subroutine int_to_cart c-------------------------------------------------------------- c This subroutine converts the energy derivatives from internal c coordinates to cartesian coordinates c------------------------------------------------------------- implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'COMMON.VAR' include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.GEO' include 'COMMON.LOCAL' include 'COMMON.INTERACT' include 'COMMON.MD_' include 'COMMON.IOUNITS' include 'COMMON.SCCOR' c calculating dE/ddc1 if (nres.lt.3) go to 18 do j=1,3 gcart(j,1)=gcart(j,1)+gloc(1,icg)*dphi(j,1,4) & +gloc(nres-2,icg)*dtheta(j,1,3) if(itype(2).ne.10) then gcart(j,1)=gcart(j,1)+gloc(ialph(2,1),icg)*dalpha(j,1,2)+ & gloc(ialph(2,1)+nside,icg)*domega(j,1,2) endif enddo c Calculating the remainder of dE/ddc2 do j=1,3 gcart(j,2)=gcart(j,2)+gloc(1,icg)*dphi(j,2,4)+ & gloc(nres-2,icg)*dtheta(j,2,3)+gloc(nres-1,icg)*dtheta(j,1,4) if(itype(2).ne.10) then gcart(j,2)=gcart(j,2)+gloc(ialph(2,1),icg)*dalpha(j,2,2)+ & gloc(ialph(2,1)+nside,icg)*domega(j,2,2) endif if(itype(3).ne.10) then gcart(j,2)=gcart(j,2)+gloc(ialph(3,1),icg)*dalpha(j,1,3)+ & gloc(ialph(3,1)+nside,icg)*domega(j,1,3) endif if(nres.gt.4) then gcart(j,2)=gcart(j,2)+gloc(2,icg)*dphi(j,1,5) endif enddo c If there are only five residues if(nres.eq.5) then do j=1,3 gcart(j,3)=gcart(j,3)+gloc(1,icg)*dphi(j,3,4)+gloc(2,icg)* & dphi(j,2,5)+gloc(nres-1,icg)*dtheta(j,2,4)+gloc(nres,icg)* & dtheta(j,1,5) if(itype(3).ne.10) then gcart(j,3)=gcart(j,3)+gloc(ialph(3,1),icg)* & dalpha(j,2,3)+gloc(ialph(3,1)+nside,icg)*domega(j,2,3) endif if(itype(4).ne.10) then gcart(j,3)=gcart(j,3)+gloc(ialph(4,1),icg)* & dalpha(j,1,4)+gloc(ialph(4,1)+nside,icg)*domega(j,1,4) endif enddo endif c If there are more than five residues if(nres.gt.5) then do i=3,nres-3 do j=1,3 gcart(j,i)=gcart(j,i)+gloc(i-2,icg)*dphi(j,3,i+1) & +gloc(i-1,icg)*dphi(j,2,i+2)+ & gloc(i,icg)*dphi(j,1,i+3)+gloc(nres+i-4,icg)*dtheta(j,2,i+1)+ & gloc(nres+i-3,icg)*dtheta(j,1,i+2) if(itype(i).ne.10) then gcart(j,i)=gcart(j,i)+gloc(ialph(i,1),icg)*dalpha(j,2,i)+ & gloc(ialph(i,1)+nside,icg)*domega(j,2,i) endif if(itype(i+1).ne.10) then gcart(j,i)=gcart(j,i)+gloc(ialph(i+1,1),icg)*dalpha(j,1,i+1) & +gloc(ialph(i+1,1)+nside,icg)*domega(j,1,i+1) endif enddo enddo endif c Setting dE/ddnres-2 if(nres.gt.5) then do j=1,3 gcart(j,nres-2)=gcart(j,nres-2)+gloc(nres-4,icg)* & dphi(j,3,nres-1)+gloc(nres-3,icg)*dphi(j,2,nres) & +gloc(2*nres-6,icg)* & dtheta(j,2,nres-1)+gloc(2*nres-5,icg)*dtheta(j,1,nres) if(itype(nres-2).ne.10) then gcart(j,nres-2)=gcart(j,nres-2)+gloc(ialph(nres-2,1),icg)* & dalpha(j,2,nres-2)+gloc(ialph(nres-2,1)+nside,icg)* & domega(j,2,nres-2) endif if(itype(nres-1).ne.10) then gcart(j,nres-2)=gcart(j,nres-2)+gloc(ialph(nres-1,1),icg)* & dalpha(j,1,nres-1)+gloc(ialph(nres-1,1)+nside,icg)* & domega(j,1,nres-1) endif enddo endif c Settind dE/ddnres-1 do j=1,3 gcart(j,nres-1)=gcart(j,nres-1)+gloc(nres-3,icg)*dphi(j,3,nres)+ & gloc(2*nres-5,icg)*dtheta(j,2,nres) if(itype(nres-1).ne.10) then gcart(j,nres-1)=gcart(j,nres-1)+gloc(ialph(nres-1,1),icg)* & dalpha(j,2,nres-1)+gloc(ialph(nres-1,1)+nside,icg)* & domega(j,2,nres-1) endif enddo c The side-chain vector derivatives do i=2,nres-1 if(itype(i).ne.10) then do j=1,3 gxcart(j,i)=gxcart(j,i)+gloc(ialph(i,1),icg)*dalpha(j,3,i) & +gloc(ialph(i,1)+nside,icg)*domega(j,3,i) enddo endif enddo c---------------------------------------------------------------------- C INTERTYP=1 SC...Ca...Ca...Ca C INTERTYP=2 Ca...Ca...Ca...SC C INTERTYP=3 SC...Ca...Ca...SC c calculating dE/ddc1 18 continue c do i=1,nres c gloc(i,icg)=0.0D0 c write (iout,*) "poczotkoawy",i,gloc_sc(1,i,icg) c enddo if (nres.lt.2) return if ((nres.lt.3).and.(itype(1).eq.10)) return if ((itype(1).ne.10).and.(itype(1).ne.ntyp1)) then do j=1,3 cc Derviative was calculated for oposite vector of side chain therefore c there is "-" sign before gloc_sc gxcart(j,1)=gxcart(j,1)-gloc_sc(1,0,icg)* & dtauangle(j,1,1,3) gcart(j,1)=gcart(j,1)+gloc_sc(1,0,icg)* & dtauangle(j,1,2,3) if ((itype(2).ne.10).and.(itype(2).ne.ntyp1)) then gxcart(j,1)= gxcart(j,1) & -gloc_sc(3,0,icg)*dtauangle(j,3,1,3) gcart(j,1)=gcart(j,1)+gloc_sc(3,0,icg)* & dtauangle(j,3,2,3) endif enddo endif if ((nres.ge.3).and.(itype(3).ne.10).and.(itype(3).ne.ntyp1)) & then do j=1,3 gcart(j,1)=gcart(j,1)+gloc_sc(2,1,icg)*dtauangle(j,2,1,4) enddo endif c As potetnial DO NOT depend on omicron anlge their derivative is c ommited c & +gloc_sc(intertyp,nres-2,icg)*dtheta(j,1,3) c Calculating the remainder of dE/ddc2 do j=1,3 if((itype(2).ne.10).and.(itype(2).ne.ntyp1)) then if (itype(1).ne.10) gxcart(j,2)=gxcart(j,2)+ & gloc_sc(3,0,icg)*dtauangle(j,3,3,3) if ((itype(3).ne.10).and.(nres.ge.3).and.(itype(3).ne.ntyp1)) & then gxcart(j,2)=gxcart(j,2)-gloc_sc(3,1,icg)*dtauangle(j,3,1,4) cc the - above is due to different vector direction gcart(j,2)=gcart(j,2)+gloc_sc(3,1,icg)*dtauangle(j,3,2,4) endif if (nres.gt.3) then gxcart(j,2)=gxcart(j,2)-gloc_sc(1,1,icg)*dtauangle(j,1,1,4) cc the - above is due to different vector direction gcart(j,2)=gcart(j,2)+gloc_sc(1,1,icg)*dtauangle(j,1,2,4) c write(iout,*) gloc_sc(1,1,icg),dtauangle(j,1,2,4),"gcart" c write(iout,*) gloc_sc(1,1,icg),dtauangle(j,1,1,4),"gx" endif endif if ((itype(1).ne.10).and.(itype(1).ne.ntyp1)) then gcart(j,2)=gcart(j,2)+gloc_sc(1,0,icg)*dtauangle(j,1,3,3) c write(iout,*) gloc_sc(1,0,icg),dtauangle(j,1,3,3) endif if ((itype(3).ne.10).and.(nres.ge.3)) then gcart(j,2)=gcart(j,2)+gloc_sc(2,1,icg)*dtauangle(j,2,2,4) c write(iout,*) gloc_sc(2,1,icg),dtauangle(j,2,2,4) endif if ((itype(4).ne.10).and.(nres.ge.4)) then gcart(j,2)=gcart(j,2)+gloc_sc(2,2,icg)*dtauangle(j,2,1,5) c write(iout,*) gloc_sc(2,2,icg),dtauangle(j,2,1,5) endif c write(iout,*) gcart(j,2),itype(2),itype(1),itype(3), "gcart2" enddo c If there are more than five residues if(nres.ge.5) then do i=3,nres-2 do j=1,3 c write(iout,*) "before", gcart(j,i) if ((itype(i).ne.10).and.(itype(i).ne.ntyp1)) then gxcart(j,i)=gxcart(j,i)+gloc_sc(2,i-2,icg) & *dtauangle(j,2,3,i+1) & -gloc_sc(1,i-1,icg)*dtauangle(j,1,1,i+2) gcart(j,i)=gcart(j,i)+gloc_sc(1,i-1,icg) & *dtauangle(j,1,2,i+2) c write(iout,*) "new",j,i, c & gcart(j,i),gloc_sc(1,i-1,icg),dtauangle(j,1,2,i+2) if (itype(i-1).ne.10) then gxcart(j,i)=gxcart(j,i)+gloc_sc(3,i-2,icg) &*dtauangle(j,3,3,i+1) endif if (itype(i+1).ne.10) then gxcart(j,i)=gxcart(j,i)-gloc_sc(3,i-1,icg) &*dtauangle(j,3,1,i+2) gcart(j,i)=gcart(j,i)+gloc_sc(3,i-1,icg) &*dtauangle(j,3,2,i+2) endif endif if (itype(i-1).ne.10) then gcart(j,i)=gcart(j,i)+gloc_sc(1,i-2,icg)* & dtauangle(j,1,3,i+1) endif if (itype(i+1).ne.10) then gcart(j,i)=gcart(j,i)+gloc_sc(2,i-1,icg)* & dtauangle(j,2,2,i+2) c write(iout,*) "numer",i,gloc_sc(2,i-1,icg), c & dtauangle(j,2,2,i+2) endif if (itype(i+2).ne.10) then gcart(j,i)=gcart(j,i)+gloc_sc(2,i,icg)* & dtauangle(j,2,1,i+3) endif enddo enddo endif c Setting dE/ddnres-1 if(nres.ge.4) then do j=1,3 if ((itype(nres-1).ne.10).and.(itype(nres-1).ne.ntyp1)) then gxcart(j,nres-1)=gxcart(j,nres-1)+gloc_sc(2,nres-3,icg) & *dtauangle(j,2,3,nres) c write (iout,*) "gxcart(nres-1)", gloc_sc(2,nres-3,icg), c & dtauangle(j,2,3,nres), gxcart(j,nres-1) if (itype(nres-2).ne.10) then gxcart(j,nres-1)=gxcart(j,nres-1)+gloc_sc(3,nres-3,icg) & *dtauangle(j,3,3,nres) endif if ((itype(nres).ne.10).and.(itype(nres).ne.ntyp1)) then gxcart(j,nres-1)=gxcart(j,nres-1)-gloc_sc(3,nres-2,icg) & *dtauangle(j,3,1,nres+1) gcart(j,nres-1)=gcart(j,nres-1)+gloc_sc(3,nres-2,icg) & *dtauangle(j,3,2,nres+1) endif endif if ((itype(nres-2).ne.10).and.(itype(nres-2).ne.ntyp1)) then gcart(j,nres-1)=gcart(j,nres-1)+gloc_sc(1,nres-3,icg)* & dtauangle(j,1,3,nres) endif if ((itype(nres).ne.10).and.(itype(nres).ne.ntyp1)) then gcart(j,nres-1)=gcart(j,nres-1)+gloc_sc(2,nres-2,icg)* & dtauangle(j,2,2,nres+1) c write (iout,*) "gcart(nres-1)", gloc_sc(2,nres-2,icg), c & dtauangle(j,2,2,nres+1), itype(nres-1),itype(nres) endif enddo endif c Settind dE/ddnres if ((nres.ge.3).and.(itype(nres).ne.10).and. & (itype(nres).ne.ntyp1))then do j=1,3 gxcart(j,nres)=gxcart(j,nres)+gloc_sc(3,nres-2,icg) & *dtauangle(j,3,3,nres+1)+gloc_sc(2,nres-2,icg) & *dtauangle(j,2,3,nres+1) enddo endif c The side-chain vector derivatives return end