9b5f441cdf16f210dfb8671ee166c46639db7e95
[unres4.git] / source / unres / control.F90
1       module control
2 !-----------------------------------------------------------------------------
3       use io_units
4       use names
5       use MPI_data
6       use geometry_data
7       use energy_data
8       use control_data
9       use minim_data
10       use geometry, only:int_bounds
11 #ifndef CLUSTER
12       use csa_data
13 #ifdef WHAM_RUN
14       use wham_data
15 #endif
16 #endif
17       implicit none
18 !-----------------------------------------------------------------------------
19 ! commom.control
20 !      common /cntrl/
21 !      integer :: modecalc,iscode,indpdb,indback,indphi,iranconf,&
22 !       icheckgrad,iprint,i2ndstr,mucadyn,constr_dist,symetr
23 !      logical :: minim,refstr,pdbref,outpdb,outmol2,overlapsc,&
24 !       energy_dec,sideadd,lsecondary,read_cart,unres_pdb,&
25 !       vdisulf,searchsc,lmuca,dccart,extconf,out1file,&
26 !       gnorm_check,gradout,split_ene
27 !... minim = .true. means DO minimization.
28 !... energy_dec = .true. means print energy decomposition matrix
29 !-----------------------------------------------------------------------------
30 ! common.time1
31 !     FOUND_NAN - set by calcf to stop sumsl via stopx
32 !      COMMON/TIME1/
33       real(kind=8) :: STIME,BATIME,PREVTIM,RSTIME
34 !el      real(kind=8) :: TIMLIM,SAFETY
35 !el      real(kind=8) :: WALLTIME
36 !      COMMON/STOPTIM/
37       integer :: ISTOP
38 !      common /sumsl_flag/
39       logical :: FOUND_NAN
40 !      common /timing/
41       real(kind=8) :: t_init
42 !       time_bcast,time_reduce,time_gather,&
43 !       time_sendrecv,time_barrier_e,time_barrier_g,time_scatter,&
44        !t_eelecij,
45 !       time_allreduce,&
46 !       time_lagrangian,time_cartgrad,&
47 !       time_sumgradient,time_intcartderiv,time_inttocart,time_intfcart,&
48 !       time_mat,time_fricmatmult,&
49 !       time_scatter_fmat,time_scatter_ginv,&
50 !       time_scatter_fmatmult,time_scatter_ginvmult,&
51 !       t_eshort,t_elong,t_etotal
52 !-----------------------------------------------------------------------------
53 ! initialize_p.F
54 !-----------------------------------------------------------------------------
55 !      block data
56 !      integer,parameter :: MaxMoveType = 4
57 !      character(len=14),dimension(-1:MaxMoveType+1) :: MovTypID=(/'pool','chain regrow',&
58 !      character :: MovTypID(-1:MaxMoveType+1)=(/'pool','chain regrow',&
59 !       'multi-bond','phi','theta','side chain','total'/)
60 ! Conversion from poises to molecular unit and the gas constant
61 !el      real(kind=8) :: cPoise=2.9361d0, Rb=0.001986d0
62 !-----------------------------------------------------------------------------
63 !      common /przechowalnia/ subroutines: init_int_table,add_int,add_int_from
64       integer,dimension(:),allocatable :: iturn3_start_all,&
65         iturn3_end_all,iturn4_start_all,iturn4_end_all,iatel_s_all,&
66         iatel_e_all !(0:max_fg_procs)
67       integer,dimension(:,:),allocatable :: ielstart_all,&
68         ielend_all !(maxres,0:max_fg_procs-1)
69
70 !      common /przechowalnia/ subroutine: init_int_table
71       integer,dimension(:),allocatable :: ntask_cont_from_all,&
72         ntask_cont_to_all !(0:max_fg_procs-1)
73       integer,dimension(:,:),allocatable :: itask_cont_from_all,&
74         itask_cont_to_all !(0:max_fg_procs-1,0:max_fg_procs-1)
75 !-----------------------------------------------------------------------------
76 !
77 !
78 !-----------------------------------------------------------------------------
79       contains
80 !-----------------------------------------------------------------------------
81 ! initialize_p.F
82 !-----------------------------------------------------------------------------
83       subroutine initialize
84 !
85 ! Define constants and zero out tables.
86 !
87       use comm_iofile
88       use comm_machsw
89       use MCM_data, only: MovTypID
90 !      implicit real*8 (a-h,o-z)
91 !      include 'DIMENSIONS'
92 #ifdef MPI
93       include 'mpif.h'
94 #endif
95 #ifndef ISNAN
96       external proc_proc
97 #ifdef WINPGI
98 !MS$ATTRIBUTES C ::  proc_proc
99 #endif
100 #endif
101 !      include 'COMMON.IOUNITS'
102 !      include 'COMMON.CHAIN'
103 !      include 'COMMON.INTERACT'
104 !      include 'COMMON.GEO'
105 !      include 'COMMON.LOCAL'
106 !      include 'COMMON.TORSION'
107 !      include 'COMMON.FFIELD'
108 !      include 'COMMON.SBRIDGE'
109 !      include 'COMMON.MCM'
110 !      include 'COMMON.MINIM' 
111 !      include 'COMMON.DERIV'
112 !      include 'COMMON.SPLITELE'
113 !      implicit none
114 ! Common blocks from the diagonalization routines
115 !el      integer :: IR,IW,IP,IJK,IPK,IDAF,NAV,IODA(400)
116 !el      integer :: KDIAG,ICORFL,IXDR
117 !el      COMMON /IOFILE/ IR,IW,IP,IJK,IPK,IDAF,NAV,IODA
118 !el      COMMON /MACHSW/ KDIAG,ICORFL,IXDR
119       logical :: mask_r
120 !      real*8 text1 /'initial_i'/
121       real(kind=4) :: rr
122
123 !local variables el
124       integer :: i,j,k,l,ichir1,ichir2,iblock,m,maxit
125
126 #if .not. defined(WHAM_RUN) && .not. defined(CLUSTER)
127       mask_r=.false.
128 #ifndef ISNAN
129 ! NaNQ initialization
130       i=-1
131       rr=dacos(100.0d0)
132 #ifdef WINPGI
133       idumm=proc_proc(rr,i)
134 #elif defined(WHAM_RUN)
135       call proc_proc(rr,i)
136 #endif
137 #endif
138
139       kdiag=0
140       icorfl=0
141       iw=2
142       
143       allocate(MovTypID(-1:MaxMoveType+1))
144       MovTypID=(/'pool          ','chain regrow  ',&
145        'multi-bond    ','phi           ','theta         ',&
146        'side chain    ','total         '/)
147 #endif
148 !
149 ! The following is just to define auxiliary variables used in angle conversion
150 !
151       pi=4.0D0*datan(1.0D0)
152       dwapi=2.0D0*pi
153       dwapi3=dwapi/3.0D0
154       pipol=0.5D0*pi
155       deg2rad=pi/180.0D0
156       rad2deg=1.0D0/deg2rad
157       angmin=10.0D0*deg2rad
158 !el#ifdef CLUSTER
159 !el      Rgas = 1.987D-3
160 !el#endif
161 !
162 ! Define I/O units.
163 !
164       inp=    1
165       iout=   2
166       ipdbin= 3
167       ipdb=   7
168 #ifdef CLUSTER
169       imol2= 18
170       jplot= 19
171 !el      jstatin=10
172       imol2=  4
173       jrms=30
174 #else
175       icart = 30
176       imol2=  4
177       ithep_pdb=51
178       irotam_pdb=52
179       irest1=55
180       irest2=56
181       iifrag=57
182       ientin=18
183       ientout=19
184 !rc for write_rmsbank1  
185       izs1=21
186 !dr  include secondary structure prediction bias
187       isecpred=27
188 #endif
189       igeom=  8
190       intin=  9
191       ithep= 11
192       irotam=12
193       itorp= 13
194       itordp= 23
195       ielep= 14
196       isidep=15
197 #if defined(WHAM_RUN) || defined(CLUSTER)
198       isidep1=22 !wham
199 #else
200 !
201 ! CSA I/O units (separated from others especially for Jooyoung)
202 !
203       icsa_rbank=30
204       icsa_seed=31
205       icsa_history=32
206       icsa_bank=33
207       icsa_bank1=34
208       icsa_alpha=35
209       icsa_alpha1=36
210       icsa_bankt=37
211       icsa_int=39
212       icsa_bank_reminimized=38
213       icsa_native_int=41
214       icsa_in=40
215 !rc for ifc error 118
216       icsa_pdb=42
217 #endif
218       iscpp=25
219       icbase=16
220       ifourier=20
221       istat= 17
222       ibond = 28
223       isccor = 29
224 #ifdef WHAM_RUN
225 !
226 ! WHAM files
227 !
228       ihist=30
229       iweight=31
230       izsc=32
231 #endif
232       iliptranpar=60
233       itube=61
234 #if defined(WHAM_RUN) || defined(CLUSTER)
235 !
236 ! setting the mpi variables for WHAM
237 !
238       fgprocs=1
239       nfgtasks=1
240       nfgtasks1=1
241 #endif
242 !
243 ! Set default weights of the energy terms.
244 !
245       wsc=1.0D0 ! in wham:  wlong=1.0D0
246       welec=1.0D0
247       wtor =1.0D0
248       wang =1.0D0
249       wscloc=1.0D0
250       wstrain=1.0D0
251 !
252 ! Zero out tables.
253 !
254 !      print '(a,$)','Inside initialize'
255 !      call memmon_print_usage()
256       
257 !      do i=1,maxres2
258 !       do j=1,3
259 !         c(j,i)=0.0D0
260 !         dc(j,i)=0.0D0
261 !       enddo
262 !      enddo
263 !      do i=1,maxres
264 !       do j=1,3
265 !         xloc(j,i)=0.0D0
266 !        enddo
267 !      enddo
268 !      do i=1,ntyp
269 !       do j=1,ntyp
270 !         aa(i,j)=0.0D0
271 !         bb(i,j)=0.0D0
272 !         augm(i,j)=0.0D0
273 !         sigma(i,j)=0.0D0
274 !         r0(i,j)=0.0D0
275 !         chi(i,j)=0.0D0
276 !        enddo
277 !       do j=1,2
278 !         bad(i,j)=0.0D0
279 !        enddo
280 !       chip(i)=0.0D0
281 !       alp(i)=0.0D0
282 !       sigma0(i)=0.0D0
283 !       sigii(i)=0.0D0
284 !       rr0(i)=0.0D0
285 !       a0thet(i)=0.0D0
286 !       do j=1,2
287 !         do ichir1=-1,1
288 !          do ichir2=-1,1
289 !          athet(j,i,ichir1,ichir2)=0.0D0
290 !          bthet(j,i,ichir1,ichir2)=0.0D0
291 !          enddo
292 !         enddo
293 !        enddo
294 !        do j=0,3
295 !         polthet(j,i)=0.0D0
296 !        enddo
297 !       do j=1,3
298 !         gthet(j,i)=0.0D0
299 !        enddo
300 !       theta0(i)=0.0D0
301 !       sig0(i)=0.0D0
302 !       sigc0(i)=0.0D0
303 !       do j=1,maxlob
304 !         bsc(j,i)=0.0D0
305 !         do k=1,3
306 !           censc(k,j,i)=0.0D0
307 !          enddo
308 !          do k=1,3
309 !           do l=1,3
310 !             gaussc(l,k,j,i)=0.0D0
311 !            enddo
312 !          enddo
313 !         nlob(i)=0
314 !        enddo
315 !      enddo
316 !      nlob(ntyp1)=0
317 !      dsc(ntyp1)=0.0D0
318 !      do i=-maxtor,maxtor
319 !        itortyp(i)=0
320 !c      write (iout,*) "TU DOCHODZE",i,itortyp(i)
321 !       do iblock=1,2
322 !        do j=-maxtor,maxtor
323 !          do k=1,maxterm
324 !            v1(k,j,i,iblock)=0.0D0
325 !            v2(k,j,i,iblock)=0.0D0
326 !          enddo
327 !        enddo
328 !        enddo
329 !      enddo
330 !      do iblock=1,2
331 !       do i=-maxtor,maxtor
332 !        do j=-maxtor,maxtor
333 !         do k=-maxtor,maxtor
334 !          do l=1,maxtermd_1
335 !            v1c(1,l,i,j,k,iblock)=0.0D0
336 !            v1s(1,l,i,j,k,iblock)=0.0D0
337 !            v1c(2,l,i,j,k,iblock)=0.0D0
338 !            v1s(2,l,i,j,k,iblock)=0.0D0
339 !          enddo !l
340 !          do l=1,maxtermd_2
341 !           do m=1,maxtermd_2
342 !            v2c(m,l,i,j,k,iblock)=0.0D0
343 !            v2s(m,l,i,j,k,iblock)=0.0D0
344 !           enddo !m
345 !          enddo !l
346 !        enddo !k
347 !       enddo !j
348 !      enddo !i
349 !      enddo !iblock
350
351 !      do i=1,maxres
352 !       itype(i,1)=0
353 !       itel(i)=0
354 !      enddo
355 ! Initialize the bridge arrays
356       ns=0
357       nss=0 
358       nhpb=0
359 !      do i=1,maxss
360 !       iss(i)=0
361 !      enddo
362 !      do i=1,maxdim
363 !       dhpb(i)=0.0D0
364 !      enddo
365 !      do i=1,maxres
366 !       ihpb(i)=0
367 !       jhpb(i)=0
368 !      enddo
369 !
370 ! Initialize timing.
371 !
372       call set_timers
373 !
374 ! Initialize variables used in minimization.
375 !   
376 !c     maxfun=5000
377 !c     maxit=2000
378       maxfun=500
379       maxit=200
380       tolf=1.0D-2
381       rtolf=5.0D-4
382
383 ! Initialize the variables responsible for the mode of gradient storage.
384 !
385       nfl=0
386       icg=1
387       
388 #ifdef WHAM_RUN
389       allocate(iww(max_eneW))
390       do i=1,14
391         do j=1,14
392           if (print_order(i).eq.j) then
393             iww(print_order(i))=j
394             goto 1121
395           endif
396         enddo
397 1121    continue
398       enddo
399 #endif
400  
401 #if defined(WHAM_RUN) || defined(CLUSTER)
402       ndih_constr=0
403
404 !      allocate(ww0(max_eneW))
405 !      ww0 = reshape((/1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,&
406 !          1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,0.4d0,1.0d0,&
407 !          1.0d0,0.0d0,0.0/), shape(ww0))
408 !
409       calc_grad=.false.
410 ! Set timers and counters for the respective routines
411       t_func = 0.0d0
412       t_grad = 0.0d0
413       t_fhel = 0.0d0
414       t_fbet = 0.0d0
415       t_ghel = 0.0d0
416       t_gbet = 0.0d0
417       t_viol = 0.0d0
418       t_gviol = 0.0d0
419       n_func = 0
420       n_grad = 0
421       n_fhel = 0
422       n_fbet = 0
423       n_ghel = 0
424       n_gbet = 0
425       n_viol = 0
426       n_gviol = 0
427       n_map = 0
428 #endif
429 !
430 ! Initialize constants used to split the energy into long- and short-range
431 ! components
432 !
433       r_cut=2.0d0
434       rlamb=0.3d0
435 #ifndef SPLITELE
436       nprint_ene=nprint_ene-1
437 #endif
438       return
439       end subroutine initialize
440 !-----------------------------------------------------------------------------
441       subroutine init_int_table
442
443       use geometry, only:int_bounds1
444 !el      use MPI_data
445 !el      implicit none
446 !      implicit real*8 (a-h,o-z)
447 !      include 'DIMENSIONS'
448 #ifdef MPI
449       include 'mpif.h'
450       integer,dimension(15) :: blocklengths,displs
451 #endif
452 !      include 'COMMON.CONTROL'
453 !      include 'COMMON.SETUP'
454 !      include 'COMMON.CHAIN'
455 !      include 'COMMON.INTERACT'
456 !      include 'COMMON.LOCAL'
457 !      include 'COMMON.SBRIDGE'
458 !      include 'COMMON.TORCNSTR'
459 !      include 'COMMON.IOUNITS'
460 !      include 'COMMON.DERIV'
461 !      include 'COMMON.CONTACTS'
462 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,&
463 !el        iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all  !(0:max_fg_procs)
464 !el      integer,dimension(nres,0:nfgtasks) :: ielstart_all,&
465 !el        ielend_all !(maxres,0:max_fg_procs-1)
466 !el      integer,dimension(0:nfgtasks-1) :: ntask_cont_from_all,&
467 !el        ntask_cont_to_all !(0:max_fg_procs-1),
468 !el      integer,dimension(0:nfgtasks-1,0:nfgtasks-1) :: itask_cont_from_all,&
469 !el        itask_cont_to_all !(0:max_fg_procs-1,0:max_fg_procs-1)
470
471 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,&
472 !el        iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all,&
473 !el        ielstart_all,ielend_all,ntask_cont_from_all,itask_cont_from_all,&
474 !el        ntask_cont_to_all,itask_cont_to_all
475
476       integer :: FG_GROUP,CONT_FROM_GROUP,CONT_TO_GROUP
477       logical :: scheck,lprint,flag
478
479 !el local variables
480       integer :: ind_scint=0,ind_scint_old,ii,jj,i,j,iint
481
482 #ifdef MPI
483       integer :: my_sc_int(0:nfgtasks-1),my_ele_int(0:nfgtasks-1)
484       integer :: my_sc_intt(0:nfgtasks),my_ele_intt(0:nfgtasks)
485       integer :: n_sc_int_tot,my_sc_inde,my_sc_inds,ind_sctint,npept
486       integer :: nele_int_tot,my_ele_inds,my_ele_inde,ind_eleint_old,&
487             ind_eleint,ijunk,nele_int_tot_vdw,my_ele_inds_vdw,&
488             my_ele_inde_vdw,ind_eleint_vdw,ind_eleint_vdw_old,&
489             nscp_int_tot,my_scp_inds,my_scp_inde,ind_scpint,&
490             ind_scpint_old,nsumgrad,nlen,ngrad_start,ngrad_end,&
491             ierror,k,ierr,iaux,ncheck_to,ncheck_from,ind_typ,&
492             ichunk,int_index_old
493       integer,dimension(5) :: nct_molec
494 !el      allocate(itask_cont_from(0:nfgtasks-1)) !(0:max_fg_procs-1)
495 !el      allocate(itask_cont_to(0:nfgtasks-1)) !(0:max_fg_procs-1)
496
497 !... Determine the numbers of start and end SC-SC interaction
498 !... to deal with by current processor.
499 !write (iout,*) '******INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
500       do i=0,nfgtasks-1
501         itask_cont_from(i)=fg_rank
502         itask_cont_to(i)=fg_rank
503       enddo
504       lprint=energy_dec
505 !      lprint=.true.
506       if (lprint) &
507        write (iout,*)'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
508       n_sc_int_tot=(nct-nnt+1)*(nct-nnt)/2-nss
509       call int_bounds(n_sc_int_tot,my_sc_inds,my_sc_inde)
510 !write (iout,*) 'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
511       if (lprint) &
512         write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
513         ' absolute rank',MyRank,&
514         ' n_sc_int_tot',n_sc_int_tot,' my_sc_inds=',my_sc_inds,&
515         ' my_sc_inde',my_sc_inde
516       ind_sctint=0
517       iatsc_s=0
518       iatsc_e=0
519 #endif
520 !el       common /przechowalnia/
521       allocate(iturn3_start_all(0:nfgtasks))
522       allocate(iturn3_end_all(0:nfgtasks))
523       allocate(iturn4_start_all(0:nfgtasks))
524       allocate(iturn4_end_all(0:nfgtasks))
525       allocate(iatel_s_all(0:nfgtasks))
526       allocate(iatel_e_all(0:nfgtasks))
527       allocate(ielstart_all(nres,0:nfgtasks-1))
528       allocate(ielend_all(nres,0:nfgtasks-1))
529
530       allocate(ntask_cont_from_all(0:nfgtasks-1))
531       allocate(ntask_cont_to_all(0:nfgtasks-1))
532       allocate(itask_cont_from_all(0:nfgtasks-1,0:nfgtasks-1))
533       allocate(itask_cont_to_all(0:nfgtasks-1,0:nfgtasks-1))
534 !el----------
535 !      lprint=.false.
536       do i=1,nres !el   !maxres
537         nint_gr(i)=0
538         nscp_gr(i)=0
539         ielstart(i)=0
540         ielend(i)=0
541         do j=1,maxint_gr
542           istart(i,j)=0
543           iend(i,j)=0
544           iscpstart(i,j)=0
545           iscpend(i,j)=0    
546         enddo
547       enddo
548       ind_scint=0
549       ind_scint_old=0
550 !d    write (iout,*) 'ns=',ns,' nss=',nss,' ihpb,jhpb',
551 !d   &   (ihpb(i),jhpb(i),i=1,nss)
552       do i=nnt,nct-1
553         scheck=.false.
554         if (dyn_ss) goto 10
555         do ii=1,nss
556           if (ihpb(ii).eq.i+nres) then
557             scheck=.true.
558             jj=jhpb(ii)-nres
559             goto 10
560           endif
561         enddo
562    10   continue
563 !d      write (iout,*) 'i=',i,' scheck=',scheck,' jj=',jj
564         if (scheck) then
565           if (jj.eq.i+1) then
566 #ifdef MPI
567 !            write (iout,*) 'jj=i+1'
568             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
569        iatsc_s,iatsc_e,i+2,nct,nint_gr(i),istart(i,1),iend(i,1),*12)
570 #else
571             nint_gr(i)=1
572             istart(i,1)=i+2
573             iend(i,1)=nct
574 #endif
575           else if (jj.eq.nct) then
576 #ifdef MPI
577 !            write (iout,*) 'jj=nct'
578             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
579         iatsc_s,iatsc_e,i+1,nct-1,nint_gr(i),istart(i,1),iend(i,1),*12)
580 #else
581             nint_gr(i)=1
582             istart(i,1)=i+1
583             iend(i,1)=nct-1
584 #endif
585           else
586 #ifdef MPI
587             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
588        iatsc_s,iatsc_e,i+1,jj-1,nint_gr(i),istart(i,1),iend(i,1),*12)
589             ii=nint_gr(i)+1
590             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
591        iatsc_s,iatsc_e,jj+1,nct,nint_gr(i),istart(i,ii),iend(i,ii),*12)
592 #else
593             nint_gr(i)=2
594             istart(i,1)=i+1
595             iend(i,1)=jj-1
596             istart(i,2)=jj+1
597             iend(i,2)=nct
598 #endif
599           endif
600         else
601 #ifdef MPI
602           call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
603           iatsc_s,iatsc_e,i+1,nct,nint_gr(i),istart(i,1),iend(i,1),*12)
604 #else
605           nint_gr(i)=1
606           istart(i,1)=i+1
607           iend(i,1)=nct
608           ind_scint=ind_scint+nct-i
609 #endif
610         endif
611 #ifdef MPI
612         ind_scint_old=ind_scint
613 #endif
614       enddo
615    12 continue
616 #ifndef MPI
617       iatsc_s=nnt
618       iatsc_e=nct-1
619 #endif
620       if (iatsc_s.eq.0) iatsc_s=1
621 #ifdef MPI
622       if (lprint) write (*,*) 'Processor',fg_rank,' CG Group',kolor,&
623          ' absolute rank',myrank,' iatsc_s=',iatsc_s,' iatsc_e=',iatsc_e
624 #endif
625       if (lprint) then
626       write (iout,'(a)') 'Interaction array:'
627       do i=iatsc_s,iatsc_e
628         write (iout,'(i3,2(2x,2i3))') &
629        i,(istart(i,iint),iend(i,iint),iint=1,nint_gr(i))
630       enddo
631       endif
632       ispp=4 !?? wham ispp=2
633 #ifdef MPI
634 ! Now partition the electrostatic-interaction array
635       if (itype(nres_molec(1),1).eq.ntyp1_molec(1)) then
636       npept=nres_molec(1)-nnt-1
637       else
638       npept=nres_molec(1)-nnt
639       endif
640       nele_int_tot=(npept-ispp)*(npept-ispp+1)/2
641       call int_bounds(nele_int_tot,my_ele_inds,my_ele_inde)
642       if (lprint) &
643        write (*,*) 'Processor',fg_rank,' CG group',kolor,&
644         ' absolute rank',MyRank,&
645         ' nele_int_tot',nele_int_tot,' my_ele_inds=',my_ele_inds,&
646                     ' my_ele_inde',my_ele_inde
647       iatel_s=0
648       iatel_e=0
649       ind_eleint=0
650       ind_eleint_old=0
651       if (itype(nres_molec(1),1).eq.ntyp_molec(1)) then
652       nct_molec(1)=nres_molec(1)-1
653       else
654       nct_molec(1)=nres_molec(1)
655       endif
656
657       do i=nnt,nct_molec(1)-3
658         ijunk=0
659         call int_partition(ind_eleint,my_ele_inds,my_ele_inde,i,&
660           iatel_s,iatel_e,i+ispp,nct-1,ijunk,ielstart(i),ielend(i),*13)
661       enddo ! i 
662    13 continue
663       if (iatel_s.eq.0) iatel_s=1
664       nele_int_tot_vdw=(npept-2)*(npept-2+1)/2
665 !      write (iout,*) "nele_int_tot_vdw",nele_int_tot_vdw
666       call int_bounds(nele_int_tot_vdw,my_ele_inds_vdw,my_ele_inde_vdw)
667 !      write (iout,*) "my_ele_inds_vdw",my_ele_inds_vdw,
668 !     & " my_ele_inde_vdw",my_ele_inde_vdw
669       ind_eleint_vdw=0
670       ind_eleint_vdw_old=0
671       iatel_s_vdw=0
672       iatel_e_vdw=0
673       do i=nnt,nct_molec(1)-3
674         ijunk=0
675         call int_partition(ind_eleint_vdw,my_ele_inds_vdw,&
676           my_ele_inde_vdw,i,&
677           iatel_s_vdw,iatel_e_vdw,i+2,nct-1,ijunk,ielstart_vdw(i),&
678           ielend_vdw(i),*15)
679 !        write (iout,*) i," ielstart_vdw",ielstart_vdw(i),
680 !     &   " ielend_vdw",ielend_vdw(i)
681       enddo ! i 
682       if (iatel_s_vdw.eq.0) iatel_s_vdw=1
683    15 continue
684 #else
685       iatel_s=nnt
686       iatel_e=nct_molec(1)-5 ! ?? wham iatel_e=nct-3
687       do i=iatel_s,iatel_e
688         ielstart(i)=i+4 ! ?? wham +2
689         ielend(i)=nct_molec(1)-1
690       enddo
691       iatel_s_vdw=nnt
692       iatel_e_vdw=nct_molec(1)-3
693       do i=iatel_s_vdw,iatel_e_vdw
694         ielstart_vdw(i)=i+2
695         ielend_vdw(i)=nct_molec(1)-1
696       enddo
697 #endif
698       if (lprint) then
699         write (*,'(a)') 'Processor',fg_rank,' CG group',kolor,&
700         ' absolute rank',MyRank
701         write (iout,*) 'Electrostatic interaction array:'
702         do i=iatel_s,iatel_e
703           write (iout,'(i3,2(2x,2i3))') i,ielstart(i),ielend(i)
704         enddo
705       endif ! lprint
706 !     iscp=3
707       iscp=2
708 ! Partition the SC-p interaction array
709 #ifdef MPI
710       nscp_int_tot=(npept-iscp+1)*(npept-iscp+1)
711       call int_bounds(nscp_int_tot,my_scp_inds,my_scp_inde)
712       if (lprint) write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
713         ' absolute rank',myrank,&
714         ' nscp_int_tot',nscp_int_tot,' my_scp_inds=',my_scp_inds,&
715                     ' my_scp_inde',my_scp_inde
716       iatscp_s=0
717       iatscp_e=0
718       ind_scpint=0
719       ind_scpint_old=0
720       do i=nnt,nct_molec(1)-1
721         if (i.lt.nnt+iscp) then
722 !d        write (iout,*) 'i.le.nnt+iscp'
723           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
724             iatscp_s,iatscp_e,i+iscp,nct,nscp_gr(i),iscpstart(i,1),&
725             iscpend(i,1),*14)
726         else if (i.gt.nct-iscp) then
727 !d        write (iout,*) 'i.gt.nct-iscp'
728           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
729             iatscp_s,iatscp_e,nnt,i-iscp,nscp_gr(i),iscpstart(i,1),&
730             iscpend(i,1),*14)
731         else
732           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
733             iatscp_s,iatscp_e,nnt,i-iscp,nscp_gr(i),iscpstart(i,1),&
734            iscpend(i,1),*14)
735           ii=nscp_gr(i)+1
736           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
737             iatscp_s,iatscp_e,i+iscp,nct,nscp_gr(i),iscpstart(i,ii),&
738             iscpend(i,ii),*14)
739         endif
740       enddo ! i
741    14 continue
742 #else
743       iatscp_s=nnt
744       iatscp_e=nct_molec(1)-1
745       do i=nnt,nct_molec(1)-1
746         if (i.lt.nnt+iscp) then
747           nscp_gr(i)=1
748           iscpstart(i,1)=i+iscp
749           iscpend(i,1)=nct_molec(1)
750         elseif (i.gt.nct-iscp) then
751           nscp_gr(i)=1
752           iscpstart(i,1)=nnt
753           iscpend(i,1)=i-iscp
754         else
755           nscp_gr(i)=2
756           iscpstart(i,1)=nnt
757           iscpend(i,1)=i-iscp
758           iscpstart(i,2)=i+iscp
759           iscpend(i,2)=nct_molec(1)
760         endif 
761       enddo ! i
762 #endif
763       if (iatscp_s.eq.0) iatscp_s=1
764       if (lprint) then
765         write (iout,'(a)') 'SC-p interaction array:'
766         do i=iatscp_s,iatscp_e
767           write (iout,'(i3,2(2x,2i3))') &
768               i,(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i))
769         enddo
770       endif ! lprint
771 ! Partition local interactions
772 #ifdef MPI
773       call int_bounds(nres_molec(1)-2,loc_start,loc_end)
774       loc_start=loc_start+1
775       loc_end=loc_end+1
776       call int_bounds(nres_molec(1)-2,ithet_start,ithet_end)
777       ithet_start=ithet_start+2
778       ithet_end=ithet_end+2
779       call int_bounds(nct_molec(1)-nnt-2,iturn3_start,iturn3_end) 
780       iturn3_start=iturn3_start+nnt
781       iphi_start=iturn3_start+2
782       iturn3_end=iturn3_end+nnt
783       iphi_end=iturn3_end+2
784       iturn3_start=iturn3_start-1
785       iturn3_end=iturn3_end-1
786       call int_bounds(nres_molec(1)-3,itau_start,itau_end)
787       itau_start=itau_start+3
788       itau_end=itau_end+3
789       call int_bounds(nres_molec(1)-3,iphi1_start,iphi1_end)
790       iphi1_start=iphi1_start+3
791       iphi1_end=iphi1_end+3
792       call int_bounds(nct_molec(1)-nnt-3,iturn4_start,iturn4_end) 
793       iturn4_start=iturn4_start+nnt
794       iphid_start=iturn4_start+2
795       iturn4_end=iturn4_end+nnt
796       iphid_end=iturn4_end+2
797       iturn4_start=iturn4_start-1
798       iturn4_end=iturn4_end-1
799       print *,"TUTUTU",nres_molec(1),nres
800       call int_bounds(nres-2,ibond_start,ibond_end) 
801       ibond_start=ibond_start+1
802       ibond_end=ibond_end+1
803       call int_bounds(nct_molec(1)-nnt,ibondp_start,ibondp_end) 
804       ibondp_start=ibondp_start+nnt
805       ibondp_end=ibondp_end+nnt
806       call int_bounds1(nres_molec(1)-1,ivec_start,ivec_end) 
807 !      print *,"Processor",myrank,fg_rank,fg_rank1,
808 !     &  " ivec_start",ivec_start," ivec_end",ivec_end
809       iset_start=loc_start+2
810       iset_end=loc_end+2
811       call int_bounds(nres_molec(1),ilip_start,ilip_end)
812       ilip_start=ilip_start
813       ilip_end=ilip_end
814       call int_bounds(nres_molec(1)-1,itube_start,itube_end)
815       itube_start=itube_start
816       itube_end=itube_end
817       if (ndih_constr.eq.0) then
818         idihconstr_start=1
819         idihconstr_end=0
820       else
821         call int_bounds(ndih_constr,idihconstr_start,idihconstr_end)
822       endif
823       if (ntheta_constr.eq.0) then
824         ithetaconstr_start=1
825         ithetaconstr_end=0
826       else
827         call int_bounds &
828        (ntheta_constr,ithetaconstr_start,ithetaconstr_end)
829       endif
830
831 !      nsumgrad=(nres-nnt)*(nres-nnt+1)/2
832 !      nlen=nres-nnt+1
833       nsumgrad=(nres-nnt)*(nres-nnt+1)/2
834       nlen=nres-nnt+1
835       call int_bounds(nsumgrad,ngrad_start,ngrad_end)
836       igrad_start=((2*nlen+1) &
837          -sqrt(float((2*nlen-1)**2-8*(ngrad_start-1))))/2
838       igrad_end=((2*nlen+1) &
839          -sqrt(float((2*nlen-1)**2-8*(ngrad_end-1))))/2
840 !el      allocate(jgrad_start(igrad_start:igrad_end))
841 !el      allocate(jgrad_end(igrad_start:igrad_end)) !(maxres)
842       jgrad_start(igrad_start)= &
843          ngrad_start-(2*nlen-igrad_start)*(igrad_start-1)/2 &
844          +igrad_start
845       jgrad_end(igrad_start)=nres
846       if (igrad_end.gt.igrad_start) jgrad_start(igrad_end)=igrad_end+1
847       jgrad_end(igrad_end)=ngrad_end-(2*nlen-igrad_end)*(igrad_end-1)/2 &
848           +igrad_end
849       do i=igrad_start+1,igrad_end-1
850         jgrad_start(i)=i+1
851         jgrad_end(i)=nres
852       enddo
853       if (lprint) then 
854         write (*,*) 'Processor:',fg_rank,' CG group',kolor,&
855        ' absolute rank',myrank,&
856        ' loc_start',loc_start,' loc_end',loc_end,&
857        ' ithet_start',ithet_start,' ithet_end',ithet_end,&
858        ' iphi_start',iphi_start,' iphi_end',iphi_end,&
859        ' iphid_start',iphid_start,' iphid_end',iphid_end,&
860        ' ibond_start',ibond_start,' ibond_end',ibond_end,&
861        ' ibondp_start',ibondp_start,' ibondp_end',ibondp_end,&
862        ' iturn3_start',iturn3_start,' iturn3_end',iturn3_end,&
863        ' iturn4_start',iturn4_start,' iturn4_end',iturn4_end,&
864        ' ivec_start',ivec_start,' ivec_end',ivec_end,&
865        ' iset_start',iset_start,' iset_end',iset_end,&
866        ' idihconstr_start',idihconstr_start,' idihconstr_end',&
867          idihconstr_end
868        write (*,*) 'Processor:',fg_rank,myrank,' igrad_start',&
869          igrad_start,' igrad_end',igrad_end,' ngrad_start',ngrad_start,&
870          ' ngrad_end',ngrad_end
871        do i=igrad_start,igrad_end
872          write(*,*) 'Processor:',fg_rank,myrank,i,&
873           jgrad_start(i),jgrad_end(i)
874        enddo
875       endif
876       if (nfgtasks.gt.1) then
877         call MPI_Allgather(ivec_start,1,MPI_INTEGER,ivec_displ(0),1,&
878           MPI_INTEGER,FG_COMM1,IERROR)
879         iaux=ivec_end-ivec_start+1
880         call MPI_Allgather(iaux,1,MPI_INTEGER,ivec_count(0),1,&
881           MPI_INTEGER,FG_COMM1,IERROR)
882         call MPI_Allgather(iset_start-2,1,MPI_INTEGER,iset_displ(0),1,&
883           MPI_INTEGER,FG_COMM,IERROR)
884         iaux=iset_end-iset_start+1
885         call MPI_Allgather(iaux,1,MPI_INTEGER,iset_count(0),1,&
886           MPI_INTEGER,FG_COMM,IERROR)
887         call MPI_Allgather(ibond_start,1,MPI_INTEGER,ibond_displ(0),1,&
888           MPI_INTEGER,FG_COMM,IERROR)
889         iaux=ibond_end-ibond_start+1
890         call MPI_Allgather(iaux,1,MPI_INTEGER,ibond_count(0),1,&
891           MPI_INTEGER,FG_COMM,IERROR)
892         call MPI_Allgather(ithet_start,1,MPI_INTEGER,ithet_displ(0),1,&
893           MPI_INTEGER,FG_COMM,IERROR)
894         iaux=ithet_end-ithet_start+1
895         call MPI_Allgather(iaux,1,MPI_INTEGER,ithet_count(0),1,&
896           MPI_INTEGER,FG_COMM,IERROR)
897         call MPI_Allgather(iphi_start,1,MPI_INTEGER,iphi_displ(0),1,&
898           MPI_INTEGER,FG_COMM,IERROR)
899         iaux=iphi_end-iphi_start+1
900         call MPI_Allgather(iaux,1,MPI_INTEGER,iphi_count(0),1,&
901           MPI_INTEGER,FG_COMM,IERROR)
902         call MPI_Allgather(iphi1_start,1,MPI_INTEGER,iphi1_displ(0),1,&
903           MPI_INTEGER,FG_COMM,IERROR)
904         iaux=iphi1_end-iphi1_start+1
905         call MPI_Allgather(iaux,1,MPI_INTEGER,iphi1_count(0),1,&
906           MPI_INTEGER,FG_COMM,IERROR)
907         do i=0,nfgtasks-1
908           do j=1,nres
909             ielstart_all(j,i)=0
910             ielend_all(j,i)=0
911           enddo
912         enddo
913         call MPI_Allgather(iturn3_start,1,MPI_INTEGER,&
914           iturn3_start_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
915         call MPI_Allgather(iturn4_start,1,MPI_INTEGER,&
916           iturn4_start_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
917         call MPI_Allgather(iturn3_end,1,MPI_INTEGER,&
918           iturn3_end_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
919         call MPI_Allgather(iturn4_end,1,MPI_INTEGER,&
920           iturn4_end_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
921         call MPI_Allgather(iatel_s,1,MPI_INTEGER,&
922           iatel_s_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
923         call MPI_Allgather(iatel_e,1,MPI_INTEGER,&
924           iatel_e_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
925         call MPI_Allgather(ielstart(1),nres,MPI_INTEGER,&
926           ielstart_all(1,0),nres,MPI_INTEGER,FG_COMM,IERROR)
927         call MPI_Allgather(ielend(1),nres,MPI_INTEGER,&
928           ielend_all(1,0),nres,MPI_INTEGER,FG_COMM,IERROR)
929         if (lprint) then
930         write (iout,*) "iatel_s_all",(iatel_s_all(i),i=0,nfgtasks)
931         write (iout,*) "iatel_e_all",(iatel_e_all(i),i=0,nfgtasks)
932         write (iout,*) "iturn3_start_all",&
933           (iturn3_start_all(i),i=0,nfgtasks-1)
934         write (iout,*) "iturn3_end_all",&
935           (iturn3_end_all(i),i=0,nfgtasks-1)
936         write (iout,*) "iturn4_start_all",&
937           (iturn4_start_all(i),i=0,nfgtasks-1)
938         write (iout,*) "iturn4_end_all",&
939           (iturn4_end_all(i),i=0,nfgtasks-1)
940         write (iout,*) "The ielstart_all array"
941         do i=nnt,nct
942           write (iout,'(20i4)') i,(ielstart_all(i,j),j=0,nfgtasks-1)
943         enddo
944         write (iout,*) "The ielend_all array"
945         do i=nnt,nct
946           write (iout,'(20i4)') i,(ielend_all(i,j),j=0,nfgtasks-1)
947         enddo
948         call flush(iout)
949         endif
950         ntask_cont_from=0
951         ntask_cont_to=0
952         itask_cont_from(0)=fg_rank
953         itask_cont_to(0)=fg_rank
954         flag=.false.
955 !el        allocate(iturn3_sent(4,iturn3_start:iturn3_end))
956 !el        allocate(iturn4_sent(4,iturn4_start:iturn4_end)) !(4,maxres)
957         do ii=iturn3_start,iturn3_end
958           call add_int(ii,ii+2,iturn3_sent(1,ii),&
959                       ntask_cont_to,itask_cont_to,flag)
960         enddo
961         do ii=iturn4_start,iturn4_end
962           call add_int(ii,ii+3,iturn4_sent(1,ii),&
963                       ntask_cont_to,itask_cont_to,flag)
964         enddo
965         do ii=iturn3_start,iturn3_end
966           call add_int_from(ii,ii+2,ntask_cont_from,itask_cont_from)
967         enddo
968         do ii=iturn4_start,iturn4_end
969           call add_int_from(ii,ii+3,ntask_cont_from,itask_cont_from)
970         enddo
971         if (lprint) then
972         write (iout,*) "After turn3 ntask_cont_from",ntask_cont_from,&
973          " ntask_cont_to",ntask_cont_to
974         write (iout,*) "itask_cont_from",&
975           (itask_cont_from(i),i=1,ntask_cont_from)
976         write (iout,*) "itask_cont_to",&
977           (itask_cont_to(i),i=1,ntask_cont_to)
978         call flush(iout)
979         endif
980 !        write (iout,*) "Loop forward"
981 !        call flush(iout)
982         do i=iatel_s,iatel_e
983 !          write (iout,*) "from loop i=",i
984 !          call flush(iout)
985           do j=ielstart(i),ielend(i)
986             call add_int_from(i,j,ntask_cont_from,itask_cont_from)
987           enddo
988         enddo
989 !        write (iout,*) "Loop backward iatel_e-1",iatel_e-1,
990 !     &     " iatel_e",iatel_e
991 !        call flush(iout)
992         nat_sent=0
993         do i=iatel_s,iatel_e
994 !          write (iout,*) "i",i," ielstart",ielstart(i),
995 !     &      " ielend",ielend(i)
996 !          call flush(iout)
997           flag=.false.
998           do j=ielstart(i),ielend(i)
999             call add_int(i,j,iint_sent(1,j,nat_sent+1),ntask_cont_to,&
1000                         itask_cont_to,flag)
1001           enddo
1002           if (flag) then
1003             nat_sent=nat_sent+1
1004             iat_sent(nat_sent)=i
1005           endif
1006         enddo
1007         if (lprint) then
1008         write (iout,*)"After longrange ntask_cont_from",ntask_cont_from,&
1009          " ntask_cont_to",ntask_cont_to
1010         write (iout,*) "itask_cont_from",&
1011           (itask_cont_from(i),i=1,ntask_cont_from)
1012         write (iout,*) "itask_cont_to",&
1013           (itask_cont_to(i),i=1,ntask_cont_to)
1014         call flush(iout)
1015         write (iout,*) "iint_sent"
1016         do i=1,nat_sent
1017           ii=iat_sent(i)
1018           write (iout,'(20i4)') ii,(j,(iint_sent(k,j,i),k=1,4),&
1019             j=ielstart(ii),ielend(ii))
1020         enddo
1021         write (iout,*) "iturn3_sent iturn3_start",iturn3_start,&
1022           " iturn3_end",iturn3_end
1023         write (iout,'(20i4)') (i,(iturn3_sent(j,i),j=1,4),&
1024            i=iturn3_start,iturn3_end)
1025         write (iout,*) "iturn4_sent iturn4_start",iturn4_start,&
1026           " iturn4_end",iturn4_end
1027         write (iout,'(20i4)') (i,(iturn4_sent(j,i),j=1,4),&
1028            i=iturn4_start,iturn4_end)
1029         call flush(iout)
1030         endif
1031         call MPI_Gather(ntask_cont_from,1,MPI_INTEGER,&
1032          ntask_cont_from_all,1,MPI_INTEGER,king,FG_COMM,IERR)
1033 !        write (iout,*) "Gather ntask_cont_from ended"
1034 !        call flush(iout)
1035         call MPI_Gather(itask_cont_from(0),nfgtasks,MPI_INTEGER,&
1036          itask_cont_from_all(0,0),nfgtasks,MPI_INTEGER,king,&
1037          FG_COMM,IERR)
1038 !        write (iout,*) "Gather itask_cont_from ended"
1039 !        call flush(iout)
1040         call MPI_Gather(ntask_cont_to,1,MPI_INTEGER,ntask_cont_to_all,&
1041          1,MPI_INTEGER,king,FG_COMM,IERR)
1042 !        write (iout,*) "Gather ntask_cont_to ended"
1043 !        call flush(iout)
1044         call MPI_Gather(itask_cont_to,nfgtasks,MPI_INTEGER,&
1045          itask_cont_to_all,nfgtasks,MPI_INTEGER,king,FG_COMM,IERR)
1046 !        write (iout,*) "Gather itask_cont_to ended"
1047 !        call flush(iout)
1048         if (fg_rank.eq.king) then
1049           write (iout,*)"Contact receive task map (proc, #tasks, tasks)"
1050           do i=0,nfgtasks-1
1051             write (iout,'(20i4)') i,ntask_cont_from_all(i),&
1052               (itask_cont_from_all(j,i),j=1,ntask_cont_from_all(i)) 
1053           enddo
1054           write (iout,*)
1055           call flush(iout)
1056           write (iout,*) "Contact send task map (proc, #tasks, tasks)"
1057           do i=0,nfgtasks-1
1058             write (iout,'(20i4)') i,ntask_cont_to_all(i),&
1059              (itask_cont_to_all(j,i),j=1,ntask_cont_to_all(i)) 
1060           enddo
1061           write (iout,*)
1062           call flush(iout)
1063 ! Check if every send will have a matching receive
1064           ncheck_to=0
1065           ncheck_from=0
1066           do i=0,nfgtasks-1
1067             ncheck_to=ncheck_to+ntask_cont_to_all(i)
1068             ncheck_from=ncheck_from+ntask_cont_from_all(i)
1069           enddo
1070           write (iout,*) "Control sums",ncheck_from,ncheck_to
1071           if (ncheck_from.ne.ncheck_to) then
1072             write (iout,*) "Error: #receive differs from #send."
1073             write (iout,*) "Terminating program...!"
1074             call flush(iout)
1075             flag=.false.
1076           else
1077             flag=.true.
1078             do i=0,nfgtasks-1
1079               do j=1,ntask_cont_to_all(i)
1080                 ii=itask_cont_to_all(j,i)
1081                 do k=1,ntask_cont_from_all(ii)
1082                   if (itask_cont_from_all(k,ii).eq.i) then
1083                     if(lprint)write(iout,*)"Matching send/receive",i,ii
1084                     exit
1085                   endif
1086                 enddo
1087                 if (k.eq.ntask_cont_from_all(ii)+1) then
1088                   flag=.false.
1089                   write (iout,*) "Error: send by",j," to",ii,&
1090                     " would have no matching receive"
1091                 endif
1092               enddo
1093             enddo
1094           endif
1095           if (.not.flag) then
1096             write (iout,*) "Unmatched sends; terminating program"
1097             call flush(iout)
1098           endif
1099         endif
1100         call MPI_Bcast(flag,1,MPI_LOGICAL,king,FG_COMM,IERROR)
1101 !        write (iout,*) "flag broadcast ended flag=",flag
1102 !        call flush(iout)
1103         if (.not.flag) then
1104           call MPI_Finalize(IERROR)
1105           stop "Error in INIT_INT_TABLE: unmatched send/receive."
1106         endif
1107         call MPI_Comm_group(FG_COMM,fg_group,IERR)
1108 !        write (iout,*) "MPI_Comm_group ended"
1109 !        call flush(iout)
1110         call MPI_Group_incl(fg_group,ntask_cont_from+1,&
1111           itask_cont_from(0),CONT_FROM_GROUP,IERR)
1112         call MPI_Group_incl(fg_group,ntask_cont_to+1,itask_cont_to(0),&
1113           CONT_TO_GROUP,IERR)
1114         do i=1,nat_sent
1115           ii=iat_sent(i)
1116           iaux=4*(ielend(ii)-ielstart(ii)+1)
1117           call MPI_Group_translate_ranks(fg_group,iaux,&
1118             iint_sent(1,ielstart(ii),i),CONT_TO_GROUP,&
1119             iint_sent_local(1,ielstart(ii),i),IERR )
1120 !          write (iout,*) "Ranks translated i=",i
1121 !          call flush(iout)
1122         enddo
1123         iaux=4*(iturn3_end-iturn3_start+1)
1124         call MPI_Group_translate_ranks(fg_group,iaux,&
1125            iturn3_sent(1,iturn3_start),CONT_TO_GROUP,&
1126            iturn3_sent_local(1,iturn3_start),IERR)
1127         iaux=4*(iturn4_end-iturn4_start+1)
1128         call MPI_Group_translate_ranks(fg_group,iaux,&
1129            iturn4_sent(1,iturn4_start),CONT_TO_GROUP,&
1130            iturn4_sent_local(1,iturn4_start),IERR)
1131         if (lprint) then
1132         write (iout,*) "iint_sent_local"
1133         do i=1,nat_sent
1134           ii=iat_sent(i)
1135           write (iout,'(20i4)') ii,(j,(iint_sent_local(k,j,i),k=1,4),&
1136             j=ielstart(ii),ielend(ii))
1137           call flush(iout)
1138         enddo
1139         write (iout,*) "iturn3_sent_local iturn3_start",iturn3_start,&
1140           " iturn3_end",iturn3_end
1141         write (iout,'(20i4)') (i,(iturn3_sent_local(j,i),j=1,4),&
1142            i=iturn3_start,iturn3_end)
1143         write (iout,*) "iturn4_sent_local iturn4_start",iturn4_start,&
1144           " iturn4_end",iturn4_end
1145         write (iout,'(20i4)') (i,(iturn4_sent_local(j,i),j=1,4),&
1146            i=iturn4_start,iturn4_end)
1147         call flush(iout)
1148         endif
1149         call MPI_Group_free(fg_group,ierr)
1150         call MPI_Group_free(cont_from_group,ierr)
1151         call MPI_Group_free(cont_to_group,ierr)
1152         call MPI_Type_contiguous(3,MPI_DOUBLE_PRECISION,MPI_UYZ,IERROR)
1153         call MPI_Type_commit(MPI_UYZ,IERROR)
1154         call MPI_Type_contiguous(18,MPI_DOUBLE_PRECISION,MPI_UYZGRAD,&
1155           IERROR)
1156         call MPI_Type_commit(MPI_UYZGRAD,IERROR)
1157         call MPI_Type_contiguous(2,MPI_DOUBLE_PRECISION,MPI_MU,IERROR)
1158         call MPI_Type_commit(MPI_MU,IERROR)
1159         call MPI_Type_contiguous(4,MPI_DOUBLE_PRECISION,MPI_MAT1,IERROR)
1160         call MPI_Type_commit(MPI_MAT1,IERROR)
1161         call MPI_Type_contiguous(8,MPI_DOUBLE_PRECISION,MPI_MAT2,IERROR)
1162         call MPI_Type_commit(MPI_MAT2,IERROR)
1163         call MPI_Type_contiguous(6,MPI_DOUBLE_PRECISION,MPI_THET,IERROR)
1164         call MPI_Type_commit(MPI_THET,IERROR)
1165         call MPI_Type_contiguous(9,MPI_DOUBLE_PRECISION,MPI_GAM,IERROR)
1166         call MPI_Type_commit(MPI_GAM,IERROR)
1167
1168 !el        allocate(lentyp(0:nfgtasks-1))
1169 #ifndef MATGATHER
1170 ! 9/22/08 Derived types to send matrices which appear in correlation terms
1171         do i=0,nfgtasks-1
1172           if (ivec_count(i).eq.ivec_count(0)) then
1173             lentyp(i)=0
1174           else
1175             lentyp(i)=1
1176           endif
1177         enddo
1178         do ind_typ=lentyp(0),lentyp(nfgtasks-1)
1179         if (ind_typ.eq.0) then
1180           ichunk=ivec_count(0)
1181         else
1182           ichunk=ivec_count(1)
1183         endif
1184 !        do i=1,4
1185 !          blocklengths(i)=4
1186 !        enddo
1187 !        displs(1)=0
1188 !        do i=2,4
1189 !          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
1190 !        enddo
1191 !        do i=1,4
1192 !          blocklengths(i)=blocklengths(i)*ichunk
1193 !        enddo
1194 !        write (iout,*) "blocklengths and displs"
1195 !        do i=1,4
1196 !          write (iout,*) i,blocklengths(i),displs(i)
1197 !        enddo
1198 !        call flush(iout)
1199 !        call MPI_Type_indexed(4,blocklengths(1),displs(1),
1200 !     &    MPI_DOUBLE_PRECISION,MPI_ROTAT1(ind_typ),IERROR)
1201 !        call MPI_Type_commit(MPI_ROTAT1(ind_typ),IERROR)
1202 !        write (iout,*) "MPI_ROTAT1",MPI_ROTAT1 
1203 !        do i=1,4
1204 !          blocklengths(i)=2
1205 !        enddo
1206 !        displs(1)=0
1207 !        do i=2,4
1208 !          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
1209 !        enddo
1210 !        do i=1,4
1211 !          blocklengths(i)=blocklengths(i)*ichunk
1212 !        enddo
1213 !        write (iout,*) "blocklengths and displs"
1214 !        do i=1,4
1215 !          write (iout,*) i,blocklengths(i),displs(i)
1216 !        enddo
1217 !        call flush(iout)
1218 !        call MPI_Type_indexed(4,blocklengths(1),displs(1),
1219 !     &    MPI_DOUBLE_PRECISION,MPI_ROTAT2(ind_typ),IERROR)
1220 !        call MPI_Type_commit(MPI_ROTAT2(ind_typ),IERROR)
1221 !        write (iout,*) "MPI_ROTAT2",MPI_ROTAT2 
1222         do i=1,8
1223           blocklengths(i)=2
1224         enddo
1225         displs(1)=0
1226         do i=2,8
1227           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1228         enddo
1229         do i=1,15
1230           blocklengths(i)=blocklengths(i)*ichunk
1231         enddo
1232         call MPI_Type_indexed(8,blocklengths,displs,&
1233           MPI_DOUBLE_PRECISION,MPI_PRECOMP11(ind_typ),IERROR)
1234         call MPI_Type_commit(MPI_PRECOMP11(ind_typ),IERROR)
1235         do i=1,8
1236           blocklengths(i)=4
1237         enddo
1238         displs(1)=0
1239         do i=2,8
1240           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1241         enddo
1242         do i=1,15
1243           blocklengths(i)=blocklengths(i)*ichunk
1244         enddo
1245         call MPI_Type_indexed(8,blocklengths,displs,&
1246           MPI_DOUBLE_PRECISION,MPI_PRECOMP12(ind_typ),IERROR)
1247         call MPI_Type_commit(MPI_PRECOMP12(ind_typ),IERROR)
1248         do i=1,6
1249           blocklengths(i)=4
1250         enddo
1251         displs(1)=0
1252         do i=2,6
1253           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1254         enddo
1255         do i=1,6
1256           blocklengths(i)=blocklengths(i)*ichunk
1257         enddo
1258         call MPI_Type_indexed(6,blocklengths,displs,&
1259           MPI_DOUBLE_PRECISION,MPI_PRECOMP22(ind_typ),IERROR)
1260         call MPI_Type_commit(MPI_PRECOMP22(ind_typ),IERROR)
1261         do i=1,2
1262           blocklengths(i)=8
1263         enddo
1264         displs(1)=0
1265         do i=2,2
1266           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1267         enddo
1268         do i=1,2
1269           blocklengths(i)=blocklengths(i)*ichunk
1270         enddo
1271         call MPI_Type_indexed(2,blocklengths,displs,&
1272           MPI_DOUBLE_PRECISION,MPI_PRECOMP23(ind_typ),IERROR)
1273         call MPI_Type_commit(MPI_PRECOMP23(ind_typ),IERROR)
1274         do i=1,4
1275           blocklengths(i)=1
1276         enddo
1277         displs(1)=0
1278         do i=2,4
1279           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1280         enddo
1281         do i=1,4
1282           blocklengths(i)=blocklengths(i)*ichunk
1283         enddo
1284         call MPI_Type_indexed(4,blocklengths,displs,&
1285           MPI_DOUBLE_PRECISION,MPI_ROTAT_OLD(ind_typ),IERROR)
1286         call MPI_Type_commit(MPI_ROTAT_OLD(ind_typ),IERROR)
1287         enddo
1288 #endif
1289       endif
1290       iint_start=ivec_start+1
1291       iint_end=ivec_end+1
1292       do i=0,nfgtasks-1
1293           iint_count(i)=ivec_count(i)
1294           iint_displ(i)=ivec_displ(i)
1295           ivec_displ(i)=ivec_displ(i)-1
1296           iset_displ(i)=iset_displ(i)-1
1297           ithet_displ(i)=ithet_displ(i)-1
1298           iphi_displ(i)=iphi_displ(i)-1
1299           iphi1_displ(i)=iphi1_displ(i)-1
1300           ibond_displ(i)=ibond_displ(i)-1
1301       enddo
1302       if (nfgtasks.gt.1 .and. fg_rank.eq.king &
1303           .and. (me.eq.0 .or. .not. out1file)) then
1304         write (iout,*) "IVEC_DISPL, IVEC_COUNT, ISET_START, ISET_COUNT"
1305         do i=0,nfgtasks-1
1306           write (iout,*) i,ivec_displ(i),ivec_count(i),iset_displ(i),&
1307             iset_count(i)
1308         enddo
1309         write (iout,*) "iphi_start",iphi_start," iphi_end",iphi_end,&
1310           " iphi1_start",iphi1_start," iphi1_end",iphi1_end
1311         write (iout,*)"IPHI_COUNT, IPHI_DISPL, IPHI1_COUNT, IPHI1_DISPL"
1312         do i=0,nfgtasks-1
1313           write (iout,*) i,iphi_count(i),iphi_displ(i),iphi1_count(i),&
1314             iphi1_displ(i)
1315         enddo
1316         write(iout,'(i10,a,i10,a,i10,a/a,i3,a)') n_sc_int_tot,' SC-SC ',&
1317           nele_int_tot,' electrostatic and ',nscp_int_tot,&
1318           ' SC-p interactions','were distributed among',nfgtasks,&
1319           ' fine-grain processors.'
1320       endif
1321 #else
1322       loc_start=2
1323       loc_end=nres_molec(1)-1
1324       ithet_start=3 
1325       ithet_end=nres_molec(1)
1326       iturn3_start=nnt
1327       iturn3_end=nct_molec(1)-3
1328       iturn4_start=nnt
1329       iturn4_end=nct_molec(1)-4
1330       iphi_start=nnt+3
1331       iphi_end=nct_molec(1)
1332       iphi1_start=4
1333       iphi1_end=nres_molec(1)
1334       idihconstr_start=1
1335       idihconstr_end=ndih_constr
1336       ithetaconstr_start=1
1337       ithetaconstr_end=ntheta_constr
1338       iphid_start=iphi_start
1339       iphid_end=iphi_end-1
1340       itau_start=4
1341       itau_end=nres_molec(1)
1342       ibond_start=2
1343       ibond_end=nres_molec(1)-1
1344       ibondp_start=nnt
1345       ibondp_end=nct_molec(1)-1
1346       ivec_start=1
1347       ivec_end=nres_molec(1)-1
1348       iset_start=3
1349       iset_end=nres_molec(1)+1
1350       iint_start=2
1351       iint_end=nres_molec(1)-1
1352       ilip_start=1
1353       ilip_end=nres_molec(1)
1354       itube_start=1
1355       itube_end=nres_molec(1)
1356 #endif
1357 !el       common /przechowalnia/
1358 !      deallocate(iturn3_start_all)
1359 !      deallocate(iturn3_end_all)
1360 !      deallocate(iturn4_start_all)
1361 !      deallocate(iturn4_end_all)
1362 !      deallocate(iatel_s_all)
1363 !      deallocate(iatel_e_all)
1364 !      deallocate(ielstart_all)
1365 !      deallocate(ielend_all)
1366
1367 !      deallocate(ntask_cont_from_all)
1368 !      deallocate(ntask_cont_to_all)
1369 !      deallocate(itask_cont_from_all)
1370 !      deallocate(itask_cont_to_all)
1371 !el----------
1372       return
1373       end subroutine init_int_table
1374 #ifdef MPI
1375 !-----------------------------------------------------------------------------
1376       subroutine add_int(ii,jj,itask,ntask_cont_to,itask_cont_to,flag)
1377
1378 !el      implicit none
1379 !      include "DIMENSIONS"
1380 !      include "COMMON.INTERACT"
1381 !      include "COMMON.SETUP"
1382 !      include "COMMON.IOUNITS"
1383       integer :: ii,jj,ntask_cont_to
1384       integer,dimension(4) :: itask
1385       integer :: itask_cont_to(0:nfgtasks-1)    !(0:max_fg_procs-1)
1386       logical :: flag
1387 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1388 !el       iturn4_end_all,iatel_s_all,iatel_e_all        !(0:max_fg_procs)
1389 !el      integer,dimension(nres,0:nfgtasks-1) :: ielstart_all,ielend_all        !(maxres,0:max_fg_procs-1)
1390 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1391 !el       iturn4_end_all,iatel_s_all,iatel_e_all,ielstart_all,ielend_all
1392       integer :: iproc,isent,k,l
1393 ! Determines whether to send interaction ii,jj to other processors; a given
1394 ! interaction can be sent to at most 2 processors.
1395 ! Sets flag=.true. if interaction ii,jj needs to be sent to at least 
1396 ! one processor, otherwise flag is unchanged from the input value.
1397       isent=0
1398       itask(1)=fg_rank
1399       itask(2)=fg_rank
1400       itask(3)=fg_rank
1401       itask(4)=fg_rank
1402 !      write (iout,*) "ii",ii," jj",jj
1403 ! Loop over processors to check if anybody could need interaction ii,jj
1404       do iproc=0,fg_rank-1
1405 ! Check if the interaction matches any turn3 at iproc
1406         do k=iturn3_start_all(iproc),iturn3_end_all(iproc)
1407           l=k+2
1408           if (k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1 &
1409          .or. k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1 .and. l.eq.jj-1) &
1410           then 
1411 !            write (iout,*) "turn3 to iproc",iproc," ij",ii,jj,"kl",k,l
1412 !            call flush(iout)
1413             flag=.true.
1414             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1415               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1416               isent=isent+1
1417               itask(isent)=iproc
1418               call add_task(iproc,ntask_cont_to,itask_cont_to)
1419             endif
1420           endif
1421         enddo
1422 ! Check if the interaction matches any turn4 at iproc
1423         do k=iturn4_start_all(iproc),iturn4_end_all(iproc)
1424           l=k+3
1425           if (k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1 &
1426          .or. k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1 .and. l.eq.jj-1) &
1427           then 
1428 !            write (iout,*) "turn3 to iproc",iproc," ij",ii,jj," kl",k,l
1429 !            call flush(iout)
1430             flag=.true.
1431             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1432               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1433               isent=isent+1
1434               itask(isent)=iproc
1435               call add_task(iproc,ntask_cont_to,itask_cont_to)
1436             endif
1437           endif
1438         enddo
1439         if (iatel_s_all(iproc).gt.0 .and. iatel_e_all(iproc).gt.0 .and. &
1440         iatel_s_all(iproc).le.ii-1 .and. iatel_e_all(iproc).ge.ii-1)then
1441           if (ielstart_all(ii-1,iproc).le.jj-1.and. &
1442               ielend_all(ii-1,iproc).ge.jj-1) then
1443             flag=.true.
1444             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1445               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1446               isent=isent+1
1447               itask(isent)=iproc
1448               call add_task(iproc,ntask_cont_to,itask_cont_to)
1449             endif
1450           endif
1451           if (ielstart_all(ii-1,iproc).le.jj+1.and. &
1452               ielend_all(ii-1,iproc).ge.jj+1) then
1453             flag=.true.
1454             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1455               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1456               isent=isent+1
1457               itask(isent)=iproc
1458               call add_task(iproc,ntask_cont_to,itask_cont_to)
1459             endif
1460           endif
1461         endif
1462       enddo
1463       return
1464       end subroutine add_int
1465 !-----------------------------------------------------------------------------
1466       subroutine add_int_from(ii,jj,ntask_cont_from,itask_cont_from)
1467
1468 !el      use MPI_data
1469 !el      implicit none
1470 !      include "DIMENSIONS"
1471 !      include "COMMON.INTERACT"
1472 !      include "COMMON.SETUP"
1473 !      include "COMMON.IOUNITS"
1474       integer :: ii,jj,itask(2),ntask_cont_from,&
1475        itask_cont_from(0:nfgtasks-1)    !(0:max_fg_procs)
1476       logical :: flag
1477 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,&
1478 !el       iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all       !(0:max_fg_procs)
1479 !el      integer,dimension(nres,0:nfgtasks-1) :: ielstart_all,ielend_all        !(maxres,0:max_fg_procs-1)
1480 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1481 !el       iturn4_end_all,iatel_s_all,iatel_e_all,ielstart_all,ielend_all
1482       integer :: iproc,k,l
1483       do iproc=fg_rank+1,nfgtasks-1
1484         do k=iturn3_start_all(iproc),iturn3_end_all(iproc)
1485           l=k+2
1486           if (k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1.and.l.eq.jj-1 &
1487          .or. k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1) &
1488           then
1489 !            write (iout,*)"turn3 from iproc",iproc," ij",ii,jj," kl",k,l
1490             call add_task(iproc,ntask_cont_from,itask_cont_from)
1491           endif
1492         enddo 
1493         do k=iturn4_start_all(iproc),iturn4_end_all(iproc)
1494           l=k+3
1495           if (k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1.and.l.eq.jj-1 &
1496          .or. k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1) &
1497           then
1498 !            write (iout,*)"turn4 from iproc",iproc," ij",ii,jj," kl",k,l
1499             call add_task(iproc,ntask_cont_from,itask_cont_from)
1500           endif
1501         enddo 
1502         if (iatel_s_all(iproc).gt.0 .and. iatel_e_all(iproc).gt.0) then
1503           if (ii+1.ge.iatel_s_all(iproc).and.ii+1.le.iatel_e_all(iproc)) &
1504           then
1505             if (jj+1.ge.ielstart_all(ii+1,iproc).and. &
1506                 jj+1.le.ielend_all(ii+1,iproc)) then
1507               call add_task(iproc,ntask_cont_from,itask_cont_from)
1508             endif            
1509             if (jj-1.ge.ielstart_all(ii+1,iproc).and. &
1510                 jj-1.le.ielend_all(ii+1,iproc)) then
1511               call add_task(iproc,ntask_cont_from,itask_cont_from)
1512             endif
1513           endif
1514           if (ii-1.ge.iatel_s_all(iproc).and.ii-1.le.iatel_e_all(iproc)) &
1515           then
1516             if (jj-1.ge.ielstart_all(ii-1,iproc).and. &
1517                 jj-1.le.ielend_all(ii-1,iproc)) then
1518               call add_task(iproc,ntask_cont_from,itask_cont_from)
1519             endif
1520             if (jj+1.ge.ielstart_all(ii-1,iproc).and. &
1521                 jj+1.le.ielend_all(ii-1,iproc)) then
1522                call add_task(iproc,ntask_cont_from,itask_cont_from)
1523             endif
1524           endif
1525         endif
1526       enddo
1527       return
1528       end subroutine add_int_from
1529 !-----------------------------------------------------------------------------
1530       subroutine add_task(iproc,ntask_cont,itask_cont)
1531
1532 !el      use MPI_data
1533 !el      implicit none
1534 !      include "DIMENSIONS"
1535       integer :: iproc,ntask_cont,itask_cont(0:nfgtasks-1)      !(0:max_fg_procs-1)
1536       integer :: ii
1537       do ii=1,ntask_cont
1538         if (itask_cont(ii).eq.iproc) return
1539       enddo
1540       ntask_cont=ntask_cont+1
1541       itask_cont(ntask_cont)=iproc
1542       return
1543       end subroutine add_task
1544 #endif
1545 !-----------------------------------------------------------------------------
1546 #if defined MPI || defined WHAM_RUN
1547       subroutine int_partition(int_index,lower_index,upper_index,atom,&
1548        at_start,at_end,first_atom,last_atom,int_gr,jat_start,jat_end,*)
1549
1550 !      implicit real*8 (a-h,o-z)
1551 !      include 'DIMENSIONS'
1552 !      include 'COMMON.IOUNITS'
1553       integer :: int_index,lower_index,upper_index,atom,at_start,at_end,&
1554        first_atom,last_atom,int_gr,jat_start,jat_end,int_index_old
1555       logical :: lprn
1556       lprn=.false.
1557       if (lprn) write (iout,*) 'int_index=',int_index
1558       int_index_old=int_index
1559       int_index=int_index+last_atom-first_atom+1
1560       if (lprn) &
1561          write (iout,*) 'int_index=',int_index,&
1562                      ' int_index_old',int_index_old,&
1563                      ' lower_index=',lower_index,&
1564                      ' upper_index=',upper_index,&
1565                      ' atom=',atom,' first_atom=',first_atom,&
1566                      ' last_atom=',last_atom
1567       if (int_index.ge.lower_index) then
1568         int_gr=int_gr+1
1569         if (at_start.eq.0) then
1570           at_start=atom
1571           jat_start=first_atom-1+lower_index-int_index_old
1572         else
1573           jat_start=first_atom
1574         endif
1575         if (lprn) write (iout,*) 'jat_start',jat_start
1576         if (int_index.ge.upper_index) then
1577           at_end=atom
1578           jat_end=first_atom-1+upper_index-int_index_old
1579           return 1
1580         else
1581           jat_end=last_atom
1582         endif
1583         if (lprn) write (iout,*) 'jat_end',jat_end
1584       endif
1585       return
1586       end subroutine int_partition
1587 #endif
1588 !-----------------------------------------------------------------------------
1589 #ifndef CLUSTER
1590       subroutine hpb_partition
1591
1592 !      implicit real*8 (a-h,o-z)
1593 !      include 'DIMENSIONS'
1594 #ifdef MPI
1595       include 'mpif.h'
1596 #endif
1597 !      include 'COMMON.SBRIDGE'
1598 !      include 'COMMON.IOUNITS'
1599 !      include 'COMMON.SETUP'
1600 #ifdef MPI
1601       call int_bounds(nhpb,link_start,link_end)
1602       write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
1603         ' absolute rank',MyRank,&
1604         ' nhpb',nhpb,' link_start=',link_start,&
1605         ' link_end',link_end
1606 #else
1607       link_start=1
1608       link_end=nhpb
1609 #endif
1610       return
1611       end subroutine hpb_partition
1612 #endif
1613 !-----------------------------------------------------------------------------
1614 ! misc.f in module io_base
1615 !-----------------------------------------------------------------------------
1616 !-----------------------------------------------------------------------------
1617 ! parmread.F
1618 !-----------------------------------------------------------------------------
1619       subroutine getenv_loc(var, val)
1620
1621       character(*) :: var, val
1622
1623 #ifdef WINIFL
1624       character(len=2000) :: line
1625 !el      external ilen
1626
1627       open (196,file='env',status='old',readonly,shared)
1628       iread=0
1629 !      write(*,*)'looking for ',var
1630 10    read(196,*,err=11,end=11)line
1631       iread=index(line,var)
1632 !      write(*,*)iread,' ',var,' ',line
1633       if (iread.eq.0) go to 10 
1634 !      write(*,*)'---> ',line
1635 11    continue
1636       if(iread.eq.0) then
1637 !       write(*,*)'CHUJ'
1638        val=''
1639       else
1640        iread=iread+ilen(var)+1
1641        read (line(iread:),*,err=12,end=12) val
1642 !       write(*,*)'OK: ',var,' = ',val
1643       endif
1644       close(196)
1645       return
1646 12    val=''
1647       close(196)
1648 #elif (defined CRAY)
1649       integer :: lennam,lenval,ierror
1650 !
1651 !        getenv using a POSIX call, useful on the T3D
1652 !        Sept 1996, comment out error check on advice of H. Pritchard
1653 !
1654       lennam = len(var)
1655       if(lennam.le.0) stop '--error calling getenv--'
1656       call pxfgetenv(var,lennam,val,lenval,ierror)
1657 !-HP- if(ierror.ne.0) stop '--error returned by pxfgetenv--'
1658 #else
1659       call getenv(var,val)
1660 #endif
1661
1662       return
1663       end subroutine getenv_loc
1664 !-----------------------------------------------------------------------------
1665 ! readrtns_CSA.F
1666 !-----------------------------------------------------------------------------
1667       subroutine setup_var
1668
1669       integer :: i
1670 !      implicit real*8 (a-h,o-z)
1671 !      include 'DIMENSIONS'
1672 !      include 'COMMON.IOUNITS'
1673 !      include 'COMMON.GEO'
1674 !      include 'COMMON.VAR'
1675 !      include 'COMMON.INTERACT'
1676 !      include 'COMMON.LOCAL'
1677 !      include 'COMMON.NAMES'
1678 !      include 'COMMON.CHAIN'
1679 !      include 'COMMON.FFIELD'
1680 !      include 'COMMON.SBRIDGE'
1681 !      include 'COMMON.HEADER'
1682 !      include 'COMMON.CONTROL'
1683 !      include 'COMMON.DBASE'
1684 !      include 'COMMON.THREAD'
1685 !      include 'COMMON.TIME1'
1686 ! Set up variable list.
1687       ntheta=nres-2
1688       nphi=nres-3
1689       nvar=ntheta+nphi
1690       nside=0
1691       do i=2,nres-1
1692 #ifdef WHAM_RUN
1693         if (itype(i,1).ne.10) then
1694 #else
1695         if (itype(i,1).ne.10 .and. itype(i,1).ne.ntyp1) then
1696 #endif
1697           nside=nside+1
1698           ialph(i,1)=nvar+nside
1699           ialph(nside,2)=i
1700         endif
1701       enddo
1702       if (indphi.gt.0) then
1703         nvar=nphi
1704       else if (indback.gt.0) then
1705         nvar=nphi+ntheta
1706       else
1707         nvar=nvar+2*nside
1708       endif
1709 !d    write (iout,'(3i4)') (i,ialph(i,1),ialph(i,2),i=2,nres-1)
1710       return
1711       end subroutine setup_var
1712 !-----------------------------------------------------------------------------
1713 ! rescode.f
1714 !-----------------------------------------------------------------------------
1715       integer function rescode(iseq,nam,itype,molecule)
1716
1717       use io_base, only: ucase
1718 !      implicit real*8 (a-h,o-z)
1719 !      include 'DIMENSIONS'
1720 !      include 'COMMON.NAMES'
1721 !      include 'COMMON.IOUNITS'
1722       character(len=3) :: nam   !,ucase
1723       integer :: iseq,itype,i
1724       integer :: molecule
1725       print *,molecule,nam
1726       if (molecule.eq.1) then 
1727       if (itype.eq.0) then
1728
1729       do i=-ntyp1_molec(molecule),ntyp1_molec(molecule)
1730         if (ucase(nam).eq.restyp(i,molecule)) then
1731           rescode=i
1732           return
1733         endif
1734       enddo
1735
1736       else
1737
1738       do i=-ntyp1_molec(molecule),ntyp1_molec(molecule)
1739         if (nam(1:1).eq.onelet(i)) then
1740           rescode=i
1741           return  
1742         endif  
1743       enddo
1744
1745       endif
1746       else if (molecule.eq.2) then
1747       do i=1,ntyp1_molec(molecule)
1748          print *,nam(1:1),restyp(i,molecule)(1:1) 
1749         if (nam(1:1).eq.restyp(i,molecule)(1:1)) then
1750           rescode=i
1751           return
1752         endif
1753       enddo
1754       else if (molecule.eq.3) then
1755        write(iout,*) "SUGAR not yet implemented"
1756        stop
1757       else if (molecule.eq.4) then
1758        write(iout,*) "Explicit LIPID not yet implemented"
1759        stop
1760       else if (molecule.eq.5) then
1761       do i=1,ntyp1_molec(molecule)
1762         print *,i,restyp(i,molecule)
1763         if (ucase(nam).eq.restyp(i,molecule)) then
1764           rescode=i
1765           return
1766         endif
1767       enddo
1768       else   
1769        write(iout,*) "molecule not defined"
1770       endif
1771       write (iout,10) iseq,nam
1772       stop
1773    10 format ('**** Error - residue',i4,' has an unresolved name ',a3)
1774       end function rescode
1775       integer function sugarcode(sugar,ires)
1776       character sugar
1777       integer ires
1778       if (sugar.eq.'D') then
1779         sugarcode=1
1780       else if (sugar.eq.' ') then
1781         sugarcode=2
1782       else
1783         write (iout,*) 'UNKNOWN sugar type for residue',ires,' ',sugar
1784         stop
1785       endif
1786       return
1787       end function sugarcode
1788
1789 !-----------------------------------------------------------------------------
1790 ! timing.F
1791 !-----------------------------------------------------------------------------
1792 ! $Date: 1994/10/05 16:41:52 $
1793 ! $Revision: 2.2 $
1794 !
1795       subroutine set_timers
1796 !
1797 !el      implicit none
1798 !el      real(kind=8) :: tcpu
1799 !      include 'COMMON.TIME1'
1800 !#ifdef MP
1801 #ifdef MPI
1802       include 'mpif.h'
1803 #endif
1804 ! Diminish the assigned time limit a little so that there is some time to
1805 ! end a batch job
1806 !     timlim=batime-150.0
1807 ! Calculate the initial time, if it is not zero (e.g. for the SUN).
1808       stime=tcpu()
1809 #if .not. defined(WHAM_RUN) && .not. defined(CLUSTER)
1810 #ifdef MPI
1811       walltime=MPI_WTIME()
1812       time_reduce=0.0d0
1813       time_allreduce=0.0d0
1814       time_bcast=0.0d0
1815       time_gather=0.0d0
1816       time_sendrecv=0.0d0
1817       time_scatter=0.0d0
1818       time_scatter_fmat=0.0d0
1819       time_scatter_ginv=0.0d0
1820       time_scatter_fmatmult=0.0d0
1821       time_scatter_ginvmult=0.0d0
1822       time_barrier_e=0.0d0
1823       time_barrier_g=0.0d0
1824       time_enecalc=0.0d0
1825       time_sumene=0.0d0
1826       time_lagrangian=0.0d0
1827       time_sumgradient=0.0d0
1828       time_intcartderiv=0.0d0
1829       time_inttocart=0.0d0
1830       time_ginvmult=0.0d0
1831       time_fricmatmult=0.0d0
1832       time_cartgrad=0.0d0
1833       time_bcastc=0.0d0
1834       time_bcast7=0.0d0
1835       time_bcastw=0.0d0
1836       time_intfcart=0.0d0
1837       time_vec=0.0d0
1838       time_mat=0.0d0
1839       time_fric=0.0d0
1840       time_stoch=0.0d0
1841       time_fricmatmult=0.0d0
1842       time_fsample=0.0d0
1843 #endif
1844 #endif
1845 !d    print *,' in SET_TIMERS stime=',stime
1846       return
1847       end subroutine set_timers
1848 !-----------------------------------------------------------------------------
1849 #ifndef CLUSTER
1850       logical function stopx(nf)
1851 ! This function returns .true. if one of the following reasons to exit SUMSL
1852 ! occurs. The "reason" code is stored in WHATSUP passed thru a COMMON block:
1853 !
1854 !... WHATSUP = 0 - go on, no reason to stop. Stopx will return .false.
1855 !...           1 - Time up in current node;
1856 !...           2 - STOP signal was received from another node because the
1857 !...               node's task was accomplished (parallel only);
1858 !...          -1 - STOP signal was received from another node because of error;
1859 !...          -2 - STOP signal was received from another node, because 
1860 !...               the node's time was up.
1861 !      implicit real*8 (a-h,o-z)
1862 !      include 'DIMENSIONS'
1863 !el#ifdef WHAM_RUN
1864 !el      use control_data, only:WhatsUp
1865 !el#endif
1866 #ifdef MP
1867 !el      use MPI_data   !include 'COMMON.INFO'
1868       include 'mpif.h'
1869 #endif
1870       integer :: nf
1871 !el      logical :: ovrtim
1872
1873 !      include 'COMMON.IOUNITS'
1874 !      include 'COMMON.TIME1'
1875       integer :: Kwita
1876
1877 !d    print *,'Processor',MyID,' NF=',nf
1878 !d      write (iout,*) "stopx: ",nf
1879 #ifndef WHAM_RUN
1880 #ifndef MPI
1881       if (ovrtim()) then
1882 ! Finish if time is up.
1883          stopx = .true.
1884          WhatsUp=1
1885 #ifdef MPL
1886       else if (mod(nf,100).eq.0) then
1887 ! Other processors might have finished. Check this every 100th function 
1888 ! evaluation.
1889 ! Master checks if any other processor has sent accepted conformation(s) to it. 
1890          if (MyID.ne.MasterID) call receive_mcm_info
1891          if (MyID.eq.MasterID) call receive_conf
1892 !d       print *,'Processor ',MyID,' is checking STOP: nf=',nf
1893          call recv_stop_sig(Kwita)
1894          if (Kwita.eq.-1) then
1895            write (iout,'(a,i4,a,i5)') 'Processor',&
1896            MyID,' has received STOP signal in STOPX; NF=',nf
1897            write (*,'(a,i4,a,i5)') 'Processor',&
1898            MyID,' has received STOP signal in STOPX; NF=',nf
1899            stopx=.true.
1900            WhatsUp=2
1901          elseif (Kwita.eq.-2) then
1902            write (iout,*) &
1903           'Processor',MyID,' received TIMEUP-STOP signal in SUMSL.'
1904            write (*,*) &
1905           'Processor',MyID,' received TIMEUP-STOP signal in SUMSL.'
1906            WhatsUp=-2
1907            stopx=.true.  
1908          else if (Kwita.eq.-3) then
1909            write (iout,*) &
1910           'Processor',MyID,' received ERROR-STOP signal in SUMSL.'
1911            write (*,*) &
1912           'Processor',MyID,' received ERROR-STOP signal in SUMSL.'
1913            WhatsUp=-1
1914            stopx=.true.
1915          else
1916            stopx=.false.
1917            WhatsUp=0
1918          endif
1919 #endif
1920       else
1921          stopx = .false.
1922          WhatsUp=0
1923       endif
1924 #else
1925       stopx=.false.
1926 !d      write (iout,*) "stopx set at .false."
1927 #endif
1928
1929 #ifdef OSF
1930 ! Check for FOUND_NAN flag
1931       if (FOUND_NAN) then
1932         write(iout,*)"   ***   stopx : Found a NaN"
1933         stopx=.true.
1934       endif
1935 #endif
1936 #else
1937       if (ovrtim()) then
1938 ! Finish if time is up.
1939          stopx = .true.
1940          WhatsUp=1
1941       else if (cutoffviol) then
1942         stopx = .true.
1943         WhatsUp=2
1944       else
1945         stopx=.false.
1946       endif
1947 #endif
1948       return
1949       end function stopx
1950 !-----------------------------------------------------------------------------
1951 #else
1952       logical function stopx(nf)
1953 !
1954 !     ..................................................................
1955 !
1956 !     *****PURPOSE...
1957 !     THIS FUNCTION MAY SERVE AS THE STOPX (ASYNCHRONOUS INTERRUPTION)
1958 !     FUNCTION FOR THE NL2SOL (NONLINEAR LEAST-SQUARES) PACKAGE AT
1959 !     THOSE INSTALLATIONS WHICH DO NOT WISH TO IMPLEMENT A
1960 !     DYNAMIC STOPX.
1961 !
1962 !     *****ALGORITHM NOTES...
1963 !     AT INSTALLATIONS WHERE THE NL2SOL SYSTEM IS USED
1964 !     INTERACTIVELY, THIS DUMMY STOPX SHOULD BE REPLACED BY A
1965 !     FUNCTION THAT RETURNS .TRUE. IF AND ONLY IF THE INTERRUPT
1966 !     (BREAK) KEY HAS BEEN PRESSED SINCE THE LAST CALL ON STOPX.
1967 !
1968 !     $$$ MODIFIED FOR USE AS  THE TIMER ROUTINE.
1969 !     $$$                              WHEN THE TIME LIMIT HAS BEEN
1970 !     $$$ REACHED     STOPX IS SET TO .TRUE  AND INITIATES (IN ITSUM)
1971 !     $$$ AND ORDERLY EXIT OUT OF SUMSL.  IF ARRAYS IV AND V ARE
1972 !     $$$ SAVED, THE SUMSL ROUTINES CAN BE RESTARTED AT THE SAME
1973 !     $$$ POINT AT WHICH THEY WERE INTERRUPTED.
1974 !
1975 !     ..................................................................
1976 !
1977 !      include 'DIMENSIONS'
1978       integer :: nf
1979 !      logical ovrtim
1980 !      include 'COMMON.IOUNITS'
1981 !      include 'COMMON.TIME1'
1982 #ifdef MPL
1983 !     include 'COMMON.INFO'
1984       integer :: Kwita
1985
1986 !d    print *,'Processor',MyID,' NF=',nf
1987 #endif
1988       if (ovrtim()) then
1989 ! Finish if time is up.
1990          stopx = .true.
1991 #ifdef MPL
1992       else if (mod(nf,100).eq.0) then
1993 ! Other processors might have finished. Check this every 100th function 
1994 ! evaluation.
1995 !d       print *,'Processor ',MyID,' is checking STOP: nf=',nf
1996          call recv_stop_sig(Kwita)
1997          if (Kwita.eq.-1) then
1998            write (iout,'(a,i4,a,i5)') 'Processor',&
1999            MyID,' has received STOP signal in STOPX; NF=',nf
2000            write (*,'(a,i4,a,i5)') 'Processor',&
2001            MyID,' has received STOP signal in STOPX; NF=',nf
2002            stopx=.true.
2003          else
2004            stopx=.false.
2005          endif
2006 #endif
2007       else
2008          stopx = .false.
2009       endif
2010       return
2011       end function stopx
2012 #endif
2013 !-----------------------------------------------------------------------------
2014       logical function ovrtim()
2015
2016 !      include 'DIMENSIONS'
2017 !      include 'COMMON.IOUNITS'
2018 !      include 'COMMON.TIME1'
2019 !el      real(kind=8) :: tcpu
2020       real(kind=8) :: curtim
2021 #ifdef MPI
2022       include "mpif.h"
2023       curtim = MPI_Wtime()-walltime
2024 #else
2025       curtim= tcpu()
2026 #endif
2027 !  curtim is the current time in seconds.
2028 !      write (iout,*) "curtim",curtim," timlim",timlim," safety",safety
2029 #ifndef WHAM_RUN
2030       if (curtim .ge. timlim - safety) then
2031         write (iout,'(a,f10.2,a,f10.2,a,f10.2,a)') &
2032         "***************** Elapsed time (",curtim,&
2033         " s) is within the safety limit (",safety,&
2034         " s) of the allocated time (",timlim," s). Terminating."
2035         ovrtim=.true.
2036       else
2037         ovrtim=.false.
2038       endif
2039 #else
2040       ovrtim=.false.
2041 #endif
2042 !elwrite (iout,*) "ovrtim",ovrtim
2043       return
2044       end function ovrtim
2045 !-----------------------------------------------------------------------------
2046       real(kind=8) function tcpu()
2047
2048 !      include 'COMMON.TIME1'
2049       real(kind=8) :: seconds
2050 #ifdef ES9000
2051 !***************************
2052 ! Next definition for EAGLE (ibm-es9000)
2053       real(kind=8) :: micseconds
2054       integer :: rcode
2055       tcpu=cputime(micseconds,rcode)
2056       tcpu=(micseconds/1.0E6) - stime
2057 !***************************
2058 #endif
2059 #ifdef SUN
2060 !***************************
2061 ! Next definitions for sun
2062       REAL(kind=8) ::  ECPU,ETIME,ETCPU
2063       real(kind=8),dimension(2) :: tarray
2064       tcpu=etime(tarray)
2065       tcpu=tarray(1)
2066 !***************************
2067 #endif
2068 #ifdef KSR
2069 !***************************
2070 ! Next definitions for ksr
2071 ! this function uses the ksr timer ALL_SECONDS from the PMON library to
2072 ! return the elapsed time in seconds
2073       tcpu= all_seconds() - stime
2074 !***************************
2075 #endif
2076 #ifdef SGI
2077 !***************************
2078 ! Next definitions for sgi
2079       real(kind=4) :: timar(2), etime
2080       seconds = etime(timar)
2081 !d    print *,'seconds=',seconds,' stime=',stime
2082 !      usrsec = timar(1)
2083 !      syssec = timar(2)
2084       tcpu=seconds - stime
2085 !***************************
2086 #endif
2087
2088 #ifdef LINUX
2089 !***************************
2090 ! Next definitions for sgi
2091       real(kind=4) :: timar(2), etime
2092       seconds = etime(timar)
2093 !d    print *,'seconds=',seconds,' stime=',stime
2094 !      usrsec = timar(1)
2095 !      syssec = timar(2)
2096       tcpu=seconds - stime
2097 !***************************
2098 #endif
2099
2100
2101 #ifdef CRAY
2102 !***************************
2103 ! Next definitions for Cray
2104 !     call date(curdat)
2105 !     curdat=curdat(1:9)
2106 !     call clock(curtim)
2107 !     curtim=curtim(1:8)
2108       cpusec = second()
2109       tcpu=cpusec - stime
2110 !***************************
2111 #endif
2112 #ifdef AIX
2113 !***************************
2114 ! Next definitions for RS6000
2115        integer(kind=4) :: i1,mclock
2116        i1 = mclock()
2117        tcpu = (i1+0.0D0)/100.0D0
2118 #endif
2119 #ifdef WINPGI
2120 !***************************
2121 ! next definitions for windows NT Digital fortran
2122        real(kind=4) :: time_real
2123        call cpu_time(time_real)
2124        tcpu = time_real
2125 #endif
2126 #ifdef WINIFL
2127 !***************************
2128 ! next definitions for windows NT Digital fortran
2129        real(kind=4) :: time_real
2130        call cpu_time(time_real)
2131        tcpu = time_real
2132 #endif
2133       tcpu = 0d0 !el
2134       return
2135       end function tcpu
2136 !-----------------------------------------------------------------------------
2137 #ifndef CLUSTER
2138       subroutine dajczas(rntime,hrtime,mintime,sectime)
2139
2140 !      include 'COMMON.IOUNITS'
2141       integer :: ihr,imn,isc
2142       real(kind=8) :: rntime,hrtime,mintime,sectime 
2143       hrtime=rntime/3600.0D0 
2144       hrtime=aint(hrtime)
2145       mintime=aint((rntime-3600.0D0*hrtime)/60.0D0)
2146       sectime=aint((rntime-3600.0D0*hrtime-60.0D0*mintime)+0.5D0)
2147       if (sectime.eq.60.0D0) then
2148         sectime=0.0D0
2149         mintime=mintime+1.0D0
2150       endif
2151       ihr=hrtime
2152       imn=mintime
2153       isc=sectime
2154       write (iout,328) ihr,imn,isc
2155   328 FORMAT(//'***** Computation time: ',I4  ,' hours ',I2  ,&
2156                ' minutes ', I2  ,' seconds *****')       
2157       return
2158       end subroutine dajczas
2159 !-----------------------------------------------------------------------------
2160       subroutine print_detailed_timing
2161
2162 !el      use MPI_data
2163 !      implicit real*8 (a-h,o-z)
2164 !      include 'DIMENSIONS'
2165 #ifdef MPI
2166       include 'mpif.h'
2167 #endif
2168 !      include 'COMMON.IOUNITS'
2169 !      include 'COMMON.TIME1'
2170 !      include 'COMMON.SETUP'
2171       real(kind=8) :: time1,time_barrier
2172       time_barrier = 0.0d0
2173 #ifdef MPI !el
2174       time1=MPI_WTIME()
2175 #endif !el
2176          write (iout,'(80(1h=)/a/(80(1h=)))') &
2177           "Details of FG communication time"
2178          write (*,'(7(a40,1pe15.5/),40(1h-)/a40,1pe15.5/80(1h=))') &
2179           "BROADCAST:",time_bcast,"REDUCE:",time_reduce,&
2180           "GATHER:",time_gather,&
2181           "SCATTER:",time_scatter,"SENDRECV:",time_sendrecv,&
2182           "BARRIER ene",time_barrier_e,&
2183           "BARRIER grad",time_barrier_g,&
2184           "TOTAL:",&
2185           time_bcast+time_reduce+time_gather+time_scatter+time_sendrecv
2186          write (*,*) fg_rank,myrank,&
2187            ': Total wall clock time',time1-walltime,' sec'
2188          write (*,*) "Processor",fg_rank,myrank,&
2189            ": BROADCAST time",time_bcast," REDUCE time",&
2190             time_reduce," GATHER time",time_gather," SCATTER time",&
2191             time_scatter,&
2192            " SCATTER fmatmult",time_scatter_fmatmult,&
2193            " SCATTER ginvmult",time_scatter_ginvmult,&
2194            " SCATTER fmat",time_scatter_fmat,&
2195            " SCATTER ginv",time_scatter_ginv,&
2196             " SENDRECV",time_sendrecv,&
2197             " BARRIER ene",time_barrier_e,&
2198             " BARRIER GRAD",time_barrier_g,&
2199             " BCAST7",time_bcast7," BCASTC",time_bcastc,&
2200             " BCASTW",time_bcastw," ALLREDUCE",time_allreduce,&
2201             " TOTAL",&
2202             time_bcast+time_reduce+time_gather+time_scatter+ &
2203             time_sendrecv+time_barrier+time_bcastc
2204 !el#endif
2205          write (*,*) "Processor",fg_rank,myrank," enecalc",time_enecalc
2206          write (*,*) "Processor",fg_rank,myrank," sumene",time_sumene
2207          write (*,*) "Processor",fg_rank,myrank," intfromcart",&
2208            time_intfcart
2209          write (*,*) "Processor",fg_rank,myrank," vecandderiv",&
2210            time_vec
2211          write (*,*) "Processor",fg_rank,myrank," setmatrices",&
2212            time_mat
2213          write (*,*) "Processor",fg_rank,myrank," ginvmult",&
2214            time_ginvmult
2215          write (*,*) "Processor",fg_rank,myrank," fricmatmult",&
2216            time_fricmatmult
2217          write (*,*) "Processor",fg_rank,myrank," inttocart",&
2218            time_inttocart
2219          write (*,*) "Processor",fg_rank,myrank," sumgradient",&
2220            time_sumgradient
2221          write (*,*) "Processor",fg_rank,myrank," intcartderiv",&
2222            time_intcartderiv
2223          if (fg_rank.eq.0) then
2224            write (*,*) "Processor",fg_rank,myrank," lagrangian",&
2225              time_lagrangian
2226            write (*,*) "Processor",fg_rank,myrank," cartgrad",&
2227              time_cartgrad
2228          endif
2229       return
2230       end subroutine print_detailed_timing
2231 #endif
2232 !-----------------------------------------------------------------------------
2233 !-----------------------------------------------------------------------------
2234       end module control