp_s,iatscp_e - if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle + if (itype(i,1).eq.ntyp1 .or. itype(i+1,1).eq.ntyp1) cycle iteli=itel(i) xi=0.5D0*(c(1,i)+c(1,i+1)) yi=0.5D0*(c(2,i)+c(2,i+1)) @@ -4524,8 +4727,8 @@ do iint=1,nscp_gr(i) do j=iscpstart(i,iint),iscpend(i,iint) - if (itype(j).eq.ntyp1) cycle - itypj=iabs(itype(j)) + if (itype(j,1).eq.ntyp1) cycle + itypj=iabs(itype(j,1)) ! Uncomment following three lines for SC-p interactions ! xj=c(1,nres+j)-xi ! yj=c(2,nres+j)-yi @@ -4619,7 +4822,7 @@ !d print '(a)','Enter ESCP' !d write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e do i=iatscp_s,iatscp_e - if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle + if (itype(i,1).eq.ntyp1 .or. itype(i+1,1).eq.ntyp1) cycle iteli=itel(i) xi=0.5D0*(c(1,i)+c(1,i+1)) yi=0.5D0*(c(2,i)+c(2,i+1)) @@ -4634,7 +4837,7 @@ do iint=1,nscp_gr(i) do j=iscpstart(i,iint),iscpend(i,iint) - itypj=iabs(itype(j)) + itypj=iabs(itype(j,1)) if (itypj.eq.ntyp1) cycle ! Uncomment following three lines for SC-p interactions ! xj=c(1,nres+j)-xi @@ -4810,51 +5013,107 @@ ! 18/07/06 MC: Use the convention that the first nss pairs are SS bonds if (.not.dyn_ss .and. i.le.nss) then ! 15/02/13 CC dynamic SSbond - additional check - if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and. & - iabs(itype(jjj)).eq.1) then + if (ii.gt.nres .and. iabs(itype(iii,1)).eq.1 .and. & + iabs(itype(jjj,1)).eq.1) then call ssbond_ene(iii,jjj,eij) ehpb=ehpb+2*eij !d write (iout,*) "eij",eij endif + else if (ii.gt.nres .and. jj.gt.nres) then +!c Restraints from contact prediction + dd=dist(ii,jj) + if (constr_dist.eq.11) then + ehpb=ehpb+fordepth(i)**4.0d0 & + *rlornmr1(dd,dhpb(i),dhpb1(i),forcon(i)) + fac=fordepth(i)**4.0d0 & + *rlornmr1prim(dd,dhpb(i),dhpb1(i),forcon(i))/dd + if (energy_dec) write (iout,'(a6,2i5,3f8.3)') "edisl",ii,jj, & + ehpb,fordepth(i),dd + else + if (dhpb1(i).gt.0.0d0) then + ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) + fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd +!c write (iout,*) "beta nmr", +!c & dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) + else + dd=dist(ii,jj) + rdis=dd-dhpb(i) +!C Get the force constant corresponding to this distance. + waga=forcon(i) +!C Calculate the contribution to energy. + ehpb=ehpb+waga*rdis*rdis +!c write (iout,*) "beta reg",dd,waga*rdis*rdis +!C +!C Evaluate gradient. +!C + fac=waga*rdis/dd + endif + endif + do j=1,3 + ggg(j)=fac*(c(j,jj)-c(j,ii)) + enddo + do j=1,3 + ghpbx(j,iii)=ghpbx(j,iii)-ggg(j) + ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j) + enddo + do k=1,3 + ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k) + ghpbc(k,iii)=ghpbc(k,iii)-ggg(k) + enddo else -! Calculate the distance between the two points and its difference from the -! target distance. - dd=dist(ii,jj) - rdis=dd-dhpb(i) -! Get the force constant corresponding to this distance. - waga=forcon(i) -! Calculate the contribution to energy. - ehpb=ehpb+waga*rdis*rdis -! -! Evaluate gradient. -! - fac=waga*rdis/dd -!d print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd, -!d & ' waga=',waga,' fac=',fac - do j=1,3 - ggg(j)=fac*(c(j,jj)-c(j,ii)) - enddo -!d print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3) -! If this is a SC-SC distance, we need to calculate the contributions to the -! Cartesian gradient in the SC vectors (ghpbx). - if (iii.lt.ii) then + dd=dist(ii,jj) + if (constr_dist.eq.11) then + ehpb=ehpb+fordepth(i)**4.0d0 & + *rlornmr1(dd,dhpb(i),dhpb1(i),forcon(i)) + fac=fordepth(i)**4.0d0 & + *rlornmr1prim(dd,dhpb(i),dhpb1(i),forcon(i))/dd + if (energy_dec) write (iout,'(a6,2i5,3f8.3)') "edisl",ii,jj, & + ehpb,fordepth(i),dd + else + if (dhpb1(i).gt.0.0d0) then + ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) + fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd +!c write (iout,*) "alph nmr", +!c & dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) + else + rdis=dd-dhpb(i) +!C Get the force constant corresponding to this distance. + waga=forcon(i) +!C Calculate the contribution to energy. + ehpb=ehpb+waga*rdis*rdis +!c write (iout,*) "alpha reg",dd,waga*rdis*rdis +!C +!C Evaluate gradient. +!C + fac=waga*rdis/dd + endif + endif + + do j=1,3 + ggg(j)=fac*(c(j,jj)-c(j,ii)) + enddo +!cd print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3) +!C If this is a SC-SC distance, we need to calculate the contributions to the +!C Cartesian gradient in the SC vectors (ghpbx). + if (iii.lt.ii) then do j=1,3 ghpbx(j,iii)=ghpbx(j,iii)-ggg(j) ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j) enddo - endif -!grad do j=iii,jjj-1 -!grad do k=1,3 -!grad ghpbc(k,j)=ghpbc(k,j)+ggg(k) -!grad enddo -!grad enddo - do k=1,3 - ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k) - ghpbc(k,iii)=ghpbc(k,iii)-ggg(k) - enddo + endif +!cgrad do j=iii,jjj-1 +!cgrad do k=1,3 +!cgrad ghpbc(k,j)=ghpbc(k,j)+ggg(k) +!cgrad enddo +!cgrad enddo + do k=1,3 + ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k) + ghpbc(k,iii)=ghpbc(k,iii)-ggg(k) + enddo endif enddo - ehpb=0.5D0*ehpb + if (constr_dist.ne.11) ehpb=0.5D0*ehpb + return end subroutine edis !----------------------------------------------------------------------------- @@ -4883,7 +5142,7 @@ deltat1,deltat2,deltat12,ed,pom1,pom2,eom1,eom2,eom12,& cosphi,ggk - itypi=iabs(itype(i)) + itypi=iabs(itype(i,1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -4892,7 +5151,7 @@ dzi=dc_norm(3,nres+i) ! dsci_inv=dsc_inv(itypi) dsci_inv=vbld_inv(nres+i) - itypj=iabs(itype(j)) + itypj=iabs(itype(j,1)) ! dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(nres+j) xj=c(1,nres+j)-xi @@ -4982,8 +5241,8 @@ ! if (.not.allocated(gradbx)) allocate(gradbx(3,nres)) !(3,maxres) do i=ibondp_start,ibondp_end - if (itype(i-1).eq.ntyp1 .and. itype(i).eq.ntyp1) cycle - if (itype(i-1).eq.ntyp1 .or. itype(i).eq.ntyp1) then + if (itype(i-1,1).eq.ntyp1 .and. itype(i,1).eq.ntyp1) cycle + if (itype(i-1,1).eq.ntyp1 .or. itype(i,1).eq.ntyp1) then !C estr1=estr1+gnmr1(vbld(i),-1.0d0,distchainmax) !C do j=1,3 !C gradb(j,i-1)=gnmr1prim(vbld(i),-1.0d0,distchainmax) & @@ -5005,11 +5264,13 @@ ! endif enddo estr=0.5d0*AKP*estr+estr1 +! print *,"estr_bb",estr,AKP ! ! 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included ! do i=ibond_start,ibond_end - iti=iabs(itype(i)) + iti=iabs(itype(i,1)) + if (iti.eq.0) print *,"WARNING WRONG SETTTING",i if (iti.ne.10 .and. iti.ne.ntyp1) then nbi=nbondterm(iti) if (nbi.eq.1) then @@ -5018,6 +5279,7 @@ "estr sc",i,iti,vbld(i+nres),vbldsc0(1,iti),diff,& AKSC(1,iti),AKSC(1,iti)*diff*diff estr=estr+0.5d0*AKSC(1,iti)*diff*diff +! print *,"estr_sc",estr do j=1,3 gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres) enddo @@ -5046,6 +5308,11 @@ usumsqder=usumsqder+ud(j)*uprod2 enddo estr=estr+uprod/usum +! print *,"estr_sc",estr,i + + if (energy_dec) write (iout,*) & + "estr sc",i,iti,vbld(i+nres),vbldsc0(1,iti),diff,& + AKSC(1,iti),uprod/usum do j=1,3 gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres) enddo @@ -5095,24 +5362,24 @@ etheta=0.0D0 ! write (*,'(a,i2)') 'EBEND ICG=',icg do i=ithet_start,ithet_end - if (itype(i-1).eq.ntyp1) cycle + if (itype(i-1,1).eq.ntyp1) cycle ! Zero the energy function and its derivative at 0 or pi. call splinthet(theta(i),0.5d0*delta,ss,ssd) - it=itype(i-1) - ichir1=isign(1,itype(i-2)) - ichir2=isign(1,itype(i)) - if (itype(i-2).eq.10) ichir1=isign(1,itype(i-1)) - if (itype(i).eq.10) ichir2=isign(1,itype(i-1)) - if (itype(i-1).eq.10) then - itype1=isign(10,itype(i-2)) - ichir11=isign(1,itype(i-2)) - ichir12=isign(1,itype(i-2)) - itype2=isign(10,itype(i)) - ichir21=isign(1,itype(i)) - ichir22=isign(1,itype(i)) + it=itype(i-1,1) + ichir1=isign(1,itype(i-2,1)) + ichir2=isign(1,itype(i,1)) + if (itype(i-2,1).eq.10) ichir1=isign(1,itype(i-1,1)) + if (itype(i,1).eq.10) ichir2=isign(1,itype(i-1,1)) + if (itype(i-1,1).eq.10) then + itype1=isign(10,itype(i-2,1)) + ichir11=isign(1,itype(i-2,1)) + ichir12=isign(1,itype(i-2,1)) + itype2=isign(10,itype(i,1)) + ichir21=isign(1,itype(i,1)) + ichir22=isign(1,itype(i,1)) endif - if (i.gt.3 .and. itype(i-2).ne.ntyp1) then + if (i.gt.3 .and. itype(i-2,1).ne.ntyp1) then #ifdef OSF phii=phi(i) if (phii.ne.phii) phii=150.0 @@ -5125,7 +5392,7 @@ y(1)=0.0D0 y(2)=0.0D0 endif - if (i.lt.nres .and. itype(i).ne.ntyp1) then + if (i.lt.nres .and. itype(i,1).ne.ntyp1) then #ifdef OSF phii1=phi(i+1) if (phii1.ne.phii1) phii1=150.0 @@ -5289,7 +5556,7 @@ end subroutine theteng #else !----------------------------------------------------------------------------- - subroutine ebend(etheta) + subroutine ebend(etheta,ethetacnstr) ! ! Evaluate the virtual-bond-angle energy given the virtual-bond dihedral ! angles gamma and its derivatives in consecutive thetas and gammas. @@ -5315,31 +5582,34 @@ !el local variables integer :: i,k,iblock,ityp1,ityp2,ityp3,l,m real(kind=8) :: dethetai,dephii,dephii1,theti2,phii,phii1,ethetai - real(kind=8) :: aux,etheta,ccl,ssl,scl,csl + real(kind=8) :: aux,etheta,ccl,ssl,scl,csl,ethetacnstr +! local variables for constrains + real(kind=8) :: difi,thetiii + integer itheta etheta=0.0D0 do i=ithet_start,ithet_end - if (itype(i-1).eq.ntyp1) cycle - if (itype(i-2).eq.ntyp1.or.itype(i).eq.ntyp1) cycle - if (iabs(itype(i+1)).eq.20) iblock=2 - if (iabs(itype(i+1)).ne.20) iblock=1 + if (itype(i-1,1).eq.ntyp1) cycle + if (itype(i-2,1).eq.ntyp1.or.itype(i,1).eq.ntyp1) cycle + if (iabs(itype(i+1,1)).eq.20) iblock=2 + if (iabs(itype(i+1,1)).ne.20) iblock=1 dethetai=0.0d0 dephii=0.0d0 dephii1=0.0d0 theti2=0.5d0*theta(i) - ityp2=ithetyp((itype(i-1))) + ityp2=ithetyp((itype(i-1,1))) do k=1,nntheterm coskt(k)=dcos(k*theti2) sinkt(k)=dsin(k*theti2) enddo - if (i.gt.3 .and. itype(max0(i-3,1)).ne.ntyp1) then + if (i.gt.3 .and. itype(max0(i-3,1),1).ne.ntyp1) then #ifdef OSF phii=phi(i) if (phii.ne.phii) phii=150.0 #else phii=phi(i) #endif - ityp1=ithetyp((itype(i-2))) + ityp1=ithetyp((itype(i-2,1))) ! propagation of chirality for glycine type do k=1,nsingle cosph1(k)=dcos(k*phii) @@ -5347,13 +5617,13 @@ enddo else phii=0.0d0 - ityp1=ithetyp(itype(i-2)) + ityp1=ithetyp(itype(i-2,1)) do k=1,nsingle cosph1(k)=0.0d0 sinph1(k)=0.0d0 enddo endif - if (i.lt.nres .and. itype(i+1).ne.ntyp1) then + if (i.lt.nres .and. itype(i+1,1).ne.ntyp1) then #ifdef OSF phii1=phi(i+1) if (phii1.ne.phii1) phii1=150.0 @@ -5361,14 +5631,14 @@ #else phii1=phi(i+1) #endif - ityp3=ithetyp((itype(i))) + ityp3=ithetyp((itype(i,1))) do k=1,nsingle cosph2(k)=dcos(k*phii1) sinph2(k)=dsin(k*phii1) enddo else phii1=0.0d0 - ityp3=ithetyp(itype(i)) + ityp3=ithetyp(itype(i,1)) do k=1,nsingle cosph2(k)=0.0d0 sinph2(k)=0.0d0 @@ -5489,6 +5759,37 @@ if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1 gloc(nphi+i-2,icg)=wang*dethetai enddo +!-----------thete constrains +! if (tor_mode.ne.2) then + ethetacnstr=0.0d0 +!C print *,ithetaconstr_start,ithetaconstr_end,"TU" + do i=ithetaconstr_start,ithetaconstr_end + itheta=itheta_constr(i) + thetiii=theta(itheta) + difi=pinorm(thetiii-theta_constr0(i)) + if (difi.gt.theta_drange(i)) then + difi=difi-theta_drange(i) + ethetacnstr=ethetacnstr+0.25d0*for_thet_constr(i)*difi**4 + gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg) & + +for_thet_constr(i)*difi**3 + else if (difi.lt.-drange(i)) then + difi=difi+drange(i) + ethetacnstr=ethetacnstr+0.25d0*for_thet_constr(i)*difi**4 + gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg) & + +for_thet_constr(i)*difi**3 + else + difi=0.0 + endif + if (energy_dec) then + write (iout,'(a6,2i5,4f8.3,2e14.5)') "ethetc", & + i,itheta,rad2deg*thetiii, & + rad2deg*theta_constr0(i), rad2deg*theta_drange(i), & + rad2deg*difi,0.25d0*for_thet_constr(i)*difi**4, & + gloc(itheta+nphi-2,icg) + endif + enddo +! endif + return end subroutine ebend #endif @@ -5526,7 +5827,7 @@ escloc=0.0D0 ! write (iout,'(a)') 'ESC' do i=loc_start,loc_end - it=itype(i) + it=itype(i,1) if (it.eq.ntyp1) cycle if (it.eq.10) goto 1 nlobit=nlob(iabs(it)) @@ -5856,7 +6157,7 @@ delta=0.02d0*pi escloc=0.0D0 do i=loc_start,loc_end - if (itype(i).eq.ntyp1) cycle + if (itype(i,1).eq.ntyp1) cycle costtab(i+1) =dcos(theta(i+1)) sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1)) cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1))) @@ -5865,7 +6166,7 @@ cosfac=dsqrt(cosfac2) sinfac2=0.5d0/(1.0d0-costtab(i+1)) sinfac=dsqrt(sinfac2) - it=iabs(itype(i)) + it=iabs(itype(i,1)) if (it.eq.10) goto 1 ! ! Compute the axes of tghe local cartesian coordinates system; store in @@ -5883,7 +6184,7 @@ y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac enddo do j = 1,3 - z_prime(j) = -uz(j,i-1)*dsign(1.0d0,dfloat(itype(i))) + z_prime(j) = -uz(j,i-1)*dsign(1.0d0,dfloat(itype(i,1))) enddo ! write (2,*) "i",i ! write (2,*) "x_prime",(x_prime(j),j=1,3) @@ -5915,7 +6216,7 @@ ! Compute the energy of the ith side cbain ! ! write (2,*) "xx",xx," yy",yy," zz",zz - it=iabs(itype(i)) + it=iabs(itype(i,1)) do j = 1,65 x(j) = sc_parmin(j,it) enddo @@ -5923,7 +6224,7 @@ !c diagnostics - remove later xx1 = dcos(alph(2)) yy1 = dsin(alph(2))*dcos(omeg(2)) - zz1 = -dsign(1.0,dfloat(itype(i)))*dsin(alph(2))*dsin(omeg(2)) + zz1 = -dsign(1.0,dfloat(itype(i,1)))*dsin(alph(2))*dsin(omeg(2)) write(2,'(3f8.1,3f9.3,1x,3f9.3)') & alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,& xx1,yy1,zz1 @@ -5965,7 +6266,7 @@ ! & dscp1,dscp2,sumene ! sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) escloc = escloc + sumene -! write (2,*) "i",i," escloc",sumene,escloc,it,itype(i) +! write (2,*) "i",i," escloc",sumene,escloc,it,itype(i,1) ! & ,zz,xx,yy !#define DEBUG #ifdef DEBUG @@ -6011,7 +6312,7 @@ ! ! Compute the gradient of esc ! -! zz=zz*dsign(1.0,dfloat(itype(i))) +! zz=zz*dsign(1.0,dfloat(itype(i,1))) pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2 pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2 pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2 @@ -6036,7 +6337,7 @@ +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6) & +(pom1+pom2)*pom_dx #ifdef DEBUG - write(2,*), "de_dxx = ", de_dxx,de_dxx_num,itype(i) + write(2,*), "de_dxx = ", de_dxx,de_dxx_num,itype(i,1) #endif ! sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz @@ -6051,7 +6352,7 @@ +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6) & +(pom1-pom2)*pom_dy #ifdef DEBUG - write(2,*), "de_dyy = ", de_dyy,de_dyy_num,itype(i) + write(2,*), "de_dyy = ", de_dyy,de_dyy_num,itype(i,1) #endif ! de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy & @@ -6063,14 +6364,14 @@ +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6) & + ( x(14) + 2*x(17)*zz+ x(18)*xx + x(20)*yy)*(s2+s2_6) #ifdef DEBUG - write(2,*), "de_dzz = ", de_dzz,de_dzz_num,itype(i) + write(2,*), "de_dzz = ", de_dzz,de_dzz_num,itype(i,1) #endif ! de_dt = 0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) & -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6) & +pom1*pom_dt1+pom2*pom_dt2 #ifdef DEBUG - write(2,*), "de_dt = ", de_dt,de_dt_num,itype(i) + write(2,*), "de_dt = ", de_dt,de_dt_num,itype(i,1) #endif ! ! @@ -6097,9 +6398,9 @@ dZZ_Ci(k)=0.0d0 do j=1,3 dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1) & - *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres) + *dsign(1.0d0,dfloat(itype(i,1)))*dC_norm(j,i+nres) dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1) & - *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres) + *dsign(1.0d0,dfloat(itype(i,1)))*dC_norm(j,i+nres) enddo dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres)) @@ -6299,10 +6600,10 @@ etors=0.0D0 do i=iphi_start,iphi_end etors_ii=0.0D0 - if (itype(i-2).eq.ntyp1.or. itype(i-1).eq.ntyp1 & - .or. itype(i).eq.ntyp1) cycle - itori=itortyp(itype(i-2)) - itori1=itortyp(itype(i-1)) + if (itype(i-2,1).eq.ntyp1.or. itype(i-1,1).eq.ntyp1 & + .or. itype(i,1).eq.ntyp1) cycle + itori=itortyp(itype(i-2,1)) + itori1=itortyp(itype(i-1,1)) phii=phi(i) gloci=0.0D0 ! Proline-Proline pair is a special case... @@ -6342,7 +6643,7 @@ 'etor',i,etors_ii if (lprn) & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') & - restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,& + restyp(itype(i-2,1),1),i-2,restyp(itype(i-1,1),1),i-1,itori,itori1,& (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6) gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci ! write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg) @@ -6402,17 +6703,17 @@ ! lprn=.true. etors=0.0D0 do i=iphi_start,iphi_end - if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1 & - .or. itype(i-3).eq.ntyp1 & - .or. itype(i).eq.ntyp1) cycle + if (itype(i-2,1).eq.ntyp1 .or. itype(i-1,1).eq.ntyp1 & + .or. itype(i-3,1).eq.ntyp1 & + .or. itype(i,1).eq.ntyp1) cycle etors_ii=0.0D0 - if (iabs(itype(i)).eq.20) then + if (iabs(itype(i,1)).eq.20) then iblock=2 else iblock=1 endif - itori=itortyp(itype(i-2)) - itori1=itortyp(itype(i-1)) + itori=itortyp(itype(i-2,1)) + itori1=itortyp(itype(i-1,1)) phii=phi(i) gloci=0.0D0 ! Regular cosine and sine terms @@ -6451,7 +6752,7 @@ 'etor',i,etors_ii-v0(itori,itori1,iblock) if (lprn) & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') & - restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,& + restyp(itype(i-2,1),1),i-2,restyp(itype(i-1,1),1),i-1,itori,itori1,& (v1(j,itori,itori1,iblock),j=1,6),& (v2(j,itori,itori1,iblock),j=1,6) gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci @@ -6513,18 +6814,18 @@ ! write(iout,*) "a tu??" do i=iphid_start,iphid_end etors_d_ii=0.0D0 - if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1 & - .or. itype(i-3).eq.ntyp1 & - .or. itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle - itori=itortyp(itype(i-2)) - itori1=itortyp(itype(i-1)) - itori2=itortyp(itype(i)) + if (itype(i-2,1).eq.ntyp1 .or. itype(i-1,1).eq.ntyp1 & + .or. itype(i-3,1).eq.ntyp1 & + .or. itype(i,1).eq.ntyp1 .or. itype(i+1,1).eq.ntyp1) cycle + itori=itortyp(itype(i-2,1)) + itori1=itortyp(itype(i-1,1)) + itori2=itortyp(itype(i,1)) phii=phi(i) phii1=phi(i+1) gloci1=0.0D0 gloci2=0.0D0 iblock=1 - if (iabs(itype(i+1)).eq.20) iblock=2 + if (iabs(itype(i+1,1)).eq.20) iblock=2 ! Regular cosine and sine terms do j=1,ntermd_1(itori,itori1,itori2,iblock) @@ -6604,10 +6905,10 @@ ! write (iout,*) "EBACK_SC_COR",itau_start,itau_end esccor=0.0D0 do i=itau_start,itau_end - if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle + if ((itype(i-2,1).eq.ntyp1).or.(itype(i-1,1).eq.ntyp1)) cycle esccor_ii=0.0D0 - isccori=isccortyp(itype(i-2)) - isccori1=isccortyp(itype(i-1)) + isccori=isccortyp(itype(i-2,1)) + isccori1=isccortyp(itype(i-1,1)) ! write (iout,*) "EBACK_SC_COR",i,nterm_sccor(isccori,isccori1) phii=phi(i) @@ -6619,17 +6920,17 @@ ! 2 = Ca...Ca...Ca...SC ! 3 = SC...Ca...Ca...SCi gloci=0.0D0 - if (((intertyp.eq.3).and.((itype(i-2).eq.10).or. & - (itype(i-1).eq.10).or.(itype(i-2).eq.ntyp1).or. & - (itype(i-1).eq.ntyp1))) & - .or. ((intertyp.eq.1).and.((itype(i-2).eq.10) & - .or.(itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1) & - .or.(itype(i).eq.ntyp1))) & - .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or. & - (itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or. & - (itype(i-3).eq.ntyp1)))) cycle - if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.ntyp1)) cycle - if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.ntyp1)) & + if (((intertyp.eq.3).and.((itype(i-2,1).eq.10).or. & + (itype(i-1,1).eq.10).or.(itype(i-2,1).eq.ntyp1).or. & + (itype(i-1,1).eq.ntyp1))) & + .or. ((intertyp.eq.1).and.((itype(i-2,1).eq.10) & + .or.(itype(i-2,1).eq.ntyp1).or.(itype(i-1,1).eq.ntyp1) & + .or.(itype(i,1).eq.ntyp1))) & + .or.((intertyp.eq.2).and.((itype(i-1,1).eq.10).or. & + (itype(i-1,1).eq.ntyp1).or.(itype(i-2,1).eq.ntyp1).or. & + (itype(i-3,1).eq.ntyp1)))) cycle + if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1,1).eq.ntyp1)) cycle + if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres,1).eq.ntyp1)) & cycle do j=1,nterm_sccor(isccori,isccori1) v1ij=v1sccor(j,intertyp,isccori,isccori1) @@ -6646,7 +6947,7 @@ gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci if (lprn) & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') & - restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,isccori,isccori1,& + restyp(itype(i-2,1),1),i-2,restyp(itype(i-1,1),1),i-1,isccori,isccori1,& (v1sccor(j,intertyp,isccori,isccori1),j=1,6),& (v2sccor(j,intertyp,isccori,isccori1),j=1,6) gsccor_loc(i-3)=gsccor_loc(i-3)+gloci @@ -7766,9 +8067,9 @@ allocate(dipderx(3,5,4,maxconts,nres)) ! - iti1 = itortyp(itype(i+1)) + iti1 = itortyp(itype(i+1,1)) if (j.lt.nres-1) then - itj1 = itortyp(itype(j+1)) + itj1 = itortyp(itype(j+1,1)) else itj1=ntortyp+1 endif @@ -7861,14 +8162,14 @@ if (l.eq.j+1) then ! parallel orientation of the two CA-CA-CA frames. if (i.gt.1) then - iti=itortyp(itype(i)) + iti=itortyp(itype(i,1)) else iti=ntortyp+1 endif - itk1=itortyp(itype(k+1)) - itj=itortyp(itype(j)) + itk1=itortyp(itype(k+1,1)) + itj=itortyp(itype(j,1)) if (l.lt.nres-1) then - itl1=itortyp(itype(l+1)) + itl1=itortyp(itype(l+1,1)) else itl1=ntortyp+1 endif @@ -8014,15 +8315,15 @@ else ! Antiparallel orientation of the two CA-CA-CA frames. if (i.gt.1) then - iti=itortyp(itype(i)) + iti=itortyp(itype(i,1)) else iti=ntortyp+1 endif - itk1=itortyp(itype(k+1)) - itl=itortyp(itype(l)) - itj=itortyp(itype(j)) + itk1=itortyp(itype(k+1,1)) + itl=itortyp(itype(l,1)) + itj=itortyp(itype(j,1)) if (j.lt.nres-1) then - itj1=itortyp(itype(j+1)) + itj1=itortyp(itype(j+1,1)) else itj1=ntortyp+1 endif @@ -8370,9 +8671,9 @@ !d write (iout,*) !d & 'EELLO5: Contacts have occurred for peptide groups',i,j, !d & ' and',k,l - itk=itortyp(itype(k)) - itl=itortyp(itype(l)) - itj=itortyp(itype(j)) + itk=itortyp(itype(k,1)) + itl=itortyp(itype(l,1)) + itj=itortyp(itype(j,1)) eello5_1=0.0d0 eello5_2=0.0d0 eello5_3=0.0d0 @@ -8900,7 +9201,7 @@ ! i i C ! C !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC - itk=itortyp(itype(k)) + itk=itortyp(itype(k,1)) s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i)) s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k)) s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k)) @@ -9196,16 +9497,16 @@ ! ! 4/7/01 AL Component s1 was removed, because it pertains to the respective ! energy moment and not to the cluster cumulant. - iti=itortyp(itype(i)) + iti=itortyp(itype(i,1)) if (j.lt.nres-1) then - itj1=itortyp(itype(j+1)) + itj1=itortyp(itype(j+1,1)) else itj1=ntortyp+1 endif - itk=itortyp(itype(k)) - itk1=itortyp(itype(k+1)) + itk=itortyp(itype(k,1)) + itk1=itortyp(itype(k+1,1)) if (l.lt.nres-1) then - itl1=itortyp(itype(l+1)) + itl1=itortyp(itype(l+1,1)) else itl1=ntortyp+1 endif @@ -9317,22 +9618,22 @@ ! 4/7/01 AL Component s1 was removed, because it pertains to the respective ! energy moment and not to the cluster cumulant. !d write (2,*) 'eello_graph4: wturn6',wturn6 - iti=itortyp(itype(i)) - itj=itortyp(itype(j)) + iti=itortyp(itype(i,1)) + itj=itortyp(itype(j,1)) if (j.lt.nres-1) then - itj1=itortyp(itype(j+1)) + itj1=itortyp(itype(j+1,1)) else itj1=ntortyp+1 endif - itk=itortyp(itype(k)) + itk=itortyp(itype(k,1)) if (k.lt.nres-1) then - itk1=itortyp(itype(k+1)) + itk1=itortyp(itype(k+1,1)) else itk1=ntortyp+1 endif - itl=itortyp(itype(l)) + itl=itortyp(itype(l,1)) if (l.lt.nres-1) then - itl1=itortyp(itype(l+1)) + itl1=itortyp(itype(l+1,1)) else itl1=ntortyp+1 endif @@ -9559,11 +9860,11 @@ j=i+4 k=i+1 l=i+3 - iti=itortyp(itype(i)) - itk=itortyp(itype(k)) - itk1=itortyp(itype(k+1)) - itl=itortyp(itype(l)) - itj=itortyp(itype(j)) + iti=itortyp(itype(i,1)) + itk=itortyp(itype(k,1)) + itk1=itortyp(itype(k+1,1)) + itl=itortyp(itype(l,1)) + itj=itortyp(itype(j,1)) !d write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj !d write (2,*) 'i',i,' k',k,' j',j,' l',l !d if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then @@ -10102,13 +10403,14 @@ wturn6*gcorr6_turn_long(j,i)+ & wstrain*ghpbc(j,i) & +wliptran*gliptranc(j,i) & + +gradafm(j,i) & +welec*gshieldc(j,i) & +wcorr*gshieldc_ec(j,i) & +wturn3*gshieldc_t3(j,i)& +wturn4*gshieldc_t4(j,i)& - +wel_loc*gshieldc_ll(j,i) - - + +wel_loc*gshieldc_ll(j,i)& + +wtube*gg_tube(j,i) & + +wbond_nucl*gradb_nucl(j,i) enddo enddo #else @@ -10125,11 +10427,13 @@ wturn6*gcorr6_turn_long(j,i)+ & wstrain*ghpbc(j,i) & +wliptran*gliptranc(j,i) & + +gradafm(j,i) & +welec*gshieldc(j,i)& +wcorr*gshieldc_ec(j,i) & +wturn4*gshieldc_t4(j,i) & - +wel_loc*gshieldc_ll(j,i) - + +wel_loc*gshieldc_ll(j,i)& + +wtube*gg_tube(j,i) & + +wbond_nucl*gradb_nucl(j,i) enddo enddo @@ -10275,6 +10579,7 @@ wsccor*gsccorc(j,i) & +wscloc*gscloc(j,i) & +wliptran*gliptranc(j,i) & + +gradafm(j,i) & +welec*gshieldc(j,i) & +welec*gshieldc_loc(j,i) & +wcorr*gshieldc_ec(j,i) & @@ -10284,7 +10589,11 @@ +wturn4*gshieldc_t4(j,i) & +wturn4*gshieldc_loc_t4(j,i) & +wel_loc*gshieldc_ll(j,i) & - +wel_loc*gshieldc_loc_ll(j,i) + +wel_loc*gshieldc_loc_ll(j,i) & + +wtube*gg_tube(j,i) & + +wbond_nucl*gradb_nucl(j,i) + + #else gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+ & @@ -10305,6 +10614,7 @@ wturn6*gcorr6_turn(j,i)+ & wsccor*gsccorc(j,i) & +wscloc*gscloc(j,i) & + +gradafm(j,i) & +wliptran*gliptranc(j,i) & +welec*gshieldc(j,i) & +welec*gshieldc_loc(j,) & @@ -10315,7 +10625,11 @@ +wturn4*gshieldc_t4(j,i) & +wturn4*gshieldc_loc_t4(j,i) & +wel_loc*gshieldc_ll(j,i) & - +wel_loc*gshieldc_loc_ll(j,i) + +wel_loc*gshieldc_loc_ll(j,i) & + +wtube*gg_tube(j,i) & + +wbond_nucl*gradb_nucl(j,i) + + #endif @@ -10329,7 +10643,11 @@ +wcorr*gshieldx_ec(j,i) & +wturn3*gshieldx_t3(j,i) & +wturn4*gshieldx_t4(j,i) & - +wel_loc*gshieldx_ll(j,i) + +wel_loc*gshieldx_ll(j,i)& + +wtube*gg_tube_sc(j,i) & + +wbond_nucl*gradbx_nucl(j,i) + + enddo enddo @@ -10384,7 +10702,7 @@ call MPI_Barrier(FG_COMM,IERR) time_barrier_g=time_barrier_g+MPI_Wtime()-time00 time00=MPI_Wtime() - call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,& + call MPI_Reduce(gradbufc(1,0),gradc(1,0,icg),3*nres+3,& MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR) call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,& MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR) @@ -10538,7 +10856,7 @@ ! include 'COMMON.CALC' ! include 'COMMON.IOUNITS' real(kind=8), dimension(3) :: dcosom1,dcosom2 - +! print *,"wchodze" eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1 eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2 eom12=evdwij*eps1_om12+eps2der*eps2rt_om12 & @@ -10560,7 +10878,8 @@ do k=1,3 gg(k)=(gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k))*sss_ele_cut !C print *,'gg',k,gg(k) - enddo + enddo +! print *,i,j,gg_lipi(3),gg_lipj(3),sss_ele_cut ! write (iout,*) "gg",(gg(k),k=1,3) do k=1,3 gvdwx(k,i)=gvdwx(k,i)-gg(k) +gg_lipi(k)& @@ -10913,7 +11232,7 @@ ! Derivatives in alpha and omega: ! do i=2,nres-1 -! dsci=dsc(itype(i)) +! dsci=dsc(itype(i,1)) dsci=vbld(i+nres) #ifdef OSF alphi=alph(i) @@ -12001,9 +12320,9 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e - itypi=itype(i) + itypi=itype(i,1) if (itypi.eq.ntyp1) cycle - itypi1=itype(i+1) + itypi1=itype(i+1,1) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -12014,7 +12333,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' !d write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint), !d & 'iend=',iend(i,iint) do j=istart(i,iint),iend(i,iint) - itypj=itype(j) + itypj=itype(j,1) if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi @@ -12091,9 +12410,9 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e - itypi=itype(i) + itypi=itype(i,1) if (itypi.eq.ntyp1) cycle - itypi1=itype(i+1) + itypi1=itype(i+1,1) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -12106,7 +12425,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' !d write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint), !d & 'iend=',iend(i,iint) do j=istart(i,iint),iend(i,iint) - itypj=itype(j) + itypj=itype(j,1) if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi @@ -12181,9 +12500,9 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e - itypi=itype(i) + itypi=itype(i,1) if (itypi.eq.ntyp1) cycle - itypi1=itype(i+1) + itypi1=itype(i+1,1) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -12192,7 +12511,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) - itypj=itype(j) + itypj=itype(j,1) if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi @@ -12212,7 +12531,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' !d sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) !d epsi=bb(itypi,itypj)**2/aa(itypi,itypj) !d write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)') -!d & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj), +!d & restyp(itypi,1),i,restyp(itypj,1),j,aa(itypi,itypj), !d & bb(itypi,itypj),augm(itypi,itypj),epsi,sigm, !d & sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij, !d & (c(k,i),k=1,3),(c(k,j),k=1,3) @@ -12268,9 +12587,9 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 do i=iatsc_s,iatsc_e - itypi=itype(i) + itypi=itype(i,1) if (itypi.eq.ntyp1) cycle - itypi1=itype(i+1) + itypi1=itype(i+1,1) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -12279,7 +12598,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) - itypj=itype(j) + itypj=itype(j,1) if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi @@ -12299,7 +12618,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' !d sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) !d epsi=bb(itypi,itypj)**2/aa(itypi,itypj) !d write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)') -!d & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj), +!d & restyp(itypi,1),i,restyp(itypj,1),j,aa(itypi,itypj), !d & bb(itypi,itypj),augm(itypi,itypj),epsi,sigm, !d & sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij, !d & (c(k,i),k=1,3),(c(k,j),k=1,3) @@ -12367,9 +12686,9 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! endif !el ind=0 do i=iatsc_s,iatsc_e - itypi=itype(i) + itypi=itype(i,1) if (itypi.eq.ntyp1) cycle - itypi1=itype(i+1) + itypi1=itype(i+1,1) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -12384,7 +12703,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) !el ind=ind+1 - itypj=itype(j) + itypj=itype(j,1) if (itypj.eq.ntyp1) cycle ! dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) @@ -12425,7 +12744,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' sigm=dabs(aa_aq(itypi,itypj)/bb_aq(itypi,itypj))**(1.0D0/6.0D0) epsi=bb_aq(itypi,itypj)**2/aa_aq(itypi,itypj) !d write (iout,'(2(a3,i3,2x),15(0pf7.3))') -!d & restyp(itypi),i,restyp(itypj),j, +!d & restyp(itypi,1),i,restyp(itypj,1),j, !d & epsi,sigm,chi1,chi2,chip1,chip2, !d & eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq), !d & om1,om2,om12,1.0D0/dsqrt(rrij), @@ -12487,9 +12806,9 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! endif !el ind=0 do i=iatsc_s,iatsc_e - itypi=itype(i) + itypi=itype(i,1) if (itypi.eq.ntyp1) cycle - itypi1=itype(i+1) + itypi1=itype(i+1,1) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -12504,7 +12823,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) !el ind=ind+1 - itypj=itype(j) + itypj=itype(j,1) if (itypj.eq.ntyp1) cycle ! dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) @@ -12545,7 +12864,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' sigm=dabs(aa_aq(itypi,itypj)/bb_aq(itypi,itypj))**(1.0D0/6.0D0) epsi=bb_aq(itypi,itypj)**2/aa_aq(itypi,itypj) !d write (iout,'(2(a3,i3,2x),15(0pf7.3))') -!d & restyp(itypi),i,restyp(itypj),j, +!d & restyp(itypi,1),i,restyp(itypj,1),j, !d & epsi,sigm,chi1,chi2,chip1,chip2, !d & eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq), !d & om1,om2,om12,1.0D0/dsqrt(rrij), @@ -12607,9 +12926,9 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! if (icall.eq.0) lprn=.false. !el ind=0 do i=iatsc_s,iatsc_e - itypi=itype(i) + itypi=itype(i,1) if (itypi.eq.ntyp1) cycle - itypi1=itype(i+1) + itypi1=itype(i+1,1) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -12655,21 +12974,43 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN - call dyn_ssbond_ene(i,j,evdwij) - evdw=evdw+evdwij - if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') & - 'evdw',i,j,evdwij,' ss' +! call dyn_ssbond_ene(i,j,evdwij) +! evdw=evdw+evdwij +! if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') & +! 'evdw',i,j,evdwij,' ss' ! if (energy_dec) write (iout,*) & ! 'evdw',i,j,evdwij,' ss' +! do k=j+1,iend(i,iint) +!C search over all next residues +! if (dyn_ss_mask(k)) then +!C check if they are cysteins +!C write(iout,*) 'k=',k + +!c write(iout,*) "PRZED TRI", evdwij +! evdwij_przed_tri=evdwij +! call triple_ssbond_ene(i,j,k,evdwij) +!c if(evdwij_przed_tri.ne.evdwij) then +!c write (iout,*) "TRI:", evdwij, evdwij_przed_tri +!c endif + +!c write(iout,*) "PO TRI", evdwij +!C call the energy function that removes the artifical triple disulfide +!C bond the soubroutine is located in ssMD.F +! evdw=evdw+evdwij + if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') & + 'evdw',i,j,evdwij,'tss' +! endif!dyn_ss_mask(k) +! enddo! k + ELSE !el ind=ind+1 - itypj=itype(j) + itypj=itype(j,1) if (itypj.eq.ntyp1) cycle ! dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) ! write (iout,*) "j",j,dsc_inv(itypj),dscj_inv, ! & 1.0d0/vbld(j+nres) -! write (iout,*) "i",i," j", j," itype",itype(i),itype(j) +! write (iout,*) "i",i," j", j," itype",itype(i,1),itype(j,1) sig0ij=sigma(itypi,itypj) chi1=chi(itypi,itypj) chi2=chi(itypj,itypi) @@ -12773,7 +13114,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' if (rij_shift.le.0.0D0) then evdw=1.0D20 !d write (iout,'(2(a3,i3,2x),17(0pf7.3))') -!d & restyp(itypi),i,restyp(itypj),j, +!d & restyp(itypi,1),i,restyp(itypj,1),j, !d & rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) return endif @@ -12794,7 +13135,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' sigm=dabs(aa_aq(itypi,itypj)/bb_aq(itypi,itypj))**(1.0D0/6.0D0) epsi=bb_aq(itypi,itypj)**2/aa_aq(itypi,itypj) write (iout,'(2(a3,i3,2x),17(0pf7.3))') & - restyp(itypi),i,restyp(itypj),j,& + restyp(itypi,1),i,restyp(itypj,1),j,& epsi,sigm,chi1,chi2,chip1,chip2,& eps1,eps2rt**2,eps3rt**2,sig,sig0ij,& om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,& @@ -12865,9 +13206,9 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! if (icall.eq.0) lprn=.false. !el ind=0 do i=iatsc_s,iatsc_e - itypi=itype(i) + itypi=itype(i,1) if (itypi.eq.ntyp1) cycle - itypi1=itype(i+1) + itypi1=itype(i+1,1) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -12923,17 +13264,39 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' evdw=evdw+evdwij if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') & 'evdw',i,j,evdwij,' ss' + do k=j+1,iend(i,iint) +!C search over all next residues + if (dyn_ss_mask(k)) then +!C check if they are cysteins +!C write(iout,*) 'k=',k + +!c write(iout,*) "PRZED TRI", evdwij +! evdwij_przed_tri=evdwij + call triple_ssbond_ene(i,j,k,evdwij) +!c if(evdwij_przed_tri.ne.evdwij) then +!c write (iout,*) "TRI:", evdwij, evdwij_przed_tri +!c endif + +!c write(iout,*) "PO TRI", evdwij +!C call the energy function that removes the artifical triple disulfide +!C bond the soubroutine is located in ssMD.F + evdw=evdw+evdwij + if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') & + 'evdw',i,j,evdwij,'tss' + endif!dyn_ss_mask(k) + enddo! k + ! if (energy_dec) write (iout,*) & ! 'evdw',i,j,evdwij,' ss' ELSE !el ind=ind+1 - itypj=itype(j) + itypj=itype(j,1) if (itypj.eq.ntyp1) cycle ! dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) ! write (iout,*) "j",j,dsc_inv(itypj),dscj_inv, ! & 1.0d0/vbld(j+nres) -! write (iout,*) "i",i," j", j," itype",itype(i),itype(j) +! write (iout,*) "i",i," j", j," itype",itype(i,1),itype(j,1) sig0ij=sigma(itypi,itypj) chi1=chi(itypi,itypj) chi2=chi(itypj,itypi) @@ -13042,7 +13405,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' if (rij_shift.le.0.0D0) then evdw=1.0D20 !d write (iout,'(2(a3,i3,2x),17(0pf7.3))') -!d & restyp(itypi),i,restyp(itypj),j, +!d & restyp(itypi,1),i,restyp(itypj,1),j, !d & rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) return endif @@ -13063,7 +13426,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' sigm=dabs(aa_aq(itypi,itypj)/bb_aq(itypi,itypj))**(1.0D0/6.0D0) epsi=bb_aq(itypi,itypj)**2/aa_aq(itypi,itypj) write (iout,'(2(a3,i3,2x),17(0pf7.3))') & - restyp(itypi),i,restyp(itypj),j,& + restyp(itypi,1),i,restyp(itypj,1),j,& epsi,sigm,chi1,chi2,chip1,chip2,& eps1,eps2rt**2,eps3rt**2,sig,sig0ij,& om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,& @@ -13133,9 +13496,9 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! if (icall.eq.0) lprn=.true. !el ind=0 do i=iatsc_s,iatsc_e - itypi=itype(i) + itypi=itype(i,1) if (itypi.eq.ntyp1) cycle - itypi1=itype(i+1) + itypi1=itype(i+1,1) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -13150,7 +13513,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) !el ind=ind+1 - itypj=itype(j) + itypj=itype(j,1) if (itypj.eq.ntyp1) cycle ! dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) @@ -13206,7 +13569,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' sigm=dabs(aa_aq(itypi,itypj)/bb_aq(itypi,itypj))**(1.0D0/6.0D0) epsi=bb_aq(itypi,itypj)**2/aa_aq(itypi,itypj) write (iout,'(2(a3,i3,2x),17(0pf7.3))') & - restyp(itypi),i,restyp(itypj),j,& + restyp(itypi,1),i,restyp(itypj,1),j,& epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),& chi1,chi2,chip1,chip2,& eps1,eps2rt**2,eps3rt**2,& @@ -13262,9 +13625,9 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! if (icall.eq.0) lprn=.true. !el ind=0 do i=iatsc_s,iatsc_e - itypi=itype(i) + itypi=itype(i,1) if (itypi.eq.ntyp1) cycle - itypi1=itype(i+1) + itypi1=itype(i+1,1) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -13279,7 +13642,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) !el ind=ind+1 - itypj=itype(j) + itypj=itype(j,1) if (itypj.eq.ntyp1) cycle ! dscj_inv=dsc_inv(itypj) dscj_inv=vbld_inv(j+nres) @@ -13335,7 +13698,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' sigm=dabs(aa_aq(itypi,itypj)/bb_aq(itypi,itypj))**(1.0D0/6.0D0) epsi=bb_aq(itypi,itypj)**2/aa_aq(itypi,itypj) write (iout,'(2(a3,i3,2x),17(0pf7.3))') & - restyp(itypi),i,restyp(itypj),j,& + restyp(itypi,1),i,restyp(itypj,1),j,& epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),& chi1,chi2,chip1,chip2,& eps1,eps2rt**2,eps3rt**2,& @@ -13486,8 +13849,8 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! Loop over i,i+2 and i,i+3 pairs of the peptide groups ! do i=iturn3_start,iturn3_end - if (itype(i).eq.ntyp1.or. itype(i+1).eq.ntyp1 & - .or. itype(i+2).eq.ntyp1 .or. itype(i+3).eq.ntyp1) cycle + if (itype(i,1).eq.ntyp1.or. itype(i+1,1).eq.ntyp1 & + .or. itype(i+2,1).eq.ntyp1 .or. itype(i+3,1).eq.ntyp1) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -13509,9 +13872,9 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' num_cont_hb(i)=num_conti enddo do i=iturn4_start,iturn4_end - if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1 & - .or. itype(i+3).eq.ntyp1 & - .or. itype(i+4).eq.ntyp1) cycle + if (itype(i,1).eq.ntyp1 .or. itype(i+1,1).eq.ntyp1 & + .or. itype(i+3,1).eq.ntyp1 & + .or. itype(i+4,1).eq.ntyp1) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -13529,7 +13892,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' if (zmedi.lt.0) zmedi=zmedi+boxzsize num_conti=num_cont_hb(i) call eelecij_scale(i,i+3,ees,evdw1,eel_loc) - if (wturn4.gt.0.0d0 .and. itype(i+2).ne.ntyp1) & + if (wturn4.gt.0.0d0 .and. itype(i+2,1).ne.ntyp1) & call eturn4(i,eello_turn4) num_cont_hb(i)=num_conti enddo ! i @@ -13537,7 +13900,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3 ! do i=iatel_s,iatel_e - if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle + if (itype(i,1).eq.ntyp1 .or. itype(i+1,1).eq.ntyp1) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -13556,7 +13919,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) num_conti=num_cont_hb(i) do j=ielstart(i),ielend(i) - if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1) cycle + if (itype(j,1).eq.ntyp1 .or. itype(j+1,1).eq.ntyp1) cycle call eelecij_scale(i,j,ees,evdw1,eel_loc) enddo ! j num_cont_hb(i)=num_conti @@ -13940,7 +14303,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' a32=a32*fac a33=a33*fac !d write (iout,'(4i5,4f10.5)') -!d & i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33 +!d & i,itortyp(itype(i,1)),j,itortyp(itype(j,1)),a22,a23,a32,a33 !d write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij !d write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i), !d & uy(:,j),uz(:,j) @@ -14417,7 +14780,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! & " iatel_e_vdw",iatel_e_vdw call flush(iout) do i=iatel_s_vdw,iatel_e_vdw - if (itype(i).eq.ntyp1.or. itype(i+1).eq.ntyp1) cycle + if (itype(i,1).eq.ntyp1.or. itype(i+1,1).eq.ntyp1) cycle dxi=dc(1,i) dyi=dc(2,i) dzi=dc(3,i) @@ -14438,7 +14801,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! & ' ielend',ielend_vdw(i) call flush(iout) do j=ielstart_vdw(i),ielend_vdw(i) - if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1) cycle + if (itype(j,1).eq.ntyp1 .or. itype(j+1,1).eq.ntyp1) cycle !el ind=ind+1 iteli=itel(i) itelj=itel(j) @@ -14571,7 +14934,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' !d print '(a)','Enter ESCP' !d write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e do i=iatscp_s,iatscp_e - if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle + if (itype(i,1).eq.ntyp1 .or. itype(i+1,1).eq.ntyp1) cycle iteli=itel(i) xi=0.5D0*(c(1,i)+c(1,i+1)) yi=0.5D0*(c(2,i)+c(2,i+1)) @@ -14586,7 +14949,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' do iint=1,nscp_gr(i) do j=iscpstart(i,iint),iscpend(i,iint) - itypj=itype(j) + itypj=itype(j,1) if (itypj.eq.ntyp1) cycle ! Uncomment following three lines for SC-p interactions ! xj=c(1,nres+j)-xi @@ -14730,7 +15093,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' !d print '(a)','Enter ESCP' !d write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e do i=iatscp_s,iatscp_e - if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle + if (itype(i,1).eq.ntyp1 .or. itype(i+1,1).eq.ntyp1) cycle iteli=itel(i) xi=0.5D0*(c(1,i)+c(1,i+1)) yi=0.5D0*(c(2,i)+c(2,i+1)) @@ -14745,7 +15108,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' do iint=1,nscp_gr(i) do j=iscpstart(i,iint),iscpend(i,iint) - itypj=itype(j) + itypj=itype(j,1) if (itypj.eq.ntyp1) cycle ! Uncomment following three lines for SC-p interactions ! xj=c(1,nres+j)-xi @@ -15205,7 +15568,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' !el local variables integer :: i,nres6 real(kind=8) :: evdw,evdw1,evdw2,evdw2_14,esccor,etors_d,etors - real(kind=8) :: ehpb,escloc,estr,ebe,edihcnstr + real(kind=8) :: ehpb,escloc,estr,ebe,edihcnstr,ethetacnstr nres6=6*nres ! write(iout,'(a,i2)')'Calling etotal_short ipot=',ipot @@ -15360,7 +15723,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! ! Calculate the virtual-bond-angle energy. ! - call ebend(ebe) + call ebend(ebe,ethetacnstr) ! ! Calculate the SC local energy. ! @@ -15446,7 +15809,35 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' endif return end function gnmr1prim -!----------------------------------------------------------------------------- +!---------------------------------------------------------------------------- + real(kind=8) function rlornmr1(y,ymin,ymax,sigma) + real(kind=8) y,ymin,ymax,sigma + real(kind=8) wykl /4.0d0/ + if (y.lt.ymin) then + rlornmr1=(ymin-y)**wykl/((ymin-y)**wykl+sigma**wykl) + else if (y.gt.ymax) then + rlornmr1=(y-ymax)**wykl/((y-ymax)**wykl+sigma**wykl) + else + rlornmr1=0.0d0 + endif + return + end function rlornmr1 +!------------------------------------------------------------------------------ + real(kind=8) function rlornmr1prim(y,ymin,ymax,sigma) + real(kind=8) y,ymin,ymax,sigma + real(kind=8) wykl /4.0d0/ + if (y.lt.ymin) then + rlornmr1prim=-(ymin-y)**(wykl-1)*sigma**wykl*wykl/ & + ((ymin-y)**wykl+sigma**wykl)**2 + else if (y.gt.ymax) then + rlornmr1prim=(y-ymax)**(wykl-1)*sigma**wykl*wykl/ & + ((y-ymax)**wykl+sigma**wykl)**2 + else + rlornmr1prim=0.0d0 + endif + return + end function rlornmr1prim + real(kind=8) function harmonic(y,ymax) ! implicit none real(kind=8) :: y,ymax @@ -15541,7 +15932,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' enddo if (n.le.nphi+ntheta) goto 10 do i=2,nres-1 - if (itype(i).ne.10) then + if (itype(i,1).ne.10) then galphai=0.0D0 gomegai=0.0D0 do k=1,3 @@ -15675,7 +16066,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' #ifdef DEBUG write (iout,*) "gcart, gxcart, gloc before int_to_cart" #endif - do i=1,nct + do i=0,nct do j=1,3 gcart(j,i)=gradc(j,i,icg) gxcart(j,i)=gradx(j,i,icg) @@ -15703,7 +16094,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' #ifdef DEBUG write (iout,*) "CARGRAD" #endif - do i=nres,1,-1 + do i=nres,0,-1 do j=1,3 gcart(j,i)=-gcart(j,i)+gcart(j,i-1)-gxcart(j,i) ! gcart_new(j,i)=-gcart(j,i)+gcart(j,i-1)-gxcart(j,i) @@ -15817,6 +16208,8 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' gscloc(j,i)=0.0d0 gsclocx(j,i)=0.0d0 gliptran(j,i)=0.0d0 + gliptranx(j,i)=0.0d0 + gliptranc(j,i)=0.0d0 gshieldx(j,i)=0.0d0 gshieldc(j,i)=0.0d0 gshieldc_loc(j,i)=0.0d0 @@ -15832,7 +16225,11 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' gshieldx_ll(j,i)=0.0d0 gshieldc_ll(j,i)=0.0d0 gshieldc_loc_ll(j,i)=0.0d0 - + gg_tube(j,i)=0.0d0 + gg_tube_sc(j,i)=0.0d0 + gradafm(j,i)=0.0d0 + gradb_nucl(j,i)=0.0d0 + gradbx_nucl(j,i)=0.0d0 do intertyp=1,3 gloc_sc(intertyp,i,icg)=0.0d0 enddo @@ -15966,10 +16363,10 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' do j=1,3 dcostheta(j,1,i)=-(dc_norm(j,i-1)+cost*dc_norm(j,i-2))/& vbld(i-1) - if (itype(i-1).ne.ntyp1) dtheta(j,1,i)=-dcostheta(j,1,i)/sint + if (itype(i-1,1).ne.ntyp1) dtheta(j,1,i)=-dcostheta(j,1,i)/sint dcostheta(j,2,i)=-(dc_norm(j,i-2)+cost*dc_norm(j,i-1))/& vbld(i) - if (itype(i-1).ne.ntyp1) dtheta(j,2,i)=-dcostheta(j,2,i)/sint + if (itype(i-1,1).ne.ntyp1) dtheta(j,2,i)=-dcostheta(j,2,i)/sint enddo enddo #if defined(MPI) && defined(PARINTDER) @@ -15978,7 +16375,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' #else do i=3,nres #endif - if ((itype(i-1).ne.10).and.(itype(i-1).ne.ntyp1)) then + if ((itype(i-1,1).ne.10).and.(itype(i-1,1).ne.ntyp1)) then cost1=dcos(omicron(1,i)) sint1=sqrt(1-cost1*cost1) cost2=dcos(omicron(2,i)) @@ -16002,7 +16399,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' dcosomicron(j,2,2,i)=-(dc_norm(j,i-1) & +cost2*(-dc_norm(j,i-1+nres)))/ & vbld(i-1+nres) -! write(iout,*) "vbld", i,itype(i),vbld(i-1+nres) +! write(iout,*) "vbld", i,itype(i,1),vbld(i-1+nres) domicron(j,2,2,i)=-1/sint2*dcosomicron(j,2,2,i) enddo endif @@ -16017,7 +16414,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' #else do i=4,nres #endif -! if (itype(i-1).eq.21 .or. itype(i-2).eq.21 ) cycle +! if (itype(i-1,1).eq.21 .or. itype(i-2,1).eq.21 ) cycle ! the conventional case sint=dsin(theta(i)) sint1=dsin(theta(i-1)) @@ -16042,7 +16439,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ctgt=cost/sint ctgt1=cost1/sint1 cosg_inv=1.0d0/cosg - if (itype(i-1).ne.ntyp1 .and. itype(i-2).ne.ntyp1) then + if (itype(i-1,1).ne.ntyp1 .and. itype(i-2,1).ne.ntyp1) then dsinphi(j,1,i)=-sing*ctgt1*dtheta(j,1,i-1) & -(fac0*vp1(j)+sing*dc_norm(j,i-3))*vbld_inv(i-2) dphi(j,1,i)=cosg_inv*dsinphi(j,1,i) @@ -16060,7 +16457,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! Obtaining the gamma derivatives from cosine derivative else do j=1,3 - if (itype(i-1).ne.ntyp1 .and. itype(i-2).ne.ntyp1) then + if (itype(i-1,1).ne.ntyp1 .and. itype(i-2,1).ne.ntyp1) then dcosphi(j,1,i)=fac1*dcostheta(j,1,i-1)+fac3* & dcostheta(j,1,i-1)-fac0*(dc_norm(j,i-1)-scalp* & dc_norm(j,i-3))/vbld(i-2) @@ -16084,9 +16481,9 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' do i=3,nres !elwrite(iout,*) " vecpr",i,nres #endif - if ((itype(i-2).eq.ntyp1).or.(itype(i-2).eq.10)) cycle -! if ((itype(i-2).eq.ntyp1).or.(itype(i-2).eq.10).or. -! & (itype(i-1).eq.ntyp1).or.(itype(i).eq.ntyp1)) cycle + if ((itype(i-2,1).eq.ntyp1).or.(itype(i-2,1).eq.10)) cycle +! if ((itype(i-2,1).eq.ntyp1).or.(itype(i-2,1).eq.10).or. +! & (itype(i-1,1).eq.ntyp1).or.(itype(i,1).eq.ntyp1)) cycle !c dtauangle(j,intertyp,dervityp,residue number) !c INTERTYP=1 SC...Ca...Ca..Ca ! the conventional case @@ -16164,8 +16561,8 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' #else do i=4,nres #endif - if ((itype(i-1).eq.ntyp1).or.(itype(i-1).eq.10).or. & - (itype(i-2).eq.ntyp1).or.(itype(i-3).eq.ntyp1)) cycle + if ((itype(i-1,1).eq.ntyp1).or.(itype(i-1,1).eq.10).or. & + (itype(i-2,1).eq.ntyp1).or.(itype(i-3,1).eq.ntyp1)) cycle ! the conventional case sint=dsin(omicron(1,i)) sint1=dsin(theta(i-1)) @@ -16239,8 +16636,8 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' do i=3,nres #endif ! the conventional case - if ((itype(i-1).eq.ntyp1).or.(itype(i-1).eq.10).or. & - (itype(i-2).eq.ntyp1).or.(itype(i-2).eq.10)) cycle + if ((itype(i-1,1).eq.ntyp1).or.(itype(i-1,1).eq.10).or. & + (itype(i-2,1).eq.ntyp1).or.(itype(i-2,1).eq.10)) cycle sint=dsin(omicron(1,i)) sint1=dsin(omicron(2,i-1)) sing=dsin(tauangle(3,i)) @@ -16310,7 +16707,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' #else do i=2,nres-1 #endif - if(itype(i).ne.10 .and. itype(i).ne.ntyp1) then + if(itype(i,1).ne.10 .and. itype(i,1).ne.ntyp1) then fac5=1.0d0/dsqrt(2*(1+dcos(theta(i+1)))) fac6=fac5/vbld(i) fac7=fac5*fac5 @@ -16544,7 +16941,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' write (iout,*) & "Analytical (upper) and numerical (lower) gradient of alpha" do i=2,nres-1 - if(itype(i).ne.10) then + if(itype(i,1).ne.10) then do j=1,3 dcji=dc(j,i-1) dc(j,i-1)=dcji+aincr @@ -16580,7 +16977,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' write (iout,*) & "Analytical (upper) and numerical (lower) gradient of omega" do i=2,nres-1 - if(itype(i).ne.10) then + if(itype(i,1).ne.10) then do j=1,3 dcji=dc(j,i-1) dc(j,i-1)=dcji+aincr @@ -16646,7 +17043,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' (cref(3,jl,kkk)-cref(3,il,kkk))**2) dij=dist(il,jl) qqij = dexp(-0.5d0*((dij-d0ij)/(sigm(d0ij)))**2) - if (itype(il).ne.10 .or. itype(jl).ne.10) then + if (itype(il,1).ne.10 .or. itype(jl,1).ne.10) then nl=nl+1 d0ijCM=dsqrt( & (cref(1,jl+nres,kkk)-cref(1,il+nres,kkk))**2+ & @@ -16673,7 +17070,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' (cref(3,jl,kkk)-cref(3,il,kkk))**2) dij=dist(il,jl) qqij = dexp(-0.5d0*((dij-d0ij)/(sigm(d0ij)))**2) - if (itype(il).ne.10 .or. itype(jl).ne.10) then + if (itype(il,1).ne.10 .or. itype(jl,1).ne.10) then nl=nl+1 d0ijCM=dsqrt( & (cref(1,jl+nres,kkk)-cref(1,il+nres,kkk))**2+ & @@ -16735,7 +17132,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' dqwol(k,jl)=dqwol(k,jl)-ddqij enddo - if (itype(il).ne.10 .or. itype(jl).ne.10) then + if (itype(il,1).ne.10 .or. itype(jl,1).ne.10) then nl=nl+1 d0ijCM=dsqrt( & (cref(1,jl+nres,kkk)-cref(1,il+nres,kkk))**2+ & @@ -16776,7 +17173,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' dqwol(k,il)=dqwol(k,il)+ddqij dqwol(k,jl)=dqwol(k,jl)-ddqij enddo - if (itype(il).ne.10 .or. itype(jl).ne.10) then + if (itype(il,1).ne.10 .or. itype(jl,1).ne.10) then nl=nl+1 d0ijCM=dsqrt( & (cref(1,jl+nres,kkk)-cref(1,il+nres,kkk))**2+ & @@ -17267,13 +17664,13 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' !el allocate(dyn_ssbond_ij(iatsc_s:iatsc_e,nres)) !el allocate(dyn_ssbond_ij(0:nres+4,nres)) - itypi=itype(i) + itypi=itype(i,1) dxi=dc_norm(1,nres+i) dyi=dc_norm(2,nres+i) dzi=dc_norm(3,nres+i) dsci_inv=vbld_inv(i+nres) - itypj=itype(j) + itypj=itype(j,1) xj=c(1,nres+j)-c(1,nres+i) yj=c(2,nres+j)-c(2,nres+i) zj=c(3,nres+j)-c(3,nres+i) @@ -17584,6 +17981,176 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' return end subroutine dyn_ssbond_ene +!-------------------------------------------------------------------------- + subroutine triple_ssbond_ene(resi,resj,resk,eij) +! implicit none +! Includes + use calc_data + use comm_sschecks +! include 'DIMENSIONS' +! include 'COMMON.SBRIDGE' +! include 'COMMON.CHAIN' +! include 'COMMON.DERIV' +! include 'COMMON.LOCAL' +! include 'COMMON.INTERACT' +! include 'COMMON.VAR' +! include 'COMMON.IOUNITS' +! include 'COMMON.CALC' +#ifndef CLUST +#ifndef WHAM + use MD_data +! include 'COMMON.MD' +! use MD, only: totT,t_bath +#endif +#endif + double precision h_base + external h_base + +!c Input arguments + integer resi,resj,resk,m,itypi,itypj,itypk + +!c Output arguments + double precision eij,eij1,eij2,eij3 + +!c Local variables + logical havebond +!c integer itypi,itypj,k,l + double precision rrij,ssd,deltat1,deltat2,deltat12,cosphi + double precision rrik,rrjk,rik,rjk,xi,xk,yi,yk,zi,zk,xij,yij,zij + double precision xik,yik,zik,xjk,yjk,zjk,dxk,dyk,dzk + double precision sig0ij,ljd,sig,fac,e1,e2 + double precision dcosom1(3),dcosom2(3),ed + double precision pom1,pom2 + double precision ljA,ljB,ljXs + double precision d_ljB(1:3) + double precision ssA,ssB,ssC,ssXs + double precision ssxm,ljxm,ssm,ljm + double precision d_ssxm(1:3),d_ljxm(1:3),d_ssm(1:3),d_ljm(1:3) + eij=0.0 + if (dtriss.eq.0) return + i=resi + j=resj + k=resk +!C write(iout,*) resi,resj,resk + itypi=itype(i,1) + dxi=dc_norm(1,nres+i) + dyi=dc_norm(2,nres+i) + dzi=dc_norm(3,nres+i) + dsci_inv=vbld_inv(i+nres) + xi=c(1,nres+i) + yi=c(2,nres+i) + zi=c(3,nres+i) + itypj=itype(j,1) + xj=c(1,nres+j) + yj=c(2,nres+j) + zj=c(3,nres+j) + + dxj=dc_norm(1,nres+j) + dyj=dc_norm(2,nres+j) + dzj=dc_norm(3,nres+j) + dscj_inv=vbld_inv(j+nres) + itypk=itype(k,1) + xk=c(1,nres+k) + yk=c(2,nres+k) + zk=c(3,nres+k) + + dxk=dc_norm(1,nres+k) + dyk=dc_norm(2,nres+k) + dzk=dc_norm(3,nres+k) + dscj_inv=vbld_inv(k+nres) + xij=xj-xi + xik=xk-xi + xjk=xk-xj + yij=yj-yi + yik=yk-yi + yjk=yk-yj + zij=zj-zi + zik=zk-zi + zjk=zk-zj + rrij=(xij*xij+yij*yij+zij*zij) + rij=dsqrt(rrij) ! sc_angular needs rij to really be the inverse + rrik=(xik*xik+yik*yik+zik*zik) + rik=dsqrt(rrik) + rrjk=(xjk*xjk+yjk*yjk+zjk*zjk) + rjk=dsqrt(rrjk) +!C there are three combination of distances for each trisulfide bonds +!C The first case the ith atom is the center +!C Energy function is E=d/(a*(x-y)**2+b*(x+y)**2+c) where x is first +!C distance y is second distance the a,b,c,d are parameters derived for +!C this problem d parameter was set as a penalty currenlty set to 1. + if ((iabs(j-i).le.2).or.(iabs(i-k).le.2)) then + eij1=0.0d0 + else + eij1=dtriss/(atriss*(rij-rik)**2+btriss*(rij+rik)**6+ctriss) + endif +!C second case jth atom is center + if ((iabs(j-i).le.2).or.(iabs(j-k).le.2)) then + eij2=0.0d0 + else + eij2=dtriss/(atriss*(rij-rjk)**2+btriss*(rij+rjk)**6+ctriss) + endif +!C the third case kth atom is the center + if ((iabs(i-k).le.2).or.(iabs(j-k).le.2)) then + eij3=0.0d0 + else + eij3=dtriss/(atriss*(rik-rjk)**2+btriss*(rik+rjk)**6+ctriss) + endif +!C eij2=0.0 +!C eij3=0.0 +!C eij1=0.0 + eij=eij1+eij2+eij3 +!C write(iout,*)i,j,k,eij +!C The energy penalty calculated now time for the gradient part +!C derivative over rij + fac=-eij1**2/dtriss*(2.0*atriss*(rij-rik)+6.0*btriss*(rij+rik)**5) & + -eij2**2/dtriss*(2.0*atriss*(rij-rjk)+6.0*btriss*(rij+rjk)**5) + gg(1)=xij*fac/rij + gg(2)=yij*fac/rij + gg(3)=zij*fac/rij + do m=1,3 + gvdwx(m,i)=gvdwx(m,i)-gg(m) + gvdwx(m,j)=gvdwx(m,j)+gg(m) + enddo + + do l=1,3 + gvdwc(l,i)=gvdwc(l,i)-gg(l) + gvdwc(l,j)=gvdwc(l,j)+gg(l) + enddo +!C now derivative over rik + fac=-eij1**2/dtriss* & + (-2.0*atriss*(rij-rik)+6.0*btriss*(rij+rik)**5) & + -eij3**2/dtriss*(2.0*atriss*(rik-rjk)+6.0*btriss*(rik+rjk)**5) + gg(1)=xik*fac/rik + gg(2)=yik*fac/rik + gg(3)=zik*fac/rik + do m=1,3 + gvdwx(m,i)=gvdwx(m,i)-gg(m) + gvdwx(m,k)=gvdwx(m,k)+gg(m) + enddo + do l=1,3 + gvdwc(l,i)=gvdwc(l,i)-gg(l) + gvdwc(l,k)=gvdwc(l,k)+gg(l) + enddo +!C now derivative over rjk + fac=-eij2**2/dtriss* & + (-2.0*atriss*(rij-rjk)+6.0*btriss*(rij+rjk)**5)- & + eij3**2/dtriss*(-2.0*atriss*(rik-rjk)+6.0*btriss*(rik+rjk)**5) + gg(1)=xjk*fac/rjk + gg(2)=yjk*fac/rjk + gg(3)=zjk*fac/rjk + do m=1,3 + gvdwx(m,j)=gvdwx(m,j)-gg(m) + gvdwx(m,k)=gvdwx(m,k)+gg(m) + enddo + do l=1,3 + gvdwc(l,j)=gvdwc(l,j)-gg(l) + gvdwc(l,k)=gvdwc(l,k)+gg(l) + enddo + return + end subroutine triple_ssbond_ene + + + !----------------------------------------------------------------------------- real(kind=8) function h_base(x,deriv) ! A smooth function going 0->1 in range [0,1] @@ -17730,15 +18297,18 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' diff=newnss-nss !mc write(iout,*)"NEWNSS ",newnss,(newihpb(i),newjhpb(i),i=1,newnss) - +! print *,newnss,nss,maxdim do i=1,nss found=.false. +! print *,newnss do j=1,newnss +!! print *,j if (idssb(i).eq.newihpb(j) .and. & jdssb(i).eq.newjhpb(j)) found=.true. enddo #ifndef CLUST #ifndef WHAM +! write(iout,*) "found",found,i,j if (.not.found.and.fg_rank.eq.0) & write(iout,'(a15,f12.2,f8.1,2i5)') & "SSBOND_BREAK",totT,t_bath,idssb(i),jdssb(i) @@ -17749,11 +18319,13 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' do i=1,newnss found=.false. do j=1,nss +! print *,i,j if (newihpb(i).eq.idssb(j) .and. & newjhpb(i).eq.jdssb(j)) found=.true. enddo #ifndef CLUST #ifndef WHAM +! write(iout,*) "found",found,i,j if (.not.found.and.fg_rank.eq.0) & write(iout,'(a15,f12.2,f8.1,2i5)') & "SSBOND_FORM",totT,t_bath,newihpb(i),newjhpb(i) @@ -17783,10 +18355,10 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' real(kind=8) :: fracinbuf,eliptran,sslip,positi,ssgradlip integer :: i eliptran=0.0 - print *, "I am in eliptran" +! print *, "I am in eliptran" do i=ilip_start,ilip_end !C do i=1,1 - if ((itype(i).eq.ntyp1).or.(itype(i+1).eq.ntyp1).or.(i.eq.nres))& + if ((itype(i,1).eq.ntyp1).or.(itype(i+1,1).eq.ntyp1).or.(i.eq.nres))& cycle positi=(mod(((c(3,i)+c(3,i+1))/2.0d0),boxzsize)) @@ -17832,7 +18404,7 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' enddo ! here starts the side chain transfer do i=ilip_start,ilip_end - if (itype(i).eq.ntyp1) cycle + if (itype(i,1).eq.ntyp1) cycle positi=(mod(c(3,i+nres),boxzsize)) if (positi.le.0) positi=positi+boxzsize !C print *,mod(c(3,i+nres),boxzsize),bordlipbot,bordliptop @@ -17848,25 +18420,25 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' !C lipbufthick is thickenes of lipid buffore sslip=sscalelip(fracinbuf) ssgradlip=-sscagradlip(fracinbuf)/lipbufthick - eliptran=eliptran+sslip*liptranene(itype(i)) + eliptran=eliptran+sslip*liptranene(itype(i,1)) gliptranx(3,i)=gliptranx(3,i) & - +ssgradlip*liptranene(itype(i)) + +ssgradlip*liptranene(itype(i,1)) gliptranc(3,i-1)= gliptranc(3,i-1) & - +ssgradlip*liptranene(itype(i)) + +ssgradlip*liptranene(itype(i,1)) !C print *,"doing sccale for lower part" elseif (positi.gt.bufliptop) then fracinbuf=1.0d0- & ((bordliptop-positi)/lipbufthick) sslip=sscalelip(fracinbuf) ssgradlip=sscagradlip(fracinbuf)/lipbufthick - eliptran=eliptran+sslip*liptranene(itype(i)) + eliptran=eliptran+sslip*liptranene(itype(i,1)) gliptranx(3,i)=gliptranx(3,i) & - +ssgradlip*liptranene(itype(i)) + +ssgradlip*liptranene(itype(i,1)) gliptranc(3,i-1)= gliptranc(3,i-1) & - +ssgradlip*liptranene(itype(i)) + +ssgradlip*liptranene(itype(i,1)) !C print *, "doing sscalefor top part",sslip,fracinbuf else - eliptran=eliptran+liptranene(itype(i)) + eliptran=eliptran+liptranene(itype(i,1)) !C print *,"I am in true lipid" endif endif ! if in lipid or buffor @@ -17876,49 +18448,695 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' enddo return end subroutine Eliptransfer -!-------------------------------------------------------------------------------- -!C first for shielding is setting of function of side-chains - - subroutine set_shield_fac2 - real(kind=8) :: div77_81=0.974996043d0, & - div4_81=0.2222222222d0 - real (kind=8) :: dist_pep_side,dist_side_calf,dist_pept_group, & - scale_fac_dist,fac_help_scale,VofOverlap,VolumeTotal,costhet,& - short,long,sinthet,costhet_fac,sh_frac_dist,rkprim,cosphi, & - sinphi,cosphi_fac,pep_side0pept_group,cosalfa,fac_alfa_sin -!C the vector between center of side_chain and peptide group - real(kind=8),dimension(3) :: pep_side_long,side_calf, & - pept_group,costhet_grad,cosphi_grad_long, & - cosphi_grad_loc,pep_side_norm,side_calf_norm, & - sh_frac_dist_grad,pep_side - integer i,j,k -!C write(2,*) "ivec",ivec_start,ivec_end - do i=1,nres - fac_shield(i)=0.0d0 +!----------------------------------NANO FUNCTIONS +!C----------------------------------------------------------------------- +!C----------------------------------------------------------- +!C This subroutine is to mimic the histone like structure but as well can be +!C utilizet to nanostructures (infinit) small modification has to be used to +!C make it finite (z gradient at the ends has to be changes as well as the x,y +!C gradient has to be modified at the ends +!C The energy function is Kihara potential +!C E=4esp*((sigma/(r-r0))^12 - (sigma/(r-r0))^6) +!C 4eps is depth of well sigma is r_minimum r is distance from center of tube +!C and r0 is the excluded size of nanotube (can be set to 0 if we want just a +!C simple Kihara potential + subroutine calctube(Etube) + real(kind=8),dimension(3) :: vectube + real(kind=8) :: Etube,xtemp,xminact,yminact,& + ytemp,xmin,ymin,tub_r,rdiff,rdiff6,fac,positi, & + sc_aa_tube,sc_bb_tube + integer :: i,j,iti + Etube=0.0d0 + do i=itube_start,itube_end + enetube(i)=0.0d0 + enetube(i+nres)=0.0d0 + enddo +!C first we calculate the distance from tube center +!C for UNRES + do i=itube_start,itube_end +!C lets ommit dummy atoms for now + if ((itype(i,1).eq.ntyp1).or.(itype(i+1,1).eq.ntyp1)) cycle +!C now calculate distance from center of tube and direction vectors + xmin=boxxsize + ymin=boxysize +! Find minimum distance in periodic box + do j=-1,1 + vectube(1)=mod((c(1,i)+c(1,i+1))/2.0d0,boxxsize) + vectube(1)=vectube(1)+boxxsize*j + vectube(2)=mod((c(2,i)+c(2,i+1))/2.0d0,boxysize) + vectube(2)=vectube(2)+boxysize*j + xminact=abs(vectube(1)-tubecenter(1)) + yminact=abs(vectube(2)-tubecenter(2)) + if (xmin.gt.xminact) then + xmin=xminact + xtemp=vectube(1) + endif + if (ymin.gt.yminact) then + ymin=yminact + ytemp=vectube(2) + endif + enddo + vectube(1)=xtemp + vectube(2)=ytemp + vectube(1)=vectube(1)-tubecenter(1) + vectube(2)=vectube(2)-tubecenter(2) + +!C print *,"x",(c(1,i)+c(1,i+1))/2.0d0,tubecenter(1) +!C print *,"y",(c(2,i)+c(2,i+1))/2.0d0,tubecenter(2) + +!C as the tube is infinity we do not calculate the Z-vector use of Z +!C as chosen axis + vectube(3)=0.0d0 +!C now calculte the distance + tub_r=dsqrt(vectube(1)**2+vectube(2)**2+vectube(3)**2) +!C now normalize vector + vectube(1)=vectube(1)/tub_r + vectube(2)=vectube(2)/tub_r +!C calculte rdiffrence between r and r0 + rdiff=tub_r-tubeR0 +!C and its 6 power + rdiff6=rdiff**6.0d0 +!C for vectorization reasons we will sumup at the end to avoid depenence of previous + enetube(i)=pep_aa_tube/rdiff6**2.0d0+pep_bb_tube/rdiff6 +!C write(iout,*) "TU13",i,rdiff6,enetube(i) +!C print *,rdiff,rdiff6,pep_aa_tube +!C pep_aa_tube and pep_bb_tube are precomputed values A=4eps*sigma^12 B=4eps*sigma^6 +!C now we calculate gradient + fac=(-12.0d0*pep_aa_tube/rdiff6- & + 6.0d0*pep_bb_tube)/rdiff6/rdiff +!C write(iout,'(a5,i4,f12.1,3f12.5)') "TU13",i,rdiff6,enetube(i), +!C &rdiff,fac +!C now direction of gg_tube vector do j=1,3 - grad_shield(j,i)=0.0d0 + gg_tube(j,i-1)=gg_tube(j,i-1)+vectube(j)*fac/2.0d0 + gg_tube(j,i)=gg_tube(j,i)+vectube(j)*fac/2.0d0 + enddo + enddo +!C basically thats all code now we split for side-chains (REMEMBER to sum up at the END) +!C print *,gg_tube(1,0),"TU" + + + do i=itube_start,itube_end +!C Lets not jump over memory as we use many times iti + iti=itype(i,1) +!C lets ommit dummy atoms for now + if ((iti.eq.ntyp1) & +!C in UNRES uncomment the line below as GLY has no side-chain... +!C .or.(iti.eq.10) + ) cycle + xmin=boxxsize + ymin=boxysize + do j=-1,1 + vectube(1)=mod((c(1,i+nres)),boxxsize) + vectube(1)=vectube(1)+boxxsize*j + vectube(2)=mod((c(2,i+nres)),boxysize) + vectube(2)=vectube(2)+boxysize*j + + xminact=abs(vectube(1)-tubecenter(1)) + yminact=abs(vectube(2)-tubecenter(2)) + if (xmin.gt.xminact) then + xmin=xminact + xtemp=vectube(1) + endif + if (ymin.gt.yminact) then + ymin=yminact + ytemp=vectube(2) + endif + enddo + vectube(1)=xtemp + vectube(2)=ytemp +!C write(iout,*), "tututu", vectube(1),tubecenter(1),vectube(2), +!C & tubecenter(2) + vectube(1)=vectube(1)-tubecenter(1) + vectube(2)=vectube(2)-tubecenter(2) + +!C as the tube is infinity we do not calculate the Z-vector use of Z +!C as chosen axis + vectube(3)=0.0d0 +!C now calculte the distance + tub_r=dsqrt(vectube(1)**2+vectube(2)**2+vectube(3)**2) +!C now normalize vector + vectube(1)=vectube(1)/tub_r + vectube(2)=vectube(2)/tub_r + +!C calculte rdiffrence between r and r0 + rdiff=tub_r-tubeR0 +!C and its 6 power + rdiff6=rdiff**6.0d0 +!C for vectorization reasons we will sumup at the end to avoid depenence of previous + sc_aa_tube=sc_aa_tube_par(iti) + sc_bb_tube=sc_bb_tube_par(iti) + enetube(i+nres)=sc_aa_tube/rdiff6**2.0d0+sc_bb_tube/rdiff6 + fac=-12.0d0*sc_aa_tube/rdiff6**2.0d0/rdiff- & + 6.0d0*sc_bb_tube/rdiff6/rdiff +!C now direction of gg_tube vector + do j=1,3 + gg_tube_SC(j,i)=gg_tube_SC(j,i)+vectube(j)*fac + gg_tube(j,i-1)=gg_tube(j,i-1)+vectube(j)*fac + enddo + enddo + do i=itube_start,itube_end + Etube=Etube+enetube(i)+enetube(i+nres) enddo +!C print *,"ETUBE", etube + return + end subroutine calctube +!C TO DO 1) add to total energy +!C 2) add to gradient summation +!C 3) add reading parameters (AND of course oppening of PARAM file) +!C 4) add reading the center of tube +!C 5) add COMMONs +!C 6) add to zerograd +!C 7) allocate matrices + + +!C----------------------------------------------------------------------- +!C----------------------------------------------------------- +!C This subroutine is to mimic the histone like structure but as well can be +!C utilizet to nanostructures (infinit) small modification has to be used to +!C make it finite (z gradient at the ends has to be changes as well as the x,y +!C gradient has to be modified at the ends +!C The energy function is Kihara potential +!C E=4esp*((sigma/(r-r0))^12 - (sigma/(r-r0))^6) +!C 4eps is depth of well sigma is r_minimum r is distance from center of tube +!C and r0 is the excluded size of nanotube (can be set to 0 if we want just a +!C simple Kihara potential + subroutine calctube2(Etube) + real(kind=8),dimension(3) :: vectube + real(kind=8) :: Etube,xtemp,xminact,yminact,& + ytemp,xmin,ymin,tub_r,rdiff,rdiff6,fac,positi,fracinbuf,& + sstube,ssgradtube,sc_aa_tube,sc_bb_tube + integer:: i,j,iti + Etube=0.0d0 + do i=itube_start,itube_end + enetube(i)=0.0d0 + enetube(i+nres)=0.0d0 enddo - do i=ivec_start,ivec_end -!C do i=1,nres-1 -!C if ((itype(i).eq.ntyp1).and.itype(i+1).eq.ntyp1) cycle - ishield_list(i)=0 - if ((itype(i).eq.ntyp1).and.itype(i+1).eq.ntyp1) cycle -!Cif there two consequtive dummy atoms there is no peptide group between them -!C the line below has to be changed for FGPROC>1 - VolumeTotal=0.0 - do k=1,nres - if ((itype(k).eq.ntyp1).or.(itype(k).eq.10)) cycle - dist_pep_side=0.0 - dist_side_calf=0.0 +!C first we calculate the distance from tube center +!C first sugare-phosphate group for NARES this would be peptide group +!C for UNRES + do i=itube_start,itube_end +!C lets ommit dummy atoms for now + + if ((itype(i,1).eq.ntyp1).or.(itype(i+1,1).eq.ntyp1)) cycle +!C now calculate distance from center of tube and direction vectors +!C vectube(1)=mod((c(1,i)+c(1,i+1))/2.0d0,boxxsize) +!C if (vectube(1).lt.0) vectube(1)=vectube(1)+boxxsize +!C vectube(2)=mod((c(2,i)+c(2,i+1))/2.0d0,boxysize) +!C if (vectube(2).lt.0) vectube(2)=vectube(2)+boxysize + xmin=boxxsize + ymin=boxysize + do j=-1,1 + vectube(1)=mod((c(1,i)+c(1,i+1))/2.0d0,boxxsize) + vectube(1)=vectube(1)+boxxsize*j + vectube(2)=mod((c(2,i)+c(2,i+1))/2.0d0,boxysize) + vectube(2)=vectube(2)+boxysize*j + + xminact=abs(vectube(1)-tubecenter(1)) + yminact=abs(vectube(2)-tubecenter(2)) + if (xmin.gt.xminact) then + xmin=xminact + xtemp=vectube(1) + endif + if (ymin.gt.yminact) then + ymin=yminact + ytemp=vectube(2) + endif + enddo + vectube(1)=xtemp + vectube(2)=ytemp + vectube(1)=vectube(1)-tubecenter(1) + vectube(2)=vectube(2)-tubecenter(2) + +!C print *,"x",(c(1,i)+c(1,i+1))/2.0d0,tubecenter(1) +!C print *,"y",(c(2,i)+c(2,i+1))/2.0d0,tubecenter(2) + +!C as the tube is infinity we do not calculate the Z-vector use of Z +!C as chosen axis + vectube(3)=0.0d0 +!C now calculte the distance + tub_r=dsqrt(vectube(1)**2+vectube(2)**2+vectube(3)**2) +!C now normalize vector + vectube(1)=vectube(1)/tub_r + vectube(2)=vectube(2)/tub_r +!C calculte rdiffrence between r and r0 + rdiff=tub_r-tubeR0 +!C and its 6 power + rdiff6=rdiff**6.0d0 +!C THIS FRAGMENT MAKES TUBE FINITE + positi=mod((c(3,i)+c(3,i+1))/2.0d0,boxzsize) + if (positi.le.0) positi=positi+boxzsize +!C print *,mod(c(3,i+nres),boxzsize),bordlipbot,bordliptop +!c for each residue check if it is in lipid or lipid water border area +!C respos=mod(c(3,i+nres),boxzsize) +!C print *,positi,bordtubebot,buftubebot,bordtubetop + if ((positi.gt.bordtubebot) & + .and.(positi.lt.bordtubetop)) then +!C the energy transfer exist + if (positi.lt.buftubebot) then + fracinbuf=1.0d0- & + ((positi-bordtubebot)/tubebufthick) +!C lipbufthick is thickenes of lipid buffore + sstube=sscalelip(fracinbuf) + ssgradtube=-sscagradlip(fracinbuf)/tubebufthick +!C print *,ssgradtube, sstube,tubetranene(itype(i,1)) + enetube(i)=enetube(i)+sstube*tubetranenepep +!C gg_tube_SC(3,i)=gg_tube_SC(3,i) +!C &+ssgradtube*tubetranene(itype(i,1)) +!C gg_tube(3,i-1)= gg_tube(3,i-1) +!C &+ssgradtube*tubetranene(itype(i,1)) +!C print *,"doing sccale for lower part" + elseif (positi.gt.buftubetop) then + fracinbuf=1.0d0- & + ((bordtubetop-positi)/tubebufthick) + sstube=sscalelip(fracinbuf) + ssgradtube=sscagradlip(fracinbuf)/tubebufthick + enetube(i)=enetube(i)+sstube*tubetranenepep +!C gg_tube_SC(3,i)=gg_tube_SC(3,i) +!C &+ssgradtube*tubetranene(itype(i,1)) +!C gg_tube(3,i-1)= gg_tube(3,i-1) +!C &+ssgradtube*tubetranene(itype(i,1)) +!C print *, "doing sscalefor top part",sslip,fracinbuf + else + sstube=1.0d0 + ssgradtube=0.0d0 + enetube(i)=enetube(i)+sstube*tubetranenepep +!C print *,"I am in true lipid" + endif + else +!C sstube=0.0d0 +!C ssgradtube=0.0d0 + cycle + endif ! if in lipid or buffor + +!C for vectorization reasons we will sumup at the end to avoid depenence of previous + enetube(i)=enetube(i)+sstube* & + (pep_aa_tube/rdiff6**2.0d0+pep_bb_tube/rdiff6) +!C write(iout,*) "TU13",i,rdiff6,enetube(i) +!C print *,rdiff,rdiff6,pep_aa_tube +!C pep_aa_tube and pep_bb_tube are precomputed values A=4eps*sigma^12 B=4eps*sigma^6 +!C now we calculate gradient + fac=(-12.0d0*pep_aa_tube/rdiff6- & + 6.0d0*pep_bb_tube)/rdiff6/rdiff*sstube +!C write(iout,'(a5,i4,f12.1,3f12.5)') "TU13",i,rdiff6,enetube(i), +!C &rdiff,fac + +!C now direction of gg_tube vector do j=1,3 -!C first lets set vector conecting the ithe side-chain with kth side-chain - pep_side(j)=c(j,k+nres)-(c(j,i)+c(j,i+1))/2.0d0 -!C pep_side(j)=2.0d0 -!C and vector conecting the side-chain with its proper calfa - side_calf(j)=c(j,k+nres)-c(j,k) -!C side_calf(j)=2.0d0 - pept_group(j)=c(j,i)-c(j,i+1) + gg_tube(j,i-1)=gg_tube(j,i-1)+vectube(j)*fac/2.0d0 + gg_tube(j,i)=gg_tube(j,i)+vectube(j)*fac/2.0d0 + enddo + gg_tube(3,i)=gg_tube(3,i) & + +ssgradtube*enetube(i)/sstube/2.0d0 + gg_tube(3,i-1)= gg_tube(3,i-1) & + +ssgradtube*enetube(i)/sstube/2.0d0 + + enddo +!C basically thats all code now we split for side-chains (REMEMBER to sum up at the END) +!C print *,gg_tube(1,0),"TU" + do i=itube_start,itube_end +!C Lets not jump over memory as we use many times iti + iti=itype(i,1) +!C lets ommit dummy atoms for now + if ((iti.eq.ntyp1) & +!!C in UNRES uncomment the line below as GLY has no side-chain... + .or.(iti.eq.10) & + ) cycle + vectube(1)=c(1,i+nres) + vectube(1)=mod(vectube(1),boxxsize) + if (vectube(1).lt.0) vectube(1)=vectube(1)+boxxsize + vectube(2)=c(2,i+nres) + vectube(2)=mod(vectube(2),boxysize) + if (vectube(2).lt.0) vectube(2)=vectube(2)+boxysize + + vectube(1)=vectube(1)-tubecenter(1) + vectube(2)=vectube(2)-tubecenter(2) +!C THIS FRAGMENT MAKES TUBE FINITE + positi=(mod(c(3,i+nres),boxzsize)) + if (positi.le.0) positi=positi+boxzsize +!C print *,mod(c(3,i+nres),boxzsize),bordlipbot,bordliptop +!c for each residue check if it is in lipid or lipid water border area +!C respos=mod(c(3,i+nres),boxzsize) +!C print *,positi,bordtubebot,buftubebot,bordtubetop + + if ((positi.gt.bordtubebot) & + .and.(positi.lt.bordtubetop)) then +!C the energy transfer exist + if (positi.lt.buftubebot) then + fracinbuf=1.0d0- & + ((positi-bordtubebot)/tubebufthick) +!C lipbufthick is thickenes of lipid buffore + sstube=sscalelip(fracinbuf) + ssgradtube=-sscagradlip(fracinbuf)/tubebufthick +!C print *,ssgradtube, sstube,tubetranene(itype(i,1)) + enetube(i+nres)=enetube(i+nres)+sstube*tubetranene(itype(i,1)) +!C gg_tube_SC(3,i)=gg_tube_SC(3,i) +!C &+ssgradtube*tubetranene(itype(i,1)) +!C gg_tube(3,i-1)= gg_tube(3,i-1) +!C &+ssgradtube*tubetranene(itype(i,1)) +!C print *,"doing sccale for lower part" + elseif (positi.gt.buftubetop) then + fracinbuf=1.0d0- & + ((bordtubetop-positi)/tubebufthick) + + sstube=sscalelip(fracinbuf) + ssgradtube=sscagradlip(fracinbuf)/tubebufthick + enetube(i+nres)=enetube(i+nres)+sstube*tubetranene(itype(i,1)) +!C gg_tube_SC(3,i)=gg_tube_SC(3,i) +!C &+ssgradtube*tubetranene(itype(i,1)) +!C gg_tube(3,i-1)= gg_tube(3,i-1) +!C &+ssgradtube*tubetranene(itype(i,1)) +!C print *, "doing sscalefor top part",sslip,fracinbuf + else + sstube=1.0d0 + ssgradtube=0.0d0 + enetube(i+nres)=enetube(i+nres)+sstube*tubetranene(itype(i,1)) +!C print *,"I am in true lipid" + endif + else +!C sstube=0.0d0 +!C ssgradtube=0.0d0 + cycle + endif ! if in lipid or buffor +!CEND OF FINITE FRAGMENT +!C as the tube is infinity we do not calculate the Z-vector use of Z +!C as chosen axis + vectube(3)=0.0d0 +!C now calculte the distance + tub_r=dsqrt(vectube(1)**2+vectube(2)**2+vectube(3)**2) +!C now normalize vector + vectube(1)=vectube(1)/tub_r + vectube(2)=vectube(2)/tub_r +!C calculte rdiffrence between r and r0 + rdiff=tub_r-tubeR0 +!C and its 6 power + rdiff6=rdiff**6.0d0 +!C for vectorization reasons we will sumup at the end to avoid depenence of previous + sc_aa_tube=sc_aa_tube_par(iti) + sc_bb_tube=sc_bb_tube_par(iti) + enetube(i+nres)=(sc_aa_tube/rdiff6**2.0d0+sc_bb_tube/rdiff6)& + *sstube+enetube(i+nres) +!C pep_aa_tube and pep_bb_tube are precomputed values A=4eps*sigma^12 B=4eps*sigma^6 +!C now we calculate gradient + fac=(-12.0d0*sc_aa_tube/rdiff6**2.0d0/rdiff-& + 6.0d0*sc_bb_tube/rdiff6/rdiff)*sstube +!C now direction of gg_tube vector + do j=1,3 + gg_tube_SC(j,i)=gg_tube_SC(j,i)+vectube(j)*fac + gg_tube(j,i-1)=gg_tube(j,i-1)+vectube(j)*fac + enddo + gg_tube_SC(3,i)=gg_tube_SC(3,i) & + +ssgradtube*enetube(i+nres)/sstube + gg_tube(3,i-1)= gg_tube(3,i-1) & + +ssgradtube*enetube(i+nres)/sstube + + enddo + do i=itube_start,itube_end + Etube=Etube+enetube(i)+enetube(i+nres) + enddo +!C print *,"ETUBE", etube + return + end subroutine calctube2 +!===================================================================================================================================== + subroutine calcnano(Etube) + real(kind=8),dimension(3) :: vectube + + real(kind=8) :: Etube,xtemp,xminact,yminact,& + ytemp,xmin,ymin,tub_r,rdiff,rdiff6,fac,denominator,faccav,& + sc_aa_tube,sc_bb_tube,zmin,ztemp,zminact + integer:: i,j,iti,r + + Etube=0.0d0 +! print *,itube_start,itube_end,"poczatek" + do i=itube_start,itube_end + enetube(i)=0.0d0 + enetube(i+nres)=0.0d0 + enddo +!C first we calculate the distance from tube center +!C first sugare-phosphate group for NARES this would be peptide group +!C for UNRES + do i=itube_start,itube_end +!C lets ommit dummy atoms for now + if ((itype(i,1).eq.ntyp1).or.(itype(i+1,1).eq.ntyp1)) cycle +!C now calculate distance from center of tube and direction vectors + xmin=boxxsize + ymin=boxysize + zmin=boxzsize + + do j=-1,1 + vectube(1)=dmod((c(1,i)+c(1,i+1))/2.0d0,boxxsize) + vectube(1)=vectube(1)+boxxsize*j + vectube(2)=dmod((c(2,i)+c(2,i+1))/2.0d0,boxysize) + vectube(2)=vectube(2)+boxysize*j + vectube(3)=dmod((c(3,i)+c(3,i+1))/2.0d0,boxzsize) + vectube(3)=vectube(3)+boxzsize*j + + + xminact=dabs(vectube(1)-tubecenter(1)) + yminact=dabs(vectube(2)-tubecenter(2)) + zminact=dabs(vectube(3)-tubecenter(3)) + + if (xmin.gt.xminact) then + xmin=xminact + xtemp=vectube(1) + endif + if (ymin.gt.yminact) then + ymin=yminact + ytemp=vectube(2) + endif + if (zmin.gt.zminact) then + zmin=zminact + ztemp=vectube(3) + endif + enddo + vectube(1)=xtemp + vectube(2)=ytemp + vectube(3)=ztemp + + vectube(1)=vectube(1)-tubecenter(1) + vectube(2)=vectube(2)-tubecenter(2) + vectube(3)=vectube(3)-tubecenter(3) + +!C print *,"x",(c(1,i)+c(1,i+1))/2.0d0,tubecenter(1) +!C print *,"y",(c(2,i)+c(2,i+1))/2.0d0,tubecenter(2) +!C as the tube is infinity we do not calculate the Z-vector use of Z +!C as chosen axis +!C vectube(3)=0.0d0 +!C now calculte the distance + tub_r=dsqrt(vectube(1)**2+vectube(2)**2+vectube(3)**2) +!C now normalize vector + vectube(1)=vectube(1)/tub_r + vectube(2)=vectube(2)/tub_r + vectube(3)=vectube(3)/tub_r +!C calculte rdiffrence between r and r0 + rdiff=tub_r-tubeR0 +!C and its 6 power + rdiff6=rdiff**6.0d0 +!C for vectorization reasons we will sumup at the end to avoid depenence of previous + enetube(i)=pep_aa_tube/rdiff6**2.0d0+pep_bb_tube/rdiff6 +!C write(iout,*) "TU13",i,rdiff6,enetube(i) +!C print *,rdiff,rdiff6,pep_aa_tube +!C pep_aa_tube and pep_bb_tube are precomputed values A=4eps*sigma^12 B=4eps*sigma^6 +!C now we calculate gradient + fac=(-12.0d0*pep_aa_tube/rdiff6- & + 6.0d0*pep_bb_tube)/rdiff6/rdiff +!C write(iout,'(a5,i4,f12.1,3f12.5)') "TU13",i,rdiff6,enetube(i), +!C &rdiff,fac + if (acavtubpep.eq.0.0d0) then +!C go to 667 + enecavtube(i)=0.0 + faccav=0.0 + else + denominator=(1.0d0+dcavtubpep*rdiff6*rdiff6) + enecavtube(i)= & + (bcavtubpep*rdiff+acavtubpep*dsqrt(rdiff)+ccavtubpep) & + /denominator + enecavtube(i)=0.0 + faccav=((bcavtubpep*1.0d0+acavtubpep/2.0d0/dsqrt(rdiff)) & + *denominator-(bcavtubpep*rdiff+acavtubpep*dsqrt(rdiff) & + +ccavtubpep)*rdiff6**2.0d0/rdiff*dcavtubpep*12.0d0) & + /denominator**2.0d0 +!C faccav=0.0 +!C fac=fac+faccav +!C 667 continue + endif + if (energy_dec) write(iout,*),i,rdiff,enetube(i),enecavtube(i) + do j=1,3 + gg_tube(j,i-1)=gg_tube(j,i-1)+vectube(j)*fac/2.0d0 + gg_tube(j,i)=gg_tube(j,i)+vectube(j)*fac/2.0d0 + enddo + enddo + + do i=itube_start,itube_end + enecavtube(i)=0.0d0 +!C Lets not jump over memory as we use many times iti + iti=itype(i,1) +!C lets ommit dummy atoms for now + if ((iti.eq.ntyp1) & +!C in UNRES uncomment the line below as GLY has no side-chain... +!C .or.(iti.eq.10) + ) cycle + xmin=boxxsize + ymin=boxysize + zmin=boxzsize + do j=-1,1 + vectube(1)=dmod((c(1,i+nres)),boxxsize) + vectube(1)=vectube(1)+boxxsize*j + vectube(2)=dmod((c(2,i+nres)),boxysize) + vectube(2)=vectube(2)+boxysize*j + vectube(3)=dmod((c(3,i+nres)),boxzsize) + vectube(3)=vectube(3)+boxzsize*j + + + xminact=dabs(vectube(1)-tubecenter(1)) + yminact=dabs(vectube(2)-tubecenter(2)) + zminact=dabs(vectube(3)-tubecenter(3)) + + if (xmin.gt.xminact) then + xmin=xminact + xtemp=vectube(1) + endif + if (ymin.gt.yminact) then + ymin=yminact + ytemp=vectube(2) + endif + if (zmin.gt.zminact) then + zmin=zminact + ztemp=vectube(3) + endif + enddo + vectube(1)=xtemp + vectube(2)=ytemp + vectube(3)=ztemp + +!C write(iout,*), "tututu", vectube(1),tubecenter(1),vectube(2), +!C & tubecenter(2) + vectube(1)=vectube(1)-tubecenter(1) + vectube(2)=vectube(2)-tubecenter(2) + vectube(3)=vectube(3)-tubecenter(3) +!C now calculte the distance + tub_r=dsqrt(vectube(1)**2+vectube(2)**2+vectube(3)**2) +!C now normalize vector + vectube(1)=vectube(1)/tub_r + vectube(2)=vectube(2)/tub_r + vectube(3)=vectube(3)/tub_r + +!C calculte rdiffrence between r and r0 + rdiff=tub_r-tubeR0 +!C and its 6 power + rdiff6=rdiff**6.0d0 + sc_aa_tube=sc_aa_tube_par(iti) + sc_bb_tube=sc_bb_tube_par(iti) + enetube(i+nres)=sc_aa_tube/rdiff6**2.0d0+sc_bb_tube/rdiff6 +!C enetube(i+nres)=0.0d0 +!C pep_aa_tube and pep_bb_tube are precomputed values A=4eps*sigma^12 B=4eps*sigma^6 +!C now we calculate gradient + fac=-12.0d0*sc_aa_tube/rdiff6**2.0d0/rdiff- & + 6.0d0*sc_bb_tube/rdiff6/rdiff +!C fac=0.0 +!C now direction of gg_tube vector +!C Now cavity term E=a(x+bsqrt(x)+c)/(1+dx^12) + if (acavtub(iti).eq.0.0d0) then +!C go to 667 + enecavtube(i+nres)=0.0d0 + faccav=0.0d0 + else + denominator=(1.0d0+dcavtub(iti)*rdiff6*rdiff6) + enecavtube(i+nres)= & + (bcavtub(iti)*rdiff+acavtub(iti)*dsqrt(rdiff)+ccavtub(iti)) & + /denominator +!C enecavtube(i)=0.0 + faccav=((bcavtub(iti)*1.0d0+acavtub(iti)/2.0d0/dsqrt(rdiff)) & + *denominator-(bcavtub(iti)*rdiff+acavtub(iti)*dsqrt(rdiff) & + +ccavtub(iti))*rdiff6**2.0d0/rdiff*dcavtub(iti)*12.0d0) & + /denominator**2.0d0 +!C faccav=0.0 + fac=fac+faccav +!C 667 continue + endif +!C print *,"TUT",i,iti,rdiff,rdiff6,acavtub(iti),denominator, +!C & enecavtube(i),faccav +!C print *,"licz=", +!C & (bcavtub(iti)*rdiff+acavtub(iti)*sqrt(rdiff)+ccavtub(iti)) +!C print *,"finene=",enetube(i+nres)+enecavtube(i) + do j=1,3 + gg_tube_SC(j,i)=gg_tube_SC(j,i)+vectube(j)*fac + gg_tube(j,i-1)=gg_tube(j,i-1)+vectube(j)*fac + enddo + if (energy_dec) write(iout,*),i,rdiff,enetube(i+nres),enecavtube(i+nres) + enddo + + + + do i=itube_start,itube_end + Etube=Etube+enetube(i)+enetube(i+nres)+enecavtube(i) & + +enecavtube(i+nres) + enddo +! do i=1,20 +! print *,"begin", i,"a" +! do r=1,10000 +! rdiff=r/100.0d0 +! rdiff6=rdiff**6.0d0 +! sc_aa_tube=sc_aa_tube_par(i) +! sc_bb_tube=sc_bb_tube_par(i) +! enetube(i)=sc_aa_tube/rdiff6**2.0d0+sc_bb_tube/rdiff6 +! denominator=(1.0d0+dcavtub(i)*rdiff6*rdiff6) +! enecavtube(i)= & +! (bcavtub(i)*rdiff+acavtub(i)*dsqrt(rdiff)+ccavtub(i)) & +! /denominator + +! print '(5(f10.3,1x))',rdiff,enetube(i),enecavtube(i),enecavtube(i)+enetube(i) +! enddo +! print *,"end",i,"a" +! enddo +!C print *,"ETUBE", etube + return + end subroutine calcnano + +!=============================================== +!-------------------------------------------------------------------------------- +!C first for shielding is setting of function of side-chains + + subroutine set_shield_fac2 + real(kind=8) :: div77_81=0.974996043d0, & + div4_81=0.2222222222d0 + real (kind=8) :: dist_pep_side,dist_side_calf,dist_pept_group, & + scale_fac_dist,fac_help_scale,VofOverlap,VolumeTotal,costhet,& + short,long,sinthet,costhet_fac,sh_frac_dist,rkprim,cosphi, & + sinphi,cosphi_fac,pep_side0pept_group,cosalfa,fac_alfa_sin +!C the vector between center of side_chain and peptide group + real(kind=8),dimension(3) :: pep_side_long,side_calf, & + pept_group,costhet_grad,cosphi_grad_long, & + cosphi_grad_loc,pep_side_norm,side_calf_norm, & + sh_frac_dist_grad,pep_side + integer i,j,k +!C write(2,*) "ivec",ivec_start,ivec_end + do i=1,nres + fac_shield(i)=0.0d0 + do j=1,3 + grad_shield(j,i)=0.0d0 + enddo + enddo + do i=ivec_start,ivec_end +!C do i=1,nres-1 +!C if ((itype(i,1).eq.ntyp1).and.itype(i+1,1).eq.ntyp1) cycle + ishield_list(i)=0 + if ((itype(i,1).eq.ntyp1).and.itype(i+1,1).eq.ntyp1) cycle +!Cif there two consequtive dummy atoms there is no peptide group between them +!C the line below has to be changed for FGPROC>1 + VolumeTotal=0.0 + do k=1,nres + if ((itype(k,1).eq.ntyp1).or.(itype(k,1).eq.10)) cycle + dist_pep_side=0.0 + dist_side_calf=0.0 + do j=1,3 +!C first lets set vector conecting the ithe side-chain with kth side-chain + pep_side(j)=c(j,k+nres)-(c(j,i)+c(j,i+1))/2.0d0 +!C pep_side(j)=2.0d0 +!C and vector conecting the side-chain with its proper calfa + side_calf(j)=c(j,k+nres)-c(j,k) +!C side_calf(j)=2.0d0 + pept_group(j)=c(j,i)-c(j,i+1) !C lets have their lenght dist_pep_side=pep_side(j)**2+dist_pep_side dist_side_calf=dist_side_calf+side_calf(j)**2 @@ -17963,8 +19181,8 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' enddo endif !C this is what is now we have the distance scaling now volume... - short=short_r_sidechain(itype(k)) - long=long_r_sidechain(itype(k)) + short=short_r_sidechain(itype(k,1)) + long=long_r_sidechain(itype(k,1)) costhet=1.0d0/dsqrt(1.0d0+short**2/dist_pep_side**2) sinthet=short/dist_pep_side*costhet !C now costhet_grad @@ -18050,10 +19268,66 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' enddo fac_shield(i)=VolumeTotal*wshield+(1.0d0-wshield) - write(2,*) "TOTAL VOLUME",i,itype(i),fac_shield(i) +!C write(2,*) "TOTAL VOLUME",i,itype(i,1),fac_shield(i) enddo return end subroutine set_shield_fac2 +!---------------------------------------------------------------------------- +! SOUBROUTINE FOR AFM + subroutine AFMvel(Eafmforce) + use MD_data, only:totTafm + real(kind=8),dimension(3) :: diffafm + real(kind=8) :: afmdist,Eafmforce + integer :: i +!C Only for check grad COMMENT if not used for checkgrad +!C totT=3.0d0 +!C-------------------------------------------------------- +!C print *,"wchodze" + afmdist=0.0d0 + Eafmforce=0.0d0 + do i=1,3 + diffafm(i)=c(i,afmend)-c(i,afmbeg) + afmdist=afmdist+diffafm(i)**2 + enddo + afmdist=dsqrt(afmdist) +! totTafm=3.0 + Eafmforce=0.5d0*forceAFMconst & + *(distafminit+totTafm*velAFMconst-afmdist)**2 +!C Eafmforce=-forceAFMconst*(dist-distafminit) + do i=1,3 + gradafm(i,afmend-1)=-forceAFMconst* & + (distafminit+totTafm*velAFMconst-afmdist) & + *diffafm(i)/afmdist + gradafm(i,afmbeg-1)=forceAFMconst* & + (distafminit+totTafm*velAFMconst-afmdist) & + *diffafm(i)/afmdist + enddo +! print *,'AFM',Eafmforce,totTafm*velAFMconst,afmdist + return + end subroutine AFMvel +!--------------------------------------------------------- + subroutine AFMforce(Eafmforce) + + real(kind=8),dimension(3) :: diffafm +! real(kind=8) ::afmdist + real(kind=8) :: afmdist,Eafmforce + integer :: i + afmdist=0.0d0 + Eafmforce=0.0d0 + do i=1,3 + diffafm(i)=c(i,afmend)-c(i,afmbeg) + afmdist=afmdist+diffafm(i)**2 + enddo + afmdist=dsqrt(afmdist) +! print *,afmdist,distafminit + Eafmforce=-forceAFMconst*(afmdist-distafminit) + do i=1,3 + gradafm(i,afmend-1)=-forceAFMconst*diffafm(i)/afmdist + gradafm(i,afmbeg-1)=forceAFMconst*diffafm(i)/afmdist + enddo +!C print *,'AFM',Eafmforce + return + end subroutine AFMforce !----------------------------------------------------------------------------- #ifdef WHAM @@ -18132,6 +19406,19 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' allocate(ielstart_vdw(nres)) allocate(ielend_vdw(nres)) !(maxres) + allocate(nint_gr_nucl(nres)) + allocate(nscp_gr_nucl(nres)) + allocate(ielstart_nucl(nres)) + allocate(ielend_nucl(nres)) +!(maxres) + allocate(istart_nucl(nres,maxint_gr)) + allocate(iend_nucl(nres,maxint_gr)) +!(maxres,maxint_gr) + allocate(iscpstart_nucl(nres,maxint_gr)) + allocate(iscpend_nucl(nres,maxint_gr)) +!(maxres,maxint_gr) + allocate(ielstart_vdw_nucl(nres)) + allocate(ielend_vdw_nucl(nres)) allocate(lentyp(0:nfgtasks-1)) !(0:maxprocs-1) @@ -18299,6 +19586,25 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' allocate(gshieldc_ll(3,-1:nres)) allocate(gshieldc_loc_ll(3,-1:nres)) allocate(grad_shield(3,-1:nres)) + allocate(gg_tube_sc(3,-1:nres)) + allocate(gg_tube(3,-1:nres)) + allocate(gradafm(3,-1:nres)) + allocate(gradb_nucl(3,-1:nres)) + allocate(gradbx_nucl(3,-1:nres)) + allocate(gvdwpsb1(3,-1:nres)) + allocate(gelpp(3,-1:nres)) + allocate(gvdwpsb(3,-1:nres)) + allocate(gelsbc(3,-1:nres)) + allocate(gelsbx(3,-1:nres)) + allocate(gvdwsbx(3,-1:nres)) + allocate(gvdwsbc(3,-1:nres)) + allocate(gsbloc(3,-1:nres)) + allocate(gsblocx(3,-1:nres)) + allocate(gradcorr_nucl(3,-1:nres)) + allocate(gradxorr_nucl(3,-1:nres)) + allocate(gradcorr3_nucl(3,-1:nres)) + allocate(gradxorr3_nucl(3,-1:nres)) + !(3,maxres) allocate(grad_shield_side(3,50,nres)) allocate(grad_shield_loc(3,50,nres)) @@ -18418,14 +19724,18 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' ! enddo ! enddo - if (nss.gt.0) then - allocate(idssb(nss),jdssb(nss)) +! if (nss.gt.0) then + allocate(idssb(maxdim),jdssb(maxdim)) +! allocate(newihpb(nss),newjhpb(nss)) !(maxdim) - endif +! endif allocate(ishield_list(nres)) allocate(shield_list(50,nres)) allocate(dyn_ss_mask(nres)) allocate(fac_shield(nres)) + allocate(enetube(nres*2)) + allocate(enecavtube(nres*2)) + !(maxres) dyn_ss_mask(:)=.false. !---------------------- @@ -18472,6 +19782,1716 @@ write(iout,*) 'Calling CHECK_ECARTIN else.' return end subroutine alloc_ener_arrays +!----------------------------------------------------------------- + subroutine ebond_nucl(estr_nucl) +!c +!c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds +!c + + real(kind=8),dimension(3) :: u,ud + real(kind=8) :: usum,uprod,uprod1,uprod2,usumsqder + real(kind=8) :: estr_nucl,diff + integer :: iti,i,j,k,nbi + estr_nucl=0.0d0 +!C print *,"I enter ebond" + if (energy_dec) & + write (iout,*) "ibondp_start,ibondp_end",& + ibondp_nucl_start,ibondp_nucl_end + do i=ibondp_nucl_start,ibondp_nucl_end + if (itype(i-1,2).eq.ntyp1_molec(2) .or. & + itype(i,2).eq.ntyp1_molec(2)) cycle +! estr1=estr1+gnmr1(vbld(i),-1.0d0,distchainmax) +! do j=1,3 +! gradb(j,i-1)=gnmr1prim(vbld(i),-1.0d0,distchainmax) +! & *dc(j,i-1)/vbld(i) +! enddo +! if (energy_dec) write(iout,*) +! & "estr1",i,vbld(i),distchainmax, +! & gnmr1(vbld(i),-1.0d0,distchainmax) + + diff = vbld(i)-vbldp0_nucl + if(energy_dec)write(iout,*) "estr_nucl_bb" , i,vbld(i),& + vbldp0_nucl,diff,AKP_nucl*diff*diff + estr_nucl=estr_nucl+diff*diff + print *,estr_nucl + do j=1,3 + gradb_nucl(j,i-1)=AKP_nucl*diff*dc(j,i-1)/vbld(i) + enddo +!c write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3) + enddo + estr_nucl=0.5d0*AKP_nucl*estr_nucl + print *,"partial sum", estr_nucl,AKP_nucl + + if (energy_dec) & + write (iout,*) "ibondp_start,ibondp_end",& + ibond_nucl_start,ibond_nucl_end + + do i=ibond_nucl_start,ibond_nucl_end +!C print *, "I am stuck",i + iti=itype(i,2) + if (iti.eq.ntyp1_molec(2)) cycle + nbi=nbondterm_nucl(iti) +!C print *,iti,nbi + if (nbi.eq.1) then + diff=vbld(i+nres)-vbldsc0_nucl(1,iti) + + if (energy_dec) & + write (iout,*) "estr_nucl_sc", i,iti,vbld(i+nres),vbldsc0_nucl(1,iti),diff, & + AKSC_nucl(1,iti),AKSC_nucl(1,iti)*diff*diff + estr_nucl=estr_nucl+0.5d0*AKSC_nucl(1,iti)*diff*diff + print *,estr_nucl + do j=1,3 + gradbx_nucl(j,i)=AKSC_nucl(1,iti)*diff*dc(j,i+nres)/vbld(i+nres) + enddo + else + do j=1,nbi + diff=vbld(i+nres)-vbldsc0_nucl(j,iti) + ud(j)=aksc_nucl(j,iti)*diff + u(j)=abond0_nucl(j,iti)+0.5d0*ud(j)*diff + enddo + uprod=u(1) + do j=2,nbi + uprod=uprod*u(j) + enddo + usum=0.0d0 + usumsqder=0.0d0 + do j=1,nbi + uprod1=1.0d0 + uprod2=1.0d0 + do k=1,nbi + if (k.ne.j) then + uprod1=uprod1*u(k) + uprod2=uprod2*u(k)*u(k) + endif + enddo + usum=usum+uprod1 + usumsqder=usumsqder+ud(j)*uprod2 + enddo + estr_nucl=estr_nucl+uprod/usum + do j=1,3 + gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres) + enddo + endif + enddo +!C print *,"I am about to leave ebond" + return + end subroutine ebond_nucl + +!----------------------------------------------------------------------------- + subroutine ebend_nucl(etheta_nucl) + real(kind=8),dimension(nntheterm_nucl+1) :: coskt,sinkt !mmaxtheterm + real(kind=8),dimension(nsingle_nucl+1) :: cosph1,sinph1,cosph2,sinph2 !maxsingle + real(kind=8),dimension(ndouble_nucl+1,ndouble_nucl+1) :: cosph1ph2,sinph1ph2 !maxdouble,maxdouble + logical :: lprn=.true., lprn1=.false. +!el local variables + integer :: i,k,iblock,ityp1,ityp2,ityp3,l,m + real(kind=8) :: dethetai,dephii,dephii1,theti2,phii,phii1,ethetai + real(kind=8) :: aux,etheta_nucl,ccl,ssl,scl,csl,ethetacnstr +! local variables for constrains + real(kind=8) :: difi,thetiii + integer itheta + etheta_nucl=0.0D0 +! print *,"ithet_start",ithet_nucl_start," ithet_end",ithet_nucl_end,nres + do i=ithet_nucl_start,ithet_nucl_end + if ((itype(i-1,2).eq.ntyp1_molec(2)).or.& + (itype(i-2,2).eq.ntyp1_molec(2)).or. & + (itype(i,2).eq.ntyp1_molec(2))) cycle + dethetai=0.0d0 + dephii=0.0d0 + dephii1=0.0d0 + theti2=0.5d0*theta(i) + ityp2=ithetyp_nucl(itype(i-1,2)) + do k=1,nntheterm_nucl + coskt(k)=dcos(k*theti2) + sinkt(k)=dsin(k*theti2) + enddo + if (i.gt.3 .and. itype(i-2,2).ne.ntyp1_molec(2)) then +#ifdef OSF + phii=phi(i) + if (phii.ne.phii) phii=150.0 +#else + phii=phi(i) +#endif + ityp1=ithetyp_nucl(itype(i-2,2)) + do k=1,nsingle_nucl + cosph1(k)=dcos(k*phii) + sinph1(k)=dsin(k*phii) + enddo + else + phii=0.0d0 + ityp1=nthetyp_nucl+1 + do k=1,nsingle_nucl + cosph1(k)=0.0d0 + sinph1(k)=0.0d0 + enddo + endif + + if (i.lt.nres .and. itype(i,2).ne.ntyp1_molec(2)) then +#ifdef OSF + phii1=phi(i+1) + if (phii1.ne.phii1) phii1=150.0 + phii1=pinorm(phii1) +#else + phii1=phi(i+1) +#endif + ityp3=ithetyp_nucl(itype(i,2)) + do k=1,nsingle_nucl + cosph2(k)=dcos(k*phii1) + sinph2(k)=dsin(k*phii1) + enddo + else + phii1=0.0d0 + ityp3=nthetyp_nucl+1 + do k=1,nsingle_nucl + cosph2(k)=0.0d0 + sinph2(k)=0.0d0 + enddo + endif + ethetai=aa0thet_nucl(ityp1,ityp2,ityp3) + do k=1,ndouble_nucl + do l=1,k-1 + ccl=cosph1(l)*cosph2(k-l) + ssl=sinph1(l)*sinph2(k-l) + scl=sinph1(l)*cosph2(k-l) + csl=cosph1(l)*sinph2(k-l) + cosph1ph2(l,k)=ccl-ssl + cosph1ph2(k,l)=ccl+ssl + sinph1ph2(l,k)=scl+csl + sinph1ph2(k,l)=scl-csl + enddo + enddo + if (lprn) then + write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,& + " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1 + write (iout,*) "coskt and sinkt",nntheterm_nucl + do k=1,nntheterm_nucl + write (iout,*) k,coskt(k),sinkt(k) + enddo + endif + do k=1,ntheterm_nucl + ethetai=ethetai+aathet_nucl(k,ityp1,ityp2,ityp3)*sinkt(k) + dethetai=dethetai+0.5d0*k*aathet_nucl(k,ityp1,ityp2,ityp3)& + *coskt(k) + if (lprn)& + write (iout,*) "k",k," aathet",aathet_nucl(k,ityp1,ityp2,ityp3),& + " ethetai",ethetai + enddo + if (lprn) then + write (iout,*) "cosph and sinph" + do k=1,nsingle_nucl + write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k) + enddo + write (iout,*) "cosph1ph2 and sinph2ph2" + do k=2,ndouble_nucl + do l=1,k-1 + write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),& + sinph1ph2(l,k),sinph1ph2(k,l) + enddo + enddo + write(iout,*) "ethetai",ethetai + endif + do m=1,ntheterm2_nucl + do k=1,nsingle_nucl + aux=bbthet_nucl(k,m,ityp1,ityp2,ityp3)*cosph1(k)& + +ccthet_nucl(k,m,ityp1,ityp2,ityp3)*sinph1(k)& + +ddthet_nucl(k,m,ityp1,ityp2,ityp3)*cosph2(k)& + +eethet_nucl(k,m,ityp1,ityp2,ityp3)*sinph2(k) + ethetai=ethetai+sinkt(m)*aux + dethetai=dethetai+0.5d0*m*aux*coskt(m) + dephii=dephii+k*sinkt(m)*(& + ccthet_nucl(k,m,ityp1,ityp2,ityp3)*cosph1(k)-& + bbthet_nucl(k,m,ityp1,ityp2,ityp3)*sinph1(k)) + dephii1=dephii1+k*sinkt(m)*(& + eethet_nucl(k,m,ityp1,ityp2,ityp3)*cosph2(k)-& + ddthet_nucl(k,m,ityp1,ityp2,ityp3)*sinph2(k)) + if (lprn) & + write (iout,*) "m",m," k",k," bbthet",& + bbthet_nucl(k,m,ityp1,ityp2,ityp3)," ccthet",& + ccthet_nucl(k,m,ityp1,ityp2,ityp3)," ddthet",& + ddthet_nucl(k,m,ityp1,ityp2,ityp3)," eethet",& + eethet_nucl(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai + enddo + enddo + if (lprn) & + write(iout,*) "ethetai",ethetai + do m=1,ntheterm3_nucl + do k=2,ndouble_nucl + do l=1,k-1 + aux=ffthet_nucl(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+& + ffthet_nucl(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+& + ggthet_nucl(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+& + ggthet_nucl(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l) + ethetai=ethetai+sinkt(m)*aux + dethetai=dethetai+0.5d0*m*coskt(m)*aux + dephii=dephii+l*sinkt(m)*(& + -ffthet_nucl(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-& + ffthet_nucl(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+& + ggthet_nucl(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+& + ggthet_nucl(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)) + dephii1=dephii1+(k-l)*sinkt(m)*( & + -ffthet_nucl(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+& + ffthet_nucl(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+& + ggthet_nucl(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-& + ggthet_nucl(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)) + if (lprn) then + write (iout,*) "m",m," k",k," l",l," ffthet", & + ffthet_nucl(l,k,m,ityp1,ityp2,ityp3), & + ffthet_nucl(k,l,m,ityp1,ityp2,ityp3)," ggthet",& + ggthet_nucl(l,k,m,ityp1,ityp2,ityp3),& + ggthet_nucl(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai + write (iout,*) cosph1ph2(l,k)*sinkt(m), & + cosph1ph2(k,l)*sinkt(m),& + sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m) + endif + enddo + enddo + enddo +10 continue + if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') & + i,theta(i)*rad2deg,phii*rad2deg, & + phii1*rad2deg,ethetai + etheta_nucl=etheta_nucl+ethetai +! print *,i,"partial sum",etheta_nucl + if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang_nucl*dephii + if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang_nucl*dephii1 + gloc(nphi+i-2,icg)=wang_nucl*dethetai + enddo + return + end subroutine ebend_nucl +!---------------------------------------------------- + subroutine etor_nucl(etors_nucl) +! implicit real*8 (a-h,o-z) +! include 'DIMENSIONS' +! include 'COMMON.VAR' +! include 'COMMON.GEO' +! include 'COMMON.LOCAL' +! include 'COMMON.TORSION' +! include 'COMMON.INTERACT' +! include 'COMMON.DERIV' +! include 'COMMON.CHAIN' +! include 'COMMON.NAMES' +! include 'COMMON.IOUNITS' +! include 'COMMON.FFIELD' +! include 'COMMON.TORCNSTR' +! include 'COMMON.CONTROL' + real(kind=8) :: etors_nucl,edihcnstr + logical :: lprn +!el local variables + integer :: i,j,iblock,itori,itori1 + real(kind=8) :: phii,gloci,v1ij,v2ij,cosphi,sinphi,& + vl1ij,vl2ij,vl3ij,pom1,difi,etors_ii,pom +! Set lprn=.true. for debugging + lprn=.false. +! lprn=.true. + etors_nucl=0.0D0 +! print *,"iphi_nucl_start/end", iphi_nucl_start,iphi_nucl_end + do i=iphi_nucl_start,iphi_nucl_end + if (itype(i-2,2).eq.ntyp1_molec(2) .or. itype(i-1,2).eq.ntyp1_molec(2) & + .or. itype(i-3,2).eq.ntyp1_molec(2) & + .or. itype(i,2).eq.ntyp1_molec(2)) cycle + etors_ii=0.0D0 + itori=itortyp_nucl(itype(i-2,2)) + itori1=itortyp_nucl(itype(i-1,2)) + phii=phi(i) +! print *,i,itori,itori1 + gloci=0.0D0 +!C Regular cosine and sine terms + do j=1,nterm_nucl(itori,itori1) + v1ij=v1_nucl(j,itori,itori1) + v2ij=v2_nucl(j,itori,itori1) + cosphi=dcos(j*phii) + sinphi=dsin(j*phii) + etors_nucl=etors_nucl+v1ij*cosphi+v2ij*sinphi + if (energy_dec) etors_ii=etors_ii+& + v1ij*cosphi+v2ij*sinphi + gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi) + enddo +!C Lorentz terms +!C v1 +!C E = SUM ----------------------------------- - v1 +!C [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1 +!C + cosphi=dcos(0.5d0*phii) + sinphi=dsin(0.5d0*phii) + do j=1,nlor_nucl(itori,itori1) + vl1ij=vlor1_nucl(j,itori,itori1) + vl2ij=vlor2_nucl(j,itori,itori1) + vl3ij=vlor3_nucl(j,itori,itori1) + pom=vl2ij*cosphi+vl3ij*sinphi + pom1=1.0d0/(pom*pom+1.0d0) + etors_nucl=etors_nucl+vl1ij*pom1 + if (energy_dec) etors_ii=etors_ii+ & + vl1ij*pom1 + pom=-pom*pom1*pom1 + gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom + enddo +!C Subtract the constant term + etors_nucl=etors_nucl-v0_nucl(itori,itori1) + if (energy_dec) write (iout,'(a6,i5,0pf7.3)') & + 'etor',i,etors_ii-v0_nucl(itori,itori1) + if (lprn) & + write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') & + restyp(itype(i-2,2),2),i-2,restyp(itype(i-1,2),2),i-1,itori,itori1, & + (v1_nucl(j,itori,itori1),j=1,6),(v2_nucl(j,itori,itori1),j=1,6) + gloc(i-3,icg)=gloc(i-3,icg)+wtor_nucl*gloci +!c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg) + enddo + return + end subroutine etor_nucl +!------------------------------------------------------------ + subroutine epp_nucl_sub(evdw1,ees) +!C +!C This subroutine calculates the average interaction energy and its gradient +!C in the virtual-bond vectors between non-adjacent peptide groups, based on +!C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. +!C The potential depends both on the distance of peptide-group centers and on +!C the orientation of the CA-CA virtual bonds. +!C + integer :: i,j,k,iteli,itelj,num_conti,isubchap,ind + real(kind=8) :: dxi,dyi,dzi,dxj,dyj,dzj,aaa,bbb + real(kind=8) :: xj,yj,zj,rij,rrmij,sss,r3ij,r6ij,evdw1,& + dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,& + dx_normj,dy_normj,dz_normj,rmij,ev1,ev2,evdwij,facvdw + real(kind=8) :: xj_safe,yj_safe,zj_safe,xj_temp,yj_temp,zj_temp,& + dist_temp, dist_init,sss_grad,fac,evdw1ij + integer xshift,yshift,zshift + real(kind=8),dimension(3):: ggg,gggp,gggm,erij + real(kind=8) :: ees,eesij +!c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions + real(kind=8) scal_el /0.5d0/ + t_eelecij=0.0d0 + ees=0.0D0 + evdw1=0.0D0 + ind=0 +!c +!c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3 +!c + print *,"iatel_s_nucl,iatel_e_nucl",iatel_s_nucl,iatel_e_nucl + do i=iatel_s_nucl,iatel_e_nucl + if (itype(i,2).eq.ntyp1_molec(2) .or. itype(i+1,2).eq.ntyp1_molec(2)) cycle + dxi=dc(1,i) + dyi=dc(2,i) + dzi=dc(3,i) + dx_normi=dc_norm(1,i) + dy_normi=dc_norm(2,i) + dz_normi=dc_norm(3,i) + xmedi=c(1,i)+0.5d0*dxi + ymedi=c(2,i)+0.5d0*dyi + zmedi=c(3,i)+0.5d0*dzi + xmedi=dmod(xmedi,boxxsize) + if (xmedi.lt.0) xmedi=xmedi+boxxsize + ymedi=dmod(ymedi,boxysize) + if (ymedi.lt.0) ymedi=ymedi+boxysize + zmedi=dmod(zmedi,boxzsize) + if (zmedi.lt.0) zmedi=zmedi+boxzsize + + do j=ielstart_nucl(i),ielend_nucl(i) + if (itype(j,2).eq.ntyp1_molec(2) .or. itype(j+1,2).eq.ntyp1_molec(2)) cycle + ind=ind+1 + dxj=dc(1,j) + dyj=dc(2,j) + dzj=dc(3,j) +! xj=c(1,j)+0.5D0*dxj-xmedi +! yj=c(2,j)+0.5D0*dyj-ymedi +! zj=c(3,j)+0.5D0*dzj-zmedi + xj=c(1,j)+0.5D0*dxj + yj=c(2,j)+0.5D0*dyj + zj=c(3,j)+0.5D0*dzj + xj=mod(xj,boxxsize) + if (xj.lt.0) xj=xj+boxxsize + yj=mod(yj,boxysize) + if (yj.lt.0) yj=yj+boxysize + zj=mod(zj,boxzsize) + if (zj.lt.0) zj=zj+boxzsize + isubchap=0 + dist_init=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2 + xj_safe=xj + yj_safe=yj + zj_safe=zj + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 + xj=xj_safe+xshift*boxxsize + yj=yj_safe+yshift*boxysize + zj=zj_safe+zshift*boxzsize + dist_temp=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2 + if(dist_temp.lt.dist_init) then + dist_init=dist_temp + xj_temp=xj + yj_temp=yj + zj_temp=zj + isubchap=1 + endif + enddo + enddo + enddo + if (isubchap.eq.1) then +!C print *,i,j + xj=xj_temp-xmedi + yj=yj_temp-ymedi + zj=zj_temp-zmedi + else + xj=xj_safe-xmedi + yj=yj_safe-ymedi + zj=zj_safe-zmedi + endif + + rij=xj*xj+yj*yj+zj*zj +!c write (2,*)"ij",i,j," r0pp",r0pp," rij",rij," epspp",epspp + fac=(r0pp**2/rij)**3 + ev1=epspp*fac*fac + ev2=epspp*fac + evdw1ij=ev1-2*ev2 + fac=(-ev1-evdw1ij)/rij +! write (2,*)"fac",fac," ev1",ev1," ev2",ev2," evdw1ij",evdw1ij + if (energy_dec) write(iout,'(2i5,a9,f10.4)') i,j,"evdw1ij",evdw1ij + evdw1=evdw1+evdw1ij +!C +!C Calculate contributions to the Cartesian gradient. +!C + ggg(1)=fac*xj + ggg(2)=fac*yj + ggg(3)=fac*zj + do k=1,3 + gvdwpp(k,i)=gvdwpp(k,i)-ggg(k) + gvdwpp(k,j)=gvdwpp(k,j)+ggg(k) + enddo +!c phoshate-phosphate electrostatic interactions + rij=dsqrt(rij) + fac=1.0d0/rij + eesij=dexp(-BEES*rij)*fac +! write (2,*)"fac",fac," eesijpp",eesij + if (energy_dec) write(iout,'(2i5,a9,f10.4)') i,j,"eesijpp",eesij + ees=ees+eesij +!c fac=-eesij*fac + fac=-(fac+BEES)*eesij*fac + ggg(1)=fac*xj + ggg(2)=fac*yj + ggg(3)=fac*zj +!c write(2,*) "ggg",i,j,ggg(1),ggg(2),ggg(3) +!c write(2,*) "gelpp",i,(gelpp(k,i),k=1,3) +!c write(2,*) "gelpp",j,(gelpp(k,j),k=1,3) + do k=1,3 + gelpp(k,i)=gelpp(k,i)-ggg(k) + gelpp(k,j)=gelpp(k,j)+ggg(k) + enddo + enddo ! j + enddo ! i +!c ees=332.0d0*ees + ees=AEES*ees + do i=nnt,nct +!c write (2,*) "i",i," gelpp",(gelpp(k,i),k=1,3) + do k=1,3 + gvdwpp(k,i)=6*gvdwpp(k,i) +!c gelpp(k,i)=332.0d0*gelpp(k,i) + gelpp(k,i)=AEES*gelpp(k,i) + enddo +!c write (2,*) "i",i," gelpp",(gelpp(k,i),k=1,3) + enddo +!c write (2,*) "total EES",ees + return + end subroutine epp_nucl_sub +!--------------------------------------------------------------------- + subroutine epsb(evdwpsb,eelpsb) +! use comm_locel +!C +!C This subroutine calculates the excluded-volume interaction energy between +!C peptide-group centers and side chains and its gradient in virtual-bond and +!C side-chain vectors. +!C + real(kind=8),dimension(3):: ggg + integer :: i,iint,j,k,iteli,itypj,subchap + real(kind=8) :: evdw2,evdw2_14,xi,yi,zi,xj,yj,zj,rrij,fac,& + e1,e2,evdwij,rij,evdwpsb,eelpsb + real(kind=8) :: xj_safe,yj_safe,zj_safe,xj_temp,yj_temp,zj_temp,& + dist_temp, dist_init + integer xshift,yshift,zshift + +!cd print '(a)','Enter ESCP' +!cd write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e + eelpsb=0.0d0 + evdwpsb=0.0d0 + print *,"iatscp_s_nucl,iatscp_e_nucl",iatscp_s_nucl,iatscp_e_nucl + do i=iatscp_s_nucl,iatscp_e_nucl + if (itype(i,2).eq.ntyp1_molec(2) & + .or. itype(i+1,2).eq.ntyp1_molec(2)) cycle + xi=0.5D0*(c(1,i)+c(1,i+1)) + yi=0.5D0*(c(2,i)+c(2,i+1)) + zi=0.5D0*(c(3,i)+c(3,i+1)) + xi=mod(xi,boxxsize) + if (xi.lt.0) xi=xi+boxxsize + yi=mod(yi,boxysize) + if (yi.lt.0) yi=yi+boxysize + zi=mod(zi,boxzsize) + if (zi.lt.0) zi=zi+boxzsize + + do iint=1,nscp_gr_nucl(i) + + do j=iscpstart_nucl(i,iint),iscpend_nucl(i,iint) + itypj=itype(j,2) + if (itypj.eq.ntyp1_molec(2)) cycle +!C Uncomment following three lines for SC-p interactions +!c xj=c(1,nres+j)-xi +!c yj=c(2,nres+j)-yi +!c zj=c(3,nres+j)-zi +!C Uncomment following three lines for Ca-p interactions +! xj=c(1,j)-xi +! yj=c(2,j)-yi +! zj=c(3,j)-zi + xj=c(1,j) + yj=c(2,j) + zj=c(3,j) + xj=mod(xj,boxxsize) + if (xj.lt.0) xj=xj+boxxsize + yj=mod(yj,boxysize) + if (yj.lt.0) yj=yj+boxysize + zj=mod(zj,boxzsize) + if (zj.lt.0) zj=zj+boxzsize + dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + xj_safe=xj + yj_safe=yj + zj_safe=zj + subchap=0 + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 + xj=xj_safe+xshift*boxxsize + yj=yj_safe+yshift*boxysize + zj=zj_safe+zshift*boxzsize + dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + if(dist_temp.lt.dist_init) then + dist_init=dist_temp + xj_temp=xj + yj_temp=yj + zj_temp=zj + subchap=1 + endif + enddo + enddo + enddo + if (subchap.eq.1) then + xj=xj_temp-xi + yj=yj_temp-yi + zj=zj_temp-zi + else + xj=xj_safe-xi + yj=yj_safe-yi + zj=zj_safe-zi + endif + + rrij=1.0D0/(xj*xj+yj*yj+zj*zj) + fac=rrij**expon2 + e1=fac*fac*aad_nucl(itypj) + e2=fac*bad_nucl(itypj) + if (iabs(j-i) .le. 2) then + e1=scal14*e1 + e2=scal14*e2 + endif + evdwij=e1+e2 + evdwpsb=evdwpsb+evdwij + if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a4)') & + 'evdw2',i,j,evdwij,"tu4" +!C +!C Calculate contributions to the gradient in the virtual-bond and SC vectors. +!C + fac=-(evdwij+e1)*rrij + ggg(1)=xj*fac + ggg(2)=yj*fac + ggg(3)=zj*fac + do k=1,3 + gvdwpsb1(k,i)=gvdwpsb1(k,i)-ggg(k) + gvdwpsb(k,j)=gvdwpsb(k,j)+ggg(k) + enddo + enddo + + enddo ! iint + enddo ! i + do i=1,nct + do j=1,3 + gvdwpsb(j,i)=expon*gvdwpsb(j,i) + gvdwpsb1(j,i)=expon*gvdwpsb1(j,i) + enddo + enddo + return + end subroutine epsb + +!------------------------------------------------------ + subroutine esb_gb(evdwsb,eelsb) + use comm_locel + use calc_data_nucl + integer :: iint,itypi,itypi1,itypj,subchap,num_conti2 + real(kind=8) :: xi,yi,zi,sig,rij_shift,fac,e1,e2,sigm,epsi + real(kind=8) :: evdw,sig0iji,evdwsb,eelsb,ecorr,eelij + real(kind=8) :: xj_safe,yj_safe,zj_safe,xj_temp,yj_temp,zj_temp,& + dist_temp, dist_init,aa,bb,faclip,sig0ij + integer :: ii + logical lprn + evdw=0.0D0 + eelsb=0.0d0 + ecorr=0.0d0 + evdwsb=0.0D0 + lprn=.false. + ind=0 +! print *,"iastsc_nucl",iatsc_s_nucl,iatsc_e_nucl + do i=iatsc_s_nucl,iatsc_e_nucl + num_conti=0 + num_conti2=0 + itypi=itype(i,2) +! PRINT *,"I=",i,itypi + if (itypi.eq.ntyp1_molec(2)) cycle + itypi1=itype(i+1,2) + xi=c(1,nres+i) + yi=c(2,nres+i) + zi=c(3,nres+i) + xi=dmod(xi,boxxsize) + if (xi.lt.0) xi=xi+boxxsize + yi=dmod(yi,boxysize) + if (yi.lt.0) yi=yi+boxysize + zi=dmod(zi,boxzsize) + if (zi.lt.0) zi=zi+boxzsize + + dxi=dc_norm(1,nres+i) + dyi=dc_norm(2,nres+i) + dzi=dc_norm(3,nres+i) + dsci_inv=vbld_inv(i+nres) +!C +!C Calculate SC interaction energy. +!C + do iint=1,nint_gr_nucl(i) +! print *,"tu?",i,istart_nucl(i,iint),iend_nucl(i,iint) + do j=istart_nucl(i,iint),iend_nucl(i,iint) + ind=ind+1 +! print *,"JESTEM" + itypj=itype(j,2) + if (itypj.eq.ntyp1_molec(2)) cycle + dscj_inv=vbld_inv(j+nres) + sig0ij=sigma_nucl(itypi,itypj) + chi1=chi_nucl(itypi,itypj) + chi2=chi_nucl(itypj,itypi) + chi12=chi1*chi2 + chip1=chip_nucl(itypi,itypj) + chip2=chip_nucl(itypj,itypi) + chip12=chip1*chip2 +! xj=c(1,nres+j)-xi +! yj=c(2,nres+j)-yi +! zj=c(3,nres+j)-zi + xj=c(1,nres+j) + yj=c(2,nres+j) + zj=c(3,nres+j) + xj=dmod(xj,boxxsize) + if (xj.lt.0) xj=xj+boxxsize + yj=dmod(yj,boxysize) + if (yj.lt.0) yj=yj+boxysize + zj=dmod(zj,boxzsize) + if (zj.lt.0) zj=zj+boxzsize + dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + xj_safe=xj + yj_safe=yj + zj_safe=zj + subchap=0 + do xshift=-1,1 + do yshift=-1,1 + do zshift=-1,1 + xj=xj_safe+xshift*boxxsize + yj=yj_safe+yshift*boxysize + zj=zj_safe+zshift*boxzsize + dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + if(dist_temp.lt.dist_init) then + dist_init=dist_temp + xj_temp=xj + yj_temp=yj + zj_temp=zj + subchap=1 + endif + enddo + enddo + enddo + if (subchap.eq.1) then + xj=xj_temp-xi + yj=yj_temp-yi + zj=zj_temp-zi + else + xj=xj_safe-xi + yj=yj_safe-yi + zj=zj_safe-zi + endif + + dxj=dc_norm(1,nres+j) + dyj=dc_norm(2,nres+j) + dzj=dc_norm(3,nres+j) + rrij=1.0D0/(xj*xj+yj*yj+zj*zj) + rij=dsqrt(rrij) +!C Calculate angle-dependent terms of energy and contributions to their +!C derivatives. + erij(1)=xj*rij + erij(2)=yj*rij + erij(3)=zj*rij + om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3) + om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3) + om12=dxi*dxj+dyi*dyj+dzi*dzj + call sc_angular_nucl + sigsq=1.0D0/sigsq + sig=sig0ij*dsqrt(sigsq) + rij_shift=1.0D0/rij-sig+sig0ij +! print *,rij_shift,"rij_shift" +!c write (2,*) " rij",1.0D0/rij," sig",sig," sig0ij",sig0ij, +!c & " rij_shift",rij_shift + if (rij_shift.le.0.0D0) then + evdw=1.0D20 + return + endif + sigder=-sig*sigsq +!c--------------------------------------------------------------- + rij_shift=1.0D0/rij_shift + fac=rij_shift**expon + e1=fac*fac*aa_nucl(itypi,itypj) + e2=fac*bb_nucl(itypi,itypj) + evdwij=eps1*eps2rt*(e1+e2) +!c write (2,*) "eps1",eps1," eps2rt",eps2rt, +!c & " e1",e1," e2",e2," evdwij",evdwij + eps2der=evdwij + evdwij=evdwij*eps2rt + evdwsb=evdwsb+evdwij + if (lprn) then + sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) + epsi=bb(itypi,itypj)**2/aa(itypi,itypj) + write (iout,'(2(a3,i3,2x),17(0pf7.3))') & + restyp(itypi,2),i,restyp(itypj,2),j, & + epsi,sigm,chi1,chi2,chip1,chip2, & + eps1,eps2rt**2,sig,sig0ij, & + om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,& + evdwij + write (iout,*) "aa",aa_nucl(itypi,itypj)," bb",bb_nucl(itypi,itypj) + endif + + if (energy_dec) write (iout,'(a6,2i5,e15.3,a4)') & + 'evdw',i,j,evdwij,"tu3" + + +!C Calculate gradient components. + e1=e1*eps1*eps2rt**2 + fac=-expon*(e1+evdwij)*rij_shift + sigder=fac*sigder + fac=rij*fac +!c fac=0.0d0 +!C Calculate the radial part of the gradient + gg(1)=xj*fac + gg(2)=yj*fac + gg(3)=zj*fac +!C Calculate angular part of the gradient. + call sc_grad_nucl + call eelsbij(eelij,num_conti2) + if (energy_dec .and. & + (j.eq.i+1.or.j.eq.nres-i+1.or.j.eq.nres-i.or.j.eq.nres-i+2)) & + write (istat,'(e14.5)') evdwij + eelsb=eelsb+eelij + enddo ! j + enddo ! iint + num_cont_hb(i)=num_conti2 + enddo ! i +!c write (iout,*) "Number of loop steps in EGB:",ind +!cccc energy_dec=.false. + return + end subroutine esb_gb +!------------------------------------------------------------------------------- + subroutine eelsbij(eesij,num_conti2) + use comm_locel + use calc_data_nucl + real(kind=8),dimension(3) :: ggg,gggp,gggm,dcosb,dcosg + real(kind=8),dimension(3,3) :: erder,uryg,urzg,vryg,vrzg + real(kind=8) :: xj_safe,yj_safe,zj_safe,xj_temp,yj_temp,zj_temp,& + dist_temp, dist_init,rlocshield,fracinbuf + integer xshift,yshift,zshift,ilist,iresshield,num_conti2 + +!c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions + real(kind=8) scal_el /0.5d0/ + integer :: iteli,itelj,kkk,kkll,m,isubchap + real(kind=8) :: ael6i,rrmij,rmij,r0ij,fcont,fprimcont,ees0tmp,facfac + real(kind=8) :: ees,evdw1,eel_loc,aaa,bbb,ael3i,ael63i,ael32i + real(kind=8) :: dx_normj,dy_normj,dz_normj,& + r3ij,r6ij,cosa,cosb,cosg,fac,ev1,ev2,fac3,fac4,fac5,fac6,& + el1,el2,el3,el4,eesij,ees0ij,facvdw,facel,fac1,ecosa,& + ecosb,ecosg,ury,urz,vry,vrz,facr,a22der,a23der,a32der,& + a33der,eel_loc_ij,cosa4,wij,cosbg1,cosbg2,ees0pij,& + ees0pij1,ees0mij,ees0mij1,fac3p,ees0mijp,ees0pijp,& + ecosa1,ecosb1,ecosg1,ecosa2,ecosb2,ecosg2,ecosap,ecosbp,& + ecosgp,ecosam,ecosbm,ecosgm,ghalf,itypi,itypj + ind=ind+1 + itypi=itype(i,2) + itypj=itype(j,2) +! print *,i,j,itypi,itypj,istype(i),istype(j),"????" + ael6i=ael6_nucl(itypi,itypj) + ael3i=ael3_nucl(itypi,itypj) + ael63i=ael63_nucl(itypi,itypj) + ael32i=ael32_nucl(itypi,itypj) +!c write (iout,*) "eelecij",i,j,itype(i),itype(j), +!c & ael6i,ael3i,ael63i,al32i,rij,rrij + dxj=dc(1,j+nres) + dyj=dc(2,j+nres) + dzj=dc(3,j+nres) + dx_normi=dc_norm(1,i+nres) + dy_normi=dc_norm(2,i+nres) + dz_normi=dc_norm(3,i+nres) + dx_normj=dc_norm(1,j+nres) + dy_normj=dc_norm(2,j+nres) + dz_normj=dc_norm(3,j+nres) +!c xj=c(1,j)+0.5D0*dxj-xmedi +!c yj=c(2,j)+0.5D0*dyj-ymedi +!c zj=c(3,j)+0.5D0*dzj-zmedi + if (ipot_nucl.ne.2) then + cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj + cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij + cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij + else + cosa=om12 + cosb=om1 + cosg=om2 + endif + r3ij=rij*rrij + r6ij=r3ij*r3ij + fac=cosa-3.0D0*cosb*cosg + facfac=fac*fac + fac1=3.0d0*(cosb*cosb+cosg*cosg) + fac3=ael6i*r6ij + fac4=ael3i*r3ij + fac5=ael63i*r6ij + fac6=ael32i*r6ij +!c write (iout,*) "r3ij",r3ij," r6ij",r6ij," fac",fac," fac1",fac1, +!c & " fac2",fac2," fac3",fac3," fac4",fac4," fac5",fac5," fac6",fac6 + el1=fac3*(4.0D0+facfac-fac1) + el2=fac4*fac + el3=fac5*(2.0d0-2.0d0*facfac+fac1) + el4=fac6*facfac + eesij=el1+el2+el3+el4 +!C 12/26/95 - for the evaluation of multi-body H-bonding interactions + ees0ij=4.0D0+facfac-fac1 + + if (energy_dec) then + if(j.eq.i+1.or.j.eq.nres-i+1.or.j.eq.nres-i.or.j.eq.nres-i+2) & + write (istat,'(2a1,i4,1x,2a1,i4,4f10.5,3e12.5,$)') & + sugartyp(istype(i)),restyp(itypi,2),i,sugartyp(istype(j)),& + restyp(itypj,2),j,1.0d0/rij,cosa,cosb,cosg,fac*r3ij, & + (4.0D0+facfac-fac1)*r6ij,(2.0d0-2.0d0*facfac+fac1)*r6ij + write (iout,'(a6,2i5,e15.3)') 'ees',i,j,eesij + endif + +!C +!C Calculate contributions to the Cartesian gradient. +!C + facel=-3.0d0*rrij*(eesij+el1+el3+el4) + fac1=fac +!c erij(1)=xj*rmij +!c erij(2)=yj*rmij +!c erij(3)=zj*rmij +!* +!* Radial derivatives. First process both termini of the fragment (i,j) +!* + ggg(1)=facel*xj + ggg(2)=facel*yj + ggg(3)=facel*zj + do k=1,3 + gelsbc(k,j)=gelsbc(k,j)+ggg(k) + gelsbc(k,i)=gelsbc(k,i)-ggg(k) + gelsbx(k,j)=gelsbx(k,j)+ggg(k) + gelsbx(k,i)=gelsbx(k,i)-ggg(k) + enddo +!* +!* Angular part +!* + ecosa=2.0D0*fac3*fac1+fac4+(-4.0d0*fac5+2.0d0*fac6)*fac1 + fac4=-3.0D0*fac4 + fac3=-6.0D0*fac3 + fac5= 6.0d0*fac5 + fac6=-6.0d0*fac6 + ecosb=fac3*(fac1*cosg+cosb)+cosg*fac4+(cosb+2*fac1*cosg)*fac5+& + fac6*fac1*cosg + ecosg=fac3*(fac1*cosb+cosg)+cosb*fac4+(cosg+2*fac1*cosb)*fac5+& + fac6*fac1*cosb + do k=1,3 + dcosb(k)=rij*(dc_norm(k,i+nres)-erij(k)*cosb) + dcosg(k)=rij*(dc_norm(k,j+nres)-erij(k)*cosg) + enddo + do k=1,3 + ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) + enddo + do k=1,3 + gelsbx(k,i)=gelsbx(k,i)-ggg(k) & + +(ecosa*(dc_norm(k,j+nres)-cosa*dc_norm(k,i+nres))& + + ecosb*(erij(k)-cosb*dc_norm(k,i+nres)))*vbld_inv(i+nres) + gelsbx(k,j)=gelsbx(k,j)+ggg(k) & + +(ecosa*(dc_norm(k,i+nres)-cosa*dc_norm(k,j+nres))& + + ecosg*(erij(k)-cosg*dc_norm(k,j+nres)))*vbld_inv(j+nres) + gelsbc(k,j)=gelsbc(k,j)+ggg(k) + gelsbc(k,i)=gelsbc(k,i)-ggg(k) + enddo +! IF ( (wcorr_nucl.gt.0.0d0.or.wcorr3_nucl.gt.0.0d0) .and. + IF ( j.gt.i+1 .and.& + num_conti.le.maxconts) THEN +!C +!C Calculate the contact function. The ith column of the array JCONT will +!C contain the numbers of atoms that make contacts with the atom I (of numbers +!C greater than I). The arrays FACONT and GACONT will contain the values of +!C the contact function and its derivative. + r0ij=2.20D0*sigma(itypi,itypj) +!c write (2,*) "ij",i,j," rij",1.0d0/rij," r0ij",r0ij + call gcont(rij,r0ij,1.0D0,0.2d0/r0ij,fcont,fprimcont) +!c write (2,*) "fcont",fcont + if (fcont.gt.0.0D0) then + num_conti=num_conti+1 + num_conti2=num_conti2+1 + + if (num_conti.gt.maxconts) then + write (iout,*) 'WARNING - max. # of contacts exceeded;',& + ' will skip next contacts for this conf.' + else + jcont_hb(num_conti,i)=j +!c write (iout,*) "num_conti",num_conti, +!c & " jcont_hb",jcont_hb(num_conti,i) +!C Calculate contact energies + cosa4=4.0D0*cosa + wij=cosa-3.0D0*cosb*cosg + cosbg1=cosb+cosg + cosbg2=cosb-cosg + fac3=dsqrt(-ael6i)*r3ij +!c write (2,*) "ael6i",ael6i," r3ij",r3ij," fac3",fac3 + ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1 + if (ees0tmp.gt.0) then + ees0pij=dsqrt(ees0tmp) + else + ees0pij=0 + endif + ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2 + if (ees0tmp.gt.0) then + ees0mij=dsqrt(ees0tmp) + else + ees0mij=0 + endif + ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij) + ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij) +!c write (iout,*) "i",i," j",j, +!c & " ees0m",ees0m(num_conti,i)," ees0p",ees0p(num_conti,i) + ees0pij1=fac3/ees0pij + ees0mij1=fac3/ees0mij + fac3p=-3.0D0*fac3*rrij + ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij) + ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij) + ecosa1= ees0pij1*( 1.0D0+0.5D0*wij) + ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1) + ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1) + ecosa2= ees0mij1*(-1.0D0+0.5D0*wij) + ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) + ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2) + ecosap=ecosa1+ecosa2 + ecosbp=ecosb1+ecosb2 + ecosgp=ecosg1+ecosg2 + ecosam=ecosa1-ecosa2 + ecosbm=ecosb1-ecosb2 + ecosgm=ecosg1-ecosg2 +!C End diagnostics + facont_hb(num_conti,i)=fcont + fprimcont=fprimcont/rij + do k=1,3 + gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k) + gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k) + enddo + gggp(1)=gggp(1)+ees0pijp*xj + gggp(2)=gggp(2)+ees0pijp*yj + gggp(3)=gggp(3)+ees0pijp*zj + gggm(1)=gggm(1)+ees0mijp*xj + gggm(2)=gggm(2)+ees0mijp*yj + gggm(3)=gggm(3)+ees0mijp*zj +!C Derivatives due to the contact function + gacont_hbr(1,num_conti,i)=fprimcont*xj + gacont_hbr(2,num_conti,i)=fprimcont*yj + gacont_hbr(3,num_conti,i)=fprimcont*zj + do k=1,3 +!c +!c Gradient of the correlation terms +!c + gacontp_hb1(k,num_conti,i)= & + (ecosap*(dc_norm(k,j+nres)-cosa*dc_norm(k,i+nres)) & + + ecosbp*(erij(k)-cosb*dc_norm(k,i+nres)))*vbld_inv(i+nres) + gacontp_hb2(k,num_conti,i)= & + (ecosap*(dc_norm(k,i+nres)-cosa*dc_norm(k,j+nres)) & + + ecosgp*(erij(k)-cosg*dc_norm(k,j+nres)))*vbld_inv(j+nres) + gacontp_hb3(k,num_conti,i)=gggp(k) + gacontm_hb1(k,num_conti,i)= & + (ecosam*(dc_norm(k,j+nres)-cosa*dc_norm(k,i+nres)) & + + ecosbm*(erij(k)-cosb*dc_norm(k,i+nres)))*vbld_inv(i+nres) + gacontm_hb2(k,num_conti,i)= & + (ecosam*(dc_norm(k,i+nres)-cosa*dc_norm(k,j+nres))& + + ecosgm*(erij(k)-cosg*dc_norm(k,j+nres)))*vbld_inv(j+nres) + gacontm_hb3(k,num_conti,i)=gggm(k) + enddo + endif + endif + ENDIF + return + end subroutine eelsbij +!------------------------------------------------------------------ + subroutine sc_grad_nucl + use comm_locel + use calc_data_nucl + real(kind=8),dimension(3) :: dcosom1,dcosom2 + eom1=eps2der*eps2rt_om1+sigder*sigsq_om1 + eom2=eps2der*eps2rt_om2+sigder*sigsq_om2 + eom12=evdwij*eps1_om12+eps2der*eps2rt_om12+sigder*sigsq_om12 + do k=1,3 + dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k)) + dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k)) + enddo + do k=1,3 + gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k) + enddo + do k=1,3 + gvdwsbx(k,i)=gvdwsbx(k,i)-gg(k) & + +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))& + +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv + gvdwsbx(k,j)=gvdwsbx(k,j)+gg(k) & + +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j)) & + +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv + enddo +!C +!C Calculate the components of the gradient in DC and X +!C + do l=1,3 + gvdwsbc(l,i)=gvdwsbc(l,i)-gg(l) + gvdwsbc(l,j)=gvdwsbc(l,j)+gg(l) + enddo + return + end subroutine sc_grad_nucl +!----------------------------------------------------------------------- + subroutine esb(esbloc) +!C Calculate the local energy of a side chain and its derivatives in the +!C corresponding virtual-bond valence angles THETA and the spherical angles +!C ALPHA and OMEGA derived from AM1 all-atom calculations. +!C added by Urszula Kozlowska. 07/11/2007 +!C + real(kind=8),dimension(3):: x_prime,y_prime,z_prime + real(kind=8),dimension(9):: x + real(kind=8) :: sumene,dsc_i,dp2_i,xx,yy,zz,sumene1, & + sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,& + de_dxx,de_dyy,de_dzz,de_dt,s1_t,s1_6_t,s2_t,s2_6_t + real(kind=8),dimension(3):: dXX_Ci1,dYY_Ci1,dZZ_Ci1,dXX_Ci,& + dYY_Ci,dZZ_Ci,dXX_XYZ,dYY_XYZ,dZZ_XYZ,dt_dCi,dt_dCi1 + real(kind=8) :: esbloc,delta,cosfac2,cosfac,sinfac2,sinfac,de_dtt,& + cossc,cossc1,cosfac2xx,sinfac2yy,pom1,pom + integer::it,nlobit,i,j,k +! common /sccalc/ time11,time12,time112,theti,it,nlobit + delta=0.02d0*pi + esbloc=0.0D0 + do i=loc_start_nucl,loc_end_nucl + if (itype(i,2).eq.ntyp1_molec(2)) cycle + costtab(i+1) =dcos(theta(i+1)) + sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1)) + cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1))) + sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1))) + cosfac2=0.5d0/(1.0d0+costtab(i+1)) + cosfac=dsqrt(cosfac2) + sinfac2=0.5d0/(1.0d0-costtab(i+1)) + sinfac=dsqrt(sinfac2) + it=itype(i,2) + if (it.eq.10) goto 1 + +!c +!C Compute the axes of tghe local cartesian coordinates system; store in +!c x_prime, y_prime and z_prime +!c + do j=1,3 + x_prime(j) = 0.00 + y_prime(j) = 0.00 + z_prime(j) = 0.00 + enddo +!C write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres), +!C & dc_norm(3,i+nres) + do j = 1,3 + x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac + y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac + enddo + do j = 1,3 + z_prime(j) = -uz(j,i-1) + enddo + + xx=0.0d0 + yy=0.0d0 + zz=0.0d0 + do j = 1,3 + xx = xx + x_prime(j)*dc_norm(j,i+nres) + yy = yy + y_prime(j)*dc_norm(j,i+nres) + zz = zz + z_prime(j)*dc_norm(j,i+nres) + enddo + + xxtab(i)=xx + yytab(i)=yy + zztab(i)=zz + it=itype(i,2) + do j = 1,9 + x(j) = sc_parmin_nucl(j,it) + enddo +#ifdef CHECK_COORD +!Cc diagnostics - remove later + xx1 = dcos(alph(2)) + yy1 = dsin(alph(2))*dcos(omeg(2)) + zz1 = -dsin(alph(2))*dsin(omeg(2)) + write(2,'(3f8.1,3f9.3,1x,3f9.3)') & + alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,& + xx1,yy1,zz1 +!C," --- ", xx_w,yy_w,zz_w +!c end diagnostics +#endif + sumene = enesc_nucl(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) + esbloc = esbloc + sumene + if (energy_dec) write(iout,*) "i",i," esbloc",sumene,esbloc,xx,yy,zz + if (energy_dec) write(iout,*) "x",(x(k),k=1,9) +#ifdef DEBUG + write (2,*) "x",(x(k),k=1,9) +!C +!C This section to check the numerical derivatives of the energy of ith side +!C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert +!C #define DEBUG in the code to turn it on. +!C + write (2,*) "sumene =",sumene + aincr=1.0d-7 + xxsave=xx + xx=xx+aincr + write (2,*) xx,yy,zz + sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) + de_dxx_num=(sumenep-sumene)/aincr + xx=xxsave + write (2,*) "xx+ sumene from enesc=",sumenep,sumene + yysave=yy + yy=yy+aincr + write (2,*) xx,yy,zz + sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) + de_dyy_num=(sumenep-sumene)/aincr + yy=yysave + write (2,*) "yy+ sumene from enesc=",sumenep,sumene + zzsave=zz + zz=zz+aincr + write (2,*) xx,yy,zz + sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) + de_dzz_num=(sumenep-sumene)/aincr + zz=zzsave + write (2,*) "zz+ sumene from enesc=",sumenep,sumene + costsave=cost2tab(i+1) + sintsave=sint2tab(i+1) + cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr)) + sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr)) + sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) + de_dt_num=(sumenep-sumene)/aincr + write (2,*) " t+ sumene from enesc=",sumenep,sumene + cost2tab(i+1)=costsave + sint2tab(i+1)=sintsave +!C End of diagnostics section. +#endif +!C +!C Compute the gradient of esc +!C + de_dxx=x(1)+2*x(4)*xx+x(7)*zz+x(8)*yy + de_dyy=x(2)+2*x(5)*yy+x(8)*xx+x(9)*zz + de_dzz=x(3)+2*x(6)*zz+x(7)*xx+x(9)*yy + de_dtt=0.0d0 +#ifdef DEBUG + write (2,*) "x",(x(k),k=1,9) + write (2,*) "xx",xx," yy",yy," zz",zz + write (2,*) "de_xx ",de_xx," de_yy ",de_yy,& + " de_zz ",de_zz," de_tt ",de_tt + write (2,*) "de_xx_num",de_dxx_num," de_yy_num",de_dyy_num,& + " de_zz_num",de_dzz_num," de_dt_num",de_dt_num +#endif +!C + cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres)) + cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres)) + cosfac2xx=cosfac2*xx + sinfac2yy=sinfac2*yy + do k = 1,3 + dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*& + vbld_inv(i+1) + dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*& + vbld_inv(i) + pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1) + pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i) +!c write (iout,*) "i",i," k",k," pom",pom," pom1",pom1, +!c & " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k) +!c write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3), +!c & (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i) + dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx + dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx + dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy + dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy + dZZ_Ci1(k)=0.0d0 + dZZ_Ci(k)=0.0d0 + do j=1,3 + dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres) + dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres) + enddo + + dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres)) + dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres)) + dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres)) +!c + dt_dCi(k) = -dt_dCi(k)/sinttab(i+1) + dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1) + enddo + + do k=1,3 + dXX_Ctab(k,i)=dXX_Ci(k) + dXX_C1tab(k,i)=dXX_Ci1(k) + dYY_Ctab(k,i)=dYY_Ci(k) + dYY_C1tab(k,i)=dYY_Ci1(k) + dZZ_Ctab(k,i)=dZZ_Ci(k) + dZZ_C1tab(k,i)=dZZ_Ci1(k) + dXX_XYZtab(k,i)=dXX_XYZ(k) + dYY_XYZtab(k,i)=dYY_XYZ(k) + dZZ_XYZtab(k,i)=dZZ_XYZ(k) + enddo + do k = 1,3 +!c write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1", +!c & dyy_ci1(k)," dzz_ci1",dzz_ci1(k) +!c write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci", +!c & dyy_ci(k)," dzz_ci",dzz_ci(k) +!c write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci", +!c & dt_dci(k) +!c write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ", +!c & dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) + gsbloc(k,i-1)=gsbloc(k,i-1)+de_dxx*dxx_ci1(k) & + +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k) + gsbloc(k,i)=gsbloc(k,i)+de_dxx*dxx_Ci(k) & + +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k) + gsblocx(k,i)= de_dxx*dxx_XYZ(k)& + +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k) + enddo +!c write(iout,*) "ENERGY GRAD = ", (gsbloc(k,i-1),k=1,3), +!c & (gsbloc(k,i),k=1,3),(gsblocx(k,i),k=1,3) + +!C to check gradient call subroutine check_grad + + 1 continue + enddo + return + end subroutine esb +!=------------------------------------------------------- + real(kind=8) function enesc_nucl(x,xx,yy,zz,cost2,sint2) +! implicit none + real(kind=8),dimension(9):: x(9) + real(kind=8) :: xx,yy,zz,cost2,sint2,sumene1,sumene2, & + sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6 + integer i +!c write (2,*) "enesc" +!c write (2,*) "x",(x(i),i=1,9) +!c write(2,*)"xx",xx," yy",yy," zz",zz," cost2",cost2," sint2",sint2 + sumene=x(1)*xx+x(2)*yy+x(3)*zz+x(4)*xx**2 & + + x(5)*yy**2+x(6)*zz**2+x(7)*xx*zz+x(8)*xx*yy & + + x(9)*yy*zz + enesc_nucl=sumene + return + end function enesc_nucl +!----------------------------------------------------------------------------- + subroutine multibody_hb_nucl(ecorr,ecorr3,n_corr,n_corr1) +#ifdef MPI + include 'mpif.h' + integer,parameter :: max_cont=2000 + integer,parameter:: max_dim=2*(8*3+6) + integer, parameter :: msglen1=max_cont*max_dim + integer,parameter :: msglen2=2*msglen1 + integer source,CorrelType,CorrelID,Error + real(kind=8) :: buffer(max_cont,max_dim) + integer status(MPI_STATUS_SIZE) + integer :: ierror,nbytes +#endif + real(kind=8),dimension(3):: gx(3),gx1(3) + real(kind=8) :: time00 + logical lprn,ldone + integer i,j,i1,j1,jj,kk,num_conti,num_conti1,nn + real(kind=8) ecorr,ecorr3 + integer :: n_corr,n_corr1,mm,msglen +!C Set lprn=.true. for debugging + lprn=.false. + n_corr=0 + n_corr1=0 +#ifdef MPI + if(.not.allocated(zapas2)) allocate(zapas2(3,maxconts,nres,8)) + + if (nfgtasks.le.1) goto 30 + if (lprn) then + write (iout,'(a)') 'Contact function values:' + do i=nnt,nct-1 + write (iout,'(2i3,50(1x,i2,f5.2))') & + i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i), & + j=1,num_cont_hb(i)) + enddo + endif +!C Caution! Following code assumes that electrostatic interactions concerning +!C a given atom are split among at most two processors! + CorrelType=477 + CorrelID=fg_rank+1 + ldone=.false. + do i=1,max_cont + do j=1,max_dim + buffer(i,j)=0.0D0 + enddo + enddo + mm=mod(fg_rank,2) +!c write (*,*) 'MyRank',MyRank,' mm',mm + if (mm) 20,20,10 + 10 continue +!c write (*,*) 'Sending: MyRank',MyRank,' mm',mm,' ldone',ldone + if (fg_rank.gt.0) then +!C Send correlation contributions to the preceding processor + msglen=msglen1 + nn=num_cont_hb(iatel_s_nucl) + call pack_buffer(max_cont,max_dim,iatel_s,0,buffer) +!c write (*,*) 'The BUFFER array:' +!c do i=1,nn +!c write (*,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,30) +!c enddo + if (ielstart_nucl(iatel_s_nucl).gt.iatel_s_nucl+ispp) then + msglen=msglen2 + call pack_buffer(max_cont,max_dim,iatel_s+1,30,buffer) +!C Clear the contacts of the atom passed to the neighboring processor + nn=num_cont_hb(iatel_s_nucl+1) +!c do i=1,nn +!c write (*,'(i2,9(3f8.3,2x))') i,(buffer(i,j+30),j=1,30) +!c enddo + num_cont_hb(iatel_s_nucl)=0 + endif +!cd write (iout,*) 'Processor ',fg_rank,MyRank, +!cd & ' is sending correlation contribution to processor',fg_rank-1, +!cd & ' msglen=',msglen +!c write (*,*) 'Processor ',fg_rank,MyRank, +!c & ' is sending correlation contribution to processor',fg_rank-1, +!c & ' msglen=',msglen,' CorrelType=',CorrelType + time00=MPI_Wtime() + call MPI_Send(buffer,msglen,MPI_DOUBLE_PRECISION,fg_rank-1, & + CorrelType,FG_COMM,IERROR) + time_sendrecv=time_sendrecv+MPI_Wtime()-time00 +!cd write (iout,*) 'Processor ',fg_rank, +!cd & ' has sent correlation contribution to processor',fg_rank-1, +!cd & ' msglen=',msglen,' CorrelID=',CorrelID +!c write (*,*) 'Processor ',fg_rank, +!c & ' has sent correlation contribution to processor',fg_rank-1, +!c & ' msglen=',msglen,' CorrelID=',CorrelID +!c msglen=msglen1 + endif ! (fg_rank.gt.0) + if (ldone) goto 30 + ldone=.true. + 20 continue +!c write (*,*) 'Receiving: MyRank',MyRank,' mm',mm,' ldone',ldone + if (fg_rank.lt.nfgtasks-1) then +!C Receive correlation contributions from the next processor + msglen=msglen1 + if (ielend_nucl(iatel_e_nucl).lt.nct_molec(2)-1) msglen=msglen2 +!cd write (iout,*) 'Processor',fg_rank, +!cd & ' is receiving correlation contribution from processor',fg_rank+1, +!cd & ' msglen=',msglen,' CorrelType=',CorrelType +!c write (*,*) 'Processor',fg_rank, +!c &' is receiving correlation contribution from processor',fg_rank+1, +!c & ' msglen=',msglen,' CorrelType=',CorrelType + time00=MPI_Wtime() + nbytes=-1 + do while (nbytes.le.0) + call MPI_Probe(fg_rank+1,CorrelType,FG_COMM,status,IERROR) + call MPI_Get_count(status,MPI_DOUBLE_PRECISION,nbytes,IERROR) + enddo +!c print *,'Processor',myrank,' msglen',msglen,' nbytes',nbytes + call MPI_Recv(buffer,nbytes,MPI_DOUBLE_PRECISION, & + fg_rank+1,CorrelType,FG_COMM,status,IERROR) + time_sendrecv=time_sendrecv+MPI_Wtime()-time00 +!c write (*,*) 'Processor',fg_rank, +!c &' has received correlation contribution from processor',fg_rank+1, +!c & ' msglen=',msglen,' nbytes=',nbytes +!c write (*,*) 'The received BUFFER array:' +!c do i=1,max_cont +!c write (*,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,60) +!c enddo + if (msglen.eq.msglen1) then + call unpack_buffer(max_cont,max_dim,iatel_e_nucl+1,0,buffer) + else if (msglen.eq.msglen2) then + call unpack_buffer(max_cont,max_dim,iatel_e_nucl,0,buffer) + call unpack_buffer(max_cont,max_dim,iatel_e_nucl+1,30,buffer) + else + write (iout,*) & + 'ERROR!!!! message length changed while processing correlations.' + write (*,*) & + 'ERROR!!!! message length changed while processing correlations.' + call MPI_Abort(MPI_COMM_WORLD,Error,IERROR) + endif ! msglen.eq.msglen1 + endif ! fg_rank.lt.nfgtasks-1 + if (ldone) goto 30 + ldone=.true. + goto 10 + 30 continue +#endif + if (lprn) then + write (iout,'(a)') 'Contact function values:' + do i=nnt_molec(2),nct_molec(2)-1 + write (iout,'(2i3,50(1x,i2,f5.2))') & + i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i), & + j=1,num_cont_hb(i)) + enddo + endif + ecorr=0.0D0 + ecorr3=0.0d0 +!C Remove the loop below after debugging !!! + do i=nnt_molec(2),nct_molec(2) + do j=1,3 + gradcorr_nucl(j,i)=0.0D0 + gradxorr_nucl(j,i)=0.0D0 + gradcorr3_nucl(j,i)=0.0D0 + gradxorr3_nucl(j,i)=0.0D0 + enddo + enddo + print *,"iatsc_s_nucl,iatsc_e_nucl",iatsc_s_nucl,iatsc_e_nucl +!C Calculate the local-electrostatic correlation terms + do i=iatsc_s_nucl,iatsc_e_nucl + i1=i+1 + num_conti=num_cont_hb(i) + num_conti1=num_cont_hb(i+1) + print *,i,num_conti,num_conti1 + do jj=1,num_conti + j=jcont_hb(jj,i) + do kk=1,num_conti1 + j1=jcont_hb(kk,i1) +!c write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1, +!c & ' jj=',jj,' kk=',kk + if (j1.eq.j+1 .or. j1.eq.j-1) then +!C +!C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. +!C The system gains extra energy. +!C Tentative expression & coefficients; assumed d(stacking)=4.5 A, +!C parallel dipoles of stacknig bases and sin(mui)sin(muj)/eps/d^3=0.7 +!C Need to implement full formulas 34 and 35 from Liwo et al., 1998. +!C + ecorr=ecorr+ehbcorr_nucl(i,j,i+1,j1,jj,kk,0.528D0,0.132D0) + if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') & + 'ecorrh',i,j,ehbcorr_nucl(i,j,i+1,j1,jj,kk,0.528D0,0.132D0) + n_corr=n_corr+1 + else if (j1.eq.j) then +!C +!C Contacts I-J and I-(J+1) occur simultaneously. +!C The system loses extra energy. +!C Tentative expression & c?oefficients; assumed d(stacking)=4.5 A, +!C parallel dipoles of stacknig bases and sin(mui)sin(muj)/eps/d^3=0.7 +!C Need to implement full formulas 32 from Liwo et al., 1998. +!C +!c write (iout,*) 'ecorr3: i=',i,' j=',j,' i1=',i1,' j1=',j1, +!c & ' jj=',jj,' kk=',kk + ecorr3=ecorr3+ehbcorr3_nucl(i,j,i+1,j,jj,kk,0.310D0,-0.155D0) + endif + enddo ! kk + do kk=1,num_conti + j1=jcont_hb(kk,i) +!c write (iout,*) 'ecorr3: i=',i,' j=',j,' i1=',i1,' j1=',j1, +!c & ' jj=',jj,' kk=',kk + if (j1.eq.j+1) then +!C Contacts I-J and (I+1)-J occur simultaneously. +!C The system loses extra energy. + ecorr3=ecorr3+ehbcorr3_nucl(i,j,i,j+1,jj,kk,0.310D0,-0.155D0) + endif ! j1==j+1 + enddo ! kk + enddo ! jj + enddo ! i + return + end subroutine multibody_hb_nucl +!----------------------------------------------------------- + real(kind=8) function ehbcorr_nucl(i,j,k,l,jj,kk,coeffp,coeffm) +! implicit real*8 (a-h,o-z) +! include 'DIMENSIONS' +! include 'COMMON.IOUNITS' +! include 'COMMON.DERIV' +! include 'COMMON.INTERACT' +! include 'COMMON.CONTACTS' + real(kind=8),dimension(3) :: gx,gx1 + logical :: lprn +!el local variables + integer :: i,j,k,l,jj,kk,ll,ilist,m, iresshield + real(kind=8) :: coeffp,coeffm,eij,ekl,ees0pij,ees0pkl,ees0mij,& + ees0mkl,ees,coeffpees0pij,coeffmees0mij,& + coeffpees0pkl,coeffmees0mkl,gradlongij,gradlongkl, & + rlocshield + + lprn=.false. + eij=facont_hb(jj,i) + ekl=facont_hb(kk,k) + ees0pij=ees0p(jj,i) + ees0pkl=ees0p(kk,k) + ees0mij=ees0m(jj,i) + ees0mkl=ees0m(kk,k) + ekont=eij*ekl + ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl) +! print *,"ehbcorr_nucl",ekont,ees +!cd ees=-(coeffp*ees0pkl+coeffm*ees0mkl) +!C Following 4 lines for diagnostics. +!cd ees0pkl=0.0D0 +!cd ees0pij=1.0D0 +!cd ees0mkl=0.0D0 +!cd ees0mij=1.0D0 +!cd write (iout,*)'Contacts have occurred for nucleic bases', +!cd & i,j,' fcont:',eij,' eij',' eesij',ees0pij,ees0mij,' and ',k,l +!cd & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' ees=',ees +!C Calculate the multi-body contribution to energy. +! ecorr_nucl=ecorr_nucl+ekont*ees +!C Calculate multi-body contributions to the gradient. + coeffpees0pij=coeffp*ees0pij + coeffmees0mij=coeffm*ees0mij + coeffpees0pkl=coeffp*ees0pkl + coeffmees0mkl=coeffm*ees0mkl + do ll=1,3 + gradxorr_nucl(ll,i)=gradxorr_nucl(ll,i) & + -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+& + coeffmees0mkl*gacontm_hb1(ll,jj,i)) + gradxorr_nucl(ll,j)=gradxorr_nucl(ll,j) & + -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+& + coeffmees0mkl*gacontm_hb2(ll,jj,i)) + gradxorr_nucl(ll,k)=gradxorr_nucl(ll,k) & + -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+& + coeffmees0mij*gacontm_hb1(ll,kk,k)) + gradxorr_nucl(ll,l)=gradxorr_nucl(ll,l) & + -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+ & + coeffmees0mij*gacontm_hb2(ll,kk,k)) + gradlongij=ees*ekl*gacont_hbr(ll,jj,i)- & + ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+ & + coeffmees0mkl*gacontm_hb3(ll,jj,i)) + gradcorr_nucl(ll,j)=gradcorr_nucl(ll,j)+gradlongij + gradcorr_nucl(ll,i)=gradcorr_nucl(ll,i)-gradlongij + gradlongkl=ees*eij*gacont_hbr(ll,kk,k)- & + ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+ & + coeffmees0mij*gacontm_hb3(ll,kk,k)) + gradcorr_nucl(ll,l)=gradcorr_nucl(ll,l)+gradlongkl + gradcorr_nucl(ll,k)=gradcorr_nucl(ll,k)-gradlongkl + gradxorr_nucl(ll,i)=gradxorr_nucl(ll,i)-gradlongij + gradxorr_nucl(ll,j)=gradxorr_nucl(ll,j)+gradlongij + gradxorr_nucl(ll,k)=gradxorr_nucl(ll,k)-gradlongkl + gradxorr_nucl(ll,l)=gradxorr_nucl(ll,l)+gradlongkl + enddo + ehbcorr_nucl=ekont*ees + return + end function ehbcorr_nucl +!------------------------------------------------------------------------- + + real(kind=8) function ehbcorr3_nucl(i,j,k,l,jj,kk,coeffp,coeffm) +! implicit real*8 (a-h,o-z) +! include 'DIMENSIONS' +! include 'COMMON.IOUNITS' +! include 'COMMON.DERIV' +! include 'COMMON.INTERACT' +! include 'COMMON.CONTACTS' + real(kind=8),dimension(3) :: gx,gx1 + logical :: lprn +!el local variables + integer :: i,j,k,l,jj,kk,ll,ilist,m, iresshield + real(kind=8) :: coeffp,coeffm,eij,ekl,ees0pij,ees0pkl,ees0mij,& + ees0mkl,ees,coeffpees0pij,coeffmees0mij,& + coeffpees0pkl,coeffmees0mkl,gradlongij,gradlongkl, & + rlocshield + + lprn=.false. + eij=facont_hb(jj,i) + ekl=facont_hb(kk,k) + ees0pij=ees0p(jj,i) + ees0pkl=ees0p(kk,k) + ees0mij=ees0m(jj,i) + ees0mkl=ees0m(kk,k) + ekont=eij*ekl + ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl) +!cd ees=-(coeffp*ees0pkl+coeffm*ees0mkl) +!C Following 4 lines for diagnostics. +!cd ees0pkl=0.0D0 +!cd ees0pij=1.0D0 +!cd ees0mkl=0.0D0 +!cd ees0mij=1.0D0 +!cd write (iout,*)'Contacts have occurred for nucleic bases', +!cd & i,j,' fcont:',eij,' eij',' eesij',ees0pij,ees0mij,' and ',k,l +!cd & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' ees=',ees +!C Calculate the multi-body contribution to energy. +! ecorr=ecorr+ekont*ees +!C Calculate multi-body contributions to the gradient. + coeffpees0pij=coeffp*ees0pij + coeffmees0mij=coeffm*ees0mij + coeffpees0pkl=coeffp*ees0pkl + coeffmees0mkl=coeffm*ees0mkl + do ll=1,3 + gradxorr3_nucl(ll,i)=gradxorr3_nucl(ll,i) & + -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+& + coeffmees0mkl*gacontm_hb1(ll,jj,i)) + gradxorr3_nucl(ll,j)=gradxorr3_nucl(ll,j) & + -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+ & + coeffmees0mkl*gacontm_hb2(ll,jj,i)) + gradxorr3_nucl(ll,k)=gradxorr3_nucl(ll,k) & + -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+ & + coeffmees0mij*gacontm_hb1(ll,kk,k)) + gradxorr3_nucl(ll,l)=gradxorr3_nucl(ll,l) & + -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+ & + coeffmees0mij*gacontm_hb2(ll,kk,k)) + gradlongij=ees*ekl*gacont_hbr(ll,jj,i)- & + ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+ & + coeffmees0mkl*gacontm_hb3(ll,jj,i)) + gradcorr3_nucl(ll,j)=gradcorr3_nucl(ll,j)+gradlongij + gradcorr3_nucl(ll,i)=gradcorr3_nucl(ll,i)-gradlongij + gradlongkl=ees*eij*gacont_hbr(ll,kk,k)- & + ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+ & + coeffmees0mij*gacontm_hb3(ll,kk,k)) + gradcorr3_nucl(ll,l)=gradcorr3_nucl(ll,l)+gradlongkl + gradcorr3_nucl(ll,k)=gradcorr3_nucl(ll,k)-gradlongkl + gradxorr3_nucl(ll,i)=gradxorr3_nucl(ll,i)-gradlongij + gradxorr3_nucl(ll,j)=gradxorr3_nucl(ll,j)+gradlongij + gradxorr3_nucl(ll,k)=gradxorr3_nucl(ll,k)-gradlongkl + gradxorr3_nucl(ll,l)=gradxorr3_nucl(ll,l)+gradlongkl + enddo + ehbcorr3_nucl=ekont*ees + return + end function ehbcorr3_nucl +#ifdef MPI + subroutine pack_buffer(dimen1,dimen2,atom,indx,buffer) + integer dimen1,dimen2,atom,indx,numcont,i,ii,k,j,num_kont,num_kont_old + real(kind=8):: buffer(dimen1,dimen2) + num_kont=num_cont_hb(atom) + do i=1,num_kont + do k=1,8 + do j=1,3 + buffer(i,indx+(k-1)*3+j)=zapas2(j,i,atom,k) + enddo ! j + enddo ! k + buffer(i,indx+25)=facont_hb(i,atom) + buffer(i,indx+26)=ees0p(i,atom) + buffer(i,indx+27)=ees0m(i,atom) + buffer(i,indx+28)=d_cont(i,atom) + buffer(i,indx+29)=dfloat(jcont_hb(i,atom)) + enddo ! i + buffer(1,indx+30)=dfloat(num_kont) + return + end subroutine pack_buffer +!c------------------------------------------------------------------------------ + subroutine unpack_buffer(dimen1,dimen2,atom,indx,buffer) + integer dimen1,dimen2,atom,indx,numcont,i,ii,k,j,num_kont,num_kont_old + real(kind=8):: buffer(dimen1,dimen2) +! double precision zapas +! common /contacts_hb/ zapas(3,maxconts,maxres,8), +! & facont_hb(maxconts,maxres),ees0p(maxconts,maxres), +! & ees0m(maxconts,maxres),d_cont(maxconts,maxres), +! & num_cont_hb(maxres),jcont_hb(maxconts,maxres) + num_kont=buffer(1,indx+30) + num_kont_old=num_cont_hb(atom) + num_cont_hb(atom)=num_kont+num_kont_old + do i=1,num_kont + ii=i+num_kont_old + do k=1,8 + do j=1,3 + zapas2(j,ii,atom,k)=buffer(i,indx+(k-1)*3+j) + enddo ! j + enddo ! k + facont_hb(ii,atom)=buffer(i,indx+25) + ees0p(ii,atom)=buffer(i,indx+26) + ees0m(ii,atom)=buffer(i,indx+27) + d_cont(i,atom)=buffer(i,indx+28) + jcont_hb(ii,atom)=buffer(i,indx+29) + enddo ! i + return + end subroutine unpack_buffer +!c------------------------------------------------------------------------------ +#endif + +!---------------------------------------------------------------------------- !----------------------------------------------------------------------------- !----------------------------------------------------------------------------- end module energy