subroutine etotal_long(energia) implicit real*8 (a-h,o-z) include 'DIMENSIONS' c c Compute the long-range slow-varying contributions to the energy c #ifndef ISNAN external proc_proc #ifdef WINPGI cMS$ATTRIBUTES C :: proc_proc #endif #endif #ifdef MPI include "mpif.h" double precision weights_(n_ene) #endif include 'COMMON.SETUP' include 'COMMON.CONTROL' include 'COMMON.IOUNITS' double precision energia(0:n_ene) include 'COMMON.FFIELD' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.SBRIDGE' include 'COMMON.CHAIN' include 'COMMON.VAR' include 'COMMON.LOCAL' include 'COMMON.MD' c write(iout,'(a,i2)')'Calling etotal_long ipot=',ipot if (modecalc.eq.12.or.modecalc.eq.14) then #ifdef MPI c if (fg_rank.eq.0) call int_from_cart1(.false.) #else call int_from_cart1(.false.) #endif endif #ifdef MPI c write(iout,*) "ETOTAL_LONG Processor",fg_rank, c & " absolute rank",myrank," nfgtasks",nfgtasks call flush(iout) if (nfgtasks.gt.1) then time00=MPI_Wtime() C FG slaves call the following matching MPI_Bcast in ERGASTULUM if (fg_rank.eq.0) then call MPI_Bcast(3,1,MPI_INTEGER,king,FG_COMM,IERROR) c write (iout,*) "Processor",myrank," BROADCAST iorder" c call flush(iout) C FG master sets up the WEIGHTS_ array which will be broadcast to the C FG slaves as WEIGHTS array. weights_(1)=wsc weights_(2)=wscp weights_(3)=welec weights_(4)=wcorr weights_(5)=wcorr5 weights_(6)=wcorr6 weights_(7)=wel_loc weights_(8)=wturn3 weights_(9)=wturn4 weights_(10)=wturn6 weights_(11)=wang weights_(12)=wscloc weights_(13)=wtor weights_(14)=wtor_d weights_(15)=wstrain weights_(16)=wvdwpp weights_(17)=wbond weights_(18)=scal14 weights_(21)=wsccor weights_(25)=wsaxs C FG Master broadcasts the WEIGHTS_ array call MPI_Bcast(weights_(1),n_ene, & MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR) else C FG slaves receive the WEIGHTS array call MPI_Bcast(weights(1),n_ene, & MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR) wsc=weights(1) wscp=weights(2) welec=weights(3) wcorr=weights(4) wcorr5=weights(5) wcorr6=weights(6) wel_loc=weights(7) wturn3=weights(8) wturn4=weights(9) wturn6=weights(10) wang=weights(11) wscloc=weights(12) wtor=weights(13) wtor_d=weights(14) wstrain=weights(15) wvdwpp=weights(16) wbond=weights(17) scal14=weights(18) wsccor=weights(21) wsaxs=weights(25) endif call MPI_Bcast(dc(1,1),6*nres,MPI_DOUBLE_PRECISION, & king,FG_COMM,IERR) time_Bcast=time_Bcast+MPI_Wtime()-time00 time_Bcastw=time_Bcastw+MPI_Wtime()-time00 c call chainbuild_cart c call int_from_cart1(.false.) endif c write (iout,*) 'Processor',myrank, c & ' calling etotal_short ipot=',ipot c call flush(iout) c print *,'Processor',myrank,' nnt=',nnt,' nct=',nct #endif cd print *,'nnt=',nnt,' nct=',nct C C Compute the side-chain and electrostatic interaction energy C goto (101,102,103,104,105,106) ipot C Lennard-Jones potential. 101 call elj_long(evdw) cd print '(a)','Exit ELJ' goto 107 C Lennard-Jones-Kihara potential (shifted). 102 call eljk_long(evdw) goto 107 C Berne-Pechukas potential (dilated LJ, angular dependence). 103 call ebp_long(evdw) goto 107 C Gay-Berne potential (shifted LJ, angular dependence). 104 call egb_long(evdw) goto 107 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence). 105 call egbv_long(evdw) goto 107 C Soft-sphere potential 106 call e_softsphere(evdw) C C Calculate electrostatic (H-bonding) energy of the main chain. C 107 continue call vec_and_deriv if (ipot.lt.6) then #ifdef SPLITELE if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or. & wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0 & .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 & .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then #else if (welec.gt.0d0.or.wel_loc.gt.0d0.or. & wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0 & .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 & .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then #endif call eelec_scale(ees,evdw1,eel_loc,eello_turn3,eello_turn4) else ees=0 evdw1=0 eel_loc=0 eello_turn3=0 eello_turn4=0 endif else c write (iout,*) "Soft-spheer ELEC potential" call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3, & eello_turn4) endif C C Calculate excluded-volume interaction energy between peptide groups C and side chains. C if (ipot.lt.6) then if(wscp.gt.0d0) then call escp_long(evdw2,evdw2_14) else evdw2=0 evdw2_14=0 endif else call escp_soft_sphere(evdw2,evdw2_14) endif C C 12/1/95 Multi-body terms C n_corr=0 n_corr1=0 if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 & .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1) c write (2,*) 'n_corr=',n_corr,' n_corr1=',n_corr1, c &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6 else ecorr=0.0d0 ecorr5=0.0d0 ecorr6=0.0d0 eturn6=0.0d0 endif if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1) endif C C If performing constraint dynamics, call the constraint energy C after the equilibration time if(usampl.and.totT.gt.eq_time) then call EconstrQ call Econstr_back else Uconst=0.0d0 Uconst_back=0.0d0 endif C C Sum the energies C do i=1,n_ene energia(i)=0.0d0 enddo energia(1)=evdw #ifdef SCP14 energia(2)=evdw2-evdw2_14 energia(18)=evdw2_14 #else energia(2)=evdw2 energia(18)=0.0d0 #endif #ifdef SPLITELE energia(3)=ees energia(16)=evdw1 #else energia(3)=ees+evdw1 energia(16)=0.0d0 #endif energia(4)=ecorr energia(5)=ecorr5 energia(6)=ecorr6 energia(7)=eel_loc energia(8)=eello_turn3 energia(9)=eello_turn4 energia(10)=eturn6 energia(20)=Uconst+Uconst_back call sum_energy(energia,.true.) c write (iout,*) "Exit ETOTAL_LONG" call flush(iout) return end c------------------------------------------------------------------------------ subroutine etotal_short(energia) implicit real*8 (a-h,o-z) include 'DIMENSIONS' c c Compute the short-range fast-varying contributions to the energy c #ifndef ISNAN external proc_proc #ifdef WINPGI cMS$ATTRIBUTES C :: proc_proc #endif #endif #ifdef MPI include "mpif.h" double precision weights_(n_ene) #endif include 'COMMON.SETUP' include 'COMMON.CONTROL' include 'COMMON.IOUNITS' double precision energia(0:n_ene) include 'COMMON.FFIELD' include 'COMMON.DERIV' include 'COMMON.INTERACT' include 'COMMON.SBRIDGE' include 'COMMON.CHAIN' include 'COMMON.VAR' include 'COMMON.LOCAL' c write(iout,'(a,i2)')'Calling etotal_short ipot=',ipot c call flush(iout) if (modecalc.eq.12.or.modecalc.eq.14) then #ifdef MPI if (fg_rank.eq.0) call int_from_cart1(.false.) #else call int_from_cart1(.false.) #endif endif #ifdef MPI c write(iout,*) "ETOTAL_SHORT Processor",fg_rank, c & " absolute rank",myrank," nfgtasks",nfgtasks c call flush(iout) if (nfgtasks.gt.1) then time00=MPI_Wtime() C FG slaves call the following matching MPI_Bcast in ERGASTULUM if (fg_rank.eq.0) then call MPI_Bcast(2,1,MPI_INTEGER,king,FG_COMM,IERROR) c write (iout,*) "Processor",myrank," BROADCAST iorder" c call flush(iout) C FG master sets up the WEIGHTS_ array which will be broadcast to the C FG slaves as WEIGHTS array. weights_(1)=wsc weights_(2)=wscp weights_(3)=welec weights_(4)=wcorr weights_(5)=wcorr5 weights_(6)=wcorr6 weights_(7)=wel_loc weights_(8)=wturn3 weights_(9)=wturn4 weights_(10)=wturn6 weights_(11)=wang weights_(12)=wscloc weights_(13)=wtor weights_(14)=wtor_d weights_(15)=wstrain weights_(16)=wvdwpp weights_(17)=wbond weights_(18)=scal14 weights_(21)=wsccor weights_(25)=wsaxs C FG Master broadcasts the WEIGHTS_ array call MPI_Bcast(weights_(1),n_ene, & MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR) else C FG slaves receive the WEIGHTS array call MPI_Bcast(weights(1),n_ene, & MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR) wsc=weights(1) wscp=weights(2) welec=weights(3) wcorr=weights(4) wcorr5=weights(5) wcorr6=weights(6) wel_loc=weights(7) wturn3=weights(8) wturn4=weights(9) wturn6=weights(10) wang=weights(11) wscloc=weights(12) wtor=weights(13) wtor_d=weights(14) wstrain=weights(15) wvdwpp=weights(16) wbond=weights(17) scal14=weights(18) wsccor=weights(21) wsaxs=weights(25) endif c write (iout,*),"Processor",myrank," BROADCAST weights" call MPI_Bcast(c(1,1),maxres6,MPI_DOUBLE_PRECISION, & king,FG_COMM,IERR) c write (iout,*) "Processor",myrank," BROADCAST c" call MPI_Bcast(dc(1,1),maxres6,MPI_DOUBLE_PRECISION, & king,FG_COMM,IERR) c write (iout,*) "Processor",myrank," BROADCAST dc" call MPI_Bcast(dc_norm(1,1),maxres6,MPI_DOUBLE_PRECISION, & king,FG_COMM,IERR) c write (iout,*) "Processor",myrank," BROADCAST dc_norm" call MPI_Bcast(theta(1),nres,MPI_DOUBLE_PRECISION, & king,FG_COMM,IERR) c write (iout,*) "Processor",myrank," BROADCAST theta" call MPI_Bcast(phi(1),nres,MPI_DOUBLE_PRECISION, & king,FG_COMM,IERR) c write (iout,*) "Processor",myrank," BROADCAST phi" call MPI_Bcast(alph(1),nres,MPI_DOUBLE_PRECISION, & king,FG_COMM,IERR) c write (iout,*) "Processor",myrank," BROADCAST alph" call MPI_Bcast(omeg(1),nres,MPI_DOUBLE_PRECISION, & king,FG_COMM,IERR) c write (iout,*) "Processor",myrank," BROADCAST omeg" call MPI_Bcast(vbld(1),2*nres,MPI_DOUBLE_PRECISION, & king,FG_COMM,IERR) c write (iout,*) "Processor",myrank," BROADCAST vbld" call MPI_Bcast(vbld_inv(1),2*nres,MPI_DOUBLE_PRECISION, & king,FG_COMM,IERR) time_Bcast=time_Bcast+MPI_Wtime()-time00 c write (iout,*) "Processor",myrank," BROADCAST vbld_inv" endif c write (iout,*) 'Processor',myrank, c & ' calling etotal_short ipot=',ipot c call flush(iout) c print *,'Processor',myrank,' nnt=',nnt,' nct=',nct #endif c call int_from_cart1(.false.) C C Compute the side-chain and electrostatic interaction energy C goto (101,102,103,104,105,106) ipot C Lennard-Jones potential. 101 call elj_short(evdw) cd print '(a)','Exit ELJ' goto 107 C Lennard-Jones-Kihara potential (shifted). 102 call eljk_short(evdw) goto 107 C Berne-Pechukas potential (dilated LJ, angular dependence). 103 call ebp_short(evdw) goto 107 C Gay-Berne potential (shifted LJ, angular dependence). 104 call egb_short(evdw) goto 107 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence). 105 call egbv_short(evdw) goto 107 C Soft-sphere potential - already dealt with in the long-range part 106 evdw=0.0d0 c 106 call e_softsphere_short(evdw) C C Calculate electrostatic (H-bonding) energy of the main chain. C 107 continue c c Calculate the short-range part of Evdwpp c call evdwpp_short(evdw1) c c Calculate the short-range part of ESCp c if (ipot.lt.6) then call escp_short(evdw2,evdw2_14) endif c c Calculate the bond-stretching energy c call ebond(estr) C C Calculate the disulfide-bridge and other energy and the contributions C from other distance constraints. call edis(ehpb) C C Calculate the virtual-bond-angle energy. C call ebend(ebe) C C Calculate the SC local energy. C call vec_and_deriv call esc(escloc) C C Calculate the virtual-bond torsional energy. C call etor(etors,edihcnstr) C C 6/23/01 Calculate double-torsional energy C call etor_d(etors_d) C C 21/5/07 Calculate local sicdechain correlation energy C if (wsccor.gt.0.0d0) then call eback_sc_corr(esccor) else esccor=0.0d0 endif c write (iout,*) "nsaxs",nsaxs," saxs_mode",saxs_mode if (nsaxs.gt.0 .and. saxs_mode.eq.0) then call e_saxs(Esaxs_constr) c write (iout,*) "From Esaxs: Esaxs_constr",Esaxs_constr else if (nsaxs.gt.0 .and. saxs_mode.gt.0) then call e_saxsC(Esaxs_constr) c write (iout,*) "From EsaxsC: Esaxs_constr",Esaxs_constr else Esaxs_constr = 0.0d0 endif C C Put energy components into an array C do i=1,n_ene energia(i)=0.0d0 enddo energia(1)=evdw #ifdef SCP14 energia(2)=evdw2-evdw2_14 energia(18)=evdw2_14 #else energia(2)=evdw2 energia(18)=0.0d0 #endif #ifdef SPLITELE energia(16)=evdw1 #else energia(3)=evdw1 #endif energia(11)=ebe energia(12)=escloc energia(13)=etors energia(14)=etors_d energia(15)=ehpb energia(17)=estr energia(19)=edihcnstr energia(21)=esccor energia(25)=Esaxs_constr c write (iout,*) "ETOTAL_SHORT before SUM_ENERGY" call flush(iout) call sum_energy(energia,.true.) c write (iout,*) "Exit ETOTAL_SHORT" call flush(iout) return end