d70d14408556ec173468a96e10d3b2efa1336a37
[unres4.git] / source / unres / control.F90
1       module control
2 !-----------------------------------------------------------------------------
3       use io_units
4       use names
5       use MPI_data
6       use geometry_data
7       use energy_data
8       use control_data
9       use minim_data
10       use geometry, only:int_bounds
11 #ifndef CLUSTER
12       use csa_data
13 #ifdef WHAM_RUN
14       use wham_data
15 #endif
16 #endif
17       implicit none
18 !-----------------------------------------------------------------------------
19 ! commom.control
20 !      common /cntrl/
21 !      integer :: modecalc,iscode,indpdb,indback,indphi,iranconf,&
22 !       icheckgrad,iprint,i2ndstr,mucadyn,constr_dist,symetr
23 !      logical :: minim,refstr,pdbref,outpdb,outmol2,overlapsc,&
24 !       energy_dec,sideadd,lsecondary,read_cart,unres_pdb,&
25 !       vdisulf,searchsc,lmuca,dccart,extconf,out1file,&
26 !       gnorm_check,gradout,split_ene
27 !... minim = .true. means DO minimization.
28 !... energy_dec = .true. means print energy decomposition matrix
29 !-----------------------------------------------------------------------------
30 ! common.time1
31 !     FOUND_NAN - set by calcf to stop sumsl via stopx
32 !      COMMON/TIME1/
33       real(kind=8) :: STIME,BATIME,PREVTIM,RSTIME
34 !el      real(kind=8) :: TIMLIM,SAFETY
35 !el      real(kind=8) :: WALLTIME
36 !      COMMON/STOPTIM/
37       integer :: ISTOP
38 !      common /sumsl_flag/
39       logical :: FOUND_NAN
40 !      common /timing/
41       real(kind=8) :: t_init
42 !       time_bcast,time_reduce,time_gather,&
43 !       time_sendrecv,time_barrier_e,time_barrier_g,time_scatter,&
44        !t_eelecij,
45 !       time_allreduce,&
46 !       time_lagrangian,time_cartgrad,&
47 !       time_sumgradient,time_intcartderiv,time_inttocart,time_intfcart,&
48 !       time_mat,time_fricmatmult,&
49 !       time_scatter_fmat,time_scatter_ginv,&
50 !       time_scatter_fmatmult,time_scatter_ginvmult,&
51 !       t_eshort,t_elong,t_etotal
52 !-----------------------------------------------------------------------------
53 ! initialize_p.F
54 !-----------------------------------------------------------------------------
55 !      block data
56 !      integer,parameter :: MaxMoveType = 4
57 !      character(len=14),dimension(-1:MaxMoveType+1) :: MovTypID=(/'pool','chain regrow',&
58 !      character :: MovTypID(-1:MaxMoveType+1)=(/'pool','chain regrow',&
59 !       'multi-bond','phi','theta','side chain','total'/)
60 ! Conversion from poises to molecular unit and the gas constant
61 !el      real(kind=8) :: cPoise=2.9361d0, Rb=0.001986d0
62 !-----------------------------------------------------------------------------
63 !      common /przechowalnia/ subroutines: init_int_table,add_int,add_int_from
64       integer,dimension(:),allocatable :: iturn3_start_all,&
65         iturn3_end_all,iturn4_start_all,iturn4_end_all,iatel_s_all,&
66         iatel_e_all !(0:max_fg_procs)
67       integer,dimension(:,:),allocatable :: ielstart_all,&
68         ielend_all !(maxres,0:max_fg_procs-1)
69
70 !      common /przechowalnia/ subroutine: init_int_table
71       integer,dimension(:),allocatable :: ntask_cont_from_all,&
72         ntask_cont_to_all !(0:max_fg_procs-1)
73       integer,dimension(:,:),allocatable :: itask_cont_from_all,&
74         itask_cont_to_all !(0:max_fg_procs-1,0:max_fg_procs-1)
75 !-----------------------------------------------------------------------------
76 !
77 !
78 !-----------------------------------------------------------------------------
79       contains
80 !-----------------------------------------------------------------------------
81 ! initialize_p.F
82 !-----------------------------------------------------------------------------
83       subroutine initialize
84 !
85 ! Define constants and zero out tables.
86 !
87       use comm_iofile
88       use comm_machsw
89       use MCM_data, only: MovTypID
90 !      implicit real*8 (a-h,o-z)
91 !      include 'DIMENSIONS'
92 #ifdef MPI
93       include 'mpif.h'
94 #endif
95 #ifndef ISNAN
96       external proc_proc
97 #ifdef WINPGI
98 !MS$ATTRIBUTES C ::  proc_proc
99 #endif
100 #endif
101 !      include 'COMMON.IOUNITS'
102 !      include 'COMMON.CHAIN'
103 !      include 'COMMON.INTERACT'
104 !      include 'COMMON.GEO'
105 !      include 'COMMON.LOCAL'
106 !      include 'COMMON.TORSION'
107 !      include 'COMMON.FFIELD'
108 !      include 'COMMON.SBRIDGE'
109 !      include 'COMMON.MCM'
110 !      include 'COMMON.MINIM' 
111 !      include 'COMMON.DERIV'
112 !      include 'COMMON.SPLITELE'
113 !      implicit none
114 ! Common blocks from the diagonalization routines
115 !el      integer :: IR,IW,IP,IJK,IPK,IDAF,NAV,IODA(400)
116 !el      integer :: KDIAG,ICORFL,IXDR
117 !el      COMMON /IOFILE/ IR,IW,IP,IJK,IPK,IDAF,NAV,IODA
118 !el      COMMON /MACHSW/ KDIAG,ICORFL,IXDR
119       logical :: mask_r
120 !      real*8 text1 /'initial_i'/
121       real(kind=4) :: rr
122
123 !local variables el
124       integer :: i,j,k,l,ichir1,ichir2,iblock,m,maxit
125
126 #if .not. defined(WHAM_RUN) && .not. defined(CLUSTER)
127       mask_r=.false.
128 #ifndef ISNAN
129 ! NaNQ initialization
130       i=-1
131       rr=dacos(100.0d0)
132 #ifdef WINPGI
133       idumm=proc_proc(rr,i)
134 #elif defined(WHAM_RUN)
135       call proc_proc(rr,i)
136 #endif
137 #endif
138
139       kdiag=0
140       icorfl=0
141       iw=2
142       
143       allocate(MovTypID(-1:MaxMoveType+1))
144       MovTypID=(/'pool          ','chain regrow  ',&
145        'multi-bond    ','phi           ','theta         ',&
146        'side chain    ','total         '/)
147 #endif
148 !
149 ! The following is just to define auxiliary variables used in angle conversion
150 !
151       pi=4.0D0*datan(1.0D0)
152       dwapi=2.0D0*pi
153       dwapi3=dwapi/3.0D0
154       pipol=0.5D0*pi
155       deg2rad=pi/180.0D0
156       rad2deg=1.0D0/deg2rad
157       angmin=10.0D0*deg2rad
158 !el#ifdef CLUSTER
159 !el      Rgas = 1.987D-3
160 !el#endif
161 !
162 ! Define I/O units.
163 !
164       inp=    1
165       iout=   2
166       ipdbin= 3
167       ipdb=   7
168 #ifdef CLUSTER
169       imol2= 18
170       jplot= 19
171 !el      jstatin=10
172       imol2=  4
173       jrms=30
174 #else
175       icart = 30
176       imol2=  4
177       ithep_pdb=51
178       irotam_pdb=52
179       irest1=55
180       irest2=56
181       iifrag=57
182       ientin=18
183       ientout=19
184 !rc for write_rmsbank1  
185       izs1=21
186 !dr  include secondary structure prediction bias
187       isecpred=27
188 #endif
189       igeom=  8
190       intin=  9
191       ithep= 11
192       irotam=12
193       itorp= 13
194       itordp= 23
195       ielep= 14
196       isidep=15
197 #if defined(WHAM_RUN) || defined(CLUSTER)
198       isidep1=22 !wham
199 #else
200 !
201 ! CSA I/O units (separated from others especially for Jooyoung)
202 !
203       icsa_rbank=30
204       icsa_seed=31
205       icsa_history=32
206       icsa_bank=33
207       icsa_bank1=34
208       icsa_alpha=35
209       icsa_alpha1=36
210       icsa_bankt=37
211       icsa_int=39
212       icsa_bank_reminimized=38
213       icsa_native_int=41
214       icsa_in=40
215 !rc for ifc error 118
216       icsa_pdb=42
217 #endif
218       iscpp=25
219       icbase=16
220       ifourier=20
221       istat= 17
222       ibond = 28
223       isccor = 29
224 #ifdef WHAM_RUN
225 !
226 ! WHAM files
227 !
228       ihist=30
229       iweight=31
230       izsc=32
231 #endif
232       ibond_nucl=126
233       ithep_nucl=127
234       irotam_nucl=128
235       itorp_nucl= 129
236       itordp_nucl= 130
237 !      ielep_nucl= 131
238       isidep_nucl=132
239       iscpp_nucl=133
240
241
242
243       iliptranpar=60
244       itube=61
245 #if defined(WHAM_RUN) || defined(CLUSTER)
246 !
247 ! setting the mpi variables for WHAM
248 !
249       fgprocs=1
250       nfgtasks=1
251       nfgtasks1=1
252 #endif
253 !
254 ! Set default weights of the energy terms.
255 !
256       wsc=1.0D0 ! in wham:  wlong=1.0D0
257       welec=1.0D0
258       wtor =1.0D0
259       wang =1.0D0
260       wscloc=1.0D0
261       wstrain=1.0D0
262 !
263 ! Zero out tables.
264 !
265 !      print '(a,$)','Inside initialize'
266 !      call memmon_print_usage()
267       
268 !      do i=1,maxres2
269 !       do j=1,3
270 !         c(j,i)=0.0D0
271 !         dc(j,i)=0.0D0
272 !       enddo
273 !      enddo
274 !      do i=1,maxres
275 !       do j=1,3
276 !         xloc(j,i)=0.0D0
277 !        enddo
278 !      enddo
279 !      do i=1,ntyp
280 !       do j=1,ntyp
281 !         aa(i,j)=0.0D0
282 !         bb(i,j)=0.0D0
283 !         augm(i,j)=0.0D0
284 !         sigma(i,j)=0.0D0
285 !         r0(i,j)=0.0D0
286 !         chi(i,j)=0.0D0
287 !        enddo
288 !       do j=1,2
289 !         bad(i,j)=0.0D0
290 !        enddo
291 !       chip(i)=0.0D0
292 !       alp(i)=0.0D0
293 !       sigma0(i)=0.0D0
294 !       sigii(i)=0.0D0
295 !       rr0(i)=0.0D0
296 !       a0thet(i)=0.0D0
297 !       do j=1,2
298 !         do ichir1=-1,1
299 !          do ichir2=-1,1
300 !          athet(j,i,ichir1,ichir2)=0.0D0
301 !          bthet(j,i,ichir1,ichir2)=0.0D0
302 !          enddo
303 !         enddo
304 !        enddo
305 !        do j=0,3
306 !         polthet(j,i)=0.0D0
307 !        enddo
308 !       do j=1,3
309 !         gthet(j,i)=0.0D0
310 !        enddo
311 !       theta0(i)=0.0D0
312 !       sig0(i)=0.0D0
313 !       sigc0(i)=0.0D0
314 !       do j=1,maxlob
315 !         bsc(j,i)=0.0D0
316 !         do k=1,3
317 !           censc(k,j,i)=0.0D0
318 !          enddo
319 !          do k=1,3
320 !           do l=1,3
321 !             gaussc(l,k,j,i)=0.0D0
322 !            enddo
323 !          enddo
324 !         nlob(i)=0
325 !        enddo
326 !      enddo
327 !      nlob(ntyp1)=0
328 !      dsc(ntyp1)=0.0D0
329 !      do i=-maxtor,maxtor
330 !        itortyp(i)=0
331 !c      write (iout,*) "TU DOCHODZE",i,itortyp(i)
332 !       do iblock=1,2
333 !        do j=-maxtor,maxtor
334 !          do k=1,maxterm
335 !            v1(k,j,i,iblock)=0.0D0
336 !            v2(k,j,i,iblock)=0.0D0
337 !          enddo
338 !        enddo
339 !        enddo
340 !      enddo
341 !      do iblock=1,2
342 !       do i=-maxtor,maxtor
343 !        do j=-maxtor,maxtor
344 !         do k=-maxtor,maxtor
345 !          do l=1,maxtermd_1
346 !            v1c(1,l,i,j,k,iblock)=0.0D0
347 !            v1s(1,l,i,j,k,iblock)=0.0D0
348 !            v1c(2,l,i,j,k,iblock)=0.0D0
349 !            v1s(2,l,i,j,k,iblock)=0.0D0
350 !          enddo !l
351 !          do l=1,maxtermd_2
352 !           do m=1,maxtermd_2
353 !            v2c(m,l,i,j,k,iblock)=0.0D0
354 !            v2s(m,l,i,j,k,iblock)=0.0D0
355 !           enddo !m
356 !          enddo !l
357 !        enddo !k
358 !       enddo !j
359 !      enddo !i
360 !      enddo !iblock
361
362 !      do i=1,maxres
363 !       itype(i,1)=0
364 !       itel(i)=0
365 !      enddo
366 ! Initialize the bridge arrays
367       ns=0
368       nss=0 
369       nhpb=0
370 !      do i=1,maxss
371 !       iss(i)=0
372 !      enddo
373 !      do i=1,maxdim
374 !       dhpb(i)=0.0D0
375 !      enddo
376 !      do i=1,maxres
377 !       ihpb(i)=0
378 !       jhpb(i)=0
379 !      enddo
380 !
381 ! Initialize timing.
382 !
383       call set_timers
384 !
385 ! Initialize variables used in minimization.
386 !   
387 !c     maxfun=5000
388 !c     maxit=2000
389       maxfun=500
390       maxit=200
391       tolf=1.0D-2
392       rtolf=5.0D-4
393
394 ! Initialize the variables responsible for the mode of gradient storage.
395 !
396       nfl=0
397       icg=1
398       
399 #ifdef WHAM_RUN
400       allocate(iww(max_eneW))
401       do i=1,14
402         do j=1,14
403           if (print_order(i).eq.j) then
404             iww(print_order(i))=j
405             goto 1121
406           endif
407         enddo
408 1121    continue
409       enddo
410 #endif
411  
412 #if defined(WHAM_RUN) || defined(CLUSTER)
413       ndih_constr=0
414
415 !      allocate(ww0(max_eneW))
416 !      ww0 = reshape((/1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,&
417 !          1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,0.4d0,1.0d0,&
418 !          1.0d0,0.0d0,0.0/), shape(ww0))
419 !
420       calc_grad=.false.
421 ! Set timers and counters for the respective routines
422       t_func = 0.0d0
423       t_grad = 0.0d0
424       t_fhel = 0.0d0
425       t_fbet = 0.0d0
426       t_ghel = 0.0d0
427       t_gbet = 0.0d0
428       t_viol = 0.0d0
429       t_gviol = 0.0d0
430       n_func = 0
431       n_grad = 0
432       n_fhel = 0
433       n_fbet = 0
434       n_ghel = 0
435       n_gbet = 0
436       n_viol = 0
437       n_gviol = 0
438       n_map = 0
439 #endif
440 !
441 ! Initialize constants used to split the energy into long- and short-range
442 ! components
443 !
444       r_cut=2.0d0
445       rlamb=0.3d0
446 #ifndef SPLITELE
447       nprint_ene=nprint_ene-1
448 #endif
449       return
450       end subroutine initialize
451 !-----------------------------------------------------------------------------
452       subroutine init_int_table
453
454       use geometry, only:int_bounds1
455 !el      use MPI_data
456 !el      implicit none
457 !      implicit real*8 (a-h,o-z)
458 !      include 'DIMENSIONS'
459 #ifdef MPI
460       include 'mpif.h'
461       integer,dimension(15) :: blocklengths,displs
462 #endif
463 !      include 'COMMON.CONTROL'
464 !      include 'COMMON.SETUP'
465 !      include 'COMMON.CHAIN'
466 !      include 'COMMON.INTERACT'
467 !      include 'COMMON.LOCAL'
468 !      include 'COMMON.SBRIDGE'
469 !      include 'COMMON.TORCNSTR'
470 !      include 'COMMON.IOUNITS'
471 !      include 'COMMON.DERIV'
472 !      include 'COMMON.CONTACTS'
473 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,&
474 !el        iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all  !(0:max_fg_procs)
475 !el      integer,dimension(nres,0:nfgtasks) :: ielstart_all,&
476 !el        ielend_all !(maxres,0:max_fg_procs-1)
477 !el      integer,dimension(0:nfgtasks-1) :: ntask_cont_from_all,&
478 !el        ntask_cont_to_all !(0:max_fg_procs-1),
479 !el      integer,dimension(0:nfgtasks-1,0:nfgtasks-1) :: itask_cont_from_all,&
480 !el        itask_cont_to_all !(0:max_fg_procs-1,0:max_fg_procs-1)
481
482 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,&
483 !el        iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all,&
484 !el        ielstart_all,ielend_all,ntask_cont_from_all,itask_cont_from_all,&
485 !el        ntask_cont_to_all,itask_cont_to_all
486
487       integer :: FG_GROUP,CONT_FROM_GROUP,CONT_TO_GROUP
488       logical :: scheck,lprint,flag
489
490 !el local variables
491       integer :: ind_scint=0,ind_scint_old,ii,jj,i,j,iint,itmp
492       integer :: ind_scint_nucl=0
493 #ifdef MPI
494       integer :: my_sc_int(0:nfgtasks-1),my_ele_int(0:nfgtasks-1)
495       integer :: my_sc_intt(0:nfgtasks),my_ele_intt(0:nfgtasks)
496       integer :: n_sc_int_tot,my_sc_inde,my_sc_inds,ind_sctint,npept
497       integer :: n_sc_int_tot_nucl,my_sc_inde_nucl,my_sc_inds_nucl, &
498          ind_sctint_nucl,npept_nucl
499
500       integer :: nele_int_tot,my_ele_inds,my_ele_inde,ind_eleint_old,&
501             ind_eleint,ijunk,nele_int_tot_vdw,my_ele_inds_vdw,&
502             my_ele_inde_vdw,ind_eleint_vdw,ind_eleint_vdw_old,&
503             nscp_int_tot,my_scp_inds,my_scp_inde,ind_scpint,&
504             ind_scpint_old,nsumgrad,nlen,ngrad_start,ngrad_end,&
505             ierror,k,ierr,iaux,ncheck_to,ncheck_from,ind_typ,&
506             ichunk,int_index_old
507       integer :: nele_int_tot_nucl,my_ele_inds_nucl,my_ele_inde_nucl,&
508             ind_eleint_old_nucl,ind_eleint_nucl,nele_int_tot_vdw_nucl,&
509             my_ele_inds_vdw_nucl,my_ele_inde_vdw_nucl,ind_eleint_vdw_nucl,&
510             ind_eleint_vdw_old_nucl,nscp_int_tot_nucl,my_scp_inds_nucl,&
511             my_scp_inde_nucl,ind_scpint_nucl,ind_scpint_old_nucl
512 !      integer,dimension(5) :: nct_molec,nnt_molec
513 !el      allocate(itask_cont_from(0:nfgtasks-1)) !(0:max_fg_procs-1)
514 !el      allocate(itask_cont_to(0:nfgtasks-1)) !(0:max_fg_procs-1)
515
516 !... Determine the numbers of start and end SC-SC interaction
517 !... to deal with by current processor.
518 !write (iout,*) '******INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
519       do i=0,nfgtasks-1
520         itask_cont_from(i)=fg_rank
521         itask_cont_to(i)=fg_rank
522       enddo
523       lprint=energy_dec
524       itmp=0
525       do i=1,5
526        if (nres_molec(i).eq.0) cycle
527       itmp=itmp+nres_molec(i)
528       if (itype(itmp,i).eq.ntyp1_molec(i)) then
529       nct_molec(i)=itmp-1
530       else
531       nct_molec(i)=itmp
532       endif
533       enddo
534 !      nct_molec(1)=nres_molec(1)-1
535       itmp=0
536       do i=2,5
537        itmp=itmp+nres_molec(i-1)
538       if (itype(itmp+1,i).eq.ntyp1_molec(i)) then
539       nnt_molec(i)=itmp+2
540       else
541       nnt_molec(i)=itmp+1
542       endif
543       enddo
544       print *,"nres_molec",nres_molec(:)
545       print *,"nnt_molec",nnt_molec(:)
546       print *,"nct_molec",nct_molec(:)
547 !      lprint=.true.
548       if (lprint) &
549        write (iout,*)'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
550       n_sc_int_tot=(nct_molec(1)-nnt+1)*(nct_molec(1)-nnt)/2-nss
551       call int_bounds(n_sc_int_tot,my_sc_inds,my_sc_inde)
552 !write (iout,*) 'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
553       if (lprint) &
554         write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
555         ' absolute rank',MyRank,&
556         ' n_sc_int_tot',n_sc_int_tot,' my_sc_inds=',my_sc_inds,&
557         ' my_sc_inde',my_sc_inde
558       ind_sctint=0
559       iatsc_s=0
560       iatsc_e=0
561 #endif
562 !el       common /przechowalnia/
563       allocate(iturn3_start_all(0:nfgtasks))
564       allocate(iturn3_end_all(0:nfgtasks))
565       allocate(iturn4_start_all(0:nfgtasks))
566       allocate(iturn4_end_all(0:nfgtasks))
567       allocate(iatel_s_all(0:nfgtasks))
568       allocate(iatel_e_all(0:nfgtasks))
569       allocate(ielstart_all(nres,0:nfgtasks-1))
570       allocate(ielend_all(nres,0:nfgtasks-1))
571
572       allocate(ntask_cont_from_all(0:nfgtasks-1))
573       allocate(ntask_cont_to_all(0:nfgtasks-1))
574       allocate(itask_cont_from_all(0:nfgtasks-1,0:nfgtasks-1))
575       allocate(itask_cont_to_all(0:nfgtasks-1,0:nfgtasks-1))
576 !el----------
577 !      lprint=.false.
578         print *,"NCT",nct_molec(1),nct
579       do i=1,nres !el   !maxres
580         nint_gr(i)=0
581         nscp_gr(i)=0
582         ielstart(i)=0
583         ielend(i)=0
584         do j=1,maxint_gr
585           istart(i,j)=0
586           iend(i,j)=0
587           iscpstart(i,j)=0
588           iscpend(i,j)=0    
589         enddo
590       enddo
591       ind_scint=0
592       ind_scint_old=0
593 !d    write (iout,*) 'ns=',ns,' nss=',nss,' ihpb,jhpb',
594 !d   &   (ihpb(i),jhpb(i),i=1,nss)
595 !       print *,nnt,nct_molec(1)
596       do i=nnt,nct_molec(1)-1
597 !        print*, "inloop",i
598         scheck=.false.
599         if (dyn_ss) goto 10
600         do ii=1,nss
601           if (ihpb(ii).eq.i+nres) then
602             scheck=.true.
603             jj=jhpb(ii)-nres
604             goto 10
605           endif
606         enddo
607    10   continue
608 !        print *,'i=',i,' scheck=',scheck,' jj=',jj
609 !d      write (iout,*) 'i=',i,' scheck=',scheck,' jj=',jj
610         if (scheck) then
611           if (jj.eq.i+1) then
612 #ifdef MPI
613 !            write (iout,*) 'jj=i+1'
614             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
615        iatsc_s,iatsc_e,i+2,nct_molec(1),nint_gr(i),istart(i,1),iend(i,1),*12)
616 #else
617             nint_gr(i)=1
618             istart(i,1)=i+2
619             iend(i,1)=nct
620 #endif
621           else if (jj.eq.nct_molec(1)) then
622 #ifdef MPI
623 !            write (iout,*) 'jj=nct'
624             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
625         iatsc_s,iatsc_e,i+1,nct_molec(1)-1,nint_gr(i),istart(i,1),iend(i,1),*12)
626 #else
627             nint_gr(i)=1
628             istart(i,1)=i+1
629             iend(i,1)=nct_molecule(1)-1
630 #endif
631           else
632 #ifdef MPI
633             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
634        iatsc_s,iatsc_e,i+1,jj-1,nint_gr(i),istart(i,1),iend(i,1),*12)
635             ii=nint_gr(i)+1
636             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
637        iatsc_s,iatsc_e,jj+1,nct_molec(1),nint_gr(i),istart(i,ii),iend(i,ii),*12)
638          
639 #else
640             nint_gr(i)=2
641             istart(i,1)=i+1
642             iend(i,1)=jj-1
643             istart(i,2)=jj+1
644             iend(i,2)=nct_molec(1)
645 #endif
646           endif
647         else
648 #ifdef MPI
649 !          print *,"i for EVDW",iatsc_s,iatsc_e,istart(i,1),iend(i,1),&
650 !          i+1,nct_molec(1),nint_gr(i),ind_scint,my_sc_inds,my_sc_inde,i
651           call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
652           iatsc_s,iatsc_e,i+1,nct_molec(1),nint_gr(i), &
653           istart(i,1),iend(i,1),*12)
654 !          print *,"i for EVDW",iatsc_s,iatsc_e,istart(i,1),iend(i,1)
655 #else
656           nint_gr(i)=1
657           istart(i,1)=i+1
658           iend(i,1)=nct_molec(1)
659           ind_scint=ind_scint+nct_molec(1)-i
660 #endif
661         endif
662 #ifdef MPI
663         ind_scint_old=ind_scint
664 #endif
665       enddo
666    12 continue
667 !      print *,"i for EVDW",iatsc_s,iatsc_e,istart(i,1),iend(i,1)
668
669 #ifndef MPI
670       iatsc_s=nnt
671       iatsc_e=nct-1
672 #endif
673       if (iatsc_s.eq.0) iatsc_s=1
674 !----------------- scaling for nucleic acid GB
675       n_sc_int_tot_nucl=(nct_molec(2)-nnt_molec(2)+1)*(nct_molec(2)-nnt_molec(2))/2
676       call int_bounds(n_sc_int_tot_nucl,my_sc_inds_nucl,my_sc_inde_nucl)
677 !write (iout,*) 'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
678       if (lprint) &
679         write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
680         ' absolute rank',MyRank,&
681         ' n_sc_int_tot',n_sc_int_tot_nucl,' my_sc_inds=',my_sc_inds_nucl,&
682         ' my_sc_inde',my_sc_inde_nucl
683       ind_sctint_nucl=0
684       iatsc_s_nucl=0
685       iatsc_e_nucl=0
686       do i=1,nres !el   !maxres
687         nint_gr_nucl(i)=0
688         nscp_gr_nucl(i)=0
689         ielstart_nucl(i)=0
690         ielend_nucl(i)=0
691         do j=1,maxint_gr
692           istart_nucl(i,j)=0
693           iend_nucl(i,j)=0
694           iscpstart_nucl(i,j)=0
695           iscpend_nucl(i,j)=0
696         enddo
697       enddo
698       do i=nnt_molec(2),nct_molec(2)-1
699 !        print*, "inloop2",i
700       call int_partition(ind_scint_nucl,my_sc_inds_nucl,my_sc_inde_nucl,i,&
701            iatsc_s_nucl,iatsc_e_nucl,i+1,nct_molec(2),nint_gr_nucl(i), &
702            istart_nucl(i,1),iend_nucl(i,1),*112)
703         print *,istart_nucl(i,1)
704       enddo
705   112  continue
706        if (iatsc_s_nucl.eq.0) iatsc_s_nucl=1
707        print *,"tu mam",iatsc_s_nucl,iatsc_e_nucl
708
709 #ifdef MPI
710       if (lprint) write (*,*) 'Processor',fg_rank,' CG Group',kolor,&
711          ' absolute rank',myrank,' iatsc_s=',iatsc_s,' iatsc_e=',iatsc_e
712 #endif
713 !      lprint=.true.
714       if (lprint) then
715       write (iout,'(a)') 'Interaction array:'
716       do i=iatsc_s,iatsc_e
717         write (iout,'(i3,2(2x,2i3))') &
718        i,(istart(i,iint),iend(i,iint),iint=1,nint_gr(i))
719       enddo
720       endif
721 !      lprint=.false.
722       write (iout,'(a)') 'Interaction array2:' 
723       do i=iatsc_s_nucl,iatsc_e_nucl
724         write (iout,'(i3,2(2x,2i4))') &
725        i,(istart_nucl(i,iint),iend_nucl(i,iint),iint=1,nint_gr_nucl(i))
726       enddo
727
728       ispp=4 !?? wham ispp=2
729 #ifdef MPI
730 ! Now partition the electrostatic-interaction array
731       if (itype(nres_molec(1),1).eq.ntyp1_molec(1)) then
732       npept=nres_molec(1)-nnt-1
733       else
734       npept=nres_molec(1)-nnt
735       endif
736       nele_int_tot=(npept-ispp)*(npept-ispp+1)/2
737       call int_bounds(nele_int_tot,my_ele_inds,my_ele_inde)
738       if (lprint) &
739        write (*,*) 'Processor',fg_rank,' CG group',kolor,&
740         ' absolute rank',MyRank,&
741         ' nele_int_tot',nele_int_tot,' my_ele_inds=',my_ele_inds,&
742                     ' my_ele_inde',my_ele_inde
743       iatel_s=0
744       iatel_e=0
745       ind_eleint=0
746       ind_eleint_old=0
747 !      if (itype(nres_molec(1),1).eq.ntyp1_molec(1)) then
748 !      nct_molec(1)=nres_molec(1)-1
749 !      else
750 !      nct_molec(1)=nres_molec(1)
751 !      endif
752 !       print *,"nct",nct,nct_molec(1),itype(nres_molec(1),1),ntyp_molec(1)
753       do i=nnt,nct_molec(1)-3
754         ijunk=0
755         call int_partition(ind_eleint,my_ele_inds,my_ele_inde,i,&
756           iatel_s,iatel_e,i+ispp,nct_molec(1)-1,ijunk,ielstart(i),ielend(i),*13)
757       enddo ! i 
758    13 continue
759       if (iatel_s.eq.0) iatel_s=1
760 !----------now nucleic acid
761 !     if (itype(nres_molec(2),2).eq.ntyp1_molec(2)) then
762       npept_nucl=nct_molec(2)-nnt_molec(2)
763 !     else
764 !     npept_nucl=nct_molec(2)-nnt_molec(2)
765 !     endif
766       nele_int_tot_nucl=(npept_nucl-ispp)*(npept_nucl-ispp+1)/2
767       call int_bounds(nele_int_tot_nucl,my_ele_inds_nucl,my_ele_inde_nucl)
768       if (lprint) &
769        write (*,*) 'Processor',fg_rank,' CG group',kolor,&
770         ' absolute rank',MyRank,&
771         ' nele_int_tot',nele_int_tot,' my_ele_inds=',my_ele_inds,&
772                     ' my_ele_inde',my_ele_inde
773       iatel_s_nucl=0
774       iatel_e_nucl=0
775       ind_eleint_nucl=0
776       ind_eleint_old_nucl=0
777 !      if (itype(nres_molec(1),1).eq.ntyp1_molec(1)) then
778 !      nct_molec(1)=nres_molec(1)-1
779 !      else
780 !      nct_molec(1)=nres_molec(1)
781 !      endif
782 !       print *,"nct",nct,nct_molec(1),itype(nres_molec(1),1),ntyp_molec(1)
783       do i=nnt_molec(2),nct_molec(2)-3
784         ijunk=0
785         call int_partition(ind_eleint_nucl,my_ele_inds_nucl,my_ele_inde_nucl,i,&
786           iatel_s_nucl,iatel_e_nucl,i+ispp,nct_molec(2)-1,&
787           ijunk,ielstart_nucl(i),ielend_nucl(i),*113)
788       enddo ! i 
789   113 continue
790       if (iatel_s.eq.0) iatel_s=1
791
792       nele_int_tot_vdw=(npept-2)*(npept-2+1)/2
793 !      write (iout,*) "nele_int_tot_vdw",nele_int_tot_vdw
794       call int_bounds(nele_int_tot_vdw,my_ele_inds_vdw,my_ele_inde_vdw)
795 !      write (iout,*) "my_ele_inds_vdw",my_ele_inds_vdw,
796 !     & " my_ele_inde_vdw",my_ele_inde_vdw
797       ind_eleint_vdw=0
798       ind_eleint_vdw_old=0
799       iatel_s_vdw=0
800       iatel_e_vdw=0
801       do i=nnt,nct_molec(1)-3
802         ijunk=0
803         call int_partition(ind_eleint_vdw,my_ele_inds_vdw,&
804           my_ele_inde_vdw,i,&
805           iatel_s_vdw,iatel_e_vdw,i+2,nct_molec(1)-1,ijunk,ielstart_vdw(i),&
806           ielend_vdw(i),*15)
807 !        write (iout,*) i," ielstart_vdw",ielstart_vdw(i),
808 !     &   " ielend_vdw",ielend_vdw(i)
809       enddo ! i 
810       if (iatel_s_vdw.eq.0) iatel_s_vdw=1
811    15 continue
812       if (iatel_s.eq.0) iatel_s=1
813
814       nele_int_tot_vdw_nucl=(npept_nucl-2)*(npept_nucl-2+1)/2
815 !      write (iout,*) "nele_int_tot_vdw",nele_int_tot_vdw
816       call int_bounds(nele_int_tot_vdw_nucl,my_ele_inds_vdw_nucl,&
817         my_ele_inde_vdw_nucl)
818 !      write (iout,*) "my_ele_inds_vdw",my_ele_inds_vdw,
819 !     & " my_ele_inde_vdw",my_ele_inde_vdw
820       ind_eleint_vdw_nucl=0
821       ind_eleint_vdw_old_nucl=0
822       iatel_s_vdw_nucl=0
823       iatel_e_vdw_nucl=0
824       do i=nnt_molec(2),nct_molec(2)-3
825         ijunk=0
826         call int_partition(ind_eleint_vdw_nucl,my_ele_inds_vdw_nucl,&
827           my_ele_inde_vdw_nucl,i,&
828           iatel_s_vdw_nucl,iatel_e_vdw_nucl,i+2,nct_molec(2)-1,&
829           ijunk,ielstart_vdw_nucl(i),&
830           ielend_vdw(i),*115)
831 !        write (iout,*) i," ielstart_vdw",ielstart_vdw(i),
832 !     &   " ielend_vdw",ielend_vdw(i)
833       enddo ! i 
834       if (iatel_s_vdw.eq.0) iatel_s_vdw=1
835   115 continue
836
837 #else
838       iatel_s=nnt
839       iatel_e=nct_molec(1)-5 ! ?? wham iatel_e=nct-3
840       do i=iatel_s,iatel_e
841         ielstart(i)=i+4 ! ?? wham +2
842         ielend(i)=nct_molec(1)-1
843       enddo
844       iatel_s_vdw=nnt
845       iatel_e_vdw=nct_molec(1)-3
846       do i=iatel_s_vdw,iatel_e_vdw
847         ielstart_vdw(i)=i+2
848         ielend_vdw(i)=nct_molec(1)-1
849       enddo
850 #endif
851       if (lprint) then
852         write (*,'(a)') 'Processor',fg_rank,' CG group',kolor,&
853         ' absolute rank',MyRank
854         write (iout,*) 'Electrostatic interaction array:'
855         do i=iatel_s,iatel_e
856           write (iout,'(i3,2(2x,2i3))') i,ielstart(i),ielend(i)
857         enddo
858       endif ! lprint
859 !     iscp=3
860       iscp=2
861       iscp_nucl=2
862 ! Partition the SC-p interaction array
863 #ifdef MPI
864       nscp_int_tot=(npept-iscp+1)*(npept-iscp+1)
865       call int_bounds(nscp_int_tot,my_scp_inds,my_scp_inde)
866       if (lprint) write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
867         ' absolute rank',myrank,&
868         ' nscp_int_tot',nscp_int_tot,' my_scp_inds=',my_scp_inds,&
869                     ' my_scp_inde',my_scp_inde
870       iatscp_s=0
871       iatscp_e=0
872       ind_scpint=0
873       ind_scpint_old=0
874       do i=nnt,nct_molec(1)-1
875         if (i.lt.nnt+iscp) then
876 !d        write (iout,*) 'i.le.nnt+iscp'
877           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
878             iatscp_s,iatscp_e,i+iscp,nct_molec(1),nscp_gr(i),iscpstart(i,1),&
879             iscpend(i,1),*14)
880         else if (i.gt.nct-iscp) then
881 !d        write (iout,*) 'i.gt.nct-iscp'
882           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
883             iatscp_s,iatscp_e,nnt,i-iscp,nscp_gr(i),iscpstart(i,1),&
884             iscpend(i,1),*14)
885         else
886           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
887             iatscp_s,iatscp_e,nnt,i-iscp,nscp_gr(i),iscpstart(i,1),&
888            iscpend(i,1),*14)
889           ii=nscp_gr(i)+1
890           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
891             iatscp_s,iatscp_e,i+iscp,nct_molec(1),nscp_gr(i),iscpstart(i,ii),&
892             iscpend(i,ii),*14)
893         endif
894       enddo ! i
895    14 continue
896       print *,"before inloop3",iatscp_s,iatscp_e,iscp_nucl
897       nscp_int_tot_nucl=(npept_nucl-iscp_nucl+1)*(npept_nucl-iscp_nucl+1)
898       call int_bounds(nscp_int_tot_nucl,my_scp_inds_nucl,my_scp_inde_nucl)
899       if (lprint) write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
900         ' absolute rank',myrank,&
901         ' nscp_int_tot',nscp_int_tot_nucl,' my_scp_inds=',my_scp_inds_nucl,&
902                     ' my_scp_inde',my_scp_inde_nucl
903       print *,"nscp_int_tot_nucl",nscp_int_tot_nucl,my_scp_inds_nucl,my_scp_inde_nucl
904       iatscp_s_nucl=0
905       iatscp_e_nucl=0
906       ind_scpint_nucl=0
907       ind_scpint_old_nucl=0
908       do i=nnt_molec(2),nct_molec(2)-1
909         print *,"inloop3",i,nnt_molec(2)+iscp,nct_molec(2)-iscp
910         if (i.lt.nnt_molec(2)+iscp) then
911 !d        write (iout,*) 'i.le.nnt+iscp'
912           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
913             my_scp_inde_nucl,i,iatscp_s_nucl,iatscp_e_nucl,i+iscp,&
914             nct_molec(2),nscp_gr_nucl(i),iscpstart_nucl(i,1),&
915             iscpend_nucl(i,1),*114)
916         else if (i.gt.nct_molec(2)-iscp) then
917 !d        write (iout,*) 'i.gt.nct-iscp'
918           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
919             my_scp_inde_nucl,i,&
920             iatscp_s_nucl,iatscp_e_nucl,nnt_molec(2),i-iscp,nscp_gr_nucl(i),&
921             iscpstart_nucl(i,1),&
922             iscpend_nucl(i,1),*114)
923         else
924           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
925             my_scp_inde_nucl,i,iatscp_s_nucl,iatscp_e_nucl,nnt_molec(2),&
926             i-iscp,nscp_gr_nucl(i),iscpstart_nucl(i,1),&
927            iscpend_nucl(i,1),*114)
928           ii=nscp_gr_nucl(i)+1
929           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
930             my_scp_inde_nucl,i,iatscp_s_nucl,iatscp_e_nucl,i+iscp,&
931             nct_molec(2),nscp_gr_nucl(i),iscpstart_nucl(i,ii),&
932             iscpend_nucl(i,ii),*114)
933         endif
934       enddo ! i
935   114 continue
936       print *, "after inloop3",iatscp_s_nucl,iatscp_e_nucl
937 #else
938       iatscp_s=nnt
939       iatscp_e=nct_molec(1)-1
940       do i=nnt,nct_molec(1)-1
941         if (i.lt.nnt+iscp) then
942           nscp_gr(i)=1
943           iscpstart(i,1)=i+iscp
944           iscpend(i,1)=nct_molec(1)
945         elseif (i.gt.nct-iscp) then
946           nscp_gr(i)=1
947           iscpstart(i,1)=nnt
948           iscpend(i,1)=i-iscp
949         else
950           nscp_gr(i)=2
951           iscpstart(i,1)=nnt
952           iscpend(i,1)=i-iscp
953           iscpstart(i,2)=i+iscp
954           iscpend(i,2)=nct_molec(1)
955         endif 
956       enddo ! i
957 #endif
958       if (iatscp_s.eq.0) iatscp_s=1
959       if (lprint) then
960         write (iout,'(a)') 'SC-p interaction array:'
961         do i=iatscp_s,iatscp_e
962           write (iout,'(i3,2(2x,2i3))') &
963               i,(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i))
964         enddo
965       endif ! lprint
966 ! Partition local interactions
967 #ifdef MPI
968       call int_bounds(nres_molec(1)-2,loc_start,loc_end)
969       loc_start=loc_start+1
970       loc_end=loc_end+1
971       call int_bounds(nres_molec(2)-2,loc_start_nucl,loc_end_nucl)
972       loc_start_nucl=loc_start_nucl+1+nres_molec(1)
973       loc_end_nucl=loc_end_nucl+1+nres_molec(1)
974       call int_bounds(nres_molec(1)-2,ithet_start,ithet_end)
975       ithet_start=ithet_start+2
976       ithet_end=ithet_end+2
977       call int_bounds(nres_molec(2)-2,ithet_nucl_start,ithet_nucl_end)
978       ithet_nucl_start=ithet_nucl_start+2+nres_molec(1)
979       ithet_nucl_end=ithet_nucl_end+2+nres_molec(1)
980       call int_bounds(nct_molec(1)-nnt-2,iturn3_start,iturn3_end) 
981       iturn3_start=iturn3_start+nnt
982       iphi_start=iturn3_start+2
983       iturn3_end=iturn3_end+nnt
984       iphi_end=iturn3_end+2
985       iturn3_start=iturn3_start-1
986       iturn3_end=iturn3_end-1
987       call int_bounds(nct_molec(2)-nnt_molec(2)-2,iphi_nucl_start,iphi_nucl_end)
988       iphi_nucl_start=iphi_nucl_start+nnt_molec(2)+2
989       iphi_nucl_end=iphi_nucl_end+nnt_molec(2)+2
990       print *,"KURDE",iphi_nucl_start,iphi_nucl_end
991       call int_bounds(nres_molec(1)-3,itau_start,itau_end)
992       itau_start=itau_start+3
993       itau_end=itau_end+3
994       call int_bounds(nres_molec(1)-3,iphi1_start,iphi1_end)
995       iphi1_start=iphi1_start+3
996       iphi1_end=iphi1_end+3
997       call int_bounds(nct_molec(1)-nnt-3,iturn4_start,iturn4_end) 
998       iturn4_start=iturn4_start+nnt
999       iphid_start=iturn4_start+2
1000       iturn4_end=iturn4_end+nnt
1001       iphid_end=iturn4_end+2
1002       iturn4_start=iturn4_start-1
1003       iturn4_end=iturn4_end-1
1004 !      print *,"TUTUTU",nres_molec(1),nres
1005       call int_bounds(nres_molec(1)-2,ibond_start,ibond_end) 
1006       ibond_start=ibond_start+1
1007       ibond_end=ibond_end+1
1008 !      print *,ibond_start,ibond_end
1009       call int_bounds(nct_molec(1)-nnt,ibondp_start,ibondp_end) 
1010       ibondp_start=ibondp_start+nnt
1011       ibondp_end=ibondp_end+nnt
1012      call int_bounds(nres_molec(2)-2,ibond_nucl_start,ibond_nucl_end)
1013       ibond_nucl_start=ibond_nucl_start+nnt_molec(2)-1
1014       ibond_nucl_end=ibond_nucl_end+nnt_molec(2)-1
1015       print *,"NUCLibond",ibond_nucl_start,ibond_nucl_end
1016       print *, "before devision",nnt_molec(2),nct_molec(2)-nnt_molec(2)
1017       call int_bounds(nct_molec(2)-nnt_molec(2),ibondp_nucl_start,ibondp_nucl_end)
1018       ibondp_nucl_start=ibondp_nucl_start+nnt_molec(2)
1019       ibondp_nucl_end=ibondp_nucl_end+nnt_molec(2)
1020       print *,"NUCLibond2",ibondp_nucl_start,ibondp_nucl_end
1021
1022
1023       call int_bounds1(nres_molec(1)-1,ivec_start,ivec_end) 
1024 !      print *,"Processor",myrank,fg_rank,fg_rank1,
1025 !     &  " ivec_start",ivec_start," ivec_end",ivec_end
1026       iset_start=loc_start+2
1027       iset_end=loc_end+2
1028       call int_bounds(nres_molec(1),ilip_start,ilip_end)
1029       ilip_start=ilip_start
1030       ilip_end=ilip_end
1031       call int_bounds(nres_molec(1)-1,itube_start,itube_end)
1032       itube_start=itube_start
1033       itube_end=itube_end
1034       if (ndih_constr.eq.0) then
1035         idihconstr_start=1
1036         idihconstr_end=0
1037       else
1038         call int_bounds(ndih_constr,idihconstr_start,idihconstr_end)
1039       endif
1040       if (ntheta_constr.eq.0) then
1041         ithetaconstr_start=1
1042         ithetaconstr_end=0
1043       else
1044         call int_bounds &
1045        (ntheta_constr,ithetaconstr_start,ithetaconstr_end)
1046       endif
1047
1048 !      nsumgrad=(nres-nnt)*(nres-nnt+1)/2
1049 !      nlen=nres-nnt+1
1050       nsumgrad=(nres-nnt)*(nres-nnt+1)/2
1051       nlen=nres-nnt+1
1052       call int_bounds(nsumgrad,ngrad_start,ngrad_end)
1053       igrad_start=((2*nlen+1) &
1054          -sqrt(float((2*nlen-1)**2-8*(ngrad_start-1))))/2
1055       igrad_end=((2*nlen+1) &
1056          -sqrt(float((2*nlen-1)**2-8*(ngrad_end-1))))/2
1057 !el      allocate(jgrad_start(igrad_start:igrad_end))
1058 !el      allocate(jgrad_end(igrad_start:igrad_end)) !(maxres)
1059       jgrad_start(igrad_start)= &
1060          ngrad_start-(2*nlen-igrad_start)*(igrad_start-1)/2 &
1061          +igrad_start
1062       jgrad_end(igrad_start)=nres
1063       if (igrad_end.gt.igrad_start) jgrad_start(igrad_end)=igrad_end+1
1064       jgrad_end(igrad_end)=ngrad_end-(2*nlen-igrad_end)*(igrad_end-1)/2 &
1065           +igrad_end
1066       do i=igrad_start+1,igrad_end-1
1067         jgrad_start(i)=i+1
1068         jgrad_end(i)=nres
1069       enddo
1070       if (lprint) then 
1071         write (*,*) 'Processor:',fg_rank,' CG group',kolor,&
1072        ' absolute rank',myrank,&
1073        ' loc_start',loc_start,' loc_end',loc_end,&
1074        ' ithet_start',ithet_start,' ithet_end',ithet_end,&
1075        ' iphi_start',iphi_start,' iphi_end',iphi_end,&
1076        ' iphid_start',iphid_start,' iphid_end',iphid_end,&
1077        ' ibond_start',ibond_start,' ibond_end',ibond_end,&
1078        ' ibondp_start',ibondp_start,' ibondp_end',ibondp_end,&
1079        ' iturn3_start',iturn3_start,' iturn3_end',iturn3_end,&
1080        ' iturn4_start',iturn4_start,' iturn4_end',iturn4_end,&
1081        ' ivec_start',ivec_start,' ivec_end',ivec_end,&
1082        ' iset_start',iset_start,' iset_end',iset_end,&
1083        ' idihconstr_start',idihconstr_start,' idihconstr_end',&
1084          idihconstr_end
1085        write (*,*) 'Processor:',fg_rank,myrank,' igrad_start',&
1086          igrad_start,' igrad_end',igrad_end,' ngrad_start',ngrad_start,&
1087          ' ngrad_end',ngrad_end
1088 !       do i=igrad_start,igrad_end
1089 !         write(*,*) 'Processor:',fg_rank,myrank,i,&
1090 !          jgrad_start(i),jgrad_end(i)
1091 !       enddo
1092       endif
1093       if (nfgtasks.gt.1) then
1094         call MPI_Allgather(ivec_start,1,MPI_INTEGER,ivec_displ(0),1,&
1095           MPI_INTEGER,FG_COMM1,IERROR)
1096         iaux=ivec_end-ivec_start+1
1097         call MPI_Allgather(iaux,1,MPI_INTEGER,ivec_count(0),1,&
1098           MPI_INTEGER,FG_COMM1,IERROR)
1099         call MPI_Allgather(iset_start-2,1,MPI_INTEGER,iset_displ(0),1,&
1100           MPI_INTEGER,FG_COMM,IERROR)
1101         iaux=iset_end-iset_start+1
1102         call MPI_Allgather(iaux,1,MPI_INTEGER,iset_count(0),1,&
1103           MPI_INTEGER,FG_COMM,IERROR)
1104         call MPI_Allgather(ibond_start,1,MPI_INTEGER,ibond_displ(0),1,&
1105           MPI_INTEGER,FG_COMM,IERROR)
1106         iaux=ibond_end-ibond_start+1
1107         call MPI_Allgather(iaux,1,MPI_INTEGER,ibond_count(0),1,&
1108           MPI_INTEGER,FG_COMM,IERROR)
1109         call MPI_Allgather(ithet_start,1,MPI_INTEGER,ithet_displ(0),1,&
1110           MPI_INTEGER,FG_COMM,IERROR)
1111         iaux=ithet_end-ithet_start+1
1112         call MPI_Allgather(iaux,1,MPI_INTEGER,ithet_count(0),1,&
1113           MPI_INTEGER,FG_COMM,IERROR)
1114         call MPI_Allgather(iphi_start,1,MPI_INTEGER,iphi_displ(0),1,&
1115           MPI_INTEGER,FG_COMM,IERROR)
1116         iaux=iphi_end-iphi_start+1
1117         call MPI_Allgather(iaux,1,MPI_INTEGER,iphi_count(0),1,&
1118           MPI_INTEGER,FG_COMM,IERROR)
1119         call MPI_Allgather(iphi1_start,1,MPI_INTEGER,iphi1_displ(0),1,&
1120           MPI_INTEGER,FG_COMM,IERROR)
1121         iaux=iphi1_end-iphi1_start+1
1122         call MPI_Allgather(iaux,1,MPI_INTEGER,iphi1_count(0),1,&
1123           MPI_INTEGER,FG_COMM,IERROR)
1124         do i=0,nfgtasks-1
1125           do j=1,nres
1126             ielstart_all(j,i)=0
1127             ielend_all(j,i)=0
1128           enddo
1129         enddo
1130         call MPI_Allgather(iturn3_start,1,MPI_INTEGER,&
1131           iturn3_start_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1132         call MPI_Allgather(iturn4_start,1,MPI_INTEGER,&
1133           iturn4_start_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1134         call MPI_Allgather(iturn3_end,1,MPI_INTEGER,&
1135           iturn3_end_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1136         call MPI_Allgather(iturn4_end,1,MPI_INTEGER,&
1137           iturn4_end_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1138         call MPI_Allgather(iatel_s,1,MPI_INTEGER,&
1139           iatel_s_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1140         call MPI_Allgather(iatel_e,1,MPI_INTEGER,&
1141           iatel_e_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1142         call MPI_Allgather(ielstart(1),nres,MPI_INTEGER,&
1143           ielstart_all(1,0),nres,MPI_INTEGER,FG_COMM,IERROR)
1144         call MPI_Allgather(ielend(1),nres,MPI_INTEGER,&
1145           ielend_all(1,0),nres,MPI_INTEGER,FG_COMM,IERROR)
1146         if (lprint) then
1147         write (iout,*) "iatel_s_all",(iatel_s_all(i),i=0,nfgtasks)
1148         write (iout,*) "iatel_e_all",(iatel_e_all(i),i=0,nfgtasks)
1149         write (iout,*) "iturn3_start_all",&
1150           (iturn3_start_all(i),i=0,nfgtasks-1)
1151         write (iout,*) "iturn3_end_all",&
1152           (iturn3_end_all(i),i=0,nfgtasks-1)
1153         write (iout,*) "iturn4_start_all",&
1154           (iturn4_start_all(i),i=0,nfgtasks-1)
1155         write (iout,*) "iturn4_end_all",&
1156           (iturn4_end_all(i),i=0,nfgtasks-1)
1157         write (iout,*) "The ielstart_all array"
1158         do i=nnt,nct
1159           write (iout,'(20i4)') i,(ielstart_all(i,j),j=0,nfgtasks-1)
1160         enddo
1161         write (iout,*) "The ielend_all array"
1162         do i=nnt,nct
1163           write (iout,'(20i4)') i,(ielend_all(i,j),j=0,nfgtasks-1)
1164         enddo
1165         call flush(iout)
1166         endif
1167         ntask_cont_from=0
1168         ntask_cont_to=0
1169         itask_cont_from(0)=fg_rank
1170         itask_cont_to(0)=fg_rank
1171         flag=.false.
1172 !el        allocate(iturn3_sent(4,iturn3_start:iturn3_end))
1173 !el        allocate(iturn4_sent(4,iturn4_start:iturn4_end)) !(4,maxres)
1174         do ii=iturn3_start,iturn3_end
1175           call add_int(ii,ii+2,iturn3_sent(1,ii),&
1176                       ntask_cont_to,itask_cont_to,flag)
1177         enddo
1178         do ii=iturn4_start,iturn4_end
1179           call add_int(ii,ii+3,iturn4_sent(1,ii),&
1180                       ntask_cont_to,itask_cont_to,flag)
1181         enddo
1182         do ii=iturn3_start,iturn3_end
1183           call add_int_from(ii,ii+2,ntask_cont_from,itask_cont_from)
1184         enddo
1185         do ii=iturn4_start,iturn4_end
1186           call add_int_from(ii,ii+3,ntask_cont_from,itask_cont_from)
1187         enddo
1188         if (lprint) then
1189         write (iout,*) "After turn3 ntask_cont_from",ntask_cont_from,&
1190          " ntask_cont_to",ntask_cont_to
1191         write (iout,*) "itask_cont_from",&
1192           (itask_cont_from(i),i=1,ntask_cont_from)
1193         write (iout,*) "itask_cont_to",&
1194           (itask_cont_to(i),i=1,ntask_cont_to)
1195         call flush(iout)
1196         endif
1197 !        write (iout,*) "Loop forward"
1198 !        call flush(iout)
1199         do i=iatel_s,iatel_e
1200 !          write (iout,*) "from loop i=",i
1201 !          call flush(iout)
1202           do j=ielstart(i),ielend(i)
1203             call add_int_from(i,j,ntask_cont_from,itask_cont_from)
1204           enddo
1205         enddo
1206 !        write (iout,*) "Loop backward iatel_e-1",iatel_e-1,
1207 !     &     " iatel_e",iatel_e
1208 !        call flush(iout)
1209         nat_sent=0
1210         do i=iatel_s,iatel_e
1211 !          write (iout,*) "i",i," ielstart",ielstart(i),
1212 !     &      " ielend",ielend(i)
1213 !          call flush(iout)
1214           flag=.false.
1215           do j=ielstart(i),ielend(i)
1216             call add_int(i,j,iint_sent(1,j,nat_sent+1),ntask_cont_to,&
1217                         itask_cont_to,flag)
1218           enddo
1219           if (flag) then
1220             nat_sent=nat_sent+1
1221             iat_sent(nat_sent)=i
1222           endif
1223         enddo
1224         if (lprint) then
1225         write (iout,*)"After longrange ntask_cont_from",ntask_cont_from,&
1226          " ntask_cont_to",ntask_cont_to
1227         write (iout,*) "itask_cont_from",&
1228           (itask_cont_from(i),i=1,ntask_cont_from)
1229         write (iout,*) "itask_cont_to",&
1230           (itask_cont_to(i),i=1,ntask_cont_to)
1231         call flush(iout)
1232         write (iout,*) "iint_sent"
1233         do i=1,nat_sent
1234           ii=iat_sent(i)
1235           write (iout,'(20i4)') ii,(j,(iint_sent(k,j,i),k=1,4),&
1236             j=ielstart(ii),ielend(ii))
1237         enddo
1238         write (iout,*) "iturn3_sent iturn3_start",iturn3_start,&
1239           " iturn3_end",iturn3_end
1240         write (iout,'(20i4)') (i,(iturn3_sent(j,i),j=1,4),&
1241            i=iturn3_start,iturn3_end)
1242         write (iout,*) "iturn4_sent iturn4_start",iturn4_start,&
1243           " iturn4_end",iturn4_end
1244         write (iout,'(20i4)') (i,(iturn4_sent(j,i),j=1,4),&
1245            i=iturn4_start,iturn4_end)
1246         call flush(iout)
1247         endif
1248         call MPI_Gather(ntask_cont_from,1,MPI_INTEGER,&
1249          ntask_cont_from_all,1,MPI_INTEGER,king,FG_COMM,IERR)
1250 !        write (iout,*) "Gather ntask_cont_from ended"
1251 !        call flush(iout)
1252         call MPI_Gather(itask_cont_from(0),nfgtasks,MPI_INTEGER,&
1253          itask_cont_from_all(0,0),nfgtasks,MPI_INTEGER,king,&
1254          FG_COMM,IERR)
1255 !        write (iout,*) "Gather itask_cont_from ended"
1256 !        call flush(iout)
1257         call MPI_Gather(ntask_cont_to,1,MPI_INTEGER,ntask_cont_to_all,&
1258          1,MPI_INTEGER,king,FG_COMM,IERR)
1259 !        write (iout,*) "Gather ntask_cont_to ended"
1260 !        call flush(iout)
1261         call MPI_Gather(itask_cont_to,nfgtasks,MPI_INTEGER,&
1262          itask_cont_to_all,nfgtasks,MPI_INTEGER,king,FG_COMM,IERR)
1263 !        write (iout,*) "Gather itask_cont_to ended"
1264 !        call flush(iout)
1265         if (fg_rank.eq.king) then
1266           write (iout,*)"Contact receive task map (proc, #tasks, tasks)"
1267           do i=0,nfgtasks-1
1268             write (iout,'(20i4)') i,ntask_cont_from_all(i),&
1269               (itask_cont_from_all(j,i),j=1,ntask_cont_from_all(i)) 
1270           enddo
1271           write (iout,*)
1272           call flush(iout)
1273           write (iout,*) "Contact send task map (proc, #tasks, tasks)"
1274           do i=0,nfgtasks-1
1275             write (iout,'(20i4)') i,ntask_cont_to_all(i),&
1276              (itask_cont_to_all(j,i),j=1,ntask_cont_to_all(i)) 
1277           enddo
1278           write (iout,*)
1279           call flush(iout)
1280 ! Check if every send will have a matching receive
1281           ncheck_to=0
1282           ncheck_from=0
1283           do i=0,nfgtasks-1
1284             ncheck_to=ncheck_to+ntask_cont_to_all(i)
1285             ncheck_from=ncheck_from+ntask_cont_from_all(i)
1286           enddo
1287           write (iout,*) "Control sums",ncheck_from,ncheck_to
1288           if (ncheck_from.ne.ncheck_to) then
1289             write (iout,*) "Error: #receive differs from #send."
1290             write (iout,*) "Terminating program...!"
1291             call flush(iout)
1292             flag=.false.
1293           else
1294             flag=.true.
1295             do i=0,nfgtasks-1
1296               do j=1,ntask_cont_to_all(i)
1297                 ii=itask_cont_to_all(j,i)
1298                 do k=1,ntask_cont_from_all(ii)
1299                   if (itask_cont_from_all(k,ii).eq.i) then
1300                     if(lprint)write(iout,*)"Matching send/receive",i,ii
1301                     exit
1302                   endif
1303                 enddo
1304                 if (k.eq.ntask_cont_from_all(ii)+1) then
1305                   flag=.false.
1306                   write (iout,*) "Error: send by",j," to",ii,&
1307                     " would have no matching receive"
1308                 endif
1309               enddo
1310             enddo
1311           endif
1312           if (.not.flag) then
1313             write (iout,*) "Unmatched sends; terminating program"
1314             call flush(iout)
1315           endif
1316         endif
1317         call MPI_Bcast(flag,1,MPI_LOGICAL,king,FG_COMM,IERROR)
1318 !        write (iout,*) "flag broadcast ended flag=",flag
1319 !        call flush(iout)
1320         if (.not.flag) then
1321           call MPI_Finalize(IERROR)
1322           stop "Error in INIT_INT_TABLE: unmatched send/receive."
1323         endif
1324         call MPI_Comm_group(FG_COMM,fg_group,IERR)
1325 !        write (iout,*) "MPI_Comm_group ended"
1326 !        call flush(iout)
1327         call MPI_Group_incl(fg_group,ntask_cont_from+1,&
1328           itask_cont_from(0),CONT_FROM_GROUP,IERR)
1329         call MPI_Group_incl(fg_group,ntask_cont_to+1,itask_cont_to(0),&
1330           CONT_TO_GROUP,IERR)
1331         do i=1,nat_sent
1332           ii=iat_sent(i)
1333           iaux=4*(ielend(ii)-ielstart(ii)+1)
1334           call MPI_Group_translate_ranks(fg_group,iaux,&
1335             iint_sent(1,ielstart(ii),i),CONT_TO_GROUP,&
1336             iint_sent_local(1,ielstart(ii),i),IERR )
1337 !          write (iout,*) "Ranks translated i=",i
1338 !          call flush(iout)
1339         enddo
1340         iaux=4*(iturn3_end-iturn3_start+1)
1341         call MPI_Group_translate_ranks(fg_group,iaux,&
1342            iturn3_sent(1,iturn3_start),CONT_TO_GROUP,&
1343            iturn3_sent_local(1,iturn3_start),IERR)
1344         iaux=4*(iturn4_end-iturn4_start+1)
1345         call MPI_Group_translate_ranks(fg_group,iaux,&
1346            iturn4_sent(1,iturn4_start),CONT_TO_GROUP,&
1347            iturn4_sent_local(1,iturn4_start),IERR)
1348         if (lprint) then
1349         write (iout,*) "iint_sent_local"
1350         do i=1,nat_sent
1351           ii=iat_sent(i)
1352           write (iout,'(20i4)') ii,(j,(iint_sent_local(k,j,i),k=1,4),&
1353             j=ielstart(ii),ielend(ii))
1354           call flush(iout)
1355         enddo
1356         write (iout,*) "iturn3_sent_local iturn3_start",iturn3_start,&
1357           " iturn3_end",iturn3_end
1358         write (iout,'(20i4)') (i,(iturn3_sent_local(j,i),j=1,4),&
1359            i=iturn3_start,iturn3_end)
1360         write (iout,*) "iturn4_sent_local iturn4_start",iturn4_start,&
1361           " iturn4_end",iturn4_end
1362         write (iout,'(20i4)') (i,(iturn4_sent_local(j,i),j=1,4),&
1363            i=iturn4_start,iturn4_end)
1364         call flush(iout)
1365         endif
1366         call MPI_Group_free(fg_group,ierr)
1367         call MPI_Group_free(cont_from_group,ierr)
1368         call MPI_Group_free(cont_to_group,ierr)
1369         call MPI_Type_contiguous(3,MPI_DOUBLE_PRECISION,MPI_UYZ,IERROR)
1370         call MPI_Type_commit(MPI_UYZ,IERROR)
1371         call MPI_Type_contiguous(18,MPI_DOUBLE_PRECISION,MPI_UYZGRAD,&
1372           IERROR)
1373         call MPI_Type_commit(MPI_UYZGRAD,IERROR)
1374         call MPI_Type_contiguous(2,MPI_DOUBLE_PRECISION,MPI_MU,IERROR)
1375         call MPI_Type_commit(MPI_MU,IERROR)
1376         call MPI_Type_contiguous(4,MPI_DOUBLE_PRECISION,MPI_MAT1,IERROR)
1377         call MPI_Type_commit(MPI_MAT1,IERROR)
1378         call MPI_Type_contiguous(8,MPI_DOUBLE_PRECISION,MPI_MAT2,IERROR)
1379         call MPI_Type_commit(MPI_MAT2,IERROR)
1380         call MPI_Type_contiguous(6,MPI_DOUBLE_PRECISION,MPI_THET,IERROR)
1381         call MPI_Type_commit(MPI_THET,IERROR)
1382         call MPI_Type_contiguous(9,MPI_DOUBLE_PRECISION,MPI_GAM,IERROR)
1383         call MPI_Type_commit(MPI_GAM,IERROR)
1384
1385 !el        allocate(lentyp(0:nfgtasks-1))
1386 #ifndef MATGATHER
1387 ! 9/22/08 Derived types to send matrices which appear in correlation terms
1388         do i=0,nfgtasks-1
1389           if (ivec_count(i).eq.ivec_count(0)) then
1390             lentyp(i)=0
1391           else
1392             lentyp(i)=1
1393           endif
1394         enddo
1395         do ind_typ=lentyp(0),lentyp(nfgtasks-1)
1396         if (ind_typ.eq.0) then
1397           ichunk=ivec_count(0)
1398         else
1399           ichunk=ivec_count(1)
1400         endif
1401 !        do i=1,4
1402 !          blocklengths(i)=4
1403 !        enddo
1404 !        displs(1)=0
1405 !        do i=2,4
1406 !          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
1407 !        enddo
1408 !        do i=1,4
1409 !          blocklengths(i)=blocklengths(i)*ichunk
1410 !        enddo
1411 !        write (iout,*) "blocklengths and displs"
1412 !        do i=1,4
1413 !          write (iout,*) i,blocklengths(i),displs(i)
1414 !        enddo
1415 !        call flush(iout)
1416 !        call MPI_Type_indexed(4,blocklengths(1),displs(1),
1417 !     &    MPI_DOUBLE_PRECISION,MPI_ROTAT1(ind_typ),IERROR)
1418 !        call MPI_Type_commit(MPI_ROTAT1(ind_typ),IERROR)
1419 !        write (iout,*) "MPI_ROTAT1",MPI_ROTAT1 
1420 !        do i=1,4
1421 !          blocklengths(i)=2
1422 !        enddo
1423 !        displs(1)=0
1424 !        do i=2,4
1425 !          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
1426 !        enddo
1427 !        do i=1,4
1428 !          blocklengths(i)=blocklengths(i)*ichunk
1429 !        enddo
1430 !        write (iout,*) "blocklengths and displs"
1431 !        do i=1,4
1432 !          write (iout,*) i,blocklengths(i),displs(i)
1433 !        enddo
1434 !        call flush(iout)
1435 !        call MPI_Type_indexed(4,blocklengths(1),displs(1),
1436 !     &    MPI_DOUBLE_PRECISION,MPI_ROTAT2(ind_typ),IERROR)
1437 !        call MPI_Type_commit(MPI_ROTAT2(ind_typ),IERROR)
1438 !        write (iout,*) "MPI_ROTAT2",MPI_ROTAT2 
1439         do i=1,8
1440           blocklengths(i)=2
1441         enddo
1442         displs(1)=0
1443         do i=2,8
1444           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1445         enddo
1446         do i=1,15
1447           blocklengths(i)=blocklengths(i)*ichunk
1448         enddo
1449         call MPI_Type_indexed(8,blocklengths,displs,&
1450           MPI_DOUBLE_PRECISION,MPI_PRECOMP11(ind_typ),IERROR)
1451         call MPI_Type_commit(MPI_PRECOMP11(ind_typ),IERROR)
1452         do i=1,8
1453           blocklengths(i)=4
1454         enddo
1455         displs(1)=0
1456         do i=2,8
1457           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1458         enddo
1459         do i=1,15
1460           blocklengths(i)=blocklengths(i)*ichunk
1461         enddo
1462         call MPI_Type_indexed(8,blocklengths,displs,&
1463           MPI_DOUBLE_PRECISION,MPI_PRECOMP12(ind_typ),IERROR)
1464         call MPI_Type_commit(MPI_PRECOMP12(ind_typ),IERROR)
1465         do i=1,6
1466           blocklengths(i)=4
1467         enddo
1468         displs(1)=0
1469         do i=2,6
1470           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1471         enddo
1472         do i=1,6
1473           blocklengths(i)=blocklengths(i)*ichunk
1474         enddo
1475         call MPI_Type_indexed(6,blocklengths,displs,&
1476           MPI_DOUBLE_PRECISION,MPI_PRECOMP22(ind_typ),IERROR)
1477         call MPI_Type_commit(MPI_PRECOMP22(ind_typ),IERROR)
1478         do i=1,2
1479           blocklengths(i)=8
1480         enddo
1481         displs(1)=0
1482         do i=2,2
1483           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1484         enddo
1485         do i=1,2
1486           blocklengths(i)=blocklengths(i)*ichunk
1487         enddo
1488         call MPI_Type_indexed(2,blocklengths,displs,&
1489           MPI_DOUBLE_PRECISION,MPI_PRECOMP23(ind_typ),IERROR)
1490         call MPI_Type_commit(MPI_PRECOMP23(ind_typ),IERROR)
1491         do i=1,4
1492           blocklengths(i)=1
1493         enddo
1494         displs(1)=0
1495         do i=2,4
1496           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1497         enddo
1498         do i=1,4
1499           blocklengths(i)=blocklengths(i)*ichunk
1500         enddo
1501         call MPI_Type_indexed(4,blocklengths,displs,&
1502           MPI_DOUBLE_PRECISION,MPI_ROTAT_OLD(ind_typ),IERROR)
1503         call MPI_Type_commit(MPI_ROTAT_OLD(ind_typ),IERROR)
1504         enddo
1505 #endif
1506       endif
1507       iint_start=ivec_start+1
1508       iint_end=ivec_end+1
1509       do i=0,nfgtasks-1
1510           iint_count(i)=ivec_count(i)
1511           iint_displ(i)=ivec_displ(i)
1512           ivec_displ(i)=ivec_displ(i)-1
1513           iset_displ(i)=iset_displ(i)-1
1514           ithet_displ(i)=ithet_displ(i)-1
1515           iphi_displ(i)=iphi_displ(i)-1
1516           iphi1_displ(i)=iphi1_displ(i)-1
1517           ibond_displ(i)=ibond_displ(i)-1
1518       enddo
1519       if (nfgtasks.gt.1 .and. fg_rank.eq.king &
1520           .and. (me.eq.0 .or. .not. out1file)) then
1521         write (iout,*) "IVEC_DISPL, IVEC_COUNT, ISET_START, ISET_COUNT"
1522         do i=0,nfgtasks-1
1523           write (iout,*) i,ivec_displ(i),ivec_count(i),iset_displ(i),&
1524             iset_count(i)
1525         enddo
1526         write (iout,*) "iphi_start",iphi_start," iphi_end",iphi_end,&
1527           " iphi1_start",iphi1_start," iphi1_end",iphi1_end
1528         write (iout,*)"IPHI_COUNT, IPHI_DISPL, IPHI1_COUNT, IPHI1_DISPL"
1529         do i=0,nfgtasks-1
1530           write (iout,*) i,iphi_count(i),iphi_displ(i),iphi1_count(i),&
1531             iphi1_displ(i)
1532         enddo
1533         write(iout,'(i10,a,i10,a,i10,a/a,i3,a)') n_sc_int_tot,' SC-SC ',&
1534           nele_int_tot,' electrostatic and ',nscp_int_tot,&
1535           ' SC-p interactions','were distributed among',nfgtasks,&
1536           ' fine-grain processors.'
1537       endif
1538 #else
1539       loc_start=2
1540       loc_end=nres_molec(1)-1
1541       ithet_start=3 
1542       ithet_end=nres_molec(1)
1543       ithet_nucl_start=3+nres_molec(1)
1544       ithet_nucl_end=nres_molec(1)+nres_molec(2)
1545       iturn3_start=nnt
1546       iturn3_end=nct_molec(1)-3
1547       iturn4_start=nnt
1548       iturn4_end=nct_molec(1)-4
1549       iphi_start=nnt+3
1550       iphi_end=nct_molec(1)
1551       iphi1_start=4
1552       iphi1_end=nres_molec(1)
1553       iphi_nucl_start=4+nres_molec(1)
1554       iphi_nucl_end=nres_molec(1)+nres_molec(2)
1555       idihconstr_start=1
1556       idihconstr_end=ndih_constr
1557       ithetaconstr_start=1
1558       ithetaconstr_end=ntheta_constr
1559       iphid_start=iphi_start
1560       iphid_end=iphi_end-1
1561       itau_start=4
1562       itau_end=nres_molec(1)
1563       ibond_start=2
1564       ibond_end=nres_molec(1)-1
1565       ibond_nucl_start=2+nres_molec(1)
1566       ibond_nucl_end=nres_molec(2)-1
1567       ibondp_start=nnt
1568       ibondp_end=nct_molec(1)-1
1569       ibondp_nucl_start=nnt_molec(2)
1570       ibondp_nucl_end=nct_molec(2)
1571       ivec_start=1
1572       ivec_end=nres_molec(1)-1
1573       iset_start=3
1574       iset_end=nres_molec(1)+1
1575       iint_start=2
1576       iint_end=nres_molec(1)-1
1577       ilip_start=1
1578       ilip_end=nres_molec(1)
1579       itube_start=1
1580       itube_end=nres_molec(1)
1581 #endif
1582 !el       common /przechowalnia/
1583 !      deallocate(iturn3_start_all)
1584 !      deallocate(iturn3_end_all)
1585 !      deallocate(iturn4_start_all)
1586 !      deallocate(iturn4_end_all)
1587 !      deallocate(iatel_s_all)
1588 !      deallocate(iatel_e_all)
1589 !      deallocate(ielstart_all)
1590 !      deallocate(ielend_all)
1591
1592 !      deallocate(ntask_cont_from_all)
1593 !      deallocate(ntask_cont_to_all)
1594 !      deallocate(itask_cont_from_all)
1595 !      deallocate(itask_cont_to_all)
1596 !el----------
1597       return
1598       end subroutine init_int_table
1599 #ifdef MPI
1600 !-----------------------------------------------------------------------------
1601       subroutine add_int(ii,jj,itask,ntask_cont_to,itask_cont_to,flag)
1602
1603 !el      implicit none
1604 !      include "DIMENSIONS"
1605 !      include "COMMON.INTERACT"
1606 !      include "COMMON.SETUP"
1607 !      include "COMMON.IOUNITS"
1608       integer :: ii,jj,ntask_cont_to
1609       integer,dimension(4) :: itask
1610       integer :: itask_cont_to(0:nfgtasks-1)    !(0:max_fg_procs-1)
1611       logical :: flag
1612 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1613 !el       iturn4_end_all,iatel_s_all,iatel_e_all        !(0:max_fg_procs)
1614 !el      integer,dimension(nres,0:nfgtasks-1) :: ielstart_all,ielend_all        !(maxres,0:max_fg_procs-1)
1615 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1616 !el       iturn4_end_all,iatel_s_all,iatel_e_all,ielstart_all,ielend_all
1617       integer :: iproc,isent,k,l
1618 ! Determines whether to send interaction ii,jj to other processors; a given
1619 ! interaction can be sent to at most 2 processors.
1620 ! Sets flag=.true. if interaction ii,jj needs to be sent to at least 
1621 ! one processor, otherwise flag is unchanged from the input value.
1622       isent=0
1623       itask(1)=fg_rank
1624       itask(2)=fg_rank
1625       itask(3)=fg_rank
1626       itask(4)=fg_rank
1627 !      write (iout,*) "ii",ii," jj",jj
1628 ! Loop over processors to check if anybody could need interaction ii,jj
1629       do iproc=0,fg_rank-1
1630 ! Check if the interaction matches any turn3 at iproc
1631         do k=iturn3_start_all(iproc),iturn3_end_all(iproc)
1632           l=k+2
1633           if (k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1 &
1634          .or. k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1 .and. l.eq.jj-1) &
1635           then 
1636 !            write (iout,*) "turn3 to iproc",iproc," ij",ii,jj,"kl",k,l
1637 !            call flush(iout)
1638             flag=.true.
1639             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1640               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1641               isent=isent+1
1642               itask(isent)=iproc
1643               call add_task(iproc,ntask_cont_to,itask_cont_to)
1644             endif
1645           endif
1646         enddo
1647 ! Check if the interaction matches any turn4 at iproc
1648         do k=iturn4_start_all(iproc),iturn4_end_all(iproc)
1649           l=k+3
1650           if (k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1 &
1651          .or. k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1 .and. l.eq.jj-1) &
1652           then 
1653 !            write (iout,*) "turn3 to iproc",iproc," ij",ii,jj," kl",k,l
1654 !            call flush(iout)
1655             flag=.true.
1656             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1657               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1658               isent=isent+1
1659               itask(isent)=iproc
1660               call add_task(iproc,ntask_cont_to,itask_cont_to)
1661             endif
1662           endif
1663         enddo
1664         if (iatel_s_all(iproc).gt.0 .and. iatel_e_all(iproc).gt.0 .and. &
1665         iatel_s_all(iproc).le.ii-1 .and. iatel_e_all(iproc).ge.ii-1)then
1666           if (ielstart_all(ii-1,iproc).le.jj-1.and. &
1667               ielend_all(ii-1,iproc).ge.jj-1) then
1668             flag=.true.
1669             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1670               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1671               isent=isent+1
1672               itask(isent)=iproc
1673               call add_task(iproc,ntask_cont_to,itask_cont_to)
1674             endif
1675           endif
1676           if (ielstart_all(ii-1,iproc).le.jj+1.and. &
1677               ielend_all(ii-1,iproc).ge.jj+1) then
1678             flag=.true.
1679             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1680               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1681               isent=isent+1
1682               itask(isent)=iproc
1683               call add_task(iproc,ntask_cont_to,itask_cont_to)
1684             endif
1685           endif
1686         endif
1687       enddo
1688       return
1689       end subroutine add_int
1690 !-----------------------------------------------------------------------------
1691       subroutine add_int_from(ii,jj,ntask_cont_from,itask_cont_from)
1692
1693 !el      use MPI_data
1694 !el      implicit none
1695 !      include "DIMENSIONS"
1696 !      include "COMMON.INTERACT"
1697 !      include "COMMON.SETUP"
1698 !      include "COMMON.IOUNITS"
1699       integer :: ii,jj,itask(2),ntask_cont_from,&
1700        itask_cont_from(0:nfgtasks-1)    !(0:max_fg_procs)
1701       logical :: flag
1702 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,&
1703 !el       iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all       !(0:max_fg_procs)
1704 !el      integer,dimension(nres,0:nfgtasks-1) :: ielstart_all,ielend_all        !(maxres,0:max_fg_procs-1)
1705 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1706 !el       iturn4_end_all,iatel_s_all,iatel_e_all,ielstart_all,ielend_all
1707       integer :: iproc,k,l
1708       do iproc=fg_rank+1,nfgtasks-1
1709         do k=iturn3_start_all(iproc),iturn3_end_all(iproc)
1710           l=k+2
1711           if (k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1.and.l.eq.jj-1 &
1712          .or. k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1) &
1713           then
1714 !            write (iout,*)"turn3 from iproc",iproc," ij",ii,jj," kl",k,l
1715             call add_task(iproc,ntask_cont_from,itask_cont_from)
1716           endif
1717         enddo 
1718         do k=iturn4_start_all(iproc),iturn4_end_all(iproc)
1719           l=k+3
1720           if (k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1.and.l.eq.jj-1 &
1721          .or. k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1) &
1722           then
1723 !            write (iout,*)"turn4 from iproc",iproc," ij",ii,jj," kl",k,l
1724             call add_task(iproc,ntask_cont_from,itask_cont_from)
1725           endif
1726         enddo 
1727         if (iatel_s_all(iproc).gt.0 .and. iatel_e_all(iproc).gt.0) then
1728           if (ii+1.ge.iatel_s_all(iproc).and.ii+1.le.iatel_e_all(iproc)) &
1729           then
1730             if (jj+1.ge.ielstart_all(ii+1,iproc).and. &
1731                 jj+1.le.ielend_all(ii+1,iproc)) then
1732               call add_task(iproc,ntask_cont_from,itask_cont_from)
1733             endif            
1734             if (jj-1.ge.ielstart_all(ii+1,iproc).and. &
1735                 jj-1.le.ielend_all(ii+1,iproc)) then
1736               call add_task(iproc,ntask_cont_from,itask_cont_from)
1737             endif
1738           endif
1739           if (ii-1.ge.iatel_s_all(iproc).and.ii-1.le.iatel_e_all(iproc)) &
1740           then
1741             if (jj-1.ge.ielstart_all(ii-1,iproc).and. &
1742                 jj-1.le.ielend_all(ii-1,iproc)) then
1743               call add_task(iproc,ntask_cont_from,itask_cont_from)
1744             endif
1745             if (jj+1.ge.ielstart_all(ii-1,iproc).and. &
1746                 jj+1.le.ielend_all(ii-1,iproc)) then
1747                call add_task(iproc,ntask_cont_from,itask_cont_from)
1748             endif
1749           endif
1750         endif
1751       enddo
1752       return
1753       end subroutine add_int_from
1754 !-----------------------------------------------------------------------------
1755       subroutine add_task(iproc,ntask_cont,itask_cont)
1756
1757 !el      use MPI_data
1758 !el      implicit none
1759 !      include "DIMENSIONS"
1760       integer :: iproc,ntask_cont,itask_cont(0:nfgtasks-1)      !(0:max_fg_procs-1)
1761       integer :: ii
1762       do ii=1,ntask_cont
1763         if (itask_cont(ii).eq.iproc) return
1764       enddo
1765       ntask_cont=ntask_cont+1
1766       itask_cont(ntask_cont)=iproc
1767       return
1768       end subroutine add_task
1769 #endif
1770 !-----------------------------------------------------------------------------
1771 #if defined MPI || defined WHAM_RUN
1772       subroutine int_partition(int_index,lower_index,upper_index,atom,&
1773        at_start,at_end,first_atom,last_atom,int_gr,jat_start,jat_end,*)
1774
1775 !      implicit real*8 (a-h,o-z)
1776 !      include 'DIMENSIONS'
1777 !      include 'COMMON.IOUNITS'
1778       integer :: int_index,lower_index,upper_index,atom,at_start,at_end,&
1779        first_atom,last_atom,int_gr,jat_start,jat_end,int_index_old
1780       logical :: lprn
1781       lprn=.false.
1782       if (lprn) write (iout,*) 'int_index=',int_index
1783       int_index_old=int_index
1784       int_index=int_index+last_atom-first_atom+1
1785       if (lprn) &
1786          write (iout,*) 'int_index=',int_index,&
1787                      ' int_index_old',int_index_old,&
1788                      ' lower_index=',lower_index,&
1789                      ' upper_index=',upper_index,&
1790                      ' atom=',atom,' first_atom=',first_atom,&
1791                      ' last_atom=',last_atom
1792       if (int_index.ge.lower_index) then
1793         int_gr=int_gr+1
1794         if (at_start.eq.0) then
1795           at_start=atom
1796           jat_start=first_atom-1+lower_index-int_index_old
1797         else
1798           jat_start=first_atom
1799         endif
1800         if (lprn) write (iout,*) 'jat_start',jat_start
1801         if (int_index.ge.upper_index) then
1802           at_end=atom
1803           jat_end=first_atom-1+upper_index-int_index_old
1804           return 1
1805         else
1806           jat_end=last_atom
1807         endif
1808         if (lprn) write (iout,*) 'jat_end',jat_end
1809       endif
1810       return
1811       end subroutine int_partition
1812 #endif
1813 !-----------------------------------------------------------------------------
1814 #ifndef CLUSTER
1815       subroutine hpb_partition
1816
1817 !      implicit real*8 (a-h,o-z)
1818 !      include 'DIMENSIONS'
1819 #ifdef MPI
1820       include 'mpif.h'
1821 #endif
1822 !      include 'COMMON.SBRIDGE'
1823 !      include 'COMMON.IOUNITS'
1824 !      include 'COMMON.SETUP'
1825 #ifdef MPI
1826       call int_bounds(nhpb,link_start,link_end)
1827       write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
1828         ' absolute rank',MyRank,&
1829         ' nhpb',nhpb,' link_start=',link_start,&
1830         ' link_end',link_end
1831 #else
1832       link_start=1
1833       link_end=nhpb
1834 #endif
1835       return
1836       end subroutine hpb_partition
1837 #endif
1838 !-----------------------------------------------------------------------------
1839 ! misc.f in module io_base
1840 !-----------------------------------------------------------------------------
1841 !-----------------------------------------------------------------------------
1842 ! parmread.F
1843 !-----------------------------------------------------------------------------
1844       subroutine getenv_loc(var, val)
1845
1846       character(*) :: var, val
1847
1848 #ifdef WINIFL
1849       character(len=2000) :: line
1850 !el      external ilen
1851
1852       open (196,file='env',status='old',readonly,shared)
1853       iread=0
1854 !      write(*,*)'looking for ',var
1855 10    read(196,*,err=11,end=11)line
1856       iread=index(line,var)
1857 !      write(*,*)iread,' ',var,' ',line
1858       if (iread.eq.0) go to 10 
1859 !      write(*,*)'---> ',line
1860 11    continue
1861       if(iread.eq.0) then
1862 !       write(*,*)'CHUJ'
1863        val=''
1864       else
1865        iread=iread+ilen(var)+1
1866        read (line(iread:),*,err=12,end=12) val
1867 !       write(*,*)'OK: ',var,' = ',val
1868       endif
1869       close(196)
1870       return
1871 12    val=''
1872       close(196)
1873 #elif (defined CRAY)
1874       integer :: lennam,lenval,ierror
1875 !
1876 !        getenv using a POSIX call, useful on the T3D
1877 !        Sept 1996, comment out error check on advice of H. Pritchard
1878 !
1879       lennam = len(var)
1880       if(lennam.le.0) stop '--error calling getenv--'
1881       call pxfgetenv(var,lennam,val,lenval,ierror)
1882 !-HP- if(ierror.ne.0) stop '--error returned by pxfgetenv--'
1883 #else
1884       call getenv(var,val)
1885 #endif
1886
1887       return
1888       end subroutine getenv_loc
1889 !-----------------------------------------------------------------------------
1890 ! readrtns_CSA.F
1891 !-----------------------------------------------------------------------------
1892       subroutine setup_var
1893
1894       integer :: i
1895 !      implicit real*8 (a-h,o-z)
1896 !      include 'DIMENSIONS'
1897 !      include 'COMMON.IOUNITS'
1898 !      include 'COMMON.GEO'
1899 !      include 'COMMON.VAR'
1900 !      include 'COMMON.INTERACT'
1901 !      include 'COMMON.LOCAL'
1902 !      include 'COMMON.NAMES'
1903 !      include 'COMMON.CHAIN'
1904 !      include 'COMMON.FFIELD'
1905 !      include 'COMMON.SBRIDGE'
1906 !      include 'COMMON.HEADER'
1907 !      include 'COMMON.CONTROL'
1908 !      include 'COMMON.DBASE'
1909 !      include 'COMMON.THREAD'
1910 !      include 'COMMON.TIME1'
1911 ! Set up variable list.
1912       ntheta=nres-2
1913       nphi=nres-3
1914       nvar=ntheta+nphi
1915       nside=0
1916       do i=2,nres-1
1917 #ifdef WHAM_RUN
1918         if (itype(i,1).ne.10) then
1919 #else
1920         if (itype(i,1).ne.10 .and. itype(i,1).ne.ntyp1) then
1921 #endif
1922           nside=nside+1
1923           ialph(i,1)=nvar+nside
1924           ialph(nside,2)=i
1925         endif
1926       enddo
1927       if (indphi.gt.0) then
1928         nvar=nphi
1929       else if (indback.gt.0) then
1930         nvar=nphi+ntheta
1931       else
1932         nvar=nvar+2*nside
1933       endif
1934 !d    write (iout,'(3i4)') (i,ialph(i,1),ialph(i,2),i=2,nres-1)
1935       return
1936       end subroutine setup_var
1937 !-----------------------------------------------------------------------------
1938 ! rescode.f
1939 !-----------------------------------------------------------------------------
1940       integer function rescode(iseq,nam,itype,molecule)
1941
1942       use io_base, only: ucase
1943 !      implicit real*8 (a-h,o-z)
1944 !      include 'DIMENSIONS'
1945 !      include 'COMMON.NAMES'
1946 !      include 'COMMON.IOUNITS'
1947       character(len=3) :: nam   !,ucase
1948       integer :: iseq,itype,i
1949       integer :: molecule
1950       print *,molecule,nam
1951       if (molecule.eq.1) then 
1952       if (itype.eq.0) then
1953
1954       do i=-ntyp1_molec(molecule),ntyp1_molec(molecule)
1955         if (ucase(nam).eq.restyp(i,molecule)) then
1956           rescode=i
1957           return
1958         endif
1959       enddo
1960
1961       else
1962
1963       do i=-ntyp1_molec(molecule),ntyp1_molec(molecule)
1964         if (nam(1:1).eq.onelet(i)) then
1965           rescode=i
1966           return  
1967         endif  
1968       enddo
1969
1970       endif
1971       else if (molecule.eq.2) then
1972       do i=1,ntyp1_molec(molecule)
1973          print *,nam(1:1),restyp(i,molecule)(1:1) 
1974         if (nam(2:2).eq.restyp(i,molecule)(1:1)) then
1975           rescode=i
1976           return
1977         endif
1978       enddo
1979       else if (molecule.eq.3) then
1980        write(iout,*) "SUGAR not yet implemented"
1981        stop
1982       else if (molecule.eq.4) then
1983        write(iout,*) "Explicit LIPID not yet implemented"
1984        stop
1985       else if (molecule.eq.5) then
1986       do i=1,ntyp1_molec(molecule)
1987         print *,i,restyp(i,molecule)(1:2)
1988         if (ucase(nam(1:2)).eq.restyp(i,molecule)(1:2)) then
1989           rescode=i
1990           return
1991         endif
1992       enddo
1993       else   
1994        write(iout,*) "molecule not defined"
1995       endif
1996       write (iout,10) iseq,nam
1997       stop
1998    10 format ('**** Error - residue',i4,' has an unresolved name ',a3)
1999       end function rescode
2000       integer function sugarcode(sugar,ires)
2001       character sugar
2002       integer ires
2003       if (sugar.eq.'D') then
2004         sugarcode=1
2005       else if (sugar.eq.' ') then
2006         sugarcode=2
2007       else
2008         write (iout,*) 'UNKNOWN sugar type for residue',ires,' ',sugar
2009         stop
2010       endif
2011       return
2012       end function sugarcode
2013
2014 !-----------------------------------------------------------------------------
2015 ! timing.F
2016 !-----------------------------------------------------------------------------
2017 ! $Date: 1994/10/05 16:41:52 $
2018 ! $Revision: 2.2 $
2019 !
2020       subroutine set_timers
2021 !
2022 !el      implicit none
2023 !el      real(kind=8) :: tcpu
2024 !      include 'COMMON.TIME1'
2025 !#ifdef MP
2026 #ifdef MPI
2027       include 'mpif.h'
2028 #endif
2029 ! Diminish the assigned time limit a little so that there is some time to
2030 ! end a batch job
2031 !     timlim=batime-150.0
2032 ! Calculate the initial time, if it is not zero (e.g. for the SUN).
2033       stime=tcpu()
2034 #if .not. defined(WHAM_RUN) && .not. defined(CLUSTER)
2035 #ifdef MPI
2036       walltime=MPI_WTIME()
2037       time_reduce=0.0d0
2038       time_allreduce=0.0d0
2039       time_bcast=0.0d0
2040       time_gather=0.0d0
2041       time_sendrecv=0.0d0
2042       time_scatter=0.0d0
2043       time_scatter_fmat=0.0d0
2044       time_scatter_ginv=0.0d0
2045       time_scatter_fmatmult=0.0d0
2046       time_scatter_ginvmult=0.0d0
2047       time_barrier_e=0.0d0
2048       time_barrier_g=0.0d0
2049       time_enecalc=0.0d0
2050       time_sumene=0.0d0
2051       time_lagrangian=0.0d0
2052       time_sumgradient=0.0d0
2053       time_intcartderiv=0.0d0
2054       time_inttocart=0.0d0
2055       time_ginvmult=0.0d0
2056       time_fricmatmult=0.0d0
2057       time_cartgrad=0.0d0
2058       time_bcastc=0.0d0
2059       time_bcast7=0.0d0
2060       time_bcastw=0.0d0
2061       time_intfcart=0.0d0
2062       time_vec=0.0d0
2063       time_mat=0.0d0
2064       time_fric=0.0d0
2065       time_stoch=0.0d0
2066       time_fricmatmult=0.0d0
2067       time_fsample=0.0d0
2068 #endif
2069 #endif
2070 !d    print *,' in SET_TIMERS stime=',stime
2071       return
2072       end subroutine set_timers
2073 !-----------------------------------------------------------------------------
2074 #ifndef CLUSTER
2075       logical function stopx(nf)
2076 ! This function returns .true. if one of the following reasons to exit SUMSL
2077 ! occurs. The "reason" code is stored in WHATSUP passed thru a COMMON block:
2078 !
2079 !... WHATSUP = 0 - go on, no reason to stop. Stopx will return .false.
2080 !...           1 - Time up in current node;
2081 !...           2 - STOP signal was received from another node because the
2082 !...               node's task was accomplished (parallel only);
2083 !...          -1 - STOP signal was received from another node because of error;
2084 !...          -2 - STOP signal was received from another node, because 
2085 !...               the node's time was up.
2086 !      implicit real*8 (a-h,o-z)
2087 !      include 'DIMENSIONS'
2088 !el#ifdef WHAM_RUN
2089 !el      use control_data, only:WhatsUp
2090 !el#endif
2091 #ifdef MP
2092 !el      use MPI_data   !include 'COMMON.INFO'
2093       include 'mpif.h'
2094 #endif
2095       integer :: nf
2096 !el      logical :: ovrtim
2097
2098 !      include 'COMMON.IOUNITS'
2099 !      include 'COMMON.TIME1'
2100       integer :: Kwita
2101
2102 !d    print *,'Processor',MyID,' NF=',nf
2103 !d      write (iout,*) "stopx: ",nf
2104 #ifndef WHAM_RUN
2105 #ifndef MPI
2106       if (ovrtim()) then
2107 ! Finish if time is up.
2108          stopx = .true.
2109          WhatsUp=1
2110 #ifdef MPL
2111       else if (mod(nf,100).eq.0) then
2112 ! Other processors might have finished. Check this every 100th function 
2113 ! evaluation.
2114 ! Master checks if any other processor has sent accepted conformation(s) to it. 
2115          if (MyID.ne.MasterID) call receive_mcm_info
2116          if (MyID.eq.MasterID) call receive_conf
2117 !d       print *,'Processor ',MyID,' is checking STOP: nf=',nf
2118          call recv_stop_sig(Kwita)
2119          if (Kwita.eq.-1) then
2120            write (iout,'(a,i4,a,i5)') 'Processor',&
2121            MyID,' has received STOP signal in STOPX; NF=',nf
2122            write (*,'(a,i4,a,i5)') 'Processor',&
2123            MyID,' has received STOP signal in STOPX; NF=',nf
2124            stopx=.true.
2125            WhatsUp=2
2126          elseif (Kwita.eq.-2) then
2127            write (iout,*) &
2128           'Processor',MyID,' received TIMEUP-STOP signal in SUMSL.'
2129            write (*,*) &
2130           'Processor',MyID,' received TIMEUP-STOP signal in SUMSL.'
2131            WhatsUp=-2
2132            stopx=.true.  
2133          else if (Kwita.eq.-3) then
2134            write (iout,*) &
2135           'Processor',MyID,' received ERROR-STOP signal in SUMSL.'
2136            write (*,*) &
2137           'Processor',MyID,' received ERROR-STOP signal in SUMSL.'
2138            WhatsUp=-1
2139            stopx=.true.
2140          else
2141            stopx=.false.
2142            WhatsUp=0
2143          endif
2144 #endif
2145       else
2146          stopx = .false.
2147          WhatsUp=0
2148       endif
2149 #else
2150       stopx=.false.
2151 !d      write (iout,*) "stopx set at .false."
2152 #endif
2153
2154 #ifdef OSF
2155 ! Check for FOUND_NAN flag
2156       if (FOUND_NAN) then
2157         write(iout,*)"   ***   stopx : Found a NaN"
2158         stopx=.true.
2159       endif
2160 #endif
2161 #else
2162       if (ovrtim()) then
2163 ! Finish if time is up.
2164          stopx = .true.
2165          WhatsUp=1
2166       else if (cutoffviol) then
2167         stopx = .true.
2168         WhatsUp=2
2169       else
2170         stopx=.false.
2171       endif
2172 #endif
2173       return
2174       end function stopx
2175 !-----------------------------------------------------------------------------
2176 #else
2177       logical function stopx(nf)
2178 !
2179 !     ..................................................................
2180 !
2181 !     *****PURPOSE...
2182 !     THIS FUNCTION MAY SERVE AS THE STOPX (ASYNCHRONOUS INTERRUPTION)
2183 !     FUNCTION FOR THE NL2SOL (NONLINEAR LEAST-SQUARES) PACKAGE AT
2184 !     THOSE INSTALLATIONS WHICH DO NOT WISH TO IMPLEMENT A
2185 !     DYNAMIC STOPX.
2186 !
2187 !     *****ALGORITHM NOTES...
2188 !     AT INSTALLATIONS WHERE THE NL2SOL SYSTEM IS USED
2189 !     INTERACTIVELY, THIS DUMMY STOPX SHOULD BE REPLACED BY A
2190 !     FUNCTION THAT RETURNS .TRUE. IF AND ONLY IF THE INTERRUPT
2191 !     (BREAK) KEY HAS BEEN PRESSED SINCE THE LAST CALL ON STOPX.
2192 !
2193 !     $$$ MODIFIED FOR USE AS  THE TIMER ROUTINE.
2194 !     $$$                              WHEN THE TIME LIMIT HAS BEEN
2195 !     $$$ REACHED     STOPX IS SET TO .TRUE  AND INITIATES (IN ITSUM)
2196 !     $$$ AND ORDERLY EXIT OUT OF SUMSL.  IF ARRAYS IV AND V ARE
2197 !     $$$ SAVED, THE SUMSL ROUTINES CAN BE RESTARTED AT THE SAME
2198 !     $$$ POINT AT WHICH THEY WERE INTERRUPTED.
2199 !
2200 !     ..................................................................
2201 !
2202 !      include 'DIMENSIONS'
2203       integer :: nf
2204 !      logical ovrtim
2205 !      include 'COMMON.IOUNITS'
2206 !      include 'COMMON.TIME1'
2207 #ifdef MPL
2208 !     include 'COMMON.INFO'
2209       integer :: Kwita
2210
2211 !d    print *,'Processor',MyID,' NF=',nf
2212 #endif
2213       if (ovrtim()) then
2214 ! Finish if time is up.
2215          stopx = .true.
2216 #ifdef MPL
2217       else if (mod(nf,100).eq.0) then
2218 ! Other processors might have finished. Check this every 100th function 
2219 ! evaluation.
2220 !d       print *,'Processor ',MyID,' is checking STOP: nf=',nf
2221          call recv_stop_sig(Kwita)
2222          if (Kwita.eq.-1) then
2223            write (iout,'(a,i4,a,i5)') 'Processor',&
2224            MyID,' has received STOP signal in STOPX; NF=',nf
2225            write (*,'(a,i4,a,i5)') 'Processor',&
2226            MyID,' has received STOP signal in STOPX; NF=',nf
2227            stopx=.true.
2228          else
2229            stopx=.false.
2230          endif
2231 #endif
2232       else
2233          stopx = .false.
2234       endif
2235       return
2236       end function stopx
2237 #endif
2238 !-----------------------------------------------------------------------------
2239       logical function ovrtim()
2240
2241 !      include 'DIMENSIONS'
2242 !      include 'COMMON.IOUNITS'
2243 !      include 'COMMON.TIME1'
2244 !el      real(kind=8) :: tcpu
2245       real(kind=8) :: curtim
2246 #ifdef MPI
2247       include "mpif.h"
2248       curtim = MPI_Wtime()-walltime
2249 #else
2250       curtim= tcpu()
2251 #endif
2252 !  curtim is the current time in seconds.
2253 !      write (iout,*) "curtim",curtim," timlim",timlim," safety",safety
2254 #ifndef WHAM_RUN
2255       if (curtim .ge. timlim - safety) then
2256         write (iout,'(a,f10.2,a,f10.2,a,f10.2,a)') &
2257         "***************** Elapsed time (",curtim,&
2258         " s) is within the safety limit (",safety,&
2259         " s) of the allocated time (",timlim," s). Terminating."
2260         ovrtim=.true.
2261       else
2262         ovrtim=.false.
2263       endif
2264 #else
2265       ovrtim=.false.
2266 #endif
2267 !elwrite (iout,*) "ovrtim",ovrtim
2268       return
2269       end function ovrtim
2270 !-----------------------------------------------------------------------------
2271       real(kind=8) function tcpu()
2272
2273 !      include 'COMMON.TIME1'
2274       real(kind=8) :: seconds
2275 #ifdef ES9000
2276 !***************************
2277 ! Next definition for EAGLE (ibm-es9000)
2278       real(kind=8) :: micseconds
2279       integer :: rcode
2280       tcpu=cputime(micseconds,rcode)
2281       tcpu=(micseconds/1.0E6) - stime
2282 !***************************
2283 #endif
2284 #ifdef SUN
2285 !***************************
2286 ! Next definitions for sun
2287       REAL(kind=8) ::  ECPU,ETIME,ETCPU
2288       real(kind=8),dimension(2) :: tarray
2289       tcpu=etime(tarray)
2290       tcpu=tarray(1)
2291 !***************************
2292 #endif
2293 #ifdef KSR
2294 !***************************
2295 ! Next definitions for ksr
2296 ! this function uses the ksr timer ALL_SECONDS from the PMON library to
2297 ! return the elapsed time in seconds
2298       tcpu= all_seconds() - stime
2299 !***************************
2300 #endif
2301 #ifdef SGI
2302 !***************************
2303 ! Next definitions for sgi
2304       real(kind=4) :: timar(2), etime
2305       seconds = etime(timar)
2306 !d    print *,'seconds=',seconds,' stime=',stime
2307 !      usrsec = timar(1)
2308 !      syssec = timar(2)
2309       tcpu=seconds - stime
2310 !***************************
2311 #endif
2312
2313 #ifdef LINUX
2314 !***************************
2315 ! Next definitions for sgi
2316       real(kind=4) :: timar(2), etime
2317       seconds = etime(timar)
2318 !d    print *,'seconds=',seconds,' stime=',stime
2319 !      usrsec = timar(1)
2320 !      syssec = timar(2)
2321       tcpu=seconds - stime
2322 !***************************
2323 #endif
2324
2325
2326 #ifdef CRAY
2327 !***************************
2328 ! Next definitions for Cray
2329 !     call date(curdat)
2330 !     curdat=curdat(1:9)
2331 !     call clock(curtim)
2332 !     curtim=curtim(1:8)
2333       cpusec = second()
2334       tcpu=cpusec - stime
2335 !***************************
2336 #endif
2337 #ifdef AIX
2338 !***************************
2339 ! Next definitions for RS6000
2340        integer(kind=4) :: i1,mclock
2341        i1 = mclock()
2342        tcpu = (i1+0.0D0)/100.0D0
2343 #endif
2344 #ifdef WINPGI
2345 !***************************
2346 ! next definitions for windows NT Digital fortran
2347        real(kind=4) :: time_real
2348        call cpu_time(time_real)
2349        tcpu = time_real
2350 #endif
2351 #ifdef WINIFL
2352 !***************************
2353 ! next definitions for windows NT Digital fortran
2354        real(kind=4) :: time_real
2355        call cpu_time(time_real)
2356        tcpu = time_real
2357 #endif
2358       tcpu = 0d0 !el
2359       return
2360       end function tcpu
2361 !-----------------------------------------------------------------------------
2362 #ifndef CLUSTER
2363       subroutine dajczas(rntime,hrtime,mintime,sectime)
2364
2365 !      include 'COMMON.IOUNITS'
2366       integer :: ihr,imn,isc
2367       real(kind=8) :: rntime,hrtime,mintime,sectime 
2368       hrtime=rntime/3600.0D0 
2369       hrtime=aint(hrtime)
2370       mintime=aint((rntime-3600.0D0*hrtime)/60.0D0)
2371       sectime=aint((rntime-3600.0D0*hrtime-60.0D0*mintime)+0.5D0)
2372       if (sectime.eq.60.0D0) then
2373         sectime=0.0D0
2374         mintime=mintime+1.0D0
2375       endif
2376       ihr=hrtime
2377       imn=mintime
2378       isc=sectime
2379       write (iout,328) ihr,imn,isc
2380   328 FORMAT(//'***** Computation time: ',I4  ,' hours ',I2  ,&
2381                ' minutes ', I2  ,' seconds *****')       
2382       return
2383       end subroutine dajczas
2384 !-----------------------------------------------------------------------------
2385       subroutine print_detailed_timing
2386
2387 !el      use MPI_data
2388 !      implicit real*8 (a-h,o-z)
2389 !      include 'DIMENSIONS'
2390 #ifdef MPI
2391       include 'mpif.h'
2392 #endif
2393 !      include 'COMMON.IOUNITS'
2394 !      include 'COMMON.TIME1'
2395 !      include 'COMMON.SETUP'
2396       real(kind=8) :: time1,time_barrier
2397       time_barrier = 0.0d0
2398 #ifdef MPI !el
2399       time1=MPI_WTIME()
2400 #endif !el
2401          write (iout,'(80(1h=)/a/(80(1h=)))') &
2402           "Details of FG communication time"
2403          write (*,'(7(a40,1pe15.5/),40(1h-)/a40,1pe15.5/80(1h=))') &
2404           "BROADCAST:",time_bcast,"REDUCE:",time_reduce,&
2405           "GATHER:",time_gather,&
2406           "SCATTER:",time_scatter,"SENDRECV:",time_sendrecv,&
2407           "BARRIER ene",time_barrier_e,&
2408           "BARRIER grad",time_barrier_g,&
2409           "TOTAL:",&
2410           time_bcast+time_reduce+time_gather+time_scatter+time_sendrecv
2411          write (*,*) fg_rank,myrank,&
2412            ': Total wall clock time',time1-walltime,' sec'
2413          write (*,*) "Processor",fg_rank,myrank,&
2414            ": BROADCAST time",time_bcast," REDUCE time",&
2415             time_reduce," GATHER time",time_gather," SCATTER time",&
2416             time_scatter,&
2417            " SCATTER fmatmult",time_scatter_fmatmult,&
2418            " SCATTER ginvmult",time_scatter_ginvmult,&
2419            " SCATTER fmat",time_scatter_fmat,&
2420            " SCATTER ginv",time_scatter_ginv,&
2421             " SENDRECV",time_sendrecv,&
2422             " BARRIER ene",time_barrier_e,&
2423             " BARRIER GRAD",time_barrier_g,&
2424             " BCAST7",time_bcast7," BCASTC",time_bcastc,&
2425             " BCASTW",time_bcastw," ALLREDUCE",time_allreduce,&
2426             " TOTAL",&
2427             time_bcast+time_reduce+time_gather+time_scatter+ &
2428             time_sendrecv+time_barrier+time_bcastc
2429 !el#endif
2430          write (*,*) "Processor",fg_rank,myrank," enecalc",time_enecalc
2431          write (*,*) "Processor",fg_rank,myrank," sumene",time_sumene
2432          write (*,*) "Processor",fg_rank,myrank," intfromcart",&
2433            time_intfcart
2434          write (*,*) "Processor",fg_rank,myrank," vecandderiv",&
2435            time_vec
2436          write (*,*) "Processor",fg_rank,myrank," setmatrices",&
2437            time_mat
2438          write (*,*) "Processor",fg_rank,myrank," ginvmult",&
2439            time_ginvmult
2440          write (*,*) "Processor",fg_rank,myrank," fricmatmult",&
2441            time_fricmatmult
2442          write (*,*) "Processor",fg_rank,myrank," inttocart",&
2443            time_inttocart
2444          write (*,*) "Processor",fg_rank,myrank," sumgradient",&
2445            time_sumgradient
2446          write (*,*) "Processor",fg_rank,myrank," intcartderiv",&
2447            time_intcartderiv
2448          if (fg_rank.eq.0) then
2449            write (*,*) "Processor",fg_rank,myrank," lagrangian",&
2450              time_lagrangian
2451            write (*,*) "Processor",fg_rank,myrank," cartgrad",&
2452              time_cartgrad
2453          endif
2454       return
2455       end subroutine print_detailed_timing
2456 #endif
2457 !-----------------------------------------------------------------------------
2458 !-----------------------------------------------------------------------------
2459       end module control