Merge branch 'UCGM' of mmka.chem.univ.gda.pl:unres4 into UCGM
[unres4.git] / source / unres / energy.F90
index 4e043fe..5c9aacf 100644 (file)
@@ -1,4 +1,4 @@
-      module energy
+             module energy
 !-----------------------------------------------------------------------------
       use io_units
       use names
 !-----------------------------------------------------------------------------
       use io_units
       use names
                       ebe_nucl,esbloc,etors_nucl,etors_d_nucl,ecorr_nucl,&
                       ecorr3_nucl
 ! energies for ions 
                       ebe_nucl,esbloc,etors_nucl,etors_d_nucl,ecorr_nucl,&
                       ecorr3_nucl
 ! energies for ions 
-      real(kind=8) :: ecation_prot,ecationcation
+      real(kind=8) :: ecation_prot,ecationcation,ecations_prot_amber
 ! energies for protein nucleic acid interaction
       real(kind=8) :: escbase,epepbase,escpho,epeppho
 
 ! energies for protein nucleic acid interaction
       real(kind=8) :: escbase,epepbase,escpho,epeppho
 
 !          print *,"Processor",myrank," BROADCAST iorder"
 ! FG master sets up the WEIGHTS_ array which will be broadcast to the 
 ! FG slaves as WEIGHTS array.
 !          print *,"Processor",myrank," BROADCAST iorder"
 ! FG master sets up the WEIGHTS_ array which will be broadcast to the 
 ! FG slaves as WEIGHTS array.
-         ! weights_(1)=wsc
+          weights_(1)=wsc
           weights_(2)=wscp
           weights_(3)=welec
           weights_(4)=wcorr
           weights_(2)=wscp
           weights_(3)=welec
           weights_(4)=wcorr
           weights_(41)=wcatcat
           weights_(42)=wcatprot
           weights_(46)=wscbase
           weights_(41)=wcatcat
           weights_(42)=wcatprot
           weights_(46)=wscbase
-          weights_(47)=wscpho
-          weights_(48)=wpeppho
+          weights_(47)=wpepbase
+          weights_(48)=wscpho
+          weights_(49)=wpeppho
 !          wcatcat= weights(41)
 !          wcatprot=weights(42)
 
 !          wcatcat= weights(41)
 !          wcatprot=weights(42)
 
           wcatcat= weights(41)
           wcatprot=weights(42)
           wscbase=weights(46)
           wcatcat= weights(41)
           wcatprot=weights(42)
           wscbase=weights(46)
-          wscpho=weights(47)
-          wpeppho=weights(48)
+          wpepbase=weights(47)
+          wscpho=weights(48)
+          wpeppho=weights(49)
+!      welpsb=weights(28)*fact(1)
+!
+!      wcorr_nucl= weights(37)*fact(1)
+!     wcorr3_nucl=weights(38)*fact(2)
+!     wtor_nucl=  weights(35)*fact(1)
+!     wtor_d_nucl=weights(36)*fact(2)
+
         endif
         time_Bcast=time_Bcast+MPI_Wtime()-time00
         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
         endif
         time_Bcast=time_Bcast+MPI_Wtime()-time00
         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
              .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 &
              .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
 #endif
              .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 &
              .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
 #endif
-!            write(iout,*),"just befor eelec call"
+!            print *,"just befor eelec call"
             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
-!         write (iout,*) "ELEC calc"
+!            print *, "ELEC calc"
          else
             ees=0.0d0
             evdw1=0.0d0
          else
             ees=0.0d0
             evdw1=0.0d0
         call AFMforce(Eafmforce)
       else if (selfguide.gt.0) then
         call AFMvel(Eafmforce)
         call AFMforce(Eafmforce)
       else if (selfguide.gt.0) then
         call AFMvel(Eafmforce)
+      else
+        Eafmforce=0.0d0
       endif
       endif
       if (tubemode.eq.1) then
       endif
       endif
       if (tubemode.eq.1) then
        eespp=0.0d0
       endif
 !      write(iout,*) ecorr_nucl,"ecorr_nucl",nres_molec(2)
        eespp=0.0d0
       endif
 !      write(iout,*) ecorr_nucl,"ecorr_nucl",nres_molec(2)
+!      print *,"before ecatcat",wcatcat
       if (nfgtasks.gt.1) then
       if (fg_rank.eq.0) then
       call ecatcat(ecationcation)
       if (nfgtasks.gt.1) then
       if (fg_rank.eq.0) then
       call ecatcat(ecationcation)
       call ecatcat(ecationcation)
       endif
       call ecat_prot(ecation_prot)
       call ecatcat(ecationcation)
       endif
       call ecat_prot(ecation_prot)
+      call ecats_prot_amber(ecations_prot_amber)
       if (nres_molec(2).gt.0) then
       call eprot_sc_base(escbase)
       call epep_sc_base(epepbase)
       if (nres_molec(2).gt.0) then
       call eprot_sc_base(escbase)
       call epep_sc_base(epepbase)
       epeppho=0.0
       endif
 !      call ecatcat(ecationcation)
       epeppho=0.0
       endif
 !      call ecatcat(ecationcation)
-!      print *,"after ebend", ebe_nucl
+!      print *,"after ebend", wtor_nucl 
 #ifdef TIMING
       time_enecalc=time_enecalc+MPI_Wtime()-time00
 #endif
 #ifdef TIMING
       time_enecalc=time_enecalc+MPI_Wtime()-time00
 #endif
 !    Here are the energies showed per procesor if the are more processors 
 !    per molecule then we sum it up in sum_energy subroutine 
 !      print *," Processor",myrank," calls SUM_ENERGY"
 !    Here are the energies showed per procesor if the are more processors 
 !    per molecule then we sum it up in sum_energy subroutine 
 !      print *," Processor",myrank," calls SUM_ENERGY"
-      energia(41)=ecation_prot
-      energia(42)=ecationcation
+      energia(42)=ecation_prot
+      energia(41)=ecationcation
       energia(46)=escbase
       energia(47)=epepbase
       energia(48)=escpho
       energia(49)=epeppho
       energia(46)=escbase
       energia(47)=epepbase
       energia(48)=escpho
       energia(49)=epeppho
+      energia(50)=ecations_prot_amber
       call sum_energy(energia,.true.)
       if (dyn_ss) call dyn_set_nss
 !      print *," Processor",myrank," left SUM_ENERGY"
       call sum_energy(energia,.true.)
       if (dyn_ss) call dyn_set_nss
 !      print *," Processor",myrank," left SUM_ENERGY"
       real(kind=8) :: evdwpp,eespp,evdwpsb,eelpsb,evdwsb,eelsb,estr_nucl,&
                       ebe_nucl,esbloc,etors_nucl,etors_d_nucl,ecorr_nucl,&
                       ecorr3_nucl
       real(kind=8) :: evdwpp,eespp,evdwpsb,eelpsb,evdwsb,eelsb,estr_nucl,&
                       ebe_nucl,esbloc,etors_nucl,etors_d_nucl,ecorr_nucl,&
                       ecorr3_nucl
-      real(kind=8) :: ecation_prot,ecationcation
+      real(kind=8) :: ecation_prot,ecationcation,ecations_prot_amber
       real(kind=8) :: escbase,epepbase,escpho,epeppho
       integer :: i
 #ifdef MPI
       real(kind=8) :: escbase,epepbase,escpho,epeppho
       integer :: i
 #ifdef MPI
       etors_d_nucl=energia(36)
       ecorr_nucl=energia(37)
       ecorr3_nucl=energia(38)
       etors_d_nucl=energia(36)
       ecorr_nucl=energia(37)
       ecorr3_nucl=energia(38)
-      ecation_prot=energia(41)
-      ecationcation=energia(42)
+      ecation_prot=energia(42)
+      ecationcation=energia(41)
       escbase=energia(46)
       epepbase=energia(47)
       escpho=energia(48)
       epeppho=energia(49)
       escbase=energia(46)
       epepbase=energia(47)
       escpho=energia(48)
       epeppho=energia(49)
+      ecations_prot_amber=energia(50)
+
 !      energia(41)=ecation_prot
 !      energia(42)=ecationcation
 
 !      energia(41)=ecation_prot
 !      energia(42)=ecationcation
 
        +wvdwsb*evdwsb+welsb*eelsb+wsbloc*esbloc+wtor_nucl*etors_nucl&
        +wtor_d_nucl*etors_d_nucl+wcorr_nucl*ecorr_nucl+wcorr3_nucl*ecorr3_nucl&
        +wcatprot*ecation_prot+wcatcat*ecationcation+wscbase*escbase&
        +wvdwsb*evdwsb+welsb*eelsb+wsbloc*esbloc+wtor_nucl*etors_nucl&
        +wtor_d_nucl*etors_d_nucl+wcorr_nucl*ecorr_nucl+wcorr3_nucl*ecorr3_nucl&
        +wcatprot*ecation_prot+wcatcat*ecationcation+wscbase*escbase&
-       +wpepbase*epepbase+wscpho*escpho+wpeppho*epeppho
+       +wpepbase*epepbase+wscpho*escpho+wpeppho*epeppho+ecations_prot_amber
 #else
       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1) &
        +wang*ebe+wtor*etors+wscloc*escloc &
 #else
       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1) &
        +wang*ebe+wtor*etors+wscloc*escloc &
        +wvdwsb*evdwsb+welsb*eelsb+wsbloc*esbloc+wtor_nucl*etors_nucl&
        +wtor_d_nucl*etors_d_nucl+wcorr_nucl*ecorr_nucl+wcorr3_nucl*ecorr3_nucl&
        +wcatprot*ecation_prot+wcatcat*ecationcation+wscbase*escbase&
        +wvdwsb*evdwsb+welsb*eelsb+wsbloc*esbloc+wtor_nucl*etors_nucl&
        +wtor_d_nucl*etors_d_nucl+wcorr_nucl*ecorr_nucl+wcorr3_nucl*ecorr3_nucl&
        +wcatprot*ecation_prot+wcatcat*ecationcation+wscbase*escbase&
-       +wpepbase*epepbase+wscpho*escpho+wpeppho*epeppho
+       +wpepbase*epepbase+wscpho*escpho+wpeppho*epeppho+ecations_prot_amber
 #endif
       energia(0)=etot
 ! detecting NaNQ
 #endif
       energia(0)=etot
 ! detecting NaNQ
       wtor=weights(13)*fact(1)
       wtor_d=weights(14)*fact(2)
       wsccor=weights(21)*fact(1)
       wtor=weights(13)*fact(1)
       wtor_d=weights(14)*fact(2)
       wsccor=weights(21)*fact(1)
-
+      welpsb=weights(28)*fact(1)
+      wcorr_nucl= weights(37)*fact(1)
+      wcorr3_nucl=weights(38)*fact(2)
+      wtor_nucl=  weights(35)*fact(1)
+      wtor_d_nucl=weights(36)*fact(2)
+      wpepbase=weights(47)*fact(1)
       return
       end subroutine rescale_weights
 !-----------------------------------------------------------------------------
       return
       end subroutine rescale_weights
 !-----------------------------------------------------------------------------
       real(kind=8) :: evdwpp,eespp,evdwpsb,eelpsb,evdwsb,eelsb,estr_nucl,&
                       ebe_nucl,esbloc,etors_nucl,etors_d_nucl,ecorr_nucl,&
                       ecorr3_nucl
       real(kind=8) :: evdwpp,eespp,evdwpsb,eelpsb,evdwsb,eelsb,estr_nucl,&
                       ebe_nucl,esbloc,etors_nucl,etors_d_nucl,ecorr_nucl,&
                       ecorr3_nucl
-      real(kind=8) :: ecation_prot,ecationcation
+      real(kind=8) :: ecation_prot,ecationcation,ecations_prot_amber
       real(kind=8) :: escbase,epepbase,escpho,epeppho
 
       etot=energia(0)
       real(kind=8) :: escbase,epepbase,escpho,epeppho
 
       etot=energia(0)
       etors_d_nucl=energia(36)
       ecorr_nucl=energia(37)
       ecorr3_nucl=energia(38)
       etors_d_nucl=energia(36)
       ecorr_nucl=energia(37)
       ecorr3_nucl=energia(38)
-      ecation_prot=energia(41)
-      ecationcation=energia(42)
+      ecation_prot=energia(42)
+      ecationcation=energia(41)
       escbase=energia(46)
       epepbase=energia(47)
       escpho=energia(48)
       epeppho=energia(49)
       escbase=energia(46)
       epepbase=energia(47)
       escpho=energia(48)
       epeppho=energia(49)
+      ecations_prot_amber=energia(50)
 #ifdef SPLITELE
       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,&
         estr,wbond,ebe,wang,&
 #ifdef SPLITELE
       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,&
         estr,wbond,ebe,wang,&
         etors_d_nucl,wtor_d_nucl,ecorr_nucl,wcorr_nucl,&
         ecorr3_nucl,wcorr3_nucl,ecation_prot,wcatprot,ecationcation,wcatcat, &
         escbase,wscbase,epepbase,wpepbase,escpho,wscpho,epeppho,wpeppho,&
         etors_d_nucl,wtor_d_nucl,ecorr_nucl,wcorr_nucl,&
         ecorr3_nucl,wcorr3_nucl,ecation_prot,wcatprot,ecationcation,wcatcat, &
         escbase,wscbase,epepbase,wpepbase,escpho,wscpho,epeppho,wpeppho,&
-        etot
+        ecations_prot_amber,etot
    10 format (/'Virtual-chain energies:'// &
        'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ &
        'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ &
    10 format (/'Virtual-chain energies:'// &
        'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ &
        'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ &
         ecorr,wcorr,&
         ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,&
         eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,edihcnstr,&
         ecorr,wcorr,&
         ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,&
         eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,edihcnstr,&
-        ethetacnstr,ebr*nss,Uconst,eliptran,wliptran,Eafmforc,     &
+        ethetacnstr,ebr*nss,Uconst,eliptran,wliptran,Eafmforce,     &
         etube,wtube, &
         estr_nucl,wbond_nucl, ebe_nucl,wang_nucl,&
         etube,wtube, &
         estr_nucl,wbond_nucl, ebe_nucl,wang_nucl,&
-        evdwpp,wvdwpp_nucl,eespp,welpp,evdwpsb,wvdwpsb,eelpsb,welpsb&
-        evdwsb,wvdwsb,eelsb,welsb,esbloc,wsbloc,etors_nucl,wtor_nucl&
+        evdwpp,wvdwpp_nucl,eespp,welpp,evdwpsb,wvdwpsb,eelpsb,welpsb,&
+        evdwsb,wvdwsb,eelsb,welsb,esbloc,wsbloc,etors_nucl,wtor_nucl,&
         etors_d_nucl,wtor_d_nucl,ecorr_nucl,wcorr_nucl,&
         ecorr3_nucl,wcorr3_nucl,ecation_prot,wcatprot,ecationcation,wcatcat,  &
         escbase,wscbase,epepbase,wpepbase,escpho,wscpho,epeppho,wpeppho,&
         etors_d_nucl,wtor_d_nucl,ecorr_nucl,wcorr_nucl,&
         ecorr3_nucl,wcorr3_nucl,ecation_prot,wcatprot,ecationcation,wcatcat,  &
         escbase,wscbase,epepbase,wpepbase,escpho,wscpho,epeppho,wpeppho,&
-        etot
+        ecations_prot_amber,etot
    10 format (/'Virtual-chain energies:'// &
        'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ &
        'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ &
    10 format (/'Virtual-chain energies:'// &
        'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ &
        'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ &
 !          write(iout,*)"c ", c(1,:), c(2,:), c(3,:)
             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
             rij=dsqrt(rrij)
 !          write(iout,*)"c ", c(1,:), c(2,:), c(3,:)
             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
             rij=dsqrt(rrij)
-            sss_ele_cut=sscale_ele(1.0d0/(rij*sigma(itypi,itypj)))
-            sss_ele_grad=sscagrad_ele(1.0d0/(rij*sigma(itypi,itypj)))
+            sss_ele_cut=sscale_ele(1.0d0/(rij))
+            sss_ele_grad=sscagrad_ele(1.0d0/(rij))
 !            print *,sss_ele_cut,sss_ele_grad,&
 !            1.0d0/(rij),r_cut_ele,rlamb_ele
             if (sss_ele_cut.le.0.0) cycle
 !            print *,sss_ele_cut,sss_ele_grad,&
 !            1.0d0/(rij),r_cut_ele,rlamb_ele
             if (sss_ele_cut.le.0.0) cycle
             fac=rij*fac
 !            print *,'before fac',fac,rij,evdwij
             fac=fac+evdwij*sss_ele_grad/sss_ele_cut&
             fac=rij*fac
 !            print *,'before fac',fac,rij,evdwij
             fac=fac+evdwij*sss_ele_grad/sss_ele_cut&
-            /sigma(itypi,itypj)*rij
+            *rij
 !            print *,'grad part scale',fac,   &
 !             evdwij*sss_ele_grad/sss_ele_cut &
 !            /sigma(itypi,itypj)*rij
 !            print *,'grad part scale',fac,   &
 !             evdwij*sss_ele_grad/sss_ele_cut &
 !            /sigma(itypi,itypj)*rij
 ! to calculate the el-loc multibody terms of various order.
 !
 !AL el      mu=0.0d0
 ! to calculate the el-loc multibody terms of various order.
 !
 !AL el      mu=0.0d0
+   
 #ifdef PARMAT
       do i=ivec_start+2,ivec_end+2
 #else
       do i=3,nres+1
 #endif
         if (i.gt. nnt+2 .and. i.lt.nct+2) then
 #ifdef PARMAT
       do i=ivec_start+2,ivec_end+2
 #else
       do i=3,nres+1
 #endif
         if (i.gt. nnt+2 .and. i.lt.nct+2) then
+          if (itype(i-2,1).eq.0) then 
+          iti = nloctyp
+          else
           iti = itype2loc(itype(i-2,1))
           iti = itype2loc(itype(i-2,1))
+          endif
         else
           iti=nloctyp
         endif
         else
           iti=nloctyp
         endif
 #endif
 #else
         if (i.gt. nnt+2 .and. i.lt.nct+2) then
 #endif
 #else
         if (i.gt. nnt+2 .and. i.lt.nct+2) then
+!         write(iout,*) "i,",molnum(i)
+!         print *, "i,",molnum(i),i,itype(i-2,1)
+        if (molnum(i).eq.1) then
           iti = itype2loc(itype(i-2,1))
         else
           iti=nloctyp
         endif
           iti = itype2loc(itype(i-2,1))
         else
           iti=nloctyp
         endif
+        else
+          iti=nloctyp
+        endif
 !c        write (iout,*) "i",i-1," itype",itype(i-2)," iti",iti
 !c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
         if (i.gt. nnt+1 .and. i.lt.nct+1) then
 !c        write (iout,*) "i",i-1," itype",itype(i-2)," iti",iti
 !c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
         if (i.gt. nnt+1 .and. i.lt.nct+1) then
         else
           iti1=nloctyp
         endif
         else
           iti1=nloctyp
         endif
+!        print *,i,iti
         b1(1,i-2)=b(3,iti)
         b1(2,i-2)=b(5,iti)
         b2(1,i-2)=b(2,iti)
         b1(1,i-2)=b(3,iti)
         b1(2,i-2)=b(5,iti)
         b2(1,i-2)=b(2,iti)
 !        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
         if (i.gt. nnt+1 .and. i.lt.nct+1) then
           if (itype(i-1,1).eq.0) then
 !        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
         if (i.gt. nnt+1 .and. i.lt.nct+1) then
           if (itype(i-1,1).eq.0) then
-           iti1=ntortyp+1
+           iti1=nloctyp
           elseif (itype(i-1,1).le.ntyp) then
             iti1 = itype2loc(itype(i-1,1))
           else
           elseif (itype(i-1,1).le.ntyp) then
             iti1 = itype2loc(itype(i-1,1))
           else
 !d        write (iout,*) 'mu2',mu2(:,i-2)
         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0) &
         then  
 !d        write (iout,*) 'mu2',mu2(:,i-2)
         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0) &
         then  
-        call matmat2(CC(1,1,i-2),Ugder(1,1,i-2),CUgder(1,1,i-2))
+        call matmat2(CC(1,1,i-1),Ugder(1,1,i-2),CUgder(1,1,i-2))
         call matmat2(DD(1,1,i-2),Ugder(1,1,i-2),DUgder(1,1,i-2))
         call matmat2(Dtilde(1,1,i-2),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
         call matmat2(DD(1,1,i-2),Ugder(1,1,i-2),DUgder(1,1,i-2))
         call matmat2(Dtilde(1,1,i-2),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
-        call matvec2(Ctilde(1,1,i-2),obrot_der(1,i-2),Ctobrder(1,i-2))
+        call matvec2(Ctilde(1,1,i-1),obrot_der(1,i-2),Ctobrder(1,i-2))
         call matvec2(Dtilde(1,1,i-2),obrot2_der(1,i-2),Dtobr2der(1,i-2))
 ! Vectors and matrices dependent on a single virtual-bond dihedral.
         call matvec2(Dtilde(1,1,i-2),obrot2_der(1,i-2),Dtobr2der(1,i-2))
 ! Vectors and matrices dependent on a single virtual-bond dihedral.
-        call matvec2(DD(1,1,i-2),b1tilde(1,iti1),auxvec(1))
+        call matvec2(DD(1,1,i-2),b1tilde(1,i-1),auxvec(1))
         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
-        call matvec2(CC(1,1,i-2),Ub2(1,i-2),CUgb2(1,i-2))
-        call matvec2(CC(1,1,i-2),Ub2der(1,i-2),CUgb2der(1,i-2))
+        call matvec2(CC(1,1,i-1),Ub2(1,i-2),CUgb2(1,i-2))
+        call matvec2(CC(1,1,i-1),Ub2der(1,i-2),CUgb2der(1,i-2))
         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
           +a23*gmuij1(2)&
           +a32*gmuij1(3)&
           +a33*gmuij1(4))&
           +a23*gmuij1(2)&
           +a32*gmuij1(3)&
           +a33*gmuij1(4))&
-         *fac_shield(i)*fac_shield(j)
+         *fac_shield(i)*fac_shield(j)&
+                    *sss_ele_cut
+
 !c         write(iout,*) "derivative over thatai"
 !c         write(iout,*) a22*gmuij1(1), a23*gmuij1(2) ,a32*gmuij1(3),
 !c     &   a33*gmuij1(4) 
 !c         write(iout,*) "derivative over thatai"
 !c         write(iout,*) a22*gmuij1(1), a23*gmuij1(2) ,a32*gmuij1(3),
 !c     &   a33*gmuij1(4) 
           +a33*gmuij2(4)
          gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+&
            geel_loc_ij*wel_loc&
           +a33*gmuij2(4)
          gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+&
            geel_loc_ij*wel_loc&
-         *fac_shield(i)*fac_shield(j)
+         *fac_shield(i)*fac_shield(j)&
+                    *sss_ele_cut
+
 
 !c  Derivative over j residue
          geel_loc_ji=a22*gmuji1(1)&
 
 !c  Derivative over j residue
          geel_loc_ji=a22*gmuji1(1)&
 
         gloc(nphi+j,icg)=gloc(nphi+j,icg)+&
            geel_loc_ji*wel_loc&
 
         gloc(nphi+j,icg)=gloc(nphi+j,icg)+&
            geel_loc_ji*wel_loc&
-         *fac_shield(i)*fac_shield(j)
+         *fac_shield(i)*fac_shield(j)&
+                    *sss_ele_cut
+
 
          geel_loc_ji=&
           +a22*gmuji2(1)&
 
          geel_loc_ji=&
           +a22*gmuji2(1)&
 !c     &   a33*gmuji2(4)
          gloc(nphi+j-1,icg)=gloc(nphi+j-1,icg)+&
            geel_loc_ji*wel_loc&
 !c     &   a33*gmuji2(4)
          gloc(nphi+j-1,icg)=gloc(nphi+j-1,icg)+&
            geel_loc_ji*wel_loc&
-         *fac_shield(i)*fac_shield(j)
+         *fac_shield(i)*fac_shield(j)&
+                    *sss_ele_cut
 #endif
 
 !          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
 #endif
 
 !          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
         a_temp(1,2)=a23
         a_temp(2,1)=a32
         a_temp(2,2)=a33
         a_temp(1,2)=a23
         a_temp(2,1)=a32
         a_temp(2,2)=a33
-        iti1=itortyp(itype(i+1,1))
-        iti2=itortyp(itype(i+2,1))
-        iti3=itortyp(itype(i+3,1))
+        iti1=i+1
+        iti2=i+2
+        iti3=i+3
 !        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
         call transpose2(EUg(1,1,i+1),e1t(1,1))
         call transpose2(Eug(1,1,i+2),e2t(1,1))
 !        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
         call transpose2(EUg(1,1,i+1),e1t(1,1))
         call transpose2(Eug(1,1,i+2),e2t(1,1))
         call matvec2(ae3(1,1),gUb2(1,i+2),auxgvec(1))
 !c auxilary matrix auxgEvec1 of E matix with Ub2 constant
         call matvec2(gtae3(1,1),Ub2(1,i+2),auxgEvec3(1))
         call matvec2(ae3(1,1),gUb2(1,i+2),auxgvec(1))
 !c auxilary matrix auxgEvec1 of E matix with Ub2 constant
         call matvec2(gtae3(1,1),Ub2(1,i+2),auxgEvec3(1))
-        s2=scalar2(b1(1,iti1),auxvec(1))
+        s2=scalar2(b1(1,i+1),auxvec(1))
 !c derivative of theta i+1 with constant i+3
         gs13=scalar2(gtb1(1,i+1),auxvec(1))
 !c derivative of theta i+2 with constant i+1
 !c derivative of theta i+1 with constant i+3
         gs13=scalar2(gtb1(1,i+1),auxvec(1))
 !c derivative of theta i+2 with constant i+1
         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
-        s1=scalar2(b1(1,iti2),auxvec(1))
+        s1=scalar2(b1(1,i+1),auxvec(1))
         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3) &
         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3) &
 #ifdef TIMING
       time01=MPI_Wtime()
 #endif
 #ifdef TIMING
       time01=MPI_Wtime()
 #endif
+!#define DEBUG
 #ifdef DEBUG
       write (iout,*) "sum_gradient gvdwc, gvdwx"
       do i=1,nres
 #ifdef DEBUG
       write (iout,*) "sum_gradient gvdwc, gvdwx"
       do i=1,nres
 !        write (iout,'(i5,3f10.5,2x,f10.5)') 
 !     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
 !      enddo
 !        write (iout,'(i5,3f10.5,2x,f10.5)') 
 !     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
 !      enddo
-      write (iout,*) "gvdwc gvdwc_scp gvdwc_scpp"
-      do i=1,nres
-        write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') &
-         i,(gvdwc(j,i),j=1,3),(gvdwc_scp(j,i),j=1,3),&
-         (gvdwc_scpp(j,i),j=1,3)
-      enddo
-      write (iout,*) "gelc_long gvdwpp gel_loc_long"
-      do i=1,nres
-        write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') &
-         i,(gelc_long(j,i),j=1,3),(gvdwpp(j,i),j=1,3),&
-         (gelc_loc_long(j,i),j=1,3)
-      enddo
+!      write (iout,*) "gvdwc gvdwc_scp gvdwc_scpp"
+!      do i=1,nres
+!        write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') &
+!         i,(gvdwc(j,i),j=1,3),(gvdwc_scp(j,i),j=1,3),&
+!         (gvdwc_scpp(j,i),j=1,3)
+!      enddo
+!      write (iout,*) "gelc_long gvdwpp gel_loc_long"
+!      do i=1,nres
+!        write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') &
+!         i,(gelc_long(j,i),j=1,3),(gvdwpp(j,i),j=1,3),&
+!         (gelc_loc_long(j,i),j=1,3)
+!      enddo
       call flush(iout)
 #endif
 #ifdef SPLITELE
       call flush(iout)
 #endif
 #ifdef SPLITELE
                      +wcorr3_nucl*gradcorr3_nucl(j,i) +&
                      wcatprot* gradpepcat(j,i)+ &
                      wcatcat*gradcatcat(j,i)+   &
                      +wcorr3_nucl*gradcorr3_nucl(j,i) +&
                      wcatprot* gradpepcat(j,i)+ &
                      wcatcat*gradcatcat(j,i)+   &
-                     wscbase*gvdwc_scbase(j,i)  &
+                     wscbase*gvdwc_scbase(j,i)+ &
                      wpepbase*gvdwc_pepbase(j,i)+&
                      wscpho*gvdwc_scpho(j,i)+&
                      wpeppho*gvdwc_peppho(j,i)
                      wpepbase*gvdwc_pepbase(j,i)+&
                      wscpho*gvdwc_scpho(j,i)+&
                      wpeppho*gvdwc_peppho(j,i)
                      +gradafm(j,i) &
                      +wliptran*gliptranc(j,i) &
                      +welec*gshieldc(j,i) &
                      +gradafm(j,i) &
                      +wliptran*gliptranc(j,i) &
                      +welec*gshieldc(j,i) &
-                     +welec*gshieldc_loc(j,) &
+                     +welec*gshieldc_loc(j,i) &
                      +wcorr*gshieldc_ec(j,i) &
                      +wcorr*gshieldc_loc_ec(j,i) &
                      +wturn3*gshieldc_t3(j,i) &
                      +wcorr*gshieldc_ec(j,i) &
                      +wcorr*gshieldc_loc_ec(j,i) &
                      +wturn3*gshieldc_t3(j,i) &
       enddo
       return
       end subroutine sc_grad
       enddo
       return
       end subroutine sc_grad
+
+      subroutine sc_grad_cat
+!      implicit real*8 (a-h,o-z)
+      use calc_data
+!      include 'DIMENSIONS'
+!      include 'COMMON.CHAIN'
+!      include 'COMMON.DERIV'
+!      include 'COMMON.CALC'
+!      include 'COMMON.IOUNITS'
+      real(kind=8), dimension(3) :: dcosom1,dcosom2
+!      print *,"wchodze"
+      eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1 &
+          +dCAVdOM1+ dGCLdOM1+ dPOLdOM1
+      eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2 &
+          +dCAVdOM2+ dGCLdOM2+ dPOLdOM2
+
+      eom12=evdwij*eps1_om12+eps2der*eps2rt_om12 &
+           -2.0D0*alf12*eps3der+sigder*sigsq_om12&
+           +dCAVdOM12+ dGCLdOM12
+! diagnostics only
+!      eom1=0.0d0
+!      eom2=0.0d0
+!      eom12=evdwij*eps1_om12
+! end diagnostics
+!      write (iout,*) "eps2der",eps2der," eps3der",eps3der,&
+!       " sigder",sigder
+!      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
+!      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
+!C      print *,sss_ele_cut,'in sc_grad'
+
+      do k=1,3
+        dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
+        dcosom2(k)=rij*(dc_norm(k,j)-om2*erij(k))
+      enddo
+      do k=1,3
+        gg(k)=(gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k))
+!C      print *,'gg',k,gg(k)
+       enddo
+!       print *,i,j,gg_lipi(3),gg_lipj(3),sss_ele_cut
+!      write (iout,*) "gg",(gg(k),k=1,3)
+      do k=1,3
+        gvdwx(k,i)=gvdwx(k,i)-gg(k) +gg_lipi(k)&
+                  +(eom12*(dc_norm(k,j)-om12*dc_norm(k,nres+i)) &
+                  +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
+
+        gvdwx(k,j)=gvdwx(k,j)+gg(k)+gg_lipj(k)&
+                  +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,j)) &
+                  +eom2*(erij(k)-om2*dc_norm(k,j)))*dscj_inv   
+
+!        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i)) &
+!                 +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
+!        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j)) &
+!               +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
+      enddo
+! 
+! Calculate the components of the gradient in DC and X
+!
+!grad      do k=i,j-1
+!grad        do l=1,3
+!grad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
+!grad        enddo
+!grad      enddo
+      do l=1,3
+        gvdwc(l,i)=gvdwc(l,i)-gg(l)
+        gvdwc(l,j)=gvdwc(l,j)+gg(l)
+      enddo
+      end subroutine sc_grad_cat
+
+
 #ifdef CRYST_THETA
 !-----------------------------------------------------------------------------
       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
 #ifdef CRYST_THETA
 !-----------------------------------------------------------------------------
       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
 !      call intcartderiv
 !      call checkintcartgrad
       call zerograd
 !      call intcartderiv
 !      call checkintcartgrad
       call zerograd
-      aincr=2.0D-5
+      aincr=1.0D-7
       write(iout,*) 'Calling CHECK_ECARTINT.',aincr
       nf=0
       icall=0
       write(iout,*) 'Calling CHECK_ECARTINT.',aincr
       nf=0
       icall=0
             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
             rij=dsqrt(rrij)
             sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
             rij=dsqrt(rrij)
             sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
-            sss_ele_cut=sscale_ele(1.0d0/(rij*sigma(itypi,itypj)))
-            sss_ele_grad=sscagrad_ele(1.0d0/(rij*sigma(itypi,itypj)))
+            sss_ele_cut=sscale_ele(1.0d0/(rij))
+            sss_ele_grad=sscagrad_ele(1.0d0/(rij))
             sss_grad=sscale_grad(1.0d0/(rij*sigmaii(itypi,itypj)))
             if (sss_ele_cut.le.0.0) cycle
             if (sss.lt.1.0d0) then
             sss_grad=sscale_grad(1.0d0/(rij*sigmaii(itypi,itypj)))
             if (sss_ele_cut.le.0.0) cycle
             if (sss.lt.1.0d0) then
               sigder=fac*sigder
               fac=rij*fac
               fac=fac+evdwij*(sss_ele_grad/sss_ele_cut&
               sigder=fac*sigder
               fac=rij*fac
               fac=fac+evdwij*(sss_ele_grad/sss_ele_cut&
-            /sigma(itypi,itypj)*rij-sss_grad/(1.0-sss)*rij  &
+              *rij-sss_grad/(1.0-sss)*rij  &
             /sigmaii(itypi,itypj))
 !              fac=0.0d0
 ! Calculate the radial part of the gradient
             /sigmaii(itypi,itypj))
 !              fac=0.0d0
 ! Calculate the radial part of the gradient
             rij=dsqrt(rrij)
             sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
             sss_grad=sscale_grad(1.0d0/(rij*sigmaii(itypi,itypj)))
             rij=dsqrt(rrij)
             sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
             sss_grad=sscale_grad(1.0d0/(rij*sigmaii(itypi,itypj)))
-            sss_ele_cut=sscale_ele(1.0d0/(rij*sigma(itypi,itypj)))
-            sss_ele_grad=sscagrad_ele(1.0d0/(rij*sigma(itypi,itypj)))
+            sss_ele_cut=sscale_ele(1.0d0/(rij))
+            sss_ele_grad=sscagrad_ele(1.0d0/(rij))
             if (sss_ele_cut.le.0.0) cycle
 
             if (sss.gt.0.0d0) then
             if (sss_ele_cut.le.0.0) cycle
 
             if (sss.gt.0.0d0) then
               sigder=fac*sigder
               fac=rij*fac
               fac=fac+evdwij*(sss_ele_grad/sss_ele_cut&
               sigder=fac*sigder
               fac=rij*fac
               fac=fac+evdwij*(sss_ele_grad/sss_ele_cut&
-            /sigma(itypi,itypj)*rij+sss_grad/sss*rij  &
+            *rij+sss_grad/sss*rij  &
             /sigmaii(itypi,itypj))
 
 !              fac=0.0d0
             /sigmaii(itypi,itypj))
 
 !              fac=0.0d0
       integer :: i,j
       
       if(nres.lt.100) then
       integer :: i,j
       
       if(nres.lt.100) then
-        maxconts=nres
+        maxconts=10*nres
       elseif(nres.lt.200) then
       elseif(nres.lt.200) then
-        maxconts=0.8*nres      ! Max. number of contacts per residue
+        maxconts=10*nres      ! Max. number of contacts per residue
       else
       else
-        maxconts=0.6*nres ! (maxconts=maxres/4)
+        maxconts=10*nres ! (maxconts=maxres/4)
       endif
       maxcont=12*nres      ! Max. number of SC contacts
       maxvar=6*nres      ! Max. number of variables
       endif
       maxcont=12*nres      ! Max. number of SC contacts
       maxvar=6*nres      ! Max. number of variables
       enddo
 !      IF ( (wcorr_nucl.gt.0.0d0.or.wcorr3_nucl.gt.0.0d0) .and.
        IF ( j.gt.i+1 .and.&
       enddo
 !      IF ( (wcorr_nucl.gt.0.0d0.or.wcorr3_nucl.gt.0.0d0) .and.
        IF ( j.gt.i+1 .and.&
-          num_conti.le.maxconts) THEN
+          num_conti.le.maxcont) THEN
 !C
 !C Calculate the contact function. The ith column of the array JCONT will 
 !C contain the numbers of atoms that make contacts with the atom I (of numbers
 !C greater than I). The arrays FACONT and GACONT will contain the values of
 !C the contact function and its derivative.
 !C
 !C Calculate the contact function. The ith column of the array JCONT will 
 !C contain the numbers of atoms that make contacts with the atom I (of numbers
 !C greater than I). The arrays FACONT and GACONT will contain the values of
 !C the contact function and its derivative.
-        r0ij=2.20D0*sigma(itypi,itypj)
+        r0ij=2.20D0*sigma_nucl(itypi,itypj)
 !c        write (2,*) "ij",i,j," rij",1.0d0/rij," r0ij",r0ij
         call gcont(rij,r0ij,1.0D0,0.2d0/r0ij,fcont,fprimcont)
 !c        write (2,*) "fcont",fcont
 !c        write (2,*) "ij",i,j," rij",1.0d0/rij," r0ij",r0ij
         call gcont(rij,r0ij,1.0D0,0.2d0/r0ij,fcont,fprimcont)
 !c        write (2,*) "fcont",fcont
 
           if (num_conti.gt.maxconts) then
             write (iout,*) 'WARNING - max. # of contacts exceeded;',&
 
           if (num_conti.gt.maxconts) then
             write (iout,*) 'WARNING - max. # of contacts exceeded;',&
-                          ' will skip next contacts for this conf.'
+                          ' will skip next contacts for this conf.',maxconts
           else
             jcont_hb(num_conti,i)=j
 !c            write (iout,*) "num_conti",num_conti,
           else
             jcont_hb(num_conti,i)=j
 !c            write (iout,*) "num_conti",num_conti,
        return 
        end subroutine ecatcat
 !---------------------------------------------------------------------------
        return 
        end subroutine ecatcat
 !---------------------------------------------------------------------------
-       subroutine ecat_prot(ecation_prot)
-       integer i,j,k,subchap,itmp,inum
-        real(kind=8) :: xi,yi,zi,xj,yj,zj,ract,rcat0,epscalc,r06,r012,&
-        r7,r4,ecationcation
-        real(kind=8) xj_temp,yj_temp,zj_temp,xj_safe,yj_safe,zj_safe, &
-        dist_init,dist_temp,ecation_prot,rcal,rocal,   &
-        Evan1,Evan2,EC,cm1mag,DASGL,delta,r0p,Epepcat, &
-        catl,cml,calpl, Etotal_p, Etotal_m,rtab,wdip,wmodquad,wquad1, &
-        wquad2,wvan1,E1,E2,wconst,wvan2,rcpm,dcmag,sin2thet,sinthet,  &
-        costhet,v1m,v2m,wh2o,wc,rsecp,Ir,Irsecp,Irthrp,Irfourp,Irfiftp,&
-        Irsistp,Irseven,Irtwelv,Irthir,dE1dr,dE2dr,dEdcos,wquad2p,opt, &
-        rs,rthrp,rfourp,rsixp,reight,Irsixp,Ireight,Irtw,Irfourt,      &
-        opt1,opt2,opt3,opt4,opt5,opt6,opt7,opt8,opt9,opt10,opt11,opt12,&
-        opt13,opt14,opt15,opt16,opt17,opt18,opt19, &
-        Equad1,Equad2,dscmag,v1dpv2,dscmag3,constA,constB,Edip
-        real(kind=8),dimension(3) ::dEvan1Cmcat,dEvan2Cmcat,dEeleccat,&
-        gg,r,EtotalCat,dEtotalCm,dEtotalCalp,dEvan1Cm,dEvan2Cm, &
-        dEtotalpep,dEtotalcat_num,dEddci,dEtotalcm_num,dEtotalcalp_num, &
-        tab1,tab2,tab3,diff,cm1,sc,p,tcat,talp,cm,drcp,drcp_norm,vcat,  &
-        v1,v2,v3,myd_norm,dx,vcm,valpha,drdpep,dcosdpep,dcosddci,dEdpep,&
-        dEcCat,dEdipCm,dEdipCalp,dEquad1Cat,dEquad1Cm,dEquad1Calp,      &
-        dEquad2Cat,dEquad2Cm,dEquad2Calpd,Evan1Cat,dEvan1Calp,dEvan2Cat,&
-        dEvan2Calp,dEtotalCat,dscvec,dEcCm,dEcCalp,dEdipCat,dEquad2Calp,&
-        dEvan1Cat
-        real(kind=8),dimension(6) :: vcatprm
-        ecation_prot=0.0d0
-! first lets calculate interaction with peptide groups
-        if (nres_molec(5).eq.0) return
-         wconst=78
-        wdip =1.092777950857032D2
-        wdip=wdip/wconst
-        wmodquad=-2.174122713004870D4
-        wmodquad=wmodquad/wconst
-        wquad1 = 3.901232068562804D1
-        wquad1=wquad1/wconst
-        wquad2 = 3
-        wquad2=wquad2/wconst
-        wvan1 = 0.1
-        wvan2 = 6
+! new for K+
+      subroutine ecats_prot_amber(ecations_prot_amber)
+!      subroutine ecat_prot2(ecation_prot)
+      use calc_data
+      use comm_momo
+
+      logical :: lprn
+!el local variables
+      integer :: iint,itypi1,subchap,isel,itmp
+      real(kind=8) :: rrij,xi,yi,zi,sig,rij_shift,e1,e2,sigm,epsi
+      real(kind=8) :: evdw
+      real(kind=8) :: xj_safe,yj_safe,zj_safe,xj_temp,yj_temp,zj_temp,&
+                    dist_temp, dist_init,ssgradlipi,ssgradlipj, &
+                    sslipi,sslipj,faclip,alpha_sco
+      integer :: ii
+      real(kind=8) :: fracinbuf
+      real (kind=8) :: escpho
+      real (kind=8),dimension(4):: ener
+      real(kind=8) :: b1,b2,egb
+      real(kind=8) :: Fisocav,ECL,Elj,Equad,Epol,eheadtail,&
+       Lambf,&
+       Chif,ChiLambf,Fcav,dFdR,dFdOM1,&
+       ecations_prot_amber,dFdOM2,dFdL,dFdOM12,&
+       federmaus,&
+       d1i,d1j
+!       real(kind=8),dimension(3,2)::erhead_tail
+!       real(kind=8),dimension(3) :: Rhead_distance,ertail,erhead,Rtail_distance
+      real(kind=8) ::  facd4, adler, Fgb, facd3
+      integer troll,jj,istate
+      real (kind=8) :: dcosom1(3),dcosom2(3)
+
+      ecations_prot_amber=0.0D0
+      if (nres_molec(5).eq.0) return
+      eps_out=80.0d0
+!      sss_ele_cut=1.0d0
+
         itmp=0
         do i=1,4
         itmp=itmp+nres_molec(i)
         enddo
 !        do i=1,nres_molec(1)-1  ! loop over all peptide groups needs parralelization
         do i=ibond_start,ibond_end
         itmp=0
         do i=1,4
         itmp=itmp+nres_molec(i)
         enddo
 !        do i=1,nres_molec(1)-1  ! loop over all peptide groups needs parralelization
         do i=ibond_start,ibond_end
-!         cycle
-         if ((itype(i,1).eq.ntyp1).or.(itype(i+1,1).eq.ntyp1)) cycle ! leave dummy atoms
-        xi=0.5d0*(c(1,i)+c(1,i+1))
-        yi=0.5d0*(c(2,i)+c(2,i+1))
-        zi=0.5d0*(c(3,i)+c(3,i+1))
-          xi=mod(xi,boxxsize)
+
+!        print *,"I am in EVDW",i
+        itypi=iabs(itype(i,1))
+!        if (i.ne.47) cycle
+        if (itypi.eq.ntyp1) cycle
+        itypi1=iabs(itype(i+1,1))
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+          xi=dmod(xi,boxxsize)
           if (xi.lt.0) xi=xi+boxxsize
           if (xi.lt.0) xi=xi+boxxsize
-          yi=mod(yi,boxysize)
+          yi=dmod(yi,boxysize)
           if (yi.lt.0) yi=yi+boxysize
           if (yi.lt.0) yi=yi+boxysize
-          zi=mod(zi,boxzsize)
+          zi=dmod(zi,boxzsize)
           if (zi.lt.0) zi=zi+boxzsize
           if (zi.lt.0) zi=zi+boxzsize
-
+        dxi=dc_norm(1,nres+i)
+        dyi=dc_norm(2,nres+i)
+        dzi=dc_norm(3,nres+i)
+        dsci_inv=vbld_inv(i+nres)
          do j=itmp+1,itmp+nres_molec(5)
          do j=itmp+1,itmp+nres_molec(5)
+
+! Calculate SC interaction energy.
+            itypj=iabs(itype(j,1))
+            if ((itypj.eq.ntyp1)) cycle
+             CALL elgrad_init_cat(eheadtail,Egb,Ecl,Elj,Equad,Epol)
+
+            dscj_inv=vbld_inv(j+nres)
            xj=c(1,j)
            yj=c(2,j)
            zj=c(3,j)
            xj=c(1,j)
            yj=c(2,j)
            zj=c(3,j)
-          xj=dmod(xj,boxxsize)
-          if (xj.lt.0) xj=xj+boxxsize
-          yj=dmod(yj,boxysize)
-          if (yj.lt.0) yj=yj+boxysize
-          zj=dmod(zj,boxzsize)
-          if (zj.lt.0) zj=zj+boxzsize
-      dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
-      xj_safe=xj
-      yj_safe=yj
-      zj_safe=zj
-      subchap=0
-      do xshift=-1,1
-      do yshift=-1,1
-      do zshift=-1,1
+           xj=dmod(xj,boxxsize)
+           if (xj.lt.0) xj=xj+boxxsize
+           yj=dmod(yj,boxysize)
+           if (yj.lt.0) yj=yj+boxysize
+           zj=dmod(zj,boxzsize)
+           if (zj.lt.0) zj=zj+boxzsize
+          dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+          xj_safe=xj
+          yj_safe=yj
+          zj_safe=zj
+          subchap=0
+
+          do xshift=-1,1
+          do yshift=-1,1
+          do zshift=-1,1
           xj=xj_safe+xshift*boxxsize
           yj=yj_safe+yshift*boxysize
           zj=zj_safe+zshift*boxzsize
           xj=xj_safe+xshift*boxxsize
           yj=yj_safe+yshift*boxysize
           zj=zj_safe+zshift*boxzsize
             zj_temp=zj
             subchap=1
           endif
             zj_temp=zj
             subchap=1
           endif
-       enddo
-       enddo
-       enddo
-       if (subchap.eq.1) then
+          enddo
+          enddo
+          enddo
+          if (subchap.eq.1) then
           xj=xj_temp-xi
           yj=yj_temp-yi
           zj=zj_temp-zi
           xj=xj_temp-xi
           yj=yj_temp-yi
           zj=zj_temp-zi
-       else
+          else
           xj=xj_safe-xi
           yj=yj_safe-yi
           zj=zj_safe-zi
           xj=xj_safe-xi
           yj=yj_safe-yi
           zj=zj_safe-zi
-       endif
-!       enddo
-!       enddo
-       rcpm = sqrt(xj**2+yj**2+zj**2)
-       drcp_norm(1)=xj/rcpm
-       drcp_norm(2)=yj/rcpm
-       drcp_norm(3)=zj/rcpm
-       dcmag=0.0
-       do k=1,3
-       dcmag=dcmag+dc(k,i)**2
-       enddo
-       dcmag=dsqrt(dcmag)
-       do k=1,3
-         myd_norm(k)=dc(k,i)/dcmag
-       enddo
-        costhet=drcp_norm(1)*myd_norm(1)+drcp_norm(2)*myd_norm(2)+&
-        drcp_norm(3)*myd_norm(3)
-        rsecp = rcpm**2
-        Ir = 1.0d0/rcpm
-        Irsecp = 1.0d0/rsecp
-        Irthrp = Irsecp/rcpm
-        Irfourp = Irthrp/rcpm
-        Irfiftp = Irfourp/rcpm
-        Irsistp=Irfiftp/rcpm
-        Irseven=Irsistp/rcpm
-        Irtwelv=Irsistp*Irsistp
-        Irthir=Irtwelv/rcpm
-        sin2thet = (1-costhet*costhet)
-        sinthet=sqrt(sin2thet)
-        E1 = wdip*Irsecp*costhet+(wmodquad*Irfourp+wquad1*Irthrp)&
-             *sin2thet
-        E2 = -wquad1*Irthrp*wquad2+wvan1*(wvan2**12*Irtwelv-&
-             2*wvan2**6*Irsistp)
-        ecation_prot = ecation_prot+E1+E2
-        dE1dr = -2*costhet*wdip*Irthrp-& 
-         (4*wmodquad*Irfiftp+3*wquad1*Irfourp)*sin2thet
+          endif
+
+!          dxj = dc_norm( 1, nres+j )
+!          dyj = dc_norm( 2, nres+j )
+!          dzj = dc_norm( 3, nres+j )
+
+          itypi = itype(i,1)
+          itypj = itype(j,5)
+! Parameters from fitting the analitical expressions to the PMF obtained by umbrella 
+! sampling performed with amber package
+!          alf1   = 0.0d0
+!          alf2   = 0.0d0
+!          alf12  = 0.0d0
+!          a12sq = rborn(itypi,itypj) * rborn(itypj,itypi)
+          chi1 = chicat(itypi,itypj)
+          chis1 = chiscat(itypi,itypj)
+          chip1 = chippcat(itypi,itypj)
+!          chis2 = chis(itypj,itypi)
+!          chis12 = chis1 * chis2
+          sig1 = sigmap1cat(itypi,itypj)
+!          sig2 = sigmap2(itypi,itypj)
+! alpha factors from Fcav/Gcav
+          b1cav = alphasurcat(1,itypi,itypj)
+          b2cav = alphasurcat(2,itypi,itypj)
+          b3cav = alphasurcat(3,itypi,itypj)
+          b4cav = alphasurcat(4,itypi,itypj)
+          
+! used to determine whether we want to do quadrupole calculations
+       eps_in = epsintabcat(itypi,itypj)
+       if (eps_in.eq.0.0) eps_in=1.0
+
+       eps_inout_fac = ( (1.0d0/eps_in) - (1.0d0/eps_out))
+!       Rtail = 0.0d0
+
+       DO k = 1, 3
+        ctail(k,1)=c(k,i+nres)
+        ctail(k,2)=c(k,j)
+       END DO
+!c! tail distances will be themselves usefull elswhere
+!c1 (in Gcav, for example)
+       Rtail_distance(1) = ctail( 1, 2 ) - ctail( 1,1 )
+       Rtail_distance(2) = ctail( 2, 2 ) - ctail( 2,1 )
+       Rtail_distance(3) = ctail( 3, 2 ) - ctail( 3,1 )
+       Rtail = dsqrt( &
+          (Rtail_distance(1)*Rtail_distance(1)) &
+        + (Rtail_distance(2)*Rtail_distance(2)) &
+        + (Rtail_distance(3)*Rtail_distance(3)))
+! tail location and distance calculations
+! dhead1
+       d1 = dheadcat(1, 1, itypi, itypj)
+!       d2 = dhead(2, 1, itypi, itypj)
+       DO k = 1,3
+! location of polar head is computed by taking hydrophobic centre
+! and moving by a d1 * dc_norm vector
+! see unres publications for very informative images
+        chead(k,1) = c(k, i+nres) + d1 * dc_norm(k, i+nres)
+        chead(k,2) = c(k, j)
+! distance 
+!        Rsc_distance(k) = dabs(c(k, i+nres) - c(k, j+nres))
+!        Rsc(k) = Rsc_distance(k) * Rsc_distance(k)
+        Rhead_distance(k) = chead(k,2) - chead(k,1)
+       END DO
+! pitagoras (root of sum of squares)
+       Rhead = dsqrt( &
+          (Rhead_distance(1)*Rhead_distance(1)) &
+        + (Rhead_distance(2)*Rhead_distance(2)) &
+        + (Rhead_distance(3)*Rhead_distance(3)))
+!-------------------------------------------------------------------
+! zero everything that should be zero'ed
+       evdwij = 0.0d0
+       ECL = 0.0d0
+       Elj = 0.0d0
+       Equad = 0.0d0
+       Epol = 0.0d0
+       Fcav=0.0d0
+       eheadtail = 0.0d0
+       dGCLdOM1 = 0.0d0
+       dGCLdOM2 = 0.0d0
+       dGCLdOM12 = 0.0d0
+       dPOLdOM1 = 0.0d0
+       dPOLdOM2 = 0.0d0
+          Fcav = 0.0d0
+          dFdR = 0.0d0
+          dCAVdOM1  = 0.0d0
+          dCAVdOM2  = 0.0d0
+          dCAVdOM12 = 0.0d0
+          dscj_inv = vbld_inv(j+nres)
+!          print *,i,j,dscj_inv,dsci_inv
+! rij holds 1/(distance of Calpha atoms)
+          rrij = 1.0D0 / ( xj*xj + yj*yj + zj*zj)
+          rij  = dsqrt(rrij)
+          CALL sc_angular
+! this should be in elgrad_init but om's are calculated by sc_angular
+! which in turn is used by older potentials
+! om = omega, sqom = om^2
+          sqom1  = om1 * om1
+          sqom2  = om2 * om2
+          sqom12 = om12 * om12
+
+! now we calculate EGB - Gey-Berne
+! It will be summed up in evdwij and saved in evdw
+          sigsq     = 1.0D0  / sigsq
+          sig       = sig0ij * dsqrt(sigsq)
+!          rij_shift = 1.0D0  / rij - sig + sig0ij
+          rij_shift = Rtail - sig + sig0ij
+          IF (rij_shift.le.0.0D0) THEN
+           evdw = 1.0D20
+           RETURN
+          END IF
+          sigder = -sig * sigsq
+          rij_shift = 1.0D0 / rij_shift
+          fac       = rij_shift**expon
+          c1        = fac  * fac * aa_aq(itypi,itypj)
+!          print *,"ADAM",aa_aq(itypi,itypj)
+
+!          c1        = 0.0d0
+          c2        = fac  * bb_aq(itypi,itypj)
+!          c2        = 0.0d0
+          evdwij    = eps1 * eps2rt * eps3rt * ( c1 + c2 )
+          eps2der   = eps3rt * evdwij
+          eps3der   = eps2rt * evdwij
+!          evdwij    = 4.0d0 * eps2rt * eps3rt * evdwij
+          evdwij    = eps2rt * eps3rt * evdwij
+!#ifdef TSCSC
+!          IF (bb_aq(itypi,itypj).gt.0) THEN
+!           evdw_p = evdw_p + evdwij
+!          ELSE
+!           evdw_m = evdw_m + evdwij
+!          END IF
+!#else
+          evdw = evdw  &
+              + evdwij
+!#endif
+          c1     = c1 * eps1 * eps2rt**2 * eps3rt**2
+          fac    = -expon * (c1 + evdwij) * rij_shift
+          sigder = fac * sigder
+! Calculate distance derivative
+          gg(1) =  fac
+          gg(2) =  fac
+          gg(3) =  fac
+
+          fac = chis1 * sqom1 + chis2 * sqom2 &
+          - 2.0d0 * chis12 * om1 * om2 * om12
+          pom = 1.0d0 - chis1 * chis2 * sqom12
+          Lambf = (1.0d0 - (fac / pom))
+          Lambf = dsqrt(Lambf)
+          sparrow = 1.0d0 / dsqrt(sig1**2.0d0 + sig2**2.0d0)
+          Chif = Rtail * sparrow
+          ChiLambf = Chif * Lambf
+          eagle = dsqrt(ChiLambf)
+          bat = ChiLambf ** 11.0d0
+          top = b1cav * ( eagle + b2cav * ChiLambf - b3cav )
+          bot = 1.0d0 + b4cav * (ChiLambf ** 12.0d0)
+          botsq = bot * bot
+          Fcav = top / bot
+
+       dtop = b1cav * ((Lambf / (2.0d0 * eagle)) + (b2cav * Lambf))
+       dbot = 12.0d0 * b4cav * bat * Lambf
+       dFdR = ((dtop * bot - top * dbot) / botsq) * sparrow
+
+          dtop = b1cav * ((Chif / (2.0d0 * eagle)) + (b2cav * Chif))
+          dbot = 12.0d0 * b4cav * bat * Chif
+          eagle = Lambf * pom
+          dFdOM1  = -(chis1 * om1 - chis12 * om2 * om12) / (eagle)
+          dFdOM2  = -(chis2 * om2 - chis12 * om1 * om12) / (eagle)
+          dFdOM12 = chis12 * (chis1 * om1 * om12 - om2) &
+              * (chis2 * om2 * om12 - om1) / (eagle * pom)
+
+          dFdL = ((dtop * bot - top * dbot) / botsq)
+          dCAVdOM1  = dFdL * ( dFdOM1 )
+          dCAVdOM2  = dFdL * ( dFdOM2 )
+          dCAVdOM12 = dFdL * ( dFdOM12 )
+
+       DO k= 1, 3
+        ertail(k) = Rtail_distance(k)/Rtail
+       END DO
+       erdxi = scalar( ertail(1), dC_norm(1,i+nres) )
+       erdxj = scalar( ertail(1), dC_norm(1,j) )
+       facd1 = dtail(1,itypi,itypj) * vbld_inv(i+nres)
+       facd2 = dtail(2,itypi,itypj) * vbld_inv(j+nres)
+       DO k = 1, 3
+        pom = ertail(k)-facd1*(ertail(k)-erdxi*dC_norm(k,i+nres))
+        gvdwx(k,i) = gvdwx(k,i) &
+                  - (( dFdR + gg(k) ) * pom)
+        pom = ertail(k)-facd2*(ertail(k)-erdxj*dC_norm(k,j+nres))
+!        gvdwx(k,j) = gvdwx(k,j)   &
+!                  + (( dFdR + gg(k) ) * pom)
+        gvdwc(k,i) = gvdwc(k,i)  &
+                  - (( dFdR + gg(k) ) * ertail(k))
+        gvdwc(k,j) = gvdwc(k,j) &
+                  + (( dFdR + gg(k) ) * ertail(k))
+        gg(k) = 0.0d0
+
+!c! Compute head-head and head-tail energies for each state
+          isel = iabs(Qi) + iabs(Qj)
+          IF (isel.eq.0) THEN
+!c! No charges - do nothing
+           eheadtail = 0.0d0
+
+          ELSE IF (isel.eq.1 .and. iabs(Qj).eq.1) THEN
+!c! Nonpolar-charge interactions
+          if ((itype(i,1).eq.27).or.(itype(i,1).eq.26).or.(itype(i,1).eq.25)) then
+            Qi=Qi*2
+            Qij=Qij*2
+           endif
+          if ((itype(j,1).eq.27).or.(itype(j,1).eq.26).or.(itype(j,1).eq.25)) then
+            Qj=Qj*2
+            Qij=Qij*2
+           endif
+
+           CALL enq_cat(epol)
+           eheadtail = epol
+!           eheadtail = 0.0d0
+
+          ELSE IF (isel.eq.3 .and. icharge(itypj).eq.2) THEN
+!c! Dipole-charge interactions
+          if ((itype(i,1).eq.27).or.(itype(i,1).eq.26).or.(itype(i,1).eq.25)) then
+            Qi=Qi*2
+            Qij=Qij*2
+           endif
+          if ((itype(j,1).eq.27).or.(itype(j,1).eq.26).or.(itype(j,1).eq.25)) then
+            Qj=Qj*2
+            Qij=Qij*2
+           endif
+           CALL edq_cat(ecl, elj, epol)
+          eheadtail = ECL + elj + epol
+!           eheadtail = 0.0d0
+
+          ELSE IF ((isel.eq.2.and.   &
+               iabs(Qi).eq.1).and.  &
+               nstate(itypi,itypj).eq.1) THEN
+
+!c! Same charge-charge interaction ( +/+ or -/- )
+          if ((itype(i,1).eq.27).or.(itype(i,1).eq.26).or.(itype(i,1).eq.25)) then
+            Qi=Qi*2
+            Qij=Qij*2
+           endif
+          if ((itype(j,1).eq.27).or.(itype(j,1).eq.26).or.(itype(j,1).eq.25)) then
+            Qj=Qj*2
+            Qij=Qij*2
+           endif
+
+           CALL eqq_cat(Ecl,Egb,Epol,Fisocav,Elj)
+           eheadtail = ECL + Egb + Epol + Fisocav + Elj
+!           eheadtail = 0.0d0
+
+!          ELSE IF ((isel.eq.2.and.  &
+!               iabs(Qi).eq.1).and. &
+!               nstate(itypi,itypj).ne.1) THEN
+!c! Different charge-charge interaction ( +/- or -/+ )
+!          if ((itype(i,1).eq.27).or.(itype(i,1).eq.26).or.(itype(i,1).eq.25)) then
+!            Qi=Qi*2
+!            Qij=Qij*2
+!           endif
+!          if ((itype(j,1).eq.27).or.(itype(j,1).eq.26).or.(itype(j,1).eq.25)) then
+!            Qj=Qj*2
+!            Qij=Qij*2
+!           endif
+!
+!           CALL energy_quad(istate,eheadtail,Ecl,Egb,Epol,Fisocav,Elj,Equad)
+       END IF  ! this endif ends the "catch the gly-gly" at the beggining of Fcav
+      evdw = evdw  + Fcav + eheadtail
+
+       IF (energy_dec) write (iout,'(2(1x,a3,i3),3f6.2,10f16.7)') &
+        restyp(itype(i,1),1),i,restyp(itype(j,1),1),j,&
+        1.0d0/rij,Rtail,Rhead,evdwij,Fcav,Ecl,Egb,Epol,Fisocav,Elj,&
+        Equad,evdwij+Fcav+eheadtail,evdw
+!       evdw = evdw  + Fcav  + eheadtail
+
+!        iF (nstate(itypi,itypj).eq.1) THEN
+        CALL sc_grad_cat
+!       END IF
+!c!-------------------------------------------------------------------
+!c! NAPISY KONCOWE
+         END DO   ! j
+        END DO    ! iint
+       END DO     ! i
+!c      write (iout,*) "Number of loop steps in EGB:",ind
+!c      energy_dec=.false.
+!              print *,"EVDW KURW",evdw,nres
+
+      return
+      end subroutine ecats_prot_amber
+
+!---------------------------------------------------------------------------
+! old for Ca2+
+       subroutine ecat_prot(ecation_prot)
+!      use calc_data
+!      use comm_momo
+       integer i,j,k,subchap,itmp,inum
+        real(kind=8) :: xi,yi,zi,xj,yj,zj,ract,rcat0,epscalc,r06,r012,&
+        r7,r4,ecationcation
+        real(kind=8) xj_temp,yj_temp,zj_temp,xj_safe,yj_safe,zj_safe, &
+        dist_init,dist_temp,ecation_prot,rcal,rocal,   &
+        Evan1,Evan2,EC,cm1mag,DASGL,delta,r0p,Epepcat, &
+        catl,cml,calpl, Etotal_p, Etotal_m,rtab,wdip,wmodquad,wquad1, &
+        wquad2,wvan1,E1,E2,wconst,wvan2,rcpm,dcmag,sin2thet,sinthet,  &
+        costhet,v1m,v2m,wh2o,wc,rsecp,Ir,Irsecp,Irthrp,Irfourp,Irfiftp,&
+        Irsistp,Irseven,Irtwelv,Irthir,dE1dr,dE2dr,dEdcos,wquad2p,opt, &
+        rs,rthrp,rfourp,rsixp,reight,Irsixp,Ireight,Irtw,Irfourt,      &
+        opt1,opt2,opt3,opt4,opt5,opt6,opt7,opt8,opt9,opt10,opt11,opt12,&
+        opt13,opt14,opt15,opt16,opt17,opt18,opt19, &
+        Equad1,Equad2,dscmag,v1dpv2,dscmag3,constA,constB,Edip,&
+        ndiv,ndivi
+        real(kind=8),dimension(3) ::dEvan1Cmcat,dEvan2Cmcat,dEeleccat,&
+        gg,r,EtotalCat,dEtotalCm,dEtotalCalp,dEvan1Cm,dEvan2Cm, &
+        dEtotalpep,dEtotalcat_num,dEddci,dEtotalcm_num,dEtotalcalp_num, &
+        tab1,tab2,tab3,diff,cm1,sc,p,tcat,talp,cm,drcp,drcp_norm,vcat,  &
+        v1,v2,v3,myd_norm,dx,vcm,valpha,drdpep,dcosdpep,dcosddci,dEdpep,&
+        dEcCat,dEdipCm,dEdipCalp,dEquad1Cat,dEquad1Cm,dEquad1Calp,      &
+        dEquad2Cat,dEquad2Cm,dEquad2Calpd,Evan1Cat,dEvan1Calp,dEvan2Cat,&
+        dEvan2Calp,dEtotalCat,dscvec,dEcCm,dEcCalp,dEdipCat,dEquad2Calp,&
+        dEvan1Cat
+        real(kind=8),dimension(6) :: vcatprm
+        ecation_prot=0.0d0
+! first lets calculate interaction with peptide groups
+        if (nres_molec(5).eq.0) return
+        itmp=0
+        do i=1,4
+        itmp=itmp+nres_molec(i)
+        enddo
+!        do i=1,nres_molec(1)-1  ! loop over all peptide groups needs parralelization
+        do i=ibond_start,ibond_end
+!         cycle
+         if ((itype(i,1).eq.ntyp1).or.(itype(i+1,1).eq.ntyp1)) cycle ! leave dummy atoms
+        xi=0.5d0*(c(1,i)+c(1,i+1))
+        yi=0.5d0*(c(2,i)+c(2,i+1))
+        zi=0.5d0*(c(3,i)+c(3,i+1))
+          xi=mod(xi,boxxsize)
+          if (xi.lt.0) xi=xi+boxxsize
+          yi=mod(yi,boxysize)
+          if (yi.lt.0) yi=yi+boxysize
+          zi=mod(zi,boxzsize)
+          if (zi.lt.0) zi=zi+boxzsize
+
+         do j=itmp+1,itmp+nres_molec(5)
+!           print *,"WTF",itmp,j,i
+! all parameters were for Ca2+ to approximate single charge divide by two
+         ndiv=1.0
+         if ((itype(j,5).eq.1).or.(itype(j,5).eq.3)) ndiv=2.0
+         wconst=78*ndiv
+        wdip =1.092777950857032D2
+        wdip=wdip/wconst
+        wmodquad=-2.174122713004870D4
+        wmodquad=wmodquad/wconst
+        wquad1 = 3.901232068562804D1
+        wquad1=wquad1/wconst
+        wquad2 = 3
+        wquad2=wquad2/wconst
+        wvan1 = 0.1
+        wvan2 = 6
+!        itmp=0
+
+           xj=c(1,j)
+           yj=c(2,j)
+           zj=c(3,j)
+          xj=dmod(xj,boxxsize)
+          if (xj.lt.0) xj=xj+boxxsize
+          yj=dmod(yj,boxysize)
+          if (yj.lt.0) yj=yj+boxysize
+          zj=dmod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+      dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+      xj_safe=xj
+      yj_safe=yj
+      zj_safe=zj
+      subchap=0
+      do xshift=-1,1
+      do yshift=-1,1
+      do zshift=-1,1
+          xj=xj_safe+xshift*boxxsize
+          yj=yj_safe+yshift*boxysize
+          zj=zj_safe+zshift*boxzsize
+          dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+          if(dist_temp.lt.dist_init) then
+            dist_init=dist_temp
+            xj_temp=xj
+            yj_temp=yj
+            zj_temp=zj
+            subchap=1
+          endif
+       enddo
+       enddo
+       enddo
+       if (subchap.eq.1) then
+          xj=xj_temp-xi
+          yj=yj_temp-yi
+          zj=zj_temp-zi
+       else
+          xj=xj_safe-xi
+          yj=yj_safe-yi
+          zj=zj_safe-zi
+       endif
+!       enddo
+!       enddo
+       rcpm = sqrt(xj**2+yj**2+zj**2)
+       drcp_norm(1)=xj/rcpm
+       drcp_norm(2)=yj/rcpm
+       drcp_norm(3)=zj/rcpm
+       dcmag=0.0
+       do k=1,3
+       dcmag=dcmag+dc(k,i)**2
+       enddo
+       dcmag=dsqrt(dcmag)
+       do k=1,3
+         myd_norm(k)=dc(k,i)/dcmag
+       enddo
+        costhet=drcp_norm(1)*myd_norm(1)+drcp_norm(2)*myd_norm(2)+&
+        drcp_norm(3)*myd_norm(3)
+        rsecp = rcpm**2
+        Ir = 1.0d0/rcpm
+        Irsecp = 1.0d0/rsecp
+        Irthrp = Irsecp/rcpm
+        Irfourp = Irthrp/rcpm
+        Irfiftp = Irfourp/rcpm
+        Irsistp=Irfiftp/rcpm
+        Irseven=Irsistp/rcpm
+        Irtwelv=Irsistp*Irsistp
+        Irthir=Irtwelv/rcpm
+        sin2thet = (1-costhet*costhet)
+        sinthet=sqrt(sin2thet)
+        E1 = wdip*Irsecp*costhet+(wmodquad*Irfourp+wquad1*Irthrp)&
+             *sin2thet
+        E2 = -wquad1*Irthrp*wquad2+wvan1*(wvan2**12*Irtwelv-&
+             2*wvan2**6*Irsistp)
+        ecation_prot = ecation_prot+E1+E2
+!        print *,"ecatprot",i,j,ecation_prot,rcpm
+        dE1dr = -2*costhet*wdip*Irthrp-& 
+         (4*wmodquad*Irfiftp+3*wquad1*Irfourp)*sin2thet
         dE2dr = 3*wquad1*wquad2*Irfourp-     &
           12*wvan1*wvan2**6*(wvan2**6*Irthir-Irseven)
         dEdcos = wdip*Irsecp-2*(wmodquad*Irfourp+wquad1*Irthrp)*costhet
         dE2dr = 3*wquad1*wquad2*Irfourp-     &
           12*wvan1*wvan2**6*(wvan2**6*Irthir-Irseven)
         dEdcos = wdip*Irsecp-2*(wmodquad*Irfourp+wquad1*Irthrp)*costhet
           enddo
            cm1mag=sqrt(cm1(1)**2+cm1(2)**2+cm1(3)**2)
          do j=itmp+1,itmp+nres_molec(5)
           enddo
            cm1mag=sqrt(cm1(1)**2+cm1(2)**2+cm1(3)**2)
          do j=itmp+1,itmp+nres_molec(5)
+         ndiv=1.0
+         if ((itype(j,5).eq.1).or.(itype(j,5).eq.3)) ndiv=2.0
+
            xj=c(1,j)
            yj=c(2,j)
            zj=c(3,j)
            xj=c(1,j)
            yj=c(2,j)
            zj=c(3,j)
        endif
 !       enddo
 !       enddo
        endif
 !       enddo
 !       enddo
-         if(itype(i,1).eq.15.or.itype(i,1).eq.16) then
+! 15- Glu 16-Asp
+         if((itype(i,1).eq.15.or.itype(i,1).eq.16).or.&
+         ((itype(i,1).eq.27).or.(itype(i,1).eq.26).or.&
+         (itype(i,1).eq.25))) then
             if(itype(i,1).eq.16) then
             inum=1
             else
             if(itype(i,1).eq.16) then
             inum=1
             else
 
 !  The weights of the energy function calculated from
 !The quantum mechanical GAMESS simulations of calcium with ASP/GLU
 
 !  The weights of the energy function calculated from
 !The quantum mechanical GAMESS simulations of calcium with ASP/GLU
-        wh2o=78
+          if ((itype(i,1).eq.27).or.(itype(i,1).eq.26).or.(itype(i,1).eq.25)) then
+            ndivi=0.5
+          else
+            ndivi=1.0
+          endif
+         ndiv=1.0
+         if ((itype(j,5).eq.1).or.(itype(j,5).eq.3)) ndiv=2.0
+
+        wh2o=78*ndivi*ndiv
         wc = vcatprm(1)
         wc=wc/wh2o
         wdip =vcatprm(2)
         wc = vcatprm(1)
         wc=wc/wh2o
         wdip =vcatprm(2)
         v1dpv2 = v1(1)*v2(1)+v1(2)*v2(2)+v1(3)*v2(3)
 !  The weights of the energy function calculated from
 !The quantum mechanical GAMESS simulations of ASN/GLN with calcium
         v1dpv2 = v1(1)*v2(1)+v1(2)*v2(2)+v1(3)*v2(3)
 !  The weights of the energy function calculated from
 !The quantum mechanical GAMESS simulations of ASN/GLN with calcium
-        wh2o=78
+         ndiv=1.0
+         if ((itype(j,5).eq.1).or.(itype(j,5).eq.3)) ndiv=2.0
+
+        wh2o=78*ndiv
         wdip =vcatprm(2)
         wdip=wdip/wh2o
         wquad1 =vcatprm(3)
         wdip =vcatprm(2)
         wdip=wdip/wh2o
         wquad1 =vcatprm(3)
       use calc_data
       use comm_momo
        real (kind=8) ::  facd3, facd4, federmaus, adler,&
       use calc_data
       use comm_momo
        real (kind=8) ::  facd3, facd4, federmaus, adler,&
-         Ecl,Egb,Epol,Fisocav,Elj,Fgb
+         Ecl,Egb,Epol,Fisocav,Elj,Fgb,debkap
 !       integer :: k
 !c! Epol and Gpol analytical parameters
        alphapol1 = alphapol(itypi,itypj)
 !       integer :: k
 !c! Epol and Gpol analytical parameters
        alphapol1 = alphapol(itypi,itypj)
        dGCLdOM12 = 0.0d0
        ee0 = dexp(-( Rhead_sq ) / (4.0d0 * a12sq))
        Fgb = sqrt( ( Rhead_sq ) + a12sq * ee0)
        dGCLdOM12 = 0.0d0
        ee0 = dexp(-( Rhead_sq ) / (4.0d0 * a12sq))
        Fgb = sqrt( ( Rhead_sq ) + a12sq * ee0)
-       Egb = -(332.0d0 * Qij * eps_inout_fac) / Fgb
+       debkap=debaykap(itypi,itypj)
+       Egb = -(332.0d0 * Qij *&
+        (1.0/eps_in-dexp(-debkap*Fgb)/eps_out)) / Fgb
 !       print *,"EGB WTF",Qij,eps_inout_fac,Fgb,itypi,itypj,eps_in,eps_out
 !c! Derivative of Egb is Ggb...
 !       print *,"EGB WTF",Qij,eps_inout_fac,Fgb,itypi,itypj,eps_in,eps_out
 !c! Derivative of Egb is Ggb...
-       dGGBdFGB = -(-332.0d0 * Qij * eps_inout_fac) / (Fgb * Fgb)
+       dGGBdFGB = -(-332.0d0 * Qij * &
+       (1.0/eps_in-dexp(-debkap*Fgb)/eps_out))/(Fgb*Fgb)&
+       -(332.0d0 * Qij *&
+        (dexp(-debkap*Fgb)*debkap/eps_out))/ Fgb
        dFGBdR = ( Rhead * ( 2.0d0 - (0.5d0 * ee0) ) )/ ( 2.0d0 * Fgb )
        dGGBdR = dGGBdFGB * dFGBdR
 !c!-------------------------------------------------------------------
        dFGBdR = ( Rhead * ( 2.0d0 - (0.5d0 * ee0) ) )/ ( 2.0d0 * Fgb )
        dGGBdR = dGGBdFGB * dFGBdR
 !c!-------------------------------------------------------------------
        END DO
        RETURN
       END SUBROUTINE eqq
        END DO
        RETURN
       END SUBROUTINE eqq
+
+      SUBROUTINE eqq_cat(Ecl,Egb,Epol,Fisocav,Elj)
+      use calc_data
+      use comm_momo
+       real (kind=8) ::  facd3, facd4, federmaus, adler,&
+         Ecl,Egb,Epol,Fisocav,Elj,Fgb,debkap
+!       integer :: k
+!c! Epol and Gpol analytical parameters
+       alphapol1 = alphapolcat(itypi,itypj)
+       alphapol2 = alphapolcat(itypj,itypi)
+!c! Fisocav and Gisocav analytical parameters
+       al1  = alphisocat(1,itypi,itypj)
+       al2  = alphisocat(2,itypi,itypj)
+       al3  = alphisocat(3,itypi,itypj)
+       al4  = alphisocat(4,itypi,itypj)
+       csig = (1.0d0  &
+           / dsqrt(sigiso1cat(itypi, itypj)**2.0d0 &
+           + sigiso2cat(itypi,itypj)**2.0d0))
+!c!
+       pis  = sig0headcat(itypi,itypj)
+       eps_head = epsheadcat(itypi,itypj)
+       Rhead_sq = Rhead * Rhead
+!c! R1 - distance between head of ith side chain and tail of jth sidechain
+!c! R2 - distance between head of jth side chain and tail of ith sidechain
+       R1 = 0.0d0
+       R2 = 0.0d0
+       DO k = 1, 3
+!c! Calculate head-to-tail distances needed by Epol
+        R1=R1+(ctail(k,2)-chead(k,1))**2
+        R2=R2+(chead(k,2)-ctail(k,1))**2
+       END DO
+!c! Pitagoras
+       R1 = dsqrt(R1)
+       R2 = dsqrt(R2)
+
+!c!      R1     = dsqrt((Rtail**2)+((dtail(1,itypi,itypj)
+!c!     &        +dhead(1,1,itypi,itypj))**2))
+!c!      R2     = dsqrt((Rtail**2)+((dtail(2,itypi,itypj)
+!c!     &        +dhead(2,1,itypi,itypj))**2))
+
+!c!-------------------------------------------------------------------
+!c! Coulomb electrostatic interaction
+       Ecl = (332.0d0 * Qij) / Rhead
+!c! derivative of Ecl is Gcl...
+       dGCLdR = (-332.0d0 * Qij ) / Rhead_sq
+       dGCLdOM1 = 0.0d0
+       dGCLdOM2 = 0.0d0
+       dGCLdOM12 = 0.0d0
+       ee0 = dexp(-( Rhead_sq ) / (4.0d0 * a12sq))
+       Fgb = sqrt( ( Rhead_sq ) + a12sq * ee0)
+       debkap=debaykapcat(itypi,itypj)
+       Egb = -(332.0d0 * Qij *&
+        (1.0/eps_in-dexp(-debkap*Fgb)/eps_out)) / Fgb
+!       print *,"EGB WTF",Qij,eps_inout_fac,Fgb,itypi,itypj,eps_in,eps_out
+!c! Derivative of Egb is Ggb...
+       dGGBdFGB = -(-332.0d0 * Qij * &
+       (1.0/eps_in-dexp(-debkap*Fgb)/eps_out))/(Fgb*Fgb)&
+       -(332.0d0 * Qij *&
+        (dexp(-debkap*Fgb)*debkap/eps_out))/ Fgb
+       dFGBdR = ( Rhead * ( 2.0d0 - (0.5d0 * ee0) ) )/ ( 2.0d0 * Fgb )
+       dGGBdR = dGGBdFGB * dFGBdR
+!c!-------------------------------------------------------------------
+!c! Fisocav - isotropic cavity creation term
+!c! or "how much energy it costs to put charged head in water"
+       pom = Rhead * csig
+       top = al1 * (dsqrt(pom) + al2 * pom - al3)
+       bot = (1.0d0 + al4 * pom**12.0d0)
+       botsq = bot * bot
+       FisoCav = top / bot
+!      write (*,*) "Rhead = ",Rhead
+!      write (*,*) "csig = ",csig
+!      write (*,*) "pom = ",pom
+!      write (*,*) "al1 = ",al1
+!      write (*,*) "al2 = ",al2
+!      write (*,*) "al3 = ",al3
+!      write (*,*) "al4 = ",al4
+!        write (*,*) "top = ",top
+!        write (*,*) "bot = ",bot
+!c! Derivative of Fisocav is GCV...
+       dtop = al1 * ((1.0d0 / (2.0d0 * dsqrt(pom))) + al2)
+       dbot = 12.0d0 * al4 * pom ** 11.0d0
+       dGCVdR = ((dtop * bot - top * dbot) / botsq) * csig
+!c!-------------------------------------------------------------------
+!c! Epol
+!c! Polarization energy - charged heads polarize hydrophobic "neck"
+       MomoFac1 = (1.0d0 - chi1 * sqom2)
+       MomoFac2 = (1.0d0 - chi2 * sqom1)
+       RR1  = ( R1 * R1 ) / MomoFac1
+       RR2  = ( R2 * R2 ) / MomoFac2
+       ee1  = exp(-( RR1 / (4.0d0 * a12sq) ))
+       ee2  = exp(-( RR2 / (4.0d0 * a12sq) ))
+       fgb1 = sqrt( RR1 + a12sq * ee1 )
+       fgb2 = sqrt( RR2 + a12sq * ee2 )
+       epol = 332.0d0 * eps_inout_fac * ( &
+      (( alphapol1 / fgb1 )**4.0d0)+((alphapol2/fgb2) ** 4.0d0 ))
+!c!       epol = 0.0d0
+       dPOLdFGB1 = -(1328.0d0 * eps_inout_fac * alphapol1 ** 4.0d0)&
+               / (fgb1 ** 5.0d0)
+       dPOLdFGB2 = -(1328.0d0 * eps_inout_fac * alphapol2 ** 4.0d0)&
+               / (fgb2 ** 5.0d0)
+       dFGBdR1 = ( (R1 / MomoFac1)* ( 2.0d0 - (0.5d0 * ee1) ) )&
+             / ( 2.0d0 * fgb1 )
+       dFGBdR2 = ( (R2 / MomoFac2)* ( 2.0d0 - (0.5d0 * ee2) ) )&
+             / ( 2.0d0 * fgb2 )
+       dFGBdOM2 = (((R1 * R1 * chi1 * om2) / (MomoFac1 * MomoFac1))&
+                * ( 2.0d0 - 0.5d0 * ee1) ) / ( 2.0d0 * fgb1 )
+       dFGBdOM1 = (((R2 * R2 * chi2 * om1) / (MomoFac2 * MomoFac2))&
+                * ( 2.0d0 - 0.5d0 * ee2) ) / ( 2.0d0 * fgb2 )
+       dPOLdR1 = dPOLdFGB1 * dFGBdR1
+!c!       dPOLdR1 = 0.0d0
+       dPOLdR2 = dPOLdFGB2 * dFGBdR2
+!c!       dPOLdR2 = 0.0d0
+       dPOLdOM1 = dPOLdFGB2 * dFGBdOM1
+!c!       dPOLdOM1 = 0.0d0
+       dPOLdOM2 = dPOLdFGB1 * dFGBdOM2
+!c!       dPOLdOM2 = 0.0d0
+!c!-------------------------------------------------------------------
+!c! Elj
+!c! Lennard-Jones 6-12 interaction between heads
+       pom = (pis / Rhead)**6.0d0
+       Elj = 4.0d0 * eps_head * pom * (pom-1.0d0)
+!c! derivative of Elj is Glj
+       dGLJdR = 4.0d0 * eps_head*(((-12.0d0*pis**12.0d0)/(Rhead**13.0d0))&
+             +  ((  6.0d0*pis**6.0d0) /(Rhead**7.0d0)))
+!c!-------------------------------------------------------------------
+!c! Return the results
+!c! These things do the dRdX derivatives, that is
+!c! allow us to change what we see from function that changes with
+!c! distance to function that changes with LOCATION (of the interaction
+!c! site)
+       DO k = 1, 3
+        erhead(k) = Rhead_distance(k)/Rhead
+        erhead_tail(k,1) = ((ctail(k,2)-chead(k,1))/R1)
+        erhead_tail(k,2) = ((chead(k,2)-ctail(k,1))/R2)
+       END DO
+
+       erdxi = scalar( erhead(1), dC_norm(1,i+nres) )
+       erdxj = scalar( erhead(1), dC_norm(1,j) )
+       bat   = scalar( erhead_tail(1,1), dC_norm(1,i+nres) )
+       federmaus = scalar(erhead_tail(1,1),dC_norm(1,j))
+       eagle = scalar( erhead_tail(1,2), dC_norm(1,j) )
+       adler = scalar( erhead_tail(1,2), dC_norm(1,i+nres) )
+       facd1 = d1 * vbld_inv(i+nres)
+       facd2 = d2 * vbld_inv(j)
+       facd3 = dtailcat(1,itypi,itypj) * vbld_inv(i+nres)
+       facd4 = dtailcat(2,itypi,itypj) * vbld_inv(j)
+
+!c! Now we add appropriate partial derivatives (one in each dimension)
+       DO k = 1, 3
+        hawk   = (erhead_tail(k,1) + &
+        facd1 * (erhead_tail(k,1) - bat   * dC_norm(k,i+nres)))
+        condor = (erhead_tail(k,2) + &
+        facd2 * (erhead_tail(k,2) - eagle * dC_norm(k,j)))
+
+        pom = erhead(k)+facd1*(erhead(k)-erdxi*dC_norm(k,i+nres))
+        gvdwx(k,i) = gvdwx(k,i) &
+                  - dGCLdR * pom&
+                  - dGGBdR * pom&
+                  - dGCVdR * pom&
+                  - dPOLdR1 * hawk&
+                  - dPOLdR2 * (erhead_tail(k,2)&
+      -facd3 * (erhead_tail(k,2) - adler * dC_norm(k,i+nres)))&
+                  - dGLJdR * pom
+
+        pom = erhead(k)+facd2*(erhead(k)-erdxj*dC_norm(k,j))
+        gvdwx(k,j) = gvdwx(k,j)+ dGCLdR * pom&
+                   + dGGBdR * pom+ dGCVdR * pom&
+                  + dPOLdR1 * (erhead_tail(k,1)&
+      -facd4 * (erhead_tail(k,1) - federmaus * dC_norm(k,j)))&
+                  + dPOLdR2 * condor + dGLJdR * pom
+
+        gvdwc(k,i) = gvdwc(k,i)  &
+                  - dGCLdR * erhead(k)&
+                  - dGGBdR * erhead(k)&
+                  - dGCVdR * erhead(k)&
+                  - dPOLdR1 * erhead_tail(k,1)&
+                  - dPOLdR2 * erhead_tail(k,2)&
+                  - dGLJdR * erhead(k)
+
+        gvdwc(k,j) = gvdwc(k,j)         &
+                  + dGCLdR * erhead(k) &
+                  + dGGBdR * erhead(k) &
+                  + dGCVdR * erhead(k) &
+                  + dPOLdR1 * erhead_tail(k,1) &
+                  + dPOLdR2 * erhead_tail(k,2)&
+                  + dGLJdR * erhead(k)
+
+       END DO
+       RETURN
+      END SUBROUTINE eqq_cat
 !c!-------------------------------------------------------------------
       SUBROUTINE energy_quad(istate,eheadtail,Ecl,Egb,Epol,Fisocav,Elj,Equad)
       use comm_momo
 !c!-------------------------------------------------------------------
       SUBROUTINE energy_quad(istate,eheadtail,Ecl,Egb,Epol,Fisocav,Elj,Equad)
       use comm_momo
        dPOLdOM1 = 0.0d0
        dPOLdOM2 = dPOLdFGB1 * dFGBdOM2
        DO k = 1, 3
        dPOLdOM1 = 0.0d0
        dPOLdOM2 = dPOLdFGB1 * dFGBdOM2
        DO k = 1, 3
-        erhead_tail(k,1) = ((ctail(k,2)-chead(k,1))/R1)
+        erhead_tail(k,1) = ((ctail(k,2)-chead(k,1))/R1)
+       END DO
+       bat = scalar( erhead_tail(1,1), dC_norm(1,i+nres) )
+       federmaus = scalar(erhead_tail(1,1),dC_norm(1,j+nres))
+       facd1 = d1 * vbld_inv(i+nres)
+       facd4 = dtail(2,itypi,itypj) * vbld_inv(j+nres)
+
+       DO k = 1, 3
+        hawk = (erhead_tail(k,1) + &
+        facd1 * (erhead_tail(k,1) - bat * dC_norm(k,i+nres)))
+
+        gvdwx(k,i) = gvdwx(k,i) &
+                   - dPOLdR1 * hawk
+        gvdwx(k,j) = gvdwx(k,j) &
+                   + dPOLdR1 * (erhead_tail(k,1) &
+       -facd4 * (erhead_tail(k,1) - federmaus * dC_norm(k,j+nres)))
+
+        gvdwc(k,i) = gvdwc(k,i)  - dPOLdR1 * erhead_tail(k,1)
+        gvdwc(k,j) = gvdwc(k,j)  + dPOLdR1 * erhead_tail(k,1)
+
+       END DO
+       RETURN
+      END SUBROUTINE eqn
+      SUBROUTINE enq(Epol)
+      use calc_data
+      use comm_momo
+       double precision facd3, adler,epol
+       alphapol2 = alphapol(itypj,itypi)
+!c! R2 - distance between head of jth side chain and tail of ith sidechain
+       R2 = 0.0d0
+       DO k = 1, 3
+!c! Calculate head-to-tail distances
+        R2=R2+(chead(k,2)-ctail(k,1))**2
+       END DO
+!c! Pitagoras
+       R2 = dsqrt(R2)
+
+!c!      R1     = dsqrt((Rtail**2)+((dtail(1,itypi,itypj)
+!c!     &        +dhead(1,1,itypi,itypj))**2))
+!c!      R2     = dsqrt((Rtail**2)+((dtail(2,itypi,itypj)
+!c!     &        +dhead(2,1,itypi,itypj))**2))
+!c------------------------------------------------------------------------
+!c Polarization energy
+       MomoFac2 = (1.0d0 - chi2 * sqom1)
+       RR2  = R2 * R2 / MomoFac2
+       ee2  = exp(-(RR2 / (4.0d0 * a12sq)))
+       fgb2 = sqrt(RR2  + a12sq * ee2)
+       epol = 332.0d0 * eps_inout_fac * ((alphapol2/fgb2) ** 4.0d0 )
+       dPOLdFGB2 = -(1328.0d0 * eps_inout_fac * alphapol2 ** 4.0d0) &
+                / (fgb2 ** 5.0d0)
+       dFGBdR2 = ( (R2 / MomoFac2)  &
+              * ( 2.0d0 - (0.5d0 * ee2) ) ) &
+              / (2.0d0 * fgb2)
+       dFGBdOM1 = (((R2 * R2 * chi2 * om1) / (MomoFac2 * MomoFac2)) &
+                * (2.0d0 - 0.5d0 * ee2) ) &
+                / (2.0d0 * fgb2)
+       dPOLdR2 = dPOLdFGB2 * dFGBdR2
+!c!       dPOLdR2 = 0.0d0
+       dPOLdOM1 = dPOLdFGB2 * dFGBdOM1
+!c!       dPOLdOM1 = 0.0d0
+       dPOLdOM2 = 0.0d0
+!c!-------------------------------------------------------------------
+!c! Return the results
+!c! (See comments in Eqq)
+       DO k = 1, 3
+        erhead_tail(k,2) = ((chead(k,2)-ctail(k,1))/R2)
        END DO
        END DO
-       bat = scalar( erhead_tail(1,1), dC_norm(1,i+nres) )
-       federmaus = scalar(erhead_tail(1,1),dC_norm(1,j+nres))
-       facd1 = d1 * vbld_inv(i+nres)
-       facd4 = dtail(2,itypi,itypj) * vbld_inv(j+nres)
-
+       eagle = scalar( erhead_tail(1,2), dC_norm(1,j+nres) )
+       adler = scalar( erhead_tail(1,2), dC_norm(1,i+nres) )
+       facd2 = d2 * vbld_inv(j+nres)
+       facd3 = dtail(1,itypi,itypj) * vbld_inv(i+nres)
        DO k = 1, 3
        DO k = 1, 3
-        hawk = (erhead_tail(k,1) + &
-        facd1 * (erhead_tail(k,1) - bat * dC_norm(k,i+nres)))
+        condor = (erhead_tail(k,2) &
+       + facd2 * (erhead_tail(k,2) - eagle * dC_norm(k,j+nres)))
 
         gvdwx(k,i) = gvdwx(k,i) &
 
         gvdwx(k,i) = gvdwx(k,i) &
-                   - dPOLdR1 * hawk
-        gvdwx(k,j) = gvdwx(k,j) &
-                   + dPOLdR1 * (erhead_tail(k,1) &
-       -facd4 * (erhead_tail(k,1) - federmaus * dC_norm(k,j+nres)))
+                   - dPOLdR2 * (erhead_tail(k,2) &
+       -facd3 * (erhead_tail(k,2) - adler * dC_norm(k,i+nres)))
+        gvdwx(k,j) = gvdwx(k,j)   &
+                   + dPOLdR2 * condor
 
 
-        gvdwc(k,i) = gvdwc(k,i)  - dPOLdR1 * erhead_tail(k,1)
-        gvdwc(k,j) = gvdwc(k,j)  + dPOLdR1 * erhead_tail(k,1)
+        gvdwc(k,i) = gvdwc(k,i) &
+                   - dPOLdR2 * erhead_tail(k,2)
+        gvdwc(k,j) = gvdwc(k,j) &
+                   + dPOLdR2 * erhead_tail(k,2)
 
        END DO
 
        END DO
-       RETURN
-      END SUBROUTINE eqn
-      SUBROUTINE enq(Epol)
+      RETURN
+      END SUBROUTINE enq
+
+      SUBROUTINE enq_cat(Epol)
       use calc_data
       use comm_momo
        double precision facd3, adler,epol
       use calc_data
       use comm_momo
        double precision facd3, adler,epol
-       alphapol2 = alphapol(itypj,itypi)
+       alphapol2 = alphapolcat(itypj,itypi)
 !c! R2 - distance between head of jth side chain and tail of ith sidechain
        R2 = 0.0d0
        DO k = 1, 3
 !c! R2 - distance between head of jth side chain and tail of ith sidechain
        R2 = 0.0d0
        DO k = 1, 3
        dPOLdOM1 = dPOLdFGB2 * dFGBdOM1
 !c!       dPOLdOM1 = 0.0d0
        dPOLdOM2 = 0.0d0
        dPOLdOM1 = dPOLdFGB2 * dFGBdOM1
 !c!       dPOLdOM1 = 0.0d0
        dPOLdOM2 = 0.0d0
+
 !c!-------------------------------------------------------------------
 !c! Return the results
 !c! (See comments in Eqq)
        DO k = 1, 3
         erhead_tail(k,2) = ((chead(k,2)-ctail(k,1))/R2)
        END DO
 !c!-------------------------------------------------------------------
 !c! Return the results
 !c! (See comments in Eqq)
        DO k = 1, 3
         erhead_tail(k,2) = ((chead(k,2)-ctail(k,1))/R2)
        END DO
-       eagle = scalar( erhead_tail(1,2), dC_norm(1,j+nres) )
+       eagle = scalar( erhead_tail(1,2), dC_norm(1,j) )
        adler = scalar( erhead_tail(1,2), dC_norm(1,i+nres) )
        facd2 = d2 * vbld_inv(j+nres)
        adler = scalar( erhead_tail(1,2), dC_norm(1,i+nres) )
        facd2 = d2 * vbld_inv(j+nres)
-       facd3 = dtail(1,itypi,itypj) * vbld_inv(i+nres)
+       facd3 = dtailcat(1,itypi,itypj) * vbld_inv(i+nres)
        DO k = 1, 3
         condor = (erhead_tail(k,2) &
        DO k = 1, 3
         condor = (erhead_tail(k,2) &
-       + facd2 * (erhead_tail(k,2) - eagle * dC_norm(k,j+nres)))
+       + facd2 * (erhead_tail(k,2) - eagle * dC_norm(k,j)))
 
         gvdwx(k,i) = gvdwx(k,i) &
                    - dPOLdR2 * (erhead_tail(k,2) &
 
         gvdwx(k,i) = gvdwx(k,i) &
                    - dPOLdR2 * (erhead_tail(k,2) &
 
        END DO
       RETURN
 
        END DO
       RETURN
-      END SUBROUTINE enq
+      END SUBROUTINE enq_cat
+
       SUBROUTINE eqd(Ecl,Elj,Epol)
       use calc_data
       use comm_momo
       SUBROUTINE eqd(Ecl,Elj,Epol)
       use calc_data
       use comm_momo
        END DO
        RETURN
       END SUBROUTINE edq
        END DO
        RETURN
       END SUBROUTINE edq
+
+      SUBROUTINE edq_cat(Ecl,Elj,Epol)
+      use comm_momo
+      use calc_data
+
+      double precision  facd3, adler,ecl,elj,epol
+       alphapol2 = alphapolcat(itypj,itypi)
+       w1        = wqdipcat(1,itypi,itypj)
+       w2        = wqdipcat(2,itypi,itypj)
+       pis       = sig0headcat(itypi,itypj)
+       eps_head  = epsheadcat(itypi,itypj)
+!c!-------------------------------------------------------------------
+!c! R2 - distance between head of jth side chain and tail of ith sidechain
+       R2 = 0.0d0
+       DO k = 1, 3
+!c! Calculate head-to-tail distances
+        R2=R2+(chead(k,2)-ctail(k,1))**2
+       END DO
+!c! Pitagoras
+       R2 = dsqrt(R2)
+
+!c!      R1     = dsqrt((Rtail**2)+((dtail(1,itypi,itypj)
+!c!     &        +dhead(1,1,itypi,itypj))**2))
+!c!      R2     = dsqrt((Rtail**2)+((dtail(2,itypi,itypj)
+!c!     &        +dhead(2,1,itypi,itypj))**2))
+
+
+!c!-------------------------------------------------------------------
+!c! ecl
+       sparrow  = w1 * Qi * om1
+       hawk     = w2 * Qi * Qi * (1.0d0 - sqom2)
+       ECL = sparrow / Rhead**2.0d0 &
+           - hawk    / Rhead**4.0d0
+!c!-------------------------------------------------------------------
+!c! derivative of ecl is Gcl
+!c! dF/dr part
+       dGCLdR  = - 2.0d0 * sparrow / Rhead**3.0d0 &
+                 + 4.0d0 * hawk    / Rhead**5.0d0
+!c! dF/dom1
+       dGCLdOM1 = (w1 * Qi) / (Rhead**2.0d0)
+!c! dF/dom2
+       dGCLdOM2 = (2.0d0 * w2 * Qi * Qi * om2) / (Rhead ** 4.0d0)
+!c--------------------------------------------------------------------
+!c--------------------------------------------------------------------
+!c Polarization energy
+!c Epol
+       MomoFac2 = (1.0d0 - chi2 * sqom1)
+       RR2  = R2 * R2 / MomoFac2
+       ee2  = exp(-(RR2 / (4.0d0 * a12sq)))
+       fgb2 = sqrt(RR2  + a12sq * ee2)
+       epol = 332.0d0 * eps_inout_fac * ((alphapol2/fgb2) ** 4.0d0 )
+       dPOLdFGB2 = -(1328.0d0 * eps_inout_fac * alphapol2 ** 4.0d0) &
+               / (fgb2 ** 5.0d0)
+       dFGBdR2 = ( (R2 / MomoFac2)  &
+               * ( 2.0d0 - (0.5d0 * ee2) ) ) &
+               / (2.0d0 * fgb2)
+       dFGBdOM1 = (((R2 * R2 * chi2 * om1) / (MomoFac2 * MomoFac2)) &
+                * (2.0d0 - 0.5d0 * ee2) ) &
+                / (2.0d0 * fgb2)
+       dPOLdR2 = dPOLdFGB2 * dFGBdR2
+!c!       dPOLdR2 = 0.0d0
+       dPOLdOM1 = dPOLdFGB2 * dFGBdOM1
+!c!       dPOLdOM1 = 0.0d0
+       dPOLdOM2 = 0.0d0
+!c!-------------------------------------------------------------------
+!c! Elj
+       pom = (pis / Rhead)**6.0d0
+       Elj = 4.0d0 * eps_head * pom * (pom-1.0d0)
+!c! derivative of Elj is Glj
+       dGLJdR = 4.0d0 * eps_head &
+           * (((-12.0d0*pis**12.0d0)/(Rhead**13.0d0)) &
+           +  ((  6.0d0*pis**6.0d0) /(Rhead**7.0d0)))
+!c!-------------------------------------------------------------------
+
+!c! Return the results
+!c! (see comments in Eqq)
+       DO k = 1, 3
+        erhead(k) = Rhead_distance(k)/Rhead
+        erhead_tail(k,2) = ((chead(k,2)-ctail(k,1))/R2)
+       END DO
+       erdxi = scalar( erhead(1), dC_norm(1,i+nres) )
+       erdxj = scalar( erhead(1), dC_norm(1,j) )
+       eagle = scalar( erhead_tail(1,2), dC_norm(1,j) )
+       adler = scalar( erhead_tail(1,2), dC_norm(1,i+nres) )
+       facd1 = d1 * vbld_inv(i+nres)
+       facd2 = d2 * vbld_inv(j)
+       facd3 = dtail(1,itypi,itypj) * vbld_inv(i+nres)
+       DO k = 1, 3
+        condor = (erhead_tail(k,2) &
+       + facd2 * (erhead_tail(k,2) - eagle * dC_norm(k,j)))
+
+        pom = erhead(k)+facd1*(erhead(k)-erdxi*dC_norm(k,i+nres))
+        gvdwx(k,i) = gvdwx(k,i) &
+                  - dGCLdR * pom &
+                  - dPOLdR2 * (erhead_tail(k,2) &
+       -facd3 * (erhead_tail(k,2) - adler * dC_norm(k,i+nres))) &
+                  - dGLJdR * pom
+
+        pom = erhead(k)+facd2*(erhead(k)-erdxj*dC_norm(k,j))
+        gvdwx(k,j) = gvdwx(k,j) &
+                  + dGCLdR * pom &
+                  + dPOLdR2 * condor &
+                  + dGLJdR * pom
+
+
+        gvdwc(k,i) = gvdwc(k,i) &
+                  - dGCLdR * erhead(k) &
+                  - dPOLdR2 * erhead_tail(k,2) &
+                  - dGLJdR * erhead(k)
+
+        gvdwc(k,j) = gvdwc(k,j) &
+                  + dGCLdR * erhead(k) &
+                  + dPOLdR2 * erhead_tail(k,2) &
+                  + dGLJdR * erhead(k)
+
+       END DO
+       RETURN
+      END SUBROUTINE edq_cat
+
+
       SUBROUTINE edd(ECL)
 !       IMPLICIT NONE
        use comm_momo
       SUBROUTINE edd(ECL)
 !       IMPLICIT NONE
        use comm_momo
        RETURN
       END SUBROUTINE elgrad_init
 
        RETURN
       END SUBROUTINE elgrad_init
 
+
+      SUBROUTINE elgrad_init_cat(eheadtail,Egb,Ecl,Elj,Equad,Epol)
+      use comm_momo
+      use calc_data
+       real(kind=8) :: eheadtail,Egb,Ecl,Elj,Equad,Epol,Rb
+       eps_out=80.0d0
+       itypi = itype(i,1)
+       itypj = itype(j,1)
+!c! 1/(Gas Constant * Thermostate temperature) = BetaT
+!c! ENABLE THIS LINE WHEN USING CHECKGRAD!!!
+!c!       t_bath = 300
+!c!       BetaT = 1.0d0 / (t_bath * Rb)i
+       Rb=0.001986d0
+       BetaT = 1.0d0 / (298.0d0 * Rb)
+!c! Gay-berne var's
+       sig0ij = sigmacat( itypi,itypj )
+       chi1   = chicat( itypi, itypj )
+!       chi2   = chi( itypj, itypi )
+       chi2   = 0.0d0
+!       chi12  = chi1 * chi2
+       chi12  = 0.0d0
+       chip1  = chippcat( itypi, itypj )
+!       chip2  = chipp( itypj, itypi )
+       chip2  = 0.0d0
+!       chip12 = chip1 * chip2
+       chip12 = 0.0d0
+!       chi1=0.0
+!       chi2=0.0
+!       chi12=0.0
+!       chip1=0.0
+!       chip2=0.0
+!       chip12=0.0
+!c! not used by momo potential, but needed by sc_angular which is shared
+!c! by all energy_potential subroutines
+       alf1   = 0.0d0
+       alf2   = 0.0d0
+       alf12  = 0.0d0
+!c! location, location, location
+!       xj  = c( 1, nres+j ) - xi
+!       yj  = c( 2, nres+j ) - yi
+!       zj  = c( 3, nres+j ) - zi
+       dxj = dc_norm( 1, nres+j )
+       dyj = dc_norm( 2, nres+j )
+       dzj = dc_norm( 3, nres+j )
+!c! distance from center of chain(?) to polar/charged head
+       d1 = dheadcat(1, 1, itypi, itypj)
+       d2 = dheadcat(2, 1, itypi, itypj)
+!c! ai*aj from Fgb
+       a12sq = rborncat(itypi,itypj) * rborncat(itypj,itypi)
+!c!       a12sq = a12sq * a12sq
+!c! charge of amino acid itypi is...
+       Qi  = ichargecat(itypi)
+       Qj  = ichargecat(itypj)
+       Qij = Qi * Qj
+!c! chis1,2,12
+       chis1 = chiscat(itypi,itypj)
+!       chis2 = chis(itypj,itypi)
+       chis2 = 0.0d0
+!       chis12 = chis1 * chis2
+       chis12 = 0.0d0
+       sig1 = sigmap1cat(itypi,itypj)
+       sig2 = sigmap2cat(itypi,itypj)
+!c! alpha factors from Fcav/Gcav
+       b1cav = alphasurcat(1,itypi,itypj)
+!       b1cav=0.0
+       b2cav = alphasurcat(2,itypi,itypj)
+       b3cav = alphasurcat(3,itypi,itypj)
+       b4cav = alphasurcat(4,itypi,itypj)
+       wqd = wquadcat(itypi, itypj)
+!c! used by Fgb
+       eps_in = epsintabcat(itypi,itypj)
+       eps_inout_fac = ( (1.0d0/eps_in) - (1.0d0/eps_out))
+!c!-------------------------------------------------------------------
+!c! tail location and distance calculations
+       Rtail = 0.0d0
+       DO k = 1, 3
+        ctail(k,1)=c(k,i+nres)-dtailcat(1,itypi,itypj)*dc_norm(k,nres+i)
+        ctail(k,2)=c(k,j+nres)-dtailcat(2,itypi,itypj)*dc_norm(k,nres+j)
+       END DO
+!c! tail distances will be themselves usefull elswhere
+!c1 (in Gcav, for example)
+       Rtail_distance(1) = ctail( 1, 2 ) - ctail( 1,1 )
+       Rtail_distance(2) = ctail( 2, 2 ) - ctail( 2,1 )
+       Rtail_distance(3) = ctail( 3, 2 ) - ctail( 3,1 )
+       Rtail = dsqrt(  &
+          (Rtail_distance(1)*Rtail_distance(1))  &
+        + (Rtail_distance(2)*Rtail_distance(2))  &
+        + (Rtail_distance(3)*Rtail_distance(3)))
+!c!-------------------------------------------------------------------
+!c! Calculate location and distance between polar heads
+!c! distance between heads
+!c! for each one of our three dimensional space...
+       d1 = dheadcat(1, 1, itypi, itypj)
+       d2 = dheadcat(2, 1, itypi, itypj)
+
+       DO k = 1,3
+!c! location of polar head is computed by taking hydrophobic centre
+!c! and moving by a d1 * dc_norm vector
+!c! see unres publications for very informative images
+        chead(k,1) = c(k, i+nres) + d1 * dc_norm(k, i+nres)
+        chead(k,2) = c(k, j+nres) + d2 * dc_norm(k, j+nres)
+!c! distance 
+!c!        Rsc_distance(k) = dabs(c(k, i+nres) - c(k, j+nres))
+!c!        Rsc(k) = Rsc_distance(k) * Rsc_distance(k)
+        Rhead_distance(k) = chead(k,2) - chead(k,1)
+       END DO
+!c! pitagoras (root of sum of squares)
+       Rhead = dsqrt(   &
+          (Rhead_distance(1)*Rhead_distance(1)) &
+        + (Rhead_distance(2)*Rhead_distance(2)) &
+        + (Rhead_distance(3)*Rhead_distance(3)))
+!c!-------------------------------------------------------------------
+!c! zero everything that should be zero'ed
+       Egb = 0.0d0
+       ECL = 0.0d0
+       Elj = 0.0d0
+       Equad = 0.0d0
+       Epol = 0.0d0
+       eheadtail = 0.0d0
+       dGCLdOM1 = 0.0d0
+       dGCLdOM2 = 0.0d0
+       dGCLdOM12 = 0.0d0
+       dPOLdOM1 = 0.0d0
+       dPOLdOM2 = 0.0d0
+       RETURN
+      END SUBROUTINE elgrad_init_cat
+
+
       double precision function tschebyshev(m,n,x,y)
       implicit none
       integer i,m,n
       double precision function tschebyshev(m,n,x,y)
       implicit none
       integer i,m,n