Merge branch 'UCGM' of mmka.chem.univ.gda.pl:unres4 into UCGM
[unres4.git] / source / unres / io_config.f90
index 0dce2e1..87ddf94 100644 (file)
 
 !     write (iout,100)
 !      do i=1,nres
-!        write (iout,110) restyp(itype(i)),i,c(1,i),c(2,i),&
+!        write (iout,110) restyp(itype(i,1)),i,c(1,i),c(2,i),&
 !          c(3,i),c(1,nres+i),c(2,nres+i),c(3,nres+i)
 !      enddo
 !  100 format (//'              alpha-carbon coordinates       ',&
 ! read secondary structure prediction from JPRED here!
 !      read(isecpred,'(A80)',err=100,end=100) line
 !      read(line,'(f10.3)',err=110) ftors
-       read(isecpred,'(f10.3)',err=110) ftors
+       read(isecpred,'(f10.3)',err=110) ftors(1)
 
-      write (iout,*) 'FTORS factor =',ftors
+      write (iout,*) 'FTORS factor =',ftors(1)
 ! initialize secstruc to any
        do i=1,nres
         secstruc(i) ='-'
       
       ii=0
       do i=1,nres
+         ftors(i)=ftors(1)
         if ( secstruc(i) .eq. 'H') then
 ! Helix restraints for this residue               
            ii=ii+1 
       character(len=1) :: toronelet(-2:2) = (/"p","a","G","A","P"/)
       logical :: lprint,LaTeX
       real(kind=8),dimension(3,3,maxlob) :: blower     !(3,3,maxlob)
-      real(kind=8),dimension(13) :: b
+      real(kind=8),dimension(13) :: buse
       character(len=3) :: lancuch      !,ucase
 !el  local variables
       integer :: m,n,l,i,j,k,iblock,lll,llll,ll,nlobi,mm
-      integer :: maxinter,junk,kk,ii
+      integer :: maxinter,junk,kk,ii,ncatprotparm
       real(kind=8) :: v0ijsccor,v0ijsccor1,v0ijsccor2,v0ijsccor3,si,&
                 dwa16,rjunk,akl,v0ij,rri,epsij,rrij,sigeps,sigt1sq,&
                 sigt2sq,sigii1,sigii2,ratsig1,ratsig2,rsum_max,r_augm,&
-                res1,epsijlip
+                res1,epsijlip,epspeptube,epssctube,sigmapeptube,      &
+                sigmasctube
       integer :: ichir1,ichir2
 !      real(kind=8),dimension(maxterm,-maxtor:maxtor,-maxtor:maxtor,2) :: v1_el,v2_el !(maxterm,-maxtor:maxtor,-maxtor:maxtor,2)
 !el      allocate(v1_el(maxterm,-maxtor:maxtor,-maxtor:maxtor,2))
 !
       allocate(dsc(ntyp1)) !(ntyp1)
       allocate(dsc_inv(ntyp1)) !(ntyp1)
+      allocate(nbondterm_nucl(ntyp_molec(2))) !(ntyp)
+      allocate(vbldsc0_nucl(maxbondterm,ntyp_molec(2))) !(maxbondterm,ntyp)
+      allocate(aksc_nucl(maxbondterm,ntyp_molec(2))) !(maxbondterm,ntyp)
       allocate(nbondterm(ntyp)) !(ntyp)
       allocate(vbldsc0(maxbondterm,ntyp)) !(maxbondterm,ntyp)
       allocate(aksc(maxbondterm,ntyp)) !(maxbondterm,ntyp)
-      allocate(msc(ntyp+1)) !(ntyp+1)
-      allocate(isc(ntyp+1)) !(ntyp+1)
-      allocate(restok(ntyp+1)) !(ntyp+1)
       allocate(abond0(maxbondterm,ntyp)) !(maxbondterm,ntyp)
       allocate(long_r_sidechain(ntyp))
       allocate(short_r_sidechain(ntyp))
       dsc_inv(:)=0.0d0
 
 #ifdef CRYST_BOND
+      allocate(msc(ntyp+1)) !(ntyp+1)
+      allocate(isc(ntyp+1)) !(ntyp+1)
+      allocate(restok(ntyp+1)) !(ntyp+1)
+
       read (ibond,*) vbldp0,akp,mp,ip,pstok
       do i=1,ntyp
         nbondterm(i)=1
         endif
       enddo
 #else
-      read (ibond,*) junk,vbldp0,vbldpDUM,akp,rjunk,mp,ip,pstok
-      do i=1,ntyp
+      mp(:)=0.0d0
+      ip(:)=0.0d0
+      msc(:,:)=0.0d0
+      isc(:,:)=0.0d0
+
+      allocate(msc(ntyp+1,5)) !(ntyp+1)
+      allocate(isc(ntyp+1,5)) !(ntyp+1)
+      allocate(restok(ntyp+1,5)) !(ntyp+1)
+
+      read (ibond,*) junk,vbldp0,vbldpDUM,akp,rjunk,mp(1),ip(1),pstok(1)
+      do i=1,ntyp_molec(1)
         read (ibond,*) nbondterm(i),(vbldsc0(j,i),aksc(j,i),abond0(j,i),&
-         j=1,nbondterm(i)),msc(i),isc(i),restok(i)
+         j=1,nbondterm(i)),msc(i,1),isc(i,1),restok(i,1)
         dsc(i) = vbldsc0(1,i)
         if (i.eq.10) then
           dsc_inv(i)=0.0D0
         endif
       enddo
 #endif
+      read (ibond_nucl,*) vbldp0_nucl,akp_nucl,mp(2),ip(2),pstok(2)
+      do i=1,ntyp_molec(2)
+        nbondterm_nucl(i)=1
+        read (ibond_nucl,*) vbldsc0_nucl(1,i),aksc_nucl(1,i),msc(i,2),isc(i,2),restok(i,2)
+!        dsc(i) = vbldsc0_nucl(1,i)
+!        if (i.eq.10) then
+!          dsc_inv(i)=0.0D0
+!        else
+!          dsc_inv(i)=1.0D0/dsc(i)
+!        endif
+      enddo
+!      read (ibond_nucl,*) junk,vbldp0_nucl,akp_nucl,rjunk,mp(2),ip(2),pstok(2)
+!      do i=1,ntyp_molec(2)
+!        read (ibond_nucl,*) nbondterm_nucl(i),(vbldsc0_nucl(j,i),& 
+!        aksc_nucl(j,i),abond0_nucl(j,i),&
+!         j=1,nbondterm_nucl(i)),msc(i,2),isc(i,2),restok(i,2)
+!        dsc(i) = vbldsc0(1,i)
+!        if (i.eq.10) then
+!          dsc_inv(i)=0.0D0
+!        else
+!          dsc_inv(i)=1.0D0/dsc(i)
+!        endif
+!      enddo
+
       if (lprint) then
         write(iout,'(/a/)')"Dynamic constants of the interaction sites:"
         write (iout,'(a10,a3,6a10)') 'Type','N','VBL','K','A0','mass',&
          'inertia','Pstok'
-        write(iout,'(a10,i3,6f10.5)') "p",1,vbldp0,akp,0.0d0,mp,ip,pstok
+        write(iout,'(a10,i3,6f10.5)') "p",1,vbldp0,akp,0.0d0,mp(1),ip(1),pstok(1)
         do i=1,ntyp
-          write (iout,'(a10,i3,6f10.5)') restyp(i),nbondterm(i),&
-            vbldsc0(1,i),aksc(1,i),abond0(1,i),msc(i),isc(i),restok(i)
+          write (iout,'(a10,i3,6f10.5)') restyp(i,1),nbondterm(i),&
+            vbldsc0(1,i),aksc(1,i),abond0(1,i),msc(i,1),isc(i,1),restok(i,1)
           do j=2,nbondterm(i)
             write (iout,'(13x,3f10.5)') &
               vbldsc0(j,i),aksc(j,i),abond0(j,i)
           enddo
         enddo
       endif
+            do i=1,ntyp_molec(5)
+             read(iion,*) msc(i,5),restok(i,5)
+             print *,msc(i,5),restok(i,5)
+            enddo
+            ip(5)=0.2
+!            isc(5)=0.2
+            read (iion,*) ncatprotparm
+            allocate(catprm(ncatprotparm,4))
+            do k=1,4
+            read (iion,*)  (catprm(i,k),i=1,ncatprotparm)
+            enddo
+            print *, catprm
+!            read (iion,*) (vcatprm(k),k=1,ncatprotpram)
 !----------------------------------------------------
       allocate(a0thet(-ntyp:ntyp),theta0(-ntyp:ntyp))
       allocate(sig0(-ntyp:ntyp),sigc0(-ntyp:ntyp))     !(-ntyp:ntyp)
        '    ATHETA0   ','         A1   ','        A2    ',&
        '        B1    ','         B2   '        
         do i=1,ntyp
-          write(iout,'(a3,i4,2x,5(1pe14.5))') restyp(i),i,&
+          write(iout,'(a3,i4,2x,5(1pe14.5))') restyp(i,1),i,&
               a0thet(i),(athet(j,i,1,1),j=1,2),(bthet(j,i,1,1),j=1,2)
         enddo
         write (iout,'(/a/9x,5a/79(1h-))') &
        '     ALPH0    ','      ALPH1   ','     ALPH2    ',&
        '     ALPH3    ','    SIGMA0C   '        
         do i=1,ntyp
-          write (iout,'(a3,i4,2x,5(1pe14.5))') restyp(i),i,&
+          write (iout,'(a3,i4,2x,5(1pe14.5))') restyp(i,1),i,&
             (polthet(j,i),j=0,3),sigc0(i) 
         enddo
         write (iout,'(/a/9x,5a/79(1h-))') &
        '    THETA0    ','     SIGMA0   ','        G1    ',&
        '        G2    ','         G3   '        
         do i=1,ntyp
-          write (iout,'(a3,i4,2x,5(1pe14.5))') restyp(i),i,theta0(i),&
+          write (iout,'(a3,i4,2x,5(1pe14.5))') restyp(i,1),i,theta0(i),&
              sig0(i),(gthet(j,i),j=1,3)
         enddo
        else
        '     theta0   ','    a1*10^2   ','   a2*10^2    ',&
        '   b1*10^1    ','    b2*10^1   '        
         do i=1,ntyp
-          write(iout,'(a3,1h&,2x,5(f8.3,1h&))') restyp(i),&
+          write(iout,'(a3,1h&,2x,5(f8.3,1h&))') restyp(i,1),&
               a0thet(i),(100*athet(j,i,1,1),j=1,2),&
               (10*bthet(j,i,1,1),j=1,2)
         enddo
        ' alpha0       ','  alph1       ',' alph2        ',&
        ' alhp3        ','   sigma0c    '        
        do i=1,ntyp
-          write (iout,'(a3,1h&,2x,5(1pe12.3,1h&))') restyp(i),&
+          write (iout,'(a3,1h&,2x,5(1pe12.3,1h&))') restyp(i,1),&
             (polthet(j,i),j=0,3),sigc0(i) 
        enddo
        write (iout,'(/a/9x,5a/79(1h-))') &
        '    theta0    ','  sigma0*10^2 ','      G1*10^-1',&
        '        G2    ','   G3*10^1    '        
        do i=1,ntyp
-          write (iout,'(a3,1h&,2x,5(f8.3,1h&))') restyp(i),theta0(i),&
+          write (iout,'(a3,1h&,2x,5(f8.3,1h&))') restyp(i,1),theta0(i),&
              100*sig0(i),gthet(1,i)*0.1D0,gthet(2,i),gthet(3,i)*10.0D0
        enddo
       endif
       close (ithep_pdb)
 #endif
       close(ithep)
+!--------------- Reading theta parameters for nucleic acid-------
+      read (ithep_nucl,*,err=111,end=111) nthetyp_nucl,ntheterm_nucl,&
+      ntheterm2_nucl,ntheterm3_nucl,nsingle_nucl,ndouble_nucl
+      nntheterm_nucl=max0(ntheterm_nucl,ntheterm2_nucl,ntheterm3_nucl)
+      allocate(ithetyp_nucl(ntyp1_molec(2))) !(-ntyp1:ntyp1)
+      allocate(aa0thet_nucl(nthetyp_nucl+1,&
+        nthetyp_nucl+1,nthetyp_nucl+1))
+!(-maxthetyp1:maxthetyp1,-maxthetyp1:maxthetyp1,-maxthetyp1:maxthetyp1,2)
+      allocate(aathet_nucl(ntheterm_nucl+1,nthetyp_nucl+1,&
+        nthetyp_nucl+1,nthetyp_nucl+1))
+!(maxtheterm,-maxthetyp1:maxthetyp1,&
+!        -maxthetyp1:maxthetyp1,-maxthetyp1:maxthetyp1,2)
+      allocate(bbthet_nucl(nsingle_nucl+1,ntheterm2_nucl+1,nthetyp_nucl+1,&
+        nthetyp_nucl+1,nthetyp_nucl+1))
+      allocate(ccthet_nucl(nsingle_nucl+1,ntheterm2_nucl+1,nthetyp_nucl+1,&
+        nthetyp_nucl+1,nthetyp_nucl+1))
+      allocate(ddthet_nucl(nsingle_nucl+1,ntheterm2_nucl+1,nthetyp_nucl+1,&
+        nthetyp_nucl+1,nthetyp_nucl+1))
+      allocate(eethet_nucl(nsingle_nucl+1,ntheterm2_nucl+1,nthetyp_nucl+1,&
+        nthetyp_nucl+1,nthetyp_nucl+1))
+!(maxsingle,maxtheterm2,-maxthetyp1:maxthetyp1,&
+!        -maxthetyp1:maxthetyp1,-maxthetyp1:maxthetyp1,2)
+      allocate(ffthet_nucl(ndouble_nucl+1,ndouble_nucl+1,ntheterm3_nucl+1,&
+         nthetyp_nucl+1,nthetyp_nucl+1,nthetyp_nucl+1))
+      allocate(ggthet_nucl(ndouble_nucl+1,ndouble_nucl+1,ntheterm3_nucl+1,&
+         nthetyp_nucl+1,nthetyp_nucl+1,nthetyp_nucl+1))
+
+!(maxdouble,maxdouble,maxtheterm3,-maxthetyp1:maxthetyp1,&
+!        -maxthetyp1:maxthetyp1,-maxthetyp1:maxthetyp1,2))
+
+      read (ithep_nucl,*,err=111,end=111) (ithetyp_nucl(i),i=1,ntyp1_molec(2))
+
+      aa0thet_nucl(:,:,:)=0.0d0
+      aathet_nucl(:,:,:,:)=0.0d0
+      bbthet_nucl(:,:,:,:,:)=0.0d0
+      ccthet_nucl(:,:,:,:,:)=0.0d0
+      ddthet_nucl(:,:,:,:,:)=0.0d0
+      eethet_nucl(:,:,:,:,:)=0.0d0
+      ffthet_nucl(:,:,:,:,:,:)=0.0d0
+      ggthet_nucl(:,:,:,:,:,:)=0.0d0
+
+      do i=1,nthetyp_nucl
+        do j=1,nthetyp_nucl
+          do k=1,nthetyp_nucl
+            read (ithep_nucl,'(3a)',end=111,err=111) t1,t2,t3
+            read (ithep_nucl,*,end=111,err=111) aa0thet_nucl(i,j,k)
+            read (ithep_nucl,*,end=111,err=111)(aathet_nucl(l,i,j,k),l=1,ntheterm_nucl)
+            read (ithep_nucl,*,end=111,err=111) &
+            (((bbthet_nucl(lll,ll,i,j,k),lll=1,nsingle_nucl), &
+            (ccthet_nucl(lll,ll,i,j,k),lll=1,nsingle_nucl), &
+            (ddthet_nucl(lll,ll,i,j,k),lll=1,nsingle_nucl), &
+            (eethet_nucl(lll,ll,i,j,k),lll=1,nsingle_nucl)),ll=1,ntheterm2_nucl)
+            read (ithep_nucl,*,end=111,err=111) &
+           (((ffthet_nucl(llll,lll,ll,i,j,k),ffthet_nucl(lll,llll,ll,i,j,k), &
+              ggthet_nucl(llll,lll,ll,i,j,k),ggthet_nucl(lll,llll,ll,i,j,k), &
+              llll=1,lll-1),lll=2,ndouble_nucl),ll=1,ntheterm3_nucl)
+          enddo
+        enddo
+      enddo
 
 !-------------------------------------------
       allocate(nlob(ntyp1)) !(ntyp1)
          nlobi=nlob(i)
           if (nlobi.gt.0) then
             if (LaTeX) then
-              write (iout,'(/3a,i2,a,f8.3)') 'Residue type: ',restyp(i),&
+              write (iout,'(/3a,i2,a,f8.3)') 'Residue type: ',restyp(i,1),&
                ' # of gaussian lobes:',nlobi,' dsc:',dsc(i)
                write (iout,'(1h&,a,3(2h&&,f8.3,2h&&))') &
                                    'log h',(bsc(j,i),j=1,nlobi)
          enddo  
        endif
       enddo
+!---------reading nucleic acid parameters for rotamers-------------------
+      allocate(sc_parmin_nucl(9,ntyp_molec(2)))      !(maxsccoef,ntyp)
+      do i=1,ntyp_molec(2)
+        read (irotam_nucl,*,end=112,err=112)
+        do j=1,9
+          read(irotam_nucl,*,end=112,err=112) sc_parmin_nucl(j,i)
+        enddo
+      enddo
+      close(irotam_nucl)
+      if (lprint) then
+        write (iout,*)
+        write (iout,*) "Base rotamer parameters"
+        do i=1,ntyp_molec(2)
+          write (iout,'(a)') restyp(i,2)
+          write (iout,'(i5,f10.5)') (i,sc_parmin_nucl(j,i),j=1,9)
+        enddo
+      endif
+
 !
 ! Read the parameters of the probability distribution/energy expression
 ! of the side chains.
       enddo
       endif
 #endif
+      allocate(itortyp_nucl(ntyp1_molec(2))) !(-ntyp1:ntyp1)
+      read (itorp_nucl,*,end=113,err=113) ntortyp_nucl
+!      print *,"ntortyp_nucl",ntortyp_nucl,ntyp_molec(2)
+!el from energy module---------
+      allocate(nterm_nucl(ntortyp_nucl,ntortyp_nucl)) !(-maxtor:maxtor,-maxtor:maxtor,2)
+      allocate(nlor_nucl(ntortyp_nucl,ntortyp_nucl)) !(-maxtor:maxtor,-maxtor:maxtor,2)
+
+      allocate(vlor1_nucl(maxlor,ntortyp_nucl,ntortyp_nucl)) !(maxlor,-maxtor:maxtor,-maxtor:maxtor)
+      allocate(vlor2_nucl(maxlor,ntortyp_nucl,ntortyp_nucl))
+      allocate(vlor3_nucl(maxlor,ntortyp_nucl,ntortyp_nucl)) !(maxlor,maxtor,maxtor)
+      allocate(v0_nucl(ntortyp_nucl,ntortyp_nucl)) !(-maxtor:maxtor,-maxtor:maxtor,2)
+
+      allocate(v1_nucl(maxterm,ntortyp_nucl,ntortyp_nucl))
+      allocate(v2_nucl(maxterm,ntortyp_nucl,ntortyp_nucl)) !(maxterm,-maxtor:maxtor,-maxtor:maxtor,2)
+!el---------------------------
+      nterm_nucl(:,:)=0
+      nlor_nucl(:,:)=0
+!el--------------------
+      read (itorp_nucl,*,end=113,err=113) &
+        (itortyp_nucl(i),i=1,ntyp_molec(2))
+!        print *,itortyp_nucl(:)
+!c      write (iout,*) 'ntortyp',ntortyp
+      do i=1,ntortyp_nucl
+        do j=1,ntortyp_nucl
+          read (itorp_nucl,*,end=113,err=113) nterm_nucl(i,j),nlor_nucl(i,j)
+!           print *,nterm_nucl(i,j),nlor_nucl(i,j)
+          v0ij=0.0d0
+          si=-1.0d0
+          do k=1,nterm_nucl(i,j)
+            read (itorp_nucl,*,end=113,err=113) kk,v1_nucl(k,i,j),v2_nucl(k,i,j)
+            v0ij=v0ij+si*v1_nucl(k,i,j)
+            si=-si
+          enddo
+          do k=1,nlor_nucl(i,j)
+            read (itorp,*,end=113,err=113) kk,vlor1_nucl(k,i,j),&
+              vlor2_nucl(k,i,j),vlor3_nucl(k,i,j)
+            v0ij=v0ij+vlor1_nucl(k,i,j)/(1+vlor3_nucl(k,i,j)**2)
+          enddo
+          v0_nucl(i,j)=v0ij
+        enddo
+      enddo
+
 ! Read of Side-chain backbone correlation parameters
 ! Modified 11 May 2012 by Adasko
 !CC
 
 #endif      
       if (lprint) then
+        l=3
         write (iout,'(/a/)') 'Torsional constants:'
         do i=1,nsccortyp
           do j=1,nsccortyp
 
       do i=0,nloctyp-1
         read (ifourier,*,end=115,err=115)
-        read (ifourier,*,end=115,err=115) (b(ii),ii=1,13)
+        read (ifourier,*,end=115,err=115) (buse(ii),ii=1,13)
         if (lprint) then
           write (iout,*) 'Type',i
-          write (iout,'(a,i2,a,f10.5)') ('b(',ii,')=',b(ii),ii=1,13)
+          write (iout,'(a,i2,a,f10.5)') ('buse(',ii,')=',buse(ii),ii=1,13)
         endif
-        B1(1,i)  = b(3)
-        B1(2,i)  = b(5)
-        B1(1,-i) = b(3)
-        B1(2,-i) = -b(5)
-!        b1(1,i)=0.0d0
-!        b1(2,i)=0.0d0
-        B1tilde(1,i) = b(3)
-        B1tilde(2,i) =-b(5)
-        B1tilde(1,-i) =-b(3)
-        B1tilde(2,-i) =b(5)
-!        b1tilde(1,i)=0.0d0
-!        b1tilde(2,i)=0.0d0
-        B2(1,i)  = b(2)
-        B2(2,i)  = b(4)
-        B2(1,-i)  =b(2)
-        B2(2,-i)  =-b(4)
-
-!        b2(1,i)=0.0d0
-!        b2(2,i)=0.0d0
-        CC(1,1,i)= b(7)
-        CC(2,2,i)=-b(7)
-        CC(2,1,i)= b(9)
-        CC(1,2,i)= b(9)
-        CC(1,1,-i)= b(7)
-        CC(2,2,-i)=-b(7)
-        CC(2,1,-i)=-b(9)
-        CC(1,2,-i)=-b(9)
+        B1(1,i)  = buse(3)
+        B1(2,i)  = buse(5)
+        B1(1,-i) = buse(3)
+        B1(2,-i) = -buse(5)
+!        buse1(1,i)=0.0d0
+!        buse1(2,i)=0.0d0
+        B1tilde(1,i) = buse(3)
+        B1tilde(2,i) =-buse(5)
+        B1tilde(1,-i) =-buse(3)
+        B1tilde(2,-i) =buse(5)
+!        buse1tilde(1,i)=0.0d0
+!        buse1tilde(2,i)=0.0d0
+        B2(1,i)  = buse(2)
+        B2(2,i)  = buse(4)
+        B2(1,-i)  =buse(2)
+        B2(2,-i)  =-buse(4)
+
+!        buse2(1,i)=0.0d0
+!        buse2(2,i)=0.0d0
+        CC(1,1,i)= buse(7)
+        CC(2,2,i)=-buse(7)
+        CC(2,1,i)= buse(9)
+        CC(1,2,i)= buse(9)
+        CC(1,1,-i)= buse(7)
+        CC(2,2,-i)=-buse(7)
+        CC(2,1,-i)=-buse(9)
+        CC(1,2,-i)=-buse(9)
 !        CC(1,1,i)=0.0d0
 !        CC(2,2,i)=0.0d0
 !        CC(2,1,i)=0.0d0
 !        CC(1,2,i)=0.0d0
-        Ctilde(1,1,i)=b(7)
-        Ctilde(1,2,i)=b(9)
-        Ctilde(2,1,i)=-b(9)
-        Ctilde(2,2,i)=b(7)
-        Ctilde(1,1,-i)=b(7)
-        Ctilde(1,2,-i)=-b(9)
-        Ctilde(2,1,-i)=b(9)
-        Ctilde(2,2,-i)=b(7)
+        Ctilde(1,1,i)=buse(7)
+        Ctilde(1,2,i)=buse(9)
+        Ctilde(2,1,i)=-buse(9)
+        Ctilde(2,2,i)=buse(7)
+        Ctilde(1,1,-i)=buse(7)
+        Ctilde(1,2,-i)=-buse(9)
+        Ctilde(2,1,-i)=buse(9)
+        Ctilde(2,2,-i)=buse(7)
 
 !        Ctilde(1,1,i)=0.0d0
 !        Ctilde(1,2,i)=0.0d0
 !        Ctilde(2,1,i)=0.0d0
 !        Ctilde(2,2,i)=0.0d0
-        DD(1,1,i)= b(6)
-        DD(2,2,i)=-b(6)
-        DD(2,1,i)= b(8)
-        DD(1,2,i)= b(8)
-        DD(1,1,-i)= b(6)
-        DD(2,2,-i)=-b(6)
-        DD(2,1,-i)=-b(8)
-        DD(1,2,-i)=-b(8)
+        DD(1,1,i)= buse(6)
+        DD(2,2,i)=-buse(6)
+        DD(2,1,i)= buse(8)
+        DD(1,2,i)= buse(8)
+        DD(1,1,-i)= buse(6)
+        DD(2,2,-i)=-buse(6)
+        DD(2,1,-i)=-buse(8)
+        DD(1,2,-i)=-buse(8)
 !        DD(1,1,i)=0.0d0
 !        DD(2,2,i)=0.0d0
 !        DD(2,1,i)=0.0d0
 !        DD(1,2,i)=0.0d0
-        Dtilde(1,1,i)=b(6)
-        Dtilde(1,2,i)=b(8)
-        Dtilde(2,1,i)=-b(8)
-        Dtilde(2,2,i)=b(6)
-        Dtilde(1,1,-i)=b(6)
-        Dtilde(1,2,-i)=-b(8)
-        Dtilde(2,1,-i)=b(8)
-        Dtilde(2,2,-i)=b(6)
+        Dtilde(1,1,i)=buse(6)
+        Dtilde(1,2,i)=buse(8)
+        Dtilde(2,1,i)=-buse(8)
+        Dtilde(2,2,i)=buse(6)
+        Dtilde(1,1,-i)=buse(6)
+        Dtilde(1,2,-i)=-buse(8)
+        Dtilde(2,1,-i)=buse(8)
+        Dtilde(2,2,-i)=buse(6)
 
 !        Dtilde(1,1,i)=0.0d0
 !        Dtilde(1,2,i)=0.0d0
 !        Dtilde(2,1,i)=0.0d0
 !        Dtilde(2,2,i)=0.0d0
-        EE(1,1,i)= b(10)+b(11)
-        EE(2,2,i)=-b(10)+b(11)
-        EE(2,1,i)= b(12)-b(13)
-        EE(1,2,i)= b(12)+b(13)
-        EE(1,1,-i)= b(10)+b(11)
-        EE(2,2,-i)=-b(10)+b(11)
-        EE(2,1,-i)=-b(12)+b(13)
-        EE(1,2,-i)=-b(12)-b(13)
+        EE(1,1,i)= buse(10)+buse(11)
+        EE(2,2,i)=-buse(10)+buse(11)
+        EE(2,1,i)= buse(12)-buse(13)
+        EE(1,2,i)= buse(12)+buse(13)
+        EE(1,1,-i)= buse(10)+buse(11)
+        EE(2,2,-i)=-buse(10)+buse(11)
+        EE(2,1,-i)=-buse(12)+buse(13)
+        EE(1,2,-i)=-buse(12)-buse(13)
 
 !        ee(1,1,i)=1.0d0
 !        ee(2,2,i)=1.0d0
       allocate(eps(ntyp,ntyp),sigmaii(ntyp,ntyp),rs0(ntyp,ntyp)) !(ntyp,ntyp)
       allocate(augm(ntyp,ntyp)) !(ntyp,ntyp)
       allocate(eps_scp(ntyp,2),rscp(ntyp,2)) !(ntyp,2)
+
       allocate(sigma0(ntyp),rr0(ntyp),sigii(ntyp)) !(ntyp)
       allocate(chip(ntyp1),alp(ntyp1)) !(ntyp)
       allocate(epslip(ntyp,ntyp))
          call printmat(ntyp,ntyp,ntyp,iout,restyp,eps)
          write (iout,'(/a)') 'One-body parameters:'
          write (iout,'(a,4x,a)') 'residue','sigma'
-         write (iout,'(a3,6x,f10.5)') (restyp(i),sigma0(i),i=1,ntyp)
+         write (iout,'(a3,6x,f10.5)') (restyp(i,1),sigma0(i),i=1,ntyp)
         endif
 !      goto 50
 !----------------------- LJK potential --------------------------------
          call printmat(ntyp,ntyp,ntyp,iout,restyp,eps)
          write (iout,'(/a)') 'One-body parameters:'
          write (iout,'(a,4x,2a)') 'residue','   sigma  ','    r0    '
-          write (iout,'(a3,6x,2f10.5)') (restyp(i),sigma0(i),rr0(i),&
+          write (iout,'(a3,6x,2f10.5)') (restyp(i,1),sigma0(i),rr0(i),&
                 i=1,ntyp)
         endif
 !      goto 50
 !---------------------- GB or BP potential -----------------------------
        case(3:4)
 !   30 do i=1,ntyp
+!        print *,"I AM in SCELE",scelemode
+        if (scelemode.eq.0) then
         do i=1,ntyp
          read (isidep,*,end=117,err=117)(eps(i,j),j=i,ntyp)
         enddo
          write (iout,'(/a)') 'One-body parameters:'
          write (iout,'(a,4x,4a)') 'residue','   sigma  ','s||/s_|_^2',&
                '    chip  ','    alph  '
-         write (iout,'(a3,6x,4f10.5)') (restyp(i),sigma0(i),sigii(i),&
+         write (iout,'(a3,6x,4f10.5)') (restyp(i,1),sigma0(i),sigii(i),&
                              chip(i),alp(i),i=1,ntyp)
         endif
+       else
+!      print *,ntyp,"NTYP"
+      allocate(icharge(ntyp1))
+!      print *,ntyp,icharge(i)
+      icharge(:)=0
+      read (isidep,*) (icharge(i),i=1,ntyp)
+      print *,ntyp,icharge(i)
+!      if(.not.allocated(eps)) allocate(eps(-ntyp
+!c      write (2,*) "icharge",(icharge(i),i=1,ntyp)
+       allocate(alphapol(ntyp,ntyp),epshead(ntyp,ntyp),sig0head(ntyp,ntyp))
+       allocate(sigiso1(ntyp,ntyp),rborn(ntyp,ntyp),sigmap1(ntyp,ntyp))
+       allocate(sigmap2(ntyp,ntyp),sigiso2(ntyp,ntyp))
+       allocate(chis(ntyp,ntyp),wquad(ntyp,ntyp),chipp(ntyp,ntyp))
+       allocate(epsintab(ntyp,ntyp))
+       allocate(dtail(2,ntyp,ntyp))
+       allocate(alphasur(4,ntyp,ntyp),alphiso(4,ntyp,ntyp))
+       allocate(wqdip(2,ntyp,ntyp))
+       allocate(wstate(4,ntyp,ntyp))
+       allocate(dhead(2,2,ntyp,ntyp))
+       allocate(nstate(ntyp,ntyp))
+      if (.not.allocated(sigma)) allocate(sigma(0:ntyp1,0:ntyp1))
+      if (.not.allocated(chi)) allocate(chi(ntyp1,ntyp1)) !(ntyp,ntyp)
+      do i=1,ntyp
+       do j=1,i
+!        write (*,*) "Im in ALAB", i, " ", j
+        read(isidep,*) &
+       eps(i,j),sigma(i,j),chi(i,j),chi(j,i),chipp(i,j),chipp(j,i), &
+       (alphasur(k,i,j),k=1,4),sigmap1(i,j),sigmap2(i,j), &
+       chis(i,j),chis(j,i), &
+       nstate(i,j),(wstate(k,i,j),k=1,4), &
+       dhead(1,1,i,j),dhead(1,2,i,j),dhead(2,1,i,j),dhead(2,2,i,j),&
+       dtail(1,i,j),dtail(2,i,j), &
+       epshead(i,j),sig0head(i,j), &
+       rborn(i,j),rborn(j,i),(wqdip(k,i,j),k=1,2),wquad(i,j), &
+       alphapol(i,j),alphapol(j,i), &
+       (alphiso(k,i,j),k=1,4),sigiso1(i,j),sigiso2(i,j),epsintab(i,j)
+!       print *,eps(i,j),sigma(i,j),"SIGMAP",i,j,sigmap1(i,j),sigmap2(j,i) 
+       END DO
+      END DO
+      DO i = 1, ntyp
+       DO j = i+1, ntyp
+        eps(i,j) = eps(j,i)
+        sigma(i,j) = sigma(j,i)
+        sigmap1(i,j)=sigmap1(j,i)
+        sigmap2(i,j)=sigmap2(j,i)
+        sigiso1(i,j)=sigiso1(j,i)
+        sigiso2(i,j)=sigiso2(j,i)
+!        print *,"ATU",sigma(j,i),sigma(i,j),i,j
+        nstate(i,j) = nstate(j,i)
+        dtail(1,i,j) = dtail(1,j,i)
+        dtail(2,i,j) = dtail(2,j,i)
+        DO k = 1, 4
+         alphasur(k,i,j) = alphasur(k,j,i)
+         wstate(k,i,j) = wstate(k,j,i)
+         alphiso(k,i,j) = alphiso(k,j,i)
+        END DO
+
+        dhead(2,1,i,j) = dhead(1,1,j,i)
+        dhead(2,2,i,j) = dhead(1,2,j,i)
+        dhead(1,1,i,j) = dhead(2,1,j,i)
+        dhead(1,2,i,j) = dhead(2,2,j,i)
+
+        epshead(i,j) = epshead(j,i)
+        sig0head(i,j) = sig0head(j,i)
+
+        DO k = 1, 2
+         wqdip(k,i,j) = wqdip(k,j,i)
+        END DO
+
+        wquad(i,j) = wquad(j,i)
+        epsintab(i,j) = epsintab(j,i)
+!        if (epsintab(i,j).ne.1.0) print *,"WHAT?",i,j,epsintab(i,j)
+       END DO
+      END DO
+      endif
 !      goto 50
 !--------------------- GBV potential -----------------------------------
        case(5)
           write (iout,'(/a)') 'One-body parameters:'
           write (iout,'(a,4x,5a)') 'residue','   sigma  ','    r0    ',&
               's||/s_|_^2','    chip  ','    alph  '
-          write (iout,'(a3,6x,5f10.5)') (restyp(i),sigma0(i),rr0(i),&
+          write (iout,'(a3,6x,5f10.5)') (restyp(i,1),sigma0(i),rr0(i),&
                    sigii(i),chip(i),alp(i),i=1,ntyp)
         endif
        case default
       end select
       continue
       close (isidep)
+
 !-----------------------------------------------------------------------
 ! Calculate the "working" parameters of SC interactions.
 
 !el from module energy - COMMON.INTERACT-------
-      allocate(aa_aq(ntyp1,ntyp1),bb_aq(ntyp1,ntyp1),chi(ntyp1,ntyp1)) !(ntyp,ntyp)
+      allocate(aa_aq(ntyp1,ntyp1),bb_aq(ntyp1,ntyp1))
+      if (.not.allocated(chi)) allocate(chi(ntyp1,ntyp1)) !(ntyp,ntyp)
       allocate(aa_lip(ntyp1,ntyp1),bb_lip(ntyp1,ntyp1)) !(ntyp,ntyp)
-      allocate(sigma(0:ntyp1,0:ntyp1),r0(ntyp1,ntyp1)) !(0:ntyp1,0:ntyp1)
+      if (.not.allocated(sigma)) allocate(sigma(0:ntyp1,0:ntyp1))
+      allocate(r0(ntyp1,ntyp1)) !(0:ntyp1,0:ntyp1)
+      allocate(acavtub(ntyp1),bcavtub(ntyp1),ccavtub(ntyp1),&
+        dcavtub(ntyp1))
+      allocate(sc_aa_tube_par(ntyp1),sc_bb_tube_par(ntyp1),&
+        tubetranene(ntyp1))
       aa_aq(:,:)=0.0D0
       bb_aq(:,:)=0.0D0
       aa_lip(:,:)=0.0D0
       bb_lip(:,:)=0.0D0
+         if (scelemode.eq.0) then
       chi(:,:)=0.0D0
       sigma(:,:)=0.0D0
       r0(:,:)=0.0D0
+        endif
+      acavtub(:)=0.0d0
+      bcavtub(:)=0.0d0
+      ccavtub(:)=0.0d0
+      dcavtub(:)=0.0d0
+      sc_aa_tube_par(:)=0.0d0
+      sc_bb_tube_par(:)=0.0d0
+
 !--------------------------------
 
       do i=2,ntyp
           epslip(i,j)=epslip(j,i)
         enddo
       enddo
+         if (scelemode.eq.0) then
       do i=1,ntyp
         do j=i,ntyp
           sigma(i,j)=dsqrt(sigma0(i)**2+sigma0(j)**2)
           rs0(j,i)=rs0(i,j)
         enddo
       enddo
+      endif
       if (lprint) write (iout,'(/a/10x,7a/72(1h-))') &
        'Working parameters of the SC interactions:',&
        '     a    ','     b    ','   augm   ','  sigma ','   r0   ',&
          epsij=eps(i,j)
          if (ipot.eq.1 .or. ipot.eq.3 .or. ipot.eq.4) then
            rrij=sigma(i,j)
+!            print *,"SIGMA ZLA?",sigma(i,j)
           else
            rrij=rr0(i)+rr0(j)
           endif
          sigeps=dsign(1.0D0,epsij)
          epsij=dabs(epsij)
          aa_aq(i,j)=epsij*rrij*rrij
+          print *,"ADASKO",epsij,rrij,expon
          bb_aq(i,j)=-sigeps*epsij*rrij
          aa_aq(j,i)=aa_aq(i,j)
          bb_aq(j,i)=bb_aq(i,j)
           aa_lip(j,i)=aa_lip(i,j)
           bb_lip(j,i)=bb_lip(i,j)
 !C          write(iout,*) aa_lip
-         if (ipot.gt.2) then
+         if ((ipot.gt.2).and. (scelemode.eq.0)) then
            sigt1sq=sigma0(i)**2
            sigt2sq=sigma0(j)**2
            sigii1=sigii(i)
           endif
          if (lprint) then
             write (iout,'(2(a3,2x),3(1pe10.3),5(0pf8.3))') &
-            restyp(i),restyp(j),aa_aq(i,j),bb_aq(i,j),augm(i,j),&
+            restyp(i,1),restyp(j,1),aa_aq(i,j),bb_aq(i,j),augm(i,j),&
             sigma(i,j),r0(i,j),chi(i,j),chi(j,i)
          endif
         enddo
       enddo
 
+      allocate(eps_nucl(ntyp_molec(2),ntyp_molec(2)))
+      allocate(sigma_nucl(ntyp_molec(2),ntyp_molec(2))) !(ntyp_molec(2),ntyp_molec(2))
+      allocate(elpp6_nucl(ntyp_molec(2),ntyp_molec(2))) !(ntyp_molec(2),ntyp_molec(2))
+      allocate(elpp3_nucl(ntyp_molec(2),ntyp_molec(2))) !(ntyp,2)
+      allocate(elpp63_nucl(ntyp_molec(2),ntyp_molec(2))) !(ntyp_molec(2),ntyp_molec(2))
+      allocate(elpp32_nucl(ntyp_molec(2),ntyp_molec(2))) !(ntyp,2)
+      allocate(chi_nucl(ntyp_molec(2),ntyp_molec(2)),chip_nucl(ntyp_molec(2),ntyp_molec(2))) !(ntyp_molec(2),ntyp_molec(2))
+      allocate(ael3_nucl(ntyp_molec(2),ntyp_molec(2))) !(ntyp,2)
+      allocate(ael6_nucl(ntyp_molec(2),ntyp_molec(2))) !(ntyp,2)
+      allocate(ael32_nucl(ntyp_molec(2),ntyp_molec(2))) !(ntyp,2)
+      allocate(ael63_nucl(ntyp_molec(2),ntyp_molec(2))) !(ntyp,2)
+      allocate(aa_nucl(ntyp_molec(2),ntyp_molec(2))) !(ntyp,2)
+      allocate(bb_nucl(ntyp_molec(2),ntyp_molec(2))) !(ntyp,2)
+      allocate(r0_nucl(ntyp_molec(2),ntyp_molec(2))) !(ntyp,2)
+      allocate(sigmaii_nucl(ntyp_molec(2),ntyp_molec(2))) !(ntyp_molec(2),ntyp_molec(2))
+      allocate(eps_scp_nucl(ntyp_molec(2)),rscp_nucl(ntyp_molec(2))) !(ntyp,2)
+
+!      augm(:,:)=0.0D0
+!      chip(:)=0.0D0
+!      alp(:)=0.0D0
+!      sigma0(:)=0.0D0
+!      sigii(:)=0.0D0
+!      rr0(:)=0.0D0
+   
+      read (isidep_nucl,*) ipot_nucl
+!      print *,"TU?!",ipot_nucl
+      if (ipot_nucl.eq.1) then
+        do i=1,ntyp_molec(2)
+          do j=i,ntyp_molec(2)
+            read (isidep_nucl,*) eps_nucl(i,j),sigma_nucl(i,j),elpp6_nucl(i,j),&
+            elpp3_nucl(i,j), elpp63_nucl(i,j),elpp32_nucl(i,j)
+          enddo
+        enddo
+      else
+        do i=1,ntyp_molec(2)
+          do j=i,ntyp_molec(2)
+            read (isidep_nucl,*) eps_nucl(i,j),sigma_nucl(i,j),chi_nucl(i,j),&
+               chi_nucl(j,i),chip_nucl(i,j),chip_nucl(j,i),&
+               elpp6_nucl(i,j),elpp3_nucl(i,j),elpp63_nucl(i,j),elpp32_nucl(i,j)
+          enddo
+        enddo
+      endif
+!      rpp(1,1)=2**(1.0/6.0)*5.16158
+      do i=1,ntyp_molec(2)
+        do j=i,ntyp_molec(2)
+          rrij=sigma_nucl(i,j)
+          r0_nucl(i,j)=rrij
+          r0_nucl(j,i)=rrij
+          rrij=rrij**expon
+          epsij=4*eps_nucl(i,j)
+          sigeps=dsign(1.0D0,epsij)
+          epsij=dabs(epsij)
+          aa_nucl(i,j)=epsij*rrij*rrij
+          bb_nucl(i,j)=-sigeps*epsij*rrij
+          ael3_nucl(i,j)=elpp3_nucl(i,j)*dsqrt(rrij)
+          ael6_nucl(i,j)=elpp6_nucl(i,j)*rrij
+          ael63_nucl(i,j)=elpp63_nucl(i,j)*rrij
+          ael32_nucl(i,j)=elpp32_nucl(i,j)*rrij
+          sigmaii_nucl(i,j)=sigma_nucl(i,j)/sqrt(1-(chi_nucl(i,j)+chi_nucl(j,i)- &
+         2*chi_nucl(i,j)*chi_nucl(j,i))/(1-chi_nucl(i,j)*chi_nucl(j,i)))
+        enddo
+        do j=1,i-1
+          aa_nucl(i,j)=aa_nucl(j,i)
+          bb_nucl(i,j)=bb_nucl(j,i)
+          ael3_nucl(i,j)=ael3_nucl(j,i)
+          ael6_nucl(i,j)=ael6_nucl(j,i)
+          ael63_nucl(i,j)=ael63_nucl(j,i)
+          ael32_nucl(i,j)=ael32_nucl(j,i)
+          elpp3_nucl(i,j)=elpp3_nucl(j,i)
+          elpp6_nucl(i,j)=elpp6_nucl(j,i)
+          elpp63_nucl(i,j)=elpp63_nucl(j,i)
+          elpp32_nucl(i,j)=elpp32_nucl(j,i)
+          eps_nucl(i,j)=eps_nucl(j,i)
+          sigma_nucl(i,j)=sigma_nucl(j,i)
+          sigmaii_nucl(i,j)=sigmaii_nucl(j,i)
+        enddo
+      enddo
+
+      write(iout,*) "tube param"
+      read(itube,*) epspeptube,sigmapeptube,acavtubpep,bcavtubpep, &
+      ccavtubpep,dcavtubpep,tubetranenepep
+      sigmapeptube=sigmapeptube**6
+      sigeps=dsign(1.0D0,epspeptube)
+      epspeptube=dabs(epspeptube)
+      pep_aa_tube=4.0d0*epspeptube*sigmapeptube**2
+      pep_bb_tube=-sigeps*4.0d0*epspeptube*sigmapeptube
+      write(iout,*) pep_aa_tube,pep_bb_tube,tubetranenepep
+      do i=1,ntyp
+       read(itube,*) epssctube,sigmasctube,acavtub(i),bcavtub(i), &
+      ccavtub(i),dcavtub(i),tubetranene(i)
+       sigmasctube=sigmasctube**6
+       sigeps=dsign(1.0D0,epssctube)
+       epssctube=dabs(epssctube)
+       sc_aa_tube_par(i)=4.0d0*epssctube*sigmasctube**2
+       sc_bb_tube_par(i)=-sigeps*4.0d0*epssctube*sigmasctube
+      write(iout,*) sc_aa_tube_par(i), sc_bb_tube_par(i),tubetranene(i)
+      enddo
+!-----------------READING SC BASE POTENTIALS-----------------------------
+      allocate(eps_scbase(ntyp_molec(1),ntyp_molec(2)))      
+      allocate(sigma_scbase(ntyp_molec(1),ntyp_molec(2)))
+      allocate(chi_scbase(ntyp_molec(1),ntyp_molec(2),2))
+      allocate(chipp_scbase(ntyp_molec(1),ntyp_molec(2),2))
+      allocate(alphasur_scbase(4,ntyp_molec(1),ntyp_molec(2)))
+      allocate(sigmap1_scbase(ntyp_molec(1),ntyp_molec(2)))
+      allocate(sigmap2_scbase(ntyp_molec(1),ntyp_molec(2)))
+      allocate(chis_scbase(ntyp_molec(1),ntyp_molec(2),2))
+      allocate(dhead_scbasei(ntyp_molec(1),ntyp_molec(2)))
+      allocate(dhead_scbasej(ntyp_molec(1),ntyp_molec(2)))
+      allocate(rborn_scbasei(ntyp_molec(1),ntyp_molec(2)))
+      allocate(rborn_scbasej(ntyp_molec(1),ntyp_molec(2)))
+      allocate(wdipdip_scbase(3,ntyp_molec(1),ntyp_molec(2)))
+      allocate(wqdip_scbase(2,ntyp_molec(1),ntyp_molec(2)))
+      allocate(alphapol_scbase(ntyp_molec(1),ntyp_molec(2)))
+      allocate(epsintab_scbase(ntyp_molec(1),ntyp_molec(2)))
+
+
+      do i=1,ntyp_molec(1)
+       do j=1,ntyp_molec(2)-1 ! without U then we will take T for U
+        write (*,*) "Im in ", i, " ", j
+        read(isidep_scbase,*) &
+        eps_scbase(i,j),sigma_scbase(i,j),chi_scbase(i,j,1),&
+        chi_scbase(i,j,2),chipp_scbase(i,j,1),chipp_scbase(i,j,2)
+         write(*,*) "eps",eps_scbase(i,j)
+        read(isidep_scbase,*) &
+       (alphasur_scbase(k,i,j),k=1,4),sigmap1_scbase(i,j),sigmap2_scbase(i,j), &
+       chis_scbase(i,j,1),chis_scbase(i,j,2)
+        read(isidep_scbase,*) &
+       dhead_scbasei(i,j), &
+       dhead_scbasej(i,j), &
+       rborn_scbasei(i,j),rborn_scbasej(i,j)
+        read(isidep_scbase,*) &
+       (wdipdip_scbase(k,i,j),k=1,3), &
+       (wqdip_scbase(k,i,j),k=1,2)
+        read(isidep_scbase,*) &
+       alphapol_scbase(i,j), &
+       epsintab_scbase(i,j) 
+       END DO
+      END DO
+      allocate(aa_scbase(ntyp_molec(1),ntyp_molec(2)))
+      allocate(bb_scbase(ntyp_molec(1),ntyp_molec(2)))
+
+      do i=1,ntyp_molec(1)
+       do j=1,ntyp_molec(2)-1 
+          epsij=eps_scbase(i,j)
+          rrij=sigma_scbase(i,j)
+!          r0(i,j)=rrij
+!          r0(j,i)=rrij
+          rrij=rrij**expon
+!          epsij=eps(i,j)
+          sigeps=dsign(1.0D0,epsij)
+          epsij=dabs(epsij)
+          aa_scbase(i,j)=epsij*rrij*rrij
+          bb_scbase(i,j)=-sigeps*epsij*rrij
+        enddo
+       enddo
+!-----------------READING PEP BASE POTENTIALS-------------------
+      allocate(eps_pepbase(ntyp_molec(2)))
+      allocate(sigma_pepbase(ntyp_molec(2)))
+      allocate(chi_pepbase(ntyp_molec(2),2))
+      allocate(chipp_pepbase(ntyp_molec(2),2))
+      allocate(alphasur_pepbase(4,ntyp_molec(2)))
+      allocate(sigmap1_pepbase(ntyp_molec(2)))
+      allocate(sigmap2_pepbase(ntyp_molec(2)))
+      allocate(chis_pepbase(ntyp_molec(2),2))
+      allocate(wdipdip_pepbase(3,ntyp_molec(2)))
+
+
+       do j=1,ntyp_molec(2)-1 ! without U then we will take T for U
+        write (*,*) "Im in ", i, " ", j
+        read(isidep_pepbase,*) &
+        eps_pepbase(j),sigma_pepbase(j),chi_pepbase(j,1),&
+        chi_pepbase(j,2),chipp_pepbase(j,1),chipp_pepbase(j,2)
+         write(*,*) "eps",eps_pepbase(j)
+        read(isidep_pepbase,*) &
+       (alphasur_pepbase(k,j),k=1,4),sigmap1_pepbase(j),sigmap2_pepbase(j), &
+       chis_pepbase(j,1),chis_pepbase(j,2)
+        read(isidep_pepbase,*) &
+       (wdipdip_pepbase(k,j),k=1,3)
+       END DO
+      allocate(aa_pepbase(ntyp_molec(2)))
+      allocate(bb_pepbase(ntyp_molec(2)))
+
+       do j=1,ntyp_molec(2)-1
+          epsij=eps_pepbase(j)
+          rrij=sigma_pepbase(j)
+!          r0(i,j)=rrij
+!          r0(j,i)=rrij
+          rrij=rrij**expon
+!          epsij=eps(i,j)
+          sigeps=dsign(1.0D0,epsij)
+          epsij=dabs(epsij)
+          aa_pepbase(j)=epsij*rrij*rrij
+          bb_pepbase(j)=-sigeps*epsij*rrij
+        enddo
+!--------------READING SC PHOSPHATE------------------------------------- 
+      allocate(eps_scpho(ntyp_molec(1)))
+      allocate(sigma_scpho(ntyp_molec(1)))
+      allocate(chi_scpho(ntyp_molec(1),2))
+      allocate(chipp_scpho(ntyp_molec(1),2))
+      allocate(alphasur_scpho(4,ntyp_molec(1)))
+      allocate(sigmap1_scpho(ntyp_molec(1)))
+      allocate(sigmap2_scpho(ntyp_molec(1)))
+      allocate(chis_scpho(ntyp_molec(1),2))
+      allocate(wqq_scpho(ntyp_molec(1)))
+      allocate(wqdip_scpho(2,ntyp_molec(1)))
+      allocate(alphapol_scpho(ntyp_molec(1)))
+      allocate(epsintab_scpho(ntyp_molec(1)))
+      allocate(dhead_scphoi(ntyp_molec(1)))
+      allocate(rborn_scphoi(ntyp_molec(1)))
+      allocate(rborn_scphoj(ntyp_molec(1)))
+      allocate(alphi_scpho(ntyp_molec(1)))
+
+
+!      j=1
+       do j=1,ntyp_molec(1) ! without U then we will take T for U
+        write (*,*) "Im in scpho ", i, " ", j
+        read(isidep_scpho,*) &
+        eps_scpho(j),sigma_scpho(j),chi_scpho(j,1),&
+        chi_scpho(j,2),chipp_scpho(j,1),chipp_scpho(j,2)
+         write(*,*) "eps",eps_scpho(j)
+        read(isidep_scpho,*) &
+       (alphasur_scpho(k,j),k=1,4),sigmap1_scpho(j),sigmap2_scpho(j), &
+       chis_scpho(j,1),chis_scpho(j,2)
+        read(isidep_scpho,*) &
+       (wqdip_scpho(k,j),k=1,2),wqq_scpho(j),dhead_scphoi(j)
+        read(isidep_scpho,*) &
+         epsintab_scpho(j),alphapol_scpho(j),rborn_scphoi(j),rborn_scphoj(j), &
+         alphi_scpho(j)
+       
+       END DO
+      allocate(aa_scpho(ntyp_molec(1)))
+      allocate(bb_scpho(ntyp_molec(1)))
+
+       do j=1,ntyp_molec(1)
+          epsij=eps_scpho(j)
+          rrij=sigma_scpho(j)
+!          r0(i,j)=rrij
+!          r0(j,i)=rrij
+          rrij=rrij**expon
+!          epsij=eps(i,j)
+          sigeps=dsign(1.0D0,epsij)
+          epsij=dabs(epsij)
+          aa_scpho(j)=epsij*rrij*rrij
+          bb_scpho(j)=-sigeps*epsij*rrij
+        enddo
+
+
+        read(isidep_peppho,*) &
+        eps_peppho,sigma_peppho
+        read(isidep_peppho,*) &
+       (alphasur_peppho(k),k=1,4),sigmap1_peppho,sigmap2_peppho
+        read(isidep_peppho,*) &
+       (wqdip_peppho(k),k=1,2)
+
+          epsij=eps_peppho
+          rrij=sigma_peppho
+!          r0(i,j)=rrij
+!          r0(j,i)=rrij
+          rrij=rrij**expon
+!          epsij=eps(i,j)
+          sigeps=dsign(1.0D0,epsij)
+          epsij=dabs(epsij)
+          aa_peppho=epsij*rrij*rrij
+          bb_peppho=-sigeps*epsij*rrij
+
+
       allocate(aad(ntyp,2),bad(ntyp,2)) !(ntyp,2)
       bad(:,:)=0.0D0
 
       endif
 !      lprint=.false.
 #endif
+      allocate(aad_nucl(ntyp_molec(2)),bad_nucl(ntyp_molec(2))) !(ntyp,2)
+
+      do i=1,ntyp_molec(2)
+        read (iscpp_nucl,*,end=118,err=118) eps_scp_nucl(i),rscp_nucl(i)
+      enddo
+      do i=1,ntyp_molec(2)
+        aad_nucl(i)=dabs(eps_scp_nucl(i))*rscp_nucl(i)**12
+        bad_nucl(i)=-2*eps_scp_nucl(i)*rscp_nucl(i)**6
+      enddo
+      r0pp=1.12246204830937298142*5.16158
+      epspp=4.95713/4
+      AEES=108.661
+      BEES=0.433246
+
 !
 ! Define the constants of the disulfide bridge
 !
       write (iout,'(3(a,f10.2))') 'v1ss:',v1ss,' v2ss:',v2ss,&
         ' v3ss:',v3ss
       endif
+      if (shield_mode.gt.0) then
+      pi=4.0D0*datan(1.0D0)
+!C VSolvSphere the volume of solving sphere
+      print *,pi,"pi"
+!C rpp(1,1) is the energy r0 for peptide group contact and will be used for it 
+!C there will be no distinction between proline peptide group and normal peptide
+!C group in case of shielding parameters
+      VSolvSphere=4.0/3.0*pi*(4.50d0)**3
+      VSolvSphere_div=VSolvSphere-4.0/3.0*pi*(4.50/2.0)**3
+      write (iout,*) VSolvSphere,VSolvSphere_div
+!C long axis of side chain 
+      do i=1,ntyp
+      long_r_sidechain(i)=vbldsc0(1,i)
+!      if (scelemode.eq.0) then
+      short_r_sidechain(i)=sigma(i,i)/sqrt(2.0)
+      if (short_r_sidechain(i).eq.0.0) short_r_sidechain(i)=0.2
+!      else
+!      short_r_sidechain(i)=sigma(i,i)
+!      endif
+      write(iout,*) "parame for long and short axis",i,vbldsc0(1,i),&
+         sigma0(i) 
+      enddo
+      buff_shield=1.0d0
+      endif
+
       return
   111 write (iout,*) "Error reading bending energy parameters."
       goto 999
 ! Read the PDB file and convert the peptide geometry into virtual-chain 
 ! geometry.
       use geometry_data
-      use energy_data, only: itype
+      use energy_data, only: itype,istype
       use control_data
       use compare_data
       use MPI_data
-      use control, only: rescode
+!      use control, only: rescode,sugarcode
 !      implicit real*8 (a-h,o-z)
 !      include 'DIMENSIONS'
 !      include 'COMMON.LOCAL'
 !      include 'COMMON.CONTROL'
 !      include 'COMMON.DISTFIT'
 !      include 'COMMON.SETUP'
-      integer :: i,j,ibeg,ishift1,ires,iii,ires_old,ishift!,ity!,&
+      integer :: i,j,ibeg,ishift1,ires,iii,ires_old,ishift,k!,ity!,&
 !        ishift_pdb
       logical :: lprn=.true.,fail
       real(kind=8),dimension(3) :: e1,e2,e3
       character(len=5) :: atom
       character(len=80) :: card
       real(kind=8),dimension(3,20) :: sccor
-      integer :: kkk,lll,icha,kupa     !rescode,
+      integer :: kkk,lll,icha,kupa,molecule,counter,seqalingbegin      !rescode,
+      integer :: isugar,molecprev,firstion
+      character*1 :: sugar
       real(kind=8) :: cou
+      real(kind=8),dimension(3) :: ccc
 !el local varables
       integer,dimension(2,maxres/3) :: hfrag_alloc
       integer,dimension(4,maxres/3) :: bfrag_alloc
       real(kind=8),dimension(3,maxres2+2,maxperm) :: cref_alloc !(3,maxres2+2,maxperm)
-
+      real(kind=8),dimension(:,:), allocatable  :: c_temporary
+      integer,dimension(:,:) , allocatable  :: itype_temporary
+      integer,dimension(:),allocatable :: istype_temp
       efree_temp=0.0d0
       ibeg=1
       ishift1=0
       ishift=0
+      molecule=1
+      counter=0
 !      write (2,*) "UNRES_PDB",unres_pdb
       ires=0
       ires_old=0
+#ifdef WHAM_RUN
+      do i=1,nres
+       do j=1,5
+        itype(i,j)=0
+       enddo
+      enddo
+#endif
       nres=0
       iii=0
       lsecondary=.false.
       nhfrag=0
       nbfrag=0
+      do j=1,5
+       nres_molec(j)=0
+      enddo
+      
+       
 !-----------------------------
       allocate(hfrag(2,maxres/3)) !(2,maxres/3)
       allocate(bfrag(4,maxres/3)) !(4,maxres/3)
-
+      if(.not. allocated(istype)) allocate(istype(maxres))
       do i=1,100000
         read (ipdbin,'(a80)',end=10) card
-!       write (iout,'(a)') card
+       write (iout,'(a)') card
         if (card(:5).eq.'HELIX') then
           nhfrag=nhfrag+1
           lsecondary=.true.
         else if (card(:3).eq.'TER') then
 ! End current chain
           ires_old=ires+2
+          ishift=ishift+1
           ishift1=ishift1+1
-          itype(ires_old)=ntyp1
-          itype(ires_old-1)=ntyp1
+          itype(ires_old,molecule)=ntyp1_molec(molecule)
+          itype(ires_old-1,molecule)=ntyp1_molec(molecule)
+          nres_molec(molecule)=nres_molec(molecule)+2
           ibeg=2
 !          write (iout,*) "Chain ended",ires,ishift,ires_old
           if (unres_pdb) then
 ! Read free energy
         if (index(card,"FREE ENERGY").gt.0) read(card(35:),*) efree_temp
 ! Fish out the ATOM cards.
+!        write(iout,*) 'card',card(1:20)
         if (index(card(1:4),'ATOM').gt.0) then  
           read (card(12:16),*) atom
 !          write (iout,*) "! ",atom," !",ires
               ishift=ires-1
               if (res.ne.'GLY' .and. res.ne. 'ACE') then
                 ishift=ishift-1
-                itype(1)=ntyp1
+                itype(1,1)=ntyp1
+                nres_molec(molecule)=nres_molec(molecule)+1
               endif
               ires=ires-ishift+ishift1
               ires_old=ires
               ishift1=ishift1-1    !!!!!
 !              write (iout,*) "New chain started",ires,ishift,ishift1,"!"
               ires=ires-ishift+ishift1
+!              print *,ires,ishift,ishift1
               ires_old=ires
               ibeg=0
             else
               ishift=ishift-(ires-ishift+ishift1-ires_old-1)
               ires=ires-ishift+ishift1
               ires_old=ires
-            endif
+            endif 
+!            print *,'atom',ires,atom
             if (res.eq.'ACE' .or. res.eq.'NHE') then
-              itype(ires)=10
+              itype(ires,1)=10
+            else
+             if (atom.eq.'CA  '.or.atom.eq.'N   ') then
+             molecule=1
+              itype(ires,molecule)=rescode(ires,res,0,molecule)
+              firstion=0
+!              nres_molec(molecule)=nres_molec(molecule)+1
             else
-              itype(ires)=rescode(ires,res,0)
+             molecule=2
+              itype(ires,molecule)=rescode(ires,res(2:3),0,molecule)
+!              nres_molec(molecule)=nres_molec(molecule)+1
+             read (card(19:19),'(a1)') sugar
+             isugar=sugarcode(sugar,ires)
+!            if (ibeg.eq.1) then
+!              istype(1)=isugar
+!            else
+              istype(ires)=isugar
+!              print *,"ires=",ires,istype(ires)
+!            endif
+
+            endif
             endif
           else
             ires=ires-ishift+ishift1
           if (atom.eq.'CA' .or. atom.eq.'CH3' .or. &
              res.eq.'NHE'.and.atom(:2).eq.'HN') then
             read(card(31:54),'(3f8.3)') (c(j,ires),j=1,3)
+!              print *,ires,ishift,ishift1
 !            write (iout,*) "backbone ",atom
 #ifdef DEBUG
             write (iout,'(2i3,2x,a,3f8.3)') &
-            ires,itype(ires),res,(c(j,ires),j=1,3)
+            ires,itype(ires,1),res,(c(j,ires),j=1,3)
 #endif
             iii=iii+1
+              nres_molec(molecule)=nres_molec(molecule)+1
             do j=1,3
               sccor(j,iii)=c(j,ires)
             enddo
-!            write (*,*) card(23:27),ires,itype(ires)
+          else if (.not.unres_pdb .and. (atom.eq."C1'" .or. &
+               atom.eq."C2'" .or. atom.eq."C3'" &
+               .or. atom.eq."C4'" .or. atom.eq."O4'")) then
+            read(card(31:54),'(3f8.3)') (ccc(j),j=1,3)
+!c            write (2,'(i5,3f10.5)') ires,(ccc(j),j=1,3)
+!              print *,ires,ishift,ishift1
+            counter=counter+1
+!            iii=iii+1
+!            do j=1,3
+!              sccor(j,iii)=c(j,ires)
+!            enddo
+            do j=1,3
+              c(j,ires)=c(j,ires)+ccc(j)/5.0
+            enddo
+             print *,counter,molecule
+             if (counter.eq.5) then
+!            iii=iii+1
+              nres_molec(molecule)=nres_molec(molecule)+1
+              firstion=0
+!            do j=1,3
+!              sccor(j,iii)=c(j,ires)
+!            enddo
+             counter=0
+           endif
+!            print *, "ATOM",atom(1:3)
+          else if (atom.eq."C5'") then
+             read (card(19:19),'(a1)') sugar
+             isugar=sugarcode(sugar,ires)
+            if (ibeg.eq.1) then
+              istype(1)=isugar
+            else
+              istype(ires)=isugar
+!              print *,ires,istype(ires)
+            endif
+            if (unres_pdb) then
+              molecule=2
+!              print *,"nres_molec(molecule)",nres_molec(molecule),ires
+              read(card(31:54),'(3f8.3)') (c(j,ires),j=1,3)
+              nres_molec(molecule)=nres_molec(molecule)+1
+              print *,"nres_molec(molecule)",nres_molec(molecule),ires
+
+            else
+              iii=iii+1
+              read(card(31:54),'(3f8.3)') (sccor(j,iii),j=1,3)
+            endif
+          else if ((atom.eq."C1'").and.unres_pdb) then
+              iii=iii+1
+              read(card(31:54),'(3f8.3)') (sccor(j,iii),j=1,3)
+!            write (*,*) card(23:27),ires,itype(ires,1)
           else if (atom.ne.'O'.and.atom(1:1).ne.'H' .and. &
                    atom.ne.'N' .and. atom.ne.'C' .and. &
                    atom(:2).ne.'1H' .and. atom(:2).ne.'2H' .and. &
-                   atom.ne.'OXT' .and. atom(:2).ne.'3H') then
+                   atom.ne.'OXT' .and. atom(:2).ne.'3H' &
+                   .and. atom.ne.'P  '.and. &
+                  atom(1:1).ne.'H' .and. &
+                  atom.ne.'OP1' .and. atom.ne.'OP2 '.and. atom.ne.'OP3'&
+                  ) then
 !            write (iout,*) "sidechain ",atom
+!            write (iout,*) "sidechain ",atom,molecule,ires,atom(3:3)
+                 if ((molecule.ne.2).or.(atom(3:3).ne."'")) then
+!                        write (iout,*) "sidechain ",atom,molecule,ires,atom(3:3)
             iii=iii+1
             read(card(31:54),'(3f8.3)') (sccor(j,iii),j=1,3)
+              endif
           endif
-        endif
+        else if ((ions).and.(card(1:6).eq.'HETATM')) then
+       if (firstion.eq.0) then 
+       firstion=1
+       if (unres_pdb) then
+         do j=1,3
+           dc(j,ires)=sccor(j,iii)
+         enddo
+       else
+          call sccenter(ires,iii,sccor)
+       endif
+       endif
+          read (card(12:16),*) atom
+          print *,"HETATOM", atom
+          read (card(18:20),'(a3)') res
+          if ((atom(1:2).eq.'NA').or.(atom(1:2).eq.'CL').or.&
+          (atom(1:2).eq.'CA').or.(atom(1:2).eq.'MG')           &
+          .or.(atom(1:2).eq.'K ')) &
+          then
+           ires=ires+1
+           if (molecule.ne.5) molecprev=molecule
+           molecule=5
+           nres_molec(molecule)=nres_molec(molecule)+1
+           print *,"HERE",nres_molec(molecule)
+           res=res(2:3)//' '
+           itype(ires,molecule)=rescode(ires,res,0,molecule)
+           read(card(31:54),'(3f8.3)') (c(j,ires),j=1,3)
+          endif
+        endif !atom
       enddo
    10 write (iout,'(a,i5)') ' Number of residues found: ',ires
       if (ires.eq.0) return
 ! Calculate dummy residue coordinates inside the "chain" of a multichain
 ! system
       nres=ires
+      if (((ires_old.ne.ires).and.(molecule.ne.5)) &
+        ) &
+         nres_molec(molecule)=nres_molec(molecule)-2
+      print *,'I have',nres, nres_molec(:)
+      
+      do k=1,4 ! ions are without dummy 
+       if (nres_molec(k).eq.0) cycle
       do i=2,nres-1
-!        write (iout,*) i,itype(i)
-!        if (itype(i).eq.ntyp1) then
-!          write (iout,*) "dummy",i,itype(i)
+!        write (iout,*) i,itype(i,1)
+!        if (itype(i,1).eq.ntyp1) then
+!          write (iout,*) "dummy",i,itype(i,1)
 !          do j=1,3
 !            c(j,i)=((c(j,i-1)+c(j,i+1))/2+2*c(j,i-1)-c(j,i-2))/2
 !            c(j,i)=(c(j,i-1)+c(j,i+1))/2
 !            dc(j,i)=c(j,i)
 !          enddo
 !        endif
-        if (itype(i).eq.ntyp1) then
-         if (itype(i+1).eq.ntyp1) then
+        if (itype(i,k).eq.ntyp1_molec(k)) then
+         if (itype(i+1,k).eq.ntyp1_molec(k)) then
+          if (itype(i+2,k).eq.0) then 
+!           print *,"masz sieczke"
+           do j=1,5
+            if (itype(i+2,j).ne.0) then
+            itype(i+1,k)=0
+            itype(i+1,j)=ntyp1_molec(j)
+            nres_molec(k)=nres_molec(k)-1
+            nres_molec(j)=nres_molec(j)+1
+            go to 3331
+            endif
+           enddo
+ 3331      continue
+          endif
 ! 16/01/2014 by Adasko: Adding to dummy atoms in the chain
-! first is connected prevous chain (itype(i+1).eq.ntyp1)=true
-! second dummy atom is conected to next chain itype(i+1).eq.ntyp1=false
-           if (unres_pdb) then
+! first is connected prevous chain (itype(i+1,1).eq.ntyp1)=true
+! second dummy atom is conected to next chain itype(i+1,1).eq.ntyp1=false
+!           if (unres_pdb) then
 ! 2/15/2013 by Adam: corrected insertion of the last dummy residue
 !            print *,i,'tu dochodze'
-            call refsys(i-3,i-2,i-1,e1,e2,e3,fail)
-            if (fail) then
-              e2(1)=0.0d0
-              e2(2)=1.0d0
-              e2(3)=0.0d0
-            endif !fail
-            print *,i,'a tu?'
-            do j=1,3
-             c(j,i)=c(j,i-1)-1.9d0*e2(j)
-            enddo
-           else   !unres_pdb
+!            call refsys(i-3,i-2,i-1,e1,e2,e3,fail)
+!            if (fail) then
+!              e2(1)=0.0d0
+!              e2(2)=1.0d0
+!              e2(3)=0.0d0
+!            endif !fail
+!            print *,i,'a tu?'
+!            do j=1,3
+!             c(j,i)=c(j,i-1)-1.9d0*e2(j)
+!            enddo
+!           else   !unres_pdb
            do j=1,3
              dcj=(c(j,i-2)-c(j,i-3))/2.0
             if (dcj.eq.0) dcj=1.23591524223
              c(j,i)=c(j,i-1)+dcj
              c(j,nres+i)=c(j,i)
            enddo
-          endif   !unres_pdb
-         else     !itype(i+1).eq.ntyp1
-          if (unres_pdb) then
+!          endif   !unres_pdb
+         else     !itype(i+1,1).eq.ntyp1
+!          if (unres_pdb) then
 ! 2/15/2013 by Adam: corrected insertion of the first dummy residue
-            call refsys(i+1,i+2,i+3,e1,e2,e3,fail)
-            if (fail) then
-              e2(1)=0.0d0
-              e2(2)=1.0d0
-              e2(3)=0.0d0
-            endif
+!            call refsys(i+1,i+2,i+3,e1,e2,e3,fail)
+!            if (fail) then
+!              e2(1)=0.0d0
+!              e2(2)=1.0d0
+!              e2(3)=0.0d0
+!            endif
             do j=1,3
               c(j,i)=c(j,i+1)-1.9d0*e2(j)
             enddo
-          else !unres_pdb
+!          else !unres_pdb
            do j=1,3
             dcj=(c(j,i+3)-c(j,i+2))/2.0
             if (dcj.eq.0) dcj=1.23591524223
             c(j,i)=c(j,i+1)-dcj
             c(j,nres+i)=c(j,i)
            enddo
-          endif !unres_pdb
-         endif !itype(i+1).eq.ntyp1
+!          endif !unres_pdb
+         endif !itype(i+1,1).eq.ntyp1
         endif  !itype.eq.ntyp1
 
       enddo
+      enddo
 ! Calculate the CM of the last side chain.
       if (iii.gt.0)  then
       if (unres_pdb) then
 !      nres=ires
       nsup=nres
       nstart_sup=1
-      if (itype(nres).ne.10) then
+!      print *,"molecule",molecule
+      if ((itype(nres,1).ne.10)) then
         nres=nres+1
-        itype(nres)=ntyp1
-        if (unres_pdb) then
+          if (molecule.eq.5) molecule=molecprev
+        itype(nres,molecule)=ntyp1_molec(molecule)
+        nres_molec(molecule)=nres_molec(molecule)+1
+!        if (unres_pdb) then
 ! 2/15/2013 by Adam: corrected insertion of the last dummy residue
-          call refsys(nres-3,nres-2,nres-1,e1,e2,e3,fail)
-          if (fail) then
-            e2(1)=0.0d0
-            e2(2)=1.0d0
-            e2(3)=0.0d0
-          endif
-          do j=1,3
-            c(j,nres)=c(j,nres-1)-1.9d0*e2(j)
-          enddo
-        else
+!          call refsys(nres-3,nres-2,nres-1,e1,e2,e3,fail)
+!          if (fail) then
+!            e2(1)=0.0d0
+!            e2(2)=1.0d0
+!            e2(3)=0.0d0
+!          endif
+!          do j=1,3
+!            c(j,nres)=c(j,nres-1)-1.9d0*e2(j)
+!          enddo
+!        else
         do j=1,3
           dcj=(c(j,nres-2)-c(j,nres-3))/2.0
           c(j,nres)=c(j,nres-1)+dcj
           c(j,2*nres)=c(j,nres)
         enddo
-        endif
+!        endif
       endif
+!     print *,'I have',nres, nres_molec(:)
+
 !el kontrola nres w pliku inputowym WHAM-a w porownaniu z wartoscia wczytana z pliku pdb
 #ifdef WHAM_RUN
       if (nres.ne.nres0) then
         c(j,nres+1)=c(j,1)
         c(j,2*nres)=c(j,nres)
       enddo
-      if (itype(1).eq.ntyp1) then
+      
+      if (itype(1,1).eq.ntyp1) then
         nsup=nsup-1
         nstart_sup=2
         if (unres_pdb) then
         enddo
         endif
       endif
+! First lets assign correct dummy to correct type of chain
+! 1) First residue
+      if (itype(1,1).eq.ntyp1) then
+        if (itype(2,1).eq.0) then
+         do j=2,5
+           if (itype(2,j).ne.0) then
+           itype(1,1)=0
+           itype(1,j)=ntyp1_molec(j)
+           nres_molec(1)=nres_molec(1)-1
+           nres_molec(j)=nres_molec(j)+1
+           go to 3231
+           endif
+         enddo
+3231    continue
+        endif
+       endif
+       print *,'I have',nres, nres_molec(:)
+
 ! Copy the coordinates to reference coordinates
 !      do i=1,2*nres
 !        do j=1,3
       if (lprn) then
       write (iout,'(/a)') &
         "Cartesian coordinates of the reference structure"
-      write (iout,'(a,3(3x,a5),5x,3(3x,a5))') &
+      write (iout,'(a,16x,3(3x,a5),5x,3(3x,a5))') &
        "Residue","X(CA)","Y(CA)","Z(CA)","X(SC)","Y(SC)","Z(SC)"
       do ires=1,nres
-        write (iout,'(a3,1x,i3,3f8.3,5x,3f8.3)') &
-          restyp(itype(ires)),ires,(c(j,ires),j=1,3),&
+        write (iout,'(5(a3,1x),i5,3f8.3,5x,3f8.3)') &
+          (restyp(itype(ires,j),j),j=1,5),ires,(c(j,ires),j=1,3),&
           (c(j,ires+nres),j=1,3)
       enddo
       endif
        write (iout,'(a)') &
          "Backbone and SC coordinates as read from the PDB"
        do ires=1,nres
-        write (iout,'(2i3,2x,a,3f8.3,5x,3f8.3)') &
-          ires,itype(ires),restyp(itype(ires)),(c(j,ires),j=1,3),&
+        write (iout,'(i5,i3,2x,a,3f8.3,5x,3f8.3)') &
+          ires,itype(ires,1),restyp(itype(ires,1),1),(c(j,ires),j=1,3),&
           (c(j,nres+ires),j=1,3)
        enddo
       endif
+! NOW LETS ROCK! SORTING
+      allocate(c_temporary(3,2*nres))
+      allocate(itype_temporary(nres,5))
+      if (.not.allocated(molnum)) allocate(molnum(nres+1))
+      if (.not.allocated(istype)) write(iout,*) &
+          "SOMETHING WRONG WITH ISTYTPE"
+      allocate(istype_temp(nres))
+       itype_temporary(:,:)=0
+      seqalingbegin=1
+      do k=1,5
+        do i=1,nres
+         if (itype(i,k).ne.0) then
+          do j=1,3
+          c_temporary(j,seqalingbegin)=c(j,i)
+          c_temporary(j,seqalingbegin+nres)=c(j,i+nres)
+
+          enddo
+          itype_temporary(seqalingbegin,k)=itype(i,k)
+          print *,i,k,itype(i,k),itype_temporary(seqalingbegin,k),seqalingbegin
+          istype_temp(seqalingbegin)=istype(i)
+          molnum(seqalingbegin)=k
+          seqalingbegin=seqalingbegin+1
+         endif
+        enddo
+       enddo
+       do i=1,2*nres
+        do j=1,3
+        c(j,i)=c_temporary(j,i)
+        enddo
+       enddo
+       do k=1,5
+        do i=1,nres
+         itype(i,k)=itype_temporary(i,k)
+         istype(i)=istype_temp(i)
+        enddo
+       enddo
+!      if (itype(1,1).eq.ntyp1) then
+!        nsup=nsup-1
+!        nstart_sup=2
+!        if (unres_pdb) then
+! 2/15/2013 by Adam: corrected insertion of the first dummy residue
+!          call refsys(2,3,4,e1,e2,e3,fail)
+!          if (fail) then
+!            e2(1)=0.0d0
+!            e2(2)=1.0d0
+!            e2(3)=0.0d0
+!          endif
+!          do j=1,3
+!            c(j,1)=c(j,2)-1.9d0*e2(j)
+!          enddo
+!        else
+!        do j=1,3
+!          dcj=(c(j,4)-c(j,3))/2.0
+!          c(j,1)=c(j,2)-dcj
+!          c(j,nres+1)=c(j,1)
+!        enddo
+!        endif
+!      endif
+
+      if (lprn) then
+      write (iout,'(/a)') &
+        "Cartesian coordinates of the reference structure after sorting"
+      write (iout,'(a,16x,3(3x,a5),5x,3(3x,a5))') &
+       "Residue","X(CA)","Y(CA)","Z(CA)","X(SC)","Y(SC)","Z(SC)"
+      do ires=1,nres
+        write (iout,'(5(a3,1x),i5,3f8.3,5x,3f8.3)') &
+          (restyp(itype(ires,j),j),j=1,5),ires,(c(j,ires),j=1,3),&
+          (c(j,ires+nres),j=1,3)
+      enddo
+      endif
 
+!       print *,seqalingbegin,nres
       if(.not.allocated(vbld)) then
        allocate(vbld(2*nres))
        do i=1,2*nres
       kkk=1
       lll=0
       cou=1
+        write (iout,*) "symetr", symetr
       do i=1,nres
       lll=lll+1
-!c      write (iout,*) "spraw lancuchy",(c(j,i),j=1,3)
+!      write (iout,*) "spraw lancuchy",(c(j,i),j=1,3)
       if (i.gt.1) then
-      if ((itype(i-1).eq.ntyp1).and.(i.gt.2)) then
+      if ((itype(i-1,1).eq.ntyp1).and.(i.gt.2)) then
       chain_length=lll-1
       kkk=kkk+1
 !       write (iout,*) "spraw lancuchy",(c(j,i),j=1,3)
 !       write (iout,*) "spraw lancuchy",chain_length,symetr
 !       do i=1,4
 !         do kkk=1,chain_length
-!           write (iout,*) itype(kkk),(chain_rep(j,kkk,i), j=1,3)
+!           write (iout,*) itype(kkk,1),(chain_rep(j,kkk,i), j=1,3)
 !         enddo
 !        enddo
 ! enddiagnostic
         cou=0
         do kkk=1,symetr
          icha=tabperm(i,kkk)
-!         write (iout,*) i,icha
+         write (iout,*) i,icha
          do lll=1,chain_length
           cou=cou+1
            if (cou.le.nres) then
             kupa=mod(lll,chain_length)
             iprzes=(kkk-1)*chain_length+lll
             if (kupa.eq.0) kupa=chain_length
-!            write (iout,*) "kupa", kupa
+            write (iout,*) "kupa", kupa
             cref(j,iprzes,i)=chain_rep(j,kupa,icha)
             cref(j,iprzes+nres,i)=chain_rep(j,kupa+nres,icha)
           enddo
       do kkk=1,nperm
       write (iout,*) "nowa struktura", nperm
       do i=1,nres
-        write (iout,110) restyp(itype(i)),i,cref(1,i,kkk),&
+        write (iout,110) restyp(itype(i,1),1),i,cref(1,i,kkk),&
       cref(2,i,kkk),&
       cref(3,i,kkk),cref(1,nres+i,kkk),&
       cref(2,nres+i,kkk),cref(3,nres+i,kkk)
       enddo
-  100 format (//'              alpha-carbon coordinates       ',&
+  100 format (//'                alpha-carbon coordinates       ',&
                 '     centroid coordinates'/ &
                 '       ', 6X,'X',11X,'Y',11X,'Z', &
                                 10X,'X',11X,'Y',11X,'Z')
-  110 format (a,'(',i3,')',6f12.5)
+  110 format (a,'(',i5,')',6f12.5)
      
       enddo
 !c enddiag
 !C      if(me.eq.king .or. .not. out1file .and. fg_rank.eq.0) then
         write(iout,*) "shield_mode",shield_mode
 !C  Varibles set size of box
+      with_theta_constr = index(controlcard,"WITH_THETA_CONSTR").gt.0
+      protein=index(controlcard,"PROTEIN").gt.0
+      ions=index(controlcard,"IONS").gt.0
+      nucleic=index(controlcard,"NUCLEIC").gt.0
+      write (iout,*) "with_theta_constr ",with_theta_constr
+      AFMlog=(index(controlcard,'AFM'))
+      selfguide=(index(controlcard,'SELFGUIDE'))
+      print *,'AFMlog',AFMlog,selfguide,"KUPA"
+      call readi(controlcard,'GENCONSTR',genconstr,0)
       call reada(controlcard,'BOXX',boxxsize,100.0d0)
       call reada(controlcard,'BOXY',boxysize,100.0d0)
       call reada(controlcard,'BOXZ',boxzsize,100.0d0)
+      call readi(controlcard,'TUBEMOD',tubemode,0)
+      print *,"SCELE",scelemode
+      call readi(controlcard,"SCELEMODE",scelemode,0)
+      print *,"SCELE",scelemode
+
+! elemode = 0 is orignal UNRES electrostatics
+! elemode = 1 is "Momo" potentials in progress
+! elemode = 2 is in development EVALD
+      write (iout,*) TUBEmode,"TUBEMODE"
+      if (TUBEmode.gt.0) then
+       call reada(controlcard,"XTUBE",tubecenter(1),0.0d0)
+       call reada(controlcard,"YTUBE",tubecenter(2),0.0d0)
+       call reada(controlcard,"ZTUBE",tubecenter(3),0.0d0)
+       call reada(controlcard,"RTUBE",tubeR0,0.0d0)
+       call reada(controlcard,"TUBETOP",bordtubetop,boxzsize)
+       call reada(controlcard,"TUBEBOT",bordtubebot,0.0d0)
+       call reada(controlcard,"TUBEBUF",tubebufthick,1.0d0)
+       buftubebot=bordtubebot+tubebufthick
+       buftubetop=bordtubetop-tubebufthick
+      endif
+
 ! CUTOFFF ON ELECTROSTATICS
       call reada(controlcard,"R_CUT_ELE",r_cut_ele,15.0d0)
       call reada(controlcard,"LAMBDA_ELE",rlamb_ele,0.3d0)
        write (iout,'(2a)') diagmeth(kdiag),&
         ' routine used to diagonalize matrices.'
       if (shield_mode.gt.0) then
-      pi=3.141592d0
+       pi=4.0D0*datan(1.0D0)
 !C VSolvSphere the volume of solving sphere
-!C      print *,pi,"pi"
+      print *,pi,"pi"
 !C rpp(1,1) is the energy r0 for peptide group contact and will be used for it 
 !C there will be no distinction between proline peptide group and normal peptide
 !C group in case of shielding parameters
-      VSolvSphere=4.0/3.0*pi*rpp(1,1)**3
-      VSolvSphere_div=VSolvSphere-4.0/3.0*pi*(rpp(1,1)/2.0)**3
+      VSolvSphere=4.0/3.0*pi*(4.50d0)**3
+      VSolvSphere_div=VSolvSphere-4.0/3.0*pi*(4.50/2.0)**3
       write (iout,*) VSolvSphere,VSolvSphere_div
 !C long axis of side chain 
-      do i=1,ntyp
-      long_r_sidechain(i)=vbldsc0(1,i)
-      short_r_sidechain(i)=sigma0(i)
-      write(iout,*) "parame for long and short axis",i,vbldsc0(1,i),&
-         sigma0(i) 
-      enddo
+!      do i=1,ntyp
+!      long_r_sidechain(i)=vbldsc0(1,i)
+!      short_r_sidechain(i)=sigma0(i)
+!      write(iout,*) "parame for long and short axis",i,vbldsc0(1,i),&
+!         sigma0(i) 
+!      enddo
       buff_shield=1.0d0
       endif
       return
 !      character(len=80) :: ucase
       character(len=320) :: controlcard
 !el local variables
-      integer :: i
+      integer :: i,j
       real(kind=8) :: eta
 
       call card_concat(controlcard,.true.)
       large = index(controlcard,"LARGE").gt.0
       print_compon = index(controlcard,"PRINT_COMPON").gt.0
       rattle = index(controlcard,"RATTLE").gt.0
+      preminim=(index(controlcard,'PREMINIM').gt.0)
+      write (iout,*) "PREMINIM ",preminim
+      dccart=(index(controlcard,'CART').gt.0)
+      if (preminim) call read_minim
 !  if performing umbrella sampling, fragments constrained are read from the fragment file 
       nset=0
       if(usampl) then
         if(me.eq.king.or..not.out1file) &
          write(iout,'(a60,f10.5)')"Eta of the solvent in natural units:",&
           eta
-        gamp=scal_fric*(pstok+rwat)*eta
-        stdfp=dsqrt(2*Rb*t_bath/d_time)
-        allocate(gamsc(ntyp1),stdfsc(ntyp1)) !(ntyp1)
+!        allocate(gamp
+        do j=1,5 !types of molecules
+        gamp(j)=scal_fric*(pstok(j)+rwat)*eta
+        stdfp(j)=dsqrt(2*Rb*t_bath/d_time)
+        enddo
+        allocate(gamsc(ntyp1,5),stdfsc(ntyp1,5)) !(ntyp1)
+        do j=1,5 !types of molecules
         do i=1,ntyp
-          gamsc(i)=scal_fric*(restok(i)+rwat)*eta  
-          stdfsc(i)=dsqrt(2*Rb*t_bath/d_time)
+          gamsc(i,j)=scal_fric*(restok(i,j)+rwat)*eta  
+          stdfsc(i,j)=dsqrt(2*Rb*t_bath/d_time)
         enddo 
+        enddo
+
         if(me.eq.king.or..not.out1file)then
          write (iout,'(/2a/)') &
          "Radii of site types and friction coefficients and std's of",&
          " stochastic forces of fully exposed sites"
-         write (iout,'(a5,f5.2,2f10.5)')'p',pstok,gamp,stdfp*dsqrt(gamp)
+         write (iout,'(a5,f5.2,2f10.5)')'p',pstok,gamp(1),stdfp*dsqrt(gamp(1))
          do i=1,ntyp
-          write (iout,'(a5,f5.2,2f10.5)') restyp(i),restok(i),&
-           gamsc(i),stdfsc(i)*dsqrt(gamsc(i))
+          write (iout,'(a5,f5.2,2f10.5)') restyp(i,1),restok(i,1),&
+           gamsc(i,1),stdfsc(i,1)*dsqrt(gamsc(i,1))
          enddo
         endif
       else if (tbf) then
 ! Get parameter filenames and open the parameter files.
       call getenv_loc('BONDPAR',bondname)
       open (ibond,file=bondname,status='old',readonly,shared)
+      call getenv_loc('BONDPAR_NUCL',bondname_nucl)
+      open (ibond_nucl,file=bondname_nucl,status='old',readonly,shared)
       call getenv_loc('THETPAR',thetname)
       open (ithep,file=thetname,status='old',readonly,shared)
       call getenv_loc('ROTPAR',rotname)
       open (ielep,file=elename,status='old',readonly,shared)
       call getenv_loc('SIDEPAR',sidename)
       open (isidep,file=sidename,status='old',readonly,shared)
+
+      call getenv_loc('THETPAR_NUCL',thetname_nucl)
+      open (ithep_nucl,file=thetname_nucl,status='old',readonly,shared)
+      call getenv_loc('ROTPAR_NUCL',rotname_nucl)
+      open (irotam_nucl,file=rotname_nucl,status='old',readonly,shared)
+      call getenv_loc('TORPAR_NUCL',torname_nucl)
+      open (itorp_nucl,file=torname_nucl,status='old',readonly,shared)
+      call getenv_loc('TORDPAR_NUCL',tordname_nucl)
+      open (itordp_nucl,file=tordname_nucl,status='old',readonly,shared)
+      call getenv_loc('SIDEPAR_NUCL',sidename_nucl)
+      open (isidep_nucl,file=sidename_nucl,status='old',readonly,shared)
+
+
 #elif (defined CRAY) || (defined AIX)
       open(1,file=pref_orig(:ilen(pref_orig))//'.inp',status='old',&
         action='read')
 ! Get parameter filenames and open the parameter files.
       call getenv_loc('BONDPAR',bondname)
       open (ibond,file=bondname,status='old',action='read')
+      call getenv_loc('BONDPAR_NUCL',bondname_nucl)
+      open (ibond_nucl,file=bondname_nucl,status='old',action='read')
+
 !      print *,"Processor",myrank," opened file IBOND" 
       call getenv_loc('THETPAR',thetname)
       open (ithep,file=thetname,status='old',action='read')
 !      print *,"Processor",myrank," opened file IELEP" 
       call getenv_loc('SIDEPAR',sidename)
       open (isidep,file=sidename,status='old',action='read')
+
+      call getenv_loc('THETPAR_NUCL',thetname_nucl)
+      open (ithep_nucl,file=thetname_nucl,status='old',action='read')
+      call getenv_loc('ROTPAR_NUCL',rotname_nucl)
+      open (irotam_nucl,file=rotname_nucl,status='old',action='read')
+      call getenv_loc('TORPAR_NUCL',torname_nucl)
+      open (itorp_nucl,file=torname_nucl,status='old',action='read')
+      call getenv_loc('TORDPAR_NUCL',tordname_nucl)
+      open (itordp_nucl,file=tordname_nucl,status='old',action='read')
+      call getenv_loc('SIDEPAR_NUCL',sidename_nucl)
+      open (isidep_nucl,file=sidename_nucl,status='old',action='read')
+
       call getenv_loc('LIPTRANPAR',liptranname)
       open (iliptranpar,file=liptranname,status='old',action='read')
+      call getenv_loc('TUBEPAR',tubename)
+      open (itube,file=tubename,status='old',action='read')
+      call getenv_loc('IONPAR',ionname)
+      open (iion,file=ionname,status='old',action='read')
+
 !      print *,"Processor",myrank," opened file ISIDEP" 
 !      print *,"Processor",myrank," opened parameter files" 
 #elif (defined G77)
 ! Get parameter filenames and open the parameter files.
       call getenv_loc('BONDPAR',bondname)
       open (ibond,file=bondname,status='old')
+      call getenv_loc('BONDPAR_NUCL',bondname_nucl)
+      open (ibond_nucl,file=bondname_nucl,status='old')
+
       call getenv_loc('THETPAR',thetname)
       open (ithep,file=thetname,status='old')
       call getenv_loc('ROTPAR',rotname)
       open (ielep,file=elename,status='old')
       call getenv_loc('SIDEPAR',sidename)
       open (isidep,file=sidename,status='old')
+
+      open (ithep_nucl,file=thetname_nucl,status='old')
+      call getenv_loc('ROTPAR_NUCL',rotname_nucl)
+      open (irotam_nucl,file=rotname_nucl,status='old')
+      call getenv_loc('TORPAR_NUCL',torname_nucl)
+      open (itorp_nucl,file=torname_nucl,status='old')
+      call getenv_loc('TORDPAR_NUCL',tordname_nucl)
+      open (itordp_nucl,file=tordname_nucl,status='old')
+      call getenv_loc('SIDEPAR_NUCL',sidename_nucl)
+      open (isidep_nucl,file=sidename_nucl,status='old')
+
       call getenv_loc('LIPTRANPAR',liptranname)
       open (iliptranpar,file=liptranname,status='old')
+      call getenv_loc('TUBEPAR',tubename)
+      open (itube,file=tubename,status='old')
+      call getenv_loc('IONPAR',ionname)
+      open (iion,file=ionname,status='old')
 #else
       open(1,file=pref_orig(:ilen(pref_orig))//'.inp',status='old',&
         readonly)
 ! Get parameter filenames and open the parameter files.
       call getenv_loc('BONDPAR',bondname)
       open (ibond,file=bondname,status='old',action='read')
+      call getenv_loc('BONDPAR_NUCL',bondname_nucl)
+      open (ibond_nucl,file=bondname_nucl,status='old',action='read')
       call getenv_loc('THETPAR',thetname)
       open (ithep,file=thetname,status='old',action='read')
       call getenv_loc('ROTPAR',rotname)
       open (ielep,file=elename,status='old',readonly)
       call getenv_loc('SIDEPAR',sidename)
       open (isidep,file=sidename,status='old',readonly)
+
+      call getenv_loc('THETPAR_NUCL',thetname_nucl)
+      open (ithep_nucl,file=thetname_nucl,status='old',action='read')
+      call getenv_loc('ROTPAR_NUCL',rotname_nucl)
+      open (irotam_nucl,file=rotname_nucl,status='old',action='read')
+      call getenv_loc('TORPAR_NUCL',torname_nucl)
+      open (itorp_nucl,file=torname_nucl,status='old',action='read')
+      call getenv_loc('TORDPAR_NUCL',tordname_nucl)
+      open (itordp_nucl,file=tordname_nucl,status='old',action='read')
+      call getenv_loc('SIDEPAR_NUCL',sidename_nucl)
+      open (isidep_nucl,file=sidename_nucl,status='old',action='read')
+      call getenv_loc('SIDEPAR_SCBASE',sidename_scbase)
+      open (isidep_scbase,file=sidename_scbase,status='old',action='read')
+      call getenv_loc('PEPPAR_PEPBASE',pepname_pepbase)
+      open (isidep_pepbase,file=pepname_pepbase,status='old',action='read')
+      call getenv_loc('SCPAR_PHOSPH',pepname_scpho)
+      open (isidep_scpho,file=pepname_scpho,status='old',action='read')
+      call getenv_loc('PEPPAR_PHOSPH',pepname_peppho)
+      open (isidep_peppho,file=pepname_peppho,status='old',action='read')
+
+
       call getenv_loc('LIPTRANPAR',liptranname)
       open (iliptranpar,file=liptranname,status='old',action='read')
+      call getenv_loc('TUBEPAR',tubename)
+      open (itube,file=tubename,status='old',action='read')
+      call getenv_loc('IONPAR',ionname)
+      open (iion,file=ionname,status='old',action='read')
+
 #ifndef CRYST_SC
       call getenv_loc('ROTPARPDB',rotname_pdb)
       open (irotam_pdb,file=rotname_pdb,status='old',action='read')
 #endif
 #endif
+      call getenv_loc('SCPPAR_NUCL',scpname_nucl)
+#if defined(WINIFL) || defined(WINPGI)
+      open (iscpp_nucl,file=scpname_nucl,status='old',readonly,shared)
+#elif (defined CRAY)  || (defined AIX)
+      open (iscpp_nucl,file=scpname_nucl,status='old',action='read')
+#elif (defined G77)
+      open (iscpp_nucl,file=scpname_nucl,status='old')
+#else
+      open (iscpp_nucl,file=scpname_nucl,status='old',action='read')
+#endif
+
 #ifndef OLDSCP
 !
 ! 8/9/01 In the newest version SCp interaction constants are read from a file
 
       open(irest2,file=rest2name,status='unknown')
       read(irest2,*) totT,EK,potE,totE,t_bath
+      totTafm=totT
 !      do i=1,2*nres
 ! AL 4/17/17: Now reading d_t(0,:) too
       do i=0,2*nres