subroutine etotal(energia,fact) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' #ifndef ISNAN external proc_proc #endif #ifdef WINPGI cMS$ATTRIBUTES C :: proc_proc #endif include 'COMMON.IOUNITS' double precision energia(0:max_ene),energia1(0:max_ene+1) #ifdef MPL include 'COMMON.INFO' external d_vadd integer ready #endif include 'COMMON.FFIELD' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.SBRIDGE' include 'COMMON.CHAIN' double precision fact(6) cd write(iout, '(a,i2)')'Calling etotal ipot=',ipot cd print *,'nnt=',nnt,' nct=',nct C C Compute the side-chain and electrostatic interaction energy C goto (101,102,103,104,105) ipot C Lennard-Jones potential. 101 call elj(evdw,evdw_t) cd print '(a)','Exit ELJ' goto 106 C Lennard-Jones-Kihara potential (shifted). 102 call eljk(evdw,evdw_t) goto 106 C Berne-Pechukas potential (dilated LJ, angular dependence). 103 call ebp(evdw,evdw_t) goto 106 C Gay-Berne potential (shifted LJ, angular dependence). 104 call egb(evdw,evdw_t) goto 106 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence). 105 call egbv(evdw,evdw_t) C C Calculate electrostatic (H-bonding) energy of the main chain. C 106 call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4) C C Calculate excluded-volume interaction energy between peptide groups C and side chains. C call escp(evdw2,evdw2_14) c c Calculate the bond-stretching energy c call ebond(estr) c write (iout,*) "estr",estr C C Calculate the disulfide-bridge and other energy and the contributions C from other distance constraints. cd print *,'Calling EHPB' call edis(ehpb) cd print *,'EHPB exitted succesfully.' C C Calculate the virtual-bond-angle energy. C call ebend(ebe) cd print *,'Bend energy finished.' C C Calculate the SC local energy. C call esc(escloc) cd print *,'SCLOC energy finished.' C C Calculate the virtual-bond torsional energy. C cd print *,'nterm=',nterm call etor(etors,edihcnstr,fact(1)) C C 6/23/01 Calculate double-torsional energy C call etor_d(etors_d,fact(2)) C C 21/5/07 Calculate local sicdechain correlation energy C call eback_sc_corr(esccor) C C 12/1/95 Multi-body terms C n_corr=0 n_corr1=0 if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 & .or. wturn6.gt.0.0d0) then c print *,"calling multibody_eello" call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1) c write (*,*) 'n_corr=',n_corr,' n_corr1=',n_corr1 c print *,ecorr,ecorr5,ecorr6,eturn6 endif if (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) then call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1) endif c write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t #ifdef SPLITELE etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2+welec*fact(1)*ees & +wvdwpp*evdw1 & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc & +wstrain*ehpb+nss*ebr+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5 & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4 & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6 & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d & +wbond*estr+wsccor*fact(1)*esccor #else etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2 & +welec*fact(1)*(ees+evdw1) & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc & +wstrain*ehpb+nss*ebr+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5 & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4 & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6 & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d & +wbond*estr+wsccor*fact(1)*esccor #endif energia(0)=etot energia(1)=evdw #ifdef SCP14 energia(2)=evdw2-evdw2_14 energia(17)=evdw2_14 #else energia(2)=evdw2 energia(17)=0.0d0 #endif #ifdef SPLITELE energia(3)=ees energia(16)=evdw1 #else energia(3)=ees+evdw1 energia(16)=0.0d0 #endif energia(4)=ecorr energia(5)=ecorr5 energia(6)=ecorr6 energia(7)=eel_loc energia(8)=eello_turn3 energia(9)=eello_turn4 energia(10)=eturn6 energia(11)=ebe energia(12)=escloc energia(13)=etors energia(14)=etors_d energia(15)=ehpb energia(18)=estr energia(19)=esccor energia(20)=edihcnstr energia(21)=evdw_t c detecting NaNQ #ifdef ISNAN #ifdef AIX if (isnan(etot).ne.0) energia(0)=1.0d+99 #else if (isnan(etot)) energia(0)=1.0d+99 #endif #else i=0 #ifdef WINPGI idumm=proc_proc(etot,i) #else call proc_proc(etot,i) #endif if(i.eq.1)energia(0)=1.0d+99 #endif #ifdef MPL c endif #endif if (calc_grad) then C C Sum up the components of the Cartesian gradient. C #ifdef SPLITELE do i=1,nct do j=1,3 gradc(j,i,icg)=wsc*gvdwc(j,i)+wscp*gvdwc_scp(j,i)+ & welec*fact(1)*gelc(j,i)+wvdwpp*gvdwpp(j,i)+ & wbond*gradb(j,i)+ & wstrain*ghpbc(j,i)+ & wcorr*fact(3)*gradcorr(j,i)+ & wel_loc*fact(2)*gel_loc(j,i)+ & wturn3*fact(2)*gcorr3_turn(j,i)+ & wturn4*fact(3)*gcorr4_turn(j,i)+ & wcorr5*fact(4)*gradcorr5(j,i)+ & wcorr6*fact(5)*gradcorr6(j,i)+ & wturn6*fact(5)*gcorr6_turn(j,i)+ & wsccor*fact(2)*gsccorc(j,i) gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+ & wbond*gradbx(j,i)+ & wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+ & wsccor*fact(2)*gsccorx(j,i) enddo #else do i=1,nct do j=1,3 gradc(j,i,icg)=wsc*gvdwc(j,i)+wscp*gvdwc_scp(j,i)+ & welec*fact(1)*gelc(j,i)+wstrain*ghpbc(j,i)+ & wbond*gradb(j,i)+ & wcorr*fact(3)*gradcorr(j,i)+ & wel_loc*fact(2)*gel_loc(j,i)+ & wturn3*fact(2)*gcorr3_turn(j,i)+ & wturn4*fact(3)*gcorr4_turn(j,i)+ & wcorr5*fact(4)*gradcorr5(j,i)+ & wcorr6*fact(5)*gradcorr6(j,i)+ & wturn6*fact(5)*gcorr6_turn(j,i)+ & wsccor*fact(2)*gsccorc(j,i) gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+ & wbond*gradbx(j,i)+ & wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+ & wsccor*fact(1)*gsccorx(j,i) enddo #endif enddo do i=1,nres-3 gloc(i,icg)=gloc(i,icg)+wcorr*fact(3)*gcorr_loc(i) & +wcorr5*fact(4)*g_corr5_loc(i) & +wcorr6*fact(5)*g_corr6_loc(i) & +wturn4*fact(3)*gel_loc_turn4(i) & +wturn3*fact(2)*gel_loc_turn3(i) & +wturn6*fact(5)*gel_loc_turn6(i) & +wel_loc*fact(2)*gel_loc_loc(i) & +wsccor*fact(1)*gsccor_loc(i) enddo endif return end C------------------------------------------------------------------------ subroutine enerprint(energia,fact) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.IOUNITS' include 'COMMON.FFIELD' include 'COMMON.SBRIDGE' double precision energia(0:max_ene),fact(6) etot=energia(0) evdw=energia(1)+fact(6)*energia(21) #ifdef SCP14 evdw2=energia(2)+energia(17) #else evdw2=energia(2) #endif ees=energia(3) #ifdef SPLITELE evdw1=energia(16) #endif ecorr=energia(4) ecorr5=energia(5) ecorr6=energia(6) eel_loc=energia(7) eello_turn3=energia(8) eello_turn4=energia(9) eello_turn6=energia(10) ebe=energia(11) escloc=energia(12) etors=energia(13) etors_d=energia(14) ehpb=energia(15) esccor=energia(19) edihcnstr=energia(20) estr=energia(18) #ifdef SPLITELE write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),evdw1, & wvdwpp, & estr,wbond,ebe,wang,escloc,wscloc,etors,wtor*fact(1), & etors_d,wtor_d*fact(2),ehpb,wstrain, & ecorr,wcorr*fact(3),ecorr5,wcorr5*fact(4),ecorr6,wcorr6*fact(5), & eel_loc,wel_loc*fact(2),eello_turn3,wturn3*fact(2), & eello_turn4,wturn4*fact(3),eello_turn6,wturn6*fact(5), & esccor,wsccor*fact(1),edihcnstr,ebr*nss,etot 10 format (/'Virtual-chain energies:'// & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ & 'EES= ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p elec)'/ & 'EVDWPP=',1pE16.6,' WEIGHT=',1pD16.6,' (p-p VDW)'/ & 'ESTR= ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/ & 'EBE= ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/ & 'ESC= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/ & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/ & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/ & 'EHBP= ',1pE16.6,' WEIGHT=',1pD16.6, & ' (SS bridges & dist. cnstr.)'/ & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/ & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/ & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/ & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/ & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/ & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/ & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/ & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/ & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/ & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ & 'ETOT= ',1pE16.6,' (total)') #else write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),estr,wbond, & ebe,wang,escloc,wscloc,etors,wtor*fact(1),etors_d,wtor_d*fact2, & ehpb,wstrain,ecorr,wcorr*fact(3),ecorr5,wcorr5*fact(4), & ecorr6,wcorr6*fact(5),eel_loc,wel_loc*fact(2), & eello_turn3,wturn3*fact(2),eello_turn4,wturn4*fact(3), & eello_turn6,wturn6*fact(5),esccor*fact(1),wsccor, & edihcnstr,ebr*nss,etot 10 format (/'Virtual-chain energies:'// & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/ & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/ & 'EES= ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/ & 'ESTR= ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/ & 'EBE= ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/ & 'ESC= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/ & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/ & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/ & 'EHBP= ',1pE16.6,' WEIGHT=',1pD16.6, & ' (SS bridges & dist. cnstr.)'/ & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/ & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/ & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/ & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/ & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/ & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/ & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/ & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/ & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/ & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ & 'ETOT= ',1pE16.6,' (total)') #endif return end C----------------------------------------------------------------------- subroutine elj(evdw,evdw_t) C C This subroutine calculates the interaction energy of nonbonded side chains C assuming the LJ potential of interaction. C implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include "DIMENSIONS.COMPAR" parameter (accur=1.0d-10) include 'COMMON.GEO' include 'COMMON.VAR' include 'COMMON.LOCAL' include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.TORSION' include 'COMMON.ENEPS' include 'COMMON.SBRIDGE' include 'COMMON.NAMES' include 'COMMON.IOUNITS' include 'COMMON.CONTACTS' dimension gg(3) integer icant external icant cd print *,'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon do i=1,210 do j=1,2 eneps_temp(j,i)=0.0d0 enddo enddo evdw=0.0D0 evdw_t=0.0d0 do i=iatsc_s,iatsc_e itypi=itype(i) itypi1=itype(i+1) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) C Change 12/1/95 num_conti=0 C C Calculate SC interaction energy. C do iint=1,nint_gr(i) cd write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint), cd & 'iend=',iend(i,iint) do j=istart(i,iint),iend(i,iint) itypj=itype(j) xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi zj=c(3,nres+j)-zi C Change 12/1/95 to calculate four-body interactions rij=xj*xj+yj*yj+zj*zj rrij=1.0D0/rij c write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj eps0ij=eps(itypi,itypj) fac=rrij**expon2 e1=fac*fac*aa(itypi,itypj) e2=fac*bb(itypi,itypj) evdwij=e1+e2 ij=icant(itypi,itypj) eneps_temp(1,ij)=eneps_temp(1,ij)+e1/dabs(eps0ij) eneps_temp(2,ij)=eneps_temp(2,ij)+e2/eps0ij cd sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0) cd epsi=bb(itypi,itypj)**2/aa(itypi,itypj) cd write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)') cd & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj), cd & bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm, cd & (c(k,i),k=1,3),(c(k,j),k=1,3) if (bb(itypi,itypj).gt.0.0d0) then evdw=evdw+evdwij else evdw_t=evdw_t+evdwij endif if (calc_grad) then C C Calculate the components of the gradient in DC and X C fac=-rrij*(e1+evdwij) gg(1)=xj*fac gg(2)=yj*fac gg(3)=zj*fac do k=1,3 gvdwx(k,i)=gvdwx(k,i)-gg(k) gvdwx(k,j)=gvdwx(k,j)+gg(k) enddo do k=i,j-1 do l=1,3 gvdwc(l,k)=gvdwc(l,k)+gg(l) enddo enddo endif C C 12/1/95, revised on 5/20/97 C C Calculate the contact function. The ith column of the array JCONT will C contain the numbers of atoms that make contacts with the atom I (of numbers C greater than I). The arrays FACONT and GACONT will contain the values of C the contact function and its derivative. C C Uncomment next line, if the correlation interactions include EVDW explicitly. c if (j.gt.i+1 .and. evdwij.le.0.0D0) then C Uncomment next line, if the correlation interactions are contact function only if (j.gt.i+1.and. eps0ij.gt.0.0D0) then rij=dsqrt(rij) sigij=sigma(itypi,itypj) r0ij=rs0(itypi,itypj) C C Check whether the SC's are not too far to make a contact. C rcut=1.5d0*r0ij call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont) C Add a new contact, if the SC's are close enough, but not too close (ri' do k=1,3 ggg(k)=-ggg(k) C Uncomment following line for SC-p interactions c gradx_scp(k,j)=gradx_scp(k,j)-ggg(k) enddo endif do k=1,3 gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k) enddo kstart=min0(i+1,j) kend=max0(i-1,j-1) cd write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend cd write (iout,*) ggg(1),ggg(2),ggg(3) do k=kstart,kend do l=1,3 gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l) enddo enddo endif enddo enddo ! iint 1225 continue enddo ! i do i=1,nct do j=1,3 gvdwc_scp(j,i)=expon*gvdwc_scp(j,i) gradx_scp(j,i)=expon*gradx_scp(j,i) enddo enddo C****************************************************************************** C C N O T E !!! C C To save time the factor EXPON has been extracted from ALL components C of GVDWC and GRADX. Remember to multiply them by this factor before further C use! C C****************************************************************************** return end C-------------------------------------------------------------------------- subroutine edis(ehpb) C C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors. C implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.SBRIDGE' include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.VAR' include 'COMMON.INTERACT' dimension ggg(3) ehpb=0.0D0 cd print *,'edis: nhpb=',nhpb,' fbr=',fbr cd print *,'link_start=',link_start,' link_end=',link_end if (link_end.eq.0) return do i=link_start,link_end C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a C CA-CA distance used in regularization of structure. ii=ihpb(i) jj=jhpb(i) C iii and jjj point to the residues for which the distance is assigned. if (ii.gt.nres) then iii=ii-nres jjj=jj-nres else iii=ii jjj=jj endif C 24/11/03 AL: SS bridges handled separately because of introducing a specific C distance and angle dependent SS bond potential. if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then call ssbond_ene(iii,jjj,eij) ehpb=ehpb+2*eij else C Calculate the distance between the two points and its difference from the C target distance. dd=dist(ii,jj) rdis=dd-dhpb(i) C Get the force constant corresponding to this distance. waga=forcon(i) C Calculate the contribution to energy. ehpb=ehpb+waga*rdis*rdis C C Evaluate gradient. C fac=waga*rdis/dd cd print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd, cd & ' waga=',waga,' fac=',fac do j=1,3 ggg(j)=fac*(c(j,jj)-c(j,ii)) enddo cd print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3) C If this is a SC-SC distance, we need to calculate the contributions to the C Cartesian gradient in the SC vectors (ghpbx). if (iii.lt.ii) then do j=1,3 ghpbx(j,iii)=ghpbx(j,iii)-ggg(j) ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j) enddo endif do j=iii,jjj-1 do k=1,3 ghpbc(k,j)=ghpbc(k,j)+ggg(k) enddo enddo endif enddo ehpb=0.5D0*ehpb return end C-------------------------------------------------------------------------- subroutine ssbond_ene(i,j,eij) C C Calculate the distance and angle dependent SS-bond potential energy C using a free-energy function derived based on RHF/6-31G** ab initio C calculations of diethyl disulfide. C C A. Liwo and U. Kozlowska, 11/24/03 C implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.SBRIDGE' include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.LOCAL' include 'COMMON.INTERACT' include 'COMMON.VAR' include 'COMMON.IOUNITS' double precision erij(3),dcosom1(3),dcosom2(3),gg(3) itypi=itype(i) xi=c(1,nres+i) yi=c(2,nres+i) zi=c(3,nres+i) dxi=dc_norm(1,nres+i) dyi=dc_norm(2,nres+i) dzi=dc_norm(3,nres+i) dsci_inv=dsc_inv(itypi) itypj=itype(j) dscj_inv=dsc_inv(itypj) xj=c(1,nres+j)-xi yj=c(2,nres+j)-yi zj=c(3,nres+j)-zi dxj=dc_norm(1,nres+j) dyj=dc_norm(2,nres+j) dzj=dc_norm(3,nres+j) rrij=1.0D0/(xj*xj+yj*yj+zj*zj) rij=dsqrt(rrij) erij(1)=xj*rij erij(2)=yj*rij erij(3)=zj*rij om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3) om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3) om12=dxi*dxj+dyi*dyj+dzi*dzj do k=1,3 dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k)) dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k)) enddo rij=1.0d0/rij deltad=rij-d0cm deltat1=1.0d0-om1 deltat2=1.0d0+om2 deltat12=om2-om1+2.0d0 cosphi=om12-om1*om2 eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2) & +akct*deltad*deltat12 & +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi c write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth, c & " akct",akct," deltad",deltad," deltat",deltat1,deltat2, c & " deltat12",deltat12," eij",eij ed=2*akcm*deltad+akct*deltat12 pom1=akct*deltad pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi eom1=-2*akth*deltat1-pom1-om2*pom2 eom2= 2*akth*deltat2+pom1-om1*pom2 eom12=pom2 do k=1,3 gg(k)=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k) enddo do k=1,3 ghpbx(k,i)=ghpbx(k,i)-gg(k) & +(eom12*dc_norm(k,nres+j)+eom1*erij(k))*dsci_inv ghpbx(k,j)=ghpbx(k,j)+gg(k) & +(eom12*dc_norm(k,nres+i)+eom2*erij(k))*dscj_inv enddo C C Calculate the components of the gradient in DC and X C do k=i,j-1 do l=1,3 ghpbc(l,k)=ghpbc(l,k)+gg(l) enddo enddo return end C-------------------------------------------------------------------------- subroutine ebond(estr) c c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds c implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.LOCAL' include 'COMMON.GEO' include 'COMMON.INTERACT' include 'COMMON.DERIV' include 'COMMON.VAR' include 'COMMON.CHAIN' include 'COMMON.IOUNITS' include 'COMMON.NAMES' include 'COMMON.FFIELD' include 'COMMON.CONTROL' double precision u(3),ud(3) estr=0.0d0 do i=nnt+1,nct diff = vbld(i)-vbldp0 c write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff estr=estr+diff*diff do j=1,3 gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i) enddo enddo estr=0.5d0*AKP*estr c c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included c do i=nnt,nct iti=itype(i) if (iti.ne.10) then nbi=nbondterm(iti) if (nbi.eq.1) then diff=vbld(i+nres)-vbldsc0(1,iti) c write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff, c & AKSC(1,iti),AKSC(1,iti)*diff*diff estr=estr+0.5d0*AKSC(1,iti)*diff*diff do j=1,3 gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres) enddo else do j=1,nbi diff=vbld(i+nres)-vbldsc0(j,iti) ud(j)=aksc(j,iti)*diff u(j)=abond0(j,iti)+0.5d0*ud(j)*diff enddo uprod=u(1) do j=2,nbi uprod=uprod*u(j) enddo usum=0.0d0 usumsqder=0.0d0 do j=1,nbi uprod1=1.0d0 uprod2=1.0d0 do k=1,nbi if (k.ne.j) then uprod1=uprod1*u(k) uprod2=uprod2*u(k)*u(k) endif enddo usum=usum+uprod1 usumsqder=usumsqder+ud(j)*uprod2 enddo c write (iout,*) i,iti,vbld(i+nres),(vbldsc0(j,iti), c & AKSC(j,iti),abond0(j,iti),u(j),j=1,nbi) estr=estr+uprod/usum do j=1,3 gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres) enddo endif endif enddo return end #ifdef CRYST_THETA C-------------------------------------------------------------------------- subroutine ebend(etheta) C C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral C angles gamma and its derivatives in consecutive thetas and gammas. C implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.LOCAL' include 'COMMON.GEO' include 'COMMON.INTERACT' include 'COMMON.DERIV' include 'COMMON.VAR' include 'COMMON.CHAIN' include 'COMMON.IOUNITS' include 'COMMON.NAMES' include 'COMMON.FFIELD' common /calcthet/ term1,term2,termm,diffak,ratak, & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq, & delthe0,sig0inv,sigtc,sigsqtc,delthec,it double precision y(2),z(2) delta=0.02d0*pi time11=dexp(-2*time) time12=1.0d0 etheta=0.0D0 c write (iout,*) "nres",nres c write (*,'(a,i2)') 'EBEND ICG=',icg c write (iout,*) ithet_start,ithet_end do i=ithet_start,ithet_end C Zero the energy function and its derivative at 0 or pi. call splinthet(theta(i),0.5d0*delta,ss,ssd) it=itype(i-1) c if (i.gt.ithet_start .and. c & (itel(i-1).eq.0 .or. itel(i-2).eq.0)) goto 1215 c if (i.gt.3 .and. (i.le.4 .or. itel(i-3).ne.0)) then c phii=phi(i) c y(1)=dcos(phii) c y(2)=dsin(phii) c else c y(1)=0.0D0 c y(2)=0.0D0 c endif c if (i.lt.nres .and. itel(i).ne.0) then c phii1=phi(i+1) c z(1)=dcos(phii1) c z(2)=dsin(phii1) c else c z(1)=0.0D0 c z(2)=0.0D0 c endif if (i.gt.3) then #ifdef OSF phii=phi(i) icrc=0 call proc_proc(phii,icrc) if (icrc.eq.1) phii=150.0 #else phii=phi(i) #endif y(1)=dcos(phii) y(2)=dsin(phii) else y(1)=0.0D0 y(2)=0.0D0 endif if (i.lt.nres) then #ifdef OSF phii1=phi(i+1) icrc=0 call proc_proc(phii1,icrc) if (icrc.eq.1) phii1=150.0 phii1=pinorm(phii1) z(1)=cos(phii1) #else phii1=phi(i+1) z(1)=dcos(phii1) #endif z(2)=dsin(phii1) else z(1)=0.0D0 z(2)=0.0D0 endif C Calculate the "mean" value of theta from the part of the distribution C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2). C In following comments this theta will be referred to as t_c. thet_pred_mean=0.0d0 do k=1,2 athetk=athet(k,it) bthetk=bthet(k,it) thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k) enddo c write (iout,*) "thet_pred_mean",thet_pred_mean dthett=thet_pred_mean*ssd thet_pred_mean=thet_pred_mean*ss+a0thet(it) c write (iout,*) "thet_pred_mean",thet_pred_mean C Derivatives of the "mean" values in gamma1 and gamma2. dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss if (theta(i).gt.pi-delta) then call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0, & E_tc0) call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0) call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1) call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai, & E_theta) call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0, & E_tc) else if (theta(i).lt.delta) then call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0) call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1) call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai, & E_theta) call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0) call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0, & E_tc) else call theteng(theta(i),thet_pred_mean,theta0(it),ethetai, & E_theta,E_tc) endif etheta=etheta+ethetai c write (iout,'(2i3,3f8.3,f10.5)') i,it,rad2deg*theta(i), c & rad2deg*phii,rad2deg*phii1,ethetai if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1 if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2 gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett) 1215 continue enddo C Ufff.... We've done all this!!! return end C--------------------------------------------------------------------------- subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta, & E_tc) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'COMMON.LOCAL' include 'COMMON.IOUNITS' common /calcthet/ term1,term2,termm,diffak,ratak, & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq, & delthe0,sig0inv,sigtc,sigsqtc,delthec,it C Calculate the contributions to both Gaussian lobes. C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time) C The "polynomial part" of the "standard deviation" of this part of C the distribution. sig=polthet(3,it) do j=2,0,-1 sig=sig*thet_pred_mean+polthet(j,it) enddo C Derivative of the "interior part" of the "standard deviation of the" C gamma-dependent Gaussian lobe in t_c. sigtc=3*polthet(3,it) do j=2,1,-1 sigtc=sigtc*thet_pred_mean+j*polthet(j,it) enddo sigtc=sig*sigtc C Set the parameters of both Gaussian lobes of the distribution. C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc) fac=sig*sig+sigc0(it) sigcsq=fac+fac sigc=1.0D0/sigcsq C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c sigsqtc=-4.0D0*sigcsq*sigtc c print *,i,sig,sigtc,sigsqtc C Following variable (sigtc) is d[sigma(t_c)]/dt_c sigtc=-sigtc/(fac*fac) C Following variable is sigma(t_c)**(-2) sigcsq=sigcsq*sigcsq sig0i=sig0(it) sig0inv=1.0D0/sig0i**2 delthec=thetai-thet_pred_mean delthe0=thetai-theta0i term1=-0.5D0*sigcsq*delthec*delthec term2=-0.5D0*sig0inv*delthe0*delthe0 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and C NaNs in taking the logarithm. We extract the largest exponent which is added C to the energy (this being the log of the distribution) at the end of energy C term evaluation for this virtual-bond angle. if (term1.gt.term2) then termm=term1 term2=dexp(term2-termm) term1=1.0d0 else termm=term2 term1=dexp(term1-termm) term2=1.0d0 endif C The ratio between the gamma-independent and gamma-dependent lobes of C the distribution is a Gaussian function of thet_pred_mean too. diffak=gthet(2,it)-thet_pred_mean ratak=diffak/gthet(3,it)**2 ak=dexp(gthet(1,it)-0.5D0*diffak*ratak) C Let's differentiate it in thet_pred_mean NOW. aktc=ak*ratak C Now put together the distribution terms to make complete distribution. termexp=term1+ak*term2 termpre=sigc+ak*sig0i C Contribution of the bending energy from this theta is just the -log of C the sum of the contributions from the two lobes and the pre-exponential C factor. Simple enough, isn't it? ethetai=(-dlog(termexp)-termm+dlog(termpre)) C NOW the derivatives!!! C 6/6/97 Take into account the deformation. E_theta=(delthec*sigcsq*term1 & +ak*delthe0*sig0inv*term2)/termexp E_tc=((sigtc+aktc*sig0i)/termpre & -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+ & aktc*term2)/termexp) return end c----------------------------------------------------------------------------- subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'COMMON.LOCAL' include 'COMMON.IOUNITS' common /calcthet/ term1,term2,termm,diffak,ratak, & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq, & delthe0,sig0inv,sigtc,sigsqtc,delthec,it delthec=thetai-thet_pred_mean delthe0=thetai-theta0i C "Thank you" to MAPLE (probably spared one day of hand-differentiation). t3 = thetai-thet_pred_mean t6 = t3**2 t9 = term1 t12 = t3*sigcsq t14 = t12+t6*sigsqtc t16 = 1.0d0 t21 = thetai-theta0i t23 = t21**2 t26 = term2 t27 = t21*t26 t32 = termexp t40 = t32**2 E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9 & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40 & *(-t12*t9-ak*sig0inv*t27) return end #else C-------------------------------------------------------------------------- subroutine ebend(etheta) C C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral C angles gamma and its derivatives in consecutive thetas and gammas. C ab initio-derived potentials from c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203 C implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.LOCAL' include 'COMMON.GEO' include 'COMMON.INTERACT' include 'COMMON.DERIV' include 'COMMON.VAR' include 'COMMON.CHAIN' include 'COMMON.IOUNITS' include 'COMMON.NAMES' include 'COMMON.FFIELD' include 'COMMON.CONTROL' double precision coskt(mmaxtheterm),sinkt(mmaxtheterm), & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle), & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble), & sinph1ph2(maxdouble,maxdouble) logical lprn /.false./, lprn1 /.false./ etheta=0.0D0 c write (iout,*) "ithetyp",(ithetyp(i),i=1,ntyp1) do i=ithet_start,ithet_end dethetai=0.0d0 dephii=0.0d0 dephii1=0.0d0 theti2=0.5d0*theta(i) ityp2=ithetyp(itype(i-1)) do k=1,nntheterm coskt(k)=dcos(k*theti2) sinkt(k)=dsin(k*theti2) enddo if (i.gt.3) then #ifdef OSF phii=phi(i) if (phii.ne.phii) phii=150.0 #else phii=phi(i) #endif ityp1=ithetyp(itype(i-2)) do k=1,nsingle cosph1(k)=dcos(k*phii) sinph1(k)=dsin(k*phii) enddo else phii=0.0d0 ityp1=nthetyp+1 do k=1,nsingle cosph1(k)=0.0d0 sinph1(k)=0.0d0 enddo endif if (i.lt.nres) then #ifdef OSF phii1=phi(i+1) if (phii1.ne.phii1) phii1=150.0 phii1=pinorm(phii1) #else phii1=phi(i+1) #endif ityp3=ithetyp(itype(i)) do k=1,nsingle cosph2(k)=dcos(k*phii1) sinph2(k)=dsin(k*phii1) enddo else phii1=0.0d0 ityp3=nthetyp+1 do k=1,nsingle cosph2(k)=0.0d0 sinph2(k)=0.0d0 enddo endif c write (iout,*) "i",i," ityp1",itype(i-2),ityp1, c & " ityp2",itype(i-1),ityp2," ityp3",itype(i),ityp3 c call flush(iout) ethetai=aa0thet(ityp1,ityp2,ityp3) do k=1,ndouble do l=1,k-1 ccl=cosph1(l)*cosph2(k-l) ssl=sinph1(l)*sinph2(k-l) scl=sinph1(l)*cosph2(k-l) csl=cosph1(l)*sinph2(k-l) cosph1ph2(l,k)=ccl-ssl cosph1ph2(k,l)=ccl+ssl sinph1ph2(l,k)=scl+csl sinph1ph2(k,l)=scl-csl enddo enddo if (lprn) then write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2, & " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1 write (iout,*) "coskt and sinkt" do k=1,nntheterm write (iout,*) k,coskt(k),sinkt(k) enddo endif do k=1,ntheterm ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k) dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3) & *coskt(k) if (lprn) & write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3), & " ethetai",ethetai enddo if (lprn) then write (iout,*) "cosph and sinph" do k=1,nsingle write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k) enddo write (iout,*) "cosph1ph2 and sinph2ph2" do k=2,ndouble do l=1,k-1 write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l), & sinph1ph2(l,k),sinph1ph2(k,l) enddo enddo write(iout,*) "ethetai",ethetai endif do m=1,ntheterm2 do k=1,nsingle aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k) & +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k) & +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k) & +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k) ethetai=ethetai+sinkt(m)*aux dethetai=dethetai+0.5d0*m*aux*coskt(m) dephii=dephii+k*sinkt(m)*( & ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)- & bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)) dephii1=dephii1+k*sinkt(m)*( & eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)- & ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k)) if (lprn) & write (iout,*) "m",m," k",k," bbthet", & bbthet(k,m,ityp1,ityp2,ityp3)," ccthet", & ccthet(k,m,ityp1,ityp2,ityp3)," ddthet", & ddthet(k,m,ityp1,ityp2,ityp3)," eethet", & eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai enddo enddo if (lprn) & write(iout,*) "ethetai",ethetai do m=1,ntheterm3 do k=2,ndouble do l=1,k-1 aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+ & ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+ & ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+ & ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l) ethetai=ethetai+sinkt(m)*aux dethetai=dethetai+0.5d0*m*coskt(m)*aux dephii=dephii+l*sinkt(m)*( & -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)- & ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+ & ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+ & ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)) dephii1=dephii1+(k-l)*sinkt(m)*( & -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+ & ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+ & ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)- & ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)) if (lprn) then write (iout,*) "m",m," k",k," l",l," ffthet", & ffthet(l,k,m,ityp1,ityp2,ityp3), & ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet", & ggthet(l,k,m,ityp1,ityp2,ityp3), & ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai write (iout,*) cosph1ph2(l,k)*sinkt(m), & cosph1ph2(k,l)*sinkt(m), & sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m) endif enddo enddo enddo 10 continue if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') & i,theta(i)*rad2deg,phii*rad2deg, & phii1*rad2deg,ethetai etheta=etheta+ethetai if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1 gloc(nphi+i-2,icg)=wang*dethetai enddo return end #endif #ifdef CRYST_SC c----------------------------------------------------------------------------- subroutine esc(escloc) C Calculate the local energy of a side chain and its derivatives in the C corresponding virtual-bond valence angles THETA and the spherical angles C ALPHA and OMEGA. implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.GEO' include 'COMMON.LOCAL' include 'COMMON.VAR' include 'COMMON.INTERACT' include 'COMMON.DERIV' include 'COMMON.CHAIN' include 'COMMON.IOUNITS' include 'COMMON.NAMES' include 'COMMON.FFIELD' double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3), & ddersc0(3),ddummy(3),xtemp(3),temp(3) common /sccalc/ time11,time12,time112,theti,it,nlobit delta=0.02d0*pi escloc=0.0D0 c write (iout,'(a)') 'ESC' do i=loc_start,loc_end it=itype(i) if (it.eq.10) goto 1 nlobit=nlob(it) c print *,'i=',i,' it=',it,' nlobit=',nlobit c write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad theti=theta(i+1)-pipol x(1)=dtan(theti) x(2)=alph(i) x(3)=omeg(i) c write (iout,*) "i",i," x",x(1),x(2),x(3) if (x(2).gt.pi-delta) then xtemp(1)=x(1) xtemp(2)=pi-delta xtemp(3)=x(3) call enesc(xtemp,escloci0,dersc0,ddersc0,.true.) xtemp(2)=pi call enesc(xtemp,escloci1,dersc1,ddummy,.false.) call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2), & escloci,dersc(2)) call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1), & ddersc0(1),dersc(1)) call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3), & ddersc0(3),dersc(3)) xtemp(2)=pi-delta call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.) xtemp(2)=pi call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.) call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1, & dersc0(2),esclocbi,dersc02) call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1), & dersc12,dersc01) call splinthet(x(2),0.5d0*delta,ss,ssd) dersc0(1)=dersc01 dersc0(2)=dersc02 dersc0(3)=0.0d0 do k=1,3 dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k) enddo dersc(2)=dersc(2)+ssd*(escloci-esclocbi) c write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci, c & esclocbi,ss,ssd escloci=ss*escloci+(1.0d0-ss)*esclocbi c escloci=esclocbi c write (iout,*) escloci else if (x(2).lt.delta) then xtemp(1)=x(1) xtemp(2)=delta xtemp(3)=x(3) call enesc(xtemp,escloci0,dersc0,ddersc0,.true.) xtemp(2)=0.0d0 call enesc(xtemp,escloci1,dersc1,ddummy,.false.) call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2), & escloci,dersc(2)) call spline2(x(2),delta,-delta,dersc0(1),dersc1(1), & ddersc0(1),dersc(1)) call spline2(x(2),delta,-delta,dersc0(3),dersc1(3), & ddersc0(3),dersc(3)) xtemp(2)=delta call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.) xtemp(2)=0.0d0 call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.) call spline1(x(2),delta,-delta,esclocbi0,esclocbi1, & dersc0(2),esclocbi,dersc02) call spline2(x(2),delta,-delta,dersc0(1),dersc1(1), & dersc12,dersc01) dersc0(1)=dersc01 dersc0(2)=dersc02 dersc0(3)=0.0d0 call splinthet(x(2),0.5d0*delta,ss,ssd) do k=1,3 dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k) enddo dersc(2)=dersc(2)+ssd*(escloci-esclocbi) c write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci, c & esclocbi,ss,ssd escloci=ss*escloci+(1.0d0-ss)*esclocbi c write (iout,*) escloci else call enesc(x,escloci,dersc,ddummy,.false.) endif escloc=escloc+escloci c write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+ & wscloc*dersc(1) gloc(ialph(i,1),icg)=wscloc*dersc(2) gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3) 1 continue enddo return end C--------------------------------------------------------------------------- subroutine enesc(x,escloci,dersc,ddersc,mixed) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'COMMON.GEO' include 'COMMON.LOCAL' include 'COMMON.IOUNITS' common /sccalc/ time11,time12,time112,theti,it,nlobit double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3) double precision contr(maxlob,-1:1) logical mixed c write (iout,*) 'it=',it,' nlobit=',nlobit escloc_i=0.0D0 do j=1,3 dersc(j)=0.0D0 if (mixed) ddersc(j)=0.0d0 enddo x3=x(3) C Because of periodicity of the dependence of the SC energy in omega we have C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi). C To avoid underflows, first compute & store the exponents. do iii=-1,1 x(3)=x3+iii*dwapi do j=1,nlobit do k=1,3 z(k)=x(k)-censc(k,j,it) enddo do k=1,3 Axk=0.0D0 do l=1,3 Axk=Axk+gaussc(l,k,j,it)*z(l) enddo Ax(k,j,iii)=Axk enddo expfac=0.0D0 do k=1,3 expfac=expfac+Ax(k,j,iii)*z(k) enddo contr(j,iii)=expfac enddo ! j enddo ! iii x(3)=x3 C As in the case of ebend, we want to avoid underflows in exponentiation and C subsequent NaNs and INFs in energy calculation. C Find the largest exponent emin=contr(1,-1) do iii=-1,1 do j=1,nlobit if (emin.gt.contr(j,iii)) emin=contr(j,iii) enddo enddo emin=0.5D0*emin cd print *,'it=',it,' emin=',emin C Compute the contribution to SC energy and derivatives do iii=-1,1 do j=1,nlobit expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin) cd print *,'j=',j,' expfac=',expfac escloc_i=escloc_i+expfac do k=1,3 dersc(k)=dersc(k)+Ax(k,j,iii)*expfac enddo if (mixed) then do k=1,3,2 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii) & +gaussc(k,2,j,it))*expfac enddo endif enddo enddo ! iii dersc(1)=dersc(1)/cos(theti)**2 ddersc(1)=ddersc(1)/cos(theti)**2 ddersc(3)=ddersc(3) escloci=-(dlog(escloc_i)-emin) do j=1,3 dersc(j)=dersc(j)/escloc_i enddo if (mixed) then do j=1,3,2 ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j)) enddo endif return end C------------------------------------------------------------------------------ subroutine enesc_bound(x,escloci,dersc,dersc12,mixed) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'COMMON.GEO' include 'COMMON.LOCAL' include 'COMMON.IOUNITS' common /sccalc/ time11,time12,time112,theti,it,nlobit double precision x(3),z(3),Ax(3,maxlob),dersc(3) double precision contr(maxlob) logical mixed escloc_i=0.0D0 do j=1,3 dersc(j)=0.0D0 enddo do j=1,nlobit do k=1,2 z(k)=x(k)-censc(k,j,it) enddo z(3)=dwapi do k=1,3 Axk=0.0D0 do l=1,3 Axk=Axk+gaussc(l,k,j,it)*z(l) enddo Ax(k,j)=Axk enddo expfac=0.0D0 do k=1,3 expfac=expfac+Ax(k,j)*z(k) enddo contr(j)=expfac enddo ! j C As in the case of ebend, we want to avoid underflows in exponentiation and C subsequent NaNs and INFs in energy calculation. C Find the largest exponent emin=contr(1) do j=1,nlobit if (emin.gt.contr(j)) emin=contr(j) enddo emin=0.5D0*emin C Compute the contribution to SC energy and derivatives dersc12=0.0d0 do j=1,nlobit expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin) escloc_i=escloc_i+expfac do k=1,2 dersc(k)=dersc(k)+Ax(k,j)*expfac enddo if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j) & +gaussc(1,2,j,it))*expfac dersc(3)=0.0d0 enddo dersc(1)=dersc(1)/cos(theti)**2 dersc12=dersc12/cos(theti)**2 escloci=-(dlog(escloc_i)-emin) do j=1,2 dersc(j)=dersc(j)/escloc_i enddo if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1)) return end #else c---------------------------------------------------------------------------------- subroutine esc(escloc) C Calculate the local energy of a side chain and its derivatives in the C corresponding virtual-bond valence angles THETA and the spherical angles C ALPHA and OMEGA derived from AM1 all-atom calculations. C added by Urszula Kozlowska. 07/11/2007 C implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.GEO' include 'COMMON.LOCAL' include 'COMMON.VAR' include 'COMMON.SCROT' include 'COMMON.INTERACT' include 'COMMON.DERIV' include 'COMMON.CHAIN' include 'COMMON.IOUNITS' include 'COMMON.NAMES' include 'COMMON.FFIELD' include 'COMMON.CONTROL' include 'COMMON.VECTORS' double precision x_prime(3),y_prime(3),z_prime(3) & , sumene,dsc_i,dp2_i,x(65), & xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6, & de_dxx,de_dyy,de_dzz,de_dt double precision s1_t,s1_6_t,s2_t,s2_6_t double precision & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3), & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3), & dt_dCi(3),dt_dCi1(3) common /sccalc/ time11,time12,time112,theti,it,nlobit delta=0.02d0*pi escloc=0.0D0 do i=loc_start,loc_end costtab(i+1) =dcos(theta(i+1)) sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1)) cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1))) sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1))) cosfac2=0.5d0/(1.0d0+costtab(i+1)) cosfac=dsqrt(cosfac2) sinfac2=0.5d0/(1.0d0-costtab(i+1)) sinfac=dsqrt(sinfac2) it=itype(i) if (it.eq.10) goto 1 c C Compute the axes of tghe local cartesian coordinates system; store in c x_prime, y_prime and z_prime c do j=1,3 x_prime(j) = 0.00 y_prime(j) = 0.00 z_prime(j) = 0.00 enddo C write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres), C & dc_norm(3,i+nres) do j = 1,3 x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac enddo do j = 1,3 z_prime(j) = -uz(j,i-1) enddo c write (2,*) "i",i c write (2,*) "x_prime",(x_prime(j),j=1,3) c write (2,*) "y_prime",(y_prime(j),j=1,3) c write (2,*) "z_prime",(z_prime(j),j=1,3) c write (2,*) "xx",scalar(x_prime(1),x_prime(1)), c & " xy",scalar(x_prime(1),y_prime(1)), c & " xz",scalar(x_prime(1),z_prime(1)), c & " yy",scalar(y_prime(1),y_prime(1)), c & " yz",scalar(y_prime(1),z_prime(1)), c & " zz",scalar(z_prime(1),z_prime(1)) c C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i), C to local coordinate system. Store in xx, yy, zz. c xx=0.0d0 yy=0.0d0 zz=0.0d0 do j = 1,3 xx = xx + x_prime(j)*dc_norm(j,i+nres) yy = yy + y_prime(j)*dc_norm(j,i+nres) zz = zz + z_prime(j)*dc_norm(j,i+nres) enddo xxtab(i)=xx yytab(i)=yy zztab(i)=zz C C Compute the energy of the ith side cbain C c write (2,*) "xx",xx," yy",yy," zz",zz it=itype(i) do j = 1,65 x(j) = sc_parmin(j,it) enddo #ifdef CHECK_COORD Cc diagnostics - remove later xx1 = dcos(alph(2)) yy1 = dsin(alph(2))*dcos(omeg(2)) zz1 = -dsin(alph(2))*dsin(omeg(2)) write(2,'(3f8.1,3f9.3,1x,3f9.3)') & alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz, & xx1,yy1,zz1 C," --- ", xx_w,yy_w,zz_w c end diagnostics #endif sumene1= x(1)+ x(2)*xx+ x(3)*yy+ x(4)*zz+ x(5)*xx**2 & + x(6)*yy**2+ x(7)*zz**2+ x(8)*xx*zz+ x(9)*xx*yy & + x(10)*yy*zz sumene2= x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2 & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy & + x(20)*yy*zz sumene3= x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2 & +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy & +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3 & +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx & +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy & +x(40)*xx*yy*zz sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2 & +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy & +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3 & +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx & +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy & +x(60)*xx*yy*zz dsc_i = 0.743d0+x(61) dp2_i = 1.9d0+x(62) dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i & *(xx*cost2tab(i+1)+yy*sint2tab(i+1))) dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i & *(xx*cost2tab(i+1)-yy*sint2tab(i+1))) s1=(1+x(63))/(0.1d0 + dscp1) s1_6=(1+x(64))/(0.1d0 + dscp1**6) s2=(1+x(65))/(0.1d0 + dscp2) s2_6=(1+x(65))/(0.1d0 + dscp2**6) sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6) & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6) c write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3, c & sumene4, c & dscp1,dscp2,sumene c sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) escloc = escloc + sumene c write (2,*) "escloc",escloc if (.not. calc_grad) goto 1 #ifdef DEBUG C C This section to check the numerical derivatives of the energy of ith side C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert C #define DEBUG in the code to turn it on. C write (2,*) "sumene =",sumene aincr=1.0d-7 xxsave=xx xx=xx+aincr write (2,*) xx,yy,zz sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) de_dxx_num=(sumenep-sumene)/aincr xx=xxsave write (2,*) "xx+ sumene from enesc=",sumenep yysave=yy yy=yy+aincr write (2,*) xx,yy,zz sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) de_dyy_num=(sumenep-sumene)/aincr yy=yysave write (2,*) "yy+ sumene from enesc=",sumenep zzsave=zz zz=zz+aincr write (2,*) xx,yy,zz sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) de_dzz_num=(sumenep-sumene)/aincr zz=zzsave write (2,*) "zz+ sumene from enesc=",sumenep costsave=cost2tab(i+1) sintsave=sint2tab(i+1) cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr)) sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr)) sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1)) de_dt_num=(sumenep-sumene)/aincr write (2,*) " t+ sumene from enesc=",sumenep cost2tab(i+1)=costsave sint2tab(i+1)=sintsave C End of diagnostics section. #endif C C Compute the gradient of esc C pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2 pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2 pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2 pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2 pom_dx=dsc_i*dp2_i*cost2tab(i+1) pom_dy=dsc_i*dp2_i*sint2tab(i+1) pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1)) pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1)) pom1=(sumene3*sint2tab(i+1)+sumene1) & *(pom_s1/dscp1+pom_s16*dscp1**4) pom2=(sumene4*cost2tab(i+1)+sumene2) & *(pom_s2/dscp2+pom_s26*dscp2**4) sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2 & +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2) & +x(40)*yy*zz sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2 & +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2) & +x(60)*yy*zz de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6) & +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6) & +(pom1+pom2)*pom_dx #ifdef DEBUG write(2,*), "de_dxx = ", de_dxx,de_dxx_num #endif C sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2 & +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2) & +x(40)*xx*zz sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz & +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz & +x(59)*zz**2 +x(60)*xx*zz de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6) & +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6) & +(pom1-pom2)*pom_dy #ifdef DEBUG write(2,*), "de_dyy = ", de_dyy,de_dyy_num #endif C de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy & +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx & +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) & +(x(4) + 2*x(7)*zz+ x(8)*xx + x(10)*yy)*(s1+s1_6) & +(x(44)+2*x(47)*zz +x(48)*xx +x(50)*yy +3*x(53)*zz**2 & +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy & +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6) & + ( x(14) + 2*x(17)*zz+ x(18)*xx + x(20)*yy)*(s2+s2_6) #ifdef DEBUG write(2,*), "de_dzz = ", de_dzz,de_dzz_num #endif C de_dt = 0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) & -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6) & +pom1*pom_dt1+pom2*pom_dt2 #ifdef DEBUG write(2,*), "de_dt = ", de_dt,de_dt_num #endif c C cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres)) cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres)) cosfac2xx=cosfac2*xx sinfac2yy=sinfac2*yy do k = 1,3 dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))* & vbld_inv(i+1) dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))* & vbld_inv(i) pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1) pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i) c write (iout,*) "i",i," k",k," pom",pom," pom1",pom1, c & " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k) c write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3), c & (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i) dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy dZZ_Ci1(k)=0.0d0 dZZ_Ci(k)=0.0d0 do j=1,3 dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres) dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres) enddo dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres)) dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres)) dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres)) c dt_dCi(k) = -dt_dCi(k)/sinttab(i+1) dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1) enddo do k=1,3 dXX_Ctab(k,i)=dXX_Ci(k) dXX_C1tab(k,i)=dXX_Ci1(k) dYY_Ctab(k,i)=dYY_Ci(k) dYY_C1tab(k,i)=dYY_Ci1(k) dZZ_Ctab(k,i)=dZZ_Ci(k) dZZ_C1tab(k,i)=dZZ_Ci1(k) dXX_XYZtab(k,i)=dXX_XYZ(k) dYY_XYZtab(k,i)=dYY_XYZ(k) dZZ_XYZtab(k,i)=dZZ_XYZ(k) enddo do k = 1,3 c write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1", c & dyy_ci1(k)," dzz_ci1",dzz_ci1(k) c write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci", c & dyy_ci(k)," dzz_ci",dzz_ci(k) c write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci", c & dt_dci(k) c write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ", c & dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k) & +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k) gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k) & +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k) gsclocx(k,i)= de_dxx*dxx_XYZ(k) & +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k) enddo c write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3), c & (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3) C to check gradient call subroutine check_grad 1 continue enddo return end #endif c------------------------------------------------------------------------------ subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont) C C This procedure calculates two-body contact function g(rij) and its derivative: C C eps0ij ! x < -1 C g(rij) = esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5) ! -1 =< x =< 1 C 0 ! x > 1 C C where x=(rij-r0ij)/delta C C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy C implicit none double precision rij,r0ij,eps0ij,fcont,fprimcont double precision x,x2,x4,delta c delta=0.02D0*r0ij c delta=0.2D0*r0ij x=(rij-r0ij)/delta if (x.lt.-1.0D0) then fcont=eps0ij fprimcont=0.0D0 else if (x.le.1.0D0) then x2=x*x x4=x2*x2 fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0) fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta else fcont=0.0D0 fprimcont=0.0D0 endif return end c------------------------------------------------------------------------------ subroutine splinthet(theti,delta,ss,ssder) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.VAR' include 'COMMON.GEO' thetup=pi-delta thetlow=delta if (theti.gt.pipol) then call gcont(theti,thetup,1.0d0,delta,ss,ssder) else call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder) ssder=-ssder endif return end c------------------------------------------------------------------------------ subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim) implicit none double precision x,x0,delta,f0,f1,fprim0,f,fprim double precision ksi,ksi2,ksi3,a1,a2,a3 a1=fprim0*delta/(f1-f0) a2=3.0d0-2.0d0*a1 a3=a1-2.0d0 ksi=(x-x0)/delta ksi2=ksi*ksi ksi3=ksi2*ksi f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi)) fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3)) return end c------------------------------------------------------------------------------ subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx) implicit none double precision x,x0,delta,f0x,f1x,fprim0x,fx double precision ksi,ksi2,ksi3,a1,a2,a3 ksi=(x-x0)/delta ksi2=ksi*ksi ksi3=ksi2*ksi a1=fprim0x*delta a2=3*(f1x-f0x)-2*fprim0x*delta a3=fprim0x*delta-2*(f1x-f0x) fx=f0x+a1*ksi+a2*ksi2+a3*ksi3 return end C----------------------------------------------------------------------------- #ifdef CRYST_TOR C----------------------------------------------------------------------------- subroutine etor(etors,edihcnstr,fact) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.VAR' include 'COMMON.GEO' include 'COMMON.LOCAL' include 'COMMON.TORSION' include 'COMMON.INTERACT' include 'COMMON.DERIV' include 'COMMON.CHAIN' include 'COMMON.NAMES' include 'COMMON.IOUNITS' include 'COMMON.FFIELD' include 'COMMON.TORCNSTR' logical lprn C Set lprn=.true. for debugging lprn=.false. c lprn=.true. etors=0.0D0 do i=iphi_start,iphi_end itori=itortyp(itype(i-2)) itori1=itortyp(itype(i-1)) phii=phi(i) gloci=0.0D0 C Proline-Proline pair is a special case... if (itori.eq.3 .and. itori1.eq.3) then if (phii.gt.-dwapi3) then cosphi=dcos(3*phii) fac=1.0D0/(1.0D0-cosphi) etorsi=v1(1,3,3)*fac etorsi=etorsi+etorsi etors=etors+etorsi-v1(1,3,3) gloci=gloci-3*fac*etorsi*dsin(3*phii) endif do j=1,3 v1ij=v1(j+1,itori,itori1) v2ij=v2(j+1,itori,itori1) cosphi=dcos(j*phii) sinphi=dsin(j*phii) etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij) gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi) enddo else do j=1,nterm_old v1ij=v1(j,itori,itori1) v2ij=v2(j,itori,itori1) cosphi=dcos(j*phii) sinphi=dsin(j*phii) etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij) gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi) enddo endif if (lprn) & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1, & (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6) gloc(i-3,icg)=gloc(i-3,icg)+wtor*fact*gloci c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg) enddo ! 6/20/98 - dihedral angle constraints edihcnstr=0.0d0 do i=1,ndih_constr itori=idih_constr(i) phii=phi(itori) difi=phii-phi0(i) if (difi.gt.drange(i)) then difi=difi-drange(i) edihcnstr=edihcnstr+0.25d0*ftors*difi**4 gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3 else if (difi.lt.-drange(i)) then difi=difi+drange(i) edihcnstr=edihcnstr+0.25d0*ftors*difi**4 gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3 endif ! write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii, ! & rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg) enddo ! write (iout,*) 'edihcnstr',edihcnstr return end c------------------------------------------------------------------------------ #else subroutine etor(etors,edihcnstr,fact) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.VAR' include 'COMMON.GEO' include 'COMMON.LOCAL' include 'COMMON.TORSION' include 'COMMON.INTERACT' include 'COMMON.DERIV' include 'COMMON.CHAIN' include 'COMMON.NAMES' include 'COMMON.IOUNITS' include 'COMMON.FFIELD' include 'COMMON.TORCNSTR' logical lprn C Set lprn=.true. for debugging lprn=.false. c lprn=.true. etors=0.0D0 do i=iphi_start,iphi_end if (itel(i-2).eq.0 .or. itel(i-1).eq.0) goto 1215 itori=itortyp(itype(i-2)) itori1=itortyp(itype(i-1)) phii=phi(i) gloci=0.0D0 C Regular cosine and sine terms do j=1,nterm(itori,itori1) v1ij=v1(j,itori,itori1) v2ij=v2(j,itori,itori1) cosphi=dcos(j*phii) sinphi=dsin(j*phii) etors=etors+v1ij*cosphi+v2ij*sinphi gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi) enddo C Lorentz terms C v1 C E = SUM ----------------------------------- - v1 C [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1 C cosphi=dcos(0.5d0*phii) sinphi=dsin(0.5d0*phii) do j=1,nlor(itori,itori1) vl1ij=vlor1(j,itori,itori1) vl2ij=vlor2(j,itori,itori1) vl3ij=vlor3(j,itori,itori1) pom=vl2ij*cosphi+vl3ij*sinphi pom1=1.0d0/(pom*pom+1.0d0) etors=etors+vl1ij*pom1 pom=-pom*pom1*pom1 gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom enddo C Subtract the constant term etors=etors-v0(itori,itori1) if (lprn) & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1, & (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6) gloc(i-3,icg)=gloc(i-3,icg)+wtor*fact*gloci c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg) 1215 continue enddo ! 6/20/98 - dihedral angle constraints edihcnstr=0.0d0 do i=1,ndih_constr itori=idih_constr(i) phii=phi(itori) difi=pinorm(phii-phi0(i)) edihi=0.0d0 if (difi.gt.drange(i)) then difi=difi-drange(i) edihcnstr=edihcnstr+0.25d0*ftors*difi**4 gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3 edihi=0.25d0*ftors*difi**4 else if (difi.lt.-drange(i)) then difi=difi+drange(i) edihcnstr=edihcnstr+0.25d0*ftors*difi**4 gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3 edihi=0.25d0*ftors*difi**4 else difi=0.0d0 endif c write (iout,'(2i5,4f10.5,e15.5)') i,itori,phii,phi0(i),difi, c & drange(i),edihi ! write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii, ! & rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg) enddo ! write (iout,*) 'edihcnstr',edihcnstr return end c---------------------------------------------------------------------------- subroutine etor_d(etors_d,fact2) C 6/23/01 Compute double torsional energy implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.VAR' include 'COMMON.GEO' include 'COMMON.LOCAL' include 'COMMON.TORSION' include 'COMMON.INTERACT' include 'COMMON.DERIV' include 'COMMON.CHAIN' include 'COMMON.NAMES' include 'COMMON.IOUNITS' include 'COMMON.FFIELD' include 'COMMON.TORCNSTR' logical lprn C Set lprn=.true. for debugging lprn=.false. c lprn=.true. etors_d=0.0D0 do i=iphi_start,iphi_end-1 if (itel(i-2).eq.0 .or. itel(i-1).eq.0 .or. itel(i).eq.0) & goto 1215 itori=itortyp(itype(i-2)) itori1=itortyp(itype(i-1)) itori2=itortyp(itype(i)) phii=phi(i) phii1=phi(i+1) gloci1=0.0D0 gloci2=0.0D0 C Regular cosine and sine terms do j=1,ntermd_1(itori,itori1,itori2) v1cij=v1c(1,j,itori,itori1,itori2) v1sij=v1s(1,j,itori,itori1,itori2) v2cij=v1c(2,j,itori,itori1,itori2) v2sij=v1s(2,j,itori,itori1,itori2) cosphi1=dcos(j*phii) sinphi1=dsin(j*phii) cosphi2=dcos(j*phii1) sinphi2=dsin(j*phii1) etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+ & v2cij*cosphi2+v2sij*sinphi2 gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1) gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2) enddo do k=2,ntermd_2(itori,itori1,itori2) do l=1,k-1 v1cdij = v2c(k,l,itori,itori1,itori2) v2cdij = v2c(l,k,itori,itori1,itori2) v1sdij = v2s(k,l,itori,itori1,itori2) v2sdij = v2s(l,k,itori,itori1,itori2) cosphi1p2=dcos(l*phii+(k-l)*phii1) cosphi1m2=dcos(l*phii-(k-l)*phii1) sinphi1p2=dsin(l*phii+(k-l)*phii1) sinphi1m2=dsin(l*phii-(k-l)*phii1) etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+ & v1sdij*sinphi1p2+v2sdij*sinphi1m2 gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2 & -v1cdij*sinphi1p2-v2cdij*sinphi1m2) gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2 & -v1cdij*sinphi1p2+v2cdij*sinphi1m2) enddo enddo gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*fact2*gloci1 gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*fact2*gloci2 1215 continue enddo return end #endif c------------------------------------------------------------------------------ subroutine eback_sc_corr(esccor) c 7/21/2007 Correlations between the backbone-local and side-chain-local c conformational states; temporarily implemented as differences c between UNRES torsional potentials (dependent on three types of c residues) and the torsional potentials dependent on all 20 types c of residues computed from AM1 energy surfaces of terminally-blocked c amino-acid residues. implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.VAR' include 'COMMON.GEO' include 'COMMON.LOCAL' include 'COMMON.TORSION' include 'COMMON.SCCOR' include 'COMMON.INTERACT' include 'COMMON.DERIV' include 'COMMON.CHAIN' include 'COMMON.NAMES' include 'COMMON.IOUNITS' include 'COMMON.FFIELD' include 'COMMON.CONTROL' logical lprn C Set lprn=.true. for debugging lprn=.false. c lprn=.true. c write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor esccor=0.0D0 do i=iphi_start,iphi_end esccor_ii=0.0D0 itori=itype(i-2) itori1=itype(i-1) phii=phi(i) gloci=0.0D0 do j=1,nterm_sccor v1ij=v1sccor(j,itori,itori1) v2ij=v2sccor(j,itori,itori1) cosphi=dcos(j*phii) sinphi=dsin(j*phii) esccor=esccor+v1ij*cosphi+v2ij*sinphi gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi) enddo if (lprn) & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)') & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1, & (v1sccor(j,itori,itori1),j=1,6),(v2sccor(j,itori,itori1),j=1,6) gsccor_loc(i-3)=gloci enddo return end c------------------------------------------------------------------------------ subroutine multibody(ecorr) C This subroutine calculates multi-body contributions to energy following C the idea of Skolnick et al. If side chains I and J make a contact and C at the same time side chains I+1 and J+1 make a contact, an extra C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added. implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'COMMON.IOUNITS' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' double precision gx(3),gx1(3) logical lprn C Set lprn=.true. for debugging lprn=.false. if (lprn) then write (iout,'(a)') 'Contact function values:' do i=nnt,nct-2 write (iout,'(i2,20(1x,i2,f10.5))') & i,(jcont(j,i),facont(j,i),j=1,num_cont(i)) enddo endif ecorr=0.0D0 do i=nnt,nct do j=1,3 gradcorr(j,i)=0.0D0 gradxorr(j,i)=0.0D0 enddo enddo do i=nnt,nct-2 DO ISHIFT = 3,4 i1=i+ishift num_conti=num_cont(i) num_conti1=num_cont(i1) do jj=1,num_conti j=jcont(jj,i) do kk=1,num_conti1 j1=jcont(kk,i1) if (j1.eq.j+ishift .or. j1.eq.j-ishift) then cd write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1, cd & ' ishift=',ishift C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. C The system gains extra energy. ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk) endif ! j1==j+-ishift enddo ! kk enddo ! jj ENDDO ! ISHIFT enddo ! i return end c------------------------------------------------------------------------------ double precision function esccorr(i,j,k,l,jj,kk) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'COMMON.IOUNITS' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' double precision gx(3),gx1(3) logical lprn lprn=.false. eij=facont(jj,i) ekl=facont(kk,k) cd write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl C Calculate the multi-body contribution to energy. C Calculate multi-body contributions to the gradient. cd write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3), cd & k,l,(gacont(m,kk,k),m=1,3) do m=1,3 gx(m) =ekl*gacont(m,jj,i) gx1(m)=eij*gacont(m,kk,k) gradxorr(m,i)=gradxorr(m,i)-gx(m) gradxorr(m,j)=gradxorr(m,j)+gx(m) gradxorr(m,k)=gradxorr(m,k)-gx1(m) gradxorr(m,l)=gradxorr(m,l)+gx1(m) enddo do m=i,j-1 do ll=1,3 gradcorr(ll,m)=gradcorr(ll,m)+gx(ll) enddo enddo do m=k,l-1 do ll=1,3 gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll) enddo enddo esccorr=-eij*ekl return end c------------------------------------------------------------------------------ #ifdef MPL subroutine pack_buffer(dimen1,dimen2,atom,indx,buffer) implicit real*8 (a-h,o-z) include 'DIMENSIONS' integer dimen1,dimen2,atom,indx double precision buffer(dimen1,dimen2) double precision zapas common /contacts_hb/ zapas(3,20,maxres,7), & facont_hb(20,maxres),ees0p(20,maxres),ees0m(20,maxres), & num_cont_hb(maxres),jcont_hb(20,maxres) num_kont=num_cont_hb(atom) do i=1,num_kont do k=1,7 do j=1,3 buffer(i,indx+(k-1)*3+j)=zapas(j,i,atom,k) enddo ! j enddo ! k buffer(i,indx+22)=facont_hb(i,atom) buffer(i,indx+23)=ees0p(i,atom) buffer(i,indx+24)=ees0m(i,atom) buffer(i,indx+25)=dfloat(jcont_hb(i,atom)) enddo ! i buffer(1,indx+26)=dfloat(num_kont) return end c------------------------------------------------------------------------------ subroutine unpack_buffer(dimen1,dimen2,atom,indx,buffer) implicit real*8 (a-h,o-z) include 'DIMENSIONS' integer dimen1,dimen2,atom,indx double precision buffer(dimen1,dimen2) double precision zapas common /contacts_hb/ zapas(3,20,maxres,7), & facont_hb(20,maxres),ees0p(20,maxres),ees0m(20,maxres), & num_cont_hb(maxres),jcont_hb(20,maxres) num_kont=buffer(1,indx+26) num_kont_old=num_cont_hb(atom) num_cont_hb(atom)=num_kont+num_kont_old do i=1,num_kont ii=i+num_kont_old do k=1,7 do j=1,3 zapas(j,ii,atom,k)=buffer(i,indx+(k-1)*3+j) enddo ! j enddo ! k facont_hb(ii,atom)=buffer(i,indx+22) ees0p(ii,atom)=buffer(i,indx+23) ees0m(ii,atom)=buffer(i,indx+24) jcont_hb(ii,atom)=buffer(i,indx+25) enddo ! i return end c------------------------------------------------------------------------------ #endif subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1) C This subroutine calculates multi-body contributions to hydrogen-bonding implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.IOUNITS' #ifdef MPL include 'COMMON.INFO' #endif include 'COMMON.FFIELD' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' #ifdef MPL parameter (max_cont=maxconts) parameter (max_dim=2*(8*3+2)) parameter (msglen1=max_cont*max_dim*4) parameter (msglen2=2*msglen1) integer source,CorrelType,CorrelID,Error double precision buffer(max_cont,max_dim) #endif double precision gx(3),gx1(3) logical lprn,ldone C Set lprn=.true. for debugging lprn=.false. #ifdef MPL n_corr=0 n_corr1=0 if (fgProcs.le.1) goto 30 if (lprn) then write (iout,'(a)') 'Contact function values:' do i=nnt,nct-2 write (iout,'(2i3,50(1x,i2,f5.2))') & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i), & j=1,num_cont_hb(i)) enddo endif C Caution! Following code assumes that electrostatic interactions concerning C a given atom are split among at most two processors! CorrelType=477 CorrelID=MyID+1 ldone=.false. do i=1,max_cont do j=1,max_dim buffer(i,j)=0.0D0 enddo enddo mm=mod(MyRank,2) cd write (iout,*) 'MyRank',MyRank,' mm',mm if (mm) 20,20,10 10 continue cd write (iout,*) 'Sending: MyRank',MyRank,' mm',mm,' ldone',ldone if (MyRank.gt.0) then C Send correlation contributions to the preceding processor msglen=msglen1 nn=num_cont_hb(iatel_s) call pack_buffer(max_cont,max_dim,iatel_s,0,buffer) cd write (iout,*) 'The BUFFER array:' cd do i=1,nn cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,26) cd enddo if (ielstart(iatel_s).gt.iatel_s+ispp) then msglen=msglen2 call pack_buffer(max_cont,max_dim,iatel_s+1,26,buffer) C Clear the contacts of the atom passed to the neighboring processor nn=num_cont_hb(iatel_s+1) cd do i=1,nn cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j+26),j=1,26) cd enddo num_cont_hb(iatel_s)=0 endif cd write (iout,*) 'Processor ',MyID,MyRank, cd & ' is sending correlation contribution to processor',MyID-1, cd & ' msglen=',msglen cd write (*,*) 'Processor ',MyID,MyRank, cd & ' is sending correlation contribution to processor',MyID-1, cd & ' msglen=',msglen,' CorrelType=',CorrelType call mp_bsend(buffer,msglen,MyID-1,CorrelType,CorrelID) cd write (iout,*) 'Processor ',MyID, cd & ' has sent correlation contribution to processor',MyID-1, cd & ' msglen=',msglen,' CorrelID=',CorrelID cd write (*,*) 'Processor ',MyID, cd & ' has sent correlation contribution to processor',MyID-1, cd & ' msglen=',msglen,' CorrelID=',CorrelID msglen=msglen1 endif ! (MyRank.gt.0) if (ldone) goto 30 ldone=.true. 20 continue cd write (iout,*) 'Receiving: MyRank',MyRank,' mm',mm,' ldone',ldone if (MyRank.lt.fgProcs-1) then C Receive correlation contributions from the next processor msglen=msglen1 if (ielend(iatel_e).lt.nct-1) msglen=msglen2 cd write (iout,*) 'Processor',MyID, cd & ' is receiving correlation contribution from processor',MyID+1, cd & ' msglen=',msglen,' CorrelType=',CorrelType cd write (*,*) 'Processor',MyID, cd & ' is receiving correlation contribution from processor',MyID+1, cd & ' msglen=',msglen,' CorrelType=',CorrelType nbytes=-1 do while (nbytes.le.0) call mp_probe(MyID+1,CorrelType,nbytes) enddo cd print *,'Processor',MyID,' msglen',msglen,' nbytes',nbytes call mp_brecv(buffer,msglen,MyID+1,CorrelType,nbytes) cd write (iout,*) 'Processor',MyID, cd & ' has received correlation contribution from processor',MyID+1, cd & ' msglen=',msglen,' nbytes=',nbytes cd write (iout,*) 'The received BUFFER array:' cd do i=1,max_cont cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,52) cd enddo if (msglen.eq.msglen1) then call unpack_buffer(max_cont,max_dim,iatel_e+1,0,buffer) else if (msglen.eq.msglen2) then call unpack_buffer(max_cont,max_dim,iatel_e,0,buffer) call unpack_buffer(max_cont,max_dim,iatel_e+1,26,buffer) else write (iout,*) & 'ERROR!!!! message length changed while processing correlations.' write (*,*) & 'ERROR!!!! message length changed while processing correlations.' call mp_stopall(Error) endif ! msglen.eq.msglen1 endif ! MyRank.lt.fgProcs-1 if (ldone) goto 30 ldone=.true. goto 10 30 continue #endif if (lprn) then write (iout,'(a)') 'Contact function values:' do i=nnt,nct-2 write (iout,'(2i3,50(1x,i2,f5.2))') & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i), & j=1,num_cont_hb(i)) enddo endif ecorr=0.0D0 C Remove the loop below after debugging !!! do i=nnt,nct do j=1,3 gradcorr(j,i)=0.0D0 gradxorr(j,i)=0.0D0 enddo enddo C Calculate the local-electrostatic correlation terms do i=iatel_s,iatel_e+1 i1=i+1 num_conti=num_cont_hb(i) num_conti1=num_cont_hb(i+1) do jj=1,num_conti j=jcont_hb(jj,i) do kk=1,num_conti1 j1=jcont_hb(kk,i1) c write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1, c & ' jj=',jj,' kk=',kk if (j1.eq.j+1 .or. j1.eq.j-1) then C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. C The system gains extra energy. ecorr=ecorr+ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0) n_corr=n_corr+1 else if (j1.eq.j) then C Contacts I-J and I-(J+1) occur simultaneously. C The system loses extra energy. c ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) endif enddo ! kk do kk=1,num_conti j1=jcont_hb(kk,i) c write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1, c & ' jj=',jj,' kk=',kk if (j1.eq.j+1) then C Contacts I-J and (I+1)-J occur simultaneously. C The system loses extra energy. c ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0) endif ! j1==j+1 enddo ! kk enddo ! jj enddo ! i return end c------------------------------------------------------------------------------ subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr, & n_corr1) C This subroutine calculates multi-body contributions to hydrogen-bonding implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.IOUNITS' #ifdef MPL include 'COMMON.INFO' #endif include 'COMMON.FFIELD' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' #ifdef MPL parameter (max_cont=maxconts) parameter (max_dim=2*(8*3+2)) parameter (msglen1=max_cont*max_dim*4) parameter (msglen2=2*msglen1) integer source,CorrelType,CorrelID,Error double precision buffer(max_cont,max_dim) #endif double precision gx(3),gx1(3) logical lprn,ldone C Set lprn=.true. for debugging lprn=.false. eturn6=0.0d0 #ifdef MPL n_corr=0 n_corr1=0 if (fgProcs.le.1) goto 30 if (lprn) then write (iout,'(a)') 'Contact function values:' do i=nnt,nct-2 write (iout,'(2i3,50(1x,i2,f5.2))') & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i), & j=1,num_cont_hb(i)) enddo endif C Caution! Following code assumes that electrostatic interactions concerning C a given atom are split among at most two processors! CorrelType=477 CorrelID=MyID+1 ldone=.false. do i=1,max_cont do j=1,max_dim buffer(i,j)=0.0D0 enddo enddo mm=mod(MyRank,2) cd write (iout,*) 'MyRank',MyRank,' mm',mm if (mm) 20,20,10 10 continue cd write (iout,*) 'Sending: MyRank',MyRank,' mm',mm,' ldone',ldone if (MyRank.gt.0) then C Send correlation contributions to the preceding processor msglen=msglen1 nn=num_cont_hb(iatel_s) call pack_buffer(max_cont,max_dim,iatel_s,0,buffer) cd write (iout,*) 'The BUFFER array:' cd do i=1,nn cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,26) cd enddo if (ielstart(iatel_s).gt.iatel_s+ispp) then msglen=msglen2 call pack_buffer(max_cont,max_dim,iatel_s+1,26,buffer) C Clear the contacts of the atom passed to the neighboring processor nn=num_cont_hb(iatel_s+1) cd do i=1,nn cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j+26),j=1,26) cd enddo num_cont_hb(iatel_s)=0 endif cd write (iout,*) 'Processor ',MyID,MyRank, cd & ' is sending correlation contribution to processor',MyID-1, cd & ' msglen=',msglen cd write (*,*) 'Processor ',MyID,MyRank, cd & ' is sending correlation contribution to processor',MyID-1, cd & ' msglen=',msglen,' CorrelType=',CorrelType call mp_bsend(buffer,msglen,MyID-1,CorrelType,CorrelID) cd write (iout,*) 'Processor ',MyID, cd & ' has sent correlation contribution to processor',MyID-1, cd & ' msglen=',msglen,' CorrelID=',CorrelID cd write (*,*) 'Processor ',MyID, cd & ' has sent correlation contribution to processor',MyID-1, cd & ' msglen=',msglen,' CorrelID=',CorrelID msglen=msglen1 endif ! (MyRank.gt.0) if (ldone) goto 30 ldone=.true. 20 continue cd write (iout,*) 'Receiving: MyRank',MyRank,' mm',mm,' ldone',ldone if (MyRank.lt.fgProcs-1) then C Receive correlation contributions from the next processor msglen=msglen1 if (ielend(iatel_e).lt.nct-1) msglen=msglen2 cd write (iout,*) 'Processor',MyID, cd & ' is receiving correlation contribution from processor',MyID+1, cd & ' msglen=',msglen,' CorrelType=',CorrelType cd write (*,*) 'Processor',MyID, cd & ' is receiving correlation contribution from processor',MyID+1, cd & ' msglen=',msglen,' CorrelType=',CorrelType nbytes=-1 do while (nbytes.le.0) call mp_probe(MyID+1,CorrelType,nbytes) enddo cd print *,'Processor',MyID,' msglen',msglen,' nbytes',nbytes call mp_brecv(buffer,msglen,MyID+1,CorrelType,nbytes) cd write (iout,*) 'Processor',MyID, cd & ' has received correlation contribution from processor',MyID+1, cd & ' msglen=',msglen,' nbytes=',nbytes cd write (iout,*) 'The received BUFFER array:' cd do i=1,max_cont cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,52) cd enddo if (msglen.eq.msglen1) then call unpack_buffer(max_cont,max_dim,iatel_e+1,0,buffer) else if (msglen.eq.msglen2) then call unpack_buffer(max_cont,max_dim,iatel_e,0,buffer) call unpack_buffer(max_cont,max_dim,iatel_e+1,26,buffer) else write (iout,*) & 'ERROR!!!! message length changed while processing correlations.' write (*,*) & 'ERROR!!!! message length changed while processing correlations.' call mp_stopall(Error) endif ! msglen.eq.msglen1 endif ! MyRank.lt.fgProcs-1 if (ldone) goto 30 ldone=.true. goto 10 30 continue #endif if (lprn) then write (iout,'(a)') 'Contact function values:' do i=nnt,nct-2 write (iout,'(2i3,50(1x,i2,f5.2))') & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i), & j=1,num_cont_hb(i)) enddo endif ecorr=0.0D0 ecorr5=0.0d0 ecorr6=0.0d0 C Remove the loop below after debugging !!! do i=nnt,nct do j=1,3 gradcorr(j,i)=0.0D0 gradxorr(j,i)=0.0D0 enddo enddo C Calculate the dipole-dipole interaction energies if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then do i=iatel_s,iatel_e+1 num_conti=num_cont_hb(i) do jj=1,num_conti j=jcont_hb(jj,i) call dipole(i,j,jj) enddo enddo endif C Calculate the local-electrostatic correlation terms do i=iatel_s,iatel_e+1 i1=i+1 num_conti=num_cont_hb(i) num_conti1=num_cont_hb(i+1) do jj=1,num_conti j=jcont_hb(jj,i) do kk=1,num_conti1 j1=jcont_hb(kk,i1) c write (*,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1, c & ' jj=',jj,' kk=',kk if (j1.eq.j+1 .or. j1.eq.j-1) then C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. C The system gains extra energy. n_corr=n_corr+1 sqd1=dsqrt(d_cont(jj,i)) sqd2=dsqrt(d_cont(kk,i1)) sred_geom = sqd1*sqd2 IF (sred_geom.lt.cutoff_corr) THEN call gcont(sred_geom,r0_corr,1.0D0,delt_corr, & ekont,fprimcont) c write (*,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1, c & ' jj=',jj,' kk=',kk fac_prim1=0.5d0*sqd2/sqd1*fprimcont fac_prim2=0.5d0*sqd1/sqd2*fprimcont do l=1,3 g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i) g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1) enddo n_corr1=n_corr1+1 cd write (iout,*) 'sred_geom=',sred_geom, cd & ' ekont=',ekont,' fprim=',fprimcont call calc_eello(i,j,i+1,j1,jj,kk) if (wcorr4.gt.0.0d0) & ecorr=ecorr+eello4(i,j,i+1,j1,jj,kk) if (wcorr5.gt.0.0d0) & ecorr5=ecorr5+eello5(i,j,i+1,j1,jj,kk) c print *,"wcorr5",ecorr5 cd write(2,*)'wcorr6',wcorr6,' wturn6',wturn6 cd write(2,*)'ijkl',i,j,i+1,j1 if (wcorr6.gt.0.0d0 .and. (j.ne.i+4 .or. j1.ne.i+3 & .or. wturn6.eq.0.0d0))then cd write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1 ecorr6=ecorr6+eello6(i,j,i+1,j1,jj,kk) cd write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5, cd & 'ecorr6=',ecorr6 cd write (iout,'(4e15.5)') sred_geom, cd & dabs(eello4(i,j,i+1,j1,jj,kk)), cd & dabs(eello5(i,j,i+1,j1,jj,kk)), cd & dabs(eello6(i,j,i+1,j1,jj,kk)) else if (wturn6.gt.0.0d0 & .and. (j.eq.i+4 .and. j1.eq.i+3)) then cd write (iout,*) '******eturn6: i,j,i+1,j1',i,j,i+1,j1 eturn6=eturn6+eello_turn6(i,jj,kk) cd write (2,*) 'multibody_eello:eturn6',eturn6 endif ENDIF 1111 continue else if (j1.eq.j) then C Contacts I-J and I-(J+1) occur simultaneously. C The system loses extra energy. c ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) endif enddo ! kk do kk=1,num_conti j1=jcont_hb(kk,i) c write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1, c & ' jj=',jj,' kk=',kk if (j1.eq.j+1) then C Contacts I-J and (I+1)-J occur simultaneously. C The system loses extra energy. c ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0) endif ! j1==j+1 enddo ! kk enddo ! jj enddo ! i return end c------------------------------------------------------------------------------ double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'COMMON.IOUNITS' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' double precision gx(3),gx1(3) logical lprn lprn=.false. eij=facont_hb(jj,i) ekl=facont_hb(kk,k) ees0pij=ees0p(jj,i) ees0pkl=ees0p(kk,k) ees0mij=ees0m(jj,i) ees0mkl=ees0m(kk,k) ekont=eij*ekl ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl) cd ees=-(coeffp*ees0pkl+coeffm*ees0mkl) C Following 4 lines for diagnostics. cd ees0pkl=0.0D0 cd ees0pij=1.0D0 cd ees0mkl=0.0D0 cd ees0mij=1.0D0 c write (iout,*)'Contacts have occurred for peptide groups',i,j, c & ' and',k,l c write (iout,*)'Contacts have occurred for peptide groups', c & i,j,' fcont:',eij,' eij',' eesij',ees0pij,ees0mij,' and ',k,l c & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' ees=',ees C Calculate the multi-body contribution to energy. ecorr=ecorr+ekont*ees if (calc_grad) then C Calculate multi-body contributions to the gradient. do ll=1,3 ghalf=0.5D0*ees*ekl*gacont_hbr(ll,jj,i) gradcorr(ll,i)=gradcorr(ll,i)+ghalf & -ekont*(coeffp*ees0pkl*gacontp_hb1(ll,jj,i)+ & coeffm*ees0mkl*gacontm_hb1(ll,jj,i)) gradcorr(ll,j)=gradcorr(ll,j)+ghalf & -ekont*(coeffp*ees0pkl*gacontp_hb2(ll,jj,i)+ & coeffm*ees0mkl*gacontm_hb2(ll,jj,i)) ghalf=0.5D0*ees*eij*gacont_hbr(ll,kk,k) gradcorr(ll,k)=gradcorr(ll,k)+ghalf & -ekont*(coeffp*ees0pij*gacontp_hb1(ll,kk,k)+ & coeffm*ees0mij*gacontm_hb1(ll,kk,k)) gradcorr(ll,l)=gradcorr(ll,l)+ghalf & -ekont*(coeffp*ees0pij*gacontp_hb2(ll,kk,k)+ & coeffm*ees0mij*gacontm_hb2(ll,kk,k)) enddo do m=i+1,j-1 do ll=1,3 gradcorr(ll,m)=gradcorr(ll,m)+ & ees*ekl*gacont_hbr(ll,jj,i)- & ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+ & coeffm*ees0mkl*gacontm_hb3(ll,jj,i)) enddo enddo do m=k+1,l-1 do ll=1,3 gradcorr(ll,m)=gradcorr(ll,m)+ & ees*eij*gacont_hbr(ll,kk,k)- & ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+ & coeffm*ees0mij*gacontm_hb3(ll,kk,k)) enddo enddo endif ehbcorr=ekont*ees return end C--------------------------------------------------------------------------- subroutine dipole(i,j,jj) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.IOUNITS' include 'COMMON.CHAIN' include 'COMMON.FFIELD' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2), & auxmat(2,2) iti1 = itortyp(itype(i+1)) if (j.lt.nres-1) then itj1 = itortyp(itype(j+1)) else itj1=ntortyp+1 endif do iii=1,2 dipi(iii,1)=Ub2(iii,i) dipderi(iii)=Ub2der(iii,i) dipi(iii,2)=b1(iii,iti1) dipj(iii,1)=Ub2(iii,j) dipderj(iii)=Ub2der(iii,j) dipj(iii,2)=b1(iii,itj1) enddo kkk=0 do iii=1,2 call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) do jjj=1,2 kkk=kkk+1 dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1)) enddo enddo if (.not.calc_grad) return do kkk=1,5 do lll=1,3 mmm=0 do iii=1,2 call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii), & auxvec(1)) do jjj=1,2 mmm=mmm+1 dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1)) enddo enddo enddo enddo call transpose2(a_chuj(1,1,jj,i),auxmat(1,1)) call matvec2(auxmat(1,1),dipderi(1),auxvec(1)) do iii=1,2 dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii)) enddo call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1)) do iii=1,2 dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii)) enddo return end C--------------------------------------------------------------------------- subroutine calc_eello(i,j,k,l,jj,kk) C C This subroutine computes matrices and vectors needed to calculate C the fourth-, fifth-, and sixth-order local-electrostatic terms. C implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.IOUNITS' include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' include 'COMMON.FFIELD' double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2), & aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2) logical lprn common /kutas/ lprn cd write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l, cd & ' jj=',jj,' kk=',kk cd if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return do iii=1,2 do jjj=1,2 aa1(iii,jjj)=a_chuj(iii,jjj,jj,i) aa2(iii,jjj)=a_chuj(iii,jjj,kk,k) enddo enddo call transpose2(aa1(1,1),aa1t(1,1)) call transpose2(aa2(1,1),aa2t(1,1)) do kkk=1,5 do lll=1,3 call transpose2(a_chuj_der(1,1,lll,kkk,jj,i), & aa1tder(1,1,lll,kkk)) call transpose2(a_chuj_der(1,1,lll,kkk,kk,k), & aa2tder(1,1,lll,kkk)) enddo enddo if (l.eq.j+1) then C parallel orientation of the two CA-CA-CA frames. if (i.gt.1) then iti=itortyp(itype(i)) else iti=ntortyp+1 endif itk1=itortyp(itype(k+1)) itj=itortyp(itype(j)) if (l.lt.nres-1) then itl1=itortyp(itype(l+1)) else itl1=ntortyp+1 endif C A1 kernel(j+1) A2T cd do iii=1,2 cd write (iout,'(3f10.5,5x,3f10.5)') cd & (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2) cd enddo call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), & aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l), & AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1)) C Following matrices are needed only for 6-th order cumulants IF (wcorr6.gt.0.0d0) THEN call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), & aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l), & AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1)) call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), & aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l), & Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1), & ADtEAderx(1,1,1,1,1,1)) lprn=.false. call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), & aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l), & DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1), & ADtEA1derx(1,1,1,1,1,1)) ENDIF C End 6-th order cumulants cd lprn=.false. cd if (lprn) then cd write (2,*) 'In calc_eello6' cd do iii=1,2 cd write (2,*) 'iii=',iii cd do kkk=1,5 cd write (2,*) 'kkk=',kkk cd do jjj=1,2 cd write (2,'(3(2f10.5),5x)') cd & ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3) cd enddo cd enddo cd enddo cd endif call transpose2(EUgder(1,1,k),auxmat(1,1)) call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1)) call transpose2(EUg(1,1,k),auxmat(1,1)) call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1)) call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1)) do iii=1,2 do kkk=1,5 do lll=1,3 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1), & EAEAderx(1,1,lll,kkk,iii,1)) enddo enddo enddo C A1T kernel(i+1) A2 call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1), & a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k), & AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2)) C Following matrices are needed only for 6-th order cumulants IF (wcorr6.gt.0.0d0) THEN call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1), & a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k), & AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2)) call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1), & a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k), & Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2), & ADtEAderx(1,1,1,1,1,2)) call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1), & a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k), & DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2), & ADtEA1derx(1,1,1,1,1,2)) ENDIF C End 6-th order cumulants call transpose2(EUgder(1,1,l),auxmat(1,1)) call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2)) call transpose2(EUg(1,1,l),auxmat(1,1)) call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2)) call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2)) do iii=1,2 do kkk=1,5 do lll=1,3 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2), & EAEAderx(1,1,lll,kkk,iii,2)) enddo enddo enddo C AEAb1 and AEAb2 C Calculate the vectors and their derivatives in virtual-bond dihedral angles. C They are needed only when the fifth- or the sixth-order cumulants are C indluded. IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN call transpose2(AEA(1,1,1),auxmat(1,1)) call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1)) call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1)) call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1)) call transpose2(AEAderg(1,1,1),auxmat(1,1)) call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1)) call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1)) call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1)) call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1)) call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1)) call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1)) call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1)) call transpose2(AEA(1,1,2),auxmat(1,1)) call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2)) call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2)) call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2)) call transpose2(AEAderg(1,1,2),auxmat(1,1)) call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2)) call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2)) call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2)) call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2)) call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2)) call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2)) call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2)) C Calculate the Cartesian derivatives of the vectors. do iii=1,2 do kkk=1,5 do lll=1,3 call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1)) call matvec2(auxmat(1,1),b1(1,iti), & AEAb1derx(1,lll,kkk,iii,1,1)) call matvec2(auxmat(1,1),Ub2(1,i), & AEAb2derx(1,lll,kkk,iii,1,1)) call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1), & AEAb1derx(1,lll,kkk,iii,2,1)) call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1), & AEAb2derx(1,lll,kkk,iii,2,1)) call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1)) call matvec2(auxmat(1,1),b1(1,itj), & AEAb1derx(1,lll,kkk,iii,1,2)) call matvec2(auxmat(1,1),Ub2(1,j), & AEAb2derx(1,lll,kkk,iii,1,2)) call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1), & AEAb1derx(1,lll,kkk,iii,2,2)) call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1), & AEAb2derx(1,lll,kkk,iii,2,2)) enddo enddo enddo ENDIF C End vectors else C Antiparallel orientation of the two CA-CA-CA frames. if (i.gt.1) then iti=itortyp(itype(i)) else iti=ntortyp+1 endif itk1=itortyp(itype(k+1)) itl=itortyp(itype(l)) itj=itortyp(itype(j)) if (j.lt.nres-1) then itj1=itortyp(itype(j+1)) else itj1=ntortyp+1 endif C A2 kernel(j-1)T A1T call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), & aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j), & AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1)) C Following matrices are needed only for 6-th order cumulants IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and. & j.eq.i+4 .and. l.eq.i+3)) THEN call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), & aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j), & AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1)) call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), & aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j), & Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1), & ADtEAderx(1,1,1,1,1,1)) call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i), & aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j), & DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1), & ADtEA1derx(1,1,1,1,1,1)) ENDIF C End 6-th order cumulants call transpose2(EUgder(1,1,k),auxmat(1,1)) call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1)) call transpose2(EUg(1,1,k),auxmat(1,1)) call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1)) call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1)) do iii=1,2 do kkk=1,5 do lll=1,3 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1), & EAEAderx(1,1,lll,kkk,iii,1)) enddo enddo enddo C A2T kernel(i+1)T A1 call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1), & a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k), & AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2)) C Following matrices are needed only for 6-th order cumulants IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and. & j.eq.i+4 .and. l.eq.i+3)) THEN call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1), & a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k), & AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2)) call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1), & a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k), & Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2), & ADtEAderx(1,1,1,1,1,2)) call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1), & a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k), & DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2), & ADtEA1derx(1,1,1,1,1,2)) ENDIF C End 6-th order cumulants call transpose2(EUgder(1,1,j),auxmat(1,1)) call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2)) call transpose2(EUg(1,1,j),auxmat(1,1)) call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2)) call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2)) do iii=1,2 do kkk=1,5 do lll=1,3 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2), & EAEAderx(1,1,lll,kkk,iii,2)) enddo enddo enddo C AEAb1 and AEAb2 C Calculate the vectors and their derivatives in virtual-bond dihedral angles. C They are needed only when the fifth- or the sixth-order cumulants are C indluded. IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or. & (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN call transpose2(AEA(1,1,1),auxmat(1,1)) call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1)) call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1)) call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1)) call transpose2(AEAderg(1,1,1),auxmat(1,1)) call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1)) call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1)) call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1)) call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1)) call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1)) call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1)) call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1)) call transpose2(AEA(1,1,2),auxmat(1,1)) call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2)) call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2)) call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2)) call transpose2(AEAderg(1,1,2),auxmat(1,1)) call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2)) call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2)) call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2)) call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2)) call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2)) call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2)) call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2)) C Calculate the Cartesian derivatives of the vectors. do iii=1,2 do kkk=1,5 do lll=1,3 call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1)) call matvec2(auxmat(1,1),b1(1,iti), & AEAb1derx(1,lll,kkk,iii,1,1)) call matvec2(auxmat(1,1),Ub2(1,i), & AEAb2derx(1,lll,kkk,iii,1,1)) call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1), & AEAb1derx(1,lll,kkk,iii,2,1)) call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1), & AEAb2derx(1,lll,kkk,iii,2,1)) call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1)) call matvec2(auxmat(1,1),b1(1,itl), & AEAb1derx(1,lll,kkk,iii,1,2)) call matvec2(auxmat(1,1),Ub2(1,l), & AEAb2derx(1,lll,kkk,iii,1,2)) call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1), & AEAb1derx(1,lll,kkk,iii,2,2)) call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j), & AEAb2derx(1,lll,kkk,iii,2,2)) enddo enddo enddo ENDIF C End vectors endif return end C--------------------------------------------------------------------------- subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp, & KK,KKderg,AKA,AKAderg,AKAderx) implicit none integer nderg logical transp double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5), & aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2), & AKAderg(2,2,nderg),AKAderx(2,2,3,5,2) integer iii,kkk,lll integer jjj,mmm logical lprn common /kutas/ lprn call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1)) do iii=1,nderg call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp, & AKAderg(1,1,iii)) enddo cd if (lprn) write (2,*) 'In kernel' do kkk=1,5 cd if (lprn) write (2,*) 'kkk=',kkk do lll=1,3 call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1), & KK(1,1),transp,AKAderx(1,1,lll,kkk,1)) cd if (lprn) then cd write (2,*) 'lll=',lll cd write (2,*) 'iii=1' cd do jjj=1,2 cd write (2,'(3(2f10.5),5x)') cd & (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2) cd enddo cd endif call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk), & KK(1,1),transp,AKAderx(1,1,lll,kkk,2)) cd if (lprn) then cd write (2,*) 'lll=',lll cd write (2,*) 'iii=2' cd do jjj=1,2 cd write (2,'(3(2f10.5),5x)') cd & (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2) cd enddo cd endif enddo enddo return end C--------------------------------------------------------------------------- double precision function eello4(i,j,k,l,jj,kk) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.IOUNITS' include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' double precision pizda(2,2),ggg1(3),ggg2(3) cd if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then cd eello4=0.0d0 cd return cd endif cd print *,'eello4:',i,j,k,l,jj,kk cd write (2,*) 'i',i,' j',j,' k',k,' l',l cd call checkint4(i,j,k,l,jj,kk,eel4_num) cold eij=facont_hb(jj,i) cold ekl=facont_hb(kk,k) cold ekont=eij*ekl eel4=-EAEA(1,1,1)-EAEA(2,2,1) if (calc_grad) then cd eel41=-EAEA(1,1,2)-EAEA(2,2,2) gcorr_loc(k-1)=gcorr_loc(k-1) & -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1)) if (l.eq.j+1) then gcorr_loc(l-1)=gcorr_loc(l-1) & -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1)) else gcorr_loc(j-1)=gcorr_loc(j-1) & -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1)) endif do iii=1,2 do kkk=1,5 do lll=1,3 derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1) & -EAEAderx(2,2,lll,kkk,iii,1) cd derx(lll,kkk,iii)=0.0d0 enddo enddo enddo cd gcorr_loc(l-1)=0.0d0 cd gcorr_loc(j-1)=0.0d0 cd gcorr_loc(k-1)=0.0d0 cd eel4=1.0d0 cd write (iout,*)'Contacts have occurred for peptide groups', cd & i,j,' fcont:',eij,' eij',' and ',k,l, cd & ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num if (j.lt.nres-1) then j1=j+1 j2=j-1 else j1=j-1 j2=j-2 endif if (l.lt.nres-1) then l1=l+1 l2=l-1 else l1=l-1 l2=l-2 endif do ll=1,3 cold ghalf=0.5d0*eel4*ekl*gacont_hbr(ll,jj,i) ggg1(ll)=eel4*g_contij(ll,1) ggg2(ll)=eel4*g_contij(ll,2) ghalf=0.5d0*ggg1(ll) cd ghalf=0.0d0 gradcorr(ll,i)=gradcorr(ll,i)+ghalf+ekont*derx(ll,2,1) gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1) gradcorr(ll,j)=gradcorr(ll,j)+ghalf+ekont*derx(ll,4,1) gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1) cold ghalf=0.5d0*eel4*eij*gacont_hbr(ll,kk,k) ghalf=0.5d0*ggg2(ll) cd ghalf=0.0d0 gradcorr(ll,k)=gradcorr(ll,k)+ghalf+ekont*derx(ll,2,2) gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2) gradcorr(ll,l)=gradcorr(ll,l)+ghalf+ekont*derx(ll,4,2) gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2) enddo cd goto 1112 do m=i+1,j-1 do ll=1,3 cold gradcorr(ll,m)=gradcorr(ll,m)+eel4*ekl*gacont_hbr(ll,jj,i) gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll) enddo enddo do m=k+1,l-1 do ll=1,3 cold gradcorr(ll,m)=gradcorr(ll,m)+eel4*eij*gacont_hbr(ll,kk,k) gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll) enddo enddo 1112 continue do m=i+2,j2 do ll=1,3 gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1) enddo enddo do m=k+2,l2 do ll=1,3 gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2) enddo enddo cd do iii=1,nres-3 cd write (2,*) iii,gcorr_loc(iii) cd enddo endif eello4=ekont*eel4 cd write (2,*) 'ekont',ekont cd write (iout,*) 'eello4',ekont*eel4 return end C--------------------------------------------------------------------------- double precision function eello5(i,j,k,l,jj,kk) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.IOUNITS' include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2) double precision ggg1(3),ggg2(3) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C Parallel chains C C C C o o o o C C /l\ / \ \ / \ / \ / C C / \ / \ \ / \ / \ / C C j| o |l1 | o | o| o | | o |o C C \ |/k\| |/ \| / |/ \| |/ \| C C \i/ \ / \ / / \ / \ C C o k1 o C C (I) (II) (III) (IV) C C C C eello5_1 eello5_2 eello5_3 eello5_4 C C C C Antiparallel chains C C C C o o o o C C /j\ / \ \ / \ / \ / C C / \ / \ \ / \ / \ / C C j1| o |l | o | o| o | | o |o C C \ |/k\| |/ \| / |/ \| |/ \| C C \i/ \ / \ / / \ / \ C C o k1 o C C (I) (II) (III) (IV) C C C C eello5_1 eello5_2 eello5_3 eello5_4 C C C C o denotes a local interaction, vertical lines an electrostatic interaction. C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC cd if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then cd eello5=0.0d0 cd return cd endif cd write (iout,*) cd & 'EELLO5: Contacts have occurred for peptide groups',i,j, cd & ' and',k,l itk=itortyp(itype(k)) itl=itortyp(itype(l)) itj=itortyp(itype(j)) eello5_1=0.0d0 eello5_2=0.0d0 eello5_3=0.0d0 eello5_4=0.0d0 cd call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num, cd & eel5_3_num,eel5_4_num) do iii=1,2 do kkk=1,5 do lll=1,3 derx(lll,kkk,iii)=0.0d0 enddo enddo enddo cd eij=facont_hb(jj,i) cd ekl=facont_hb(kk,k) cd ekont=eij*ekl cd write (iout,*)'Contacts have occurred for peptide groups', cd & i,j,' fcont:',eij,' eij',' and ',k,l cd goto 1111 C Contribution from the graph I. cd write (2,*) 'AEA ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1) cd write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1) call transpose2(EUg(1,1,k),auxmat(1,1)) call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k)) & +0.5d0*scalar2(vv(1),Dtobr2(1,i)) if (calc_grad) then C Explicit gradient in virtual-dihedral angles. if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1) & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k)) & +0.5d0*scalar2(vv(1),Dtobr2der(1,i))) call transpose2(EUgder(1,1,k),auxmat1(1,1)) call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) g_corr5_loc(k-1)=g_corr5_loc(k-1) & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k)) & +0.5d0*scalar2(vv(1),Dtobr2(1,i))) call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) if (l.eq.j+1) then if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1) & +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k)) & +0.5d0*scalar2(vv(1),Dtobr2(1,i))) else if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1) & +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k)) & +0.5d0*scalar2(vv(1),Dtobr2(1,i))) endif C Cartesian gradient do iii=1,2 do kkk=1,5 do lll=1,3 call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1), & pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) derx(lll,kkk,iii)=derx(lll,kkk,iii) & +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k)) & +0.5d0*scalar2(vv(1),Dtobr2(1,i)) enddo enddo enddo c goto 1112 endif c1111 continue C Contribution from graph II call transpose2(EE(1,1,itk),auxmat(1,1)) call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk)) & -0.5d0*scalar2(vv(1),Ctobr(1,k)) if (calc_grad) then C Explicit gradient in virtual-dihedral angles. g_corr5_loc(k-1)=g_corr5_loc(k-1) & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k)) call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) if (l.eq.j+1) then g_corr5_loc(l-1)=g_corr5_loc(l-1) & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk)) & -0.5d0*scalar2(vv(1),Ctobr(1,k))) else g_corr5_loc(j-1)=g_corr5_loc(j-1) & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk)) & -0.5d0*scalar2(vv(1),Ctobr(1,k))) endif C Cartesian gradient do iii=1,2 do kkk=1,5 do lll=1,3 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1), & pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) derx(lll,kkk,iii)=derx(lll,kkk,iii) & +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk)) & -0.5d0*scalar2(vv(1),Ctobr(1,k)) enddo enddo enddo cd goto 1112 endif cd1111 continue if (l.eq.j+1) then cd goto 1110 C Parallel orientation C Contribution from graph III call transpose2(EUg(1,1,l),auxmat(1,1)) call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l)) & +0.5d0*scalar2(vv(1),Dtobr2(1,j)) if (calc_grad) then C Explicit gradient in virtual-dihedral angles. g_corr5_loc(j-1)=g_corr5_loc(j-1) & +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l)) & +0.5d0*scalar2(vv(1),Dtobr2der(1,j))) call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) g_corr5_loc(k-1)=g_corr5_loc(k-1) & +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l)) & +0.5d0*scalar2(vv(1),Dtobr2(1,j))) call transpose2(EUgder(1,1,l),auxmat1(1,1)) call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) g_corr5_loc(l-1)=g_corr5_loc(l-1) & +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l)) & +0.5d0*scalar2(vv(1),Dtobr2(1,j))) C Cartesian gradient do iii=1,2 do kkk=1,5 do lll=1,3 call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1), & pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) derx(lll,kkk,iii)=derx(lll,kkk,iii) & +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l)) & +0.5d0*scalar2(vv(1),Dtobr2(1,j)) enddo enddo enddo cd goto 1112 endif C Contribution from graph IV cd1110 continue call transpose2(EE(1,1,itl),auxmat(1,1)) call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl)) & -0.5d0*scalar2(vv(1),Ctobr(1,l)) if (calc_grad) then C Explicit gradient in virtual-dihedral angles. g_corr5_loc(l-1)=g_corr5_loc(l-1) & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l)) call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) g_corr5_loc(k-1)=g_corr5_loc(k-1) & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl)) & -0.5d0*scalar2(vv(1),Ctobr(1,l))) C Cartesian gradient do iii=1,2 do kkk=1,5 do lll=1,3 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2), & pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) derx(lll,kkk,iii)=derx(lll,kkk,iii) & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl)) & -0.5d0*scalar2(vv(1),Ctobr(1,l)) enddo enddo enddo endif else C Antiparallel orientation C Contribution from graph III c goto 1110 call transpose2(EUg(1,1,j),auxmat(1,1)) call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j)) & +0.5d0*scalar2(vv(1),Dtobr2(1,l)) if (calc_grad) then C Explicit gradient in virtual-dihedral angles. g_corr5_loc(l-1)=g_corr5_loc(l-1) & +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j)) & +0.5d0*scalar2(vv(1),Dtobr2der(1,l))) call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) g_corr5_loc(k-1)=g_corr5_loc(k-1) & +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j)) & +0.5d0*scalar2(vv(1),Dtobr2(1,l))) call transpose2(EUgder(1,1,j),auxmat1(1,1)) call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) g_corr5_loc(j-1)=g_corr5_loc(j-1) & +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j)) & +0.5d0*scalar2(vv(1),Dtobr2(1,l))) C Cartesian gradient do iii=1,2 do kkk=1,5 do lll=1,3 call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1), & pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii) & +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j)) & +0.5d0*scalar2(vv(1),Dtobr2(1,l)) enddo enddo enddo cd goto 1112 endif C Contribution from graph IV 1110 continue call transpose2(EE(1,1,itj),auxmat(1,1)) call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj)) & -0.5d0*scalar2(vv(1),Ctobr(1,j)) if (calc_grad) then C Explicit gradient in virtual-dihedral angles. g_corr5_loc(j-1)=g_corr5_loc(j-1) & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j)) call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) g_corr5_loc(k-1)=g_corr5_loc(k-1) & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj)) & -0.5d0*scalar2(vv(1),Ctobr(1,j))) C Cartesian gradient do iii=1,2 do kkk=1,5 do lll=1,3 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2), & pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii) & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj)) & -0.5d0*scalar2(vv(1),Ctobr(1,j)) enddo enddo enddo endif endif 1112 continue eel5=eello5_1+eello5_2+eello5_3+eello5_4 cd if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then cd write (2,*) 'ijkl',i,j,k,l cd write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2, cd & ' eello5_3',eello5_3,' eello5_4',eello5_4 cd endif cd write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num cd write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num cd write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num cd write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num if (calc_grad) then if (j.lt.nres-1) then j1=j+1 j2=j-1 else j1=j-1 j2=j-2 endif if (l.lt.nres-1) then l1=l+1 l2=l-1 else l1=l-1 l2=l-2 endif cd eij=1.0d0 cd ekl=1.0d0 cd ekont=1.0d0 cd write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont do ll=1,3 ggg1(ll)=eel5*g_contij(ll,1) ggg2(ll)=eel5*g_contij(ll,2) cold ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i) ghalf=0.5d0*ggg1(ll) cd ghalf=0.0d0 gradcorr5(ll,i)=gradcorr5(ll,i)+ghalf+ekont*derx(ll,2,1) gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1) gradcorr5(ll,j)=gradcorr5(ll,j)+ghalf+ekont*derx(ll,4,1) gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1) cold ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k) ghalf=0.5d0*ggg2(ll) cd ghalf=0.0d0 gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2) gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2) gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2) gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2) enddo cd goto 1112 do m=i+1,j-1 do ll=1,3 cold gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i) gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll) enddo enddo do m=k+1,l-1 do ll=1,3 cold gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k) gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll) enddo enddo c1112 continue do m=i+2,j2 do ll=1,3 gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1) enddo enddo do m=k+2,l2 do ll=1,3 gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2) enddo enddo cd do iii=1,nres-3 cd write (2,*) iii,g_corr5_loc(iii) cd enddo endif eello5=ekont*eel5 cd write (2,*) 'ekont',ekont cd write (iout,*) 'eello5',ekont*eel5 return end c-------------------------------------------------------------------------- double precision function eello6(i,j,k,l,jj,kk) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.IOUNITS' include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' include 'COMMON.FFIELD' double precision ggg1(3),ggg2(3) cd if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then cd eello6=0.0d0 cd return cd endif cd write (iout,*) cd & 'EELLO6: Contacts have occurred for peptide groups',i,j, cd & ' and',k,l eello6_1=0.0d0 eello6_2=0.0d0 eello6_3=0.0d0 eello6_4=0.0d0 eello6_5=0.0d0 eello6_6=0.0d0 cd call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num, cd & eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num) do iii=1,2 do kkk=1,5 do lll=1,3 derx(lll,kkk,iii)=0.0d0 enddo enddo enddo cd eij=facont_hb(jj,i) cd ekl=facont_hb(kk,k) cd ekont=eij*ekl cd eij=1.0d0 cd ekl=1.0d0 cd ekont=1.0d0 if (l.eq.j+1) then eello6_1=eello6_graph1(i,j,k,l,1,.false.) eello6_2=eello6_graph1(j,i,l,k,2,.false.) eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.) eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.) eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.) eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.) else eello6_1=eello6_graph1(i,j,k,l,1,.false.) eello6_2=eello6_graph1(l,k,j,i,2,.true.) eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.) eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.) if (wturn6.eq.0.0d0 .or. j.ne.i+4) then eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.) else eello6_5=0.0d0 endif eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.) endif C If turn contributions are considered, they will be handled separately. eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6 cd write(iout,*) 'eello6_1',eello6_1,' eel6_1_num',16*eel6_1_num cd write(iout,*) 'eello6_2',eello6_2,' eel6_2_num',16*eel6_2_num cd write(iout,*) 'eello6_3',eello6_3,' eel6_3_num',16*eel6_3_num cd write(iout,*) 'eello6_4',eello6_4,' eel6_4_num',16*eel6_4_num cd write(iout,*) 'eello6_5',eello6_5,' eel6_5_num',16*eel6_5_num cd write(iout,*) 'eello6_6',eello6_6,' eel6_6_num',16*eel6_6_num cd goto 1112 if (calc_grad) then if (j.lt.nres-1) then j1=j+1 j2=j-1 else j1=j-1 j2=j-2 endif if (l.lt.nres-1) then l1=l+1 l2=l-1 else l1=l-1 l2=l-2 endif do ll=1,3 ggg1(ll)=eel6*g_contij(ll,1) ggg2(ll)=eel6*g_contij(ll,2) cold ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i) ghalf=0.5d0*ggg1(ll) cd ghalf=0.0d0 gradcorr6(ll,i)=gradcorr6(ll,i)+ghalf+ekont*derx(ll,2,1) gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1) gradcorr6(ll,j)=gradcorr6(ll,j)+ghalf+ekont*derx(ll,4,1) gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1) ghalf=0.5d0*ggg2(ll) cold ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k) cd ghalf=0.0d0 gradcorr6(ll,k)=gradcorr6(ll,k)+ghalf+ekont*derx(ll,2,2) gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2) gradcorr6(ll,l)=gradcorr6(ll,l)+ghalf+ekont*derx(ll,4,2) gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2) enddo cd goto 1112 do m=i+1,j-1 do ll=1,3 cold gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i) gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll) enddo enddo do m=k+1,l-1 do ll=1,3 cold gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k) gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll) enddo enddo 1112 continue do m=i+2,j2 do ll=1,3 gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1) enddo enddo do m=k+2,l2 do ll=1,3 gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2) enddo enddo cd do iii=1,nres-3 cd write (2,*) iii,g_corr6_loc(iii) cd enddo endif eello6=ekont*eel6 cd write (2,*) 'ekont',ekont cd write (iout,*) 'eello6',ekont*eel6 return end c-------------------------------------------------------------------------- double precision function eello6_graph1(i,j,k,l,imat,swap) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.IOUNITS' include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2) logical swap logical lprn common /kutas/ lprn CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C Parallel Antiparallel C C o o C /l\ /j\ C / \ / \ C /| o | | o |\ C \ j|/k\| / \ |/k\|l / C \ / \ / \ / \ / C o o o o C i i C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC itk=itortyp(itype(k)) s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i)) s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k)) s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k)) call transpose2(EUgC(1,1,k),auxmat(1,1)) call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1)) vv1(1)=pizda1(1,1)-pizda1(2,2) vv1(2)=pizda1(1,2)+pizda1(2,1) s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i)) vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk) vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk) s5=scalar2(vv(1),Dtobr2(1,i)) cd write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5 eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5) if (.not. calc_grad) return if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1) & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i)) & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k)) & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k)) & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i)) & +scalar2(vv(1),Dtobr2der(1,i))) call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1)) vv1(1)=pizda1(1,1)-pizda1(2,2) vv1(2)=pizda1(1,2)+pizda1(2,1) vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk) vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk) if (l.eq.j+1) then g_corr6_loc(l-1)=g_corr6_loc(l-1) & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i)) & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k)) & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k)) & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i)))) else g_corr6_loc(j-1)=g_corr6_loc(j-1) & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i)) & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k)) & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k)) & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i)))) endif call transpose2(EUgCder(1,1,k),auxmat(1,1)) call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1)) vv1(1)=pizda1(1,1)-pizda1(2,2) vv1(2)=pizda1(1,2)+pizda1(2,1) if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1) & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k)) & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k)) & +0.5d0*scalar2(vv1(1),Dtobr2(1,i)))) do iii=1,2 if (swap) then ind=3-iii else ind=iii endif do kkk=1,5 do lll=1,3 s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i)) s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k)) s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k)) call transpose2(EUgC(1,1,k),auxmat(1,1)) call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1), & pizda1(1,1)) vv1(1)=pizda1(1,1)-pizda1(2,2) vv1(2)=pizda1(1,2)+pizda1(2,1) s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i)) vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk) & -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk) vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk) & +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk) s5=scalar2(vv(1),Dtobr2(1,i)) derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5) enddo enddo enddo return end c---------------------------------------------------------------------------- double precision function eello6_graph2(i,j,k,l,jj,kk,swap) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.IOUNITS' include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' logical swap double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2), & auxvec1(2),auxvec2(1),auxmat1(2,2) logical lprn common /kutas/ lprn CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C Parallel Antiparallel C C o o C \ /l\ /j\ / C \ / \ / \ / C o| o | | o |o C \ j|/k\| \ |/k\|l C \ / \ \ / \ C o o C i i C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC cd write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l C AL 7/4/01 s1 would occur in the sixth-order moment, C but not in a cluster cumulant #ifdef MOMENT s1=dip(1,jj,i)*dip(1,kk,k) #endif call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1)) s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1)) call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1)) s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1)) call transpose2(EUg(1,1,k),auxmat(1,1)) call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i)) cd write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4 #ifdef MOMENT eello6_graph2=-(s1+s2+s3+s4) #else eello6_graph2=-(s2+s3+s4) #endif c eello6_graph2=-s3 if (.not. calc_grad) return C Derivatives in gamma(i-1) if (i.gt.1) then #ifdef MOMENT s1=dipderg(1,jj,i)*dip(1,kk,k) #endif s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1)) call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1)) s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1)) s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i)) #ifdef MOMENT g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4) #else g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4) #endif c g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3 endif C Derivatives in gamma(k-1) #ifdef MOMENT s1=dip(1,jj,i)*dipderg(1,kk,k) #endif call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1)) s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1)) call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1)) s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1)) call transpose2(EUgder(1,1,k),auxmat1(1,1)) call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i)) #ifdef MOMENT g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4) #else g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4) #endif c g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3 C Derivatives in gamma(j-1) or gamma(l-1) if (j.gt.1) then #ifdef MOMENT s1=dipderg(3,jj,i)*dip(1,kk,k) #endif call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1)) s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1)) s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1)) call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i)) #ifdef MOMENT if (swap) then g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1 else g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1 endif #endif g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4) c g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3 endif C Derivatives in gamma(l-1) or gamma(j-1) if (l.gt.1) then #ifdef MOMENT s1=dip(1,jj,i)*dipderg(3,kk,k) #endif call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1)) s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1)) call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1)) s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1)) call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i)) #ifdef MOMENT if (swap) then g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1 else g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1 endif #endif g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4) c g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3 endif C Cartesian derivatives. if (lprn) then write (2,*) 'In eello6_graph2' do iii=1,2 write (2,*) 'iii=',iii do kkk=1,5 write (2,*) 'kkk=',kkk do jjj=1,2 write (2,'(3(2f10.5),5x)') & ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3) enddo enddo enddo endif do iii=1,2 do kkk=1,5 do lll=1,3 #ifdef MOMENT if (iii.eq.1) then s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k) else s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k) endif #endif call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k), & auxvec(1)) s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1)) call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l), & auxvec(1)) s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1)) call transpose2(EUg(1,1,k),auxmat(1,1)) call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1), & pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(1,2)+pizda(2,1) s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i)) cd write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4 #ifdef MOMENT derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4) #else derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4) #endif if (swap) then derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3 else derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3 endif enddo enddo enddo return end c---------------------------------------------------------------------------- double precision function eello6_graph3(i,j,k,l,jj,kk,swap) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.IOUNITS' include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2) logical swap CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C Parallel Antiparallel C C o o C /l\ / \ /j\ C / \ / \ / \ C /| o |o o| o |\ C j|/k\| / |/k\|l / C / \ / / \ / C / o / o C i i C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C 4/7/01 AL Component s1 was removed, because it pertains to the respective C energy moment and not to the cluster cumulant. iti=itortyp(itype(i)) if (j.lt.nres-1) then itj1=itortyp(itype(j+1)) else itj1=ntortyp+1 endif itk=itortyp(itype(k)) itk1=itortyp(itype(k+1)) if (l.lt.nres-1) then itl1=itortyp(itype(l+1)) else itl1=ntortyp+1 endif #ifdef MOMENT s1=dip(4,jj,i)*dip(4,kk,k) #endif call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1)) s2=0.5d0*scalar2(b1(1,itk),auxvec(1)) call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1)) s3=0.5d0*scalar2(b1(1,itj1),auxvec(1)) call transpose2(EE(1,1,itk),auxmat(1,1)) call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) s4=-0.25d0*scalar2(vv(1),Ctobr(1,k)) cd write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4 #ifdef MOMENT eello6_graph3=-(s1+s2+s3+s4) #else eello6_graph3=-(s2+s3+s4) #endif c eello6_graph3=-s4 if (.not. calc_grad) return C Derivatives in gamma(k-1) call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1)) s3=0.5d0*scalar2(b1(1,itj1),auxvec(1)) s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k)) g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4) C Derivatives in gamma(l-1) call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1)) s2=0.5d0*scalar2(b1(1,itk),auxvec(1)) call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) s4=-0.25d0*scalar2(vv(1),Ctobr(1,k)) g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) C Cartesian derivatives. do iii=1,2 do kkk=1,5 do lll=1,3 #ifdef MOMENT if (iii.eq.1) then s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k) else s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k) endif #endif call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1), & auxvec(1)) s2=0.5d0*scalar2(b1(1,itk),auxvec(1)) call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1), & auxvec(1)) s3=0.5d0*scalar2(b1(1,itj1),auxvec(1)) call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1), & pizda(1,1)) vv(1)=pizda(1,1)+pizda(2,2) vv(2)=pizda(2,1)-pizda(1,2) s4=-0.25d0*scalar2(vv(1),Ctobr(1,k)) #ifdef MOMENT derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4) #else derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4) #endif if (swap) then derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3 else derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3 endif c derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4 enddo enddo enddo return end c---------------------------------------------------------------------------- double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.IOUNITS' include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' include 'COMMON.FFIELD' double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2), & auxvec1(2),auxmat1(2,2) logical swap CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C Parallel Antiparallel C C o o C /l\ / \ /j\ C / \ / \ / \ C /| o |o o| o |\ C \ j|/k\| \ |/k\|l C \ / \ \ / \ C o \ o \ C i i C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C 4/7/01 AL Component s1 was removed, because it pertains to the respective C energy moment and not to the cluster cumulant. cd write (2,*) 'eello_graph4: wturn6',wturn6 iti=itortyp(itype(i)) itj=itortyp(itype(j)) if (j.lt.nres-1) then itj1=itortyp(itype(j+1)) else itj1=ntortyp+1 endif itk=itortyp(itype(k)) if (k.lt.nres-1) then itk1=itortyp(itype(k+1)) else itk1=ntortyp+1 endif itl=itortyp(itype(l)) if (l.lt.nres-1) then itl1=itortyp(itype(l+1)) else itl1=ntortyp+1 endif cd write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l cd write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk, cd & ' itl',itl,' itl1',itl1 #ifdef MOMENT if (imat.eq.1) then s1=dip(3,jj,i)*dip(3,kk,k) else s1=dip(2,jj,j)*dip(2,kk,l) endif #endif call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1)) s2=0.5d0*scalar2(Ub2(1,i),auxvec(1)) if (j.eq.l+1) then call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1)) s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1)) else call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1)) s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1)) endif call transpose2(EUg(1,1,k),auxmat(1,1)) call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(2,1)+pizda(1,2) s4=0.25d0*scalar2(vv(1),Dtobr2(1,i)) cd write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4 #ifdef MOMENT eello6_graph4=-(s1+s2+s3+s4) #else eello6_graph4=-(s2+s3+s4) #endif if (.not. calc_grad) return C Derivatives in gamma(i-1) if (i.gt.1) then #ifdef MOMENT if (imat.eq.1) then s1=dipderg(2,jj,i)*dip(3,kk,k) else s1=dipderg(4,jj,j)*dip(2,kk,l) endif #endif s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1)) if (j.eq.l+1) then call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1)) s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1)) else call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1)) s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1)) endif s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i)) if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then cd write (2,*) 'turn6 derivatives' #ifdef MOMENT gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4) #else gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4) #endif else #ifdef MOMENT g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4) #else g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4) #endif endif endif C Derivatives in gamma(k-1) #ifdef MOMENT if (imat.eq.1) then s1=dip(3,jj,i)*dipderg(2,kk,k) else s1=dip(2,jj,j)*dipderg(4,kk,l) endif #endif call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1)) s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1)) if (j.eq.l+1) then call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1)) s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1)) else call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1)) s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1)) endif call transpose2(EUgder(1,1,k),auxmat1(1,1)) call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(2,1)+pizda(1,2) s4=0.25d0*scalar2(vv(1),Dtobr2(1,i)) if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then #ifdef MOMENT gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4) #else gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4) #endif else #ifdef MOMENT g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4) #else g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4) #endif endif C Derivatives in gamma(j-1) or gamma(l-1) if (l.eq.j+1 .and. l.gt.1) then call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1)) s2=0.5d0*scalar2(Ub2(1,i),auxvec(1)) call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(2,1)+pizda(1,2) s4=0.25d0*scalar2(vv(1),Dtobr2(1,i)) g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) else if (j.gt.1) then call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1)) s2=0.5d0*scalar2(Ub2(1,i),auxvec(1)) call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(2,1)+pizda(1,2) s4=0.25d0*scalar2(vv(1),Dtobr2(1,i)) if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4) else g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4) endif endif C Cartesian derivatives. do iii=1,2 do kkk=1,5 do lll=1,3 #ifdef MOMENT if (iii.eq.1) then if (imat.eq.1) then s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k) else s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l) endif else if (imat.eq.1) then s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k) else s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l) endif endif #endif call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k), & auxvec(1)) s2=0.5d0*scalar2(Ub2(1,i),auxvec(1)) if (j.eq.l+1) then call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat), & b1(1,itj1),auxvec(1)) s3=-0.5d0*scalar2(b1(1,itj),auxvec(1)) else call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat), & b1(1,itl1),auxvec(1)) s3=-0.5d0*scalar2(b1(1,itl),auxvec(1)) endif call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1), & pizda(1,1)) vv(1)=pizda(1,1)-pizda(2,2) vv(2)=pizda(2,1)+pizda(1,2) s4=0.25d0*scalar2(vv(1),Dtobr2(1,i)) if (swap) then if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then #ifdef MOMENT derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii) & -(s1+s2+s4) #else derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii) & -(s2+s4) #endif derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3 else #ifdef MOMENT derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4) #else derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4) #endif derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3 endif else #ifdef MOMENT derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4) #else derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4) #endif if (l.eq.j+1) then derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3 else derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3 endif endif enddo enddo enddo return end c---------------------------------------------------------------------------- double precision function eello_turn6(i,jj,kk) implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'DIMENSIONS.ZSCOPT' include 'COMMON.IOUNITS' include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.CONTACTS' include 'COMMON.TORSION' include 'COMMON.VAR' include 'COMMON.GEO' double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2), & atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2), & ggg1(3),ggg2(3) double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2), & atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2) C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to C the respective energy moment and not to the cluster cumulant. eello_turn6=0.0d0 j=i+4 k=i+1 l=i+3 iti=itortyp(itype(i)) itk=itortyp(itype(k)) itk1=itortyp(itype(k+1)) itl=itortyp(itype(l)) itj=itortyp(itype(j)) cd write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj cd write (2,*) 'i',i,' k',k,' j',j,' l',l cd if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then cd eello6=0.0d0 cd return cd endif cd write (iout,*) cd & 'EELLO6: Contacts have occurred for peptide groups',i,j, cd & ' and',k,l cd call checkint_turn6(i,jj,kk,eel_turn6_num) do iii=1,2 do kkk=1,5 do lll=1,3 derx_turn(lll,kkk,iii)=0.0d0 enddo enddo enddo cd eij=1.0d0 cd ekl=1.0d0 cd ekont=1.0d0 eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.) cd eello6_5=0.0d0 cd write (2,*) 'eello6_5',eello6_5 #ifdef MOMENT call transpose2(AEA(1,1,1),auxmat(1,1)) call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1)) ss1=scalar2(Ub2(1,i+2),b1(1,itl)) s1 = (auxmat(1,1)+auxmat(2,2))*ss1 #else s1 = 0.0d0 #endif call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1)) call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1)) s2 = scalar2(b1(1,itk),vtemp1(1)) #ifdef MOMENT call transpose2(AEA(1,1,2),atemp(1,1)) call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1)) call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1)) s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1)) #else s8=0.0d0 #endif call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1)) call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1)) s12 = scalar2(Ub2(1,i+2),vtemp3(1)) #ifdef MOMENT call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1)) call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1)) call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) ss13 = scalar2(b1(1,itk),vtemp4(1)) s13 = (gtemp(1,1)+gtemp(2,2))*ss13 #else s13=0.0d0 #endif c write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13 c s1=0.0d0 c s2=0.0d0 c s8=0.0d0 c s12=0.0d0 c s13=0.0d0 eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13) if (calc_grad) then C Derivatives in gamma(i+2) #ifdef MOMENT call transpose2(AEA(1,1,1),auxmatd(1,1)) call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1)) s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1 call transpose2(AEAderg(1,1,2),atempd(1,1)) call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1)) s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1)) #else s8d=0.0d0 #endif call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1)) call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1)) s12d = scalar2(Ub2(1,i+2),vtemp3d(1)) c s1d=0.0d0 c s2d=0.0d0 c s8d=0.0d0 c s12d=0.0d0 c s13d=0.0d0 gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d) C Derivatives in gamma(i+3) #ifdef MOMENT call transpose2(AEA(1,1,1),auxmatd(1,1)) call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1)) ss1d=scalar2(Ub2der(1,i+2),b1(1,itl)) s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d #else s1d=0.0d0 #endif call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1)) call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1)) s2d = scalar2(b1(1,itk),vtemp1d(1)) #ifdef MOMENT call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1)) s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1)) #endif s12d = scalar2(Ub2der(1,i+2),vtemp3(1)) #ifdef MOMENT call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1)) call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) s13d = (gtempd(1,1)+gtempd(2,2))*ss13 #else s13d=0.0d0 #endif c s1d=0.0d0 c s2d=0.0d0 c s8d=0.0d0 c s12d=0.0d0 c s13d=0.0d0 #ifdef MOMENT gel_loc_turn6(i+1)=gel_loc_turn6(i+1) & -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d) #else gel_loc_turn6(i+1)=gel_loc_turn6(i+1) & -0.5d0*ekont*(s2d+s12d) #endif C Derivatives in gamma(i+4) call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1)) call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1)) s12d = scalar2(Ub2(1,i+2),vtemp3d(1)) #ifdef MOMENT call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1)) call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) s13d = (gtempd(1,1)+gtempd(2,2))*ss13 #else s13d = 0.0d0 #endif c s1d=0.0d0 c s2d=0.0d0 c s8d=0.0d0 C s12d=0.0d0 c s13d=0.0d0 #ifdef MOMENT gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d) #else gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d) #endif C Derivatives in gamma(i+5) #ifdef MOMENT call transpose2(AEAderg(1,1,1),auxmatd(1,1)) call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1)) s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1 #else s1d = 0.0d0 #endif call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1)) call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1)) s2d = scalar2(b1(1,itk),vtemp1d(1)) #ifdef MOMENT call transpose2(AEA(1,1,2),atempd(1,1)) call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1)) s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1)) #else s8d = 0.0d0 #endif call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1)) s12d = scalar2(Ub2(1,i+2),vtemp3d(1)) #ifdef MOMENT call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) ss13d = scalar2(b1(1,itk),vtemp4d(1)) s13d = (gtemp(1,1)+gtemp(2,2))*ss13d #else s13d = 0.0d0 #endif c s1d=0.0d0 c s2d=0.0d0 c s8d=0.0d0 c s12d=0.0d0 c s13d=0.0d0 #ifdef MOMENT gel_loc_turn6(i+3)=gel_loc_turn6(i+3) & -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d) #else gel_loc_turn6(i+3)=gel_loc_turn6(i+3) & -0.5d0*ekont*(s2d+s12d) #endif C Cartesian derivatives do iii=1,2 do kkk=1,5 do lll=1,3 #ifdef MOMENT call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1)) call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1)) s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1 #else s1d = 0.0d0 #endif call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1)) call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1), & vtemp1d(1)) s2d = scalar2(b1(1,itk),vtemp1d(1)) #ifdef MOMENT call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1)) call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1)) s8d = -(atempd(1,1)+atempd(2,2))* & scalar2(cc(1,1,itl),vtemp2(1)) #else s8d = 0.0d0 #endif call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2), & auxmatd(1,1)) call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1)) s12d = scalar2(Ub2(1,i+2),vtemp3d(1)) c s1d=0.0d0 c s2d=0.0d0 c s8d=0.0d0 c s12d=0.0d0 c s13d=0.0d0 #ifdef MOMENT derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) & - 0.5d0*(s1d+s2d) #else derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) & - 0.5d0*s2d #endif #ifdef MOMENT derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) & - 0.5d0*(s8d+s12d) #else derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) & - 0.5d0*s12d #endif enddo enddo enddo #ifdef MOMENT do kkk=1,5 do lll=1,3 call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1), & achuj_tempd(1,1)) call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1)) call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) s13d=(gtempd(1,1)+gtempd(2,2))*ss13 derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4), & vtemp4d(1)) ss13d = scalar2(b1(1,itk),vtemp4d(1)) s13d = (gtemp(1,1)+gtemp(2,2))*ss13d derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d enddo enddo #endif cd write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num', cd & 16*eel_turn6_num cd goto 1112 if (j.lt.nres-1) then j1=j+1 j2=j-1 else j1=j-1 j2=j-2 endif if (l.lt.nres-1) then l1=l+1 l2=l-1 else l1=l-1 l2=l-2 endif do ll=1,3 ggg1(ll)=eel_turn6*g_contij(ll,1) ggg2(ll)=eel_turn6*g_contij(ll,2) ghalf=0.5d0*ggg1(ll) cd ghalf=0.0d0 gcorr6_turn(ll,i)=gcorr6_turn(ll,i)+ghalf & +ekont*derx_turn(ll,2,1) gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1) gcorr6_turn(ll,j)=gcorr6_turn(ll,j)+ghalf & +ekont*derx_turn(ll,4,1) gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1) ghalf=0.5d0*ggg2(ll) cd ghalf=0.0d0 gcorr6_turn(ll,k)=gcorr6_turn(ll,k)+ghalf & +ekont*derx_turn(ll,2,2) gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2) gcorr6_turn(ll,l)=gcorr6_turn(ll,l)+ghalf & +ekont*derx_turn(ll,4,2) gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2) enddo cd goto 1112 do m=i+1,j-1 do ll=1,3 gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll) enddo enddo do m=k+1,l-1 do ll=1,3 gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll) enddo enddo 1112 continue do m=i+2,j2 do ll=1,3 gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1) enddo enddo do m=k+2,l2 do ll=1,3 gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2) enddo enddo cd do iii=1,nres-3 cd write (2,*) iii,g_corr6_loc(iii) cd enddo endif eello_turn6=ekont*eel_turn6 cd write (2,*) 'ekont',ekont cd write (2,*) 'eel_turn6',ekont*eel_turn6 return end crc------------------------------------------------- SUBROUTINE MATVEC2(A1,V1,V2) implicit real*8 (a-h,o-z) include 'DIMENSIONS' DIMENSION A1(2,2),V1(2),V2(2) c DO 1 I=1,2 c VI=0.0 c DO 3 K=1,2 c 3 VI=VI+A1(I,K)*V1(K) c Vaux(I)=VI c 1 CONTINUE vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2) vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2) v2(1)=vaux1 v2(2)=vaux2 END C--------------------------------------- SUBROUTINE MATMAT2(A1,A2,A3) implicit real*8 (a-h,o-z) include 'DIMENSIONS' DIMENSION A1(2,2),A2(2,2),A3(2,2) c DIMENSION AI3(2,2) c DO J=1,2 c A3IJ=0.0 c DO K=1,2 c A3IJ=A3IJ+A1(I,K)*A2(K,J) c enddo c A3(I,J)=A3IJ c enddo c enddo ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1) ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2) ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1) ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2) A3(1,1)=AI3_11 A3(2,1)=AI3_21 A3(1,2)=AI3_12 A3(2,2)=AI3_22 END c------------------------------------------------------------------------- double precision function scalar2(u,v) implicit none double precision u(2),v(2) double precision sc integer i scalar2=u(1)*v(1)+u(2)*v(2) return end C----------------------------------------------------------------------------- subroutine transpose2(a,at) implicit none double precision a(2,2),at(2,2) at(1,1)=a(1,1) at(1,2)=a(2,1) at(2,1)=a(1,2) at(2,2)=a(2,2) return end c-------------------------------------------------------------------------- subroutine transpose(n,a,at) implicit none integer n,i,j double precision a(n,n),at(n,n) do i=1,n do j=1,n at(j,i)=a(i,j) enddo enddo return end C--------------------------------------------------------------------------- subroutine prodmat3(a1,a2,kk,transp,prod) implicit none integer i,j double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2) logical transp crc double precision auxmat(2,2),prod_(2,2) if (transp) then crc call transpose2(kk(1,1),auxmat(1,1)) crc call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1)) crc call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1) & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1) prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2) & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2) prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1) & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1) prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2) & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2) else crc call matmat2(a1(1,1),kk(1,1),auxmat(1,1)) crc call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1) & +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1) prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2) & +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2) prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1) & +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1) prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2) & +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2) endif c call transpose2(a2(1,1),a2t(1,1)) crc print *,transp crc print *,((prod_(i,j),i=1,2),j=1,2) crc print *,((prod(i,j),i=1,2),j=1,2) return end C----------------------------------------------------------------------------- double precision function scalar(u,v) implicit none double precision u(3),v(3) double precision sc integer i sc=0.0d0 do i=1,3 sc=sc+u(i)*v(i) enddo scalar=sc return end