subroutine int_to_cart c-------------------------------------------------------------- c This subroutine converts the energy derivatives from internal c coordinates to cartesian coordinates c------------------------------------------------------------- implicit real*8 (a-h,o-z) include 'DIMENSIONS' include 'COMMON.VAR' include 'COMMON.CHAIN' include 'COMMON.DERIV' include 'COMMON.GEO' include 'COMMON.LOCAL' include 'COMMON.INTERACT' include 'COMMON.MD' include 'COMMON.IOUNITS' c calculating dE/ddc1 if (nres.lt.3) return do j=1,3 gcart(j,1)=gcart(j,1)+gloc(1,icg)*dphi(j,1,4) & +gloc(nres-2,icg)*dtheta(j,1,3) if(itype(2).ne.10) then gcart(j,1)=gcart(j,1)+gloc(ialph(2,1),icg)*dalpha(j,1,2)+ & gloc(ialph(2,1)+nside,icg)*domega(j,1,2) endif enddo c Calculating the remainder of dE/ddc2 do j=1,3 gcart(j,2)=gcart(j,2)+gloc(1,icg)*dphi(j,2,4)+ & gloc(nres-2,icg)*dtheta(j,2,3)+gloc(nres-1,icg)*dtheta(j,1,4) if(itype(2).ne.10) then gcart(j,2)=gcart(j,2)+gloc(ialph(2,1),icg)*dalpha(j,2,2)+ & gloc(ialph(2,1)+nside,icg)*domega(j,2,2) endif if(itype(3).ne.10) then gcart(j,2)=gcart(j,2)+gloc(ialph(3,1),icg)*dalpha(j,1,3)+ & gloc(ialph(3,1)+nside,icg)*domega(j,1,3) endif if(nres.gt.4) then gcart(j,2)=gcart(j,2)+gloc(2,icg)*dphi(j,1,5) endif enddo c If there are only five residues if(nres.eq.5) then do j=1,3 gcart(j,3)=gcart(j,3)+gloc(1,icg)*dphi(j,3,4)+gloc(2,icg)* & dphi(j,2,5)+gloc(nres-1,icg)*dtheta(j,2,4)+gloc(nres,icg)* & dtheta(j,1,5) if(itype(3).ne.10) then gcart(j,3)=gcart(j,3)+gloc(ialph(3,1),icg)* & dalpha(j,2,3)+gloc(ialph(3,1)+nside,icg)*domega(j,2,3) endif if(itype(4).ne.10) then gcart(j,3)=gcart(j,3)+gloc(ialph(4,1),icg)* & dalpha(j,1,4)+gloc(ialph(4,1)+nside,icg)*domega(j,1,4) endif enddo endif c If there are more than five residues if(nres.gt.5) then do i=3,nres-3 do j=1,3 gcart(j,i)=gcart(j,i)+gloc(i-2,icg)*dphi(j,3,i+1) & +gloc(i-1,icg)*dphi(j,2,i+2)+ & gloc(i,icg)*dphi(j,1,i+3)+gloc(nres+i-4,icg)*dtheta(j,2,i+1)+ & gloc(nres+i-3,icg)*dtheta(j,1,i+2) if(itype(i).ne.10) then gcart(j,i)=gcart(j,i)+gloc(ialph(i,1),icg)*dalpha(j,2,i)+ & gloc(ialph(i,1)+nside,icg)*domega(j,2,i) endif if(itype(i+1).ne.10) then gcart(j,i)=gcart(j,i)+gloc(ialph(i+1,1),icg)*dalpha(j,1,i+1) & +gloc(ialph(i+1,1)+nside,icg)*domega(j,1,i+1) endif enddo enddo endif c Setting dE/ddnres-2 if(nres.gt.5) then do j=1,3 gcart(j,nres-2)=gcart(j,nres-2)+gloc(nres-4,icg)* & dphi(j,3,nres-1)+gloc(nres-3,icg)*dphi(j,2,nres) & +gloc(2*nres-6,icg)* & dtheta(j,2,nres-1)+gloc(2*nres-5,icg)*dtheta(j,1,nres) if(itype(nres-2).ne.10) then gcart(j,nres-2)=gcart(j,nres-2)+gloc(ialph(nres-2,1),icg)* & dalpha(j,2,nres-2)+gloc(ialph(nres-2,1)+nside,icg)* & domega(j,2,nres-2) endif if(itype(nres-1).ne.10) then gcart(j,nres-2)=gcart(j,nres-2)+gloc(ialph(nres-1,1),icg)* & dalpha(j,1,nres-1)+gloc(ialph(nres-1,1)+nside,icg)* & domega(j,1,nres-1) endif enddo endif c Settind dE/ddnres-1 do j=1,3 gcart(j,nres-1)=gcart(j,nres-1)+gloc(nres-3,icg)*dphi(j,3,nres)+ & gloc(2*nres-5,icg)*dtheta(j,2,nres) if(itype(nres-1).ne.10) then gcart(j,nres-1)=gcart(j,nres-1)+gloc(ialph(nres-1,1),icg)* & dalpha(j,2,nres-1)+gloc(ialph(nres-1,1)+nside,icg)* & domega(j,2,nres-1) endif enddo c The side-chain vector derivatives do i=2,nres-1 if(itype(i).ne.10) then do j=1,3 gxcart(j,i)=gxcart(j,i)+gloc(ialph(i,1),icg)*dalpha(j,3,i) & +gloc(ialph(i,1)+nside,icg)*domega(j,3,i) enddo endif enddo return end