Water micro and bere and lang with gly working with D lang not
[unres4.git] / source / unres / control.F90
1       module control
2 !-----------------------------------------------------------------------------
3       use io_units
4       use names
5       use MPI_data
6       use geometry_data
7       use energy_data
8       use control_data
9       use minim_data
10       use geometry, only:int_bounds
11 #ifndef CLUSTER
12       use csa_data
13 #ifdef WHAM_RUN
14       use wham_data
15 #endif
16 #endif
17       implicit none
18 !-----------------------------------------------------------------------------
19 ! commom.control
20 !      common /cntrl/
21 !      integer :: modecalc,iscode,indpdb,indback,indphi,iranconf,&
22 !       icheckgrad,iprint,i2ndstr,mucadyn,constr_dist,symetr
23 !      logical :: minim,refstr,pdbref,outpdb,outmol2,overlapsc,&
24 !       energy_dec,sideadd,lsecondary,read_cart,unres_pdb,&
25 !       vdisulf,searchsc,lmuca,dccart,extconf,out1file,&
26 !       gnorm_check,gradout,split_ene
27 !... minim = .true. means DO minimization.
28 !... energy_dec = .true. means print energy decomposition matrix
29 !-----------------------------------------------------------------------------
30 ! common.time1
31 !     FOUND_NAN - set by calcf to stop sumsl via stopx
32 !      COMMON/TIME1/
33       real(kind=8) :: STIME,BATIME,PREVTIM,RSTIME
34 !el      real(kind=8) :: TIMLIM,SAFETY
35 !el      real(kind=8) :: WALLTIME
36 !      COMMON/STOPTIM/
37       integer :: ISTOP
38 !      common /sumsl_flag/
39       logical :: FOUND_NAN
40 !      common /timing/
41       real(kind=8) :: t_init
42 !       time_bcast,time_reduce,time_gather,&
43 !       time_sendrecv,time_barrier_e,time_barrier_g,time_scatter,&
44        !t_eelecij,
45 !       time_allreduce,&
46 !       time_lagrangian,time_cartgrad,&
47 !       time_sumgradient,time_intcartderiv,time_inttocart,time_intfcart,&
48 !       time_mat,time_fricmatmult,&
49 !       time_scatter_fmat,time_scatter_ginv,&
50 !       time_scatter_fmatmult,time_scatter_ginvmult,&
51 !       t_eshort,t_elong,t_etotal
52 !-----------------------------------------------------------------------------
53 ! initialize_p.F
54 !-----------------------------------------------------------------------------
55 !      block data
56 !      integer,parameter :: MaxMoveType = 4
57 !      character(len=14),dimension(-1:MaxMoveType+1) :: MovTypID=(/'pool','chain regrow',&
58 !      character :: MovTypID(-1:MaxMoveType+1)=(/'pool','chain regrow',&
59 !       'multi-bond','phi','theta','side chain','total'/)
60 ! Conversion from poises to molecular unit and the gas constant
61 !el      real(kind=8) :: cPoise=2.9361d0, Rb=0.001986d0
62 !-----------------------------------------------------------------------------
63 !      common /przechowalnia/ subroutines: init_int_table,add_int,add_int_from
64       integer,dimension(:),allocatable :: iturn3_start_all,&
65         iturn3_end_all,iturn4_start_all,iturn4_end_all,iatel_s_all,&
66         iatel_e_all !(0:max_fg_procs)
67       integer,dimension(:,:),allocatable :: ielstart_all,&
68         ielend_all !(maxres,0:max_fg_procs-1)
69
70 !      common /przechowalnia/ subroutine: init_int_table
71       integer,dimension(:),allocatable :: ntask_cont_from_all,&
72         ntask_cont_to_all !(0:max_fg_procs-1)
73       integer,dimension(:,:),allocatable :: itask_cont_from_all,&
74         itask_cont_to_all !(0:max_fg_procs-1,0:max_fg_procs-1)
75 !-----------------------------------------------------------------------------
76 !
77 !
78 !-----------------------------------------------------------------------------
79       contains
80 !-----------------------------------------------------------------------------
81 ! initialize_p.F
82 !-----------------------------------------------------------------------------
83       subroutine initialize
84 !
85 ! Define constants and zero out tables.
86 !
87       use comm_iofile
88       use comm_machsw
89       use MCM_data, only: MovTypID
90 !      implicit real*8 (a-h,o-z)
91 !      include 'DIMENSIONS'
92 #ifdef MPI
93       include 'mpif.h'
94 #endif
95 #ifndef ISNAN
96       external proc_proc
97 #ifdef WINPGI
98 !MS$ATTRIBUTES C ::  proc_proc
99 #endif
100 #endif
101 !      include 'COMMON.IOUNITS'
102 !      include 'COMMON.CHAIN'
103 !      include 'COMMON.INTERACT'
104 !      include 'COMMON.GEO'
105 !      include 'COMMON.LOCAL'
106 !      include 'COMMON.TORSION'
107 !      include 'COMMON.FFIELD'
108 !      include 'COMMON.SBRIDGE'
109 !      include 'COMMON.MCM'
110 !      include 'COMMON.MINIM' 
111 !      include 'COMMON.DERIV'
112 !      include 'COMMON.SPLITELE'
113 !      implicit none
114 ! Common blocks from the diagonalization routines
115 !el      integer :: IR,IW,IP,IJK,IPK,IDAF,NAV,IODA(400)
116 !el      integer :: KDIAG,ICORFL,IXDR
117 !el      COMMON /IOFILE/ IR,IW,IP,IJK,IPK,IDAF,NAV,IODA
118 !el      COMMON /MACHSW/ KDIAG,ICORFL,IXDR
119       logical :: mask_r
120 !      real*8 text1 /'initial_i'/
121       real(kind=4) :: rr
122
123 !local variables el
124       integer :: i,j,k,l,ichir1,ichir2,iblock,m,maxit
125
126 #if .not. defined(WHAM_RUN) && .not. defined(CLUSTER)
127       mask_r=.false.
128 #ifndef ISNAN
129 ! NaNQ initialization
130       i=-1
131       rr=dacos(100.0d0)
132 #ifdef WINPGI
133       idumm=proc_proc(rr,i)
134 #elif defined(WHAM_RUN)
135       call proc_proc(rr,i)
136 #endif
137 #endif
138
139       kdiag=0
140       icorfl=0
141       iw=2
142       
143       allocate(MovTypID(-1:MaxMoveType+1))
144       MovTypID=(/'pool          ','chain regrow  ',&
145        'multi-bond    ','phi           ','theta         ',&
146        'side chain    ','total         '/)
147 #endif
148 !
149 ! The following is just to define auxiliary variables used in angle conversion
150 !
151 !      ifirstrun=0
152       pi=4.0D0*datan(1.0D0)
153       dwapi=2.0D0*pi
154       dwapi3=dwapi/3.0D0
155       pipol=0.5D0*pi
156       deg2rad=pi/180.0D0
157       rad2deg=1.0D0/deg2rad
158       angmin=10.0D0*deg2rad
159 !el#ifdef CLUSTER
160 !el      Rgas = 1.987D-3
161 !el#endif
162 !
163 ! Define I/O units.
164 !
165       inp=    1
166       iout=   2
167       ipdbin= 3
168       ipdb=   7
169 #ifdef CLUSTER
170       imol2= 18
171       jplot= 19
172 !el      jstatin=10
173       imol2=  4
174       jrms=30
175 #else
176       icart = 30
177       imol2=  4
178       ithep_pdb=51
179       irotam_pdb=52
180       irest1=55
181       irest2=56
182       iifrag=57
183       ientin=18
184       ientout=19
185 !rc for write_rmsbank1  
186       izs1=21
187 !dr  include secondary structure prediction bias
188       isecpred=27
189 #endif
190       igeom=  8
191       intin=  9
192       ithep= 11
193       irotam=12
194       itorp= 13
195       itordp= 23
196       ielep= 14
197       isidep=15
198 #if defined(WHAM_RUN) || defined(CLUSTER)
199       isidep1=22 !wham
200 #else
201 !
202 ! CSA I/O units (separated from others especially for Jooyoung)
203 !
204       icsa_rbank=30
205       icsa_seed=31
206       icsa_history=32
207       icsa_bank=33
208       icsa_bank1=34
209       icsa_alpha=35
210       icsa_alpha1=36
211       icsa_bankt=37
212       icsa_int=39
213       icsa_bank_reminimized=38
214       icsa_native_int=41
215       icsa_in=40
216 !rc for ifc error 118
217       icsa_pdb=42
218       irotam_end=43
219 #endif
220       iscpp=25
221       icbase=16
222       ifourier=20
223       istat= 17
224       ibond = 28
225       isccor = 29
226 #ifdef WHAM_RUN
227 !
228 ! WHAM files
229 !
230       ihist=30
231       iweight=31
232       izsc=32
233 #endif
234       ibond_nucl=126
235       ithep_nucl=127
236       irotam_nucl=128
237       itorp_nucl= 129
238       itordp_nucl= 130
239 !      ielep_nucl= 131
240       isidep_nucl=132
241       iscpp_nucl=133
242       isidep_scbase=141
243       isidep_pepbase=142
244       isidep_scpho=143
245       isidep_peppho=144
246
247       iliptranpar=60
248       
249       itube=61
250 !     LIPID MARTINI
251       ilipbond=301
252       ilipnonbond=302
253 !     IONS
254       iion=401
255       iionnucl=402
256       iiontran=403 ! this is parameter file for transition metals
257       iwaterwater=404
258       iwatersc=405
259 #if defined(WHAM_RUN) || defined(CLUSTER)
260 !
261 ! setting the mpi variables for WHAM
262 !
263       fgprocs=1
264       nfgtasks=1
265       nfgtasks1=1
266 #endif
267 !
268 ! Set default weights of the energy terms.
269 !
270       wsc=1.0D0 ! in wham:  wlong=1.0D0
271       welec=1.0D0
272       wtor =1.0D0
273       wang =1.0D0
274       wscloc=1.0D0
275       wstrain=1.0D0
276 !
277 ! Zero out tables.
278 !
279 !      print '(a,$)','Inside initialize'
280 !      call memmon_print_usage()
281       
282 !      do i=1,maxres2
283 !       do j=1,3
284 !         c(j,i)=0.0D0
285 !         dc(j,i)=0.0D0
286 !       enddo
287 !      enddo
288 !      do i=1,maxres
289 !       do j=1,3
290 !         xloc(j,i)=0.0D0
291 !        enddo
292 !      enddo
293 !      do i=1,ntyp
294 !       do j=1,ntyp
295 !         aa(i,j)=0.0D0
296 !         bb(i,j)=0.0D0
297 !         augm(i,j)=0.0D0
298 !         sigma(i,j)=0.0D0
299 !         r0(i,j)=0.0D0
300 !         chi(i,j)=0.0D0
301 !        enddo
302 !       do j=1,2
303 !         bad(i,j)=0.0D0
304 !        enddo
305 !       chip(i)=0.0D0
306 !       alp(i)=0.0D0
307 !       sigma0(i)=0.0D0
308 !       sigii(i)=0.0D0
309 !       rr0(i)=0.0D0
310 !       a0thet(i)=0.0D0
311 !       do j=1,2
312 !         do ichir1=-1,1
313 !          do ichir2=-1,1
314 !          athet(j,i,ichir1,ichir2)=0.0D0
315 !          bthet(j,i,ichir1,ichir2)=0.0D0
316 !          enddo
317 !         enddo
318 !        enddo
319 !        do j=0,3
320 !         polthet(j,i)=0.0D0
321 !        enddo
322 !       do j=1,3
323 !         gthet(j,i)=0.0D0
324 !        enddo
325 !       theta0(i)=0.0D0
326 !       sig0(i)=0.0D0
327 !       sigc0(i)=0.0D0
328 !       do j=1,maxlob
329 !         bsc(j,i)=0.0D0
330 !         do k=1,3
331 !           censc(k,j,i)=0.0D0
332 !          enddo
333 !          do k=1,3
334 !           do l=1,3
335 !             gaussc(l,k,j,i)=0.0D0
336 !            enddo
337 !          enddo
338 !         nlob(i)=0
339 !        enddo
340 !      enddo
341 !      nlob(ntyp1)=0
342 !      dsc(ntyp1)=0.0D0
343 !      do i=-maxtor,maxtor
344 !        itortyp(i)=0
345 !c      write (iout,*) "TU DOCHODZE",i,itortyp(i)
346 !       do iblock=1,2
347 !        do j=-maxtor,maxtor
348 !          do k=1,maxterm
349 !            v1(k,j,i,iblock)=0.0D0
350 !            v2(k,j,i,iblock)=0.0D0
351 !          enddo
352 !        enddo
353 !        enddo
354 !      enddo
355 !      do iblock=1,2
356 !       do i=-maxtor,maxtor
357 !        do j=-maxtor,maxtor
358 !         do k=-maxtor,maxtor
359 !          do l=1,maxtermd_1
360 !            v1c(1,l,i,j,k,iblock)=0.0D0
361 !            v1s(1,l,i,j,k,iblock)=0.0D0
362 !            v1c(2,l,i,j,k,iblock)=0.0D0
363 !            v1s(2,l,i,j,k,iblock)=0.0D0
364 !          enddo !l
365 !          do l=1,maxtermd_2
366 !           do m=1,maxtermd_2
367 !            v2c(m,l,i,j,k,iblock)=0.0D0
368 !            v2s(m,l,i,j,k,iblock)=0.0D0
369 !           enddo !m
370 !          enddo !l
371 !        enddo !k
372 !       enddo !j
373 !      enddo !i
374 !      enddo !iblock
375
376 !      do i=1,maxres
377 !       itype(i,1)=0
378 !       itel(i)=0
379 !      enddo
380 ! Initialize the bridge arrays
381       ns=0
382       nss=0 
383       nhpb=0
384 !      do i=1,maxss
385 !       iss(i)=0
386 !      enddo
387 !      do i=1,maxdim
388 !       dhpb(i)=0.0D0
389 !      enddo
390 !      do i=1,maxres
391 !       ihpb(i)=0
392 !       jhpb(i)=0
393 !      enddo
394 !
395 ! Initialize timing.
396 !
397       call set_timers
398 !
399 ! Initialize variables used in minimization.
400 !   
401 !c     maxfun=5000
402 !c     maxit=2000
403       maxfun=1000
404       maxit=1000
405       tolf=1.0D-2
406       rtolf=5.0D-4
407
408 ! Initialize the variables responsible for the mode of gradient storage.
409 !
410       nfl=0
411       icg=1
412       
413 #ifdef WHAM_RUN
414       allocate(iww(max_eneW))
415       do i=1,14
416         do j=1,14
417           if (print_order(i).eq.j) then
418             iww(print_order(i))=j
419             goto 1121
420           endif
421         enddo
422 1121    continue
423       enddo
424 #endif
425  
426 #if defined(WHAM_RUN) || defined(CLUSTER)
427       ndih_constr=0
428
429 !      allocate(ww0(max_eneW))
430 !      ww0 = reshape((/1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,&
431 !          1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,0.4d0,1.0d0,&
432 !          1.0d0,0.0d0,0.0/), shape(ww0))
433 !
434       calc_grad=.false.
435 ! Set timers and counters for the respective routines
436       t_func = 0.0d0
437       t_grad = 0.0d0
438       t_fhel = 0.0d0
439       t_fbet = 0.0d0
440       t_ghel = 0.0d0
441       t_gbet = 0.0d0
442       t_viol = 0.0d0
443       t_gviol = 0.0d0
444       n_func = 0
445       n_grad = 0
446       n_fhel = 0
447       n_fbet = 0
448       n_ghel = 0
449       n_gbet = 0
450       n_viol = 0
451       n_gviol = 0
452       n_map = 0
453 #endif
454 !
455 ! Initialize constants used to split the energy into long- and short-range
456 ! components
457 !
458       r_cut=2.0d0
459       rlamb=0.3d0
460 #ifndef SPLITELE
461       nprint_ene=nprint_ene-1
462 #endif
463       return
464       end subroutine initialize
465 !-----------------------------------------------------------------------------
466       subroutine init_int_table
467
468       use geometry, only:int_bounds1
469 !el      use MPI_data
470 !el      implicit none
471 !      implicit real*8 (a-h,o-z)
472 !      include 'DIMENSIONS'
473 #ifdef MPI
474       include 'mpif.h'
475       integer,dimension(15) :: blocklengths,displs
476 #endif
477 !      include 'COMMON.CONTROL'
478 !      include 'COMMON.SETUP'
479 !      include 'COMMON.CHAIN'
480 !      include 'COMMON.INTERACT'
481 !      include 'COMMON.LOCAL'
482 !      include 'COMMON.SBRIDGE'
483 !      include 'COMMON.TORCNSTR'
484 !      include 'COMMON.IOUNITS'
485 !      include 'COMMON.DERIV'
486 !      include 'COMMON.CONTACTS'
487 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,&
488 !el        iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all  !(0:max_fg_procs)
489 !el      integer,dimension(nres,0:nfgtasks) :: ielstart_all,&
490 !el        ielend_all !(maxres,0:max_fg_procs-1)
491 !el      integer,dimension(0:nfgtasks-1) :: ntask_cont_from_all,&
492 !el        ntask_cont_to_all !(0:max_fg_procs-1),
493 !el      integer,dimension(0:nfgtasks-1,0:nfgtasks-1) :: itask_cont_from_all,&
494 !el        itask_cont_to_all !(0:max_fg_procs-1,0:max_fg_procs-1)
495
496 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,&
497 !el        iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all,&
498 !el        ielstart_all,ielend_all,ntask_cont_from_all,itask_cont_from_all,&
499 !el        ntask_cont_to_all,itask_cont_to_all
500
501       integer :: FG_GROUP,CONT_FROM_GROUP,CONT_TO_GROUP
502       logical :: scheck,lprint,flag
503
504 !el local variables
505       integer :: ind_scint=0,ind_scint_old,ii,jj,i,j,iint,itmp
506       integer :: ind_scint_nucl=0
507 #ifdef MPI
508       integer :: my_sc_int(0:nfgtasks-1),my_ele_int(0:nfgtasks-1)
509       integer :: my_sc_intt(0:nfgtasks),my_ele_intt(0:nfgtasks)
510       integer :: n_sc_int_tot,my_sc_inde,my_sc_inds,ind_sctint,npept
511       integer :: n_sc_int_tot_nucl,my_sc_inde_nucl,my_sc_inds_nucl, &
512          ind_sctint_nucl,npept_nucl
513
514       integer :: nele_int_tot,my_ele_inds,my_ele_inde,ind_eleint_old,&
515             ind_eleint,ijunk,nele_int_tot_vdw,my_ele_inds_vdw,&
516             my_ele_inde_vdw,ind_eleint_vdw,ind_eleint_vdw_old,&
517             nscp_int_tot,my_scp_inds,my_scp_inde,ind_scpint,&
518             ind_scpint_old,nsumgrad,nlen,ngrad_start,ngrad_end,&
519             ierror,k,ierr,iaux,ncheck_to,ncheck_from,ind_typ,&
520             ichunk,int_index_old,ibra
521       integer :: nele_int_tot_nucl,my_ele_inds_nucl,my_ele_inde_nucl,&
522             ind_eleint_old_nucl,ind_eleint_nucl,nele_int_tot_vdw_nucl,&
523             my_ele_inds_vdw_nucl,my_ele_inde_vdw_nucl,ind_eleint_vdw_nucl,&
524             ind_eleint_vdw_old_nucl,nscp_int_tot_nucl,my_scp_inds_nucl,&
525             my_scp_inde_nucl,ind_scpint_nucl,ind_scpint_old_nucl,impishi
526        integer(kind=1),dimension(:,:),allocatable :: remmat
527 !      integer,dimension(5) :: nct_molec,nnt_molec
528 !el      allocate(itask_cont_from(0:nfgtasks-1)) !(0:max_fg_procs-1)
529 !el      allocate(itask_cont_to(0:nfgtasks-1)) !(0:max_fg_procs-1)
530
531 !... Determine the numbers of start and end SC-SC interaction
532 !... to deal with by current processor.
533 !write (iout,*) '******INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
534       print *,"in spliting contacts"
535       do i=0,nfgtasks-1
536         itask_cont_from(i)=fg_rank
537         itask_cont_to(i)=fg_rank
538       enddo
539       lprint=energy_dec
540       itmp=0
541       do i=1,5
542        print *,i,nres_molec(i)
543        if (nres_molec(i).eq.0) cycle
544       itmp=itmp+nres_molec(i)
545       if (itype(itmp,i).eq.ntyp1_molec(i)) then
546       nct_molec(i)=itmp-1
547       else
548       nct_molec(i)=itmp
549       endif
550       enddo
551 !      nct_molec(1)=nres_molec(1)-1
552       itmp=0
553       do i=2,5
554        itmp=itmp+nres_molec(i-1)
555       if (itype(itmp+1,i).eq.ntyp1_molec(i)) then
556       nnt_molec(i)=itmp+2
557       else
558       nnt_molec(i)=itmp+1
559       endif
560       enddo
561 !      if (.not.allocated(nres_molec)) print *,"WHATS WRONG"
562       print *,"nres_molec",nres_molec(:)
563       print *,"nnt_molec",nnt_molec(:)
564       print *,"nct_molec",nct_molec(:)
565 !      lprint=.true.
566       if (lprint) &
567        write (iout,*)'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
568       n_sc_int_tot=(nct_molec(1)-nnt+1)*(nct_molec(1)-nnt)/2-nss
569       call int_bounds(n_sc_int_tot,my_sc_inds,my_sc_inde)
570 !write (iout,*) 'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
571       if (lprint) &
572         write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
573         ' absolute rank',MyRank,&
574         ' n_sc_int_tot',n_sc_int_tot,' my_sc_inds=',my_sc_inds,&
575         ' my_sc_inde',my_sc_inde
576       ind_sctint=0
577       iatsc_s=0
578       iatsc_e=0
579 #endif
580         if(.not.allocated(ielstart_all)) then
581 !el       common /przechowalnia/
582       allocate(iturn3_start_all(0:nfgtasks))
583       allocate(iturn3_end_all(0:nfgtasks))
584       allocate(iturn4_start_all(0:nfgtasks))
585       allocate(iturn4_end_all(0:nfgtasks))
586       allocate(iatel_s_all(0:nfgtasks))
587       allocate(iatel_e_all(0:nfgtasks))
588       allocate(ielstart_all(nres,0:nfgtasks-1))
589       allocate(ielend_all(nres,0:nfgtasks-1))
590
591       allocate(ntask_cont_from_all(0:nfgtasks-1))
592       allocate(ntask_cont_to_all(0:nfgtasks-1))
593       allocate(itask_cont_from_all(0:nfgtasks-1,0:nfgtasks-1))
594       allocate(itask_cont_to_all(0:nfgtasks-1,0:nfgtasks-1))
595 !el----------
596       endif
597 !      lprint=.false.
598         print *,"NCT",nct_molec(1),nct
599       do i=1,nres !el   !maxres
600         nint_gr(i)=0
601         nscp_gr(i)=0
602         ielstart(i)=0
603         ielend(i)=0
604         do j=1,maxint_gr
605           istart(i,j)=0
606           iend(i,j)=0
607           iscpstart(i,j)=0
608           iscpend(i,j)=0    
609         enddo
610       enddo
611       ind_scint=0
612       ind_scint_old=0
613 !d    write (iout,*) 'ns=',ns,' nss=',nss,' ihpb,jhpb',
614 !d   &   (ihpb(i),jhpb(i),i=1,nss)
615 !       print *,nnt,nct_molec(1)
616       do i=nnt,nct_molec(1)-1
617 !        print*, "inloop",i
618         scheck=.false.
619         if (dyn_ss) goto 10
620         do ii=1,nss
621           if (ihpb(ii).eq.i+nres) then
622             scheck=.true.
623             jj=jhpb(ii)-nres
624             goto 10
625           endif
626         enddo
627    10   continue
628 !        print *,'i=',i,' scheck=',scheck,' jj=',jj
629 !d      write (iout,*) 'i=',i,' scheck=',scheck,' jj=',jj
630         if (scheck) then
631           if (jj.eq.i+1) then
632 #ifdef MPI
633 !            write (iout,*) 'jj=i+1'
634             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
635        iatsc_s,iatsc_e,i+2,nct_molec(1),nint_gr(i),istart(i,1),iend(i,1),*12)
636 #else
637             nint_gr(i)=1
638             istart(i,1)=i+2
639             iend(i,1)=nct
640 #endif
641           else if (jj.eq.nct_molec(1)) then
642 #ifdef MPI
643 !            write (iout,*) 'jj=nct'
644             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
645         iatsc_s,iatsc_e,i+1,nct_molec(1)-1,nint_gr(i),istart(i,1),iend(i,1),*12)
646 #else
647             nint_gr(i)=1
648             istart(i,1)=i+1
649             iend(i,1)=nct_molecule(1)-1
650 #endif
651           else
652 #ifdef MPI
653             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
654        iatsc_s,iatsc_e,i+1,jj-1,nint_gr(i),istart(i,1),iend(i,1),*12)
655             ii=nint_gr(i)+1
656             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
657        iatsc_s,iatsc_e,jj+1,nct_molec(1),nint_gr(i),istart(i,ii),iend(i,ii),*12)
658          
659 #else
660             nint_gr(i)=2
661             istart(i,1)=i+1
662             iend(i,1)=jj-1
663             istart(i,2)=jj+1
664             iend(i,2)=nct_molec(1)
665 #endif
666           endif
667         else
668 #ifdef MPI
669 !          print *,"i for EVDW",iatsc_s,iatsc_e,istart(i,1),iend(i,1),&
670 !          i+1,nct_molec(1),nint_gr(i),ind_scint,my_sc_inds,my_sc_inde,i
671           call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
672           iatsc_s,iatsc_e,i+1,nct_molec(1),nint_gr(i), &
673           istart(i,1),iend(i,1),*12)
674 !          print *,"i for EVDW",iatsc_s,iatsc_e,istart(i,1),iend(i,1)
675 #else
676           nint_gr(i)=1
677           istart(i,1)=i+1
678           iend(i,1)=nct_molec(1)
679           ind_scint=ind_scint+nct_molec(1)-i
680 #endif
681         endif
682 #ifdef MPI
683         ind_scint_old=ind_scint
684 #endif
685       enddo
686    12 continue
687 !      print *,"i for EVDW",iatsc_s,iatsc_e,istart(i,1),iend(i,1)
688
689 #ifndef MPI
690       iatsc_s=nnt
691       iatsc_e=nct-1
692 #endif
693       if (iatsc_s.eq.0) iatsc_s=1
694 !----------------- scaling for nucleic acid GB
695       n_sc_int_tot_nucl=(nct_molec(2)-nnt_molec(2)+1)*(nct_molec(2)-nnt_molec(2))/2
696       call int_bounds(n_sc_int_tot_nucl,my_sc_inds_nucl,my_sc_inde_nucl)
697 !write (iout,*) 'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
698       if (lprint) &
699         write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
700         ' absolute rank',MyRank,&
701         ' n_sc_int_tot',n_sc_int_tot_nucl,' my_sc_inds=',my_sc_inds_nucl,&
702         ' my_sc_inde',my_sc_inde_nucl
703       ind_sctint_nucl=0
704       iatsc_s_nucl=0
705       iatsc_e_nucl=0
706       do i=1,nres !el   !maxres
707         nint_gr_nucl(i)=0
708         nscp_gr_nucl(i)=0
709         ielstart_nucl(i)=0
710         ielend_nucl(i)=0
711         do j=1,maxint_gr
712           istart_nucl(i,j)=0
713           iend_nucl(i,j)=0
714           iscpstart_nucl(i,j)=0
715           iscpend_nucl(i,j)=0
716         enddo
717       enddo
718       do i=nnt_molec(2),nct_molec(2)-1
719         print*, "inloop2",i
720       call int_partition(ind_scint_nucl,my_sc_inds_nucl,my_sc_inde_nucl,i,&
721            iatsc_s_nucl,iatsc_e_nucl,i+1,nct_molec(2),nint_gr_nucl(i), &
722            istart_nucl(i,1),iend_nucl(i,1),*112)
723         print *,istart_nucl(i,1)
724       enddo
725   112  continue
726        if (iatsc_s_nucl.eq.0) iatsc_s_nucl=1
727        print *,"tu mam",iatsc_s_nucl,iatsc_e_nucl
728
729 #ifdef MPI
730       if (lprint) write (*,*) 'Processor',fg_rank,' CG Group',kolor,&
731          ' absolute rank',myrank,' iatsc_s=',iatsc_s,' iatsc_e=',iatsc_e
732 #endif
733 !      lprint=.true.
734       if (lprint) then
735       write (iout,'(a)') 'Interaction array:'
736       do i=iatsc_s,iatsc_e
737         write (iout,'(i3,2(2x,2i3))') &
738        i,(istart(i,iint),iend(i,iint),iint=1,nint_gr(i))
739       enddo
740 !      endif
741 !      lprint=.false.
742       write (iout,'(a)') 'Interaction array2:' 
743       do i=iatsc_s_nucl,iatsc_e_nucl
744         write (iout,'(i3,2(2x,2i4))') &
745        i,(istart_nucl(i,iint),iend_nucl(i,iint),iint=1,nint_gr_nucl(i))
746       enddo
747       endif
748       ispp=4 !?? wham ispp=2
749 #ifdef MPI
750 ! Now partition the electrostatic-interaction array
751       if (nres_molec(1).eq.0) then  
752        npept=0
753       elseif (itype(nres_molec(1),1).eq.ntyp1_molec(1)) then
754       npept=nres_molec(1)-nnt-1
755       else
756       npept=nres_molec(1)-nnt
757       endif
758       nele_int_tot=(npept-ispp)*(npept-ispp+1)/2
759       call int_bounds(nele_int_tot,my_ele_inds,my_ele_inde)
760       if (lprint) &
761        write (*,*) 'Processor',fg_rank,' CG group',kolor,&
762         ' absolute rank',MyRank,&
763         ' nele_int_tot',nele_int_tot,' my_ele_inds=',my_ele_inds,&
764                     ' my_ele_inde',my_ele_inde
765       iatel_s=0
766       iatel_e=0
767       ind_eleint=0
768       ind_eleint_old=0
769 !      if (itype(nres_molec(1),1).eq.ntyp1_molec(1)) then
770 !      nct_molec(1)=nres_molec(1)-1
771 !      else
772 !      nct_molec(1)=nres_molec(1)
773 !      endif
774 !       print *,"nct",nct,nct_molec(1),itype(nres_molec(1),1),ntyp_molec(1)
775       do i=nnt,nct_molec(1)-3
776         ijunk=0
777         call int_partition(ind_eleint,my_ele_inds,my_ele_inde,i,&
778           iatel_s,iatel_e,i+ispp,nct_molec(1)-1,ijunk,ielstart(i),ielend(i),*13)
779       enddo ! i 
780    13 continue
781       if (iatel_s.eq.0) iatel_s=1
782 !----------now nucleic acid
783 !     if (itype(nres_molec(2),2).eq.ntyp1_molec(2)) then
784       npept_nucl=nct_molec(2)-nnt_molec(2)
785 !     else
786 !     npept_nucl=nct_molec(2)-nnt_molec(2)
787 !     endif
788       nele_int_tot_nucl=(npept_nucl-ispp)*(npept_nucl-ispp+1)/2
789       call int_bounds(nele_int_tot_nucl,my_ele_inds_nucl,my_ele_inde_nucl)
790       if (lprint) &
791        write (*,*) 'Processor',fg_rank,' CG group',kolor,&
792         ' absolute rank',MyRank,&
793         ' nele_int_tot',nele_int_tot,' my_ele_inds=',my_ele_inds,&
794                     ' my_ele_inde',my_ele_inde
795       iatel_s_nucl=0
796       iatel_e_nucl=0
797       ind_eleint_nucl=0
798       ind_eleint_old_nucl=0
799 !      if (itype(nres_molec(1),1).eq.ntyp1_molec(1)) then
800 !      nct_molec(1)=nres_molec(1)-1
801 !      else
802 !      nct_molec(1)=nres_molec(1)
803 !      endif
804 !       print *,"nct",nct,nct_molec(1),itype(nres_molec(1),1),ntyp_molec(1)
805       do i=nnt_molec(2),nct_molec(2)-3
806         ijunk=0
807         call int_partition(ind_eleint_nucl,my_ele_inds_nucl,my_ele_inde_nucl,i,&
808           iatel_s_nucl,iatel_e_nucl,i+ispp,nct_molec(2)-1,&
809           ijunk,ielstart_nucl(i),ielend_nucl(i),*113)
810       enddo ! i 
811   113 continue
812       if (iatel_s_nucl.eq.0) iatel_s_nucl=1
813
814       nele_int_tot_vdw=(npept-2)*(npept-2+1)/2
815 !      write (iout,*) "nele_int_tot_vdw",nele_int_tot_vdw
816       call int_bounds(nele_int_tot_vdw,my_ele_inds_vdw,my_ele_inde_vdw)
817 !      write (iout,*) "my_ele_inds_vdw",my_ele_inds_vdw,
818 !     & " my_ele_inde_vdw",my_ele_inde_vdw
819       ind_eleint_vdw=0
820       ind_eleint_vdw_old=0
821       iatel_s_vdw=0
822       iatel_e_vdw=0
823       do i=nnt,nct_molec(1)-3
824         ijunk=0
825         call int_partition(ind_eleint_vdw,my_ele_inds_vdw,&
826           my_ele_inde_vdw,i,&
827           iatel_s_vdw,iatel_e_vdw,i+2,nct_molec(1)-1,ijunk,ielstart_vdw(i),&
828           ielend_vdw(i),*15)
829 !        write (iout,*) i," ielstart_vdw",ielstart_vdw(i),
830 !     &   " ielend_vdw",ielend_vdw(i)
831       enddo ! i 
832       if (iatel_s_vdw.eq.0) iatel_s_vdw=1
833    15 continue
834       if (iatel_s.eq.0) iatel_s=1
835       if (iatel_s_vdw.eq.0) iatel_s_vdw=1
836       nele_int_tot_vdw_nucl=(npept_nucl-2)*(npept_nucl-2+1)/2
837 !      write (iout,*) "nele_int_tot_vdw",nele_int_tot_vdw
838       call int_bounds(nele_int_tot_vdw_nucl,my_ele_inds_vdw_nucl,&
839         my_ele_inde_vdw_nucl)
840 !      write (iout,*) "my_ele_inds_vdw",my_ele_inds_vdw,
841 !     & " my_ele_inde_vdw",my_ele_inde_vdw
842       ind_eleint_vdw_nucl=0
843       ind_eleint_vdw_old_nucl=0
844       iatel_s_vdw_nucl=0
845       iatel_e_vdw_nucl=0
846       do i=nnt_molec(2),nct_molec(2)-3
847         ijunk=0
848         call int_partition(ind_eleint_vdw_nucl,my_ele_inds_vdw_nucl,&
849           my_ele_inde_vdw_nucl,i,&
850           iatel_s_vdw_nucl,iatel_e_vdw_nucl,i+2,nct_molec(2)-1,&
851           ijunk,ielstart_vdw_nucl(i),&
852           ielend_vdw(i),*115)
853 !        write (iout,*) i," ielstart_vdw",ielstart_vdw(i),
854 !     &   " ielend_vdw",ielend_vdw(i)
855       enddo ! i 
856       if (iatel_s_vdw.eq.0) iatel_s_vdw_nucl=1
857   115 continue
858
859 #else
860       iatel_s=nnt
861       iatel_e=nct_molec(1)-5 ! ?? wham iatel_e=nct-3
862       do i=iatel_s,iatel_e
863         ielstart(i)=i+4 ! ?? wham +2
864         ielend(i)=nct_molec(1)-1
865       enddo
866       iatel_s_vdw=nnt
867       iatel_e_vdw=nct_molec(1)-3
868       do i=iatel_s_vdw,iatel_e_vdw
869         ielstart_vdw(i)=i+2
870         ielend_vdw(i)=nct_molec(1)-1
871       enddo
872 #endif
873       if (lprint) then
874         write (*,'(a)') 'Processor',fg_rank,' CG group',kolor,&
875         ' absolute rank',MyRank
876         write (iout,*) 'Electrostatic interaction array:'
877         do i=iatel_s,iatel_e
878           write (iout,'(i3,2(2x,2i3))') i,ielstart(i),ielend(i)
879         enddo
880       endif ! lprint
881 !     iscp=3
882       iscp=2
883       iscp_nucl=2
884 ! Partition the SC-p interaction array
885 #ifdef MPI
886       nscp_int_tot=(npept-iscp+1)*(npept-iscp+1)
887       call int_bounds(nscp_int_tot,my_scp_inds,my_scp_inde)
888       if (lprint) write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
889         ' absolute rank',myrank,&
890         ' nscp_int_tot',nscp_int_tot,' my_scp_inds=',my_scp_inds,&
891                     ' my_scp_inde',my_scp_inde
892       iatscp_s=0
893       iatscp_e=0
894       ind_scpint=0
895       ind_scpint_old=0
896       do i=nnt,nct_molec(1)-1
897         if (i.lt.nnt+iscp) then
898 !d        write (iout,*) 'i.le.nnt+iscp'
899           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
900             iatscp_s,iatscp_e,i+iscp,nct_molec(1),nscp_gr(i),iscpstart(i,1),&
901             iscpend(i,1),*14)
902         else if (i.gt.nct-iscp) then
903 !d        write (iout,*) 'i.gt.nct-iscp'
904           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
905             iatscp_s,iatscp_e,nnt,i-iscp,nscp_gr(i),iscpstart(i,1),&
906             iscpend(i,1),*14)
907         else
908           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
909             iatscp_s,iatscp_e,nnt,i-iscp,nscp_gr(i),iscpstart(i,1),&
910            iscpend(i,1),*14)
911           ii=nscp_gr(i)+1
912           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
913             iatscp_s,iatscp_e,i+iscp,nct_molec(1),nscp_gr(i),iscpstart(i,ii),&
914             iscpend(i,ii),*14)
915         endif
916       enddo ! i
917    14 continue
918       print *,"before inloop3",iatscp_s,iatscp_e,iscp_nucl
919       nscp_int_tot_nucl=(npept_nucl-iscp_nucl+1)*(npept_nucl-iscp_nucl+1)
920       call int_bounds(nscp_int_tot_nucl,my_scp_inds_nucl,my_scp_inde_nucl)
921       if (lprint) write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
922         ' absolute rank',myrank,&
923         ' nscp_int_tot',nscp_int_tot_nucl,' my_scp_inds=',my_scp_inds_nucl,&
924                     ' my_scp_inde',my_scp_inde_nucl
925       print *,"nscp_int_tot_nucl",nscp_int_tot_nucl,my_scp_inds_nucl,my_scp_inde_nucl
926       iatscp_s_nucl=0
927       iatscp_e_nucl=0
928       ind_scpint_nucl=0
929       ind_scpint_old_nucl=0
930       do i=nnt_molec(2),nct_molec(2)-1
931         print *,"inloop3",i,nnt_molec(2)+iscp,nct_molec(2)-iscp
932         if (i.lt.nnt_molec(2)+iscp) then
933 !d        write (iout,*) 'i.le.nnt+iscp'
934           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
935             my_scp_inde_nucl,i,iatscp_s_nucl,iatscp_e_nucl,i+iscp,&
936             nct_molec(2),nscp_gr_nucl(i),iscpstart_nucl(i,1),&
937             iscpend_nucl(i,1),*114)
938         else if (i.gt.nct_molec(2)-iscp) then
939 !d        write (iout,*) 'i.gt.nct-iscp'
940           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
941             my_scp_inde_nucl,i,&
942             iatscp_s_nucl,iatscp_e_nucl,nnt_molec(2),i-iscp,nscp_gr_nucl(i),&
943             iscpstart_nucl(i,1),&
944             iscpend_nucl(i,1),*114)
945         else
946           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
947             my_scp_inde_nucl,i,iatscp_s_nucl,iatscp_e_nucl,nnt_molec(2),&
948             i-iscp,nscp_gr_nucl(i),iscpstart_nucl(i,1),&
949            iscpend_nucl(i,1),*114)
950           ii=nscp_gr_nucl(i)+1
951           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
952             my_scp_inde_nucl,i,iatscp_s_nucl,iatscp_e_nucl,i+iscp,&
953             nct_molec(2),nscp_gr_nucl(i),iscpstart_nucl(i,ii),&
954             iscpend_nucl(i,ii),*114)
955         endif
956       enddo ! i
957   114 continue
958       print *, "after inloop3",iatscp_s_nucl,iatscp_e_nucl
959       if (iatscp_s_nucl.eq.0) iatscp_s_nucl=1
960 #else
961       iatscp_s=nnt
962       iatscp_e=nct_molec(1)-1
963       do i=nnt,nct_molec(1)-1
964         if (i.lt.nnt+iscp) then
965           nscp_gr(i)=1
966           iscpstart(i,1)=i+iscp
967           iscpend(i,1)=nct_molec(1)
968         elseif (i.gt.nct-iscp) then
969           nscp_gr(i)=1
970           iscpstart(i,1)=nnt
971           iscpend(i,1)=i-iscp
972         else
973           nscp_gr(i)=2
974           iscpstart(i,1)=nnt
975           iscpend(i,1)=i-iscp
976           iscpstart(i,2)=i+iscp
977           iscpend(i,2)=nct_molec(1)
978         endif 
979       enddo ! i
980 #endif
981       if (iatscp_s.eq.0) iatscp_s=1
982       if (lprint) then
983         write (iout,'(a)') 'SC-p interaction array:'
984         do i=iatscp_s,iatscp_e
985           write (iout,'(i3,2(2x,2i3))') &
986               i,(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i))
987         enddo
988       endif ! lprint
989 ! Partition local interactions
990 #ifdef MPI
991       call int_bounds(nres_molec(1)-2,loc_start,loc_end)
992       loc_start=loc_start+1
993       loc_end=loc_end+1
994       call int_bounds(nres_molec(2)-2,loc_start_nucl,loc_end_nucl)
995       loc_start_nucl=loc_start_nucl+1+nres_molec(1)
996       loc_end_nucl=loc_end_nucl+1+nres_molec(1)
997       call int_bounds(nres_molec(1)-2,ithet_start,ithet_end)
998       ithet_start=ithet_start+2
999       ithet_end=ithet_end+2
1000       call int_bounds(nres_molec(2)-2,ithet_nucl_start,ithet_nucl_end)
1001       ithet_nucl_start=ithet_nucl_start+2+nres_molec(1)
1002       ithet_nucl_end=ithet_nucl_end+2+nres_molec(1)
1003       call int_bounds(nct_molec(1)-nnt-2,iturn3_start,iturn3_end) 
1004       iturn3_start=iturn3_start+nnt
1005       iphi_start=iturn3_start+2
1006       iturn3_end=iturn3_end+nnt
1007       iphi_end=iturn3_end+2
1008       iturn3_start=iturn3_start-1
1009       if (iturn3_start.eq.0) iturn3_start=1
1010       iturn3_end=iturn3_end-1
1011       call int_bounds(nct_molec(2)-nnt_molec(2)-2,iphi_nucl_start,iphi_nucl_end)
1012       iphi_nucl_start=iphi_nucl_start+nnt_molec(2)+2
1013       iphi_nucl_end=iphi_nucl_end+nnt_molec(2)+2
1014       print *,"KURDE",iphi_nucl_start,iphi_nucl_end
1015       call int_bounds(nres_molec(1)-3,itau_start,itau_end)
1016       itau_start=itau_start+3
1017       itau_end=itau_end+3
1018       call int_bounds(nres_molec(1)-3,iphi1_start,iphi1_end)
1019       iphi1_start=iphi1_start+3
1020       iphi1_end=iphi1_end+3
1021       call int_bounds(nct_molec(1)-nnt-3,iturn4_start,iturn4_end) 
1022       iturn4_start=iturn4_start+nnt
1023       iphid_start=iturn4_start+2
1024       iturn4_end=iturn4_end+nnt
1025       iphid_end=iturn4_end+2
1026       iturn4_start=iturn4_start-1
1027       iturn4_end=iturn4_end-1
1028       if (iturn4_start.eq.0) iturn4_start=1
1029 !      print *,"TUTUTU",nres_molec(1),nres
1030       call int_bounds(nres_molec(1)-2,ibond_start,ibond_end) 
1031       ibond_start=ibond_start+1
1032       ibond_end=ibond_end+1
1033 !      print *,ibond_start,ibond_end
1034       call int_bounds(nct_molec(1)-nnt,ibondp_start,ibondp_end) 
1035       ibondp_start=ibondp_start+nnt
1036       ibondp_end=ibondp_end+nnt
1037      call int_bounds(nres_molec(2)-2,ibond_nucl_start,ibond_nucl_end)
1038       ibond_nucl_start=ibond_nucl_start+nnt_molec(2)-1
1039       ibond_nucl_end=ibond_nucl_end+nnt_molec(2)-1
1040       print *,"NUCLibond",ibond_nucl_start,ibond_nucl_end
1041       if (nres_molec(2).ne.0) then
1042       print *, "before devision",nnt_molec(2),nct_molec(2)-nnt_molec(2)
1043       call int_bounds(nres_molec(2)-1,ibondp_nucl_start,ibondp_nucl_end)
1044       ibondp_nucl_start=ibondp_nucl_start+nnt_molec(2)-1
1045       ibondp_nucl_end=ibondp_nucl_end+nnt_molec(2)-1
1046        else
1047        ibondp_nucl_start=1
1048        ibondp_nucl_end=0
1049        endif
1050       print *,"NUCLibond2",ibondp_nucl_start,ibondp_nucl_end
1051
1052
1053       call int_bounds1(nres_molec(1)-1,ivec_start,ivec_end) 
1054 !      print *,"Processor",myrank,fg_rank,fg_rank1,
1055 !     &  " ivec_start",ivec_start," ivec_end",ivec_end
1056       iset_start=loc_start+2
1057       iset_end=loc_end+2
1058       call int_bounds(nres_molec(1),ilip_start,ilip_end)
1059       ilip_start=ilip_start
1060       ilip_end=ilip_end
1061       call int_bounds(nres_molec(1)-1,itube_start,itube_end)
1062       itube_start=itube_start
1063       itube_end=itube_end
1064       if (ndih_constr.eq.0) then
1065         idihconstr_start=1
1066         idihconstr_end=0
1067       else
1068         call int_bounds(ndih_constr,idihconstr_start,idihconstr_end)
1069       endif
1070       if (ntheta_constr.eq.0) then
1071         ithetaconstr_start=1
1072         ithetaconstr_end=0
1073       else
1074         call int_bounds &
1075        (ntheta_constr,ithetaconstr_start,ithetaconstr_end)
1076       endif
1077 !     HERE MAKING LISTS FOR MARTINI
1078       itmp=0
1079       do i=1,3
1080        itmp=itmp+nres_molec(i)
1081       enddo
1082 !First bonding
1083 !       call int_bounds(nres_molec(4)-1,ilipbond_start,ilipbond_end)
1084        ilipbond_start=1+itmp
1085        ilipbond_end=nres_molec(4)-1+itmp
1086 !angles
1087        call int_bounds(nres_molec(4)-1,ilipbond_start_tub,ilipbond_end_tub)
1088        ilipbond_start_tub=1+itmp
1089        ilipbond_end_tub=nres_molec(4)-1+itmp
1090
1091 !       call int_bounds(nres_molec(4)-2,ilipang_start,ilipang_end)
1092        ilipang_start=2+itmp
1093        ilipang_end=itmp+nres_molec(4)-1
1094 !      create LJ LIST MAXIMUM
1095 !      Eliminate branching from list
1096        if(.not.allocated(remmat))&
1097         allocate(remmat(itmp+1:nres_molec(4)+itmp,itmp+1:nres_molec(4)+itmp))
1098           remmat=0
1099        do i=1+itmp,nres_molec(4)-1+itmp
1100         if (itype(i,4).eq.12) ibra=i
1101         if (itype(i,4).eq.ntyp1_molec(4)-1) then
1102 !        remmat(ibra-1,i+1)=1
1103         remmat(ibra,i+1)=1
1104 !        remmat(ibra+1,i+1)=1
1105         endif
1106        enddo
1107        maxljliplist=0
1108        if (.not.allocated(mlipljlisti)) then
1109        allocate (mlipljlisti(nres_molec(4)*nres_molec(4)/2))
1110        allocate (mlipljlistj(nres_molec(4)*nres_molec(4)/2))
1111        endif
1112        do i=1+itmp,nres_molec(4)-1+itmp
1113         do j=i+2,nres_molec(4)+itmp
1114         if ((itype(i,4).le.ntyp_molec(4)).and.(itype(j,4).le.ntyp_molec(4))&
1115         .and.(remmat(i,j).eq.0)) then
1116         maxljliplist=maxljliplist+1
1117         mlipljlisti(maxljliplist)=i
1118         mlipljlistj(maxljliplist)=j
1119         if (energy_dec) print *,i,j,remmat(i,j),"lj lip list"
1120         endif
1121         enddo
1122        enddo
1123 !      split the bound of the list
1124        call int_bounds(maxljliplist,iliplj_start,iliplj_end)
1125        iliplj_start=iliplj_start
1126        iliplj_end=iliplj_end
1127 !      now the electrostatic list
1128        maxelecliplist=0
1129        if (.not.allocated(mlipeleclisti)) then
1130        allocate (mlipeleclisti(nres_molec(4)*nres_molec(4)/2))
1131        allocate (mlipeleclistj(nres_molec(4)*nres_molec(4)/2))
1132        endif
1133        do i=1+itmp,nres_molec(4)-1+itmp
1134         do j=i+2,nres_molec(4)+itmp
1135         if ((itype(i,4).le.4).and.(itype(j,4).le.4)) then
1136         maxelecliplist=maxelecliplist+1
1137         mlipeleclisti(maxelecliplist)=i
1138         mlipeleclistj(maxelecliplist)=j
1139         endif
1140         enddo
1141        enddo
1142        call int_bounds(maxelecliplist,ilip_elec_start,ilipelec_end)
1143        ilip_elec_start=ilip_elec_start
1144        ilipelec_end=ilipelec_end
1145 !      nsumgrad=(nres-nnt)*(nres-nnt+1)/2
1146 !      nlen=nres-nnt+1
1147       nsumgrad=(nres-nnt)*(nres-nnt+1)/2
1148       nlen=nres-nnt+1
1149       call int_bounds(nsumgrad,ngrad_start,ngrad_end)
1150       igrad_start=((2*nlen+1) &
1151          -sqrt(float((2*nlen-1)**2-8*(ngrad_start-1))))/2
1152       igrad_end=((2*nlen+1) &
1153          -sqrt(float((2*nlen-1)**2-8*(ngrad_end-1))))/2
1154 !el      allocate(jgrad_start(igrad_start:igrad_end))
1155 !el      allocate(jgrad_end(igrad_start:igrad_end)) !(maxres)
1156       jgrad_start(igrad_start)= &
1157          ngrad_start-(2*nlen-igrad_start)*(igrad_start-1)/2 &
1158          +igrad_start
1159       jgrad_end(igrad_start)=nres
1160       if (igrad_end.gt.igrad_start) jgrad_start(igrad_end)=igrad_end+1
1161       jgrad_end(igrad_end)=ngrad_end-(2*nlen-igrad_end)*(igrad_end-1)/2 &
1162           +igrad_end
1163       do i=igrad_start+1,igrad_end-1
1164         jgrad_start(i)=i+1
1165         jgrad_end(i)=nres
1166       enddo
1167 ! THIS SHOULD BE FIXED
1168       itmp=0
1169       do i=1,4
1170        itmp=itmp+nres_molec(i)
1171       enddo
1172       call int_bounds(nres_molec(5),icatb_start,icatb_end)
1173       icatb_start=icatb_start+itmp
1174       icatb_end=icatb_end+itmp
1175
1176
1177
1178       if (lprint) then 
1179         write (*,*) 'Processor:',fg_rank,' CG group',kolor,&
1180        ' absolute rank',myrank,&
1181        ' loc_start',loc_start,' loc_end',loc_end,&
1182        ' ithet_start',ithet_start,' ithet_end',ithet_end,&
1183        ' iphi_start',iphi_start,' iphi_end',iphi_end,&
1184        ' iphid_start',iphid_start,' iphid_end',iphid_end,&
1185        ' ibond_start',ibond_start,' ibond_end',ibond_end,&
1186        ' ibondp_start',ibondp_start,' ibondp_end',ibondp_end,&
1187        ' iturn3_start',iturn3_start,' iturn3_end',iturn3_end,&
1188        ' iturn4_start',iturn4_start,' iturn4_end',iturn4_end,&
1189        ' ivec_start',ivec_start,' ivec_end',ivec_end,&
1190        ' iset_start',iset_start,' iset_end',iset_end,&
1191        ' idihconstr_start',idihconstr_start,' idihconstr_end',&
1192          idihconstr_end
1193        write (*,*) 'Processor:',fg_rank,myrank,' igrad_start',&
1194          igrad_start,' igrad_end',igrad_end,' ngrad_start',ngrad_start,&
1195          ' ngrad_end',ngrad_end
1196 !       do i=igrad_start,igrad_end
1197 !         write(*,*) 'Processor:',fg_rank,myrank,i,&
1198 !          jgrad_start(i),jgrad_end(i)
1199 !       enddo
1200       endif
1201       if (nfgtasks.gt.1) then
1202         call MPI_Allgather(ivec_start,1,MPI_INTEGER,ivec_displ(0),1,&
1203           MPI_INTEGER,FG_COMM1,IERROR)
1204         iaux=ivec_end-ivec_start+1
1205         call MPI_Allgather(iaux,1,MPI_INTEGER,ivec_count(0),1,&
1206           MPI_INTEGER,FG_COMM1,IERROR)
1207         call MPI_Allgather(iset_start-2,1,MPI_INTEGER,iset_displ(0),1,&
1208           MPI_INTEGER,FG_COMM,IERROR)
1209         iaux=iset_end-iset_start+1
1210         call MPI_Allgather(iaux,1,MPI_INTEGER,iset_count(0),1,&
1211           MPI_INTEGER,FG_COMM,IERROR)
1212         call MPI_Allgather(ibond_start,1,MPI_INTEGER,ibond_displ(0),1,&
1213           MPI_INTEGER,FG_COMM,IERROR)
1214         iaux=ibond_end-ibond_start+1
1215         call MPI_Allgather(iaux,1,MPI_INTEGER,ibond_count(0),1,&
1216           MPI_INTEGER,FG_COMM,IERROR)
1217         call MPI_Allgather(ithet_start,1,MPI_INTEGER,ithet_displ(0),1,&
1218           MPI_INTEGER,FG_COMM,IERROR)
1219         iaux=ithet_end-ithet_start+1
1220         call MPI_Allgather(iaux,1,MPI_INTEGER,ithet_count(0),1,&
1221           MPI_INTEGER,FG_COMM,IERROR)
1222         call MPI_Allgather(iphi_start,1,MPI_INTEGER,iphi_displ(0),1,&
1223           MPI_INTEGER,FG_COMM,IERROR)
1224         iaux=iphi_end-iphi_start+1
1225         call MPI_Allgather(iaux,1,MPI_INTEGER,iphi_count(0),1,&
1226           MPI_INTEGER,FG_COMM,IERROR)
1227         call MPI_Allgather(iphi1_start,1,MPI_INTEGER,iphi1_displ(0),1,&
1228           MPI_INTEGER,FG_COMM,IERROR)
1229         iaux=iphi1_end-iphi1_start+1
1230         call MPI_Allgather(iaux,1,MPI_INTEGER,iphi1_count(0),1,&
1231           MPI_INTEGER,FG_COMM,IERROR)
1232         do i=0,nfgtasks-1
1233           do j=1,nres
1234             ielstart_all(j,i)=0
1235             ielend_all(j,i)=0
1236           enddo
1237         enddo
1238         call MPI_Allgather(iturn3_start,1,MPI_INTEGER,&
1239           iturn3_start_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1240         call MPI_Allgather(iturn4_start,1,MPI_INTEGER,&
1241           iturn4_start_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1242         call MPI_Allgather(iturn3_end,1,MPI_INTEGER,&
1243           iturn3_end_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1244         call MPI_Allgather(iturn4_end,1,MPI_INTEGER,&
1245           iturn4_end_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1246         call MPI_Allgather(iatel_s,1,MPI_INTEGER,&
1247           iatel_s_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1248         call MPI_Allgather(iatel_e,1,MPI_INTEGER,&
1249           iatel_e_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1250         call MPI_Allgather(ielstart(1),nres,MPI_INTEGER,&
1251           ielstart_all(1,0),nres,MPI_INTEGER,FG_COMM,IERROR)
1252         call MPI_Allgather(ielend(1),nres,MPI_INTEGER,&
1253           ielend_all(1,0),nres,MPI_INTEGER,FG_COMM,IERROR)
1254         if (lprint) then
1255         write (iout,*) "iatel_s_all",(iatel_s_all(i),i=0,nfgtasks)
1256         write (iout,*) "iatel_e_all",(iatel_e_all(i),i=0,nfgtasks)
1257         write (iout,*) "iturn3_start_all",&
1258           (iturn3_start_all(i),i=0,nfgtasks-1)
1259         write (iout,*) "iturn3_end_all",&
1260           (iturn3_end_all(i),i=0,nfgtasks-1)
1261         write (iout,*) "iturn4_start_all",&
1262           (iturn4_start_all(i),i=0,nfgtasks-1)
1263         write (iout,*) "iturn4_end_all",&
1264           (iturn4_end_all(i),i=0,nfgtasks-1)
1265         write (iout,*) "The ielstart_all array"
1266 !        do i=0,nfgtasks-1
1267 !         if (iturn3_start_all(i).le.0) iturn3_start_all(i)=1
1268 !         if (iturn4_start_all(i).le.0) iturn4_start_all(i)=1
1269 !        enddo
1270         do i=nnt,nct
1271           write (iout,'(20i4)') i,(ielstart_all(i,j),j=0,nfgtasks-1)
1272         enddo
1273         write (iout,*) "The ielend_all array"
1274         do i=nnt,nct
1275           write (iout,'(20i4)') i,(ielend_all(i,j),j=0,nfgtasks-1)
1276         enddo
1277         call flush(iout)
1278         endif
1279         ntask_cont_from=0
1280         ntask_cont_to=0
1281         itask_cont_from(0)=fg_rank
1282         itask_cont_to(0)=fg_rank
1283         flag=.false.
1284 !el        allocate(iturn3_sent(4,iturn3_start:iturn3_end))
1285 !el        allocate(iturn4_sent(4,iturn4_start:iturn4_end)) !(4,maxres)
1286         do ii=iturn3_start,iturn3_end
1287           call add_int(ii,ii+2,iturn3_sent(1,ii),&
1288                       ntask_cont_to,itask_cont_to,flag)
1289         enddo
1290         do ii=iturn4_start,iturn4_end
1291           call add_int(ii,ii+3,iturn4_sent(1,ii),&
1292                       ntask_cont_to,itask_cont_to,flag)
1293         enddo
1294         do ii=iturn3_start,iturn3_end
1295           call add_int_from(ii,ii+2,ntask_cont_from,itask_cont_from)
1296         enddo
1297         do ii=iturn4_start,iturn4_end
1298           call add_int_from(ii,ii+3,ntask_cont_from,itask_cont_from)
1299         enddo
1300         if (lprint) then
1301         write (iout,*) "After turn3 ntask_cont_from",ntask_cont_from,&
1302          " ntask_cont_to",ntask_cont_to
1303         write (iout,*) "itask_cont_from",&
1304           (itask_cont_from(i),i=1,ntask_cont_from)
1305         write (iout,*) "itask_cont_to",&
1306           (itask_cont_to(i),i=1,ntask_cont_to)
1307         call flush(iout)
1308         endif
1309 !        write (iout,*) "Loop forward"
1310 !        call flush(iout)
1311         do i=iatel_s,iatel_e
1312 !          write (iout,*) "from loop i=",i
1313 !          call flush(iout)
1314           do j=ielstart(i),ielend(i)
1315             call add_int_from(i,j,ntask_cont_from,itask_cont_from)
1316           enddo
1317         enddo
1318 !        write (iout,*) "Loop backward iatel_e-1",iatel_e-1,
1319 !     &     " iatel_e",iatel_e
1320 !        call flush(iout)
1321 #ifndef NEWCORR
1322         nat_sent=0
1323         do i=iatel_s,iatel_e
1324 !          write (iout,*) "i",i," ielstart",ielstart(i),
1325 !     &      " ielend",ielend(i)
1326 !          call flush(iout)
1327           flag=.false.
1328           do j=ielstart(i),ielend(i)
1329             call add_int(i,j,iint_sent(1,j,nat_sent+1),ntask_cont_to,&
1330                         itask_cont_to,flag)
1331           enddo
1332           if (flag) then
1333             nat_sent=nat_sent+1
1334             iat_sent(nat_sent)=i
1335           endif
1336         enddo
1337 #endif
1338         if (lprint) then
1339         write (iout,*)"After longrange ntask_cont_from",ntask_cont_from,&
1340          " ntask_cont_to",ntask_cont_to
1341         write (iout,*) "itask_cont_from",&
1342           (itask_cont_from(i),i=1,ntask_cont_from)
1343         write (iout,*) "itask_cont_to",&
1344           (itask_cont_to(i),i=1,ntask_cont_to)
1345         call flush(iout)
1346 #ifndef NEWCORR
1347         write (iout,*) "iint_sent"
1348         do i=1,nat_sent
1349           ii=iat_sent(i)
1350           write (iout,'(20i4)') ii,(j,(iint_sent(k,j,i),k=1,4),&
1351             j=ielstart(ii),ielend(ii))
1352         enddo
1353 #endif
1354         write (iout,*) "iturn3_sent iturn3_start",iturn3_start,&
1355           " iturn3_end",iturn3_end
1356         write (iout,'(20i4)') (i,(iturn3_sent(j,i),j=1,4),&
1357            i=iturn3_start,iturn3_end)
1358         write (iout,*) "iturn4_sent iturn4_start",iturn4_start,&
1359           " iturn4_end",iturn4_end
1360         write (iout,'(20i4)') (i,(iturn4_sent(j,i),j=1,4),&
1361            i=iturn4_start,iturn4_end)
1362         call flush(iout)
1363         endif
1364         call MPI_Gather(ntask_cont_from,1,MPI_INTEGER,&
1365          ntask_cont_from_all,1,MPI_INTEGER,king,FG_COMM,IERR)
1366 !        write (iout,*) "Gather ntask_cont_from ended"
1367 !        call flush(iout)
1368         call MPI_Gather(itask_cont_from(0),nfgtasks,MPI_INTEGER,&
1369          itask_cont_from_all(0,0),nfgtasks,MPI_INTEGER,king,&
1370          FG_COMM,IERR)
1371 !        write (iout,*) "Gather itask_cont_from ended"
1372 !        call flush(iout)
1373         call MPI_Gather(ntask_cont_to,1,MPI_INTEGER,ntask_cont_to_all,&
1374          1,MPI_INTEGER,king,FG_COMM,IERR)
1375 !        write (iout,*) "Gather ntask_cont_to ended"
1376 !        call flush(iout)
1377         call MPI_Gather(itask_cont_to,nfgtasks,MPI_INTEGER,&
1378          itask_cont_to_all,nfgtasks,MPI_INTEGER,king,FG_COMM,IERR)
1379 !        write (iout,*) "Gather itask_cont_to ended"
1380 !        call flush(iout)
1381         if (fg_rank.eq.king) then
1382           write (iout,*)"Contact receive task map (proc, #tasks, tasks)"
1383           do i=0,nfgtasks-1
1384             write (iout,'(20i4)') i,ntask_cont_from_all(i),&
1385               (itask_cont_from_all(j,i),j=1,ntask_cont_from_all(i)) 
1386           enddo
1387           write (iout,*)
1388           call flush(iout)
1389           write (iout,*) "Contact send task map (proc, #tasks, tasks)"
1390           do i=0,nfgtasks-1
1391             write (iout,'(20i4)') i,ntask_cont_to_all(i),&
1392              (itask_cont_to_all(j,i),j=1,ntask_cont_to_all(i)) 
1393           enddo
1394           write (iout,*)
1395           call flush(iout)
1396 ! Check if every send will have a matching receive
1397           ncheck_to=0
1398           ncheck_from=0
1399           do i=0,nfgtasks-1
1400             ncheck_to=ncheck_to+ntask_cont_to_all(i)
1401             ncheck_from=ncheck_from+ntask_cont_from_all(i)
1402           enddo
1403           write (iout,*) "Control sums",ncheck_from,ncheck_to
1404           if (ncheck_from.ne.ncheck_to) then
1405             write (iout,*) "Error: #receive differs from #send."
1406             write (iout,*) "Terminating program...!"
1407             call flush(iout)
1408             flag=.false.
1409           else
1410             flag=.true.
1411             do i=0,nfgtasks-1
1412               do j=1,ntask_cont_to_all(i)
1413                 ii=itask_cont_to_all(j,i)
1414                 do k=1,ntask_cont_from_all(ii)
1415                   if (itask_cont_from_all(k,ii).eq.i) then
1416                     if(lprint)write(iout,*)"Matching send/receive",i,ii
1417                     exit
1418                   endif
1419                 enddo
1420                 if (k.eq.ntask_cont_from_all(ii)+1) then
1421                   flag=.false.
1422                   write (iout,*) "Error: send by",j," to",ii,&
1423                     " would have no matching receive"
1424                 endif
1425               enddo
1426             enddo
1427           endif
1428           if (.not.flag) then
1429             write (iout,*) "Unmatched sends; terminating program"
1430             call flush(iout)
1431           endif
1432         endif
1433         call MPI_Bcast(flag,1,MPI_LOGICAL,king,FG_COMM,IERROR)
1434 !        write (iout,*) "flag broadcast ended flag=",flag
1435 !        call flush(iout)
1436         if (.not.flag) then
1437           call MPI_Finalize(IERROR)
1438           stop "Error in INIT_INT_TABLE: unmatched send/receive."
1439         endif
1440         call MPI_Comm_group(FG_COMM,fg_group,IERR)
1441 !        write (iout,*) "MPI_Comm_group ended"
1442 !        call flush(iout)
1443         call MPI_Group_incl(fg_group,ntask_cont_from+1,&
1444           itask_cont_from(0),CONT_FROM_GROUP,IERR)
1445         call MPI_Group_incl(fg_group,ntask_cont_to+1,itask_cont_to(0),&
1446           CONT_TO_GROUP,IERR)
1447 #ifndef NEWCORR
1448         do i=1,nat_sent
1449           ii=iat_sent(i)
1450           iaux=4*(ielend(ii)-ielstart(ii)+1)
1451           if (iaux.lt.0) iaux=0 
1452           call MPI_Group_translate_ranks(fg_group,iaux,&
1453             iint_sent(1,ielstart(ii),i),CONT_TO_GROUP,&
1454             iint_sent_local(1,ielstart(ii),i),IERR )
1455 !          write (iout,*) "Ranks translated i=",i
1456 !          call flush(iout)
1457         enddo
1458 #endif
1459         iaux=4*(iturn3_end-iturn3_start+1)
1460           if (iaux.lt.0) iaux=0
1461         call MPI_Group_translate_ranks(fg_group,iaux,&
1462            iturn3_sent(1,iturn3_start),CONT_TO_GROUP,&
1463            iturn3_sent_local(1,iturn3_start),IERR)
1464         iaux=4*(iturn4_end-iturn4_start+1)
1465           if (iaux.lt.0) iaux=0
1466         call MPI_Group_translate_ranks(fg_group,iaux,&
1467            iturn4_sent(1,iturn4_start),CONT_TO_GROUP,&
1468            iturn4_sent_local(1,iturn4_start),IERR)
1469         if (lprint) then
1470 #ifndef NEWCORR
1471
1472         write (iout,*) "iint_sent_local"
1473         do i=1,nat_sent
1474           ii=iat_sent(i)
1475           write (iout,'(20i4)') ii,(j,(iint_sent_local(k,j,i),k=1,4),&
1476             j=ielstart(ii),ielend(ii))
1477           call flush(iout)
1478         enddo
1479 #endif
1480         if (iturn3_end.gt.0) then
1481         write (iout,*) "iturn3_sent_local iturn3_start",iturn3_start,&
1482           " iturn3_end",iturn3_end
1483         write (iout,'(20i4)') (i,(iturn3_sent_local(j,i),j=1,4),&
1484            i=iturn3_start,iturn3_end)
1485         write (iout,*) "iturn4_sent_local iturn4_start",iturn4_start,&
1486           " iturn4_end",iturn4_end
1487         write (iout,'(20i4)') (i,(iturn4_sent_local(j,i),j=1,4),&
1488            i=iturn4_start,iturn4_end)
1489         call flush(iout)
1490         endif
1491         endif
1492         call MPI_Group_free(fg_group,ierr)
1493         call MPI_Group_free(cont_from_group,ierr)
1494         call MPI_Group_free(cont_to_group,ierr)
1495         call MPI_Type_contiguous(3,MPI_DOUBLE_PRECISION,MPI_UYZ,IERROR)
1496         call MPI_Type_commit(MPI_UYZ,IERROR)
1497         call MPI_Type_contiguous(18,MPI_DOUBLE_PRECISION,MPI_UYZGRAD,&
1498           IERROR)
1499         call MPI_Type_commit(MPI_UYZGRAD,IERROR)
1500         call MPI_Type_contiguous(maxcontsshi,MPI_INTEGER,MPI_I50,IERROR)
1501         call MPI_Type_commit(MPI_I50,IERROR)
1502         call MPI_Type_contiguous(maxcontsshi,MPI_DOUBLE_PRECISION,MPI_D50,IERROR)
1503         call MPI_Type_commit(MPI_D50,IERROR)
1504
1505          impishi=maxcontsshi*3
1506 !        call MPI_Type_contiguous(impishi,MPI_DOUBLE_PRECISION, &
1507 !        MPI_SHI,IERROR)
1508 !        call MPI_Type_commit(MPI_SHI,IERROR)
1509 !        print *,MPI_SHI,"MPI_SHI",MPI_D50
1510         call MPI_Type_contiguous(2,MPI_DOUBLE_PRECISION,MPI_MU,IERROR)
1511         call MPI_Type_commit(MPI_MU,IERROR)
1512         call MPI_Type_contiguous(4,MPI_DOUBLE_PRECISION,MPI_MAT1,IERROR)
1513         call MPI_Type_commit(MPI_MAT1,IERROR)
1514         call MPI_Type_contiguous(8,MPI_DOUBLE_PRECISION,MPI_MAT2,IERROR)
1515         call MPI_Type_commit(MPI_MAT2,IERROR)
1516         call MPI_Type_contiguous(6,MPI_DOUBLE_PRECISION,MPI_THET,IERROR)
1517         call MPI_Type_commit(MPI_THET,IERROR)
1518         call MPI_Type_contiguous(9,MPI_DOUBLE_PRECISION,MPI_GAM,IERROR)
1519         call MPI_Type_commit(MPI_GAM,IERROR)
1520
1521 !el        allocate(lentyp(0:nfgtasks-1))
1522 #ifndef MATGATHER
1523 ! 9/22/08 Derived types to send matrices which appear in correlation terms
1524         do i=0,nfgtasks-1
1525           if (ivec_count(i).eq.ivec_count(0)) then
1526             lentyp(i)=0
1527           else
1528             lentyp(i)=1
1529           endif
1530         enddo
1531         do ind_typ=lentyp(0),lentyp(nfgtasks-1)
1532         if (ind_typ.eq.0) then
1533           ichunk=ivec_count(0)
1534         else
1535           ichunk=ivec_count(1)
1536         endif
1537 !        do i=1,4
1538 !          blocklengths(i)=4
1539 !        enddo
1540 !        displs(1)=0
1541 !        do i=2,4
1542 !          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
1543 !        enddo
1544 !        do i=1,4
1545 !          blocklengths(i)=blocklengths(i)*ichunk
1546 !        enddo
1547 !        write (iout,*) "blocklengths and displs"
1548 !        do i=1,4
1549 !          write (iout,*) i,blocklengths(i),displs(i)
1550 !        enddo
1551 !        call flush(iout)
1552 !        call MPI_Type_indexed(4,blocklengths(1),displs(1),
1553 !     &    MPI_DOUBLE_PRECISION,MPI_ROTAT1(ind_typ),IERROR)
1554 !        call MPI_Type_commit(MPI_ROTAT1(ind_typ),IERROR)
1555 !        write (iout,*) "MPI_ROTAT1",MPI_ROTAT1 
1556 !        do i=1,4
1557 !          blocklengths(i)=2
1558 !        enddo
1559 !        displs(1)=0
1560 !        do i=2,4
1561 !          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
1562 !        enddo
1563 !        do i=1,4
1564 !          blocklengths(i)=blocklengths(i)*ichunk
1565 !        enddo
1566 !        write (iout,*) "blocklengths and displs"
1567 !        do i=1,4
1568 !          write (iout,*) i,blocklengths(i),displs(i)
1569 !        enddo
1570 !        call flush(iout)
1571 !        call MPI_Type_indexed(4,blocklengths(1),displs(1),
1572 !     &    MPI_DOUBLE_PRECISION,MPI_ROTAT2(ind_typ),IERROR)
1573 !        call MPI_Type_commit(MPI_ROTAT2(ind_typ),IERROR)
1574 !        write (iout,*) "MPI_ROTAT2",MPI_ROTAT2 
1575         do i=1,8
1576           blocklengths(i)=2
1577         enddo
1578         displs(1)=0
1579         do i=2,8
1580           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1581         enddo
1582         do i=1,15
1583           blocklengths(i)=blocklengths(i)*ichunk
1584         enddo
1585         call MPI_Type_indexed(8,blocklengths,displs,&
1586           MPI_DOUBLE_PRECISION,MPI_PRECOMP11(ind_typ),IERROR)
1587         call MPI_Type_commit(MPI_PRECOMP11(ind_typ),IERROR)
1588         do i=1,8
1589           blocklengths(i)=4
1590         enddo
1591         displs(1)=0
1592         do i=2,8
1593           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1594         enddo
1595         do i=1,15
1596           blocklengths(i)=blocklengths(i)*ichunk
1597         enddo
1598         call MPI_Type_indexed(8,blocklengths,displs,&
1599           MPI_DOUBLE_PRECISION,MPI_PRECOMP12(ind_typ),IERROR)
1600         call MPI_Type_commit(MPI_PRECOMP12(ind_typ),IERROR)
1601         do i=1,6
1602           blocklengths(i)=4
1603         enddo
1604         displs(1)=0
1605         do i=2,6
1606           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1607         enddo
1608         do i=1,6
1609           blocklengths(i)=blocklengths(i)*ichunk
1610         enddo
1611         call MPI_Type_indexed(6,blocklengths,displs,&
1612           MPI_DOUBLE_PRECISION,MPI_PRECOMP22(ind_typ),IERROR)
1613         call MPI_Type_commit(MPI_PRECOMP22(ind_typ),IERROR)
1614         do i=1,2
1615           blocklengths(i)=8
1616         enddo
1617         displs(1)=0
1618         do i=2,2
1619           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1620         enddo
1621         do i=1,2
1622           blocklengths(i)=blocklengths(i)*ichunk
1623         enddo
1624         call MPI_Type_indexed(2,blocklengths,displs,&
1625           MPI_DOUBLE_PRECISION,MPI_PRECOMP23(ind_typ),IERROR)
1626         call MPI_Type_commit(MPI_PRECOMP23(ind_typ),IERROR)
1627         do i=1,4
1628           blocklengths(i)=1
1629         enddo
1630         displs(1)=0
1631         do i=2,4
1632           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1633         enddo
1634         do i=1,4
1635           blocklengths(i)=blocklengths(i)*ichunk
1636         enddo
1637         call MPI_Type_indexed(4,blocklengths,displs,&
1638           MPI_DOUBLE_PRECISION,MPI_ROTAT_OLD(ind_typ),IERROR)
1639         call MPI_Type_commit(MPI_ROTAT_OLD(ind_typ),IERROR)
1640         enddo
1641 #endif
1642       endif
1643       iint_start=ivec_start+1
1644       iint_end=ivec_end+1
1645       do i=0,nfgtasks-1
1646           iint_count(i)=ivec_count(i)
1647           iint_displ(i)=ivec_displ(i)
1648           ivec_displ(i)=ivec_displ(i)-1
1649           iset_displ(i)=iset_displ(i)-1
1650           ithet_displ(i)=ithet_displ(i)-1
1651           iphi_displ(i)=iphi_displ(i)-1
1652           iphi1_displ(i)=iphi1_displ(i)-1
1653           ibond_displ(i)=ibond_displ(i)-1
1654       enddo
1655       if (nfgtasks.gt.1 .and. fg_rank.eq.king &
1656           .and. (me.eq.0 .or. .not. out1file)) then
1657         write (iout,*) "IVEC_DISPL, IVEC_COUNT, ISET_START, ISET_COUNT"
1658         do i=0,nfgtasks-1
1659           write (iout,*) i,ivec_displ(i),ivec_count(i),iset_displ(i),&
1660             iset_count(i)
1661         enddo
1662         write (iout,*) "iphi_start",iphi_start," iphi_end",iphi_end,&
1663           " iphi1_start",iphi1_start," iphi1_end",iphi1_end
1664         write (iout,*)"IPHI_COUNT, IPHI_DISPL, IPHI1_COUNT, IPHI1_DISPL"
1665         do i=0,nfgtasks-1
1666           write (iout,*) i,iphi_count(i),iphi_displ(i),iphi1_count(i),&
1667             iphi1_displ(i)
1668         enddo
1669         write(iout,'(i10,a,i10,a,i10,a/a,i3,a)') n_sc_int_tot,' SC-SC ',&
1670           nele_int_tot,' electrostatic and ',nscp_int_tot,&
1671           ' SC-p interactions','were distributed among',nfgtasks,&
1672           ' fine-grain processors.'
1673       endif
1674 #else
1675       loc_start=2
1676       loc_end=nres_molec(1)-1
1677       ithet_start=3 
1678       ithet_end=nres_molec(1)
1679       ithet_nucl_start=3+nres_molec(1)
1680       ithet_nucl_end=nres_molec(1)+nres_molec(2)
1681       iturn3_start=nnt
1682       iturn3_end=nct_molec(1)-3
1683       iturn4_start=nnt
1684       iturn4_end=nct_molec(1)-4
1685       iphi_start=nnt+3
1686       iphi_end=nct_molec(1)
1687       iphi1_start=4
1688       iphi1_end=nres_molec(1)
1689       iphi_nucl_start=4+nres_molec(1)
1690       iphi_nucl_end=nres_molec(1)+nres_molec(2)
1691       idihconstr_start=1
1692       idihconstr_end=ndih_constr
1693       ithetaconstr_start=1
1694       ithetaconstr_end=ntheta_constr
1695       iphid_start=iphi_start
1696       iphid_end=iphi_end-1
1697       itau_start=4
1698       itau_end=nres_molec(1)
1699       ibond_start=2
1700       ibond_end=nres_molec(1)-1
1701       ibond_nucl_start=2+nres_molec(1)
1702       ibond_nucl_end=nres_molec(2)-1
1703       ibondp_start=nnt
1704       ibondp_end=nct_molec(1)-1
1705       ibondp_nucl_start=nnt_molec(2)
1706       ibondp_nucl_end=nct_molec(2)
1707       ivec_start=1
1708       ivec_end=nres_molec(1)-1
1709       iset_start=3
1710       iset_end=nres_molec(1)+1
1711       iint_start=2
1712       iint_end=nres_molec(1)-1
1713       ilip_start=1
1714       ilip_end=nres_molec(1)
1715       itube_start=1
1716       itube_end=nres_molec(1)
1717 #endif
1718 !el       common /przechowalnia/
1719 !      deallocate(iturn3_start_all)
1720 !      deallocate(iturn3_end_all)
1721 !      deallocate(iturn4_start_all)
1722 !      deallocate(iturn4_end_all)
1723 !      deallocate(iatel_s_all)
1724 !      deallocate(iatel_e_all)
1725 !      deallocate(ielstart_all)
1726 !      deallocate(ielend_all)
1727
1728 !      deallocate(ntask_cont_from_all)
1729 !      deallocate(ntask_cont_to_all)
1730 !      deallocate(itask_cont_from_all)
1731 !      deallocate(itask_cont_to_all)
1732 !el----------
1733       return
1734       end subroutine init_int_table
1735 #ifdef MPI
1736 !-----------------------------------------------------------------------------
1737       subroutine add_int(ii,jj,itask,ntask_cont_to,itask_cont_to,flag)
1738
1739 !el      implicit none
1740 !      include "DIMENSIONS"
1741 !      include "COMMON.INTERACT"
1742 !      include "COMMON.SETUP"
1743 !      include "COMMON.IOUNITS"
1744       integer :: ii,jj,ntask_cont_to
1745       integer,dimension(4) :: itask
1746       integer :: itask_cont_to(0:nfgtasks-1)    !(0:max_fg_procs-1)
1747       logical :: flag
1748 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1749 !el       iturn4_end_all,iatel_s_all,iatel_e_all        !(0:max_fg_procs)
1750 !el      integer,dimension(nres,0:nfgtasks-1) :: ielstart_all,ielend_all        !(maxres,0:max_fg_procs-1)
1751 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1752 !el       iturn4_end_all,iatel_s_all,iatel_e_all,ielstart_all,ielend_all
1753       integer :: iproc,isent,k,l
1754 ! Determines whether to send interaction ii,jj to other processors; a given
1755 ! interaction can be sent to at most 2 processors.
1756 ! Sets flag=.true. if interaction ii,jj needs to be sent to at least 
1757 ! one processor, otherwise flag is unchanged from the input value.
1758       isent=0
1759       itask(1)=fg_rank
1760       itask(2)=fg_rank
1761       itask(3)=fg_rank
1762       itask(4)=fg_rank
1763 !      write (iout,*) "ii",ii," jj",jj
1764 ! Loop over processors to check if anybody could need interaction ii,jj
1765       do iproc=0,fg_rank-1
1766 ! Check if the interaction matches any turn3 at iproc
1767         do k=iturn3_start_all(iproc),iturn3_end_all(iproc)
1768           l=k+2
1769           if (k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1 &
1770          .or. k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1 .and. l.eq.jj-1) &
1771           then 
1772 !            write (iout,*) "turn3 to iproc",iproc," ij",ii,jj,"kl",k,l
1773 !            call flush(iout)
1774             flag=.true.
1775             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1776               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1777               isent=isent+1
1778               itask(isent)=iproc
1779               call add_task(iproc,ntask_cont_to,itask_cont_to)
1780             endif
1781           endif
1782         enddo
1783 ! Check if the interaction matches any turn4 at iproc
1784         do k=iturn4_start_all(iproc),iturn4_end_all(iproc)
1785           l=k+3
1786           if (k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1 &
1787          .or. k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1 .and. l.eq.jj-1) &
1788           then 
1789 !            write (iout,*) "turn3 to iproc",iproc," ij",ii,jj," kl",k,l
1790 !            call flush(iout)
1791             flag=.true.
1792             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1793               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1794               isent=isent+1
1795               itask(isent)=iproc
1796               call add_task(iproc,ntask_cont_to,itask_cont_to)
1797             endif
1798           endif
1799         enddo
1800         if (iatel_s_all(iproc).gt.0 .and. iatel_e_all(iproc).gt.0 .and. &
1801         iatel_s_all(iproc).le.ii-1 .and. iatel_e_all(iproc).ge.ii-1)then
1802           if (ielstart_all(ii-1,iproc).le.jj-1.and. &
1803               ielend_all(ii-1,iproc).ge.jj-1) then
1804             flag=.true.
1805             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1806               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1807               isent=isent+1
1808               itask(isent)=iproc
1809               call add_task(iproc,ntask_cont_to,itask_cont_to)
1810             endif
1811           endif
1812           if (ielstart_all(ii-1,iproc).le.jj+1.and. &
1813               ielend_all(ii-1,iproc).ge.jj+1) then
1814             flag=.true.
1815             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1816               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1817               isent=isent+1
1818               itask(isent)=iproc
1819               call add_task(iproc,ntask_cont_to,itask_cont_to)
1820             endif
1821           endif
1822         endif
1823       enddo
1824       return
1825       end subroutine add_int
1826 !-----------------------------------------------------------------------------
1827       subroutine add_int_from(ii,jj,ntask_cont_from,itask_cont_from)
1828
1829 !el      use MPI_data
1830 !el      implicit none
1831 !      include "DIMENSIONS"
1832 !      include "COMMON.INTERACT"
1833 !      include "COMMON.SETUP"
1834 !      include "COMMON.IOUNITS"
1835       integer :: ii,jj,itask(2),ntask_cont_from,&
1836        itask_cont_from(0:nfgtasks-1)    !(0:max_fg_procs)
1837       logical :: flag
1838 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,&
1839 !el       iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all       !(0:max_fg_procs)
1840 !el      integer,dimension(nres,0:nfgtasks-1) :: ielstart_all,ielend_all        !(maxres,0:max_fg_procs-1)
1841 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1842 !el       iturn4_end_all,iatel_s_all,iatel_e_all,ielstart_all,ielend_all
1843       integer :: iproc,k,l
1844       do iproc=fg_rank+1,nfgtasks-1
1845         do k=iturn3_start_all(iproc),iturn3_end_all(iproc)
1846           l=k+2
1847           if (k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1.and.l.eq.jj-1 &
1848          .or. k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1) &
1849           then
1850 !            write (iout,*)"turn3 from iproc",iproc," ij",ii,jj," kl",k,l
1851             call add_task(iproc,ntask_cont_from,itask_cont_from)
1852           endif
1853         enddo 
1854         do k=iturn4_start_all(iproc),iturn4_end_all(iproc)
1855           l=k+3
1856           if (k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1.and.l.eq.jj-1 &
1857          .or. k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1) &
1858           then
1859 !            write (iout,*)"turn4 from iproc",iproc," ij",ii,jj," kl",k,l
1860             call add_task(iproc,ntask_cont_from,itask_cont_from)
1861           endif
1862         enddo 
1863         if (iatel_s_all(iproc).gt.0 .and. iatel_e_all(iproc).gt.0) then
1864           if (ii+1.ge.iatel_s_all(iproc).and.ii+1.le.iatel_e_all(iproc)) &
1865           then
1866             if (jj+1.ge.ielstart_all(ii+1,iproc).and. &
1867                 jj+1.le.ielend_all(ii+1,iproc)) then
1868               call add_task(iproc,ntask_cont_from,itask_cont_from)
1869             endif            
1870             if (jj-1.ge.ielstart_all(ii+1,iproc).and. &
1871                 jj-1.le.ielend_all(ii+1,iproc)) then
1872               call add_task(iproc,ntask_cont_from,itask_cont_from)
1873             endif
1874           endif
1875           if (ii-1.ge.iatel_s_all(iproc).and.ii-1.le.iatel_e_all(iproc)) &
1876           then
1877             if (jj-1.ge.ielstart_all(ii-1,iproc).and. &
1878                 jj-1.le.ielend_all(ii-1,iproc)) then
1879               call add_task(iproc,ntask_cont_from,itask_cont_from)
1880             endif
1881             if (jj+1.ge.ielstart_all(ii-1,iproc).and. &
1882                 jj+1.le.ielend_all(ii-1,iproc)) then
1883                call add_task(iproc,ntask_cont_from,itask_cont_from)
1884             endif
1885           endif
1886         endif
1887       enddo
1888       return
1889       end subroutine add_int_from
1890 !-----------------------------------------------------------------------------
1891       subroutine add_task(iproc,ntask_cont,itask_cont)
1892
1893 !el      use MPI_data
1894 !el      implicit none
1895 !      include "DIMENSIONS"
1896       integer :: iproc,ntask_cont,itask_cont(0:nfgtasks-1)      !(0:max_fg_procs-1)
1897       integer :: ii
1898       do ii=1,ntask_cont
1899         if (itask_cont(ii).eq.iproc) return
1900       enddo
1901       ntask_cont=ntask_cont+1
1902       itask_cont(ntask_cont)=iproc
1903       return
1904       end subroutine add_task
1905 #endif
1906 !-----------------------------------------------------------------------------
1907 #if defined MPI || defined WHAM_RUN
1908       subroutine int_partition(int_index,lower_index,upper_index,atom,&
1909        at_start,at_end,first_atom,last_atom,int_gr,jat_start,jat_end,*)
1910
1911 !      implicit real*8 (a-h,o-z)
1912 !      include 'DIMENSIONS'
1913 !      include 'COMMON.IOUNITS'
1914       integer :: int_index,lower_index,upper_index,atom,at_start,at_end,&
1915        first_atom,last_atom,int_gr,jat_start,jat_end,int_index_old
1916       logical :: lprn
1917       lprn=.false.
1918       if (lprn) write (iout,*) 'int_index=',int_index
1919       int_index_old=int_index
1920       int_index=int_index+last_atom-first_atom+1
1921       if (lprn) &
1922          write (iout,*) 'int_index=',int_index,&
1923                      ' int_index_old',int_index_old,&
1924                      ' lower_index=',lower_index,&
1925                      ' upper_index=',upper_index,&
1926                      ' atom=',atom,' first_atom=',first_atom,&
1927                      ' last_atom=',last_atom
1928       if (int_index.ge.lower_index) then
1929         int_gr=int_gr+1
1930         if (at_start.eq.0) then
1931           at_start=atom
1932           jat_start=first_atom-1+lower_index-int_index_old
1933         else
1934           jat_start=first_atom
1935         endif
1936         if (lprn) write (iout,*) 'jat_start',jat_start
1937         if (int_index.ge.upper_index) then
1938           at_end=atom
1939           jat_end=first_atom-1+upper_index-int_index_old
1940           return 1
1941         else
1942           jat_end=last_atom
1943         endif
1944         if (lprn) write (iout,*) 'jat_end',jat_end
1945       endif
1946       return
1947       end subroutine int_partition
1948 #endif
1949 !-----------------------------------------------------------------------------
1950 #ifndef CLUSTER
1951       subroutine hpb_partition
1952
1953 !      implicit real*8 (a-h,o-z)
1954 !      include 'DIMENSIONS'
1955 #ifdef MPI
1956       include 'mpif.h'
1957 #endif
1958 !      include 'COMMON.SBRIDGE'
1959 !      include 'COMMON.IOUNITS'
1960 !      include 'COMMON.SETUP'
1961 #ifdef MPI
1962       call int_bounds(nhpb,link_start,link_end)
1963       write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
1964         ' absolute rank',MyRank,&
1965         ' nhpb',nhpb,' link_start=',link_start,&
1966         ' link_end',link_end
1967 #else
1968       link_start=1
1969       link_end=nhpb
1970 #endif
1971       return
1972       end subroutine hpb_partition
1973 #endif
1974 !-----------------------------------------------------------------------------
1975 ! misc.f in module io_base
1976 !-----------------------------------------------------------------------------
1977 !-----------------------------------------------------------------------------
1978 ! parmread.F
1979 !-----------------------------------------------------------------------------
1980       subroutine getenv_loc(var, val)
1981
1982       character(*) :: var, val
1983
1984 #ifdef WINIFL
1985       character(len=2000) :: line
1986 !el      external ilen
1987
1988       open (196,file='env',status='old',readonly,shared)
1989       iread=0
1990 !      write(*,*)'looking for ',var
1991 10    read(196,*,err=11,end=11)line
1992       iread=index(line,var)
1993 !      write(*,*)iread,' ',var,' ',line
1994       if (iread.eq.0) go to 10 
1995 !      write(*,*)'---> ',line
1996 11    continue
1997       if(iread.eq.0) then
1998 !       write(*,*)'CHUJ'
1999        val=''
2000       else
2001        iread=iread+ilen(var)+1
2002        read (line(iread:),*,err=12,end=12) val
2003 !       write(*,*)'OK: ',var,' = ',val
2004       endif
2005       close(196)
2006       return
2007 12    val=''
2008       close(196)
2009 #elif (defined CRAY)
2010       integer :: lennam,lenval,ierror
2011 !
2012 !        getenv using a POSIX call, useful on the T3D
2013 !        Sept 1996, comment out error check on advice of H. Pritchard
2014 !
2015       lennam = len(var)
2016       if(lennam.le.0) stop '--error calling getenv--'
2017       call pxfgetenv(var,lennam,val,lenval,ierror)
2018 !-HP- if(ierror.ne.0) stop '--error returned by pxfgetenv--'
2019 #else
2020       call getenv(var,val)
2021 #endif
2022
2023       return
2024       end subroutine getenv_loc
2025 !-----------------------------------------------------------------------------
2026 ! readrtns_CSA.F
2027 !-----------------------------------------------------------------------------
2028       subroutine setup_var
2029
2030       integer :: i,mnum
2031 !      implicit real*8 (a-h,o-z)
2032 !      include 'DIMENSIONS'
2033 !      include 'COMMON.IOUNITS'
2034 !      include 'COMMON.GEO'
2035 !      include 'COMMON.VAR'
2036 !      include 'COMMON.INTERACT'
2037 !      include 'COMMON.LOCAL'
2038 !      include 'COMMON.NAMES'
2039 !      include 'COMMON.CHAIN'
2040 !      include 'COMMON.FFIELD'
2041 !      include 'COMMON.SBRIDGE'
2042 !      include 'COMMON.HEADER'
2043 !      include 'COMMON.CONTROL'
2044 !      include 'COMMON.DBASE'
2045 !      include 'COMMON.THREAD'
2046 !      include 'COMMON.TIME1'
2047 ! Set up variable list.
2048       ntheta=nres-2
2049       nphi=nres-3
2050       nvar=ntheta+nphi
2051       nside=0
2052       do i=2,nres-1
2053       mnum=molnum(i)
2054       write(iout,*) "i",molnum(i)
2055 #ifdef WHAM_RUN
2056         if (itype(i,1).ne.10) then
2057 #else
2058         if (itype(i,1).ne.10 .and. itype(i,mnum).ne.ntyp1_molec(mnum) .and. mnum.lt.4) then
2059 #endif
2060           nside=nside+1
2061           ialph(i,1)=nvar+nside
2062           ialph(nside,2)=i
2063         endif
2064       enddo
2065       if (indphi.gt.0) then
2066         nvar=nphi
2067       else if (indback.gt.0) then
2068         nvar=nphi+ntheta
2069       else
2070         nvar=nvar+2*nside
2071       endif
2072 !d    write (iout,'(3i4)') (i,ialph(i,1),ialph(i,2),i=2,nres-1)
2073       return
2074       end subroutine setup_var
2075 !-----------------------------------------------------------------------------
2076 ! timing.F
2077 !-----------------------------------------------------------------------------
2078 ! $Date: 1994/10/05 16:41:52 $
2079 ! $Revision: 2.2 $
2080 !
2081       subroutine set_timers
2082 !
2083 !el      implicit none
2084 !el      real(kind=8) :: tcpu
2085 !      include 'COMMON.TIME1'
2086 !#ifdef MP
2087 #ifdef MPI
2088       include 'mpif.h'
2089 #endif
2090 ! Diminish the assigned time limit a little so that there is some time to
2091 ! end a batch job
2092 !     timlim=batime-150.0
2093 ! Calculate the initial time, if it is not zero (e.g. for the SUN).
2094       stime=tcpu()
2095 #if .not. defined(WHAM_RUN) && .not. defined(CLUSTER)
2096 #ifdef MPI
2097       walltime=MPI_WTIME()
2098       time_reduce=0.0d0
2099       time_allreduce=0.0d0
2100       time_bcast=0.0d0
2101       time_gather=0.0d0
2102       time_sendrecv=0.0d0
2103       time_scatter=0.0d0
2104       time_scatter_fmat=0.0d0
2105       time_scatter_ginv=0.0d0
2106       time_scatter_fmatmult=0.0d0
2107       time_scatter_ginvmult=0.0d0
2108       time_barrier_e=0.0d0
2109       time_barrier_g=0.0d0
2110       time_enecalc=0.0d0
2111       time_sumene=0.0d0
2112       time_lagrangian=0.0d0
2113       time_sumgradient=0.0d0
2114       time_intcartderiv=0.0d0
2115       time_inttocart=0.0d0
2116       time_ginvmult=0.0d0
2117       time_fricmatmult=0.0d0
2118       time_cartgrad=0.0d0
2119       time_bcastc=0.0d0
2120       time_bcast7=0.0d0
2121       time_bcastw=0.0d0
2122       time_intfcart=0.0d0
2123       time_vec=0.0d0
2124       time_mat=0.0d0
2125       time_fric=0.0d0
2126       time_stoch=0.0d0
2127       time_fricmatmult=0.0d0
2128       time_fsample=0.0d0
2129 #endif
2130 #endif
2131 !d    print *,' in SET_TIMERS stime=',stime
2132       return
2133       end subroutine set_timers
2134 !-----------------------------------------------------------------------------
2135 #ifndef CLUSTER
2136       logical function stopx(nf)
2137 ! This function returns .true. if one of the following reasons to exit SUMSL
2138 ! occurs. The "reason" code is stored in WHATSUP passed thru a COMMON block:
2139 !
2140 !... WHATSUP = 0 - go on, no reason to stop. Stopx will return .false.
2141 !...           1 - Time up in current node;
2142 !...           2 - STOP signal was received from another node because the
2143 !...               node's task was accomplished (parallel only);
2144 !...          -1 - STOP signal was received from another node because of error;
2145 !...          -2 - STOP signal was received from another node, because 
2146 !...               the node's time was up.
2147 !      implicit real*8 (a-h,o-z)
2148 !      include 'DIMENSIONS'
2149 !el#ifdef WHAM_RUN
2150 !el      use control_data, only:WhatsUp
2151 !el#endif
2152 #ifdef MP
2153 !el      use MPI_data   !include 'COMMON.INFO'
2154       include 'mpif.h'
2155 #endif
2156       integer :: nf
2157 !el      logical :: ovrtim
2158
2159 !      include 'COMMON.IOUNITS'
2160 !      include 'COMMON.TIME1'
2161       integer :: Kwita
2162
2163 !d    print *,'Processor',MyID,' NF=',nf
2164 !d      write (iout,*) "stopx: ",nf
2165 #ifndef WHAM_RUN
2166 #ifndef MPI
2167       if (ovrtim()) then
2168 ! Finish if time is up.
2169          stopx = .true.
2170          WhatsUp=1
2171 #ifdef MPL
2172       else if (mod(nf,100).eq.0) then
2173 ! Other processors might have finished. Check this every 100th function 
2174 ! evaluation.
2175 ! Master checks if any other processor has sent accepted conformation(s) to it. 
2176          if (MyID.ne.MasterID) call receive_mcm_info
2177          if (MyID.eq.MasterID) call receive_conf
2178 !d       print *,'Processor ',MyID,' is checking STOP: nf=',nf
2179          call recv_stop_sig(Kwita)
2180          if (Kwita.eq.-1) then
2181            write (iout,'(a,i4,a,i5)') 'Processor',&
2182            MyID,' has received STOP signal in STOPX; NF=',nf
2183            write (*,'(a,i4,a,i5)') 'Processor',&
2184            MyID,' has received STOP signal in STOPX; NF=',nf
2185            stopx=.true.
2186            WhatsUp=2
2187          elseif (Kwita.eq.-2) then
2188            write (iout,*) &
2189           'Processor',MyID,' received TIMEUP-STOP signal in SUMSL.'
2190            write (*,*) &
2191           'Processor',MyID,' received TIMEUP-STOP signal in SUMSL.'
2192            WhatsUp=-2
2193            stopx=.true.  
2194          else if (Kwita.eq.-3) then
2195            write (iout,*) &
2196           'Processor',MyID,' received ERROR-STOP signal in SUMSL.'
2197            write (*,*) &
2198           'Processor',MyID,' received ERROR-STOP signal in SUMSL.'
2199            WhatsUp=-1
2200            stopx=.true.
2201          else
2202            stopx=.false.
2203            WhatsUp=0
2204          endif
2205 #endif
2206       else
2207          stopx = .false.
2208          WhatsUp=0
2209       endif
2210 #else
2211       stopx=.false.
2212 !d      write (iout,*) "stopx set at .false."
2213 #endif
2214
2215 #ifdef OSF
2216 ! Check for FOUND_NAN flag
2217       if (FOUND_NAN) then
2218         write(iout,*)"   ***   stopx : Found a NaN"
2219         stopx=.true.
2220       endif
2221 #endif
2222 #else
2223       if (ovrtim()) then
2224 ! Finish if time is up.
2225          stopx = .true.
2226          WhatsUp=1
2227       else if (cutoffviol) then
2228         stopx = .true.
2229         WhatsUp=2
2230       else
2231         stopx=.false.
2232       endif
2233 #endif
2234       return
2235       end function stopx
2236 !-----------------------------------------------------------------------------
2237 #else
2238       logical function stopx(nf)
2239 !
2240 !     ..................................................................
2241 !
2242 !     *****PURPOSE...
2243 !     THIS FUNCTION MAY SERVE AS THE STOPX (ASYNCHRONOUS INTERRUPTION)
2244 !     FUNCTION FOR THE NL2SOL (NONLINEAR LEAST-SQUARES) PACKAGE AT
2245 !     THOSE INSTALLATIONS WHICH DO NOT WISH TO IMPLEMENT A
2246 !     DYNAMIC STOPX.
2247 !
2248 !     *****ALGORITHM NOTES...
2249 !     AT INSTALLATIONS WHERE THE NL2SOL SYSTEM IS USED
2250 !     INTERACTIVELY, THIS DUMMY STOPX SHOULD BE REPLACED BY A
2251 !     FUNCTION THAT RETURNS .TRUE. IF AND ONLY IF THE INTERRUPT
2252 !     (BREAK) KEY HAS BEEN PRESSED SINCE THE LAST CALL ON STOPX.
2253 !
2254 !     $$$ MODIFIED FOR USE AS  THE TIMER ROUTINE.
2255 !     $$$                              WHEN THE TIME LIMIT HAS BEEN
2256 !     $$$ REACHED     STOPX IS SET TO .TRUE  AND INITIATES (IN ITSUM)
2257 !     $$$ AND ORDERLY EXIT OUT OF SUMSL.  IF ARRAYS IV AND V ARE
2258 !     $$$ SAVED, THE SUMSL ROUTINES CAN BE RESTARTED AT THE SAME
2259 !     $$$ POINT AT WHICH THEY WERE INTERRUPTED.
2260 !
2261 !     ..................................................................
2262 !
2263 !      include 'DIMENSIONS'
2264       integer :: nf
2265 !      logical ovrtim
2266 !      include 'COMMON.IOUNITS'
2267 !      include 'COMMON.TIME1'
2268 #ifdef MPL
2269 !     include 'COMMON.INFO'
2270       integer :: Kwita
2271
2272 !d    print *,'Processor',MyID,' NF=',nf
2273 #endif
2274       if (ovrtim()) then
2275 ! Finish if time is up.
2276          stopx = .true.
2277 #ifdef MPL
2278       else if (mod(nf,100).eq.0) then
2279 ! Other processors might have finished. Check this every 100th function 
2280 ! evaluation.
2281 !d       print *,'Processor ',MyID,' is checking STOP: nf=',nf
2282          call recv_stop_sig(Kwita)
2283          if (Kwita.eq.-1) then
2284            write (iout,'(a,i4,a,i5)') 'Processor',&
2285            MyID,' has received STOP signal in STOPX; NF=',nf
2286            write (*,'(a,i4,a,i5)') 'Processor',&
2287            MyID,' has received STOP signal in STOPX; NF=',nf
2288            stopx=.true.
2289          else
2290            stopx=.false.
2291          endif
2292 #endif
2293       else
2294          stopx = .false.
2295       endif
2296       return
2297       end function stopx
2298 #endif
2299 !-----------------------------------------------------------------------------
2300       logical function ovrtim()
2301
2302 !      include 'DIMENSIONS'
2303 !      include 'COMMON.IOUNITS'
2304 !      include 'COMMON.TIME1'
2305 !el      real(kind=8) :: tcpu
2306       real(kind=8) :: curtim
2307 #ifdef MPI
2308       include "mpif.h"
2309       curtim = MPI_Wtime()-walltime
2310 #else
2311       curtim= tcpu()
2312 #endif
2313 !  curtim is the current time in seconds.
2314 !      write (iout,*) "curtim",curtim," timlim",timlim," safety",safety
2315 #ifndef WHAM_RUN
2316       if (curtim .ge. timlim - safety) then
2317         write (iout,'(a,f10.2,a,f10.2,a,f10.2,a)') &
2318         "***************** Elapsed time (",curtim,&
2319         " s) is within the safety limit (",safety,&
2320         " s) of the allocated time (",timlim," s). Terminating."
2321         ovrtim=.true.
2322       else
2323         ovrtim=.false.
2324       endif
2325 #else
2326       ovrtim=.false.
2327 #endif
2328 !elwrite (iout,*) "ovrtim",ovrtim
2329       return
2330       end function ovrtim
2331 !-----------------------------------------------------------------------------
2332       real(kind=8) function tcpu()
2333
2334 !      include 'COMMON.TIME1'
2335       real(kind=8) :: seconds
2336 #ifdef ES9000
2337 !***************************
2338 ! Next definition for EAGLE (ibm-es9000)
2339       real(kind=8) :: micseconds
2340       integer :: rcode
2341       tcpu=cputime(micseconds,rcode)
2342       tcpu=(micseconds/1.0E6) - stime
2343 !***************************
2344 #endif
2345 #ifdef SUN
2346 !***************************
2347 ! Next definitions for sun
2348       REAL(kind=8) ::  ECPU,ETIME,ETCPU
2349       real(kind=8),dimension(2) :: tarray
2350       tcpu=etime(tarray)
2351       tcpu=tarray(1)
2352 !***************************
2353 #endif
2354 #ifdef KSR
2355 !***************************
2356 ! Next definitions for ksr
2357 ! this function uses the ksr timer ALL_SECONDS from the PMON library to
2358 ! return the elapsed time in seconds
2359       tcpu= all_seconds() - stime
2360 !***************************
2361 #endif
2362 #ifdef SGI
2363 !***************************
2364 ! Next definitions for sgi
2365       real(kind=4) :: timar(2), etime
2366       seconds = etime(timar)
2367 !d    print *,'seconds=',seconds,' stime=',stime
2368 !      usrsec = timar(1)
2369 !      syssec = timar(2)
2370       tcpu=seconds - stime
2371 !***************************
2372 #endif
2373
2374 #ifdef LINUX
2375 !***************************
2376 ! Next definitions for sgi
2377       real(kind=4) :: timar(2), etime
2378       seconds = etime(timar)
2379 !d    print *,'seconds=',seconds,' stime=',stime
2380 !      usrsec = timar(1)
2381 !      syssec = timar(2)
2382       tcpu=seconds - stime
2383 !***************************
2384 #endif
2385
2386
2387 #ifdef CRAY
2388 !***************************
2389 ! Next definitions for Cray
2390 !     call date(curdat)
2391 !     curdat=curdat(1:9)
2392 !     call clock(curtim)
2393 !     curtim=curtim(1:8)
2394       cpusec = second()
2395       tcpu=cpusec - stime
2396 !***************************
2397 #endif
2398 #ifdef AIX
2399 !***************************
2400 ! Next definitions for RS6000
2401        integer(kind=4) :: i1,mclock
2402        i1 = mclock()
2403        tcpu = (i1+0.0D0)/100.0D0
2404 #endif
2405 #ifdef WINPGI
2406 !***************************
2407 ! next definitions for windows NT Digital fortran
2408        real(kind=4) :: time_real
2409        call cpu_time(time_real)
2410        tcpu = time_real
2411 #endif
2412 #ifdef WINIFL
2413 !***************************
2414 ! next definitions for windows NT Digital fortran
2415        real(kind=4) :: time_real
2416        call cpu_time(time_real)
2417        tcpu = time_real
2418 #endif
2419       tcpu = 0d0 !el
2420       return
2421       end function tcpu
2422 !-----------------------------------------------------------------------------
2423 #ifndef CLUSTER
2424       subroutine dajczas(rntime,hrtime,mintime,sectime)
2425
2426 !      include 'COMMON.IOUNITS'
2427       integer :: ihr,imn,isc
2428       real(kind=8) :: rntime,hrtime,mintime,sectime 
2429       hrtime=rntime/3600.0D0 
2430       hrtime=aint(hrtime)
2431       mintime=aint((rntime-3600.0D0*hrtime)/60.0D0)
2432       sectime=aint((rntime-3600.0D0*hrtime-60.0D0*mintime)+0.5D0)
2433       if (sectime.eq.60.0D0) then
2434         sectime=0.0D0
2435         mintime=mintime+1.0D0
2436       endif
2437       ihr=hrtime
2438       imn=mintime
2439       isc=sectime
2440       write (iout,328) ihr,imn,isc
2441   328 FORMAT(//'***** Computation time: ',I4  ,' hours ',I2  ,&
2442                ' minutes ', I2  ,' seconds *****')       
2443       return
2444       end subroutine dajczas
2445 !-----------------------------------------------------------------------------
2446       subroutine print_detailed_timing
2447
2448 !el      use MPI_data
2449 !      implicit real*8 (a-h,o-z)
2450 !      include 'DIMENSIONS'
2451 #ifdef MPI
2452       include 'mpif.h'
2453 #endif
2454 !      include 'COMMON.IOUNITS'
2455 !      include 'COMMON.TIME1'
2456 !      include 'COMMON.SETUP'
2457       real(kind=8) :: time1,time_barrier
2458       time_barrier = 0.0d0
2459 #ifdef MPI !el
2460       time1=MPI_WTIME()
2461 #endif !el
2462          write (iout,'(80(1h=)/a/(80(1h=)))') &
2463           "Details of FG communication time"
2464          write (*,'(7(a40,1pe15.5/),40(1h-)/a40,1pe15.5/80(1h=))') &
2465           "BROADCAST:",time_bcast,"REDUCE:",time_reduce,&
2466           "GATHER:",time_gather,&
2467           "SCATTER:",time_scatter,"SENDRECV:",time_sendrecv,&
2468           "BARRIER ene",time_barrier_e,&
2469           "BARRIER grad",time_barrier_g,&
2470           "TOTAL:",&
2471           time_bcast+time_reduce+time_gather+time_scatter+time_sendrecv
2472          write (*,*) fg_rank,myrank,&
2473            ': Total wall clock time',time1-walltime,' sec'
2474          write (*,*) "Processor",fg_rank,myrank,&
2475            ": BROADCAST time",time_bcast," REDUCE time",&
2476             time_reduce," GATHER time",time_gather," SCATTER time",&
2477             time_scatter,&
2478            " SCATTER fmatmult",time_scatter_fmatmult,&
2479            " SCATTER ginvmult",time_scatter_ginvmult,&
2480            " SCATTER fmat",time_scatter_fmat,&
2481            " SCATTER ginv",time_scatter_ginv,&
2482             " SENDRECV",time_sendrecv,&
2483             " BARRIER ene",time_barrier_e,&
2484             " BARRIER GRAD",time_barrier_g,&
2485             " BCAST7",time_bcast7," BCASTC",time_bcastc,&
2486             " BCASTW",time_bcastw," ALLREDUCE",time_allreduce,&
2487             " TOTAL",&
2488             time_bcast+time_reduce+time_gather+time_scatter+ &
2489             time_sendrecv+time_barrier+time_bcastc
2490 !el#endif
2491          write (*,*) "Processor",fg_rank,myrank," enecalc",time_enecalc
2492          write (*,*) "Processor",fg_rank,myrank," sumene",time_sumene
2493          write (*,*) "Processor",fg_rank,myrank," intfromcart",&
2494            time_intfcart
2495          write (*,*) "Processor",fg_rank,myrank," vecandderiv",&
2496            time_vec
2497          write (*,*) "Processor",fg_rank,myrank," setmatrices",&
2498            time_mat
2499          write (*,*) "Processor",fg_rank,myrank," ginvmult",&
2500            time_ginvmult
2501          write (*,*) "Processor",fg_rank,myrank," fricmatmult",&
2502            time_fricmatmult
2503          write (*,*) "Processor",fg_rank,myrank," inttocart",&
2504            time_inttocart
2505          write (*,*) "Processor",fg_rank,myrank," sumgradient",&
2506            time_sumgradient
2507          write (*,*) "Processor",fg_rank,myrank," intcartderiv",&
2508            time_intcartderiv
2509          if (fg_rank.eq.0) then
2510            write (*,*) "Processor",fg_rank,myrank," lagrangian",&
2511              time_lagrangian
2512            write (*,*) "Processor",fg_rank,myrank," cartgrad",&
2513              time_cartgrad
2514          endif
2515       return
2516       end subroutine print_detailed_timing
2517 #endif
2518 !-----------------------------------------------------------------------------
2519       subroutine homology_partition
2520       implicit none
2521 !      include 'DIMENSIONS'
2522 !#ifdef MPI
2523 !      include 'mpif.h'
2524 !#endif
2525 !      include 'COMMON.SBRIDGE'
2526 !      include 'COMMON.IOUNITS'
2527 !      include 'COMMON.SETUP'
2528 !      include 'COMMON.CONTROL'
2529 !      include 'COMMON.INTERACT'
2530 !      include 'COMMON.HOMOLOGY'
2531 !d      write(iout,*)"homology_partition: lim_odl=",lim_odl,
2532 !d     &   " lim_dih",lim_dih
2533 #ifdef MPI
2534       if (me.eq.king .or. .not. out1file) write (iout,*) "MPI"
2535       call int_bounds(lim_odl,link_start_homo,link_end_homo)
2536       call int_bounds(lim_dih,idihconstr_start_homo, &
2537        idihconstr_end_homo)
2538       idihconstr_start_homo=idihconstr_start_homo+nnt-1+3
2539       idihconstr_end_homo=idihconstr_end_homo+nnt-1+3
2540       if (me.eq.king .or. .not. out1file)&
2541        write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
2542        ' absolute rank',MyRank,&
2543        ' lim_odl',lim_odl,' link_start=',link_start_homo,&
2544        ' link_end',link_end_homo,' lim_dih',lim_dih,&
2545        ' idihconstr_start_homo',idihconstr_start_homo,&
2546        ' idihconstr_end_homo',idihconstr_end_homo
2547 #else
2548       write (iout,*) "Not MPI"
2549       link_start_homo=1
2550       link_end_homo=lim_odl
2551       idihconstr_start_homo=nnt+3
2552       idihconstr_end_homo=lim_dih+nnt-1+3
2553       write (iout,*) &
2554        ' lim_odl',lim_odl,' link_start=',link_start_homo, &
2555        ' link_end',link_end_homo,' lim_dih',lim_dih,&
2556        ' idihconstr_start_homo',idihconstr_start_homo,&
2557        ' idihconstr_end_homo',idihconstr_end_homo
2558 #endif
2559       return
2560       end subroutine homology_partition
2561
2562 !-----------------------------------------------------------------------------
2563       end module control