X-Git-Url: http://mmka.chem.univ.gda.pl/gitweb/?a=blobdiff_plain;f=source%2Funres%2Fenergy.F90;h=1d241159ebdc692cc85d242be6868114c8c4c1e7;hb=d2088a7676356c745c2cff79ca5a7c2c6025e19c;hp=4a763c20c4506c21ab6916269d8b2848e0eab645;hpb=e837223cef419e16dfd7fc71baee35cd807096e9;p=unres4.git diff --git a/source/unres/energy.F90 b/source/unres/energy.F90 index 4a763c2..1d24115 100644 --- a/source/unres/energy.F90 +++ b/source/unres/energy.F90 @@ -74,7 +74,7 @@ ! amino-acid residue. ! common /precomp1/ real(kind=8),dimension(:,:),allocatable :: mu,muder,Ub2,Ub2der,& - Ctobr,Ctobrder,Dtobr2,Dtobr2der !(2,maxres) + Ctobr,Ctobrder,Dtobr2,Dtobr2der,gUb2 !(2,maxres) real(kind=8),dimension(:,:,:),allocatable :: EUg,EUgder,CUg,& CUgder,DUg,Dugder,DtUg2,DtUg2der !(2,2,maxres) ! This common block contains vectors and matrices dependent on two @@ -87,6 +87,7 @@ real(kind=8),dimension(:,:,:,:),allocatable :: Ug2DtEUgder,& DtUg2EUgder !(2,2,2,maxres) ! common /rotat_old/ + real(kind=8),dimension(4) :: gmuij,gmuij1,gmuij2,gmuji1,gmuji2 real(kind=8),dimension(:),allocatable :: costab,sintab,& costab2,sintab2 !(maxres) ! This common block contains dipole-interaction matrices and their @@ -293,7 +294,7 @@ ! print *,"Processor",myrank," BROADCAST iorder" ! FG master sets up the WEIGHTS_ array which will be broadcast to the ! FG slaves as WEIGHTS array. - ! weights_(1)=wsc + weights_(1)=wsc weights_(2)=wscp weights_(3)=welec weights_(4)=wcorr @@ -609,9 +610,9 @@ .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 & .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then #endif - write(iout,*),"just befor eelec call" +! print *,"just befor eelec call" call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4) -! write (iout,*) "ELEC calc" +! print *, "ELEC calc" else ees=0.0d0 evdw1=0.0d0 @@ -662,12 +663,26 @@ ! Calculate the virtual-bond-angle energy. ! write(iout,*) "in etotal afer edis",ipot - if (wang.gt.0.0d0) then - call ebend(ebe,ethetacnstr) +! if (wang.gt.0.0d0) then +! call ebend(ebe,ethetacnstr) +! else +! ebe=0 +! ethetacnstr=0 +! endif + if (wang.gt.0d0) then + if (tor_mode.eq.0) then + call ebend(ebe) + else +!C ebend kcc is Kubo cumulant clustered rigorous attemp to derive the +!C energy function + call ebend_kcc(ebe) + endif else - ebe=0 - ethetacnstr=0 + ebe=0.0d0 endif + ethetacnstr=0.0d0 + if (with_theta_constr) call etheta_constr(ethetacnstr) + ! write(iout,*) "in etotal afer ebe",ipot ! print *,"Processor",myrank," computed UB" @@ -681,12 +696,27 @@ ! Calculate the virtual-bond torsional energy. ! !d print *,'nterm=',nterm - if (wtor.gt.0) then - call etor(etors,edihcnstr) +! if (wtor.gt.0) then +! call etor(etors,edihcnstr) +! else +! etors=0 +! edihcnstr=0 +! endif + if (wtor.gt.0.0d0) then + if (tor_mode.eq.0) then + call etor(etors) + else +!C etor kcc is Kubo cumulant clustered rigorous attemp to derive the +!C energy function + call etor_kcc(etors) + endif else - etors=0 - edihcnstr=0 + etors=0.0d0 endif + edihcnstr=0.0d0 + if (ndih_constr.gt.0) call etor_constr(edihcnstr) +!c print *,"Processor",myrank," computed Utor" + ! print *,"Processor",myrank," computed Utor" ! @@ -801,6 +831,7 @@ eespp=0.0d0 endif ! write(iout,*) ecorr_nucl,"ecorr_nucl",nres_molec(2) +! print *,"before ecatcat" if (nfgtasks.gt.1) then if (fg_rank.eq.0) then call ecatcat(ecationcation) @@ -2689,18 +2720,168 @@ ! include 'COMMON.FFIELD' real(kind=8) :: auxvec(2),auxmat(2,2) integer :: i,iti1,iti,k,l - real(kind=8) :: sin1,cos1,sin2,cos2,dwacos2,dwasin2 + real(kind=8) :: sin1,cos1,sin2,cos2,dwacos2,dwasin2,cost1,sint1,& + sint1sq,sint1cub,sint1cost1,b1k,b2k,aux ! print *,"in set matrices" ! ! Compute the virtual-bond-torsional-angle dependent quantities needed ! to calculate the el-loc multibody terms of various order. ! !AL el mu=0.0d0 + #ifdef PARMAT do i=ivec_start+2,ivec_end+2 #else do i=3,nres+1 #endif + if (i.gt. nnt+2 .and. i.lt.nct+2) then + if (itype(i-2,1).eq.0) then + iti = nloctyp + else + iti = itype2loc(itype(i-2,1)) + endif + else + iti=nloctyp + endif +!c if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then + if (i.gt. nnt+1 .and. i.lt.nct+1) then + iti1 = itype2loc(itype(i-1,1)) + else + iti1=nloctyp + endif +! print *,i,itype(i-2,1),iti +#ifdef NEWCORR + cost1=dcos(theta(i-1)) + sint1=dsin(theta(i-1)) + sint1sq=sint1*sint1 + sint1cub=sint1sq*sint1 + sint1cost1=2*sint1*cost1 +! print *,"cost1",cost1,theta(i-1) +!c write (iout,*) "bnew1",i,iti +!c write (iout,*) (bnew1(k,1,iti),k=1,3) +!c write (iout,*) (bnew1(k,2,iti),k=1,3) +!c write (iout,*) "bnew2",i,iti +!c write (iout,*) (bnew2(k,1,iti),k=1,3) +!c write (iout,*) (bnew2(k,2,iti),k=1,3) + k=1 +! print *,bnew1(1,k,iti),"bnew1" + do k=1,2 + b1k=bnew1(1,k,iti)+(bnew1(2,k,iti)+bnew1(3,k,iti)*cost1)*cost1 +! print *,b1k +! write(*,*) shape(b1) +! if(.not.allocated(b1)) print *, "WTF?" + b1(k,i-2)=sint1*b1k +! +! print *,b1(k,i-2) + + gtb1(k,i-2)=cost1*b1k-sint1sq*& + (bnew1(2,k,iti)+2*bnew1(3,k,iti)*cost1) +! print *,gtb1(k,i-2) + + b2k=bnew2(1,k,iti)+(bnew2(2,k,iti)+bnew2(3,k,iti)*cost1)*cost1 + b2(k,i-2)=sint1*b2k +! print *,b2(k,i-2) + + gtb2(k,i-2)=cost1*b2k-sint1sq*& + (bnew2(2,k,iti)+2*bnew2(3,k,iti)*cost1) +! print *,gtb2(k,i-2) + + enddo +! print *,b1k,b2k + do k=1,2 + aux=ccnew(1,k,iti)+(ccnew(2,k,iti)+ccnew(3,k,iti)*cost1)*cost1 + cc(1,k,i-2)=sint1sq*aux + gtcc(1,k,i-2)=sint1cost1*aux-sint1cub*& + (ccnew(2,k,iti)+2*ccnew(3,k,iti)*cost1) + aux=ddnew(1,k,iti)+(ddnew(2,k,iti)+ddnew(3,k,iti)*cost1)*cost1 + dd(1,k,i-2)=sint1sq*aux + gtdd(1,k,i-2)=sint1cost1*aux-sint1cub*& + (ddnew(2,k,iti)+2*ddnew(3,k,iti)*cost1) + enddo +! print *,"after cc" + cc(2,1,i-2)=cc(1,2,i-2) + cc(2,2,i-2)=-cc(1,1,i-2) + gtcc(2,1,i-2)=gtcc(1,2,i-2) + gtcc(2,2,i-2)=-gtcc(1,1,i-2) + dd(2,1,i-2)=dd(1,2,i-2) + dd(2,2,i-2)=-dd(1,1,i-2) + gtdd(2,1,i-2)=gtdd(1,2,i-2) + gtdd(2,2,i-2)=-gtdd(1,1,i-2) +! print *,"after dd" + + do k=1,2 + do l=1,2 + aux=eenew(1,l,k,iti)+eenew(2,l,k,iti)*cost1 + EE(l,k,i-2)=sint1sq*aux + gtEE(l,k,i-2)=sint1cost1*aux-sint1cub*eenew(2,l,k,iti) + enddo + enddo + EE(1,1,i-2)=EE(1,1,i-2)+e0new(1,iti)*cost1 + EE(1,2,i-2)=EE(1,2,i-2)+e0new(2,iti)+e0new(3,iti)*cost1 + EE(2,1,i-2)=EE(2,1,i-2)+e0new(2,iti)*cost1+e0new(3,iti) + EE(2,2,i-2)=EE(2,2,i-2)-e0new(1,iti) + gtEE(1,1,i-2)=gtEE(1,1,i-2)-e0new(1,iti)*sint1 + gtEE(1,2,i-2)=gtEE(1,2,i-2)-e0new(3,iti)*sint1 + gtEE(2,1,i-2)=gtEE(2,1,i-2)-e0new(2,iti)*sint1 +! print *,"after ee" + +!c b1tilde(1,i-2)=b1(1,i-2) +!c b1tilde(2,i-2)=-b1(2,i-2) +!c b2tilde(1,i-2)=b2(1,i-2) +!c b2tilde(2,i-2)=-b2(2,i-2) +#ifdef DEBUG + write (iout,*) 'i=',i-2,gtb1(2,i-2),gtb1(1,i-2) + write(iout,*) 'b1=',(b1(k,i-2),k=1,2) + write(iout,*) 'b2=',(b2(k,i-2),k=1,2) + write (iout,*) 'theta=', theta(i-1) +#endif +#else + if (i.gt. nnt+2 .and. i.lt.nct+2) then + iti = itype2loc(itype(i-2,1)) + else + iti=nloctyp + endif +!c write (iout,*) "i",i-1," itype",itype(i-2)," iti",iti +!c if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then + if (i.gt. nnt+1 .and. i.lt.nct+1) then + iti1 = itype2loc(itype(i-1,1)) + else + iti1=nloctyp + endif +! print *,i,iti + b1(1,i-2)=b(3,iti) + b1(2,i-2)=b(5,iti) + b2(1,i-2)=b(2,iti) + b2(2,i-2)=b(4,iti) + do k=1,2 + do l=1,2 + CC(k,l,i-2)=ccold(k,l,iti) + DD(k,l,i-2)=ddold(k,l,iti) + EE(k,l,i-2)=eeold(k,l,iti) + enddo + enddo +#endif + b1tilde(1,i-2)= b1(1,i-2) + b1tilde(2,i-2)=-b1(2,i-2) + b2tilde(1,i-2)= b2(1,i-2) + b2tilde(2,i-2)=-b2(2,i-2) +!c + Ctilde(1,1,i-2)= CC(1,1,i-2) + Ctilde(1,2,i-2)= CC(1,2,i-2) + Ctilde(2,1,i-2)=-CC(2,1,i-2) + Ctilde(2,2,i-2)=-CC(2,2,i-2) +!c + Dtilde(1,1,i-2)= DD(1,1,i-2) + Dtilde(1,2,i-2)= DD(1,2,i-2) + Dtilde(2,1,i-2)=-DD(2,1,i-2) + Dtilde(2,2,i-2)=-DD(2,2,i-2) + enddo +#ifdef PARMAT + do i=ivec_start+2,ivec_end+2 +#else + do i=3,nres+1 +#endif + ! print *,i,"i" if (i .lt. nres+1) then sin1=dsin(phi(i)) @@ -2773,37 +2954,43 @@ if (itype(i-2,1).eq.0) then iti=ntortyp+1 else - iti = itortyp(itype(i-2,1)) + iti = itype2loc(itype(i-2,1)) endif else - iti=ntortyp+1 + iti=nloctyp endif ! if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then if (i.gt. nnt+1 .and. i.lt.nct+1) then if (itype(i-1,1).eq.0) then - iti1=ntortyp+1 + iti1=nloctyp else - iti1 = itortyp(itype(i-1,1)) + iti1 = itype2loc(itype(i-1,1)) endif else - iti1=ntortyp+1 + iti1=nloctyp endif ! print *,iti,i,"iti",iti1,itype(i-1,1),itype(i-2,1) !d write (iout,*) '*******i',i,' iti1',iti -!d write (iout,*) 'b1',b1(:,iti) -!d write (iout,*) 'b2',b2(:,iti) +! write (iout,*) 'b1',b1(:,iti) +! write (iout,*) 'b2',b2(:,i-2) !d write (iout,*) 'Ug',Ug(:,:,i-2) ! if (i .gt. iatel_s+2) then if (i .gt. nnt+2) then - call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2)) - call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2)) + call matvec2(Ug(1,1,i-2),b2(1,i-2),Ub2(1,i-2)) +#ifdef NEWCORR + call matvec2(Ug(1,1,i-2),gtb2(1,i-2),gUb2(1,i-2)) +!c write (iout,*) Ug(1,1,i-2),gtb2(1,i-2),gUb2(1,i-2),"chuj" +#endif + + call matmat2(EE(1,1,i-2),Ug(1,1,i-2),EUg(1,1,i-2)) + call matmat2(gtEE(1,1,i-2),Ug(1,1,i-2),gtEUg(1,1,i-2)) if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) & then - call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2)) - call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2)) - call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2)) - call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2)) - call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2)) + call matmat2(CC(1,1,i-2),Ug(1,1,i-2),CUg(1,1,i-2)) + call matmat2(DD(1,1,i-2),Ug(1,1,i-2),DUg(1,1,i-2)) + call matmat2(Dtilde(1,1,i-2),Ug2(1,1,i-2),DtUg2(1,1,i-2)) + call matvec2(Ctilde(1,1,i-1),obrot(1,i-2),Ctobr(1,i-2)) + call matvec2(Dtilde(1,1,i-2),obrot2(1,i-2),Dtobr2(1,i-2)) endif else do k=1,2 @@ -2818,8 +3005,8 @@ enddo enddo endif - call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2)) - call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2)) + call matvec2(Ugder(1,1,i-2),b2(1,i-2),Ub2der(1,i-2)) + call matmat2(EE(1,1,i-2),Ugder(1,1,i-2),EUgder(1,1,i-2)) do k=1,2 muder(k,i-2)=Ub2der(k,i-2) enddo @@ -2828,34 +3015,34 @@ if (itype(i-1,1).eq.0) then iti1=ntortyp+1 elseif (itype(i-1,1).le.ntyp) then - iti1 = itortyp(itype(i-1,1)) + iti1 = itype2loc(itype(i-1,1)) else - iti1=ntortyp+1 + iti1=nloctyp endif else - iti1=ntortyp+1 + iti1=nloctyp endif do k=1,2 - mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1) + mu(k,i-2)=Ub2(k,i-2)+b1(k,i-1) enddo -! if (energy_dec) write (iout,*) 'Ub2 ',i,Ub2(:,i-2) -! if (energy_dec) write (iout,*) 'b1 ',iti1,b1(:,iti1) -! if (energy_dec) write (iout,*) 'mu ',i,iti1,mu(:,i-2) + if (energy_dec) write (iout,*) 'Ub2 ',i,Ub2(:,i-2) + if (energy_dec) write (iout,*) 'b1 ',iti1,b1(:,i-1) + if (energy_dec) write (iout,*) 'mu ',i,iti1,mu(:,i-2) !d write (iout,*) 'mu1',mu1(:,i-2) !d write (iout,*) 'mu2',mu2(:,i-2) if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0) & then - call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2)) - call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2)) - call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2)) - call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2)) - call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2)) + call matmat2(CC(1,1,i-1),Ugder(1,1,i-2),CUgder(1,1,i-2)) + call matmat2(DD(1,1,i-2),Ugder(1,1,i-2),DUgder(1,1,i-2)) + call matmat2(Dtilde(1,1,i-2),Ug2der(1,1,i-2),DtUg2der(1,1,i-2)) + call matvec2(Ctilde(1,1,i-1),obrot_der(1,i-2),Ctobrder(1,i-2)) + call matvec2(Dtilde(1,1,i-2),obrot2_der(1,i-2),Dtobr2der(1,i-2)) ! Vectors and matrices dependent on a single virtual-bond dihedral. - call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1)) + call matvec2(DD(1,1,i-2),b1tilde(1,i-1),auxvec(1)) call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) - call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2)) - call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2)) + call matvec2(CC(1,1,i-1),Ub2(1,i-2),CUgb2(1,i-2)) + call matvec2(CC(1,1,i-1),Ub2der(1,i-2),CUgb2der(1,i-2)) call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2)) call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2)) call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2)) @@ -3476,6 +3663,7 @@ real(kind=8),dimension(2,2) :: acipa !el,a_temp !el real(kind=8),dimension(3,4) :: agg,aggi,aggi1,aggj,aggj1 real(kind=8),dimension(4) :: muij + real(kind=8) :: geel_loc_ij,geel_loc_ji real(kind=8) :: xj_safe,yj_safe,zj_safe,xj_temp,yj_temp,zj_temp,& dist_temp, dist_init,rlocshield,fracinbuf integer xshift,yshift,zshift,ilist,iresshield @@ -3917,6 +4105,15 @@ do l=1,2 kkk=kkk+1 muij(kkk)=mu(k,i)*mu(l,j) +#ifdef NEWCORR + gmuij1(kkk)=gtb1(k,i+1)*mu(l,j) +!c write(iout,*) 'k=',k,i,gtb1(k,i+1),gtb1(k,i+1)*mu(l,j) + gmuij2(kkk)=gUb2(k,i)*mu(l,j) + gmuji1(kkk)=mu(k,i)*gtb1(l,j+1) +!c write(iout,*) 'l=',l,j,gtb1(l,j+1),gtb1(l,j+1)*mu(k,i) + gmuji2(kkk)=mu(k,i)*gUb2(l,j) +#endif + enddo enddo !d write (iout,*) 'EELEC: i',i,' j',j @@ -4143,6 +4340,61 @@ enddo endif +#ifdef NEWCORR + geel_loc_ij=(a22*gmuij1(1)& + +a23*gmuij1(2)& + +a32*gmuij1(3)& + +a33*gmuij1(4))& + *fac_shield(i)*fac_shield(j)& + *sss_ele_cut + +!c write(iout,*) "derivative over thatai" +!c write(iout,*) a22*gmuij1(1), a23*gmuij1(2) ,a32*gmuij1(3), +!c & a33*gmuij1(4) + gloc(nphi+i,icg)=gloc(nphi+i,icg)+& + geel_loc_ij*wel_loc +!c write(iout,*) "derivative over thatai-1" +!c write(iout,*) a22*gmuij2(1), a23*gmuij2(2) ,a32*gmuij2(3), +!c & a33*gmuij2(4) + geel_loc_ij=& + a22*gmuij2(1)& + +a23*gmuij2(2)& + +a32*gmuij2(3)& + +a33*gmuij2(4) + gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+& + geel_loc_ij*wel_loc& + *fac_shield(i)*fac_shield(j)& + *sss_ele_cut + + +!c Derivative over j residue + geel_loc_ji=a22*gmuji1(1)& + +a23*gmuji1(2)& + +a32*gmuji1(3)& + +a33*gmuji1(4) +!c write(iout,*) "derivative over thataj" +!c write(iout,*) a22*gmuji1(1), a23*gmuji1(2) ,a32*gmuji1(3), +!c & a33*gmuji1(4) + + gloc(nphi+j,icg)=gloc(nphi+j,icg)+& + geel_loc_ji*wel_loc& + *fac_shield(i)*fac_shield(j)& + *sss_ele_cut + + + geel_loc_ji=& + +a22*gmuji2(1)& + +a23*gmuji2(2)& + +a32*gmuji2(3)& + +a33*gmuji2(4) +!c write(iout,*) "derivative over thataj-1" +!c write(iout,*) a22*gmuji2(1), a23*gmuji2(2) ,a32*gmuji2(3), +!c & a33*gmuji2(4) + gloc(nphi+j-1,icg)=gloc(nphi+j-1,icg)+& + geel_loc_ji*wel_loc& + *fac_shield(i)*fac_shield(j)& + *sss_ele_cut +#endif ! write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij ! eel_loc_ij=0.0 @@ -4501,7 +4753,9 @@ ! include 'COMMON.CONTROL' real(kind=8),dimension(3) :: ggg real(kind=8),dimension(2,2) :: auxmat,auxmat1,auxmat2,pizda,& - e1t,e2t,e3t,e1tder,e2tder,e3tder,e1a,ae3,ae3e2 + e1t,e2t,e3t,e1tder,e2tder,e3tder,e1a,ae3,ae3e2,gpizda1,& + gpizda2,auxgmat1,auxgmatt1,auxgmat2,auxgmatt2 + real(kind=8),dimension(2) :: auxvec,auxvec1 !el real(kind=8),dimension(3,4) :: agg,aggi,aggi1,aggj,aggj1 real(kind=8),dimension(2,2) :: auxmat3 !el, a_temp @@ -4561,8 +4815,15 @@ !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC !d call checkint_turn3(i,a_temp,eello_turn3_num) call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1)) + call matmat2(gtEUg(1,1,i+1),EUg(1,1,i+2),auxgmat1(1,1)) + call matmat2(EUg(1,1,i+1),gtEUg(1,1,i+2),auxgmat2(1,1)) call transpose2(auxmat(1,1),auxmat1(1,1)) + call transpose2(auxgmat1(1,1),auxgmatt1(1,1)) + call transpose2(auxgmat2(1,1),auxgmatt2(1,1)) call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1)) + call matmat2(a_temp(1,1),auxgmatt1(1,1),gpizda1(1,1)) + call matmat2(a_temp(1,1),auxgmatt2(1,1),gpizda2(1,1)) + if (shield_mode.eq.0) then fac_shield(i)=1.0d0 fac_shield(j)=1.0d0 @@ -4577,6 +4838,18 @@ if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') & 'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2)) +!C#ifdef NEWCORR +!C Derivatives in theta + gloc(nphi+i,icg)=gloc(nphi+i,icg) & + +0.5d0*(gpizda1(1,1)+gpizda1(2,2))*wturn3& + *fac_shield(i)*fac_shield(j) + gloc(nphi+i+1,icg)=gloc(nphi+i+1,icg)& + +0.5d0*(gpizda2(1,1)+gpizda2(2,2))*wturn3& + *fac_shield(i)*fac_shield(j) +!C#endif + + + if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and. & (shield_mode.gt.0)) then !C print *,i,j @@ -4714,8 +4987,14 @@ ! include 'COMMON.CONTROL' real(kind=8),dimension(3) :: ggg real(kind=8),dimension(2,2) :: auxmat,auxmat1,auxmat2,pizda,& - e1t,e2t,e3t,e1tder,e2tder,e3tder,e1a,ae3,ae3e2 - real(kind=8),dimension(2) :: auxvec,auxvec1 + e1t,e2t,e3t,e1tder,e2tder,e3tder,e1a,ae3,ae3e2,& + gte1t,gte2t,gte3t,& + gte1a,gtae3,gtae3e2, ae3gte2,& + gtEpizda1,gtEpizda2,gtEpizda3 + + real(kind=8),dimension(2) :: auxvec,auxvec1,auxgEvec1,auxgEvec2,& + auxgEvec3,auxgvec + !el real(kind=8),dimension(3,4) :: agg,aggi,aggi1,aggj,aggj1 real(kind=8),dimension(2,2) :: auxmat3 !el a_temp !el real(kind=8) :: a22,a23,a32,a33,dxi,dyi,dzi,dx_normi,dy_normi,& @@ -4727,7 +5006,7 @@ !el local variables integer :: i,j,iti1,iti2,iti3,l,k,ilist,iresshield real(kind=8) :: eello_turn4,s1,s2,s3,zj,fracinbuf,eello_t4,& - rlocshield + rlocshield,gs23,gs32,gsE13,gs13,gs21,gsE31,gsEE1,gsEE2,gsEE3 j=i+3 ! if (j.ne.20) return @@ -4775,22 +5054,63 @@ a_temp(1,2)=a23 a_temp(2,1)=a32 a_temp(2,2)=a33 - iti1=itortyp(itype(i+1,1)) - iti2=itortyp(itype(i+2,1)) - iti3=itortyp(itype(i+3,1)) + iti1=i+1 + iti2=i+2 + iti3=i+3 ! write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3 call transpose2(EUg(1,1,i+1),e1t(1,1)) call transpose2(Eug(1,1,i+2),e2t(1,1)) call transpose2(Eug(1,1,i+3),e3t(1,1)) +!C Ematrix derivative in theta + call transpose2(gtEUg(1,1,i+1),gte1t(1,1)) + call transpose2(gtEug(1,1,i+2),gte2t(1,1)) + call transpose2(gtEug(1,1,i+3),gte3t(1,1)) + call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1)) call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1)) + call matmat2(gte1t(1,1),a_temp(1,1),gte1a(1,1)) + call matvec2(e1a(1,1),gUb2(1,i+3),auxgvec(1)) +!c auxalary matrix of E i+1 + call matvec2(gte1a(1,1),Ub2(1,i+3),auxgEvec1(1)) s1=scalar2(b1(1,iti2),auxvec(1)) +!c derivative of theta i+2 with constant i+3 + gs23=scalar2(gtb1(1,i+2),auxvec(1)) +!c derivative of theta i+2 with constant i+2 + gs32=scalar2(b1(1,i+2),auxgvec(1)) +!c derivative of E matix in theta of i+1 + gsE13=scalar2(b1(1,i+2),auxgEvec1(1)) + call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1)) + call matmat2(a_temp(1,1),gte3t(1,1),gtae3(1,1)) call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) - s2=scalar2(b1(1,iti1),auxvec(1)) +!c auxilary matrix auxgvec of Ub2 with constant E matirx + call matvec2(ae3(1,1),gUb2(1,i+2),auxgvec(1)) +!c auxilary matrix auxgEvec1 of E matix with Ub2 constant + call matvec2(gtae3(1,1),Ub2(1,i+2),auxgEvec3(1)) + s2=scalar2(b1(1,i+1),auxvec(1)) +!c derivative of theta i+1 with constant i+3 + gs13=scalar2(gtb1(1,i+1),auxvec(1)) +!c derivative of theta i+2 with constant i+1 + gs21=scalar2(b1(1,i+1),auxgvec(1)) +!c derivative of theta i+3 with constant i+1 + gsE31=scalar2(b1(1,i+1),auxgEvec3(1)) + call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1)) + call matmat2(gtae3(1,1),e2t(1,1),gtae3e2(1,1)) +!c ae3gte2 is derivative over i+2 + call matmat2(ae3(1,1),gte2t(1,1),ae3gte2(1,1)) + call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1)) + call matmat2(ae3e2(1,1),gte1t(1,1),gtEpizda1(1,1)) +!c i+2 + call matmat2(ae3gte2(1,1),e1t(1,1),gtEpizda2(1,1)) +!c i+3 + call matmat2(gtae3e2(1,1),e1t(1,1),gtEpizda3(1,1)) + s3=0.5d0*(pizda(1,1)+pizda(2,2)) + gsEE1=0.5d0*(gtEpizda1(1,1)+gtEpizda1(2,2)) + gsEE2=0.5d0*(gtEpizda2(1,1)+gtEpizda2(2,2)) + gsEE3=0.5d0*(gtEpizda3(1,1)+gtEpizda3(2,2)) if (shield_mode.eq.0) then fac_shield(i)=1.0 fac_shield(j)=1.0 @@ -4844,7 +5164,21 @@ ! print *,"gshieldc_t4(k,j+1)",j,gshieldc_t4(k,j+1) enddo endif - +#ifdef NEWCORR + gloc(nphi+i,icg)=gloc(nphi+i,icg)& + -(gs13+gsE13+gsEE1)*wturn4& + *fac_shield(i)*fac_shield(j) + gloc(nphi+i+1,icg)= gloc(nphi+i+1,icg)& + -(gs23+gs21+gsEE2)*wturn4& + *fac_shield(i)*fac_shield(j) + + gloc(nphi+i+2,icg)= gloc(nphi+i+2,icg)& + -(gs32+gsE31+gsEE3)*wturn4& + *fac_shield(i)*fac_shield(j) + +!c gloc(nphi+i+1,icg)=gloc(nphi+i+1,icg)- +!c & gs2 +#endif if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') & 'eturn4',i,j,-(s1+s2+s3) !d write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3), @@ -4853,7 +5187,7 @@ call transpose2(EUgder(1,1,i+1),e1tder(1,1)) call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1)) call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1)) - s1=scalar2(b1(1,iti2),auxvec(1)) + s1=scalar2(b1(1,i+1),auxvec(1)) call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1)) s3=0.5d0*(pizda(1,1)+pizda(2,2)) gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3) & @@ -5897,7 +6231,7 @@ end subroutine theteng #else !----------------------------------------------------------------------------- - subroutine ebend(etheta,ethetacnstr) + subroutine ebend(etheta) ! ! Evaluate the virtual-bond-angle energy given the virtual-bond dihedral ! angles gamma and its derivatives in consecutive thetas and gammas. @@ -6103,34 +6437,6 @@ enddo !-----------thete constrains ! if (tor_mode.ne.2) then - ethetacnstr=0.0d0 - print *,ithetaconstr_start,ithetaconstr_end,"TU" - do i=ithetaconstr_start,ithetaconstr_end - itheta=itheta_constr(i) - thetiii=theta(itheta) - difi=pinorm(thetiii-theta_constr0(i)) - if (difi.gt.theta_drange(i)) then - difi=difi-theta_drange(i) - ethetacnstr=ethetacnstr+0.25d0*for_thet_constr(i)*difi**4 - gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg) & - +for_thet_constr(i)*difi**3 - else if (difi.lt.-drange(i)) then - difi=difi+drange(i) - ethetacnstr=ethetacnstr+0.25d0*for_thet_constr(i)*difi**4 - gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg) & - +for_thet_constr(i)*difi**3 - else - difi=0.0 - endif - if (energy_dec) then - write (iout,'(a6,2i5,4f8.3,2e14.5)') "ethetc", & - i,itheta,rad2deg*thetiii, & - rad2deg*theta_constr0(i), rad2deg*theta_drange(i), & - rad2deg*difi,0.25d0*for_thet_constr(i)*difi**4, & - gloc(itheta+nphi-2,icg) - endif - enddo -! endif return end subroutine ebend @@ -7019,7 +7325,7 @@ end subroutine etor_d #else !----------------------------------------------------------------------------- - subroutine etor(etors,edihcnstr) + subroutine etor(etors) ! implicit real*8 (a-h,o-z) ! include 'DIMENSIONS' ! include 'COMMON.VAR' @@ -7101,8 +7407,156 @@ ! write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg) enddo ! 6/20/98 - dihedral angle constraints - edihcnstr=0.0d0 -! do i=1,ndih_constr + return + end subroutine etor +!C The rigorous attempt to derive energy function +!------------------------------------------------------------------------------------------- + subroutine etor_kcc(etors) + double precision c1(0:maxval_kcc),c2(0:maxval_kcc) + real(kind=8) :: etors,glocig,glocit1,glocit2,sinthet1,& + sinthet2,costhet1,costhet2,sint1t2,sint1t2n,phii,sinphi,cosphi,& + sint1t2n1,sumvalc,gradvalct1,gradvalct2,sumvals,gradvalst1,& + gradvalst2,etori + logical lprn + integer :: i,j,itori,itori1,nval,k,l + + if (lprn) write (iout,*) "etor_kcc tor_mode",tor_mode + etors=0.0D0 + do i=iphi_start,iphi_end +!C ANY TWO ARE DUMMY ATOMS in row CYCLE +!c if (((itype(i-3).eq.ntyp1).and.(itype(i-2).eq.ntyp1)).or. +!c & ((itype(i-2).eq.ntyp1).and.(itype(i-1).eq.ntyp1)) .or. +!c & ((itype(i-1).eq.ntyp1).and.(itype(i).eq.ntyp1))) cycle + if (itype(i-2,1).eq.ntyp1.or. itype(i-1,1).eq.ntyp1 & + .or. itype(i,1).eq.ntyp1 .or. itype(i-3,1).eq.ntyp1) cycle + itori=itortyp(itype(i-2,1)) + itori1=itortyp(itype(i-1,1)) + phii=phi(i) + glocig=0.0D0 + glocit1=0.0d0 + glocit2=0.0d0 +!C to avoid multiple devision by 2 +!c theti22=0.5d0*theta(i) +!C theta 12 is the theta_1 /2 +!C theta 22 is theta_2 /2 +!c theti12=0.5d0*theta(i-1) +!C and appropriate sinus function + sinthet1=dsin(theta(i-1)) + sinthet2=dsin(theta(i)) + costhet1=dcos(theta(i-1)) + costhet2=dcos(theta(i)) +!C to speed up lets store its mutliplication + sint1t2=sinthet2*sinthet1 + sint1t2n=1.0d0 +!C \sum_{i=1}^n (sin(theta_1) * sin(theta_2))^n * (c_n* cos(n*gamma) +!C +d_n*sin(n*gamma)) * +!C \sum_{i=1}^m (1+a_m*Tb_m(cos(theta_1 /2))+b_m*Tb_m(cos(theta_2 /2))) +!C we have two sum 1) Non-Chebyshev which is with n and gamma + nval=nterm_kcc_Tb(itori,itori1) + c1(0)=0.0d0 + c2(0)=0.0d0 + c1(1)=1.0d0 + c2(1)=1.0d0 + do j=2,nval + c1(j)=c1(j-1)*costhet1 + c2(j)=c2(j-1)*costhet2 + enddo + etori=0.0d0 + + do j=1,nterm_kcc(itori,itori1) + cosphi=dcos(j*phii) + sinphi=dsin(j*phii) + sint1t2n1=sint1t2n + sint1t2n=sint1t2n*sint1t2 + sumvalc=0.0d0 + gradvalct1=0.0d0 + gradvalct2=0.0d0 + do k=1,nval + do l=1,nval + sumvalc=sumvalc+v1_kcc(l,k,j,itori1,itori)*c1(k)*c2(l) + gradvalct1=gradvalct1+ & + (k-1)*v1_kcc(l,k,j,itori1,itori)*c1(k-1)*c2(l) + gradvalct2=gradvalct2+ & + (l-1)*v1_kcc(l,k,j,itori1,itori)*c1(k)*c2(l-1) + enddo + enddo + gradvalct1=-gradvalct1*sinthet1 + gradvalct2=-gradvalct2*sinthet2 + sumvals=0.0d0 + gradvalst1=0.0d0 + gradvalst2=0.0d0 + do k=1,nval + do l=1,nval + sumvals=sumvals+v2_kcc(l,k,j,itori1,itori)*c1(k)*c2(l) + gradvalst1=gradvalst1+ & + (k-1)*v2_kcc(l,k,j,itori1,itori)*c1(k-1)*c2(l) + gradvalst2=gradvalst2+ & + (l-1)*v2_kcc(l,k,j,itori1,itori)*c1(k)*c2(l-1) + enddo + enddo + gradvalst1=-gradvalst1*sinthet1 + gradvalst2=-gradvalst2*sinthet2 + if (lprn) write (iout,*)j,"sumvalc",sumvalc," sumvals",sumvals + etori=etori+sint1t2n*(sumvalc*cosphi+sumvals*sinphi) +!C glocig is the gradient local i site in gamma + glocig=glocig+j*sint1t2n*(sumvals*cosphi-sumvalc*sinphi) +!C now gradient over theta_1 + glocit1=glocit1+sint1t2n*(gradvalct1*cosphi+gradvalst1*sinphi)& + +j*sint1t2n1*costhet1*sinthet2*(sumvalc*cosphi+sumvals*sinphi) + glocit2=glocit2+sint1t2n*(gradvalct2*cosphi+gradvalst2*sinphi)& + +j*sint1t2n1*sinthet1*costhet2*(sumvalc*cosphi+sumvals*sinphi) + enddo ! j + etors=etors+etori + gloc(i-3,icg)=gloc(i-3,icg)+wtor*glocig +!C derivative over theta1 + gloc(nphi+i-3,icg)=gloc(nphi+i-3,icg)+wtor*glocit1 +!C now derivative over theta2 + gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)+wtor*glocit2 + if (lprn) then + write (iout,*) i-2,i-1,itype(i-2,1),itype(i-1,1),itori,itori1,& + theta(i-1)*rad2deg,theta(i)*rad2deg,phii*rad2deg,etori + write (iout,*) "c1",(c1(k),k=0,nval), & + " c2",(c2(k),k=0,nval) + endif + enddo + return + end subroutine etor_kcc +!------------------------------------------------------------------------------ + + subroutine etor_constr(edihcnstr) + real(kind=8) :: etors,edihcnstr + logical :: lprn +!el local variables + integer :: i,j,iblock,itori,itori1 + real(kind=8) :: phii,gloci,v1ij,v2ij,cosphi,sinphi,& + vl1ij,vl2ij,vl3ij,pom1,difi,etors_ii,pom,& + gaudih_i,gauder_i,s,cos_i,dexpcos_i + + if (raw_psipred) then + do i=idihconstr_start,idihconstr_end + itori=idih_constr(i) + phii=phi(itori) + gaudih_i=vpsipred(1,i) + gauder_i=0.0d0 + do j=1,2 + s = sdihed(j,i) + cos_i=(1.0d0-dcos(phii-phibound(j,i)))/s**2 + dexpcos_i=dexp(-cos_i*cos_i) + gaudih_i=gaudih_i+vpsipred(j+1,i)*dexpcos_i + gauder_i=gauder_i-2*vpsipred(j+1,i)*dsin(phii-phibound(j,i)) & + *cos_i*dexpcos_i/s**2 + enddo + edihcnstr=edihcnstr-wdihc*dlog(gaudih_i) + gloc(itori-3,icg)=gloc(itori-3,icg)-wdihc*gauder_i/gaudih_i + if (energy_dec) & + write (iout,'(2i5,f8.3,f8.5,2(f8.5,2f8.3),f10.5)') & + i,itori,phii*rad2deg,vpsipred(1,i),vpsipred(2,i),& + phibound(1,i)*rad2deg,sdihed(1,i)*rad2deg,vpsipred(3,i),& + phibound(2,i)*rad2deg,sdihed(2,i)*rad2deg,& + -wdihc*dlog(gaudih_i) + enddo + else + do i=idihconstr_start,idihconstr_end itori=idih_constr(i) phii=phi(itori) @@ -7118,13 +7572,13 @@ else difi=0.0 endif -!d write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii, -!d & rad2deg*phi0(i), rad2deg*drange(i), -!d & rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg) enddo -!d write (iout,*) 'edihcnstr',edihcnstr + + endif + return - end subroutine etor + + end subroutine etor_constr !----------------------------------------------------------------------------- subroutine etor_d(etors_d) ! 6/23/01 Compute double torsional energy @@ -7215,6 +7669,75 @@ return end subroutine etor_d #endif + + subroutine ebend_kcc(etheta) + logical lprn + double precision thybt1(maxang_kcc),etheta + integer :: i,iti,j,ihelp + real (kind=8) :: sinthet,costhet,sumth1thyb,gradthybt1 +!C Set lprn=.true. for debugging + lprn=energy_dec +!c lprn=.true. +!C print *,"wchodze kcc" + if (lprn) write (iout,*) "ebend_kcc tor_mode",tor_mode + etheta=0.0D0 + do i=ithet_start,ithet_end +!c print *,i,itype(i-1),itype(i),itype(i-2) + if ((itype(i-1,1).eq.ntyp1).or.itype(i-2,1).eq.ntyp1 & + .or.itype(i,1).eq.ntyp1) cycle + iti=iabs(itortyp(itype(i-1,1))) + sinthet=dsin(theta(i)) + costhet=dcos(theta(i)) + do j=1,nbend_kcc_Tb(iti) + thybt1(j)=v1bend_chyb(j,iti) + enddo + sumth1thyb=v1bend_chyb(0,iti)+ & + tschebyshev(1,nbend_kcc_Tb(iti),thybt1(1),costhet) + if (lprn) write (iout,*) i-1,itype(i-1,1),iti,theta(i)*rad2deg,& + sumth1thyb + ihelp=nbend_kcc_Tb(iti)-1 + gradthybt1=gradtschebyshev(0,ihelp,thybt1(1),costhet) + etheta=etheta+sumth1thyb +!C print *,sumth1thyb,gradthybt1,sinthet*(-0.5d0) + gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)-wang*gradthybt1*sinthet + enddo + return + end subroutine ebend_kcc +!c------------ +!c------------------------------------------------------------------------------------- + subroutine etheta_constr(ethetacnstr) + real (kind=8) :: ethetacnstr,thetiii,difi + integer :: i,itheta + ethetacnstr=0.0d0 +!C print *,ithetaconstr_start,ithetaconstr_end,"TU" + do i=ithetaconstr_start,ithetaconstr_end + itheta=itheta_constr(i) + thetiii=theta(itheta) + difi=pinorm(thetiii-theta_constr0(i)) + if (difi.gt.theta_drange(i)) then + difi=difi-theta_drange(i) + ethetacnstr=ethetacnstr+0.25d0*for_thet_constr(i)*difi**4 + gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg) & + +for_thet_constr(i)*difi**3 + else if (difi.lt.-drange(i)) then + difi=difi+drange(i) + ethetacnstr=ethetacnstr+0.25d0*for_thet_constr(i)*difi**4 + gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg) & + +for_thet_constr(i)*difi**3 + else + difi=0.0 + endif + if (energy_dec) then + write (iout,'(a6,2i5,4f8.3,2e14.5)') "ethetc",& + i,itheta,rad2deg*thetiii,& + rad2deg*theta_constr0(i), rad2deg*theta_drange(i),& + rad2deg*difi,0.25d0*for_thet_constr(i)*difi**4,& + gloc(itheta+nphi-2,icg) + endif + enddo + return + end subroutine etheta_constr + !----------------------------------------------------------------------------- subroutine eback_sc_corr(esccor) ! 7/21/2007 Correlations between the backbone-local and side-chain-local @@ -8411,9 +8934,9 @@ iti1 = itortyp(itype(i+1,1)) if (j.lt.nres-1) then - itj1 = itortyp(itype(j+1,1)) + itj1 = itype2loc(itype(j+1,1)) else - itj1=ntortyp+1 + itj1=nloctyp endif do iii=1,2 dipi(iii,1)=Ub2(iii,i) @@ -10685,6 +11208,7 @@ #ifdef TIMING time01=MPI_Wtime() #endif +!#define DEBUG #ifdef DEBUG write (iout,*) "sum_gradient gvdwc, gvdwx" do i=1,nres @@ -10718,18 +11242,18 @@ ! write (iout,'(i5,3f10.5,2x,f10.5)') ! & i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i) ! enddo - write (iout,*) "gvdwc gvdwc_scp gvdwc_scpp" - do i=1,nres - write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') & - i,(gvdwc(j,i),j=1,3),(gvdwc_scp(j,i),j=1,3),& - (gvdwc_scpp(j,i),j=1,3) - enddo - write (iout,*) "gelc_long gvdwpp gel_loc_long" - do i=1,nres - write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') & - i,(gelc_long(j,i),j=1,3),(gvdwpp(j,i),j=1,3),& - (gelc_loc_long(j,i),j=1,3) - enddo +! write (iout,*) "gvdwc gvdwc_scp gvdwc_scpp" +! do i=1,nres +! write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') & +! i,(gvdwc(j,i),j=1,3),(gvdwc_scp(j,i),j=1,3),& +! (gvdwc_scpp(j,i),j=1,3) +! enddo +! write (iout,*) "gelc_long gvdwpp gel_loc_long" +! do i=1,nres +! write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') & +! i,(gelc_long(j,i),j=1,3),(gvdwpp(j,i),j=1,3),& +! (gelc_loc_long(j,i),j=1,3) +! enddo call flush(iout) #endif #ifdef SPLITELE @@ -12240,7 +12764,7 @@ ! call intcartderiv ! call checkintcartgrad call zerograd - aincr=2.0D-5 + aincr=1.0D-7 write(iout,*) 'Calling CHECK_ECARTINT.',aincr nf=0 icall=0 @@ -16123,20 +16647,66 @@ ! ! Calculate the virtual-bond-angle energy. ! - call ebend(ebe,ethetacnstr) -! ! Calculate the SC local energy. ! call vec_and_deriv call esc(escloc) ! + if (wang.gt.0d0) then + if (tor_mode.eq.0) then + call ebend(ebe) + else +!C ebend kcc is Kubo cumulant clustered rigorous attemp to derive the +!C energy function + call ebend_kcc(ebe) + endif + else + ebe=0.0d0 + endif + ethetacnstr=0.0d0 + if (with_theta_constr) call etheta_constr(ethetacnstr) + +! write(iout,*) "in etotal afer ebe",ipot + +! print *,"Processor",myrank," computed UB" +! +! Calculate the SC local energy. +! + call esc(escloc) +!elwrite(iout,*) "in etotal afer esc",ipot +! print *,"Processor",myrank," computed USC" +! +! Calculate the virtual-bond torsional energy. +! +!d print *,'nterm=',nterm +! if (wtor.gt.0) then +! call etor(etors,edihcnstr) +! else +! etors=0 +! edihcnstr=0 +! endif + if (wtor.gt.0.0d0) then + if (tor_mode.eq.0) then + call etor(etors) + else +!C etor kcc is Kubo cumulant clustered rigorous attemp to derive the +!C energy function + call etor_kcc(etors) + endif + else + etors=0.0d0 + endif + edihcnstr=0.0d0 + if (ndih_constr.gt.0) call etor_constr(edihcnstr) + ! Calculate the virtual-bond torsional energy. ! - call etor(etors,edihcnstr) ! ! 6/23/01 Calculate double-torsional energy ! + if ((wtor_d.gt.0.0d0).and.(tor_mode.eq.0)) then call etor_d(etors_d) + endif ! ! 21/5/07 Calculate local sicdechain correlation energy ! @@ -19958,6 +20528,24 @@ allocate(Ug2DtEUgder(2,2,2,nres)) allocate(DtUg2EUgder(2,2,2,nres)) !(2,2,2,maxres) + allocate(b1(2,nres)) !(2,-maxtor:maxtor) + allocate(b2(2,nres)) !(2,-maxtor:maxtor) + allocate(b1tilde(2,nres)) !(2,-maxtor:maxtor) + allocate(b2tilde(2,nres)) !(2,-maxtor:maxtor) + + allocate(ctilde(2,2,nres)) + allocate(dtilde(2,2,nres)) !(2,2,-maxtor:maxtor) + allocate(gtb1(2,nres)) + allocate(gtb2(2,nres)) + allocate(cc(2,2,nres)) + allocate(dd(2,2,nres)) + allocate(ee(2,2,nres)) + allocate(gtcc(2,2,nres)) + allocate(gtdd(2,2,nres)) + allocate(gtee(2,2,nres)) + allocate(gUb2(2,nres)) + allocate(gteUg(2,2,nres)) + ! common /rotat_old/ allocate(costab(nres)) allocate(sintab(nres)) @@ -22081,7 +22669,8 @@ rs,rthrp,rfourp,rsixp,reight,Irsixp,Ireight,Irtw,Irfourt, & opt1,opt2,opt3,opt4,opt5,opt6,opt7,opt8,opt9,opt10,opt11,opt12,& opt13,opt14,opt15,opt16,opt17,opt18,opt19, & - Equad1,Equad2,dscmag,v1dpv2,dscmag3,constA,constB,Edip + Equad1,Equad2,dscmag,v1dpv2,dscmag3,constA,constB,Edip,& + ndiv,ndivi real(kind=8),dimension(3) ::dEvan1Cmcat,dEvan2Cmcat,dEeleccat,& gg,r,EtotalCat,dEtotalCm,dEtotalCalp,dEvan1Cm,dEvan2Cm, & dEtotalpep,dEtotalcat_num,dEddci,dEtotalcm_num,dEtotalcalp_num, & @@ -22095,17 +22684,6 @@ ecation_prot=0.0d0 ! first lets calculate interaction with peptide groups if (nres_molec(5).eq.0) return - wconst=78 - wdip =1.092777950857032D2 - wdip=wdip/wconst - wmodquad=-2.174122713004870D4 - wmodquad=wmodquad/wconst - wquad1 = 3.901232068562804D1 - wquad1=wquad1/wconst - wquad2 = 3 - wquad2=wquad2/wconst - wvan1 = 0.1 - wvan2 = 6 itmp=0 do i=1,4 itmp=itmp+nres_molec(i) @@ -22125,6 +22703,23 @@ if (zi.lt.0) zi=zi+boxzsize do j=itmp+1,itmp+nres_molec(5) +! print *,"WTF",itmp,j,i +! all parameters were for Ca2+ to approximate single charge divide by two + ndiv=1.0 + if ((itype(j,5).eq.1).or.(itype(j,5).eq.3)) ndiv=2.0 + wconst=78*ndiv + wdip =1.092777950857032D2 + wdip=wdip/wconst + wmodquad=-2.174122713004870D4 + wmodquad=wmodquad/wconst + wquad1 = 3.901232068562804D1 + wquad1=wquad1/wconst + wquad2 = 3 + wquad2=wquad2/wconst + wvan1 = 0.1 + wvan2 = 6 +! itmp=0 + xj=c(1,j) yj=c(2,j) zj=c(3,j) @@ -22198,6 +22793,7 @@ E2 = -wquad1*Irthrp*wquad2+wvan1*(wvan2**12*Irtwelv-& 2*wvan2**6*Irsistp) ecation_prot = ecation_prot+E1+E2 +! print *,"ecatprot",i,j,ecation_prot,rcpm dE1dr = -2*costhet*wdip*Irthrp-& (4*wmodquad*Irfiftp+3*wquad1*Irfourp)*sin2thet dE2dr = 3*wquad1*wquad2*Irfourp- & @@ -22237,6 +22833,9 @@ enddo cm1mag=sqrt(cm1(1)**2+cm1(2)**2+cm1(3)**2) do j=itmp+1,itmp+nres_molec(5) + ndiv=1.0 + if ((itype(j,5).eq.1).or.(itype(j,5).eq.3)) ndiv=2.0 + xj=c(1,j) yj=c(2,j) zj=c(3,j) @@ -22279,7 +22878,10 @@ endif ! enddo ! enddo - if(itype(i,1).eq.15.or.itype(i,1).eq.16) then +! 15- Glu 16-Asp + if((itype(i,1).eq.15.or.itype(i,1).eq.16).or.& + ((itype(i,1).eq.27).or.(itype(i,1).eq.26).or.& + (itype(i,1).eq.25))) then if(itype(i,1).eq.16) then inum=1 else @@ -22324,7 +22926,15 @@ ! The weights of the energy function calculated from !The quantum mechanical GAMESS simulations of calcium with ASP/GLU - wh2o=78 + if ((itype(i,1).eq.27).or.(itype(i,1).eq.26).or.(itype(i,1).eq.25)) then + ndivi=0.5 + else + ndivi=1.0 + endif + ndiv=1.0 + if ((itype(j,5).eq.1).or.(itype(j,5).eq.3)) ndiv=2.0 + + wh2o=78*ndivi*ndiv wc = vcatprm(1) wc=wc/wh2o wdip =vcatprm(2) @@ -22493,7 +23103,10 @@ v1dpv2 = v1(1)*v2(1)+v1(2)*v2(2)+v1(3)*v2(3) ! The weights of the energy function calculated from !The quantum mechanical GAMESS simulations of ASN/GLN with calcium - wh2o=78 + ndiv=1.0 + if ((itype(j,5).eq.1).or.(itype(j,5).eq.3)) ndiv=2.0 + + wh2o=78*ndiv wdip =vcatprm(2) wdip=wdip/wh2o wquad1 =vcatprm(3) @@ -24761,6 +25374,16 @@ !c! Compute head-head and head-tail energies for each state isel = iabs(Qi) + iabs(Qj) +! double charge for Phophorylated! itype - 25,27,27 +! if ((itype(i).eq.27).or.(itype(i).eq.26).or.(itype(i).eq.25)) then +! Qi=Qi*2 +! Qij=Qij*2 +! endif +! if ((itype(j).eq.27).or.(itype(j).eq.26).or.(itype(j).eq.25)) then +! Qj=Qj*2 +! Qij=Qij*2 +! endif + ! isel=0 IF (isel.eq.0) THEN !c! No charges - do nothing @@ -24774,24 +25397,59 @@ ELSE IF (isel.eq.1 .and. iabs(Qi).eq.1) THEN !c! Charge-nonpolar interactions + if ((itype(i,1).eq.27).or.(itype(i,1).eq.26).or.(itype(i,1).eq.25)) then + Qi=Qi*2 + Qij=Qij*2 + endif + if ((itype(j,1).eq.27).or.(itype(j,1).eq.26).or.(itype(j,1).eq.25)) then + Qj=Qj*2 + Qij=Qij*2 + endif + CALL eqn(epol) eheadtail = epol ! eheadtail = 0.0d0 ELSE IF (isel.eq.1 .and. iabs(Qj).eq.1) THEN !c! Nonpolar-charge interactions + if ((itype(i,1).eq.27).or.(itype(i,1).eq.26).or.(itype(i,1).eq.25)) then + Qi=Qi*2 + Qij=Qij*2 + endif + if ((itype(j,1).eq.27).or.(itype(j,1).eq.26).or.(itype(j,1).eq.25)) then + Qj=Qj*2 + Qij=Qij*2 + endif + CALL enq(epol) eheadtail = epol ! eheadtail = 0.0d0 ELSE IF (isel.eq.3 .and. icharge(itypj).eq.2) THEN !c! Charge-dipole interactions + if ((itype(i,1).eq.27).or.(itype(i,1).eq.26).or.(itype(i,1).eq.25)) then + Qi=Qi*2 + Qij=Qij*2 + endif + if ((itype(j,1).eq.27).or.(itype(j,1).eq.26).or.(itype(j,1).eq.25)) then + Qj=Qj*2 + Qij=Qij*2 + endif + CALL eqd(ecl, elj, epol) eheadtail = ECL + elj + epol ! eheadtail = 0.0d0 ELSE IF (isel.eq.3 .and. icharge(itypi).eq.2) THEN !c! Dipole-charge interactions + if ((itype(i,1).eq.27).or.(itype(i,1).eq.26).or.(itype(i,1).eq.25)) then + Qi=Qi*2 + Qij=Qij*2 + endif + if ((itype(j,1).eq.27).or.(itype(j,1).eq.26).or.(itype(j,1).eq.25)) then + Qj=Qj*2 + Qij=Qij*2 + endif CALL edq(ecl, elj, epol) eheadtail = ECL + elj + epol ! eheadtail = 0.0d0 @@ -24800,6 +25458,15 @@ iabs(Qi).eq.1).and. & nstate(itypi,itypj).eq.1) THEN !c! Same charge-charge interaction ( +/+ or -/- ) + if ((itype(i,1).eq.27).or.(itype(i,1).eq.26).or.(itype(i,1).eq.25)) then + Qi=Qi*2 + Qij=Qij*2 + endif + if ((itype(j,1).eq.27).or.(itype(j,1).eq.26).or.(itype(j,1).eq.25)) then + Qj=Qj*2 + Qij=Qij*2 + endif + CALL eqq(Ecl,Egb,Epol,Fisocav,Elj) eheadtail = ECL + Egb + Epol + Fisocav + Elj ! eheadtail = 0.0d0 @@ -24808,6 +25475,15 @@ iabs(Qi).eq.1).and. & nstate(itypi,itypj).ne.1) THEN !c! Different charge-charge interaction ( +/- or -/+ ) + if ((itype(i,1).eq.27).or.(itype(i,1).eq.26).or.(itype(i,1).eq.25)) then + Qi=Qi*2 + Qij=Qij*2 + endif + if ((itype(j,1).eq.27).or.(itype(j,1).eq.26).or.(itype(j,1).eq.25)) then + Qj=Qj*2 + Qij=Qij*2 + endif + CALL energy_quad(istate,eheadtail,Ecl,Egb,Epol,Fisocav,Elj,Equad) END IF END IF ! this endif ends the "catch the gly-gly" at the beggining of Fcav @@ -24838,7 +25514,7 @@ use calc_data use comm_momo real (kind=8) :: facd3, facd4, federmaus, adler,& - Ecl,Egb,Epol,Fisocav,Elj,Fgb + Ecl,Egb,Epol,Fisocav,Elj,Fgb,debkap ! integer :: k !c! Epol and Gpol analytical parameters alphapol1 = alphapol(itypi,itypj) @@ -24883,10 +25559,15 @@ dGCLdOM12 = 0.0d0 ee0 = dexp(-( Rhead_sq ) / (4.0d0 * a12sq)) Fgb = sqrt( ( Rhead_sq ) + a12sq * ee0) - Egb = -(332.0d0 * Qij * eps_inout_fac) / Fgb + debkap=debaykap(itypi,itypj) + Egb = -(332.0d0 * Qij *& + (1.0/eps_in-dexp(-debkap*Fgb)/eps_out)) / Fgb ! print *,"EGB WTF",Qij,eps_inout_fac,Fgb,itypi,itypj,eps_in,eps_out !c! Derivative of Egb is Ggb... - dGGBdFGB = -(-332.0d0 * Qij * eps_inout_fac) / (Fgb * Fgb) + dGGBdFGB = -(-332.0d0 * Qij * & + (1.0/eps_in-dexp(-debkap*Fgb)/eps_out))/(Fgb*Fgb)& + -(332.0d0 * Qij *& + (dexp(-debkap*Fgb)*debkap/eps_out))/ Fgb dFGBdR = ( Rhead * ( 2.0d0 - (0.5d0 * ee0) ) )/ ( 2.0d0 * Fgb ) dGGBdR = dGGBdFGB * dFGBdR !c!------------------------------------------------------------------- @@ -25911,4 +26592,50 @@ dPOLdOM2 = 0.0d0 RETURN END SUBROUTINE elgrad_init + + double precision function tschebyshev(m,n,x,y) + implicit none + integer i,m,n + double precision x(n),y,yy(0:maxvar),aux +!c Tschebyshev polynomial. Note that the first term is omitted +!c m=0: the constant term is included +!c m=1: the constant term is not included + yy(0)=1.0d0 + yy(1)=y + do i=2,n + yy(i)=2*yy(1)*yy(i-1)-yy(i-2) + enddo + aux=0.0d0 + do i=m,n + aux=aux+x(i)*yy(i) + enddo + tschebyshev=aux + return + end function tschebyshev +!C-------------------------------------------------------------------------- + double precision function gradtschebyshev(m,n,x,y) + implicit none + integer i,m,n + double precision x(n+1),y,yy(0:maxvar),aux +!c Tschebyshev polynomial. Note that the first term is omitted +!c m=0: the constant term is included +!c m=1: the constant term is not included + yy(0)=1.0d0 + yy(1)=2.0d0*y + do i=2,n + yy(i)=2*y*yy(i-1)-yy(i-2) + enddo + aux=0.0d0 + do i=m,n + aux=aux+x(i+1)*yy(i)*(i+1) +!C print *, x(i+1),yy(i),i + enddo + gradtschebyshev=aux + return + end function gradtschebyshev + + + + + end module energy