X-Git-Url: http://mmka.chem.univ.gda.pl/gitweb/?a=blobdiff_plain;f=source%2Fcluster%2Fwham%2Fsrc-M%2Fenergy_p_new.F;fp=source%2Fcluster%2Fwham%2Fsrc-M%2Fenergy_p_new.F;h=f2325c6215c0297d79b0af950486ba325303031c;hb=7308760ff07636ef6b1ee28d8c3a67a23c14b34b;hp=2a02340c721ffe18a94f6a69047bc07b48006d86;hpb=9a54ab407f6d0d9d564d52763b3e2136450b9ffc;p=unres.git diff --git a/source/cluster/wham/src-M/energy_p_new.F b/source/cluster/wham/src-M/energy_p_new.F index 2a02340..f2325c6 100644 --- a/source/cluster/wham/src-M/energy_p_new.F +++ b/source/cluster/wham/src-M/energy_p_new.F @@ -67,7 +67,7 @@ cd print *,'EHPB exitted succesfully.' C C Calculate the virtual-bond-angle energy. C - call ebend(ebe) + call ebend(ebe,ethetacnstr) cd print *,'Bend energy finished.' C C Calculate the SC local energy. @@ -107,24 +107,23 @@ c write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2+welec*fact(1)*ees & +wvdwpp*evdw1 & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc - & +wstrain*ehpb+nss*ebr+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5 + & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5 & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4 & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6 & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d - & +wbond*estr+wsccor*fact(1)*esccor + & +wbond*estr+wsccor*fact(1)*esccor+ethetacnstr #else etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2 & +welec*fact(1)*(ees+evdw1) & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc - & +wstrain*ehpb+nss*ebr+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5 + & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5 & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4 & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6 & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d - & +wbond*estr+wsccor*fact(1)*esccor + & +wbond*estr+wsccor*fact(1)*esccor+ethetacnstr #endif energia(0)=etot energia(1)=evdw -c call enerprint(energia(0),frac) #ifdef SCP14 energia(2)=evdw2-evdw2_14 energia(17)=evdw2_14 @@ -155,6 +154,7 @@ c call enerprint(energia(0),frac) energia(19)=esccor energia(20)=edihcnstr energia(21)=evdw_t + energia(24)=ethetacnstr c detecting NaNQ #ifdef ISNAN #ifdef AIX @@ -229,9 +229,11 @@ C & +wturn3*fact(2)*gel_loc_turn3(i) & +wturn6*fact(5)*gel_loc_turn6(i) & +wel_loc*fact(2)*gel_loc_loc(i) - & +wsccor*fact(1)*gsccor_loc(i) +c & +wsccor*fact(1)*gsccor_loc(i) +c ROZNICA Z WHAMem enddo endif + if (dyn_ss) call dyn_set_nss return end C------------------------------------------------------------------------ @@ -269,6 +271,7 @@ C------------------------------------------------------------------------ esccor=energia(19) edihcnstr=energia(20) estr=energia(18) + ethetacnstr=energia(24) #ifdef SPLITELE write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),evdw1, & wvdwpp, @@ -277,7 +280,7 @@ C------------------------------------------------------------------------ & ecorr,wcorr*fact(3),ecorr5,wcorr5*fact(4),ecorr6,wcorr6*fact(5), & eel_loc,wel_loc*fact(2),eello_turn3,wturn3*fact(2), & eello_turn4,wturn4*fact(3),eello_turn6,wturn6*fact(5), - & esccor,wsccor*fact(1),edihcnstr,ebr*nss,etot + & esccor,wsccor*fact(1),edihcnstr,ethetacnstr,ebr*nss,etot 10 format (/'Virtual-chain energies:'// & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ @@ -299,6 +302,7 @@ C------------------------------------------------------------------------ & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/ & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/ & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/ + & 'ETHETC= ',1pE16.6,' (valence angle constraints)'/ & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ & 'ETOT= ',1pE16.6,' (total)') #else @@ -308,7 +312,7 @@ C------------------------------------------------------------------------ & ecorr6,wcorr6*fact(5),eel_loc,wel_loc*fact(2), & eello_turn3,wturn3*fact(2),eello_turn4,wturn4*fact(3), & eello_turn6,wturn6*fact(5),esccor*fact(1),wsccor, - & edihcnstr,ebr*nss,etot + & edihcnstr,ethetacnstr,ebr*nss,etot 10 format (/'Virtual-chain energies:'// & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ @@ -329,6 +333,7 @@ C------------------------------------------------------------------------ & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/ & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/ & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/ + & 'ETHETC= ',1pE16.6,' (valence angle constraints)'/ & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ & 'ETOT= ',1pE16.6,' (total)') #endif @@ -360,6 +365,14 @@ C integer icant external icant cd print *,'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon +c ROZNICA DODANE Z WHAM +c do i=1,210 +c do j=1,2 +c eneps_temp(j,i)=0.0d0 +c enddo +c enddo +cROZNICA + evdw=0.0D0 evdw_t=0.0d0 do i=iatsc_s,iatsc_e @@ -393,6 +406,11 @@ c write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj e2=fac*bb(itypi,itypj) evdwij=e1+e2 ij=icant(itypi,itypj) +c ROZNICA z WHAM +c eneps_temp(1,ij)=eneps_temp(1,ij)+e1/dabs(eps0ij) +c eneps_temp(2,ij)=eneps_temp(2,ij)+e2/eps0ij +c + cd sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) cd epsi=bb(itypi,itypj)**2/aa(itypi,itypj) cd write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)') @@ -750,11 +768,13 @@ C include 'COMMON.INTERACT' include 'COMMON.IOUNITS' include 'COMMON.CALC' + include 'COMMON.SBRIDGE' logical lprn common /srutu/icall integer icant external icant integer xshift,yshift,zshift + logical energy_dec /.false./ c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon evdw=0.0D0 evdw_t=0.0d0 @@ -783,6 +803,38 @@ C Calculate SC interaction energy. C do iint=1,nint_gr(i) do j=istart(i,iint),iend(i,iint) + IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN + +c write(iout,*) "PRZED ZWYKLE", evdwij + call dyn_ssbond_ene(i,j,evdwij) +c write(iout,*) "PO ZWYKLE", evdwij + + evdw=evdw+evdwij + if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') + & 'evdw',i,j,evdwij,' ss' +C triple bond artifac removal + do k=j+1,iend(i,iint) +C search over all next residues + if (dyn_ss_mask(k)) then +C check if they are cysteins +C write(iout,*) 'k=',k + +c write(iout,*) "PRZED TRI", evdwij + evdwij_przed_tri=evdwij + call triple_ssbond_ene(i,j,k,evdwij) +c if(evdwij_przed_tri.ne.evdwij) then +c write (iout,*) "TRI:", evdwij, evdwij_przed_tri +c endif + +c write(iout,*) "PO TRI", evdwij +C call the energy function that removes the artifical triple disulfide +C bond the soubroutine is located in ssMD.F + evdw=evdw+evdwij + if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') + & 'evdw',i,j,evdwij,'tss' + endif!dyn_ss_mask(k) + enddo! k + ELSE ind=ind+1 itypj=iabs(itype(j)) if (itypj.eq.ntyp1) cycle @@ -912,6 +964,7 @@ C Calculate the radial part of the gradient C Calculate angular part of the gradient. call sc_grad endif + ENDIF ! dyn_ss enddo ! j enddo ! iint enddo ! i @@ -1854,15 +1907,15 @@ cd write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e gcorr_loc(i)=0.0d0 enddo do i=iatel_s,iatel_e - if (i.eq.1) then - if (itype(i).eq.ntyp1.or. itype(i+1).eq.ntyp1 - & .or. itype(i+2).eq.ntyp1) cycle - else + if (i.eq.1) cycle +C if (itype(i).eq.ntyp1.or. itype(i+1).eq.ntyp1 +C & .or. itype(i+2).eq.ntyp1) cycle +C else if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1 & .or. itype(i+2).eq.ntyp1 & .or. itype(i-1).eq.ntyp1 &) cycle - endif +C endif if (itel(i).eq.0) goto 1215 dxi=dc(1,i) dyi=dc(2,i) @@ -1882,16 +1935,16 @@ cd write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e num_conti=0 c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) do j=ielstart(i),ielend(i) - if (j.eq.1) then - if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1 - & .or.itype(j+2).eq.ntyp1 - &) cycle - else + if (j.eq.1) cycle +C if (itype(j).eq.ntyp1 .or. itype(j+1).eq.Cntyp1 +C & .or.itype(j+2).eq.ntyp1 +C &) cycle +C else if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1 & .or.itype(j+2).eq.ntyp1 & .or.itype(j-1).eq.ntyp1 &) cycle - endif +C endif if (itel(j).eq.0) goto 1216 ind=ind+1 iteli=itel(i) @@ -1933,7 +1986,7 @@ C End diagnostics xj=xj_safe+xshift*boxxsize yj=yj_safe+yshift*boxysize zj=zj_safe+zshift*boxzsize - dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2 + dist_temp=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2 if(dist_temp.lt.dist_init) then dist_init=dist_temp xj_temp=xj @@ -3033,6 +3086,7 @@ C include 'COMMON.DERIV' include 'COMMON.VAR' include 'COMMON.INTERACT' + include 'COMMON.CONTROL' dimension ggg(3) ehpb=0.0D0 cd print *,'edis: nhpb=',nhpb,' fbr=',fbr @@ -3053,11 +3107,42 @@ C iii and jjj point to the residues for which the distance is assigned. endif C 24/11/03 AL: SS bridges handled separately because of introducing a specific C distance and angle dependent SS bond potential. - if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and. - & iabs(itype(jjj)).eq.1) then +C if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and. +C & iabs(itype(jjj)).eq.1) then +C call ssbond_ene(iii,jjj,eij) +C ehpb=ehpb+2*eij +C else + if (.not.dyn_ss .and. i.le.nss) then + if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and. + & iabs(itype(jjj)).eq.1) then call ssbond_ene(iii,jjj,eij) ehpb=ehpb+2*eij - else + endif !ii.gt.neres + else if (ii.gt.nres .and. jj.gt.nres) then +c Restraints from contact prediction + dd=dist(ii,jj) + if (constr_dist.eq.11) then +C ehpb=ehpb+fordepth(i)**4.0d0 +C & *rlornmr1(dd,dhpb(i),dhpb1(i),forcon(i)) + ehpb=ehpb+fordepth(i)**4.0d0 + & *rlornmr1(dd,dhpb(i),dhpb1(i),forcon(i)) + fac=fordepth(i)**4.0d0 + & *rlornmr1prim(dd,dhpb(i),dhpb1(i),forcon(i))/dd +C write (iout,'(a6,2i5,3f8.3)') "edisl",ii,jj, +C & ehpb,fordepth(i),dd +C print *,"TUTU" +C write(iout,*) ehpb,"atu?" +C ehpb,"tu?" +C fac=fordepth(i)**4.0d0 +C & *rlornmr1prim(dd,dhpb(i),dhpb1(i),forcon(i))/dd + else !constr_dist.eq.11 + if (dhpb1(i).gt.0.0d0) then + ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) + fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd +c write (iout,*) "beta nmr", +c & dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) + else !dhpb(i).gt.0.00 + C Calculate the distance between the two points and its difference from the C target distance. dd=dist(ii,jj) @@ -3070,6 +3155,8 @@ C C Evaluate gradient. C fac=waga*rdis/dd + endif !dhpb(i).gt.0 + endif cd print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd, cd & ' waga=',waga,' fac=',fac do j=1,3 @@ -3084,6 +3171,53 @@ C Cartesian gradient in the SC vectors (ghpbx). ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j) enddo endif + else !ii.gt.nres +C write(iout,*) "before" + dd=dist(ii,jj) +C write(iout,*) "after",dd + if (constr_dist.eq.11) then + ehpb=ehpb+fordepth(i)**4.0d0 + & *rlornmr1(dd,dhpb(i),dhpb1(i),forcon(i)) + fac=fordepth(i)**4.0d0 + & *rlornmr1prim(dd,dhpb(i),dhpb1(i),forcon(i))/dd +C ehpb=ehpb+fordepth(i)**4*rlornmr1(dd,dhpb(i),dhpb1(i)) +C fac=fordepth(i)**4*rlornmr1prim(dd,dhpb(i),dhpb1(i))/dd +C print *,ehpb,"tu?" +C write(iout,*) ehpb,"btu?", +C & dd,dhpb(i),dhpb1(i),fordepth(i),forcon(i) +C write (iout,'(a6,2i5,3f8.3)') "edisl",ii,jj, +C & ehpb,fordepth(i),dd + else + if (dhpb1(i).gt.0.0d0) then + ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) + fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd +c write (iout,*) "alph nmr", +c & dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i)) + else + rdis=dd-dhpb(i) +C Get the force constant corresponding to this distance. + waga=forcon(i) +C Calculate the contribution to energy. + ehpb=ehpb+waga*rdis*rdis +c write (iout,*) "alpha reg",dd,waga*rdis*rdis +C +C Evaluate gradient. +C + fac=waga*rdis/dd + endif + endif + do j=1,3 + ggg(j)=fac*(c(j,jj)-c(j,ii)) + enddo +cd print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3) +C If this is a SC-SC distance, we need to calculate the contributions to the +C Cartesian gradient in the SC vectors (ghpbx). + if (iii.lt.ii) then + do j=1,3 + ghpbx(j,iii)=ghpbx(j,iii)-ggg(j) + ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j) + enddo + endif do j=iii,jjj-1 do k=1,3 ghpbc(k,j)=ghpbc(k,j)+ggg(k) @@ -3091,7 +3225,7 @@ C Cartesian gradient in the SC vectors (ghpbx). enddo endif enddo - ehpb=0.5D0*ehpb + if (constr_dist.ne.11) ehpb=0.5D0*ehpb return end C-------------------------------------------------------------------------- @@ -3279,7 +3413,7 @@ c & AKSC(j,iti),abond0(j,iti),u(j),j=1,nbi) end #ifdef CRYST_THETA C-------------------------------------------------------------------------- - subroutine ebend(etheta) + subroutine ebend(etheta,ethetacnstr) C C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral C angles gamma and its derivatives in consecutive thetas and gammas. @@ -3296,13 +3430,14 @@ C include 'COMMON.IOUNITS' include 'COMMON.NAMES' include 'COMMON.FFIELD' + include 'COMMON.TORCNSTR' common /calcthet/ term1,term2,termm,diffak,ratak, & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq, & delthe0,sig0inv,sigtc,sigsqtc,delthec,it double precision y(2),z(2) delta=0.02d0*pi - time11=dexp(-2*time) - time12=1.0d0 +c time11=dexp(-2*time) +c time12=1.0d0 etheta=0.0D0 c write (iout,*) "nres",nres c write (*,'(a,i2)') 'EBEND ICG=',icg @@ -3333,8 +3468,8 @@ C Zero the energy function and its derivative at 0 or pi. if (i.gt.3 .and. itype(i-3).ne.ntyp1) then #ifdef OSF phii=phi(i) - icrc=0 - call proc_proc(phii,icrc) +c icrc=0 +c call proc_proc(phii,icrc) if (icrc.eq.1) phii=150.0 #else phii=phi(i) @@ -3349,8 +3484,8 @@ C Zero the energy function and its derivative at 0 or pi. if (i.lt.nres .and. itype(i+1).ne.ntyp1) then #ifdef OSF phii1=phi(i+1) - icrc=0 - call proc_proc(phii1,icrc) +c icrc=0 +c call proc_proc(phii1,icrc) if (icrc.eq.1) phii1=150.0 phii1=pinorm(phii1) z(1)=cos(phii1) @@ -3418,9 +3553,37 @@ c & rad2deg*phii,rad2deg*phii1,ethetai if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1 if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2 gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett) - 1215 continue +c 1215 continue enddo C Ufff.... We've done all this!!! +C now constrains + ethetacnstr=0.0d0 +C print *,ithetaconstr_start,ithetaconstr_end,"TU" + do i=1,ntheta_constr + itheta=itheta_constr(i) + thetiii=theta(itheta) + difi=pinorm(thetiii-theta_constr0(i)) + if (difi.gt.theta_drange(i)) then + difi=difi-theta_drange(i) + ethetacnstr=ethetacnstr+0.25d0*for_thet_constr(i)*difi**4 + gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg) + & +for_thet_constr(i)*difi**3 + else if (difi.lt.-drange(i)) then + difi=difi+drange(i) + ethetacnstr=ethetacnstr+0.25d0*for_thet_constr(i)*difi**4 + gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg) + & +for_thet_constr(i)*difi**3 + else + difi=0.0 + endif +C if (energy_dec) then +C write (iout,'(a6,2i5,4f8.3,2e14.5)') "ethetc", +C & i,itheta,rad2deg*thetiii, +C & rad2deg*theta_constr0(i), rad2deg*theta_drange(i), +C & rad2deg*difi,0.25d0*for_thet_constr(i)*difi**4, +C & gloc(itheta+nphi-2,icg) +C endif + enddo return end C--------------------------------------------------------------------------- @@ -3533,7 +3696,7 @@ C "Thank you" to MAPLE (probably spared one day of hand-differentiation). end #else C-------------------------------------------------------------------------- - subroutine ebend(etheta) + subroutine ebend(etheta,ethetacnstr) C C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral C angles gamma and its derivatives in consecutive thetas and gammas. @@ -3553,6 +3716,7 @@ C include 'COMMON.NAMES' include 'COMMON.FFIELD' include 'COMMON.CONTROL' + include 'COMMON.TORCNSTR' double precision coskt(mmaxtheterm),sinkt(mmaxtheterm), & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle), & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble), @@ -3564,6 +3728,7 @@ c write (iout,*) "ithetyp",(ithetyp(i),i=1,ntyp1) if (i.le.2) cycle if ((itype(i-1).eq.ntyp1).or.itype(i-2).eq.ntyp1 & .or.itype(i).eq.ntyp1) cycle +c if (itype(i-1).eq.ntyp1) cycle if (iabs(itype(i+1)).eq.20) iblock=2 if (iabs(itype(i+1)).ne.20) iblock=1 dethetai=0.0d0 @@ -3597,8 +3762,9 @@ c write (iout,*) "ithetyp",(ithetyp(i),i=1,ntyp1) enddo else phii=0.0d0 - ityp1=nthetyp+1 +c ityp1=nthetyp+1 do k=1,nsingle + ityp1=ithetyp((itype(i-2))) cosph1(k)=0.0d0 sinph1(k)=0.0d0 enddo @@ -3619,7 +3785,8 @@ c write (iout,*) "ithetyp",(ithetyp(i),i=1,ntyp1) enddo else phii1=0.0d0 - ityp3=nthetyp+1 +c ityp3=nthetyp+1 + ityp3=ithetyp((itype(i))) do k=1,nsingle cosph2(k)=0.0d0 sinph2(k)=0.0d0 @@ -3736,7 +3903,36 @@ c call flush(iout) etheta=etheta+ethetai if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1 - gloc(nphi+i-2,icg)=wang*dethetai +c gloc(nphi+i-2,icg)=wang*dethetai + gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)+wang*dethetai + enddo +C now constrains + ethetacnstr=0.0d0 +C print *,ithetaconstr_start,ithetaconstr_end,"TU" + do i=1,ntheta_constr + itheta=itheta_constr(i) + thetiii=theta(itheta) + difi=pinorm(thetiii-theta_constr0(i)) + if (difi.gt.theta_drange(i)) then + difi=difi-theta_drange(i) + ethetacnstr=ethetacnstr+0.25d0*for_thet_constr(i)*difi**4 + gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg) + & +for_thet_constr(i)*difi**3 + else if (difi.lt.-drange(i)) then + difi=difi+drange(i) + ethetacnstr=ethetacnstr+0.25d0*for_thet_constr(i)*difi**4 + gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg) + & +for_thet_constr(i)*difi**3 + else + difi=0.0 + endif +C if (energy_dec) then +C write (iout,'(a6,2i5,4f8.3,2e14.5)') "ethetc", +C & i,itheta,rad2deg*thetiii, +C & rad2deg*theta_constr0(i), rad2deg*theta_drange(i), +C & rad2deg*difi,0.25d0*for_thet_constr(i)*difi**4, +C & gloc(itheta+nphi-2,icg) +C endif enddo return end @@ -4127,7 +4323,8 @@ c write (2,*) "xx",xx," yy",yy," zz",zz Cc diagnostics - remove later xx1 = dcos(alph(2)) yy1 = dsin(alph(2))*dcos(omeg(2)) - zz1 = -dsin(alph(2))*dsin(omeg(2)) +c zz1 = -dsin(alph(2))*dsin(omeg(2)) + zz1 = -dsign(1.0d0,itype(i))*dsin(alph(2))*dsin(omeg(2)) write(2,'(3f8.1,3f9.3,1x,3f9.3)') & alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz, & xx1,yy1,zz1 @@ -4502,12 +4699,12 @@ c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg) difi=phii-phi0(i) if (difi.gt.drange(i)) then difi=difi-drange(i) - edihcnstr=edihcnstr+0.25d0*ftors*difi**4 - gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3 + edihcnstr=edihcnstr+0.25d0*ftors(i)*difi**4 + gloc(itori-3,icg)=gloc(itori-3,icg)+ftors(i)*difi**3 else if (difi.lt.-drange(i)) then difi=difi+drange(i) - edihcnstr=edihcnstr+0.25d0*ftors*difi**4 - gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3 + edihcnstr=edihcnstr+0.25d0*ftors(i)*difi**4 + gloc(itori-3,icg)=gloc(itori-3,icg)+ftors(i)*difi**3 endif ! write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii, ! & rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg) @@ -4596,14 +4793,14 @@ c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg) edihi=0.0d0 if (difi.gt.drange(i)) then difi=difi-drange(i) - edihcnstr=edihcnstr+0.25d0*ftors*difi**4 - gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3 - edihi=0.25d0*ftors*difi**4 + edihcnstr=edihcnstr+0.25d0*ftors(i)*difi**4 + gloc(itori-3,icg)=gloc(itori-3,icg)+ftors(i)*difi**3 + edihi=0.25d0*ftors(i)*difi**4 else if (difi.lt.-drange(i)) then difi=difi+drange(i) - edihcnstr=edihcnstr+0.25d0*ftors*difi**4 - gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3 - edihi=0.25d0*ftors*difi**4 + edihcnstr=edihcnstr+0.25d0*ftors(i)*difi**4 + gloc(itori-3,icg)=gloc(itori-3,icg)+ftors(i)*difi**3 + edihi=0.25d0*ftors(i)*difi**4 else difi=0.0d0 endif @@ -4723,7 +4920,7 @@ c lprn=.true. c write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor esccor=0.0D0 do i=itau_start,itau_end - if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1) cycle + if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle esccor_ii=0.0D0 isccori=isccortyp(itype(i-2)) isccori1=isccortyp(itype(i-1)) @@ -5432,7 +5629,11 @@ C--------------------------------------------------------------------------- & auxmat(2,2) iti1 = itortyp(itype(i+1)) if (j.lt.nres-1) then - itj1 = itortyp(itype(j+1)) + if (itype(j).le.ntyp) then + itj1 = itortyp(itype(j+1)) + else + itj1=ntortyp+1 + endif else itj1=ntortyp+1 endif @@ -5520,14 +5721,16 @@ cd if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return enddo if (l.eq.j+1) then C parallel orientation of the two CA-CA-CA frames. - if (i.gt.1) then +c if (i.gt.1) then + if (i.gt.1 .and. itype(i).le.ntyp) then iti=itortyp(itype(i)) else iti=ntortyp+1 endif itk1=itortyp(itype(k+1)) itj=itortyp(itype(j)) - if (l.lt.nres-1) then +c if (l.lt.nres-1) then + if (l.lt.nres-1 .and. itype(l+1).le.ntyp) then itl1=itortyp(itype(l+1)) else itl1=ntortyp+1 @@ -5673,7 +5876,8 @@ C Calculate the Cartesian derivatives of the vectors. C End vectors else C Antiparallel orientation of the two CA-CA-CA frames. - if (i.gt.1) then +c if (i.gt.1) then + if (i.gt.1 .and. itype(i).le.ntyp) then iti=itortyp(itype(i)) else iti=ntortyp+1 @@ -5681,7 +5885,8 @@ C Antiparallel orientation of the two CA-CA-CA frames. itk1=itortyp(itype(k+1)) itl=itortyp(itype(l)) itj=itortyp(itype(j)) - if (j.lt.nres-1) then +c if (j.lt.nres-1) then + if (j.lt.nres-1 .and. itype(j+1).le.ntyp) then itj1=itortyp(itype(j+1)) else itj1=ntortyp+1 @@ -6839,14 +7044,16 @@ C C 4/7/01 AL Component s1 was removed, because it pertains to the respective C energy moment and not to the cluster cumulant. iti=itortyp(itype(i)) - if (j.lt.nres-1) then +c if (j.lt.nres-1) then + if (j.lt.nres-1 .and. itype(j+1).le.ntyp) then itj1=itortyp(itype(j+1)) else itj1=ntortyp+1 endif itk=itortyp(itype(k)) itk1=itortyp(itype(k+1)) - if (l.lt.nres-1) then +c if (l.lt.nres-1) then + if (l.lt.nres-1 .and. itype(l+1).le.ntyp) then itl1=itortyp(itype(l+1)) else itl1=ntortyp+1 @@ -6959,13 +7166,15 @@ C energy moment and not to the cluster cumulant. cd write (2,*) 'eello_graph4: wturn6',wturn6 iti=itortyp(itype(i)) itj=itortyp(itype(j)) - if (j.lt.nres-1) then +c if (j.lt.nres-1) then + if (j.lt.nres-1 .and. itype(j+1).le.ntyp) then itj1=itortyp(itype(j+1)) else itj1=ntortyp+1 endif itk=itortyp(itype(k)) - if (k.lt.nres-1) then +c if (k.lt.nres-1) then + if (k.lt.nres-1 .and. itype(k+1).le.ntyp) then itk1=itortyp(itype(k+1)) else itk1=ntortyp+1