X-Git-Url: http://mmka.chem.univ.gda.pl/gitweb/?a=blobdiff_plain;f=source%2Fcluster%2Fwham%2Fsrc-M%2Fenergy_p_new.F;h=a65c91cff30a024ecc99b1f49a77dd4807c2d486;hb=c9dddd7cdc2cbf55f6fa8df9404eea7ecfe59605;hp=8ad24c3645dbefb0ae73f0baf0831f6dea6424a9;hpb=afa89b4df99ce72dda37b1a4d2fa26e5997ede83;p=unres.git diff --git a/source/cluster/wham/src-M/energy_p_new.F b/source/cluster/wham/src-M/energy_p_new.F index 8ad24c3..a65c91c 100644 --- a/source/cluster/wham/src-M/energy_p_new.F +++ b/source/cluster/wham/src-M/energy_p_new.F @@ -107,7 +107,7 @@ c write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2+welec*fact(1)*ees & +wvdwpp*evdw1 & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc - & +wstrain*ehpb+nss*ebr+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5 + & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5 & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4 & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6 & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d @@ -116,7 +116,7 @@ c write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2 & +welec*fact(1)*(ees+evdw1) & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc - & +wstrain*ehpb+nss*ebr+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5 + & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5 & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4 & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6 & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d @@ -124,7 +124,6 @@ c write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t #endif energia(0)=etot energia(1)=evdw -c call enerprint(energia(0),frac) #ifdef SCP14 energia(2)=evdw2-evdw2_14 energia(17)=evdw2_14 @@ -229,9 +228,11 @@ C & +wturn3*fact(2)*gel_loc_turn3(i) & +wturn6*fact(5)*gel_loc_turn6(i) & +wel_loc*fact(2)*gel_loc_loc(i) - & +wsccor*fact(1)*gsccor_loc(i) +c & +wsccor*fact(1)*gsccor_loc(i) +c ROZNICA Z WHAMem enddo endif + if (dyn_ss) call dyn_set_nss return end C------------------------------------------------------------------------ @@ -360,12 +361,20 @@ C integer icant external icant cd print *,'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon +c ROZNICA DODANE Z WHAM +c do i=1,210 +c do j=1,2 +c eneps_temp(j,i)=0.0d0 +c enddo +c enddo +cROZNICA + evdw=0.0D0 evdw_t=0.0d0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -378,8 +387,8 @@ C cd write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint), cd & 'iend=',iend(i,iint) do j=istart(i,iint),iend(i,iint) - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi zj=c(3,nres+j)-zi @@ -393,6 +402,11 @@ c write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj e2=fac*bb(itypi,itypj) evdwij=e1+e2 ij=icant(itypi,itypj) +c ROZNICA z WHAM +c eneps_temp(1,ij)=eneps_temp(1,ij)+e1/dabs(eps0ij) +c eneps_temp(2,ij)=eneps_temp(2,ij)+e2/eps0ij +c + cd sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) cd epsi=bb(itypi,itypj)**2/aa(itypi,itypj) cd write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)') @@ -528,9 +542,9 @@ c print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 evdw_t=0.0d0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -539,8 +553,8 @@ C Calculate SC interaction energy. C do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi zj=c(3,nres+j)-zi @@ -632,9 +646,9 @@ c else c endif ind=0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -648,8 +662,8 @@ C do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) ind=ind+1 - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle dscj_inv=vbld_inv(j+nres) chi1=chi(itypi,itypj) chi2=chi(itypj,itypi) @@ -750,10 +764,12 @@ C include 'COMMON.INTERACT' include 'COMMON.IOUNITS' include 'COMMON.CALC' + include 'COMMON.SBRIDGE' logical lprn common /srutu/icall integer icant external icant + logical energy_dec /.true./ c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 evdw_t=0.0d0 @@ -761,9 +777,9 @@ c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon c if (icall.gt.0) lprn=.true. ind=0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -776,9 +792,41 @@ C Calculate SC interaction energy. C do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) + IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN + +c write(iout,*) "PRZED ZWYKLE", evdwij + call dyn_ssbond_ene(i,j,evdwij) +c write(iout,*) "PO ZWYKLE", evdwij + + evdw=evdw+evdwij + if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') + & 'evdw',i,j,evdwij,' ss' +C triple bond artifac removal + do k=j+1,iend(i,iint) +C search over all next residues + if (dyn_ss_mask(k)) then +C check if they are cysteins +C write(iout,*) 'k=',k + +c write(iout,*) "PRZED TRI", evdwij + evdwij_przed_tri=evdwij + call triple_ssbond_ene(i,j,k,evdwij) +c if(evdwij_przed_tri.ne.evdwij) then +c write (iout,*) "TRI:", evdwij, evdwij_przed_tri +c endif + +c write(iout,*) "PO TRI", evdwij +C call the energy function that removes the artifical triple disulfide +C bond the soubroutine is located in ssMD.F + evdw=evdw+evdwij + if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') + & 'evdw',i,j,evdwij,'tss' + endif!dyn_ss_mask(k) + enddo! k + ELSE ind=ind+1 - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle dscj_inv=vbld_inv(j+nres) sig0ij=sigma(itypi,itypj) chi1=chi(itypi,itypj) @@ -864,6 +912,7 @@ C Calculate the radial part of the gradient C Calculate angular part of the gradient. call sc_grad endif + ENDIF ! dyn_ss enddo ! j enddo ! iint enddo ! i @@ -900,9 +949,9 @@ c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon c if (icall.gt.0) lprn=.true. ind=0 do i=iatsc_s,iatsc_e - itypi=itype(i) - if (itypi.eq.21) cycle - itypi1=itype(i+1) + itypi=iabs(itype(i)) + if (itypi.eq.ntyp1) cycle + itypi1=iabs(itype(i+1)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -916,8 +965,8 @@ C do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) ind=ind+1 - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle dscj_inv=vbld_inv(j+nres) sig0ij=sigma(itypi,itypj) r0ij=r0(itypi,itypj) @@ -1806,7 +1855,7 @@ cd write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e gcorr_loc(i)=0.0d0 enddo do i=iatel_s,iatel_e - if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle + if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle if (itel(i).eq.0) goto 1215 dxi=dc(1,i) dyi=dc(2,i) @@ -1820,7 +1869,7 @@ cd write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e num_conti=0 c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) do j=ielstart(i),ielend(i) - if (itype(j).eq.21 .or. itype(j+1).eq.21) cycle + if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1) cycle if (itel(j).eq.0) goto 1216 ind=ind+1 iteli=itel(i) @@ -2556,7 +2605,7 @@ C Cartesian derivatives & +0.5d0*(pizda(1,1)+pizda(2,2)) enddo endif - else if (j.eq.i+3 .and. itype(i+2).ne.21) then + else if (j.eq.i+3 .and. itype(i+2).ne.ntyp1) then CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C Fourth-order contributions @@ -2757,7 +2806,7 @@ cd print '(a)','Enter ESCP' c write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e, c & ' scal14',scal14 do i=iatscp_s,iatscp_e - if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle + if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle iteli=itel(i) c write (iout,*) "i",i," iteli",iteli," nscp_gr",nscp_gr(i), c & " iscp",(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i)) @@ -2769,8 +2818,8 @@ c & " iscp",(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i)) do iint=1,nscp_gr(i) do j=iscpstart(i,iint),iscpend(i,iint) - itypj=itype(j) - if (itypj.eq.21) cycle + itypj=iabs(itype(j)) + if (itypj.eq.ntyp1) cycle C Uncomment following three lines for SC-p interactions c xj=c(1,nres+j)-xi c yj=c(2,nres+j)-yi @@ -2880,10 +2929,41 @@ C iii and jjj point to the residues for which the distance is assigned. endif C 24/11/03 AL: SS bridges handled separately because of introducing a specific C distance and angle dependent SS bond potential. - if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then +C if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and. +C & iabs(itype(jjj)).eq.1) then +C call ssbond_ene(iii,jjj,eij) +C ehpb=ehpb+2*eij +C else + if (.not.dyn_ss .and. i.le.nss) then + if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and. + & iabs(itype(jjj)).eq.1) then call ssbond_ene(iii,jjj,eij) ehpb=ehpb+2*eij - else + endif !ii.gt.neres + else if (ii.gt.nres .and. jj.gt.nres) then +c Restraints from contact prediction + dd=dist(ii,jj) + if (constr_dist.eq.11) then +C ehpb=ehpb+fordepth(i)**4.0d0 +C & *rlornmr1(dd,dhpb(i),dhpb1(i),forcon(i)) + ehpb=ehpb+fordepth(i)**4.0d0 + & *rlornmr1(dd,dhpb(i),dhpb1(i),forcon(i)) + fac=fordepth(i)**4.0d0 + & *rlornmr1prim(dd,dhpb(i),dhpb1(i),forcon(i))/dd +C write (iout,'(a6,2i5,3f8.3)') "edisl",ii,jj, +C & ehpb,fordepth(i),dd +C write(iout,*) ehpb,"atu?" +C ehpb,"tu?" +C fac=fordepth(i)**4.0d0 +C & *rlornmr1prim(dd,dhpb(i),dhpb1(i),forcon(i))/dd + else !constr_dist.eq.11 + if (dhpb1(i).gt.0.0d0) then + ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) + fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd +c write (iout,*) "beta nmr", +c & dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) + else !dhpb(i).gt.0.00 + C Calculate the distance between the two points and its difference from the C target distance. dd=dist(ii,jj) @@ -2896,6 +2976,8 @@ C C Evaluate gradient. C fac=waga*rdis/dd + endif !dhpb(i).gt.0 + endif cd print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd, cd & ' waga=',waga,' fac=',fac do j=1,3 @@ -2910,6 +2992,53 @@ C Cartesian gradient in the SC vectors (ghpbx). ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j) enddo endif + else !ii.gt.nres +C write(iout,*) "before" + dd=dist(ii,jj) +C write(iout,*) "after",dd + if (constr_dist.eq.11) then + ehpb=ehpb+fordepth(i)**4.0d0 + & *rlornmr1(dd,dhpb(i),dhpb1(i),forcon(i)) + fac=fordepth(i)**4.0d0 + & *rlornmr1prim(dd,dhpb(i),dhpb1(i),forcon(i))/dd +C ehpb=ehpb+fordepth(i)**4*rlornmr1(dd,dhpb(i),dhpb1(i)) +C fac=fordepth(i)**4*rlornmr1prim(dd,dhpb(i),dhpb1(i))/dd +C print *,ehpb,"tu?" +C write(iout,*) ehpb,"btu?", +C & dd,dhpb(i),dhpb1(i),fordepth(i),forcon(i) +C write (iout,'(a6,2i5,3f8.3)') "edisl",ii,jj, +C & ehpb,fordepth(i),dd + else + if (dhpb1(i).gt.0.0d0) then + ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) + fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd +c write (iout,*) "alph nmr", +c & dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) + else + rdis=dd-dhpb(i) +C Get the force constant corresponding to this distance. + waga=forcon(i) +C Calculate the contribution to energy. + ehpb=ehpb+waga*rdis*rdis +c write (iout,*) "alpha reg",dd,waga*rdis*rdis +C +C Evaluate gradient. +C + fac=waga*rdis/dd + endif + endif + do j=1,3 + ggg(j)=fac*(c(j,jj)-c(j,ii)) + enddo +cd print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3) +C If this is a SC-SC distance, we need to calculate the contributions to the +C Cartesian gradient in the SC vectors (ghpbx). + if (iii.lt.ii) then + do j=1,3 + ghpbx(j,iii)=ghpbx(j,iii)-ggg(j) + ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j) + enddo + endif do j=iii,jjj-1 do k=1,3 ghpbc(k,j)=ghpbc(k,j)+ggg(k) @@ -2917,7 +3046,7 @@ C Cartesian gradient in the SC vectors (ghpbx). enddo endif enddo - ehpb=0.5D0*ehpb + if (constr_dist.ne.11) ehpb=0.5D0*ehpb return end C-------------------------------------------------------------------------- @@ -2940,7 +3069,7 @@ C include 'COMMON.VAR' include 'COMMON.IOUNITS' double precision erij(3),dcosom1(3),dcosom2(3),gg(3) - itypi=itype(i) + itypi=iabs(itype(i)) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) @@ -2948,7 +3077,7 @@ C dyi=dc_norm(2,nres+i) dzi=dc_norm(3,nres+i) dsci_inv=dsc_inv(itypi) - itypj=itype(j) + itypj=iabs(itype(j)) dscj_inv=dsc_inv(itypj) xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi @@ -3026,8 +3155,9 @@ c logical energy_dec /.false./ double precision u(3),ud(3) estr=0.0d0 + estr1=0.0d0 do i=nnt+1,nct - if (itype(i-1).eq.21 .or. itype(i).eq.21) then + if (itype(i-1).eq.ntyp1 .or. itype(i).eq.ntyp1) then estr1=estr1+gnmr1(vbld(i),-1.0d0,distchainmax) do j=1,3 gradb(j,i-1)=gnmr1prim(vbld(i),-1.0d0,distchainmax) @@ -3045,13 +3175,13 @@ c write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff endif enddo - estr=0.5d0*AKP*estr + estr=0.5d0*AKP*estr+estr1 c c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included c do i=nnt,nct - iti=itype(i) - if (iti.ne.10 .and. iti.ne.21) then + iti=iabs(itype(i)) + if (iti.ne.10 .and. iti.ne.ntyp1) then nbi=nbondterm(iti) if (nbi.eq.1) then diff=vbld(i+nres)-vbldsc0(1,iti) @@ -3120,22 +3250,34 @@ C & delthe0,sig0inv,sigtc,sigsqtc,delthec,it double precision y(2),z(2) delta=0.02d0*pi - time11=dexp(-2*time) - time12=1.0d0 +c time11=dexp(-2*time) +c time12=1.0d0 etheta=0.0D0 c write (iout,*) "nres",nres c write (*,'(a,i2)') 'EBEND ICG=',icg c write (iout,*) ithet_start,ithet_end do i=ithet_start,ithet_end - if (itype(i-1).eq.21) cycle + if (itype(i-1).eq.ntyp1) cycle C Zero the energy function and its derivative at 0 or pi. call splinthet(theta(i),0.5d0*delta,ss,ssd) it=itype(i-1) - if (i.gt.3 .and. itype(i-2).ne.21) then + ichir1=isign(1,itype(i-2)) + ichir2=isign(1,itype(i)) + if (itype(i-2).eq.10) ichir1=isign(1,itype(i-1)) + if (itype(i).eq.10) ichir2=isign(1,itype(i-1)) + if (itype(i-1).eq.10) then + itype1=isign(10,itype(i-2)) + ichir11=isign(1,itype(i-2)) + ichir12=isign(1,itype(i-2)) + itype2=isign(10,itype(i)) + ichir21=isign(1,itype(i)) + ichir22=isign(1,itype(i)) + endif + if (i.gt.3 .and. itype(i-2).ne.ntyp1) then #ifdef OSF phii=phi(i) - icrc=0 - call proc_proc(phii,icrc) +c icrc=0 +c call proc_proc(phii,icrc) if (icrc.eq.1) phii=150.0 #else phii=phi(i) @@ -3146,11 +3288,11 @@ C Zero the energy function and its derivative at 0 or pi. y(1)=0.0D0 y(2)=0.0D0 endif - if (i.lt.nres .and. itype(i).ne.21) then + if (i.lt.nres .and. itype(i).ne.ntyp1) then #ifdef OSF phii1=phi(i+1) - icrc=0 - call proc_proc(phii1,icrc) +c icrc=0 +c call proc_proc(phii1,icrc) if (icrc.eq.1) phii1=150.0 phii1=pinorm(phii1) z(1)=cos(phii1) @@ -3168,8 +3310,12 @@ C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2). C In following comments this theta will be referred to as t_c. thet_pred_mean=0.0d0 do k=1,2 - athetk=athet(k,it) - bthetk=bthet(k,it) + athetk=athet(k,it,ichir1,ichir2) + bthetk=bthet(k,it,ichir1,ichir2) + if (it.eq.10) then + athetk=athet(k,itype1,ichir11,ichir12) + bthetk=bthet(k,itype2,ichir21,ichir22) + endif thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k) enddo c write (iout,*) "thet_pred_mean",thet_pred_mean @@ -3177,8 +3323,16 @@ c write (iout,*) "thet_pred_mean",thet_pred_mean thet_pred_mean=thet_pred_mean*ss+a0thet(it) c write (iout,*) "thet_pred_mean",thet_pred_mean C Derivatives of the "mean" values in gamma1 and gamma2. - dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss - dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss + dthetg1=(-athet(1,it,ichir1,ichir2)*y(2) + &+athet(2,it,ichir1,ichir2)*y(1))*ss + dthetg2=(-bthet(1,it,ichir1,ichir2)*z(2) + & +bthet(2,it,ichir1,ichir2)*z(1))*ss + if (it.eq.10) then + dthetg1=(-athet(1,itype1,ichir11,ichir12)*y(2) + &+athet(2,itype1,ichir11,ichir12)*y(1))*ss + dthetg2=(-bthet(1,itype2,ichir21,ichir22)*z(2) + & +bthet(2,itype2,ichir21,ichir22)*z(1))*ss + endif if (theta(i).gt.pi-delta) then call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0, & E_tc0) @@ -3206,7 +3360,7 @@ c & rad2deg*phii,rad2deg*phii1,ethetai if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1 if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2 gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett) - 1215 continue +c 1215 continue enddo C Ufff.... We've done all this!!! return @@ -3349,37 +3503,43 @@ C etheta=0.0D0 c write (iout,*) "ithetyp",(ithetyp(i),i=1,ntyp1) do i=ithet_start,ithet_end - if (itype(i-1).eq.21) cycle +c if (itype(i-1).eq.ntyp1) cycle + if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or. + &(itype(i).eq.ntyp1)) cycle + if (iabs(itype(i+1)).eq.20) iblock=2 + if (iabs(itype(i+1)).ne.20) iblock=1 dethetai=0.0d0 dephii=0.0d0 dephii1=0.0d0 theti2=0.5d0*theta(i) - ityp2=ithetyp(itype(i-1)) +CC Ta zmina jest niewlasciwa + ityp2=ithetyp((itype(i-1))) do k=1,nntheterm coskt(k)=dcos(k*theti2) sinkt(k)=dsin(k*theti2) enddo - if (i.gt.3 .and. itype(i-2).ne.21) then + if (i.gt.3 .and. itype(i-3).ne.ntyp1) then #ifdef OSF phii=phi(i) if (phii.ne.phii) phii=150.0 #else phii=phi(i) #endif - ityp1=ithetyp(itype(i-2)) + ityp1=ithetyp((itype(i-2))) do k=1,nsingle cosph1(k)=dcos(k*phii) sinph1(k)=dsin(k*phii) enddo else phii=0.0d0 - ityp1=nthetyp+1 +c ityp1=nthetyp+1 do k=1,nsingle + ityp1=ithetyp((itype(i-2))) cosph1(k)=0.0d0 sinph1(k)=0.0d0 enddo endif - if (i.lt.nres .and. itype(i).ne.21) then + if (i.lt.nres .and. itype(i+1).ne.ntyp1) then #ifdef OSF phii1=phi(i+1) if (phii1.ne.phii1) phii1=150.0 @@ -3387,14 +3547,15 @@ c write (iout,*) "ithetyp",(ithetyp(i),i=1,ntyp1) #else phii1=phi(i+1) #endif - ityp3=ithetyp(itype(i)) + ityp3=ithetyp((itype(i))) do k=1,nsingle cosph2(k)=dcos(k*phii1) sinph2(k)=dsin(k*phii1) enddo else phii1=0.0d0 - ityp3=nthetyp+1 +c ityp3=nthetyp+1 + ityp3=ithetyp((itype(i))) do k=1,nsingle cosph2(k)=0.0d0 sinph2(k)=0.0d0 @@ -3403,7 +3564,7 @@ c write (iout,*) "ithetyp",(ithetyp(i),i=1,ntyp1) c write (iout,*) "i",i," ityp1",itype(i-2),ityp1, c & " ityp2",itype(i-1),ityp2," ityp3",itype(i),ityp3 c call flush(iout) - ethetai=aa0thet(ityp1,ityp2,ityp3) + ethetai=aa0thet(ityp1,ityp2,ityp3,iblock) do k=1,ndouble do l=1,k-1 ccl=cosph1(l)*cosph2(k-l) @@ -3425,11 +3586,12 @@ c call flush(iout) enddo endif do k=1,ntheterm - ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k) - dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3) + ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3,iblock)*sinkt(k) + dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3,iblock) & *coskt(k) if (lprn) - & write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3), + & write (iout,*) "k",k," aathet", + & aathet(k,ityp1,ityp2,ityp3,iblock), & " ethetai",ethetai enddo if (lprn) then @@ -3448,24 +3610,24 @@ c call flush(iout) endif do m=1,ntheterm2 do k=1,nsingle - aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k) - & +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k) - & +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k) - & +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k) + aux=bbthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k) + & +ccthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph1(k) + & +ddthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph2(k) + & +eethet(k,m,ityp1,ityp2,ityp3,iblock)*sinph2(k) ethetai=ethetai+sinkt(m)*aux dethetai=dethetai+0.5d0*m*aux*coskt(m) dephii=dephii+k*sinkt(m)*( - & ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)- - & bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)) + & ccthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k)- + & bbthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph1(k)) dephii1=dephii1+k*sinkt(m)*( - & eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)- - & ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k)) + & eethet(k,m,ityp1,ityp2,ityp3,iblock)*cosph2(k)- + & ddthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph2(k)) if (lprn) & write (iout,*) "m",m," k",k," bbthet", - & bbthet(k,m,ityp1,ityp2,ityp3)," ccthet", - & ccthet(k,m,ityp1,ityp2,ityp3)," ddthet", - & ddthet(k,m,ityp1,ityp2,ityp3)," eethet", - & eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai + & bbthet(k,m,ityp1,ityp2,ityp3,iblock)," ccthet", + & ccthet(k,m,ityp1,ityp2,ityp3,iblock)," ddthet", + & ddthet(k,m,ityp1,ityp2,ityp3,iblock)," eethet", + & eethet(k,m,ityp1,ityp2,ityp3,iblock)," ethetai",ethetai enddo enddo if (lprn) @@ -3473,28 +3635,29 @@ c call flush(iout) do m=1,ntheterm3 do k=2,ndouble do l=1,k-1 - aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+ - & ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+ - & ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+ - & ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l) + aux=ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)+ + & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l)+ + & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)+ + & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l) ethetai=ethetai+sinkt(m)*aux dethetai=dethetai+0.5d0*m*coskt(m)*aux dephii=dephii+l*sinkt(m)*( - & -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)- - & ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+ - & ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+ - & ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)) + & -ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)- + & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)+ + & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)+ + & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l)) dephii1=dephii1+(k-l)*sinkt(m)*( - & -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+ - & ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+ - & ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)- - & ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)) + & -ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)+ + & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)+ + & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)- + & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l)) if (lprn) then write (iout,*) "m",m," k",k," l",l," ffthet", - & ffthet(l,k,m,ityp1,ityp2,ityp3), - & ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet", - & ggthet(l,k,m,ityp1,ityp2,ityp3), - & ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai + & ffthet(l,k,m,ityp1,ityp2,ityp3,iblock), + & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)," ggthet", + & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock), + & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock), + & " ethetai",ethetai write (iout,*) cosph1ph2(l,k)*sinkt(m), & cosph1ph2(k,l)*sinkt(m), & sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m) @@ -3509,7 +3672,8 @@ c call flush(iout) etheta=etheta+ethetai if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1 - gloc(nphi+i-2,icg)=wang*dethetai +c gloc(nphi+i-2,icg)=wang*dethetai + gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)+wang*dethetai enddo return end @@ -3540,9 +3704,9 @@ C ALPHA and OMEGA. c write (iout,'(a)') 'ESC' do i=loc_start,loc_end it=itype(i) - if (it.eq.21) cycle + if (it.eq.ntyp1) cycle if (it.eq.10) goto 1 - nlobit=nlob(it) + nlobit=nlob(iabs(it)) c print *,'i=',i,' it=',it,' nlobit=',nlobit c write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad theti=theta(i+1)-pipol @@ -3697,7 +3861,7 @@ C Compute the contribution to SC energy and derivatives do iii=-1,1 do j=1,nlobit - expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin) + expfac=dexp(bsc(j,iabs(it))-0.5D0*contr(j,iii)+emin) cd print *,'j=',j,' expfac=',expfac escloc_i=escloc_i+expfac do k=1,3 @@ -3778,7 +3942,7 @@ C Compute the contribution to SC energy and derivatives dersc12=0.0d0 do j=1,nlobit - expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin) + expfac=dexp(bsc(j,iabs(it))-0.5D0*contr(j)+emin) escloc_i=escloc_i+expfac do k=1,2 dersc(k)=dersc(k)+Ax(k,j)*expfac @@ -3833,7 +3997,7 @@ C delta=0.02d0*pi escloc=0.0D0 do i=loc_start,loc_end - if (itype(i).eq.21) cycle + if (itype(i).eq.ntyp1) cycle costtab(i+1) =dcos(theta(i+1)) sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1)) cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1))) @@ -3842,7 +4006,7 @@ C cosfac=dsqrt(cosfac2) sinfac2=0.5d0/(1.0d0-costtab(i+1)) sinfac=dsqrt(sinfac2) - it=itype(i) + it=iabs(itype(i)) if (it.eq.10) goto 1 c C Compute the axes of tghe local cartesian coordinates system; store in @@ -3860,7 +4024,7 @@ C & dc_norm(3,i+nres) y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac enddo do j = 1,3 - z_prime(j) = -uz(j,i-1) + z_prime(j) = -uz(j,i-1)*dsign(1.0d0,dfloat(itype(i))) enddo c write (2,*) "i",i c write (2,*) "x_prime",(x_prime(j),j=1,3) @@ -3892,7 +4056,7 @@ C C Compute the energy of the ith side cbain C c write (2,*) "xx",xx," yy",yy," zz",zz - it=itype(i) + it=iabs(itype(i)) do j = 1,65 x(j) = sc_parmin(j,it) enddo @@ -3900,7 +4064,8 @@ c write (2,*) "xx",xx," yy",yy," zz",zz Cc diagnostics - remove later xx1 = dcos(alph(2)) yy1 = dsin(alph(2))*dcos(omeg(2)) - zz1 = -dsin(alph(2))*dsin(omeg(2)) +c zz1 = -dsin(alph(2))*dsin(omeg(2)) + zz1 = -dsign(1.0d0,itype(i))*dsin(alph(2))*dsin(omeg(2)) write(2,'(3f8.1,3f9.3,1x,3f9.3)') & alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz, & xx1,yy1,zz1 @@ -4071,8 +4236,10 @@ c & (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i) dZZ_Ci1(k)=0.0d0 dZZ_Ci(k)=0.0d0 do j=1,3 - dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres) - dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres) + dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1) + & *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres) + dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1) + & *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres) enddo dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres)) @@ -4224,8 +4391,8 @@ C Set lprn=.true. for debugging c lprn=.true. etors=0.0D0 do i=iphi_start,iphi_end - if (itype(i-2).eq.21 .or. itype(i-1).eq.21 - & .or. itype(i).eq.21) cycle + if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1 + & .or. itype(i).eq.ntyp1) cycle itori=itortyp(itype(i-2)) itori1=itortyp(itype(i-1)) phii=phi(i) @@ -4309,17 +4476,22 @@ C Set lprn=.true. for debugging c lprn=.true. etors=0.0D0 do i=iphi_start,iphi_end - if (itype(i-2).eq.21 .or. itype(i-1).eq.21 - & .or. itype(i).eq.21) cycle + if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1 + & .or. itype(i).eq.ntyp1) cycle if (itel(i-2).eq.0 .or. itel(i-1).eq.0) goto 1215 + if (iabs(itype(i)).eq.20) then + iblock=2 + else + iblock=1 + endif itori=itortyp(itype(i-2)) itori1=itortyp(itype(i-1)) phii=phi(i) gloci=0.0D0 C Regular cosine and sine terms - do j=1,nterm(itori,itori1) - v1ij=v1(j,itori,itori1) - v2ij=v2(j,itori,itori1) + do j=1,nterm(itori,itori1,iblock) + v1ij=v1(j,itori,itori1,iblock) + v2ij=v2(j,itori,itori1,iblock) cosphi=dcos(j*phii) sinphi=dsin(j*phii) etors=etors+v1ij*cosphi+v2ij*sinphi @@ -4332,7 +4504,7 @@ C [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1 C cosphi=dcos(0.5d0*phii) sinphi=dsin(0.5d0*phii) - do j=1,nlor(itori,itori1) + do j=1,nlor(itori,itori1,iblock) vl1ij=vlor1(j,itori,itori1) vl2ij=vlor2(j,itori,itori1) vl3ij=vlor3(j,itori,itori1) @@ -4343,11 +4515,11 @@ C gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom enddo C Subtract the constant term - etors=etors-v0(itori,itori1) + etors=etors-v0(itori,itori1,iblock) if (lprn) & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1, - & (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6) + & (v1(j,itori,itori1,1),j=1,6),(v2(j,itori,itori1,1),j=1,6) gloc(i-3,icg)=gloc(i-3,icg)+wtor*fact*gloci c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg) 1215 continue @@ -4403,8 +4575,8 @@ C Set lprn=.true. for debugging c lprn=.true. etors_d=0.0D0 do i=iphi_start,iphi_end-1 - if (itype(i-2).eq.21 .or. itype(i-1).eq.21 - & .or. itype(i).eq.21 .or. itype(i+1).eq.21) cycle + if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1 + & .or. itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle if (itel(i-2).eq.0 .or. itel(i-1).eq.0 .or. itel(i).eq.0) & goto 1215 itori=itortyp(itype(i-2)) @@ -4414,12 +4586,14 @@ c lprn=.true. phii1=phi(i+1) gloci1=0.0D0 gloci2=0.0D0 + iblock=1 + if (iabs(itype(i+1)).eq.20) iblock=2 C Regular cosine and sine terms - do j=1,ntermd_1(itori,itori1,itori2) - v1cij=v1c(1,j,itori,itori1,itori2) - v1sij=v1s(1,j,itori,itori1,itori2) - v2cij=v1c(2,j,itori,itori1,itori2) - v2sij=v1s(2,j,itori,itori1,itori2) + do j=1,ntermd_1(itori,itori1,itori2,iblock) + v1cij=v1c(1,j,itori,itori1,itori2,iblock) + v1sij=v1s(1,j,itori,itori1,itori2,iblock) + v2cij=v1c(2,j,itori,itori1,itori2,iblock) + v2sij=v1s(2,j,itori,itori1,itori2,iblock) cosphi1=dcos(j*phii) sinphi1=dsin(j*phii) cosphi2=dcos(j*phii1) @@ -4429,12 +4603,12 @@ C Regular cosine and sine terms gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1) gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2) enddo - do k=2,ntermd_2(itori,itori1,itori2) + do k=2,ntermd_2(itori,itori1,itori2,iblock) do l=1,k-1 - v1cdij = v2c(k,l,itori,itori1,itori2) - v2cdij = v2c(l,k,itori,itori1,itori2) - v1sdij = v2s(k,l,itori,itori1,itori2) - v2sdij = v2s(l,k,itori,itori1,itori2) + v1cdij = v2c(k,l,itori,itori1,itori2,iblock) + v2cdij = v2c(l,k,itori,itori1,itori2,iblock) + v1sdij = v2s(k,l,itori,itori1,itori2,iblock) + v2sdij = v2s(l,k,itori,itori1,itori2,iblock) cosphi1p2=dcos(l*phii+(k-l)*phii1) cosphi1m2=dcos(l*phii-(k-l)*phii1) sinphi1p2=dsin(l*phii+(k-l)*phii1) @@ -4483,26 +4657,48 @@ C Set lprn=.true. for debugging c lprn=.true. c write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor esccor=0.0D0 - do i=iphi_start,iphi_end - if (itype(i-2).eq.21 .or. itype(i-1).eq.21) cycle + do i=itau_start,itau_end + if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle esccor_ii=0.0D0 - itori=itype(i-2) - itori1=itype(i-1) + isccori=isccortyp(itype(i-2)) + isccori1=isccortyp(itype(i-1)) phii=phi(i) + do intertyp=1,3 !intertyp +cc Added 09 May 2012 (Adasko) +cc Intertyp means interaction type of backbone mainchain correlation: +c 1 = SC...Ca...Ca...Ca +c 2 = Ca...Ca...Ca...SC +c 3 = SC...Ca...Ca...SCi gloci=0.0D0 - do j=1,nterm_sccor - v1ij=v1sccor(j,itori,itori1) - v2ij=v2sccor(j,itori,itori1) - cosphi=dcos(j*phii) - sinphi=dsin(j*phii) - esccor=esccor+v1ij*cosphi+v2ij*sinphi - gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi) - enddo + if (((intertyp.eq.3).and.((itype(i-2).eq.10).or. + & (itype(i-1).eq.10).or.(itype(i-2).eq.ntyp1).or. + & (itype(i-1).eq.ntyp1))) + & .or. ((intertyp.eq.1).and.((itype(i-2).eq.10) + & .or.(itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1) + & .or.(itype(i).eq.ntyp1))) + & .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or. + & (itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or. + & (itype(i-3).eq.ntyp1)))) cycle + if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.ntyp1)) cycle + if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.ntyp1)) + & cycle + do j=1,nterm_sccor(isccori,isccori1) + v1ij=v1sccor(j,intertyp,isccori,isccori1) + v2ij=v2sccor(j,intertyp,isccori,isccori1) + cosphi=dcos(j*tauangle(intertyp,i)) + sinphi=dsin(j*tauangle(intertyp,i)) + esccor=esccor+v1ij*cosphi+v2ij*sinphi +c gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi) + enddo +c write (iout,*) "EBACK_SC_COR",i,esccor,intertyp +c gloc_sc(intertyp,i-3)=gloc_sc(intertyp,i-3)+wsccor*gloci if (lprn) & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1, - & (v1sccor(j,itori,itori1),j=1,6),(v2sccor(j,itori,itori1),j=1,6) + & (v1sccor(j,1,itori,itori1),j=1,6), + & (v2sccor(j,1,itori,itori1),j=1,6) gsccor_loc(i-3)=gloci + enddo !intertyp enddo return end @@ -5171,7 +5367,11 @@ C--------------------------------------------------------------------------- & auxmat(2,2) iti1 = itortyp(itype(i+1)) if (j.lt.nres-1) then - itj1 = itortyp(itype(j+1)) + if (itype(j).le.ntyp) then + itj1 = itortyp(itype(j+1)) + else + itj1=ntortyp+1 + endif else itj1=ntortyp+1 endif @@ -5259,14 +5459,16 @@ cd if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return enddo if (l.eq.j+1) then C parallel orientation of the two CA-CA-CA frames. - if (i.gt.1) then +c if (i.gt.1) then + if (i.gt.1 .and. itype(i).le.ntyp) then iti=itortyp(itype(i)) else iti=ntortyp+1 endif itk1=itortyp(itype(k+1)) itj=itortyp(itype(j)) - if (l.lt.nres-1) then +c if (l.lt.nres-1) then + if (l.lt.nres-1 .and. itype(l+1).le.ntyp) then itl1=itortyp(itype(l+1)) else itl1=ntortyp+1 @@ -5412,7 +5614,8 @@ C Calculate the Cartesian derivatives of the vectors. C End vectors else C Antiparallel orientation of the two CA-CA-CA frames. - if (i.gt.1) then +c if (i.gt.1) then + if (i.gt.1 .and. itype(i).le.ntyp) then iti=itortyp(itype(i)) else iti=ntortyp+1 @@ -5420,7 +5623,8 @@ C Antiparallel orientation of the two CA-CA-CA frames. itk1=itortyp(itype(k+1)) itl=itortyp(itype(l)) itj=itortyp(itype(j)) - if (j.lt.nres-1) then +c if (j.lt.nres-1) then + if (j.lt.nres-1 .and. itype(j+1).le.ntyp) then itj1=itortyp(itype(j+1)) else itj1=ntortyp+1 @@ -6578,14 +6782,16 @@ C C 4/7/01 AL Component s1 was removed, because it pertains to the respective C energy moment and not to the cluster cumulant. iti=itortyp(itype(i)) - if (j.lt.nres-1) then +c if (j.lt.nres-1) then + if (j.lt.nres-1 .and. itype(j+1).le.ntyp) then itj1=itortyp(itype(j+1)) else itj1=ntortyp+1 endif itk=itortyp(itype(k)) itk1=itortyp(itype(k+1)) - if (l.lt.nres-1) then +c if (l.lt.nres-1) then + if (l.lt.nres-1 .and. itype(l+1).le.ntyp) then itl1=itortyp(itype(l+1)) else itl1=ntortyp+1 @@ -6698,13 +6904,15 @@ C energy moment and not to the cluster cumulant. cd write (2,*) 'eello_graph4: wturn6',wturn6 iti=itortyp(itype(i)) itj=itortyp(itype(j)) - if (j.lt.nres-1) then +c if (j.lt.nres-1) then + if (j.lt.nres-1 .and. itype(j+1).le.ntyp) then itj1=itortyp(itype(j+1)) else itj1=ntortyp+1 endif itk=itortyp(itype(k)) - if (k.lt.nres-1) then +c if (k.lt.nres-1) then + if (k.lt.nres-1 .and. itype(k+1).le.ntyp) then itk1=itortyp(itype(k+1)) else itk1=ntortyp+1