d6293ba6a7a064110d161fc75b34ad0bdb3198ce
[unres4.git] / source / unres / control.F90
1       module control
2 !-----------------------------------------------------------------------------
3       use io_units
4       use names
5       use MPI_data
6       use geometry_data
7       use energy_data
8       use control_data
9       use minim_data
10       use geometry, only:int_bounds
11 #ifndef CLUSTER
12       use csa_data
13 #ifdef WHAM_RUN
14       use wham_data
15 #endif
16 #endif
17       implicit none
18 !-----------------------------------------------------------------------------
19 ! commom.control
20 !      common /cntrl/
21 !      integer :: modecalc,iscode,indpdb,indback,indphi,iranconf,&
22 !       icheckgrad,iprint,i2ndstr,mucadyn,constr_dist,symetr
23 !      logical :: minim,refstr,pdbref,outpdb,outmol2,overlapsc,&
24 !       energy_dec,sideadd,lsecondary,read_cart,unres_pdb,&
25 !       vdisulf,searchsc,lmuca,dccart,extconf,out1file,&
26 !       gnorm_check,gradout,split_ene
27 !... minim = .true. means DO minimization.
28 !... energy_dec = .true. means print energy decomposition matrix
29 !-----------------------------------------------------------------------------
30 ! common.time1
31 !     FOUND_NAN - set by calcf to stop sumsl via stopx
32 !      COMMON/TIME1/
33       real(kind=8) :: STIME,BATIME,PREVTIM,RSTIME
34 !el      real(kind=8) :: TIMLIM,SAFETY
35 !el      real(kind=8) :: WALLTIME
36 !      COMMON/STOPTIM/
37       integer :: ISTOP
38 !      common /sumsl_flag/
39       logical :: FOUND_NAN
40 !      common /timing/
41       real(kind=8) :: t_init
42 !       time_bcast,time_reduce,time_gather,&
43 !       time_sendrecv,time_barrier_e,time_barrier_g,time_scatter,&
44        !t_eelecij,
45 !       time_allreduce,&
46 !       time_lagrangian,time_cartgrad,&
47 !       time_sumgradient,time_intcartderiv,time_inttocart,time_intfcart,&
48 !       time_mat,time_fricmatmult,&
49 !       time_scatter_fmat,time_scatter_ginv,&
50 !       time_scatter_fmatmult,time_scatter_ginvmult,&
51 !       t_eshort,t_elong,t_etotal
52 !-----------------------------------------------------------------------------
53 ! initialize_p.F
54 !-----------------------------------------------------------------------------
55 !      block data
56 !      integer,parameter :: MaxMoveType = 4
57 !      character(len=14),dimension(-1:MaxMoveType+1) :: MovTypID=(/'pool','chain regrow',&
58 !      character :: MovTypID(-1:MaxMoveType+1)=(/'pool','chain regrow',&
59 !       'multi-bond','phi','theta','side chain','total'/)
60 ! Conversion from poises to molecular unit and the gas constant
61 !el      real(kind=8) :: cPoise=2.9361d0, Rb=0.001986d0
62 !-----------------------------------------------------------------------------
63 !      common /przechowalnia/ subroutines: init_int_table,add_int,add_int_from
64       integer,dimension(:),allocatable :: iturn3_start_all,&
65         iturn3_end_all,iturn4_start_all,iturn4_end_all,iatel_s_all,&
66         iatel_e_all !(0:max_fg_procs)
67       integer,dimension(:,:),allocatable :: ielstart_all,&
68         ielend_all !(maxres,0:max_fg_procs-1)
69
70 !      common /przechowalnia/ subroutine: init_int_table
71       integer,dimension(:),allocatable :: ntask_cont_from_all,&
72         ntask_cont_to_all !(0:max_fg_procs-1)
73       integer,dimension(:,:),allocatable :: itask_cont_from_all,&
74         itask_cont_to_all !(0:max_fg_procs-1,0:max_fg_procs-1)
75 !-----------------------------------------------------------------------------
76 !
77 !
78 !-----------------------------------------------------------------------------
79       contains
80 !-----------------------------------------------------------------------------
81 ! initialize_p.F
82 !-----------------------------------------------------------------------------
83       subroutine initialize
84 !
85 ! Define constants and zero out tables.
86 !
87       use comm_iofile
88       use comm_machsw
89       use MCM_data, only: MovTypID
90 !      implicit real*8 (a-h,o-z)
91 !      include 'DIMENSIONS'
92 #ifdef MPI
93       include 'mpif.h'
94 #endif
95 #ifndef ISNAN
96       external proc_proc
97 #ifdef WINPGI
98 !MS$ATTRIBUTES C ::  proc_proc
99 #endif
100 #endif
101 !      include 'COMMON.IOUNITS'
102 !      include 'COMMON.CHAIN'
103 !      include 'COMMON.INTERACT'
104 !      include 'COMMON.GEO'
105 !      include 'COMMON.LOCAL'
106 !      include 'COMMON.TORSION'
107 !      include 'COMMON.FFIELD'
108 !      include 'COMMON.SBRIDGE'
109 !      include 'COMMON.MCM'
110 !      include 'COMMON.MINIM' 
111 !      include 'COMMON.DERIV'
112 !      include 'COMMON.SPLITELE'
113 !      implicit none
114 ! Common blocks from the diagonalization routines
115 !el      integer :: IR,IW,IP,IJK,IPK,IDAF,NAV,IODA(400)
116 !el      integer :: KDIAG,ICORFL,IXDR
117 !el      COMMON /IOFILE/ IR,IW,IP,IJK,IPK,IDAF,NAV,IODA
118 !el      COMMON /MACHSW/ KDIAG,ICORFL,IXDR
119       logical :: mask_r
120 !      real*8 text1 /'initial_i'/
121       real(kind=4) :: rr
122
123 !local variables el
124       integer :: i,j,k,l,ichir1,ichir2,iblock,m,maxit
125
126 #if .not. defined(WHAM_RUN) && .not. defined(CLUSTER)
127       mask_r=.false.
128 #ifndef ISNAN
129 ! NaNQ initialization
130       i=-1
131       rr=dacos(100.0d0)
132 #ifdef WINPGI
133       idumm=proc_proc(rr,i)
134 #elif defined(WHAM_RUN)
135       call proc_proc(rr,i)
136 #endif
137 #endif
138
139       kdiag=0
140       icorfl=0
141       iw=2
142       
143       allocate(MovTypID(-1:MaxMoveType+1))
144       MovTypID=(/'pool          ','chain regrow  ',&
145        'multi-bond    ','phi           ','theta         ',&
146        'side chain    ','total         '/)
147 #endif
148 !
149 ! The following is just to define auxiliary variables used in angle conversion
150 !
151 !      ifirstrun=0
152       pi=4.0D0*datan(1.0D0)
153       dwapi=2.0D0*pi
154       dwapi3=dwapi/3.0D0
155       pipol=0.5D0*pi
156       deg2rad=pi/180.0D0
157       rad2deg=1.0D0/deg2rad
158       angmin=10.0D0*deg2rad
159 !el#ifdef CLUSTER
160 !el      Rgas = 1.987D-3
161 !el#endif
162 !
163 ! Define I/O units.
164 !
165       inp=    1
166       iout=   2
167       ipdbin= 3
168       ipdb=   7
169 #ifdef CLUSTER
170       imol2= 18
171       jplot= 19
172 !el      jstatin=10
173       imol2=  4
174       jrms=30
175 #else
176       icart = 30
177       imol2=  4
178       ithep_pdb=51
179       irotam_pdb=52
180       irest1=55
181       irest2=56
182       iifrag=57
183       ientin=18
184       ientout=19
185 !rc for write_rmsbank1  
186       izs1=21
187 !dr  include secondary structure prediction bias
188       isecpred=27
189 #endif
190       igeom=  8
191       intin=  9
192       ithep= 11
193       irotam=12
194       itorp= 13
195       itordp= 23
196       ielep= 14
197       isidep=15
198 #if defined(WHAM_RUN) || defined(CLUSTER)
199       isidep1=22 !wham
200 #else
201 !
202 ! CSA I/O units (separated from others especially for Jooyoung)
203 !
204       icsa_rbank=30
205       icsa_seed=31
206       icsa_history=32
207       icsa_bank=33
208       icsa_bank1=34
209       icsa_alpha=35
210       icsa_alpha1=36
211       icsa_bankt=37
212       icsa_int=39
213       icsa_bank_reminimized=38
214       icsa_native_int=41
215       icsa_in=40
216 !rc for ifc error 118
217       icsa_pdb=42
218       irotam_end=43
219 #endif
220       iscpp=25
221       icbase=16
222       ifourier=20
223       istat= 17
224       ibond = 28
225       isccor = 29
226 #ifdef WHAM_RUN
227 !
228 ! WHAM files
229 !
230       ihist=30
231       iweight=31
232       izsc=32
233 #endif
234       ibond_nucl=126
235       ithep_nucl=127
236       irotam_nucl=128
237       itorp_nucl= 129
238       itordp_nucl= 130
239 !      ielep_nucl= 131
240       isidep_nucl=132
241       iscpp_nucl=133
242       isidep_scbase=141
243       isidep_pepbase=142
244       isidep_scpho=143
245       isidep_peppho=144
246
247       iliptranpar=60
248       
249       itube=61
250 !     LIPID MARTINI
251       ilipbond=301
252       ilipnonbond=302
253 !     IONS
254       iion=401
255       iionnucl=402
256       iiontran=403 ! this is parameter file for transition metals
257       iwaterwater=404
258       iwatersc=405
259 #if defined(WHAM_RUN) || defined(CLUSTER)
260 !
261 ! setting the mpi variables for WHAM
262 !
263       fgprocs=1
264       nfgtasks=1
265       nfgtasks1=1
266 #endif
267 !
268 ! Set default weights of the energy terms.
269 !
270       wsc=1.0D0 ! in wham:  wlong=1.0D0
271       welec=1.0D0
272       wtor =1.0D0
273       wang =1.0D0
274       wscloc=1.0D0
275       wstrain=1.0D0
276 !
277 ! Zero out tables.
278 !
279 !      print '(a,$)','Inside initialize'
280 !      call memmon_print_usage()
281       
282 !      do i=1,maxres2
283 !       do j=1,3
284 !         c(j,i)=0.0D0
285 !         dc(j,i)=0.0D0
286 !       enddo
287 !      enddo
288 !      do i=1,maxres
289 !       do j=1,3
290 !         xloc(j,i)=0.0D0
291 !        enddo
292 !      enddo
293 !      do i=1,ntyp
294 !       do j=1,ntyp
295 !         aa(i,j)=0.0D0
296 !         bb(i,j)=0.0D0
297 !         augm(i,j)=0.0D0
298 !         sigma(i,j)=0.0D0
299 !         r0(i,j)=0.0D0
300 !         chi(i,j)=0.0D0
301 !        enddo
302 !       do j=1,2
303 !         bad(i,j)=0.0D0
304 !        enddo
305 !       chip(i)=0.0D0
306 !       alp(i)=0.0D0
307 !       sigma0(i)=0.0D0
308 !       sigii(i)=0.0D0
309 !       rr0(i)=0.0D0
310 !       a0thet(i)=0.0D0
311 !       do j=1,2
312 !         do ichir1=-1,1
313 !          do ichir2=-1,1
314 !          athet(j,i,ichir1,ichir2)=0.0D0
315 !          bthet(j,i,ichir1,ichir2)=0.0D0
316 !          enddo
317 !         enddo
318 !        enddo
319 !        do j=0,3
320 !         polthet(j,i)=0.0D0
321 !        enddo
322 !       do j=1,3
323 !         gthet(j,i)=0.0D0
324 !        enddo
325 !       theta0(i)=0.0D0
326 !       sig0(i)=0.0D0
327 !       sigc0(i)=0.0D0
328 !       do j=1,maxlob
329 !         bsc(j,i)=0.0D0
330 !         do k=1,3
331 !           censc(k,j,i)=0.0D0
332 !          enddo
333 !          do k=1,3
334 !           do l=1,3
335 !             gaussc(l,k,j,i)=0.0D0
336 !            enddo
337 !          enddo
338 !         nlob(i)=0
339 !        enddo
340 !      enddo
341 !      nlob(ntyp1)=0
342 !      dsc(ntyp1)=0.0D0
343 !      do i=-maxtor,maxtor
344 !        itortyp(i)=0
345 !c      write (iout,*) "TU DOCHODZE",i,itortyp(i)
346 !       do iblock=1,2
347 !        do j=-maxtor,maxtor
348 !          do k=1,maxterm
349 !            v1(k,j,i,iblock)=0.0D0
350 !            v2(k,j,i,iblock)=0.0D0
351 !          enddo
352 !        enddo
353 !        enddo
354 !      enddo
355 !      do iblock=1,2
356 !       do i=-maxtor,maxtor
357 !        do j=-maxtor,maxtor
358 !         do k=-maxtor,maxtor
359 !          do l=1,maxtermd_1
360 !            v1c(1,l,i,j,k,iblock)=0.0D0
361 !            v1s(1,l,i,j,k,iblock)=0.0D0
362 !            v1c(2,l,i,j,k,iblock)=0.0D0
363 !            v1s(2,l,i,j,k,iblock)=0.0D0
364 !          enddo !l
365 !          do l=1,maxtermd_2
366 !           do m=1,maxtermd_2
367 !            v2c(m,l,i,j,k,iblock)=0.0D0
368 !            v2s(m,l,i,j,k,iblock)=0.0D0
369 !           enddo !m
370 !          enddo !l
371 !        enddo !k
372 !       enddo !j
373 !      enddo !i
374 !      enddo !iblock
375
376 !      do i=1,maxres
377 !       itype(i,1)=0
378 !       itel(i)=0
379 !      enddo
380 ! Initialize the bridge arrays
381       ns=0
382       nss=0 
383       nhpb=0
384 !      do i=1,maxss
385 !       iss(i)=0
386 !      enddo
387 !      do i=1,maxdim
388 !       dhpb(i)=0.0D0
389 !      enddo
390 !      do i=1,maxres
391 !       ihpb(i)=0
392 !       jhpb(i)=0
393 !      enddo
394 !
395 ! Initialize timing.
396 !
397       call set_timers
398 !
399 ! Initialize variables used in minimization.
400 !   
401 !c     maxfun=5000
402 !c     maxit=2000
403       maxfun=1000
404       maxit=1000
405       tolf=1.0D-2
406       rtolf=5.0D-4
407
408 ! Initialize the variables responsible for the mode of gradient storage.
409 !
410       nfl=0
411       icg=1
412       
413 #ifdef WHAM_RUN
414       allocate(iww(max_eneW))
415       do i=1,14
416         do j=1,14
417           if (print_order(i).eq.j) then
418             iww(print_order(i))=j
419             goto 1121
420           endif
421         enddo
422 1121    continue
423       enddo
424 #endif
425  
426 #if defined(WHAM_RUN) || defined(CLUSTER)
427       ndih_constr=0
428
429 !      allocate(ww0(max_eneW))
430 !      ww0 = reshape((/1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,&
431 !          1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,0.4d0,1.0d0,&
432 !          1.0d0,0.0d0,0.0/), shape(ww0))
433 !
434       calc_grad=.false.
435 ! Set timers and counters for the respective routines
436       t_func = 0.0d0
437       t_grad = 0.0d0
438       t_fhel = 0.0d0
439       t_fbet = 0.0d0
440       t_ghel = 0.0d0
441       t_gbet = 0.0d0
442       t_viol = 0.0d0
443       t_gviol = 0.0d0
444       n_func = 0
445       n_grad = 0
446       n_fhel = 0
447       n_fbet = 0
448       n_ghel = 0
449       n_gbet = 0
450       n_viol = 0
451       n_gviol = 0
452       n_map = 0
453 #endif
454 !
455 ! Initialize constants used to split the energy into long- and short-range
456 ! components
457 !
458       r_cut=2.0d0
459       rlamb=0.3d0
460 #ifndef SPLITELE
461       nprint_ene=nprint_ene-1
462 #endif
463       return
464       end subroutine initialize
465 !-----------------------------------------------------------------------------
466       subroutine init_int_table
467
468       use geometry, only:int_bounds1
469 !el      use MPI_data
470 !el      implicit none
471 !      implicit real*8 (a-h,o-z)
472 !      include 'DIMENSIONS'
473 #ifdef MPI
474       include 'mpif.h'
475       integer,dimension(15) :: blocklengths,displs
476 #endif
477 !      include 'COMMON.CONTROL'
478 !      include 'COMMON.SETUP'
479 !      include 'COMMON.CHAIN'
480 !      include 'COMMON.INTERACT'
481 !      include 'COMMON.LOCAL'
482 !      include 'COMMON.SBRIDGE'
483 !      include 'COMMON.TORCNSTR'
484 !      include 'COMMON.IOUNITS'
485 !      include 'COMMON.DERIV'
486 !      include 'COMMON.CONTACTS'
487 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,&
488 !el        iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all  !(0:max_fg_procs)
489 !el      integer,dimension(nres,0:nfgtasks) :: ielstart_all,&
490 !el        ielend_all !(maxres,0:max_fg_procs-1)
491 !el      integer,dimension(0:nfgtasks-1) :: ntask_cont_from_all,&
492 !el        ntask_cont_to_all !(0:max_fg_procs-1),
493 !el      integer,dimension(0:nfgtasks-1,0:nfgtasks-1) :: itask_cont_from_all,&
494 !el        itask_cont_to_all !(0:max_fg_procs-1,0:max_fg_procs-1)
495
496 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,&
497 !el        iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all,&
498 !el        ielstart_all,ielend_all,ntask_cont_from_all,itask_cont_from_all,&
499 !el        ntask_cont_to_all,itask_cont_to_all
500
501       integer :: FG_GROUP,CONT_FROM_GROUP,CONT_TO_GROUP
502       logical :: scheck,lprint,flag
503
504 !el local variables
505       integer :: ind_scint=0,ind_scint_old,ii,jj,i,j,iint,itmp
506       integer :: ind_scint_nucl=0
507 #ifdef MPI
508       integer :: my_sc_int(0:nfgtasks-1),my_ele_int(0:nfgtasks-1)
509       integer :: my_sc_intt(0:nfgtasks),my_ele_intt(0:nfgtasks)
510       integer :: n_sc_int_tot,my_sc_inde,my_sc_inds,ind_sctint,npept
511       integer :: n_sc_int_tot_nucl,my_sc_inde_nucl,my_sc_inds_nucl, &
512          ind_sctint_nucl,npept_nucl
513
514       integer :: nele_int_tot,my_ele_inds,my_ele_inde,ind_eleint_old,&
515             ind_eleint,ijunk,nele_int_tot_vdw,my_ele_inds_vdw,&
516             my_ele_inde_vdw,ind_eleint_vdw,ind_eleint_vdw_old,&
517             nscp_int_tot,my_scp_inds,my_scp_inde,ind_scpint,&
518             ind_scpint_old,nsumgrad,nlen,ngrad_start,ngrad_end,&
519             ierror,k,ierr,iaux,ncheck_to,ncheck_from,ind_typ,&
520             ichunk,int_index_old,ibra
521       integer :: nele_int_tot_nucl,my_ele_inds_nucl,my_ele_inde_nucl,&
522             ind_eleint_old_nucl,ind_eleint_nucl,nele_int_tot_vdw_nucl,&
523             my_ele_inds_vdw_nucl,my_ele_inde_vdw_nucl,ind_eleint_vdw_nucl,&
524             ind_eleint_vdw_old_nucl,nscp_int_tot_nucl,my_scp_inds_nucl,&
525             my_scp_inde_nucl,ind_scpint_nucl,ind_scpint_old_nucl,impishi
526        integer,dimension(nres,nres) :: remmat
527 !      integer,dimension(5) :: nct_molec,nnt_molec
528 !el      allocate(itask_cont_from(0:nfgtasks-1)) !(0:max_fg_procs-1)
529 !el      allocate(itask_cont_to(0:nfgtasks-1)) !(0:max_fg_procs-1)
530
531 !... Determine the numbers of start and end SC-SC interaction
532 !... to deal with by current processor.
533 !write (iout,*) '******INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
534       do i=0,nfgtasks-1
535         itask_cont_from(i)=fg_rank
536         itask_cont_to(i)=fg_rank
537       enddo
538       lprint=energy_dec
539       itmp=0
540       do i=1,5
541        if (nres_molec(i).eq.0) cycle
542       itmp=itmp+nres_molec(i)
543       if (itype(itmp,i).eq.ntyp1_molec(i)) then
544       nct_molec(i)=itmp-1
545       else
546       nct_molec(i)=itmp
547       endif
548       enddo
549 !      nct_molec(1)=nres_molec(1)-1
550       itmp=0
551       do i=2,5
552        itmp=itmp+nres_molec(i-1)
553       if (itype(itmp+1,i).eq.ntyp1_molec(i)) then
554       nnt_molec(i)=itmp+2
555       else
556       nnt_molec(i)=itmp+1
557       endif
558       enddo
559       print *,"nres_molec",nres_molec(:)
560       print *,"nnt_molec",nnt_molec(:)
561       print *,"nct_molec",nct_molec(:)
562 !      lprint=.true.
563       if (lprint) &
564        write (iout,*)'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
565       n_sc_int_tot=(nct_molec(1)-nnt+1)*(nct_molec(1)-nnt)/2-nss
566       call int_bounds(n_sc_int_tot,my_sc_inds,my_sc_inde)
567 !write (iout,*) 'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
568       if (lprint) &
569         write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
570         ' absolute rank',MyRank,&
571         ' n_sc_int_tot',n_sc_int_tot,' my_sc_inds=',my_sc_inds,&
572         ' my_sc_inde',my_sc_inde
573       ind_sctint=0
574       iatsc_s=0
575       iatsc_e=0
576 #endif
577         if(.not.allocated(ielstart_all)) then
578 !el       common /przechowalnia/
579       allocate(iturn3_start_all(0:nfgtasks))
580       allocate(iturn3_end_all(0:nfgtasks))
581       allocate(iturn4_start_all(0:nfgtasks))
582       allocate(iturn4_end_all(0:nfgtasks))
583       allocate(iatel_s_all(0:nfgtasks))
584       allocate(iatel_e_all(0:nfgtasks))
585       allocate(ielstart_all(nres,0:nfgtasks-1))
586       allocate(ielend_all(nres,0:nfgtasks-1))
587
588       allocate(ntask_cont_from_all(0:nfgtasks-1))
589       allocate(ntask_cont_to_all(0:nfgtasks-1))
590       allocate(itask_cont_from_all(0:nfgtasks-1,0:nfgtasks-1))
591       allocate(itask_cont_to_all(0:nfgtasks-1,0:nfgtasks-1))
592 !el----------
593       endif
594 !      lprint=.false.
595         print *,"NCT",nct_molec(1),nct
596       do i=1,nres !el   !maxres
597         nint_gr(i)=0
598         nscp_gr(i)=0
599         ielstart(i)=0
600         ielend(i)=0
601         do j=1,maxint_gr
602           istart(i,j)=0
603           iend(i,j)=0
604           iscpstart(i,j)=0
605           iscpend(i,j)=0    
606         enddo
607       enddo
608       ind_scint=0
609       ind_scint_old=0
610 !d    write (iout,*) 'ns=',ns,' nss=',nss,' ihpb,jhpb',
611 !d   &   (ihpb(i),jhpb(i),i=1,nss)
612 !       print *,nnt,nct_molec(1)
613       do i=nnt,nct_molec(1)-1
614 !        print*, "inloop",i
615         scheck=.false.
616         if (dyn_ss) goto 10
617         do ii=1,nss
618           if (ihpb(ii).eq.i+nres) then
619             scheck=.true.
620             jj=jhpb(ii)-nres
621             goto 10
622           endif
623         enddo
624    10   continue
625 !        print *,'i=',i,' scheck=',scheck,' jj=',jj
626 !d      write (iout,*) 'i=',i,' scheck=',scheck,' jj=',jj
627         if (scheck) then
628           if (jj.eq.i+1) then
629 #ifdef MPI
630 !            write (iout,*) 'jj=i+1'
631             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
632        iatsc_s,iatsc_e,i+2,nct_molec(1),nint_gr(i),istart(i,1),iend(i,1),*12)
633 #else
634             nint_gr(i)=1
635             istart(i,1)=i+2
636             iend(i,1)=nct
637 #endif
638           else if (jj.eq.nct_molec(1)) then
639 #ifdef MPI
640 !            write (iout,*) 'jj=nct'
641             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
642         iatsc_s,iatsc_e,i+1,nct_molec(1)-1,nint_gr(i),istart(i,1),iend(i,1),*12)
643 #else
644             nint_gr(i)=1
645             istart(i,1)=i+1
646             iend(i,1)=nct_molecule(1)-1
647 #endif
648           else
649 #ifdef MPI
650             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
651        iatsc_s,iatsc_e,i+1,jj-1,nint_gr(i),istart(i,1),iend(i,1),*12)
652             ii=nint_gr(i)+1
653             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
654        iatsc_s,iatsc_e,jj+1,nct_molec(1),nint_gr(i),istart(i,ii),iend(i,ii),*12)
655          
656 #else
657             nint_gr(i)=2
658             istart(i,1)=i+1
659             iend(i,1)=jj-1
660             istart(i,2)=jj+1
661             iend(i,2)=nct_molec(1)
662 #endif
663           endif
664         else
665 #ifdef MPI
666 !          print *,"i for EVDW",iatsc_s,iatsc_e,istart(i,1),iend(i,1),&
667 !          i+1,nct_molec(1),nint_gr(i),ind_scint,my_sc_inds,my_sc_inde,i
668           call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
669           iatsc_s,iatsc_e,i+1,nct_molec(1),nint_gr(i), &
670           istart(i,1),iend(i,1),*12)
671 !          print *,"i for EVDW",iatsc_s,iatsc_e,istart(i,1),iend(i,1)
672 #else
673           nint_gr(i)=1
674           istart(i,1)=i+1
675           iend(i,1)=nct_molec(1)
676           ind_scint=ind_scint+nct_molec(1)-i
677 #endif
678         endif
679 #ifdef MPI
680         ind_scint_old=ind_scint
681 #endif
682       enddo
683    12 continue
684 !      print *,"i for EVDW",iatsc_s,iatsc_e,istart(i,1),iend(i,1)
685
686 #ifndef MPI
687       iatsc_s=nnt
688       iatsc_e=nct-1
689 #endif
690       if (iatsc_s.eq.0) iatsc_s=1
691 !----------------- scaling for nucleic acid GB
692       n_sc_int_tot_nucl=(nct_molec(2)-nnt_molec(2)+1)*(nct_molec(2)-nnt_molec(2))/2
693       call int_bounds(n_sc_int_tot_nucl,my_sc_inds_nucl,my_sc_inde_nucl)
694 !write (iout,*) 'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
695       if (lprint) &
696         write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
697         ' absolute rank',MyRank,&
698         ' n_sc_int_tot',n_sc_int_tot_nucl,' my_sc_inds=',my_sc_inds_nucl,&
699         ' my_sc_inde',my_sc_inde_nucl
700       ind_sctint_nucl=0
701       iatsc_s_nucl=0
702       iatsc_e_nucl=0
703       do i=1,nres !el   !maxres
704         nint_gr_nucl(i)=0
705         nscp_gr_nucl(i)=0
706         ielstart_nucl(i)=0
707         ielend_nucl(i)=0
708         do j=1,maxint_gr
709           istart_nucl(i,j)=0
710           iend_nucl(i,j)=0
711           iscpstart_nucl(i,j)=0
712           iscpend_nucl(i,j)=0
713         enddo
714       enddo
715       do i=nnt_molec(2),nct_molec(2)-1
716         print*, "inloop2",i
717       call int_partition(ind_scint_nucl,my_sc_inds_nucl,my_sc_inde_nucl,i,&
718            iatsc_s_nucl,iatsc_e_nucl,i+1,nct_molec(2),nint_gr_nucl(i), &
719            istart_nucl(i,1),iend_nucl(i,1),*112)
720         print *,istart_nucl(i,1)
721       enddo
722   112  continue
723        if (iatsc_s_nucl.eq.0) iatsc_s_nucl=1
724        print *,"tu mam",iatsc_s_nucl,iatsc_e_nucl
725
726 #ifdef MPI
727       if (lprint) write (*,*) 'Processor',fg_rank,' CG Group',kolor,&
728          ' absolute rank',myrank,' iatsc_s=',iatsc_s,' iatsc_e=',iatsc_e
729 #endif
730 !      lprint=.true.
731       if (lprint) then
732       write (iout,'(a)') 'Interaction array:'
733       do i=iatsc_s,iatsc_e
734         write (iout,'(i3,2(2x,2i3))') &
735        i,(istart(i,iint),iend(i,iint),iint=1,nint_gr(i))
736       enddo
737 !      endif
738 !      lprint=.false.
739       write (iout,'(a)') 'Interaction array2:' 
740       do i=iatsc_s_nucl,iatsc_e_nucl
741         write (iout,'(i3,2(2x,2i4))') &
742        i,(istart_nucl(i,iint),iend_nucl(i,iint),iint=1,nint_gr_nucl(i))
743       enddo
744       endif
745       ispp=4 !?? wham ispp=2
746 #ifdef MPI
747 ! Now partition the electrostatic-interaction array
748       if (nres_molec(1).eq.0) then  
749        npept=0
750       elseif (itype(nres_molec(1),1).eq.ntyp1_molec(1)) then
751       npept=nres_molec(1)-nnt-1
752       else
753       npept=nres_molec(1)-nnt
754       endif
755       nele_int_tot=(npept-ispp)*(npept-ispp+1)/2
756       call int_bounds(nele_int_tot,my_ele_inds,my_ele_inde)
757       if (lprint) &
758        write (*,*) 'Processor',fg_rank,' CG group',kolor,&
759         ' absolute rank',MyRank,&
760         ' nele_int_tot',nele_int_tot,' my_ele_inds=',my_ele_inds,&
761                     ' my_ele_inde',my_ele_inde
762       iatel_s=0
763       iatel_e=0
764       ind_eleint=0
765       ind_eleint_old=0
766 !      if (itype(nres_molec(1),1).eq.ntyp1_molec(1)) then
767 !      nct_molec(1)=nres_molec(1)-1
768 !      else
769 !      nct_molec(1)=nres_molec(1)
770 !      endif
771 !       print *,"nct",nct,nct_molec(1),itype(nres_molec(1),1),ntyp_molec(1)
772       do i=nnt,nct_molec(1)-3
773         ijunk=0
774         call int_partition(ind_eleint,my_ele_inds,my_ele_inde,i,&
775           iatel_s,iatel_e,i+ispp,nct_molec(1)-1,ijunk,ielstart(i),ielend(i),*13)
776       enddo ! i 
777    13 continue
778       if (iatel_s.eq.0) iatel_s=1
779 !----------now nucleic acid
780 !     if (itype(nres_molec(2),2).eq.ntyp1_molec(2)) then
781       npept_nucl=nct_molec(2)-nnt_molec(2)
782 !     else
783 !     npept_nucl=nct_molec(2)-nnt_molec(2)
784 !     endif
785       nele_int_tot_nucl=(npept_nucl-ispp)*(npept_nucl-ispp+1)/2
786       call int_bounds(nele_int_tot_nucl,my_ele_inds_nucl,my_ele_inde_nucl)
787       if (lprint) &
788        write (*,*) 'Processor',fg_rank,' CG group',kolor,&
789         ' absolute rank',MyRank,&
790         ' nele_int_tot',nele_int_tot,' my_ele_inds=',my_ele_inds,&
791                     ' my_ele_inde',my_ele_inde
792       iatel_s_nucl=0
793       iatel_e_nucl=0
794       ind_eleint_nucl=0
795       ind_eleint_old_nucl=0
796 !      if (itype(nres_molec(1),1).eq.ntyp1_molec(1)) then
797 !      nct_molec(1)=nres_molec(1)-1
798 !      else
799 !      nct_molec(1)=nres_molec(1)
800 !      endif
801 !       print *,"nct",nct,nct_molec(1),itype(nres_molec(1),1),ntyp_molec(1)
802       do i=nnt_molec(2),nct_molec(2)-3
803         ijunk=0
804         call int_partition(ind_eleint_nucl,my_ele_inds_nucl,my_ele_inde_nucl,i,&
805           iatel_s_nucl,iatel_e_nucl,i+ispp,nct_molec(2)-1,&
806           ijunk,ielstart_nucl(i),ielend_nucl(i),*113)
807       enddo ! i 
808   113 continue
809       if (iatel_s_nucl.eq.0) iatel_s_nucl=1
810
811       nele_int_tot_vdw=(npept-2)*(npept-2+1)/2
812 !      write (iout,*) "nele_int_tot_vdw",nele_int_tot_vdw
813       call int_bounds(nele_int_tot_vdw,my_ele_inds_vdw,my_ele_inde_vdw)
814 !      write (iout,*) "my_ele_inds_vdw",my_ele_inds_vdw,
815 !     & " my_ele_inde_vdw",my_ele_inde_vdw
816       ind_eleint_vdw=0
817       ind_eleint_vdw_old=0
818       iatel_s_vdw=0
819       iatel_e_vdw=0
820       do i=nnt,nct_molec(1)-3
821         ijunk=0
822         call int_partition(ind_eleint_vdw,my_ele_inds_vdw,&
823           my_ele_inde_vdw,i,&
824           iatel_s_vdw,iatel_e_vdw,i+2,nct_molec(1)-1,ijunk,ielstart_vdw(i),&
825           ielend_vdw(i),*15)
826 !        write (iout,*) i," ielstart_vdw",ielstart_vdw(i),
827 !     &   " ielend_vdw",ielend_vdw(i)
828       enddo ! i 
829       if (iatel_s_vdw.eq.0) iatel_s_vdw=1
830    15 continue
831       if (iatel_s.eq.0) iatel_s=1
832       if (iatel_s_vdw.eq.0) iatel_s_vdw=1
833       nele_int_tot_vdw_nucl=(npept_nucl-2)*(npept_nucl-2+1)/2
834 !      write (iout,*) "nele_int_tot_vdw",nele_int_tot_vdw
835       call int_bounds(nele_int_tot_vdw_nucl,my_ele_inds_vdw_nucl,&
836         my_ele_inde_vdw_nucl)
837 !      write (iout,*) "my_ele_inds_vdw",my_ele_inds_vdw,
838 !     & " my_ele_inde_vdw",my_ele_inde_vdw
839       ind_eleint_vdw_nucl=0
840       ind_eleint_vdw_old_nucl=0
841       iatel_s_vdw_nucl=0
842       iatel_e_vdw_nucl=0
843       do i=nnt_molec(2),nct_molec(2)-3
844         ijunk=0
845         call int_partition(ind_eleint_vdw_nucl,my_ele_inds_vdw_nucl,&
846           my_ele_inde_vdw_nucl,i,&
847           iatel_s_vdw_nucl,iatel_e_vdw_nucl,i+2,nct_molec(2)-1,&
848           ijunk,ielstart_vdw_nucl(i),&
849           ielend_vdw(i),*115)
850 !        write (iout,*) i," ielstart_vdw",ielstart_vdw(i),
851 !     &   " ielend_vdw",ielend_vdw(i)
852       enddo ! i 
853       if (iatel_s_vdw.eq.0) iatel_s_vdw_nucl=1
854   115 continue
855
856 #else
857       iatel_s=nnt
858       iatel_e=nct_molec(1)-5 ! ?? wham iatel_e=nct-3
859       do i=iatel_s,iatel_e
860         ielstart(i)=i+4 ! ?? wham +2
861         ielend(i)=nct_molec(1)-1
862       enddo
863       iatel_s_vdw=nnt
864       iatel_e_vdw=nct_molec(1)-3
865       do i=iatel_s_vdw,iatel_e_vdw
866         ielstart_vdw(i)=i+2
867         ielend_vdw(i)=nct_molec(1)-1
868       enddo
869 #endif
870       if (lprint) then
871         write (*,'(a)') 'Processor',fg_rank,' CG group',kolor,&
872         ' absolute rank',MyRank
873         write (iout,*) 'Electrostatic interaction array:'
874         do i=iatel_s,iatel_e
875           write (iout,'(i3,2(2x,2i3))') i,ielstart(i),ielend(i)
876         enddo
877       endif ! lprint
878 !     iscp=3
879       iscp=2
880       iscp_nucl=2
881 ! Partition the SC-p interaction array
882 #ifdef MPI
883       nscp_int_tot=(npept-iscp+1)*(npept-iscp+1)
884       call int_bounds(nscp_int_tot,my_scp_inds,my_scp_inde)
885       if (lprint) write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
886         ' absolute rank',myrank,&
887         ' nscp_int_tot',nscp_int_tot,' my_scp_inds=',my_scp_inds,&
888                     ' my_scp_inde',my_scp_inde
889       iatscp_s=0
890       iatscp_e=0
891       ind_scpint=0
892       ind_scpint_old=0
893       do i=nnt,nct_molec(1)-1
894         if (i.lt.nnt+iscp) then
895 !d        write (iout,*) 'i.le.nnt+iscp'
896           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
897             iatscp_s,iatscp_e,i+iscp,nct_molec(1),nscp_gr(i),iscpstart(i,1),&
898             iscpend(i,1),*14)
899         else if (i.gt.nct-iscp) then
900 !d        write (iout,*) 'i.gt.nct-iscp'
901           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
902             iatscp_s,iatscp_e,nnt,i-iscp,nscp_gr(i),iscpstart(i,1),&
903             iscpend(i,1),*14)
904         else
905           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
906             iatscp_s,iatscp_e,nnt,i-iscp,nscp_gr(i),iscpstart(i,1),&
907            iscpend(i,1),*14)
908           ii=nscp_gr(i)+1
909           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
910             iatscp_s,iatscp_e,i+iscp,nct_molec(1),nscp_gr(i),iscpstart(i,ii),&
911             iscpend(i,ii),*14)
912         endif
913       enddo ! i
914    14 continue
915       print *,"before inloop3",iatscp_s,iatscp_e,iscp_nucl
916       nscp_int_tot_nucl=(npept_nucl-iscp_nucl+1)*(npept_nucl-iscp_nucl+1)
917       call int_bounds(nscp_int_tot_nucl,my_scp_inds_nucl,my_scp_inde_nucl)
918       if (lprint) write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
919         ' absolute rank',myrank,&
920         ' nscp_int_tot',nscp_int_tot_nucl,' my_scp_inds=',my_scp_inds_nucl,&
921                     ' my_scp_inde',my_scp_inde_nucl
922       print *,"nscp_int_tot_nucl",nscp_int_tot_nucl,my_scp_inds_nucl,my_scp_inde_nucl
923       iatscp_s_nucl=0
924       iatscp_e_nucl=0
925       ind_scpint_nucl=0
926       ind_scpint_old_nucl=0
927       do i=nnt_molec(2),nct_molec(2)-1
928         print *,"inloop3",i,nnt_molec(2)+iscp,nct_molec(2)-iscp
929         if (i.lt.nnt_molec(2)+iscp) then
930 !d        write (iout,*) 'i.le.nnt+iscp'
931           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
932             my_scp_inde_nucl,i,iatscp_s_nucl,iatscp_e_nucl,i+iscp,&
933             nct_molec(2),nscp_gr_nucl(i),iscpstart_nucl(i,1),&
934             iscpend_nucl(i,1),*114)
935         else if (i.gt.nct_molec(2)-iscp) then
936 !d        write (iout,*) 'i.gt.nct-iscp'
937           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
938             my_scp_inde_nucl,i,&
939             iatscp_s_nucl,iatscp_e_nucl,nnt_molec(2),i-iscp,nscp_gr_nucl(i),&
940             iscpstart_nucl(i,1),&
941             iscpend_nucl(i,1),*114)
942         else
943           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
944             my_scp_inde_nucl,i,iatscp_s_nucl,iatscp_e_nucl,nnt_molec(2),&
945             i-iscp,nscp_gr_nucl(i),iscpstart_nucl(i,1),&
946            iscpend_nucl(i,1),*114)
947           ii=nscp_gr_nucl(i)+1
948           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
949             my_scp_inde_nucl,i,iatscp_s_nucl,iatscp_e_nucl,i+iscp,&
950             nct_molec(2),nscp_gr_nucl(i),iscpstart_nucl(i,ii),&
951             iscpend_nucl(i,ii),*114)
952         endif
953       enddo ! i
954   114 continue
955       print *, "after inloop3",iatscp_s_nucl,iatscp_e_nucl
956       if (iatscp_s_nucl.eq.0) iatscp_s_nucl=1
957 #else
958       iatscp_s=nnt
959       iatscp_e=nct_molec(1)-1
960       do i=nnt,nct_molec(1)-1
961         if (i.lt.nnt+iscp) then
962           nscp_gr(i)=1
963           iscpstart(i,1)=i+iscp
964           iscpend(i,1)=nct_molec(1)
965         elseif (i.gt.nct-iscp) then
966           nscp_gr(i)=1
967           iscpstart(i,1)=nnt
968           iscpend(i,1)=i-iscp
969         else
970           nscp_gr(i)=2
971           iscpstart(i,1)=nnt
972           iscpend(i,1)=i-iscp
973           iscpstart(i,2)=i+iscp
974           iscpend(i,2)=nct_molec(1)
975         endif 
976       enddo ! i
977 #endif
978       if (iatscp_s.eq.0) iatscp_s=1
979       if (lprint) then
980         write (iout,'(a)') 'SC-p interaction array:'
981         do i=iatscp_s,iatscp_e
982           write (iout,'(i3,2(2x,2i3))') &
983               i,(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i))
984         enddo
985       endif ! lprint
986 ! Partition local interactions
987 #ifdef MPI
988       call int_bounds(nres_molec(1)-2,loc_start,loc_end)
989       loc_start=loc_start+1
990       loc_end=loc_end+1
991       call int_bounds(nres_molec(2)-2,loc_start_nucl,loc_end_nucl)
992       loc_start_nucl=loc_start_nucl+1+nres_molec(1)
993       loc_end_nucl=loc_end_nucl+1+nres_molec(1)
994       call int_bounds(nres_molec(1)-2,ithet_start,ithet_end)
995       ithet_start=ithet_start+2
996       ithet_end=ithet_end+2
997       call int_bounds(nres_molec(2)-2,ithet_nucl_start,ithet_nucl_end)
998       ithet_nucl_start=ithet_nucl_start+2+nres_molec(1)
999       ithet_nucl_end=ithet_nucl_end+2+nres_molec(1)
1000       call int_bounds(nct_molec(1)-nnt-2,iturn3_start,iturn3_end) 
1001       iturn3_start=iturn3_start+nnt
1002       iphi_start=iturn3_start+2
1003       iturn3_end=iturn3_end+nnt
1004       iphi_end=iturn3_end+2
1005       iturn3_start=iturn3_start-1
1006       if (iturn3_start.eq.0) iturn3_start=1
1007       iturn3_end=iturn3_end-1
1008       call int_bounds(nct_molec(2)-nnt_molec(2)-2,iphi_nucl_start,iphi_nucl_end)
1009       iphi_nucl_start=iphi_nucl_start+nnt_molec(2)+2
1010       iphi_nucl_end=iphi_nucl_end+nnt_molec(2)+2
1011       print *,"KURDE",iphi_nucl_start,iphi_nucl_end
1012       call int_bounds(nres_molec(1)-3,itau_start,itau_end)
1013       itau_start=itau_start+3
1014       itau_end=itau_end+3
1015       call int_bounds(nres_molec(1)-3,iphi1_start,iphi1_end)
1016       iphi1_start=iphi1_start+3
1017       iphi1_end=iphi1_end+3
1018       call int_bounds(nct_molec(1)-nnt-3,iturn4_start,iturn4_end) 
1019       iturn4_start=iturn4_start+nnt
1020       iphid_start=iturn4_start+2
1021       iturn4_end=iturn4_end+nnt
1022       iphid_end=iturn4_end+2
1023       iturn4_start=iturn4_start-1
1024       iturn4_end=iturn4_end-1
1025       if (iturn4_start.eq.0) iturn4_start=1
1026 !      print *,"TUTUTU",nres_molec(1),nres
1027       call int_bounds(nres_molec(1)-2,ibond_start,ibond_end) 
1028       ibond_start=ibond_start+1
1029       ibond_end=ibond_end+1
1030 !      print *,ibond_start,ibond_end
1031       call int_bounds(nct_molec(1)-nnt,ibondp_start,ibondp_end) 
1032       ibondp_start=ibondp_start+nnt
1033       ibondp_end=ibondp_end+nnt
1034      call int_bounds(nres_molec(2)-2,ibond_nucl_start,ibond_nucl_end)
1035       ibond_nucl_start=ibond_nucl_start+nnt_molec(2)-1
1036       ibond_nucl_end=ibond_nucl_end+nnt_molec(2)-1
1037       print *,"NUCLibond",ibond_nucl_start,ibond_nucl_end
1038       if (nres_molec(2).ne.0) then
1039       print *, "before devision",nnt_molec(2),nct_molec(2)-nnt_molec(2)
1040       call int_bounds(nres_molec(2)-1,ibondp_nucl_start,ibondp_nucl_end)
1041       ibondp_nucl_start=ibondp_nucl_start+nnt_molec(2)-1
1042       ibondp_nucl_end=ibondp_nucl_end+nnt_molec(2)-1
1043        else
1044        ibondp_nucl_start=1
1045        ibondp_nucl_end=0
1046        endif
1047       print *,"NUCLibond2",ibondp_nucl_start,ibondp_nucl_end
1048
1049
1050       call int_bounds1(nres_molec(1)-1,ivec_start,ivec_end) 
1051 !      print *,"Processor",myrank,fg_rank,fg_rank1,
1052 !     &  " ivec_start",ivec_start," ivec_end",ivec_end
1053       iset_start=loc_start+2
1054       iset_end=loc_end+2
1055       call int_bounds(nres_molec(1),ilip_start,ilip_end)
1056       ilip_start=ilip_start
1057       ilip_end=ilip_end
1058       call int_bounds(nres_molec(1)-1,itube_start,itube_end)
1059       itube_start=itube_start
1060       itube_end=itube_end
1061       if (ndih_constr.eq.0) then
1062         idihconstr_start=1
1063         idihconstr_end=0
1064       else
1065         call int_bounds(ndih_constr,idihconstr_start,idihconstr_end)
1066       endif
1067       if (ntheta_constr.eq.0) then
1068         ithetaconstr_start=1
1069         ithetaconstr_end=0
1070       else
1071         call int_bounds &
1072        (ntheta_constr,ithetaconstr_start,ithetaconstr_end)
1073       endif
1074 !     HERE MAKING LISTS FOR MARTINI
1075       itmp=0
1076       do i=1,3
1077        itmp=itmp+nres_molec(i)
1078       enddo
1079 !First bonding
1080 !       call int_bounds(nres_molec(4)-1,ilipbond_start,ilipbond_end)
1081        ilipbond_start=1+itmp
1082        ilipbond_end=nres_molec(4)-1+itmp
1083 !angles
1084        call int_bounds(nres_molec(4)-1,ilipbond_start_tub,ilipbond_end_tub)
1085        ilipbond_start_tub=1+itmp
1086        ilipbond_end_tub=nres_molec(4)-1+itmp
1087
1088 !       call int_bounds(nres_molec(4)-2,ilipang_start,ilipang_end)
1089        ilipang_start=2+itmp
1090        ilipang_end=itmp+nres_molec(4)-1
1091 !      create LJ LIST MAXIMUM
1092 !      Eliminate branching from list
1093           remmat=0
1094        do i=1+itmp,nres_molec(4)-1+itmp
1095         if (itype(i,4).eq.12) ibra=i
1096         if (itype(i,4).eq.ntyp1_molec(4)-1) then
1097 !        remmat(ibra-1,i+1)=1
1098         remmat(ibra,i+1)=1
1099 !        remmat(ibra+1,i+1)=1
1100         endif
1101        enddo
1102        maxljliplist=0
1103        if (.not.allocated(mlipljlisti)) then
1104        allocate (mlipljlisti(nres_molec(4)*nres_molec(4)/2))
1105        allocate (mlipljlistj(nres_molec(4)*nres_molec(4)/2))
1106        endif
1107        do i=1+itmp,nres_molec(4)-1+itmp
1108         do j=i+2,nres_molec(4)+itmp
1109         if ((itype(i,4).le.ntyp_molec(4)).and.(itype(j,4).le.ntyp_molec(4))&
1110         .and.(remmat(i,j).eq.0)) then
1111         maxljliplist=maxljliplist+1
1112         mlipljlisti(maxljliplist)=i
1113         mlipljlistj(maxljliplist)=j
1114         if (energy_dec) print *,i,j,remmat(i,j),"lj lip list"
1115         endif
1116         enddo
1117        enddo
1118 !      split the bound of the list
1119        call int_bounds(maxljliplist,iliplj_start,iliplj_end)
1120        iliplj_start=iliplj_start
1121        iliplj_end=iliplj_end
1122 !      now the electrostatic list
1123        maxelecliplist=0
1124        if (.not.allocated(mlipeleclisti)) then
1125        allocate (mlipeleclisti(nres_molec(4)*nres_molec(4)/2))
1126        allocate (mlipeleclistj(nres_molec(4)*nres_molec(4)/2))
1127        endif
1128        do i=1+itmp,nres_molec(4)-1+itmp
1129         do j=i+2,nres_molec(4)+itmp
1130         if ((itype(i,4).le.4).and.(itype(j,4).le.4)) then
1131         maxelecliplist=maxelecliplist+1
1132         mlipeleclisti(maxelecliplist)=i
1133         mlipeleclistj(maxelecliplist)=j
1134         endif
1135         enddo
1136        enddo
1137        call int_bounds(maxelecliplist,ilip_elec_start,ilipelec_end)
1138        ilip_elec_start=ilip_elec_start
1139        ilipelec_end=ilipelec_end
1140 !      nsumgrad=(nres-nnt)*(nres-nnt+1)/2
1141 !      nlen=nres-nnt+1
1142       nsumgrad=(nres-nnt)*(nres-nnt+1)/2
1143       nlen=nres-nnt+1
1144       call int_bounds(nsumgrad,ngrad_start,ngrad_end)
1145       igrad_start=((2*nlen+1) &
1146          -sqrt(float((2*nlen-1)**2-8*(ngrad_start-1))))/2
1147       igrad_end=((2*nlen+1) &
1148          -sqrt(float((2*nlen-1)**2-8*(ngrad_end-1))))/2
1149 !el      allocate(jgrad_start(igrad_start:igrad_end))
1150 !el      allocate(jgrad_end(igrad_start:igrad_end)) !(maxres)
1151       jgrad_start(igrad_start)= &
1152          ngrad_start-(2*nlen-igrad_start)*(igrad_start-1)/2 &
1153          +igrad_start
1154       jgrad_end(igrad_start)=nres
1155       if (igrad_end.gt.igrad_start) jgrad_start(igrad_end)=igrad_end+1
1156       jgrad_end(igrad_end)=ngrad_end-(2*nlen-igrad_end)*(igrad_end-1)/2 &
1157           +igrad_end
1158       do i=igrad_start+1,igrad_end-1
1159         jgrad_start(i)=i+1
1160         jgrad_end(i)=nres
1161       enddo
1162       if (lprint) then 
1163         write (*,*) 'Processor:',fg_rank,' CG group',kolor,&
1164        ' absolute rank',myrank,&
1165        ' loc_start',loc_start,' loc_end',loc_end,&
1166        ' ithet_start',ithet_start,' ithet_end',ithet_end,&
1167        ' iphi_start',iphi_start,' iphi_end',iphi_end,&
1168        ' iphid_start',iphid_start,' iphid_end',iphid_end,&
1169        ' ibond_start',ibond_start,' ibond_end',ibond_end,&
1170        ' ibondp_start',ibondp_start,' ibondp_end',ibondp_end,&
1171        ' iturn3_start',iturn3_start,' iturn3_end',iturn3_end,&
1172        ' iturn4_start',iturn4_start,' iturn4_end',iturn4_end,&
1173        ' ivec_start',ivec_start,' ivec_end',ivec_end,&
1174        ' iset_start',iset_start,' iset_end',iset_end,&
1175        ' idihconstr_start',idihconstr_start,' idihconstr_end',&
1176          idihconstr_end
1177        write (*,*) 'Processor:',fg_rank,myrank,' igrad_start',&
1178          igrad_start,' igrad_end',igrad_end,' ngrad_start',ngrad_start,&
1179          ' ngrad_end',ngrad_end
1180 !       do i=igrad_start,igrad_end
1181 !         write(*,*) 'Processor:',fg_rank,myrank,i,&
1182 !          jgrad_start(i),jgrad_end(i)
1183 !       enddo
1184       endif
1185       if (nfgtasks.gt.1) then
1186         call MPI_Allgather(ivec_start,1,MPI_INTEGER,ivec_displ(0),1,&
1187           MPI_INTEGER,FG_COMM1,IERROR)
1188         iaux=ivec_end-ivec_start+1
1189         call MPI_Allgather(iaux,1,MPI_INTEGER,ivec_count(0),1,&
1190           MPI_INTEGER,FG_COMM1,IERROR)
1191         call MPI_Allgather(iset_start-2,1,MPI_INTEGER,iset_displ(0),1,&
1192           MPI_INTEGER,FG_COMM,IERROR)
1193         iaux=iset_end-iset_start+1
1194         call MPI_Allgather(iaux,1,MPI_INTEGER,iset_count(0),1,&
1195           MPI_INTEGER,FG_COMM,IERROR)
1196         call MPI_Allgather(ibond_start,1,MPI_INTEGER,ibond_displ(0),1,&
1197           MPI_INTEGER,FG_COMM,IERROR)
1198         iaux=ibond_end-ibond_start+1
1199         call MPI_Allgather(iaux,1,MPI_INTEGER,ibond_count(0),1,&
1200           MPI_INTEGER,FG_COMM,IERROR)
1201         call MPI_Allgather(ithet_start,1,MPI_INTEGER,ithet_displ(0),1,&
1202           MPI_INTEGER,FG_COMM,IERROR)
1203         iaux=ithet_end-ithet_start+1
1204         call MPI_Allgather(iaux,1,MPI_INTEGER,ithet_count(0),1,&
1205           MPI_INTEGER,FG_COMM,IERROR)
1206         call MPI_Allgather(iphi_start,1,MPI_INTEGER,iphi_displ(0),1,&
1207           MPI_INTEGER,FG_COMM,IERROR)
1208         iaux=iphi_end-iphi_start+1
1209         call MPI_Allgather(iaux,1,MPI_INTEGER,iphi_count(0),1,&
1210           MPI_INTEGER,FG_COMM,IERROR)
1211         call MPI_Allgather(iphi1_start,1,MPI_INTEGER,iphi1_displ(0),1,&
1212           MPI_INTEGER,FG_COMM,IERROR)
1213         iaux=iphi1_end-iphi1_start+1
1214         call MPI_Allgather(iaux,1,MPI_INTEGER,iphi1_count(0),1,&
1215           MPI_INTEGER,FG_COMM,IERROR)
1216         do i=0,nfgtasks-1
1217           do j=1,nres
1218             ielstart_all(j,i)=0
1219             ielend_all(j,i)=0
1220           enddo
1221         enddo
1222         call MPI_Allgather(iturn3_start,1,MPI_INTEGER,&
1223           iturn3_start_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1224         call MPI_Allgather(iturn4_start,1,MPI_INTEGER,&
1225           iturn4_start_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1226         call MPI_Allgather(iturn3_end,1,MPI_INTEGER,&
1227           iturn3_end_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1228         call MPI_Allgather(iturn4_end,1,MPI_INTEGER,&
1229           iturn4_end_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1230         call MPI_Allgather(iatel_s,1,MPI_INTEGER,&
1231           iatel_s_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1232         call MPI_Allgather(iatel_e,1,MPI_INTEGER,&
1233           iatel_e_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1234         call MPI_Allgather(ielstart(1),nres,MPI_INTEGER,&
1235           ielstart_all(1,0),nres,MPI_INTEGER,FG_COMM,IERROR)
1236         call MPI_Allgather(ielend(1),nres,MPI_INTEGER,&
1237           ielend_all(1,0),nres,MPI_INTEGER,FG_COMM,IERROR)
1238         if (lprint) then
1239         write (iout,*) "iatel_s_all",(iatel_s_all(i),i=0,nfgtasks)
1240         write (iout,*) "iatel_e_all",(iatel_e_all(i),i=0,nfgtasks)
1241         write (iout,*) "iturn3_start_all",&
1242           (iturn3_start_all(i),i=0,nfgtasks-1)
1243         write (iout,*) "iturn3_end_all",&
1244           (iturn3_end_all(i),i=0,nfgtasks-1)
1245         write (iout,*) "iturn4_start_all",&
1246           (iturn4_start_all(i),i=0,nfgtasks-1)
1247         write (iout,*) "iturn4_end_all",&
1248           (iturn4_end_all(i),i=0,nfgtasks-1)
1249         write (iout,*) "The ielstart_all array"
1250 !        do i=0,nfgtasks-1
1251 !         if (iturn3_start_all(i).le.0) iturn3_start_all(i)=1
1252 !         if (iturn4_start_all(i).le.0) iturn4_start_all(i)=1
1253 !        enddo
1254         do i=nnt,nct
1255           write (iout,'(20i4)') i,(ielstart_all(i,j),j=0,nfgtasks-1)
1256         enddo
1257         write (iout,*) "The ielend_all array"
1258         do i=nnt,nct
1259           write (iout,'(20i4)') i,(ielend_all(i,j),j=0,nfgtasks-1)
1260         enddo
1261         call flush(iout)
1262         endif
1263         ntask_cont_from=0
1264         ntask_cont_to=0
1265         itask_cont_from(0)=fg_rank
1266         itask_cont_to(0)=fg_rank
1267         flag=.false.
1268 !el        allocate(iturn3_sent(4,iturn3_start:iturn3_end))
1269 !el        allocate(iturn4_sent(4,iturn4_start:iturn4_end)) !(4,maxres)
1270         do ii=iturn3_start,iturn3_end
1271           call add_int(ii,ii+2,iturn3_sent(1,ii),&
1272                       ntask_cont_to,itask_cont_to,flag)
1273         enddo
1274         do ii=iturn4_start,iturn4_end
1275           call add_int(ii,ii+3,iturn4_sent(1,ii),&
1276                       ntask_cont_to,itask_cont_to,flag)
1277         enddo
1278         do ii=iturn3_start,iturn3_end
1279           call add_int_from(ii,ii+2,ntask_cont_from,itask_cont_from)
1280         enddo
1281         do ii=iturn4_start,iturn4_end
1282           call add_int_from(ii,ii+3,ntask_cont_from,itask_cont_from)
1283         enddo
1284         if (lprint) then
1285         write (iout,*) "After turn3 ntask_cont_from",ntask_cont_from,&
1286          " ntask_cont_to",ntask_cont_to
1287         write (iout,*) "itask_cont_from",&
1288           (itask_cont_from(i),i=1,ntask_cont_from)
1289         write (iout,*) "itask_cont_to",&
1290           (itask_cont_to(i),i=1,ntask_cont_to)
1291         call flush(iout)
1292         endif
1293 !        write (iout,*) "Loop forward"
1294 !        call flush(iout)
1295         do i=iatel_s,iatel_e
1296 !          write (iout,*) "from loop i=",i
1297 !          call flush(iout)
1298           do j=ielstart(i),ielend(i)
1299             call add_int_from(i,j,ntask_cont_from,itask_cont_from)
1300           enddo
1301         enddo
1302 !        write (iout,*) "Loop backward iatel_e-1",iatel_e-1,
1303 !     &     " iatel_e",iatel_e
1304 !        call flush(iout)
1305         nat_sent=0
1306         do i=iatel_s,iatel_e
1307 !          write (iout,*) "i",i," ielstart",ielstart(i),
1308 !     &      " ielend",ielend(i)
1309 !          call flush(iout)
1310           flag=.false.
1311           do j=ielstart(i),ielend(i)
1312             call add_int(i,j,iint_sent(1,j,nat_sent+1),ntask_cont_to,&
1313                         itask_cont_to,flag)
1314           enddo
1315           if (flag) then
1316             nat_sent=nat_sent+1
1317             iat_sent(nat_sent)=i
1318           endif
1319         enddo
1320         if (lprint) then
1321         write (iout,*)"After longrange ntask_cont_from",ntask_cont_from,&
1322          " ntask_cont_to",ntask_cont_to
1323         write (iout,*) "itask_cont_from",&
1324           (itask_cont_from(i),i=1,ntask_cont_from)
1325         write (iout,*) "itask_cont_to",&
1326           (itask_cont_to(i),i=1,ntask_cont_to)
1327         call flush(iout)
1328         write (iout,*) "iint_sent"
1329         do i=1,nat_sent
1330           ii=iat_sent(i)
1331           write (iout,'(20i4)') ii,(j,(iint_sent(k,j,i),k=1,4),&
1332             j=ielstart(ii),ielend(ii))
1333         enddo
1334         write (iout,*) "iturn3_sent iturn3_start",iturn3_start,&
1335           " iturn3_end",iturn3_end
1336         write (iout,'(20i4)') (i,(iturn3_sent(j,i),j=1,4),&
1337            i=iturn3_start,iturn3_end)
1338         write (iout,*) "iturn4_sent iturn4_start",iturn4_start,&
1339           " iturn4_end",iturn4_end
1340         write (iout,'(20i4)') (i,(iturn4_sent(j,i),j=1,4),&
1341            i=iturn4_start,iturn4_end)
1342         call flush(iout)
1343         endif
1344         call MPI_Gather(ntask_cont_from,1,MPI_INTEGER,&
1345          ntask_cont_from_all,1,MPI_INTEGER,king,FG_COMM,IERR)
1346 !        write (iout,*) "Gather ntask_cont_from ended"
1347 !        call flush(iout)
1348         call MPI_Gather(itask_cont_from(0),nfgtasks,MPI_INTEGER,&
1349          itask_cont_from_all(0,0),nfgtasks,MPI_INTEGER,king,&
1350          FG_COMM,IERR)
1351 !        write (iout,*) "Gather itask_cont_from ended"
1352 !        call flush(iout)
1353         call MPI_Gather(ntask_cont_to,1,MPI_INTEGER,ntask_cont_to_all,&
1354          1,MPI_INTEGER,king,FG_COMM,IERR)
1355 !        write (iout,*) "Gather ntask_cont_to ended"
1356 !        call flush(iout)
1357         call MPI_Gather(itask_cont_to,nfgtasks,MPI_INTEGER,&
1358          itask_cont_to_all,nfgtasks,MPI_INTEGER,king,FG_COMM,IERR)
1359 !        write (iout,*) "Gather itask_cont_to ended"
1360 !        call flush(iout)
1361         if (fg_rank.eq.king) then
1362           write (iout,*)"Contact receive task map (proc, #tasks, tasks)"
1363           do i=0,nfgtasks-1
1364             write (iout,'(20i4)') i,ntask_cont_from_all(i),&
1365               (itask_cont_from_all(j,i),j=1,ntask_cont_from_all(i)) 
1366           enddo
1367           write (iout,*)
1368           call flush(iout)
1369           write (iout,*) "Contact send task map (proc, #tasks, tasks)"
1370           do i=0,nfgtasks-1
1371             write (iout,'(20i4)') i,ntask_cont_to_all(i),&
1372              (itask_cont_to_all(j,i),j=1,ntask_cont_to_all(i)) 
1373           enddo
1374           write (iout,*)
1375           call flush(iout)
1376 ! Check if every send will have a matching receive
1377           ncheck_to=0
1378           ncheck_from=0
1379           do i=0,nfgtasks-1
1380             ncheck_to=ncheck_to+ntask_cont_to_all(i)
1381             ncheck_from=ncheck_from+ntask_cont_from_all(i)
1382           enddo
1383           write (iout,*) "Control sums",ncheck_from,ncheck_to
1384           if (ncheck_from.ne.ncheck_to) then
1385             write (iout,*) "Error: #receive differs from #send."
1386             write (iout,*) "Terminating program...!"
1387             call flush(iout)
1388             flag=.false.
1389           else
1390             flag=.true.
1391             do i=0,nfgtasks-1
1392               do j=1,ntask_cont_to_all(i)
1393                 ii=itask_cont_to_all(j,i)
1394                 do k=1,ntask_cont_from_all(ii)
1395                   if (itask_cont_from_all(k,ii).eq.i) then
1396                     if(lprint)write(iout,*)"Matching send/receive",i,ii
1397                     exit
1398                   endif
1399                 enddo
1400                 if (k.eq.ntask_cont_from_all(ii)+1) then
1401                   flag=.false.
1402                   write (iout,*) "Error: send by",j," to",ii,&
1403                     " would have no matching receive"
1404                 endif
1405               enddo
1406             enddo
1407           endif
1408           if (.not.flag) then
1409             write (iout,*) "Unmatched sends; terminating program"
1410             call flush(iout)
1411           endif
1412         endif
1413         call MPI_Bcast(flag,1,MPI_LOGICAL,king,FG_COMM,IERROR)
1414 !        write (iout,*) "flag broadcast ended flag=",flag
1415 !        call flush(iout)
1416         if (.not.flag) then
1417           call MPI_Finalize(IERROR)
1418           stop "Error in INIT_INT_TABLE: unmatched send/receive."
1419         endif
1420         call MPI_Comm_group(FG_COMM,fg_group,IERR)
1421 !        write (iout,*) "MPI_Comm_group ended"
1422 !        call flush(iout)
1423         call MPI_Group_incl(fg_group,ntask_cont_from+1,&
1424           itask_cont_from(0),CONT_FROM_GROUP,IERR)
1425         call MPI_Group_incl(fg_group,ntask_cont_to+1,itask_cont_to(0),&
1426           CONT_TO_GROUP,IERR)
1427         do i=1,nat_sent
1428           ii=iat_sent(i)
1429           iaux=4*(ielend(ii)-ielstart(ii)+1)
1430           if (iaux.lt.0) iaux=0 
1431           call MPI_Group_translate_ranks(fg_group,iaux,&
1432             iint_sent(1,ielstart(ii),i),CONT_TO_GROUP,&
1433             iint_sent_local(1,ielstart(ii),i),IERR )
1434 !          write (iout,*) "Ranks translated i=",i
1435 !          call flush(iout)
1436         enddo
1437         iaux=4*(iturn3_end-iturn3_start+1)
1438           if (iaux.lt.0) iaux=0
1439         call MPI_Group_translate_ranks(fg_group,iaux,&
1440            iturn3_sent(1,iturn3_start),CONT_TO_GROUP,&
1441            iturn3_sent_local(1,iturn3_start),IERR)
1442         iaux=4*(iturn4_end-iturn4_start+1)
1443           if (iaux.lt.0) iaux=0
1444         call MPI_Group_translate_ranks(fg_group,iaux,&
1445            iturn4_sent(1,iturn4_start),CONT_TO_GROUP,&
1446            iturn4_sent_local(1,iturn4_start),IERR)
1447         if (lprint) then
1448         write (iout,*) "iint_sent_local"
1449         do i=1,nat_sent
1450           ii=iat_sent(i)
1451           write (iout,'(20i4)') ii,(j,(iint_sent_local(k,j,i),k=1,4),&
1452             j=ielstart(ii),ielend(ii))
1453           call flush(iout)
1454         enddo
1455         if (iturn3_end.gt.0) then
1456         write (iout,*) "iturn3_sent_local iturn3_start",iturn3_start,&
1457           " iturn3_end",iturn3_end
1458         write (iout,'(20i4)') (i,(iturn3_sent_local(j,i),j=1,4),&
1459            i=iturn3_start,iturn3_end)
1460         write (iout,*) "iturn4_sent_local iturn4_start",iturn4_start,&
1461           " iturn4_end",iturn4_end
1462         write (iout,'(20i4)') (i,(iturn4_sent_local(j,i),j=1,4),&
1463            i=iturn4_start,iturn4_end)
1464         call flush(iout)
1465         endif
1466         endif
1467         call MPI_Group_free(fg_group,ierr)
1468         call MPI_Group_free(cont_from_group,ierr)
1469         call MPI_Group_free(cont_to_group,ierr)
1470         call MPI_Type_contiguous(3,MPI_DOUBLE_PRECISION,MPI_UYZ,IERROR)
1471         call MPI_Type_commit(MPI_UYZ,IERROR)
1472         call MPI_Type_contiguous(18,MPI_DOUBLE_PRECISION,MPI_UYZGRAD,&
1473           IERROR)
1474         call MPI_Type_commit(MPI_UYZGRAD,IERROR)
1475         call MPI_Type_contiguous(maxcontsshi,MPI_INTEGER,MPI_I50,IERROR)
1476         call MPI_Type_commit(MPI_I50,IERROR)
1477         call MPI_Type_contiguous(maxcontsshi,MPI_DOUBLE_PRECISION,MPI_D50,IERROR)
1478         call MPI_Type_commit(MPI_D50,IERROR)
1479
1480          impishi=maxcontsshi*3
1481 !        call MPI_Type_contiguous(impishi,MPI_DOUBLE_PRECISION, &
1482 !        MPI_SHI,IERROR)
1483 !        call MPI_Type_commit(MPI_SHI,IERROR)
1484 !        print *,MPI_SHI,"MPI_SHI",MPI_D50
1485         call MPI_Type_contiguous(2,MPI_DOUBLE_PRECISION,MPI_MU,IERROR)
1486         call MPI_Type_commit(MPI_MU,IERROR)
1487         call MPI_Type_contiguous(4,MPI_DOUBLE_PRECISION,MPI_MAT1,IERROR)
1488         call MPI_Type_commit(MPI_MAT1,IERROR)
1489         call MPI_Type_contiguous(8,MPI_DOUBLE_PRECISION,MPI_MAT2,IERROR)
1490         call MPI_Type_commit(MPI_MAT2,IERROR)
1491         call MPI_Type_contiguous(6,MPI_DOUBLE_PRECISION,MPI_THET,IERROR)
1492         call MPI_Type_commit(MPI_THET,IERROR)
1493         call MPI_Type_contiguous(9,MPI_DOUBLE_PRECISION,MPI_GAM,IERROR)
1494         call MPI_Type_commit(MPI_GAM,IERROR)
1495
1496 !el        allocate(lentyp(0:nfgtasks-1))
1497 #ifndef MATGATHER
1498 ! 9/22/08 Derived types to send matrices which appear in correlation terms
1499         do i=0,nfgtasks-1
1500           if (ivec_count(i).eq.ivec_count(0)) then
1501             lentyp(i)=0
1502           else
1503             lentyp(i)=1
1504           endif
1505         enddo
1506         do ind_typ=lentyp(0),lentyp(nfgtasks-1)
1507         if (ind_typ.eq.0) then
1508           ichunk=ivec_count(0)
1509         else
1510           ichunk=ivec_count(1)
1511         endif
1512 !        do i=1,4
1513 !          blocklengths(i)=4
1514 !        enddo
1515 !        displs(1)=0
1516 !        do i=2,4
1517 !          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
1518 !        enddo
1519 !        do i=1,4
1520 !          blocklengths(i)=blocklengths(i)*ichunk
1521 !        enddo
1522 !        write (iout,*) "blocklengths and displs"
1523 !        do i=1,4
1524 !          write (iout,*) i,blocklengths(i),displs(i)
1525 !        enddo
1526 !        call flush(iout)
1527 !        call MPI_Type_indexed(4,blocklengths(1),displs(1),
1528 !     &    MPI_DOUBLE_PRECISION,MPI_ROTAT1(ind_typ),IERROR)
1529 !        call MPI_Type_commit(MPI_ROTAT1(ind_typ),IERROR)
1530 !        write (iout,*) "MPI_ROTAT1",MPI_ROTAT1 
1531 !        do i=1,4
1532 !          blocklengths(i)=2
1533 !        enddo
1534 !        displs(1)=0
1535 !        do i=2,4
1536 !          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
1537 !        enddo
1538 !        do i=1,4
1539 !          blocklengths(i)=blocklengths(i)*ichunk
1540 !        enddo
1541 !        write (iout,*) "blocklengths and displs"
1542 !        do i=1,4
1543 !          write (iout,*) i,blocklengths(i),displs(i)
1544 !        enddo
1545 !        call flush(iout)
1546 !        call MPI_Type_indexed(4,blocklengths(1),displs(1),
1547 !     &    MPI_DOUBLE_PRECISION,MPI_ROTAT2(ind_typ),IERROR)
1548 !        call MPI_Type_commit(MPI_ROTAT2(ind_typ),IERROR)
1549 !        write (iout,*) "MPI_ROTAT2",MPI_ROTAT2 
1550         do i=1,8
1551           blocklengths(i)=2
1552         enddo
1553         displs(1)=0
1554         do i=2,8
1555           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1556         enddo
1557         do i=1,15
1558           blocklengths(i)=blocklengths(i)*ichunk
1559         enddo
1560         call MPI_Type_indexed(8,blocklengths,displs,&
1561           MPI_DOUBLE_PRECISION,MPI_PRECOMP11(ind_typ),IERROR)
1562         call MPI_Type_commit(MPI_PRECOMP11(ind_typ),IERROR)
1563         do i=1,8
1564           blocklengths(i)=4
1565         enddo
1566         displs(1)=0
1567         do i=2,8
1568           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1569         enddo
1570         do i=1,15
1571           blocklengths(i)=blocklengths(i)*ichunk
1572         enddo
1573         call MPI_Type_indexed(8,blocklengths,displs,&
1574           MPI_DOUBLE_PRECISION,MPI_PRECOMP12(ind_typ),IERROR)
1575         call MPI_Type_commit(MPI_PRECOMP12(ind_typ),IERROR)
1576         do i=1,6
1577           blocklengths(i)=4
1578         enddo
1579         displs(1)=0
1580         do i=2,6
1581           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1582         enddo
1583         do i=1,6
1584           blocklengths(i)=blocklengths(i)*ichunk
1585         enddo
1586         call MPI_Type_indexed(6,blocklengths,displs,&
1587           MPI_DOUBLE_PRECISION,MPI_PRECOMP22(ind_typ),IERROR)
1588         call MPI_Type_commit(MPI_PRECOMP22(ind_typ),IERROR)
1589         do i=1,2
1590           blocklengths(i)=8
1591         enddo
1592         displs(1)=0
1593         do i=2,2
1594           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1595         enddo
1596         do i=1,2
1597           blocklengths(i)=blocklengths(i)*ichunk
1598         enddo
1599         call MPI_Type_indexed(2,blocklengths,displs,&
1600           MPI_DOUBLE_PRECISION,MPI_PRECOMP23(ind_typ),IERROR)
1601         call MPI_Type_commit(MPI_PRECOMP23(ind_typ),IERROR)
1602         do i=1,4
1603           blocklengths(i)=1
1604         enddo
1605         displs(1)=0
1606         do i=2,4
1607           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1608         enddo
1609         do i=1,4
1610           blocklengths(i)=blocklengths(i)*ichunk
1611         enddo
1612         call MPI_Type_indexed(4,blocklengths,displs,&
1613           MPI_DOUBLE_PRECISION,MPI_ROTAT_OLD(ind_typ),IERROR)
1614         call MPI_Type_commit(MPI_ROTAT_OLD(ind_typ),IERROR)
1615         enddo
1616 #endif
1617       endif
1618       iint_start=ivec_start+1
1619       iint_end=ivec_end+1
1620       do i=0,nfgtasks-1
1621           iint_count(i)=ivec_count(i)
1622           iint_displ(i)=ivec_displ(i)
1623           ivec_displ(i)=ivec_displ(i)-1
1624           iset_displ(i)=iset_displ(i)-1
1625           ithet_displ(i)=ithet_displ(i)-1
1626           iphi_displ(i)=iphi_displ(i)-1
1627           iphi1_displ(i)=iphi1_displ(i)-1
1628           ibond_displ(i)=ibond_displ(i)-1
1629       enddo
1630       if (nfgtasks.gt.1 .and. fg_rank.eq.king &
1631           .and. (me.eq.0 .or. .not. out1file)) then
1632         write (iout,*) "IVEC_DISPL, IVEC_COUNT, ISET_START, ISET_COUNT"
1633         do i=0,nfgtasks-1
1634           write (iout,*) i,ivec_displ(i),ivec_count(i),iset_displ(i),&
1635             iset_count(i)
1636         enddo
1637         write (iout,*) "iphi_start",iphi_start," iphi_end",iphi_end,&
1638           " iphi1_start",iphi1_start," iphi1_end",iphi1_end
1639         write (iout,*)"IPHI_COUNT, IPHI_DISPL, IPHI1_COUNT, IPHI1_DISPL"
1640         do i=0,nfgtasks-1
1641           write (iout,*) i,iphi_count(i),iphi_displ(i),iphi1_count(i),&
1642             iphi1_displ(i)
1643         enddo
1644         write(iout,'(i10,a,i10,a,i10,a/a,i3,a)') n_sc_int_tot,' SC-SC ',&
1645           nele_int_tot,' electrostatic and ',nscp_int_tot,&
1646           ' SC-p interactions','were distributed among',nfgtasks,&
1647           ' fine-grain processors.'
1648       endif
1649 #else
1650       loc_start=2
1651       loc_end=nres_molec(1)-1
1652       ithet_start=3 
1653       ithet_end=nres_molec(1)
1654       ithet_nucl_start=3+nres_molec(1)
1655       ithet_nucl_end=nres_molec(1)+nres_molec(2)
1656       iturn3_start=nnt
1657       iturn3_end=nct_molec(1)-3
1658       iturn4_start=nnt
1659       iturn4_end=nct_molec(1)-4
1660       iphi_start=nnt+3
1661       iphi_end=nct_molec(1)
1662       iphi1_start=4
1663       iphi1_end=nres_molec(1)
1664       iphi_nucl_start=4+nres_molec(1)
1665       iphi_nucl_end=nres_molec(1)+nres_molec(2)
1666       idihconstr_start=1
1667       idihconstr_end=ndih_constr
1668       ithetaconstr_start=1
1669       ithetaconstr_end=ntheta_constr
1670       iphid_start=iphi_start
1671       iphid_end=iphi_end-1
1672       itau_start=4
1673       itau_end=nres_molec(1)
1674       ibond_start=2
1675       ibond_end=nres_molec(1)-1
1676       ibond_nucl_start=2+nres_molec(1)
1677       ibond_nucl_end=nres_molec(2)-1
1678       ibondp_start=nnt
1679       ibondp_end=nct_molec(1)-1
1680       ibondp_nucl_start=nnt_molec(2)
1681       ibondp_nucl_end=nct_molec(2)
1682       ivec_start=1
1683       ivec_end=nres_molec(1)-1
1684       iset_start=3
1685       iset_end=nres_molec(1)+1
1686       iint_start=2
1687       iint_end=nres_molec(1)-1
1688       ilip_start=1
1689       ilip_end=nres_molec(1)
1690       itube_start=1
1691       itube_end=nres_molec(1)
1692 #endif
1693 !el       common /przechowalnia/
1694 !      deallocate(iturn3_start_all)
1695 !      deallocate(iturn3_end_all)
1696 !      deallocate(iturn4_start_all)
1697 !      deallocate(iturn4_end_all)
1698 !      deallocate(iatel_s_all)
1699 !      deallocate(iatel_e_all)
1700 !      deallocate(ielstart_all)
1701 !      deallocate(ielend_all)
1702
1703 !      deallocate(ntask_cont_from_all)
1704 !      deallocate(ntask_cont_to_all)
1705 !      deallocate(itask_cont_from_all)
1706 !      deallocate(itask_cont_to_all)
1707 !el----------
1708       return
1709       end subroutine init_int_table
1710 #ifdef MPI
1711 !-----------------------------------------------------------------------------
1712       subroutine add_int(ii,jj,itask,ntask_cont_to,itask_cont_to,flag)
1713
1714 !el      implicit none
1715 !      include "DIMENSIONS"
1716 !      include "COMMON.INTERACT"
1717 !      include "COMMON.SETUP"
1718 !      include "COMMON.IOUNITS"
1719       integer :: ii,jj,ntask_cont_to
1720       integer,dimension(4) :: itask
1721       integer :: itask_cont_to(0:nfgtasks-1)    !(0:max_fg_procs-1)
1722       logical :: flag
1723 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1724 !el       iturn4_end_all,iatel_s_all,iatel_e_all        !(0:max_fg_procs)
1725 !el      integer,dimension(nres,0:nfgtasks-1) :: ielstart_all,ielend_all        !(maxres,0:max_fg_procs-1)
1726 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1727 !el       iturn4_end_all,iatel_s_all,iatel_e_all,ielstart_all,ielend_all
1728       integer :: iproc,isent,k,l
1729 ! Determines whether to send interaction ii,jj to other processors; a given
1730 ! interaction can be sent to at most 2 processors.
1731 ! Sets flag=.true. if interaction ii,jj needs to be sent to at least 
1732 ! one processor, otherwise flag is unchanged from the input value.
1733       isent=0
1734       itask(1)=fg_rank
1735       itask(2)=fg_rank
1736       itask(3)=fg_rank
1737       itask(4)=fg_rank
1738 !      write (iout,*) "ii",ii," jj",jj
1739 ! Loop over processors to check if anybody could need interaction ii,jj
1740       do iproc=0,fg_rank-1
1741 ! Check if the interaction matches any turn3 at iproc
1742         do k=iturn3_start_all(iproc),iturn3_end_all(iproc)
1743           l=k+2
1744           if (k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1 &
1745          .or. k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1 .and. l.eq.jj-1) &
1746           then 
1747 !            write (iout,*) "turn3 to iproc",iproc," ij",ii,jj,"kl",k,l
1748 !            call flush(iout)
1749             flag=.true.
1750             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1751               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1752               isent=isent+1
1753               itask(isent)=iproc
1754               call add_task(iproc,ntask_cont_to,itask_cont_to)
1755             endif
1756           endif
1757         enddo
1758 ! Check if the interaction matches any turn4 at iproc
1759         do k=iturn4_start_all(iproc),iturn4_end_all(iproc)
1760           l=k+3
1761           if (k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1 &
1762          .or. k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1 .and. l.eq.jj-1) &
1763           then 
1764 !            write (iout,*) "turn3 to iproc",iproc," ij",ii,jj," kl",k,l
1765 !            call flush(iout)
1766             flag=.true.
1767             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1768               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1769               isent=isent+1
1770               itask(isent)=iproc
1771               call add_task(iproc,ntask_cont_to,itask_cont_to)
1772             endif
1773           endif
1774         enddo
1775         if (iatel_s_all(iproc).gt.0 .and. iatel_e_all(iproc).gt.0 .and. &
1776         iatel_s_all(iproc).le.ii-1 .and. iatel_e_all(iproc).ge.ii-1)then
1777           if (ielstart_all(ii-1,iproc).le.jj-1.and. &
1778               ielend_all(ii-1,iproc).ge.jj-1) then
1779             flag=.true.
1780             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1781               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1782               isent=isent+1
1783               itask(isent)=iproc
1784               call add_task(iproc,ntask_cont_to,itask_cont_to)
1785             endif
1786           endif
1787           if (ielstart_all(ii-1,iproc).le.jj+1.and. &
1788               ielend_all(ii-1,iproc).ge.jj+1) then
1789             flag=.true.
1790             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1791               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1792               isent=isent+1
1793               itask(isent)=iproc
1794               call add_task(iproc,ntask_cont_to,itask_cont_to)
1795             endif
1796           endif
1797         endif
1798       enddo
1799       return
1800       end subroutine add_int
1801 !-----------------------------------------------------------------------------
1802       subroutine add_int_from(ii,jj,ntask_cont_from,itask_cont_from)
1803
1804 !el      use MPI_data
1805 !el      implicit none
1806 !      include "DIMENSIONS"
1807 !      include "COMMON.INTERACT"
1808 !      include "COMMON.SETUP"
1809 !      include "COMMON.IOUNITS"
1810       integer :: ii,jj,itask(2),ntask_cont_from,&
1811        itask_cont_from(0:nfgtasks-1)    !(0:max_fg_procs)
1812       logical :: flag
1813 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,&
1814 !el       iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all       !(0:max_fg_procs)
1815 !el      integer,dimension(nres,0:nfgtasks-1) :: ielstart_all,ielend_all        !(maxres,0:max_fg_procs-1)
1816 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1817 !el       iturn4_end_all,iatel_s_all,iatel_e_all,ielstart_all,ielend_all
1818       integer :: iproc,k,l
1819       do iproc=fg_rank+1,nfgtasks-1
1820         do k=iturn3_start_all(iproc),iturn3_end_all(iproc)
1821           l=k+2
1822           if (k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1.and.l.eq.jj-1 &
1823          .or. k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1) &
1824           then
1825 !            write (iout,*)"turn3 from iproc",iproc," ij",ii,jj," kl",k,l
1826             call add_task(iproc,ntask_cont_from,itask_cont_from)
1827           endif
1828         enddo 
1829         do k=iturn4_start_all(iproc),iturn4_end_all(iproc)
1830           l=k+3
1831           if (k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1.and.l.eq.jj-1 &
1832          .or. k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1) &
1833           then
1834 !            write (iout,*)"turn4 from iproc",iproc," ij",ii,jj," kl",k,l
1835             call add_task(iproc,ntask_cont_from,itask_cont_from)
1836           endif
1837         enddo 
1838         if (iatel_s_all(iproc).gt.0 .and. iatel_e_all(iproc).gt.0) then
1839           if (ii+1.ge.iatel_s_all(iproc).and.ii+1.le.iatel_e_all(iproc)) &
1840           then
1841             if (jj+1.ge.ielstart_all(ii+1,iproc).and. &
1842                 jj+1.le.ielend_all(ii+1,iproc)) then
1843               call add_task(iproc,ntask_cont_from,itask_cont_from)
1844             endif            
1845             if (jj-1.ge.ielstart_all(ii+1,iproc).and. &
1846                 jj-1.le.ielend_all(ii+1,iproc)) then
1847               call add_task(iproc,ntask_cont_from,itask_cont_from)
1848             endif
1849           endif
1850           if (ii-1.ge.iatel_s_all(iproc).and.ii-1.le.iatel_e_all(iproc)) &
1851           then
1852             if (jj-1.ge.ielstart_all(ii-1,iproc).and. &
1853                 jj-1.le.ielend_all(ii-1,iproc)) then
1854               call add_task(iproc,ntask_cont_from,itask_cont_from)
1855             endif
1856             if (jj+1.ge.ielstart_all(ii-1,iproc).and. &
1857                 jj+1.le.ielend_all(ii-1,iproc)) then
1858                call add_task(iproc,ntask_cont_from,itask_cont_from)
1859             endif
1860           endif
1861         endif
1862       enddo
1863       return
1864       end subroutine add_int_from
1865 !-----------------------------------------------------------------------------
1866       subroutine add_task(iproc,ntask_cont,itask_cont)
1867
1868 !el      use MPI_data
1869 !el      implicit none
1870 !      include "DIMENSIONS"
1871       integer :: iproc,ntask_cont,itask_cont(0:nfgtasks-1)      !(0:max_fg_procs-1)
1872       integer :: ii
1873       do ii=1,ntask_cont
1874         if (itask_cont(ii).eq.iproc) return
1875       enddo
1876       ntask_cont=ntask_cont+1
1877       itask_cont(ntask_cont)=iproc
1878       return
1879       end subroutine add_task
1880 #endif
1881 !-----------------------------------------------------------------------------
1882 #if defined MPI || defined WHAM_RUN
1883       subroutine int_partition(int_index,lower_index,upper_index,atom,&
1884        at_start,at_end,first_atom,last_atom,int_gr,jat_start,jat_end,*)
1885
1886 !      implicit real*8 (a-h,o-z)
1887 !      include 'DIMENSIONS'
1888 !      include 'COMMON.IOUNITS'
1889       integer :: int_index,lower_index,upper_index,atom,at_start,at_end,&
1890        first_atom,last_atom,int_gr,jat_start,jat_end,int_index_old
1891       logical :: lprn
1892       lprn=.false.
1893       if (lprn) write (iout,*) 'int_index=',int_index
1894       int_index_old=int_index
1895       int_index=int_index+last_atom-first_atom+1
1896       if (lprn) &
1897          write (iout,*) 'int_index=',int_index,&
1898                      ' int_index_old',int_index_old,&
1899                      ' lower_index=',lower_index,&
1900                      ' upper_index=',upper_index,&
1901                      ' atom=',atom,' first_atom=',first_atom,&
1902                      ' last_atom=',last_atom
1903       if (int_index.ge.lower_index) then
1904         int_gr=int_gr+1
1905         if (at_start.eq.0) then
1906           at_start=atom
1907           jat_start=first_atom-1+lower_index-int_index_old
1908         else
1909           jat_start=first_atom
1910         endif
1911         if (lprn) write (iout,*) 'jat_start',jat_start
1912         if (int_index.ge.upper_index) then
1913           at_end=atom
1914           jat_end=first_atom-1+upper_index-int_index_old
1915           return 1
1916         else
1917           jat_end=last_atom
1918         endif
1919         if (lprn) write (iout,*) 'jat_end',jat_end
1920       endif
1921       return
1922       end subroutine int_partition
1923 #endif
1924 !-----------------------------------------------------------------------------
1925 #ifndef CLUSTER
1926       subroutine hpb_partition
1927
1928 !      implicit real*8 (a-h,o-z)
1929 !      include 'DIMENSIONS'
1930 #ifdef MPI
1931       include 'mpif.h'
1932 #endif
1933 !      include 'COMMON.SBRIDGE'
1934 !      include 'COMMON.IOUNITS'
1935 !      include 'COMMON.SETUP'
1936 #ifdef MPI
1937       call int_bounds(nhpb,link_start,link_end)
1938       write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
1939         ' absolute rank',MyRank,&
1940         ' nhpb',nhpb,' link_start=',link_start,&
1941         ' link_end',link_end
1942 #else
1943       link_start=1
1944       link_end=nhpb
1945 #endif
1946       return
1947       end subroutine hpb_partition
1948 #endif
1949 !-----------------------------------------------------------------------------
1950 ! misc.f in module io_base
1951 !-----------------------------------------------------------------------------
1952 !-----------------------------------------------------------------------------
1953 ! parmread.F
1954 !-----------------------------------------------------------------------------
1955       subroutine getenv_loc(var, val)
1956
1957       character(*) :: var, val
1958
1959 #ifdef WINIFL
1960       character(len=2000) :: line
1961 !el      external ilen
1962
1963       open (196,file='env',status='old',readonly,shared)
1964       iread=0
1965 !      write(*,*)'looking for ',var
1966 10    read(196,*,err=11,end=11)line
1967       iread=index(line,var)
1968 !      write(*,*)iread,' ',var,' ',line
1969       if (iread.eq.0) go to 10 
1970 !      write(*,*)'---> ',line
1971 11    continue
1972       if(iread.eq.0) then
1973 !       write(*,*)'CHUJ'
1974        val=''
1975       else
1976        iread=iread+ilen(var)+1
1977        read (line(iread:),*,err=12,end=12) val
1978 !       write(*,*)'OK: ',var,' = ',val
1979       endif
1980       close(196)
1981       return
1982 12    val=''
1983       close(196)
1984 #elif (defined CRAY)
1985       integer :: lennam,lenval,ierror
1986 !
1987 !        getenv using a POSIX call, useful on the T3D
1988 !        Sept 1996, comment out error check on advice of H. Pritchard
1989 !
1990       lennam = len(var)
1991       if(lennam.le.0) stop '--error calling getenv--'
1992       call pxfgetenv(var,lennam,val,lenval,ierror)
1993 !-HP- if(ierror.ne.0) stop '--error returned by pxfgetenv--'
1994 #else
1995       call getenv(var,val)
1996 #endif
1997
1998       return
1999       end subroutine getenv_loc
2000 !-----------------------------------------------------------------------------
2001 ! readrtns_CSA.F
2002 !-----------------------------------------------------------------------------
2003       subroutine setup_var
2004
2005       integer :: i,mnum
2006 !      implicit real*8 (a-h,o-z)
2007 !      include 'DIMENSIONS'
2008 !      include 'COMMON.IOUNITS'
2009 !      include 'COMMON.GEO'
2010 !      include 'COMMON.VAR'
2011 !      include 'COMMON.INTERACT'
2012 !      include 'COMMON.LOCAL'
2013 !      include 'COMMON.NAMES'
2014 !      include 'COMMON.CHAIN'
2015 !      include 'COMMON.FFIELD'
2016 !      include 'COMMON.SBRIDGE'
2017 !      include 'COMMON.HEADER'
2018 !      include 'COMMON.CONTROL'
2019 !      include 'COMMON.DBASE'
2020 !      include 'COMMON.THREAD'
2021 !      include 'COMMON.TIME1'
2022 ! Set up variable list.
2023       ntheta=nres-2
2024       nphi=nres-3
2025       nvar=ntheta+nphi
2026       nside=0
2027       do i=2,nres-1
2028       mnum=molnum(i)
2029       write(iout,*) "i",molnum(i)
2030 #ifdef WHAM_RUN
2031         if (itype(i,1).ne.10) then
2032 #else
2033         if (itype(i,1).ne.10 .and. itype(i,mnum).ne.ntyp1_molec(mnum) .and. mnum.lt.4) then
2034 #endif
2035           nside=nside+1
2036           ialph(i,1)=nvar+nside
2037           ialph(nside,2)=i
2038         endif
2039       enddo
2040       if (indphi.gt.0) then
2041         nvar=nphi
2042       else if (indback.gt.0) then
2043         nvar=nphi+ntheta
2044       else
2045         nvar=nvar+2*nside
2046       endif
2047 !d    write (iout,'(3i4)') (i,ialph(i,1),ialph(i,2),i=2,nres-1)
2048       return
2049       end subroutine setup_var
2050 !-----------------------------------------------------------------------------
2051 ! timing.F
2052 !-----------------------------------------------------------------------------
2053 ! $Date: 1994/10/05 16:41:52 $
2054 ! $Revision: 2.2 $
2055 !
2056       subroutine set_timers
2057 !
2058 !el      implicit none
2059 !el      real(kind=8) :: tcpu
2060 !      include 'COMMON.TIME1'
2061 !#ifdef MP
2062 #ifdef MPI
2063       include 'mpif.h'
2064 #endif
2065 ! Diminish the assigned time limit a little so that there is some time to
2066 ! end a batch job
2067 !     timlim=batime-150.0
2068 ! Calculate the initial time, if it is not zero (e.g. for the SUN).
2069       stime=tcpu()
2070 #if .not. defined(WHAM_RUN) && .not. defined(CLUSTER)
2071 #ifdef MPI
2072       walltime=MPI_WTIME()
2073       time_reduce=0.0d0
2074       time_allreduce=0.0d0
2075       time_bcast=0.0d0
2076       time_gather=0.0d0
2077       time_sendrecv=0.0d0
2078       time_scatter=0.0d0
2079       time_scatter_fmat=0.0d0
2080       time_scatter_ginv=0.0d0
2081       time_scatter_fmatmult=0.0d0
2082       time_scatter_ginvmult=0.0d0
2083       time_barrier_e=0.0d0
2084       time_barrier_g=0.0d0
2085       time_enecalc=0.0d0
2086       time_sumene=0.0d0
2087       time_lagrangian=0.0d0
2088       time_sumgradient=0.0d0
2089       time_intcartderiv=0.0d0
2090       time_inttocart=0.0d0
2091       time_ginvmult=0.0d0
2092       time_fricmatmult=0.0d0
2093       time_cartgrad=0.0d0
2094       time_bcastc=0.0d0
2095       time_bcast7=0.0d0
2096       time_bcastw=0.0d0
2097       time_intfcart=0.0d0
2098       time_vec=0.0d0
2099       time_mat=0.0d0
2100       time_fric=0.0d0
2101       time_stoch=0.0d0
2102       time_fricmatmult=0.0d0
2103       time_fsample=0.0d0
2104 #endif
2105 #endif
2106 !d    print *,' in SET_TIMERS stime=',stime
2107       return
2108       end subroutine set_timers
2109 !-----------------------------------------------------------------------------
2110 #ifndef CLUSTER
2111       logical function stopx(nf)
2112 ! This function returns .true. if one of the following reasons to exit SUMSL
2113 ! occurs. The "reason" code is stored in WHATSUP passed thru a COMMON block:
2114 !
2115 !... WHATSUP = 0 - go on, no reason to stop. Stopx will return .false.
2116 !...           1 - Time up in current node;
2117 !...           2 - STOP signal was received from another node because the
2118 !...               node's task was accomplished (parallel only);
2119 !...          -1 - STOP signal was received from another node because of error;
2120 !...          -2 - STOP signal was received from another node, because 
2121 !...               the node's time was up.
2122 !      implicit real*8 (a-h,o-z)
2123 !      include 'DIMENSIONS'
2124 !el#ifdef WHAM_RUN
2125 !el      use control_data, only:WhatsUp
2126 !el#endif
2127 #ifdef MP
2128 !el      use MPI_data   !include 'COMMON.INFO'
2129       include 'mpif.h'
2130 #endif
2131       integer :: nf
2132 !el      logical :: ovrtim
2133
2134 !      include 'COMMON.IOUNITS'
2135 !      include 'COMMON.TIME1'
2136       integer :: Kwita
2137
2138 !d    print *,'Processor',MyID,' NF=',nf
2139 !d      write (iout,*) "stopx: ",nf
2140 #ifndef WHAM_RUN
2141 #ifndef MPI
2142       if (ovrtim()) then
2143 ! Finish if time is up.
2144          stopx = .true.
2145          WhatsUp=1
2146 #ifdef MPL
2147       else if (mod(nf,100).eq.0) then
2148 ! Other processors might have finished. Check this every 100th function 
2149 ! evaluation.
2150 ! Master checks if any other processor has sent accepted conformation(s) to it. 
2151          if (MyID.ne.MasterID) call receive_mcm_info
2152          if (MyID.eq.MasterID) call receive_conf
2153 !d       print *,'Processor ',MyID,' is checking STOP: nf=',nf
2154          call recv_stop_sig(Kwita)
2155          if (Kwita.eq.-1) then
2156            write (iout,'(a,i4,a,i5)') 'Processor',&
2157            MyID,' has received STOP signal in STOPX; NF=',nf
2158            write (*,'(a,i4,a,i5)') 'Processor',&
2159            MyID,' has received STOP signal in STOPX; NF=',nf
2160            stopx=.true.
2161            WhatsUp=2
2162          elseif (Kwita.eq.-2) then
2163            write (iout,*) &
2164           'Processor',MyID,' received TIMEUP-STOP signal in SUMSL.'
2165            write (*,*) &
2166           'Processor',MyID,' received TIMEUP-STOP signal in SUMSL.'
2167            WhatsUp=-2
2168            stopx=.true.  
2169          else if (Kwita.eq.-3) then
2170            write (iout,*) &
2171           'Processor',MyID,' received ERROR-STOP signal in SUMSL.'
2172            write (*,*) &
2173           'Processor',MyID,' received ERROR-STOP signal in SUMSL.'
2174            WhatsUp=-1
2175            stopx=.true.
2176          else
2177            stopx=.false.
2178            WhatsUp=0
2179          endif
2180 #endif
2181       else
2182          stopx = .false.
2183          WhatsUp=0
2184       endif
2185 #else
2186       stopx=.false.
2187 !d      write (iout,*) "stopx set at .false."
2188 #endif
2189
2190 #ifdef OSF
2191 ! Check for FOUND_NAN flag
2192       if (FOUND_NAN) then
2193         write(iout,*)"   ***   stopx : Found a NaN"
2194         stopx=.true.
2195       endif
2196 #endif
2197 #else
2198       if (ovrtim()) then
2199 ! Finish if time is up.
2200          stopx = .true.
2201          WhatsUp=1
2202       else if (cutoffviol) then
2203         stopx = .true.
2204         WhatsUp=2
2205       else
2206         stopx=.false.
2207       endif
2208 #endif
2209       return
2210       end function stopx
2211 !-----------------------------------------------------------------------------
2212 #else
2213       logical function stopx(nf)
2214 !
2215 !     ..................................................................
2216 !
2217 !     *****PURPOSE...
2218 !     THIS FUNCTION MAY SERVE AS THE STOPX (ASYNCHRONOUS INTERRUPTION)
2219 !     FUNCTION FOR THE NL2SOL (NONLINEAR LEAST-SQUARES) PACKAGE AT
2220 !     THOSE INSTALLATIONS WHICH DO NOT WISH TO IMPLEMENT A
2221 !     DYNAMIC STOPX.
2222 !
2223 !     *****ALGORITHM NOTES...
2224 !     AT INSTALLATIONS WHERE THE NL2SOL SYSTEM IS USED
2225 !     INTERACTIVELY, THIS DUMMY STOPX SHOULD BE REPLACED BY A
2226 !     FUNCTION THAT RETURNS .TRUE. IF AND ONLY IF THE INTERRUPT
2227 !     (BREAK) KEY HAS BEEN PRESSED SINCE THE LAST CALL ON STOPX.
2228 !
2229 !     $$$ MODIFIED FOR USE AS  THE TIMER ROUTINE.
2230 !     $$$                              WHEN THE TIME LIMIT HAS BEEN
2231 !     $$$ REACHED     STOPX IS SET TO .TRUE  AND INITIATES (IN ITSUM)
2232 !     $$$ AND ORDERLY EXIT OUT OF SUMSL.  IF ARRAYS IV AND V ARE
2233 !     $$$ SAVED, THE SUMSL ROUTINES CAN BE RESTARTED AT THE SAME
2234 !     $$$ POINT AT WHICH THEY WERE INTERRUPTED.
2235 !
2236 !     ..................................................................
2237 !
2238 !      include 'DIMENSIONS'
2239       integer :: nf
2240 !      logical ovrtim
2241 !      include 'COMMON.IOUNITS'
2242 !      include 'COMMON.TIME1'
2243 #ifdef MPL
2244 !     include 'COMMON.INFO'
2245       integer :: Kwita
2246
2247 !d    print *,'Processor',MyID,' NF=',nf
2248 #endif
2249       if (ovrtim()) then
2250 ! Finish if time is up.
2251          stopx = .true.
2252 #ifdef MPL
2253       else if (mod(nf,100).eq.0) then
2254 ! Other processors might have finished. Check this every 100th function 
2255 ! evaluation.
2256 !d       print *,'Processor ',MyID,' is checking STOP: nf=',nf
2257          call recv_stop_sig(Kwita)
2258          if (Kwita.eq.-1) then
2259            write (iout,'(a,i4,a,i5)') 'Processor',&
2260            MyID,' has received STOP signal in STOPX; NF=',nf
2261            write (*,'(a,i4,a,i5)') 'Processor',&
2262            MyID,' has received STOP signal in STOPX; NF=',nf
2263            stopx=.true.
2264          else
2265            stopx=.false.
2266          endif
2267 #endif
2268       else
2269          stopx = .false.
2270       endif
2271       return
2272       end function stopx
2273 #endif
2274 !-----------------------------------------------------------------------------
2275       logical function ovrtim()
2276
2277 !      include 'DIMENSIONS'
2278 !      include 'COMMON.IOUNITS'
2279 !      include 'COMMON.TIME1'
2280 !el      real(kind=8) :: tcpu
2281       real(kind=8) :: curtim
2282 #ifdef MPI
2283       include "mpif.h"
2284       curtim = MPI_Wtime()-walltime
2285 #else
2286       curtim= tcpu()
2287 #endif
2288 !  curtim is the current time in seconds.
2289 !      write (iout,*) "curtim",curtim," timlim",timlim," safety",safety
2290 #ifndef WHAM_RUN
2291       if (curtim .ge. timlim - safety) then
2292         write (iout,'(a,f10.2,a,f10.2,a,f10.2,a)') &
2293         "***************** Elapsed time (",curtim,&
2294         " s) is within the safety limit (",safety,&
2295         " s) of the allocated time (",timlim," s). Terminating."
2296         ovrtim=.true.
2297       else
2298         ovrtim=.false.
2299       endif
2300 #else
2301       ovrtim=.false.
2302 #endif
2303 !elwrite (iout,*) "ovrtim",ovrtim
2304       return
2305       end function ovrtim
2306 !-----------------------------------------------------------------------------
2307       real(kind=8) function tcpu()
2308
2309 !      include 'COMMON.TIME1'
2310       real(kind=8) :: seconds
2311 #ifdef ES9000
2312 !***************************
2313 ! Next definition for EAGLE (ibm-es9000)
2314       real(kind=8) :: micseconds
2315       integer :: rcode
2316       tcpu=cputime(micseconds,rcode)
2317       tcpu=(micseconds/1.0E6) - stime
2318 !***************************
2319 #endif
2320 #ifdef SUN
2321 !***************************
2322 ! Next definitions for sun
2323       REAL(kind=8) ::  ECPU,ETIME,ETCPU
2324       real(kind=8),dimension(2) :: tarray
2325       tcpu=etime(tarray)
2326       tcpu=tarray(1)
2327 !***************************
2328 #endif
2329 #ifdef KSR
2330 !***************************
2331 ! Next definitions for ksr
2332 ! this function uses the ksr timer ALL_SECONDS from the PMON library to
2333 ! return the elapsed time in seconds
2334       tcpu= all_seconds() - stime
2335 !***************************
2336 #endif
2337 #ifdef SGI
2338 !***************************
2339 ! Next definitions for sgi
2340       real(kind=4) :: timar(2), etime
2341       seconds = etime(timar)
2342 !d    print *,'seconds=',seconds,' stime=',stime
2343 !      usrsec = timar(1)
2344 !      syssec = timar(2)
2345       tcpu=seconds - stime
2346 !***************************
2347 #endif
2348
2349 #ifdef LINUX
2350 !***************************
2351 ! Next definitions for sgi
2352       real(kind=4) :: timar(2), etime
2353       seconds = etime(timar)
2354 !d    print *,'seconds=',seconds,' stime=',stime
2355 !      usrsec = timar(1)
2356 !      syssec = timar(2)
2357       tcpu=seconds - stime
2358 !***************************
2359 #endif
2360
2361
2362 #ifdef CRAY
2363 !***************************
2364 ! Next definitions for Cray
2365 !     call date(curdat)
2366 !     curdat=curdat(1:9)
2367 !     call clock(curtim)
2368 !     curtim=curtim(1:8)
2369       cpusec = second()
2370       tcpu=cpusec - stime
2371 !***************************
2372 #endif
2373 #ifdef AIX
2374 !***************************
2375 ! Next definitions for RS6000
2376        integer(kind=4) :: i1,mclock
2377        i1 = mclock()
2378        tcpu = (i1+0.0D0)/100.0D0
2379 #endif
2380 #ifdef WINPGI
2381 !***************************
2382 ! next definitions for windows NT Digital fortran
2383        real(kind=4) :: time_real
2384        call cpu_time(time_real)
2385        tcpu = time_real
2386 #endif
2387 #ifdef WINIFL
2388 !***************************
2389 ! next definitions for windows NT Digital fortran
2390        real(kind=4) :: time_real
2391        call cpu_time(time_real)
2392        tcpu = time_real
2393 #endif
2394       tcpu = 0d0 !el
2395       return
2396       end function tcpu
2397 !-----------------------------------------------------------------------------
2398 #ifndef CLUSTER
2399       subroutine dajczas(rntime,hrtime,mintime,sectime)
2400
2401 !      include 'COMMON.IOUNITS'
2402       integer :: ihr,imn,isc
2403       real(kind=8) :: rntime,hrtime,mintime,sectime 
2404       hrtime=rntime/3600.0D0 
2405       hrtime=aint(hrtime)
2406       mintime=aint((rntime-3600.0D0*hrtime)/60.0D0)
2407       sectime=aint((rntime-3600.0D0*hrtime-60.0D0*mintime)+0.5D0)
2408       if (sectime.eq.60.0D0) then
2409         sectime=0.0D0
2410         mintime=mintime+1.0D0
2411       endif
2412       ihr=hrtime
2413       imn=mintime
2414       isc=sectime
2415       write (iout,328) ihr,imn,isc
2416   328 FORMAT(//'***** Computation time: ',I4  ,' hours ',I2  ,&
2417                ' minutes ', I2  ,' seconds *****')       
2418       return
2419       end subroutine dajczas
2420 !-----------------------------------------------------------------------------
2421       subroutine print_detailed_timing
2422
2423 !el      use MPI_data
2424 !      implicit real*8 (a-h,o-z)
2425 !      include 'DIMENSIONS'
2426 #ifdef MPI
2427       include 'mpif.h'
2428 #endif
2429 !      include 'COMMON.IOUNITS'
2430 !      include 'COMMON.TIME1'
2431 !      include 'COMMON.SETUP'
2432       real(kind=8) :: time1,time_barrier
2433       time_barrier = 0.0d0
2434 #ifdef MPI !el
2435       time1=MPI_WTIME()
2436 #endif !el
2437          write (iout,'(80(1h=)/a/(80(1h=)))') &
2438           "Details of FG communication time"
2439          write (*,'(7(a40,1pe15.5/),40(1h-)/a40,1pe15.5/80(1h=))') &
2440           "BROADCAST:",time_bcast,"REDUCE:",time_reduce,&
2441           "GATHER:",time_gather,&
2442           "SCATTER:",time_scatter,"SENDRECV:",time_sendrecv,&
2443           "BARRIER ene",time_barrier_e,&
2444           "BARRIER grad",time_barrier_g,&
2445           "TOTAL:",&
2446           time_bcast+time_reduce+time_gather+time_scatter+time_sendrecv
2447          write (*,*) fg_rank,myrank,&
2448            ': Total wall clock time',time1-walltime,' sec'
2449          write (*,*) "Processor",fg_rank,myrank,&
2450            ": BROADCAST time",time_bcast," REDUCE time",&
2451             time_reduce," GATHER time",time_gather," SCATTER time",&
2452             time_scatter,&
2453            " SCATTER fmatmult",time_scatter_fmatmult,&
2454            " SCATTER ginvmult",time_scatter_ginvmult,&
2455            " SCATTER fmat",time_scatter_fmat,&
2456            " SCATTER ginv",time_scatter_ginv,&
2457             " SENDRECV",time_sendrecv,&
2458             " BARRIER ene",time_barrier_e,&
2459             " BARRIER GRAD",time_barrier_g,&
2460             " BCAST7",time_bcast7," BCASTC",time_bcastc,&
2461             " BCASTW",time_bcastw," ALLREDUCE",time_allreduce,&
2462             " TOTAL",&
2463             time_bcast+time_reduce+time_gather+time_scatter+ &
2464             time_sendrecv+time_barrier+time_bcastc
2465 !el#endif
2466          write (*,*) "Processor",fg_rank,myrank," enecalc",time_enecalc
2467          write (*,*) "Processor",fg_rank,myrank," sumene",time_sumene
2468          write (*,*) "Processor",fg_rank,myrank," intfromcart",&
2469            time_intfcart
2470          write (*,*) "Processor",fg_rank,myrank," vecandderiv",&
2471            time_vec
2472          write (*,*) "Processor",fg_rank,myrank," setmatrices",&
2473            time_mat
2474          write (*,*) "Processor",fg_rank,myrank," ginvmult",&
2475            time_ginvmult
2476          write (*,*) "Processor",fg_rank,myrank," fricmatmult",&
2477            time_fricmatmult
2478          write (*,*) "Processor",fg_rank,myrank," inttocart",&
2479            time_inttocart
2480          write (*,*) "Processor",fg_rank,myrank," sumgradient",&
2481            time_sumgradient
2482          write (*,*) "Processor",fg_rank,myrank," intcartderiv",&
2483            time_intcartderiv
2484          if (fg_rank.eq.0) then
2485            write (*,*) "Processor",fg_rank,myrank," lagrangian",&
2486              time_lagrangian
2487            write (*,*) "Processor",fg_rank,myrank," cartgrad",&
2488              time_cartgrad
2489          endif
2490       return
2491       end subroutine print_detailed_timing
2492 #endif
2493 !-----------------------------------------------------------------------------
2494       subroutine homology_partition
2495       implicit none
2496 !      include 'DIMENSIONS'
2497 !#ifdef MPI
2498 !      include 'mpif.h'
2499 !#endif
2500 !      include 'COMMON.SBRIDGE'
2501 !      include 'COMMON.IOUNITS'
2502 !      include 'COMMON.SETUP'
2503 !      include 'COMMON.CONTROL'
2504 !      include 'COMMON.INTERACT'
2505 !      include 'COMMON.HOMOLOGY'
2506 !d      write(iout,*)"homology_partition: lim_odl=",lim_odl,
2507 !d     &   " lim_dih",lim_dih
2508 #ifdef MPI
2509       if (me.eq.king .or. .not. out1file) write (iout,*) "MPI"
2510       call int_bounds(lim_odl,link_start_homo,link_end_homo)
2511       call int_bounds(lim_dih,idihconstr_start_homo, &
2512        idihconstr_end_homo)
2513       idihconstr_start_homo=idihconstr_start_homo+nnt-1+3
2514       idihconstr_end_homo=idihconstr_end_homo+nnt-1+3
2515       if (me.eq.king .or. .not. out1file)&
2516        write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
2517        ' absolute rank',MyRank,&
2518        ' lim_odl',lim_odl,' link_start=',link_start_homo,&
2519        ' link_end',link_end_homo,' lim_dih',lim_dih,&
2520        ' idihconstr_start_homo',idihconstr_start_homo,&
2521        ' idihconstr_end_homo',idihconstr_end_homo
2522 #else
2523       write (iout,*) "Not MPI"
2524       link_start_homo=1
2525       link_end_homo=lim_odl
2526       idihconstr_start_homo=nnt+3
2527       idihconstr_end_homo=lim_dih+nnt-1+3
2528       write (iout,*) &
2529        ' lim_odl',lim_odl,' link_start=',link_start_homo, &
2530        ' link_end',link_end_homo,' lim_dih',lim_dih,&
2531        ' idihconstr_start_homo',idihconstr_start_homo,&
2532        ' idihconstr_end_homo',idihconstr_end_homo
2533 #endif
2534       return
2535       end subroutine homology_partition
2536
2537 !-----------------------------------------------------------------------------
2538       end module control