1952c9a2714dfde2bd96d58d56a57e5fe339d333
[unres4.git] / source / unres / control.F90
1       module control
2 !-----------------------------------------------------------------------------
3       use io_units
4       use names
5       use MPI_data
6       use geometry_data
7       use energy_data
8       use control_data
9       use minim_data
10       use geometry, only:int_bounds
11 #ifndef CLUSTER
12       use csa_data
13 #ifdef WHAM_RUN
14       use wham_data
15 #endif
16 #endif
17       implicit none
18 !-----------------------------------------------------------------------------
19 ! commom.control
20 !      common /cntrl/
21 !      integer :: modecalc,iscode,indpdb,indback,indphi,iranconf,&
22 !       icheckgrad,iprint,i2ndstr,mucadyn,constr_dist,symetr
23 !      logical :: minim,refstr,pdbref,outpdb,outmol2,overlapsc,&
24 !       energy_dec,sideadd,lsecondary,read_cart,unres_pdb,&
25 !       vdisulf,searchsc,lmuca,dccart,extconf,out1file,&
26 !       gnorm_check,gradout,split_ene
27 !... minim = .true. means DO minimization.
28 !... energy_dec = .true. means print energy decomposition matrix
29 !-----------------------------------------------------------------------------
30 ! common.time1
31 !     FOUND_NAN - set by calcf to stop sumsl via stopx
32 !      COMMON/TIME1/
33       real(kind=8) :: STIME,BATIME,PREVTIM,RSTIME
34 !el      real(kind=8) :: TIMLIM,SAFETY
35 !el      real(kind=8) :: WALLTIME
36 !      COMMON/STOPTIM/
37       integer :: ISTOP
38 !      common /sumsl_flag/
39       logical :: FOUND_NAN
40 !      common /timing/
41       real(kind=8) :: t_init
42 !       time_bcast,time_reduce,time_gather,&
43 !       time_sendrecv,time_barrier_e,time_barrier_g,time_scatter,&
44        !t_eelecij,
45 !       time_allreduce,&
46 !       time_lagrangian,time_cartgrad,&
47 !       time_sumgradient,time_intcartderiv,time_inttocart,time_intfcart,&
48 !       time_mat,time_fricmatmult,&
49 !       time_scatter_fmat,time_scatter_ginv,&
50 !       time_scatter_fmatmult,time_scatter_ginvmult,&
51 !       t_eshort,t_elong,t_etotal
52 !-----------------------------------------------------------------------------
53 ! initialize_p.F
54 !-----------------------------------------------------------------------------
55 !      block data
56 !      integer,parameter :: MaxMoveType = 4
57 !      character(len=14),dimension(-1:MaxMoveType+1) :: MovTypID=(/'pool','chain regrow',&
58 !      character :: MovTypID(-1:MaxMoveType+1)=(/'pool','chain regrow',&
59 !       'multi-bond','phi','theta','side chain','total'/)
60 ! Conversion from poises to molecular unit and the gas constant
61 !el      real(kind=8) :: cPoise=2.9361d0, Rb=0.001986d0
62 !-----------------------------------------------------------------------------
63 !      common /przechowalnia/ subroutines: init_int_table,add_int,add_int_from
64       integer,dimension(:),allocatable :: iturn3_start_all,&
65         iturn3_end_all,iturn4_start_all,iturn4_end_all,iatel_s_all,&
66         iatel_e_all !(0:max_fg_procs)
67       integer,dimension(:,:),allocatable :: ielstart_all,&
68         ielend_all !(maxres,0:max_fg_procs-1)
69
70 !      common /przechowalnia/ subroutine: init_int_table
71       integer,dimension(:),allocatable :: ntask_cont_from_all,&
72         ntask_cont_to_all !(0:max_fg_procs-1)
73       integer,dimension(:,:),allocatable :: itask_cont_from_all,&
74         itask_cont_to_all !(0:max_fg_procs-1,0:max_fg_procs-1)
75 !-----------------------------------------------------------------------------
76 !
77 !
78 !-----------------------------------------------------------------------------
79       contains
80 !-----------------------------------------------------------------------------
81 ! initialize_p.F
82 !-----------------------------------------------------------------------------
83       subroutine initialize
84 !
85 ! Define constants and zero out tables.
86 !
87       use comm_iofile
88       use comm_machsw
89       use MCM_data, only: MovTypID
90 !      implicit real*8 (a-h,o-z)
91 !      include 'DIMENSIONS'
92 #ifdef MPI
93       include 'mpif.h'
94 #endif
95 #ifndef ISNAN
96       external proc_proc
97 #ifdef WINPGI
98 !MS$ATTRIBUTES C ::  proc_proc
99 #endif
100 #endif
101 !      include 'COMMON.IOUNITS'
102 !      include 'COMMON.CHAIN'
103 !      include 'COMMON.INTERACT'
104 !      include 'COMMON.GEO'
105 !      include 'COMMON.LOCAL'
106 !      include 'COMMON.TORSION'
107 !      include 'COMMON.FFIELD'
108 !      include 'COMMON.SBRIDGE'
109 !      include 'COMMON.MCM'
110 !      include 'COMMON.MINIM' 
111 !      include 'COMMON.DERIV'
112 !      include 'COMMON.SPLITELE'
113 !      implicit none
114 ! Common blocks from the diagonalization routines
115 !el      integer :: IR,IW,IP,IJK,IPK,IDAF,NAV,IODA(400)
116 !el      integer :: KDIAG,ICORFL,IXDR
117 !el      COMMON /IOFILE/ IR,IW,IP,IJK,IPK,IDAF,NAV,IODA
118 !el      COMMON /MACHSW/ KDIAG,ICORFL,IXDR
119       logical :: mask_r
120 !      real*8 text1 /'initial_i'/
121       real(kind=4) :: rr
122
123 !local variables el
124       integer :: i,j,k,l,ichir1,ichir2,iblock,m,maxit
125
126 #if .not. defined(WHAM_RUN) && .not. defined(CLUSTER)
127       mask_r=.false.
128 #ifndef ISNAN
129 ! NaNQ initialization
130       i=-1
131       rr=dacos(100.0d0)
132 #ifdef WINPGI
133       idumm=proc_proc(rr,i)
134 #elif defined(WHAM_RUN)
135       call proc_proc(rr,i)
136 #endif
137 #endif
138
139       kdiag=0
140       icorfl=0
141       iw=2
142       
143       allocate(MovTypID(-1:MaxMoveType+1))
144       MovTypID=(/'pool          ','chain regrow  ',&
145        'multi-bond    ','phi           ','theta         ',&
146        'side chain    ','total         '/)
147 #endif
148 !
149 ! The following is just to define auxiliary variables used in angle conversion
150 !
151 !      ifirstrun=0
152       pi=4.0D0*datan(1.0D0)
153       dwapi=2.0D0*pi
154       dwapi3=dwapi/3.0D0
155       pipol=0.5D0*pi
156       deg2rad=pi/180.0D0
157       rad2deg=1.0D0/deg2rad
158       angmin=10.0D0*deg2rad
159 !el#ifdef CLUSTER
160 !el      Rgas = 1.987D-3
161 !el#endif
162 !
163 ! Define I/O units.
164 !
165       inp=    1
166       iout=   2
167       ipdbin= 3
168       ipdb=   7
169 #ifdef CLUSTER
170       imol2= 18
171       jplot= 19
172 !el      jstatin=10
173       imol2=  4
174       jrms=30
175 #else
176       icart = 30
177       imol2=  4
178       ithep_pdb=51
179       irotam_pdb=52
180       irest1=55
181       irest2=56
182       iifrag=57
183       ientin=18
184       ientout=19
185 !rc for write_rmsbank1  
186       izs1=21
187 !dr  include secondary structure prediction bias
188       isecpred=27
189 #endif
190       igeom=  8
191       intin=  9
192       ithep= 11
193       irotam=12
194       itorp= 13
195       itordp= 23
196       ielep= 14
197       isidep=15
198 #if defined(WHAM_RUN) || defined(CLUSTER)
199       isidep1=22 !wham
200 #else
201 !
202 ! CSA I/O units (separated from others especially for Jooyoung)
203 !
204       icsa_rbank=30
205       icsa_seed=31
206       icsa_history=32
207       icsa_bank=33
208       icsa_bank1=34
209       icsa_alpha=35
210       icsa_alpha1=36
211       icsa_bankt=37
212       icsa_int=39
213       icsa_bank_reminimized=38
214       icsa_native_int=41
215       icsa_in=40
216 !rc for ifc error 118
217       icsa_pdb=42
218 #endif
219       iscpp=25
220       icbase=16
221       ifourier=20
222       istat= 17
223       ibond = 28
224       isccor = 29
225 #ifdef WHAM_RUN
226 !
227 ! WHAM files
228 !
229       ihist=30
230       iweight=31
231       izsc=32
232 #endif
233       ibond_nucl=126
234       ithep_nucl=127
235       irotam_nucl=128
236       itorp_nucl= 129
237       itordp_nucl= 130
238 !      ielep_nucl= 131
239       isidep_nucl=132
240       iscpp_nucl=133
241       isidep_scbase=141
242       isidep_pepbase=142
243       isidep_scpho=143
244       isidep_peppho=144
245
246       iliptranpar=60
247       itube=61
248 !     IONS
249       iion=401
250       iionnucl=402
251 #if defined(WHAM_RUN) || defined(CLUSTER)
252 !
253 ! setting the mpi variables for WHAM
254 !
255       fgprocs=1
256       nfgtasks=1
257       nfgtasks1=1
258 #endif
259 !
260 ! Set default weights of the energy terms.
261 !
262       wsc=1.0D0 ! in wham:  wlong=1.0D0
263       welec=1.0D0
264       wtor =1.0D0
265       wang =1.0D0
266       wscloc=1.0D0
267       wstrain=1.0D0
268 !
269 ! Zero out tables.
270 !
271 !      print '(a,$)','Inside initialize'
272 !      call memmon_print_usage()
273       
274 !      do i=1,maxres2
275 !       do j=1,3
276 !         c(j,i)=0.0D0
277 !         dc(j,i)=0.0D0
278 !       enddo
279 !      enddo
280 !      do i=1,maxres
281 !       do j=1,3
282 !         xloc(j,i)=0.0D0
283 !        enddo
284 !      enddo
285 !      do i=1,ntyp
286 !       do j=1,ntyp
287 !         aa(i,j)=0.0D0
288 !         bb(i,j)=0.0D0
289 !         augm(i,j)=0.0D0
290 !         sigma(i,j)=0.0D0
291 !         r0(i,j)=0.0D0
292 !         chi(i,j)=0.0D0
293 !        enddo
294 !       do j=1,2
295 !         bad(i,j)=0.0D0
296 !        enddo
297 !       chip(i)=0.0D0
298 !       alp(i)=0.0D0
299 !       sigma0(i)=0.0D0
300 !       sigii(i)=0.0D0
301 !       rr0(i)=0.0D0
302 !       a0thet(i)=0.0D0
303 !       do j=1,2
304 !         do ichir1=-1,1
305 !          do ichir2=-1,1
306 !          athet(j,i,ichir1,ichir2)=0.0D0
307 !          bthet(j,i,ichir1,ichir2)=0.0D0
308 !          enddo
309 !         enddo
310 !        enddo
311 !        do j=0,3
312 !         polthet(j,i)=0.0D0
313 !        enddo
314 !       do j=1,3
315 !         gthet(j,i)=0.0D0
316 !        enddo
317 !       theta0(i)=0.0D0
318 !       sig0(i)=0.0D0
319 !       sigc0(i)=0.0D0
320 !       do j=1,maxlob
321 !         bsc(j,i)=0.0D0
322 !         do k=1,3
323 !           censc(k,j,i)=0.0D0
324 !          enddo
325 !          do k=1,3
326 !           do l=1,3
327 !             gaussc(l,k,j,i)=0.0D0
328 !            enddo
329 !          enddo
330 !         nlob(i)=0
331 !        enddo
332 !      enddo
333 !      nlob(ntyp1)=0
334 !      dsc(ntyp1)=0.0D0
335 !      do i=-maxtor,maxtor
336 !        itortyp(i)=0
337 !c      write (iout,*) "TU DOCHODZE",i,itortyp(i)
338 !       do iblock=1,2
339 !        do j=-maxtor,maxtor
340 !          do k=1,maxterm
341 !            v1(k,j,i,iblock)=0.0D0
342 !            v2(k,j,i,iblock)=0.0D0
343 !          enddo
344 !        enddo
345 !        enddo
346 !      enddo
347 !      do iblock=1,2
348 !       do i=-maxtor,maxtor
349 !        do j=-maxtor,maxtor
350 !         do k=-maxtor,maxtor
351 !          do l=1,maxtermd_1
352 !            v1c(1,l,i,j,k,iblock)=0.0D0
353 !            v1s(1,l,i,j,k,iblock)=0.0D0
354 !            v1c(2,l,i,j,k,iblock)=0.0D0
355 !            v1s(2,l,i,j,k,iblock)=0.0D0
356 !          enddo !l
357 !          do l=1,maxtermd_2
358 !           do m=1,maxtermd_2
359 !            v2c(m,l,i,j,k,iblock)=0.0D0
360 !            v2s(m,l,i,j,k,iblock)=0.0D0
361 !           enddo !m
362 !          enddo !l
363 !        enddo !k
364 !       enddo !j
365 !      enddo !i
366 !      enddo !iblock
367
368 !      do i=1,maxres
369 !       itype(i,1)=0
370 !       itel(i)=0
371 !      enddo
372 ! Initialize the bridge arrays
373       ns=0
374       nss=0 
375       nhpb=0
376 !      do i=1,maxss
377 !       iss(i)=0
378 !      enddo
379 !      do i=1,maxdim
380 !       dhpb(i)=0.0D0
381 !      enddo
382 !      do i=1,maxres
383 !       ihpb(i)=0
384 !       jhpb(i)=0
385 !      enddo
386 !
387 ! Initialize timing.
388 !
389       call set_timers
390 !
391 ! Initialize variables used in minimization.
392 !   
393 !c     maxfun=5000
394 !c     maxit=2000
395       maxfun=500
396       maxit=200
397       tolf=1.0D-2
398       rtolf=5.0D-4
399
400 ! Initialize the variables responsible for the mode of gradient storage.
401 !
402       nfl=0
403       icg=1
404       
405 #ifdef WHAM_RUN
406       allocate(iww(max_eneW))
407       do i=1,14
408         do j=1,14
409           if (print_order(i).eq.j) then
410             iww(print_order(i))=j
411             goto 1121
412           endif
413         enddo
414 1121    continue
415       enddo
416 #endif
417  
418 #if defined(WHAM_RUN) || defined(CLUSTER)
419       ndih_constr=0
420
421 !      allocate(ww0(max_eneW))
422 !      ww0 = reshape((/1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,&
423 !          1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,0.4d0,1.0d0,&
424 !          1.0d0,0.0d0,0.0/), shape(ww0))
425 !
426       calc_grad=.false.
427 ! Set timers and counters for the respective routines
428       t_func = 0.0d0
429       t_grad = 0.0d0
430       t_fhel = 0.0d0
431       t_fbet = 0.0d0
432       t_ghel = 0.0d0
433       t_gbet = 0.0d0
434       t_viol = 0.0d0
435       t_gviol = 0.0d0
436       n_func = 0
437       n_grad = 0
438       n_fhel = 0
439       n_fbet = 0
440       n_ghel = 0
441       n_gbet = 0
442       n_viol = 0
443       n_gviol = 0
444       n_map = 0
445 #endif
446 !
447 ! Initialize constants used to split the energy into long- and short-range
448 ! components
449 !
450       r_cut=2.0d0
451       rlamb=0.3d0
452 #ifndef SPLITELE
453       nprint_ene=nprint_ene-1
454 #endif
455       return
456       end subroutine initialize
457 !-----------------------------------------------------------------------------
458       subroutine init_int_table
459
460       use geometry, only:int_bounds1
461 !el      use MPI_data
462 !el      implicit none
463 !      implicit real*8 (a-h,o-z)
464 !      include 'DIMENSIONS'
465 #ifdef MPI
466       include 'mpif.h'
467       integer,dimension(15) :: blocklengths,displs
468 #endif
469 !      include 'COMMON.CONTROL'
470 !      include 'COMMON.SETUP'
471 !      include 'COMMON.CHAIN'
472 !      include 'COMMON.INTERACT'
473 !      include 'COMMON.LOCAL'
474 !      include 'COMMON.SBRIDGE'
475 !      include 'COMMON.TORCNSTR'
476 !      include 'COMMON.IOUNITS'
477 !      include 'COMMON.DERIV'
478 !      include 'COMMON.CONTACTS'
479 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,&
480 !el        iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all  !(0:max_fg_procs)
481 !el      integer,dimension(nres,0:nfgtasks) :: ielstart_all,&
482 !el        ielend_all !(maxres,0:max_fg_procs-1)
483 !el      integer,dimension(0:nfgtasks-1) :: ntask_cont_from_all,&
484 !el        ntask_cont_to_all !(0:max_fg_procs-1),
485 !el      integer,dimension(0:nfgtasks-1,0:nfgtasks-1) :: itask_cont_from_all,&
486 !el        itask_cont_to_all !(0:max_fg_procs-1,0:max_fg_procs-1)
487
488 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,&
489 !el        iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all,&
490 !el        ielstart_all,ielend_all,ntask_cont_from_all,itask_cont_from_all,&
491 !el        ntask_cont_to_all,itask_cont_to_all
492
493       integer :: FG_GROUP,CONT_FROM_GROUP,CONT_TO_GROUP
494       logical :: scheck,lprint,flag
495
496 !el local variables
497       integer :: ind_scint=0,ind_scint_old,ii,jj,i,j,iint,itmp
498       integer :: ind_scint_nucl=0
499 #ifdef MPI
500       integer :: my_sc_int(0:nfgtasks-1),my_ele_int(0:nfgtasks-1)
501       integer :: my_sc_intt(0:nfgtasks),my_ele_intt(0:nfgtasks)
502       integer :: n_sc_int_tot,my_sc_inde,my_sc_inds,ind_sctint,npept
503       integer :: n_sc_int_tot_nucl,my_sc_inde_nucl,my_sc_inds_nucl, &
504          ind_sctint_nucl,npept_nucl
505
506       integer :: nele_int_tot,my_ele_inds,my_ele_inde,ind_eleint_old,&
507             ind_eleint,ijunk,nele_int_tot_vdw,my_ele_inds_vdw,&
508             my_ele_inde_vdw,ind_eleint_vdw,ind_eleint_vdw_old,&
509             nscp_int_tot,my_scp_inds,my_scp_inde,ind_scpint,&
510             ind_scpint_old,nsumgrad,nlen,ngrad_start,ngrad_end,&
511             ierror,k,ierr,iaux,ncheck_to,ncheck_from,ind_typ,&
512             ichunk,int_index_old
513       integer :: nele_int_tot_nucl,my_ele_inds_nucl,my_ele_inde_nucl,&
514             ind_eleint_old_nucl,ind_eleint_nucl,nele_int_tot_vdw_nucl,&
515             my_ele_inds_vdw_nucl,my_ele_inde_vdw_nucl,ind_eleint_vdw_nucl,&
516             ind_eleint_vdw_old_nucl,nscp_int_tot_nucl,my_scp_inds_nucl,&
517             my_scp_inde_nucl,ind_scpint_nucl,ind_scpint_old_nucl,impishi
518 !      integer,dimension(5) :: nct_molec,nnt_molec
519 !el      allocate(itask_cont_from(0:nfgtasks-1)) !(0:max_fg_procs-1)
520 !el      allocate(itask_cont_to(0:nfgtasks-1)) !(0:max_fg_procs-1)
521
522 !... Determine the numbers of start and end SC-SC interaction
523 !... to deal with by current processor.
524 !write (iout,*) '******INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
525       do i=0,nfgtasks-1
526         itask_cont_from(i)=fg_rank
527         itask_cont_to(i)=fg_rank
528       enddo
529       lprint=energy_dec
530       itmp=0
531       do i=1,5
532        if (nres_molec(i).eq.0) cycle
533       itmp=itmp+nres_molec(i)
534       if (itype(itmp,i).eq.ntyp1_molec(i)) then
535       nct_molec(i)=itmp-1
536       else
537       nct_molec(i)=itmp
538       endif
539       enddo
540 !      nct_molec(1)=nres_molec(1)-1
541       itmp=0
542       do i=2,5
543        itmp=itmp+nres_molec(i-1)
544       if (itype(itmp+1,i).eq.ntyp1_molec(i)) then
545       nnt_molec(i)=itmp+2
546       else
547       nnt_molec(i)=itmp+1
548       endif
549       enddo
550       print *,"nres_molec",nres_molec(:)
551       print *,"nnt_molec",nnt_molec(:)
552       print *,"nct_molec",nct_molec(:)
553 !      lprint=.true.
554       if (lprint) &
555        write (iout,*)'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
556       n_sc_int_tot=(nct_molec(1)-nnt+1)*(nct_molec(1)-nnt)/2-nss
557       call int_bounds(n_sc_int_tot,my_sc_inds,my_sc_inde)
558 !write (iout,*) 'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
559       if (lprint) &
560         write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
561         ' absolute rank',MyRank,&
562         ' n_sc_int_tot',n_sc_int_tot,' my_sc_inds=',my_sc_inds,&
563         ' my_sc_inde',my_sc_inde
564       ind_sctint=0
565       iatsc_s=0
566       iatsc_e=0
567 #endif
568 !el       common /przechowalnia/
569       allocate(iturn3_start_all(0:nfgtasks))
570       allocate(iturn3_end_all(0:nfgtasks))
571       allocate(iturn4_start_all(0:nfgtasks))
572       allocate(iturn4_end_all(0:nfgtasks))
573       allocate(iatel_s_all(0:nfgtasks))
574       allocate(iatel_e_all(0:nfgtasks))
575       allocate(ielstart_all(nres,0:nfgtasks-1))
576       allocate(ielend_all(nres,0:nfgtasks-1))
577
578       allocate(ntask_cont_from_all(0:nfgtasks-1))
579       allocate(ntask_cont_to_all(0:nfgtasks-1))
580       allocate(itask_cont_from_all(0:nfgtasks-1,0:nfgtasks-1))
581       allocate(itask_cont_to_all(0:nfgtasks-1,0:nfgtasks-1))
582 !el----------
583 !      lprint=.false.
584         print *,"NCT",nct_molec(1),nct
585       do i=1,nres !el   !maxres
586         nint_gr(i)=0
587         nscp_gr(i)=0
588         ielstart(i)=0
589         ielend(i)=0
590         do j=1,maxint_gr
591           istart(i,j)=0
592           iend(i,j)=0
593           iscpstart(i,j)=0
594           iscpend(i,j)=0    
595         enddo
596       enddo
597       ind_scint=0
598       ind_scint_old=0
599 !d    write (iout,*) 'ns=',ns,' nss=',nss,' ihpb,jhpb',
600 !d   &   (ihpb(i),jhpb(i),i=1,nss)
601 !       print *,nnt,nct_molec(1)
602       do i=nnt,nct_molec(1)-1
603 !        print*, "inloop",i
604         scheck=.false.
605         if (dyn_ss) goto 10
606         do ii=1,nss
607           if (ihpb(ii).eq.i+nres) then
608             scheck=.true.
609             jj=jhpb(ii)-nres
610             goto 10
611           endif
612         enddo
613    10   continue
614 !        print *,'i=',i,' scheck=',scheck,' jj=',jj
615 !d      write (iout,*) 'i=',i,' scheck=',scheck,' jj=',jj
616         if (scheck) then
617           if (jj.eq.i+1) then
618 #ifdef MPI
619 !            write (iout,*) 'jj=i+1'
620             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
621        iatsc_s,iatsc_e,i+2,nct_molec(1),nint_gr(i),istart(i,1),iend(i,1),*12)
622 #else
623             nint_gr(i)=1
624             istart(i,1)=i+2
625             iend(i,1)=nct
626 #endif
627           else if (jj.eq.nct_molec(1)) then
628 #ifdef MPI
629 !            write (iout,*) 'jj=nct'
630             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
631         iatsc_s,iatsc_e,i+1,nct_molec(1)-1,nint_gr(i),istart(i,1),iend(i,1),*12)
632 #else
633             nint_gr(i)=1
634             istart(i,1)=i+1
635             iend(i,1)=nct_molecule(1)-1
636 #endif
637           else
638 #ifdef MPI
639             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
640        iatsc_s,iatsc_e,i+1,jj-1,nint_gr(i),istart(i,1),iend(i,1),*12)
641             ii=nint_gr(i)+1
642             call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
643        iatsc_s,iatsc_e,jj+1,nct_molec(1),nint_gr(i),istart(i,ii),iend(i,ii),*12)
644          
645 #else
646             nint_gr(i)=2
647             istart(i,1)=i+1
648             iend(i,1)=jj-1
649             istart(i,2)=jj+1
650             iend(i,2)=nct_molec(1)
651 #endif
652           endif
653         else
654 #ifdef MPI
655 !          print *,"i for EVDW",iatsc_s,iatsc_e,istart(i,1),iend(i,1),&
656 !          i+1,nct_molec(1),nint_gr(i),ind_scint,my_sc_inds,my_sc_inde,i
657           call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,&
658           iatsc_s,iatsc_e,i+1,nct_molec(1),nint_gr(i), &
659           istart(i,1),iend(i,1),*12)
660 !          print *,"i for EVDW",iatsc_s,iatsc_e,istart(i,1),iend(i,1)
661 #else
662           nint_gr(i)=1
663           istart(i,1)=i+1
664           iend(i,1)=nct_molec(1)
665           ind_scint=ind_scint+nct_molec(1)-i
666 #endif
667         endif
668 #ifdef MPI
669         ind_scint_old=ind_scint
670 #endif
671       enddo
672    12 continue
673 !      print *,"i for EVDW",iatsc_s,iatsc_e,istart(i,1),iend(i,1)
674
675 #ifndef MPI
676       iatsc_s=nnt
677       iatsc_e=nct-1
678 #endif
679       if (iatsc_s.eq.0) iatsc_s=1
680 !----------------- scaling for nucleic acid GB
681       n_sc_int_tot_nucl=(nct_molec(2)-nnt_molec(2)+1)*(nct_molec(2)-nnt_molec(2))/2
682       call int_bounds(n_sc_int_tot_nucl,my_sc_inds_nucl,my_sc_inde_nucl)
683 !write (iout,*) 'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
684       if (lprint) &
685         write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
686         ' absolute rank',MyRank,&
687         ' n_sc_int_tot',n_sc_int_tot_nucl,' my_sc_inds=',my_sc_inds_nucl,&
688         ' my_sc_inde',my_sc_inde_nucl
689       ind_sctint_nucl=0
690       iatsc_s_nucl=0
691       iatsc_e_nucl=0
692       do i=1,nres !el   !maxres
693         nint_gr_nucl(i)=0
694         nscp_gr_nucl(i)=0
695         ielstart_nucl(i)=0
696         ielend_nucl(i)=0
697         do j=1,maxint_gr
698           istart_nucl(i,j)=0
699           iend_nucl(i,j)=0
700           iscpstart_nucl(i,j)=0
701           iscpend_nucl(i,j)=0
702         enddo
703       enddo
704       do i=nnt_molec(2),nct_molec(2)-1
705         print*, "inloop2",i
706       call int_partition(ind_scint_nucl,my_sc_inds_nucl,my_sc_inde_nucl,i,&
707            iatsc_s_nucl,iatsc_e_nucl,i+1,nct_molec(2),nint_gr_nucl(i), &
708            istart_nucl(i,1),iend_nucl(i,1),*112)
709         print *,istart_nucl(i,1)
710       enddo
711   112  continue
712        if (iatsc_s_nucl.eq.0) iatsc_s_nucl=1
713        print *,"tu mam",iatsc_s_nucl,iatsc_e_nucl
714
715 #ifdef MPI
716       if (lprint) write (*,*) 'Processor',fg_rank,' CG Group',kolor,&
717          ' absolute rank',myrank,' iatsc_s=',iatsc_s,' iatsc_e=',iatsc_e
718 #endif
719 !      lprint=.true.
720       if (lprint) then
721       write (iout,'(a)') 'Interaction array:'
722       do i=iatsc_s,iatsc_e
723         write (iout,'(i3,2(2x,2i3))') &
724        i,(istart(i,iint),iend(i,iint),iint=1,nint_gr(i))
725       enddo
726 !      endif
727 !      lprint=.false.
728       write (iout,'(a)') 'Interaction array2:' 
729       do i=iatsc_s_nucl,iatsc_e_nucl
730         write (iout,'(i3,2(2x,2i4))') &
731        i,(istart_nucl(i,iint),iend_nucl(i,iint),iint=1,nint_gr_nucl(i))
732       enddo
733       endif
734       ispp=4 !?? wham ispp=2
735 #ifdef MPI
736 ! Now partition the electrostatic-interaction array
737       if (nres_molec(1).eq.0) then  
738        npept=0
739       elseif (itype(nres_molec(1),1).eq.ntyp1_molec(1)) then
740       npept=nres_molec(1)-nnt-1
741       else
742       npept=nres_molec(1)-nnt
743       endif
744       nele_int_tot=(npept-ispp)*(npept-ispp+1)/2
745       call int_bounds(nele_int_tot,my_ele_inds,my_ele_inde)
746       if (lprint) &
747        write (*,*) 'Processor',fg_rank,' CG group',kolor,&
748         ' absolute rank',MyRank,&
749         ' nele_int_tot',nele_int_tot,' my_ele_inds=',my_ele_inds,&
750                     ' my_ele_inde',my_ele_inde
751       iatel_s=0
752       iatel_e=0
753       ind_eleint=0
754       ind_eleint_old=0
755 !      if (itype(nres_molec(1),1).eq.ntyp1_molec(1)) then
756 !      nct_molec(1)=nres_molec(1)-1
757 !      else
758 !      nct_molec(1)=nres_molec(1)
759 !      endif
760 !       print *,"nct",nct,nct_molec(1),itype(nres_molec(1),1),ntyp_molec(1)
761       do i=nnt,nct_molec(1)-3
762         ijunk=0
763         call int_partition(ind_eleint,my_ele_inds,my_ele_inde,i,&
764           iatel_s,iatel_e,i+ispp,nct_molec(1)-1,ijunk,ielstart(i),ielend(i),*13)
765       enddo ! i 
766    13 continue
767       if (iatel_s.eq.0) iatel_s=1
768 !----------now nucleic acid
769 !     if (itype(nres_molec(2),2).eq.ntyp1_molec(2)) then
770       npept_nucl=nct_molec(2)-nnt_molec(2)
771 !     else
772 !     npept_nucl=nct_molec(2)-nnt_molec(2)
773 !     endif
774       nele_int_tot_nucl=(npept_nucl-ispp)*(npept_nucl-ispp+1)/2
775       call int_bounds(nele_int_tot_nucl,my_ele_inds_nucl,my_ele_inde_nucl)
776       if (lprint) &
777        write (*,*) 'Processor',fg_rank,' CG group',kolor,&
778         ' absolute rank',MyRank,&
779         ' nele_int_tot',nele_int_tot,' my_ele_inds=',my_ele_inds,&
780                     ' my_ele_inde',my_ele_inde
781       iatel_s_nucl=0
782       iatel_e_nucl=0
783       ind_eleint_nucl=0
784       ind_eleint_old_nucl=0
785 !      if (itype(nres_molec(1),1).eq.ntyp1_molec(1)) then
786 !      nct_molec(1)=nres_molec(1)-1
787 !      else
788 !      nct_molec(1)=nres_molec(1)
789 !      endif
790 !       print *,"nct",nct,nct_molec(1),itype(nres_molec(1),1),ntyp_molec(1)
791       do i=nnt_molec(2),nct_molec(2)-3
792         ijunk=0
793         call int_partition(ind_eleint_nucl,my_ele_inds_nucl,my_ele_inde_nucl,i,&
794           iatel_s_nucl,iatel_e_nucl,i+ispp,nct_molec(2)-1,&
795           ijunk,ielstart_nucl(i),ielend_nucl(i),*113)
796       enddo ! i 
797   113 continue
798       if (iatel_s_nucl.eq.0) iatel_s_nucl=1
799
800       nele_int_tot_vdw=(npept-2)*(npept-2+1)/2
801 !      write (iout,*) "nele_int_tot_vdw",nele_int_tot_vdw
802       call int_bounds(nele_int_tot_vdw,my_ele_inds_vdw,my_ele_inde_vdw)
803 !      write (iout,*) "my_ele_inds_vdw",my_ele_inds_vdw,
804 !     & " my_ele_inde_vdw",my_ele_inde_vdw
805       ind_eleint_vdw=0
806       ind_eleint_vdw_old=0
807       iatel_s_vdw=0
808       iatel_e_vdw=0
809       do i=nnt,nct_molec(1)-3
810         ijunk=0
811         call int_partition(ind_eleint_vdw,my_ele_inds_vdw,&
812           my_ele_inde_vdw,i,&
813           iatel_s_vdw,iatel_e_vdw,i+2,nct_molec(1)-1,ijunk,ielstart_vdw(i),&
814           ielend_vdw(i),*15)
815 !        write (iout,*) i," ielstart_vdw",ielstart_vdw(i),
816 !     &   " ielend_vdw",ielend_vdw(i)
817       enddo ! i 
818       if (iatel_s_vdw.eq.0) iatel_s_vdw=1
819    15 continue
820       if (iatel_s.eq.0) iatel_s=1
821       if (iatel_s_vdw.eq.0) iatel_s_vdw=1
822       nele_int_tot_vdw_nucl=(npept_nucl-2)*(npept_nucl-2+1)/2
823 !      write (iout,*) "nele_int_tot_vdw",nele_int_tot_vdw
824       call int_bounds(nele_int_tot_vdw_nucl,my_ele_inds_vdw_nucl,&
825         my_ele_inde_vdw_nucl)
826 !      write (iout,*) "my_ele_inds_vdw",my_ele_inds_vdw,
827 !     & " my_ele_inde_vdw",my_ele_inde_vdw
828       ind_eleint_vdw_nucl=0
829       ind_eleint_vdw_old_nucl=0
830       iatel_s_vdw_nucl=0
831       iatel_e_vdw_nucl=0
832       do i=nnt_molec(2),nct_molec(2)-3
833         ijunk=0
834         call int_partition(ind_eleint_vdw_nucl,my_ele_inds_vdw_nucl,&
835           my_ele_inde_vdw_nucl,i,&
836           iatel_s_vdw_nucl,iatel_e_vdw_nucl,i+2,nct_molec(2)-1,&
837           ijunk,ielstart_vdw_nucl(i),&
838           ielend_vdw(i),*115)
839 !        write (iout,*) i," ielstart_vdw",ielstart_vdw(i),
840 !     &   " ielend_vdw",ielend_vdw(i)
841       enddo ! i 
842       if (iatel_s_vdw.eq.0) iatel_s_vdw_nucl=1
843   115 continue
844
845 #else
846       iatel_s=nnt
847       iatel_e=nct_molec(1)-5 ! ?? wham iatel_e=nct-3
848       do i=iatel_s,iatel_e
849         ielstart(i)=i+4 ! ?? wham +2
850         ielend(i)=nct_molec(1)-1
851       enddo
852       iatel_s_vdw=nnt
853       iatel_e_vdw=nct_molec(1)-3
854       do i=iatel_s_vdw,iatel_e_vdw
855         ielstart_vdw(i)=i+2
856         ielend_vdw(i)=nct_molec(1)-1
857       enddo
858 #endif
859       if (lprint) then
860         write (*,'(a)') 'Processor',fg_rank,' CG group',kolor,&
861         ' absolute rank',MyRank
862         write (iout,*) 'Electrostatic interaction array:'
863         do i=iatel_s,iatel_e
864           write (iout,'(i3,2(2x,2i3))') i,ielstart(i),ielend(i)
865         enddo
866       endif ! lprint
867 !     iscp=3
868       iscp=2
869       iscp_nucl=2
870 ! Partition the SC-p interaction array
871 #ifdef MPI
872       nscp_int_tot=(npept-iscp+1)*(npept-iscp+1)
873       call int_bounds(nscp_int_tot,my_scp_inds,my_scp_inde)
874       if (lprint) write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
875         ' absolute rank',myrank,&
876         ' nscp_int_tot',nscp_int_tot,' my_scp_inds=',my_scp_inds,&
877                     ' my_scp_inde',my_scp_inde
878       iatscp_s=0
879       iatscp_e=0
880       ind_scpint=0
881       ind_scpint_old=0
882       do i=nnt,nct_molec(1)-1
883         if (i.lt.nnt+iscp) then
884 !d        write (iout,*) 'i.le.nnt+iscp'
885           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
886             iatscp_s,iatscp_e,i+iscp,nct_molec(1),nscp_gr(i),iscpstart(i,1),&
887             iscpend(i,1),*14)
888         else if (i.gt.nct-iscp) then
889 !d        write (iout,*) 'i.gt.nct-iscp'
890           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
891             iatscp_s,iatscp_e,nnt,i-iscp,nscp_gr(i),iscpstart(i,1),&
892             iscpend(i,1),*14)
893         else
894           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
895             iatscp_s,iatscp_e,nnt,i-iscp,nscp_gr(i),iscpstart(i,1),&
896            iscpend(i,1),*14)
897           ii=nscp_gr(i)+1
898           call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,&
899             iatscp_s,iatscp_e,i+iscp,nct_molec(1),nscp_gr(i),iscpstart(i,ii),&
900             iscpend(i,ii),*14)
901         endif
902       enddo ! i
903    14 continue
904       print *,"before inloop3",iatscp_s,iatscp_e,iscp_nucl
905       nscp_int_tot_nucl=(npept_nucl-iscp_nucl+1)*(npept_nucl-iscp_nucl+1)
906       call int_bounds(nscp_int_tot_nucl,my_scp_inds_nucl,my_scp_inde_nucl)
907       if (lprint) write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
908         ' absolute rank',myrank,&
909         ' nscp_int_tot',nscp_int_tot_nucl,' my_scp_inds=',my_scp_inds_nucl,&
910                     ' my_scp_inde',my_scp_inde_nucl
911       print *,"nscp_int_tot_nucl",nscp_int_tot_nucl,my_scp_inds_nucl,my_scp_inde_nucl
912       iatscp_s_nucl=0
913       iatscp_e_nucl=0
914       ind_scpint_nucl=0
915       ind_scpint_old_nucl=0
916       do i=nnt_molec(2),nct_molec(2)-1
917         print *,"inloop3",i,nnt_molec(2)+iscp,nct_molec(2)-iscp
918         if (i.lt.nnt_molec(2)+iscp) then
919 !d        write (iout,*) 'i.le.nnt+iscp'
920           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
921             my_scp_inde_nucl,i,iatscp_s_nucl,iatscp_e_nucl,i+iscp,&
922             nct_molec(2),nscp_gr_nucl(i),iscpstart_nucl(i,1),&
923             iscpend_nucl(i,1),*114)
924         else if (i.gt.nct_molec(2)-iscp) then
925 !d        write (iout,*) 'i.gt.nct-iscp'
926           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
927             my_scp_inde_nucl,i,&
928             iatscp_s_nucl,iatscp_e_nucl,nnt_molec(2),i-iscp,nscp_gr_nucl(i),&
929             iscpstart_nucl(i,1),&
930             iscpend_nucl(i,1),*114)
931         else
932           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
933             my_scp_inde_nucl,i,iatscp_s_nucl,iatscp_e_nucl,nnt_molec(2),&
934             i-iscp,nscp_gr_nucl(i),iscpstart_nucl(i,1),&
935            iscpend_nucl(i,1),*114)
936           ii=nscp_gr_nucl(i)+1
937           call int_partition(ind_scpint_nucl,my_scp_inds_nucl,&
938             my_scp_inde_nucl,i,iatscp_s_nucl,iatscp_e_nucl,i+iscp,&
939             nct_molec(2),nscp_gr_nucl(i),iscpstart_nucl(i,ii),&
940             iscpend_nucl(i,ii),*114)
941         endif
942       enddo ! i
943   114 continue
944       print *, "after inloop3",iatscp_s_nucl,iatscp_e_nucl
945       if (iatscp_s_nucl.eq.0) iatscp_s_nucl=1
946 #else
947       iatscp_s=nnt
948       iatscp_e=nct_molec(1)-1
949       do i=nnt,nct_molec(1)-1
950         if (i.lt.nnt+iscp) then
951           nscp_gr(i)=1
952           iscpstart(i,1)=i+iscp
953           iscpend(i,1)=nct_molec(1)
954         elseif (i.gt.nct-iscp) then
955           nscp_gr(i)=1
956           iscpstart(i,1)=nnt
957           iscpend(i,1)=i-iscp
958         else
959           nscp_gr(i)=2
960           iscpstart(i,1)=nnt
961           iscpend(i,1)=i-iscp
962           iscpstart(i,2)=i+iscp
963           iscpend(i,2)=nct_molec(1)
964         endif 
965       enddo ! i
966 #endif
967       if (iatscp_s.eq.0) iatscp_s=1
968       if (lprint) then
969         write (iout,'(a)') 'SC-p interaction array:'
970         do i=iatscp_s,iatscp_e
971           write (iout,'(i3,2(2x,2i3))') &
972               i,(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i))
973         enddo
974       endif ! lprint
975 ! Partition local interactions
976 #ifdef MPI
977       call int_bounds(nres_molec(1)-2,loc_start,loc_end)
978       loc_start=loc_start+1
979       loc_end=loc_end+1
980       call int_bounds(nres_molec(2)-2,loc_start_nucl,loc_end_nucl)
981       loc_start_nucl=loc_start_nucl+1+nres_molec(1)
982       loc_end_nucl=loc_end_nucl+1+nres_molec(1)
983       call int_bounds(nres_molec(1)-2,ithet_start,ithet_end)
984       ithet_start=ithet_start+2
985       ithet_end=ithet_end+2
986       call int_bounds(nres_molec(2)-2,ithet_nucl_start,ithet_nucl_end)
987       ithet_nucl_start=ithet_nucl_start+2+nres_molec(1)
988       ithet_nucl_end=ithet_nucl_end+2+nres_molec(1)
989       call int_bounds(nct_molec(1)-nnt-2,iturn3_start,iturn3_end) 
990       iturn3_start=iturn3_start+nnt
991       iphi_start=iturn3_start+2
992       iturn3_end=iturn3_end+nnt
993       iphi_end=iturn3_end+2
994       iturn3_start=iturn3_start-1
995       iturn3_end=iturn3_end-1
996       call int_bounds(nct_molec(2)-nnt_molec(2)-2,iphi_nucl_start,iphi_nucl_end)
997       iphi_nucl_start=iphi_nucl_start+nnt_molec(2)+2
998       iphi_nucl_end=iphi_nucl_end+nnt_molec(2)+2
999       print *,"KURDE",iphi_nucl_start,iphi_nucl_end
1000       call int_bounds(nres_molec(1)-3,itau_start,itau_end)
1001       itau_start=itau_start+3
1002       itau_end=itau_end+3
1003       call int_bounds(nres_molec(1)-3,iphi1_start,iphi1_end)
1004       iphi1_start=iphi1_start+3
1005       iphi1_end=iphi1_end+3
1006       call int_bounds(nct_molec(1)-nnt-3,iturn4_start,iturn4_end) 
1007       iturn4_start=iturn4_start+nnt
1008       iphid_start=iturn4_start+2
1009       iturn4_end=iturn4_end+nnt
1010       iphid_end=iturn4_end+2
1011       iturn4_start=iturn4_start-1
1012       iturn4_end=iturn4_end-1
1013 !      print *,"TUTUTU",nres_molec(1),nres
1014       call int_bounds(nres_molec(1)-2,ibond_start,ibond_end) 
1015       ibond_start=ibond_start+1
1016       ibond_end=ibond_end+1
1017 !      print *,ibond_start,ibond_end
1018       call int_bounds(nct_molec(1)-nnt,ibondp_start,ibondp_end) 
1019       ibondp_start=ibondp_start+nnt
1020       ibondp_end=ibondp_end+nnt
1021      call int_bounds(nres_molec(2)-2,ibond_nucl_start,ibond_nucl_end)
1022       ibond_nucl_start=ibond_nucl_start+nnt_molec(2)-1
1023       ibond_nucl_end=ibond_nucl_end+nnt_molec(2)-1
1024       print *,"NUCLibond",ibond_nucl_start,ibond_nucl_end
1025       if (nres_molec(2).ne.0) then
1026       print *, "before devision",nnt_molec(2),nct_molec(2)-nnt_molec(2)
1027       call int_bounds(nct_molec(2)-nnt_molec(2),ibondp_nucl_start,ibondp_nucl_end)
1028       ibondp_nucl_start=ibondp_nucl_start+nnt_molec(2)
1029       ibondp_nucl_end=ibondp_nucl_end+nnt_molec(2)
1030        else
1031        ibondp_nucl_start=1
1032        ibondp_nucl_end=0
1033        endif
1034       print *,"NUCLibond2",ibondp_nucl_start,ibondp_nucl_end
1035
1036
1037       call int_bounds1(nres_molec(1)-1,ivec_start,ivec_end) 
1038 !      print *,"Processor",myrank,fg_rank,fg_rank1,
1039 !     &  " ivec_start",ivec_start," ivec_end",ivec_end
1040       iset_start=loc_start+2
1041       iset_end=loc_end+2
1042       call int_bounds(nres_molec(1),ilip_start,ilip_end)
1043       ilip_start=ilip_start
1044       ilip_end=ilip_end
1045       call int_bounds(nres_molec(1)-1,itube_start,itube_end)
1046       itube_start=itube_start
1047       itube_end=itube_end
1048       if (ndih_constr.eq.0) then
1049         idihconstr_start=1
1050         idihconstr_end=0
1051       else
1052         call int_bounds(ndih_constr,idihconstr_start,idihconstr_end)
1053       endif
1054       if (ntheta_constr.eq.0) then
1055         ithetaconstr_start=1
1056         ithetaconstr_end=0
1057       else
1058         call int_bounds &
1059        (ntheta_constr,ithetaconstr_start,ithetaconstr_end)
1060       endif
1061
1062 !      nsumgrad=(nres-nnt)*(nres-nnt+1)/2
1063 !      nlen=nres-nnt+1
1064       nsumgrad=(nres-nnt)*(nres-nnt+1)/2
1065       nlen=nres-nnt+1
1066       call int_bounds(nsumgrad,ngrad_start,ngrad_end)
1067       igrad_start=((2*nlen+1) &
1068          -sqrt(float((2*nlen-1)**2-8*(ngrad_start-1))))/2
1069       igrad_end=((2*nlen+1) &
1070          -sqrt(float((2*nlen-1)**2-8*(ngrad_end-1))))/2
1071 !el      allocate(jgrad_start(igrad_start:igrad_end))
1072 !el      allocate(jgrad_end(igrad_start:igrad_end)) !(maxres)
1073       jgrad_start(igrad_start)= &
1074          ngrad_start-(2*nlen-igrad_start)*(igrad_start-1)/2 &
1075          +igrad_start
1076       jgrad_end(igrad_start)=nres
1077       if (igrad_end.gt.igrad_start) jgrad_start(igrad_end)=igrad_end+1
1078       jgrad_end(igrad_end)=ngrad_end-(2*nlen-igrad_end)*(igrad_end-1)/2 &
1079           +igrad_end
1080       do i=igrad_start+1,igrad_end-1
1081         jgrad_start(i)=i+1
1082         jgrad_end(i)=nres
1083       enddo
1084       if (lprint) then 
1085         write (*,*) 'Processor:',fg_rank,' CG group',kolor,&
1086        ' absolute rank',myrank,&
1087        ' loc_start',loc_start,' loc_end',loc_end,&
1088        ' ithet_start',ithet_start,' ithet_end',ithet_end,&
1089        ' iphi_start',iphi_start,' iphi_end',iphi_end,&
1090        ' iphid_start',iphid_start,' iphid_end',iphid_end,&
1091        ' ibond_start',ibond_start,' ibond_end',ibond_end,&
1092        ' ibondp_start',ibondp_start,' ibondp_end',ibondp_end,&
1093        ' iturn3_start',iturn3_start,' iturn3_end',iturn3_end,&
1094        ' iturn4_start',iturn4_start,' iturn4_end',iturn4_end,&
1095        ' ivec_start',ivec_start,' ivec_end',ivec_end,&
1096        ' iset_start',iset_start,' iset_end',iset_end,&
1097        ' idihconstr_start',idihconstr_start,' idihconstr_end',&
1098          idihconstr_end
1099        write (*,*) 'Processor:',fg_rank,myrank,' igrad_start',&
1100          igrad_start,' igrad_end',igrad_end,' ngrad_start',ngrad_start,&
1101          ' ngrad_end',ngrad_end
1102 !       do i=igrad_start,igrad_end
1103 !         write(*,*) 'Processor:',fg_rank,myrank,i,&
1104 !          jgrad_start(i),jgrad_end(i)
1105 !       enddo
1106       endif
1107       if (nfgtasks.gt.1) then
1108         call MPI_Allgather(ivec_start,1,MPI_INTEGER,ivec_displ(0),1,&
1109           MPI_INTEGER,FG_COMM1,IERROR)
1110         iaux=ivec_end-ivec_start+1
1111         call MPI_Allgather(iaux,1,MPI_INTEGER,ivec_count(0),1,&
1112           MPI_INTEGER,FG_COMM1,IERROR)
1113         call MPI_Allgather(iset_start-2,1,MPI_INTEGER,iset_displ(0),1,&
1114           MPI_INTEGER,FG_COMM,IERROR)
1115         iaux=iset_end-iset_start+1
1116         call MPI_Allgather(iaux,1,MPI_INTEGER,iset_count(0),1,&
1117           MPI_INTEGER,FG_COMM,IERROR)
1118         call MPI_Allgather(ibond_start,1,MPI_INTEGER,ibond_displ(0),1,&
1119           MPI_INTEGER,FG_COMM,IERROR)
1120         iaux=ibond_end-ibond_start+1
1121         call MPI_Allgather(iaux,1,MPI_INTEGER,ibond_count(0),1,&
1122           MPI_INTEGER,FG_COMM,IERROR)
1123         call MPI_Allgather(ithet_start,1,MPI_INTEGER,ithet_displ(0),1,&
1124           MPI_INTEGER,FG_COMM,IERROR)
1125         iaux=ithet_end-ithet_start+1
1126         call MPI_Allgather(iaux,1,MPI_INTEGER,ithet_count(0),1,&
1127           MPI_INTEGER,FG_COMM,IERROR)
1128         call MPI_Allgather(iphi_start,1,MPI_INTEGER,iphi_displ(0),1,&
1129           MPI_INTEGER,FG_COMM,IERROR)
1130         iaux=iphi_end-iphi_start+1
1131         call MPI_Allgather(iaux,1,MPI_INTEGER,iphi_count(0),1,&
1132           MPI_INTEGER,FG_COMM,IERROR)
1133         call MPI_Allgather(iphi1_start,1,MPI_INTEGER,iphi1_displ(0),1,&
1134           MPI_INTEGER,FG_COMM,IERROR)
1135         iaux=iphi1_end-iphi1_start+1
1136         call MPI_Allgather(iaux,1,MPI_INTEGER,iphi1_count(0),1,&
1137           MPI_INTEGER,FG_COMM,IERROR)
1138         do i=0,nfgtasks-1
1139           do j=1,nres
1140             ielstart_all(j,i)=0
1141             ielend_all(j,i)=0
1142           enddo
1143         enddo
1144         call MPI_Allgather(iturn3_start,1,MPI_INTEGER,&
1145           iturn3_start_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1146         call MPI_Allgather(iturn4_start,1,MPI_INTEGER,&
1147           iturn4_start_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1148         call MPI_Allgather(iturn3_end,1,MPI_INTEGER,&
1149           iturn3_end_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1150         call MPI_Allgather(iturn4_end,1,MPI_INTEGER,&
1151           iturn4_end_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1152         call MPI_Allgather(iatel_s,1,MPI_INTEGER,&
1153           iatel_s_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1154         call MPI_Allgather(iatel_e,1,MPI_INTEGER,&
1155           iatel_e_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
1156         call MPI_Allgather(ielstart(1),nres,MPI_INTEGER,&
1157           ielstart_all(1,0),nres,MPI_INTEGER,FG_COMM,IERROR)
1158         call MPI_Allgather(ielend(1),nres,MPI_INTEGER,&
1159           ielend_all(1,0),nres,MPI_INTEGER,FG_COMM,IERROR)
1160         if (lprint) then
1161         write (iout,*) "iatel_s_all",(iatel_s_all(i),i=0,nfgtasks)
1162         write (iout,*) "iatel_e_all",(iatel_e_all(i),i=0,nfgtasks)
1163         write (iout,*) "iturn3_start_all",&
1164           (iturn3_start_all(i),i=0,nfgtasks-1)
1165         write (iout,*) "iturn3_end_all",&
1166           (iturn3_end_all(i),i=0,nfgtasks-1)
1167         write (iout,*) "iturn4_start_all",&
1168           (iturn4_start_all(i),i=0,nfgtasks-1)
1169         write (iout,*) "iturn4_end_all",&
1170           (iturn4_end_all(i),i=0,nfgtasks-1)
1171         write (iout,*) "The ielstart_all array"
1172         do i=nnt,nct
1173           write (iout,'(20i4)') i,(ielstart_all(i,j),j=0,nfgtasks-1)
1174         enddo
1175         write (iout,*) "The ielend_all array"
1176         do i=nnt,nct
1177           write (iout,'(20i4)') i,(ielend_all(i,j),j=0,nfgtasks-1)
1178         enddo
1179         call flush(iout)
1180         endif
1181         ntask_cont_from=0
1182         ntask_cont_to=0
1183         itask_cont_from(0)=fg_rank
1184         itask_cont_to(0)=fg_rank
1185         flag=.false.
1186 !el        allocate(iturn3_sent(4,iturn3_start:iturn3_end))
1187 !el        allocate(iturn4_sent(4,iturn4_start:iturn4_end)) !(4,maxres)
1188         do ii=iturn3_start,iturn3_end
1189           call add_int(ii,ii+2,iturn3_sent(1,ii),&
1190                       ntask_cont_to,itask_cont_to,flag)
1191         enddo
1192         do ii=iturn4_start,iturn4_end
1193           call add_int(ii,ii+3,iturn4_sent(1,ii),&
1194                       ntask_cont_to,itask_cont_to,flag)
1195         enddo
1196         do ii=iturn3_start,iturn3_end
1197           call add_int_from(ii,ii+2,ntask_cont_from,itask_cont_from)
1198         enddo
1199         do ii=iturn4_start,iturn4_end
1200           call add_int_from(ii,ii+3,ntask_cont_from,itask_cont_from)
1201         enddo
1202         if (lprint) then
1203         write (iout,*) "After turn3 ntask_cont_from",ntask_cont_from,&
1204          " ntask_cont_to",ntask_cont_to
1205         write (iout,*) "itask_cont_from",&
1206           (itask_cont_from(i),i=1,ntask_cont_from)
1207         write (iout,*) "itask_cont_to",&
1208           (itask_cont_to(i),i=1,ntask_cont_to)
1209         call flush(iout)
1210         endif
1211 !        write (iout,*) "Loop forward"
1212 !        call flush(iout)
1213         do i=iatel_s,iatel_e
1214 !          write (iout,*) "from loop i=",i
1215 !          call flush(iout)
1216           do j=ielstart(i),ielend(i)
1217             call add_int_from(i,j,ntask_cont_from,itask_cont_from)
1218           enddo
1219         enddo
1220 !        write (iout,*) "Loop backward iatel_e-1",iatel_e-1,
1221 !     &     " iatel_e",iatel_e
1222 !        call flush(iout)
1223         nat_sent=0
1224         do i=iatel_s,iatel_e
1225 !          write (iout,*) "i",i," ielstart",ielstart(i),
1226 !     &      " ielend",ielend(i)
1227 !          call flush(iout)
1228           flag=.false.
1229           do j=ielstart(i),ielend(i)
1230             call add_int(i,j,iint_sent(1,j,nat_sent+1),ntask_cont_to,&
1231                         itask_cont_to,flag)
1232           enddo
1233           if (flag) then
1234             nat_sent=nat_sent+1
1235             iat_sent(nat_sent)=i
1236           endif
1237         enddo
1238         if (lprint) then
1239         write (iout,*)"After longrange ntask_cont_from",ntask_cont_from,&
1240          " ntask_cont_to",ntask_cont_to
1241         write (iout,*) "itask_cont_from",&
1242           (itask_cont_from(i),i=1,ntask_cont_from)
1243         write (iout,*) "itask_cont_to",&
1244           (itask_cont_to(i),i=1,ntask_cont_to)
1245         call flush(iout)
1246         write (iout,*) "iint_sent"
1247         do i=1,nat_sent
1248           ii=iat_sent(i)
1249           write (iout,'(20i4)') ii,(j,(iint_sent(k,j,i),k=1,4),&
1250             j=ielstart(ii),ielend(ii))
1251         enddo
1252         write (iout,*) "iturn3_sent iturn3_start",iturn3_start,&
1253           " iturn3_end",iturn3_end
1254         write (iout,'(20i4)') (i,(iturn3_sent(j,i),j=1,4),&
1255            i=iturn3_start,iturn3_end)
1256         write (iout,*) "iturn4_sent iturn4_start",iturn4_start,&
1257           " iturn4_end",iturn4_end
1258         write (iout,'(20i4)') (i,(iturn4_sent(j,i),j=1,4),&
1259            i=iturn4_start,iturn4_end)
1260         call flush(iout)
1261         endif
1262         call MPI_Gather(ntask_cont_from,1,MPI_INTEGER,&
1263          ntask_cont_from_all,1,MPI_INTEGER,king,FG_COMM,IERR)
1264 !        write (iout,*) "Gather ntask_cont_from ended"
1265 !        call flush(iout)
1266         call MPI_Gather(itask_cont_from(0),nfgtasks,MPI_INTEGER,&
1267          itask_cont_from_all(0,0),nfgtasks,MPI_INTEGER,king,&
1268          FG_COMM,IERR)
1269 !        write (iout,*) "Gather itask_cont_from ended"
1270 !        call flush(iout)
1271         call MPI_Gather(ntask_cont_to,1,MPI_INTEGER,ntask_cont_to_all,&
1272          1,MPI_INTEGER,king,FG_COMM,IERR)
1273 !        write (iout,*) "Gather ntask_cont_to ended"
1274 !        call flush(iout)
1275         call MPI_Gather(itask_cont_to,nfgtasks,MPI_INTEGER,&
1276          itask_cont_to_all,nfgtasks,MPI_INTEGER,king,FG_COMM,IERR)
1277 !        write (iout,*) "Gather itask_cont_to ended"
1278 !        call flush(iout)
1279         if (fg_rank.eq.king) then
1280           write (iout,*)"Contact receive task map (proc, #tasks, tasks)"
1281           do i=0,nfgtasks-1
1282             write (iout,'(20i4)') i,ntask_cont_from_all(i),&
1283               (itask_cont_from_all(j,i),j=1,ntask_cont_from_all(i)) 
1284           enddo
1285           write (iout,*)
1286           call flush(iout)
1287           write (iout,*) "Contact send task map (proc, #tasks, tasks)"
1288           do i=0,nfgtasks-1
1289             write (iout,'(20i4)') i,ntask_cont_to_all(i),&
1290              (itask_cont_to_all(j,i),j=1,ntask_cont_to_all(i)) 
1291           enddo
1292           write (iout,*)
1293           call flush(iout)
1294 ! Check if every send will have a matching receive
1295           ncheck_to=0
1296           ncheck_from=0
1297           do i=0,nfgtasks-1
1298             ncheck_to=ncheck_to+ntask_cont_to_all(i)
1299             ncheck_from=ncheck_from+ntask_cont_from_all(i)
1300           enddo
1301           write (iout,*) "Control sums",ncheck_from,ncheck_to
1302           if (ncheck_from.ne.ncheck_to) then
1303             write (iout,*) "Error: #receive differs from #send."
1304             write (iout,*) "Terminating program...!"
1305             call flush(iout)
1306             flag=.false.
1307           else
1308             flag=.true.
1309             do i=0,nfgtasks-1
1310               do j=1,ntask_cont_to_all(i)
1311                 ii=itask_cont_to_all(j,i)
1312                 do k=1,ntask_cont_from_all(ii)
1313                   if (itask_cont_from_all(k,ii).eq.i) then
1314                     if(lprint)write(iout,*)"Matching send/receive",i,ii
1315                     exit
1316                   endif
1317                 enddo
1318                 if (k.eq.ntask_cont_from_all(ii)+1) then
1319                   flag=.false.
1320                   write (iout,*) "Error: send by",j," to",ii,&
1321                     " would have no matching receive"
1322                 endif
1323               enddo
1324             enddo
1325           endif
1326           if (.not.flag) then
1327             write (iout,*) "Unmatched sends; terminating program"
1328             call flush(iout)
1329           endif
1330         endif
1331         call MPI_Bcast(flag,1,MPI_LOGICAL,king,FG_COMM,IERROR)
1332 !        write (iout,*) "flag broadcast ended flag=",flag
1333 !        call flush(iout)
1334         if (.not.flag) then
1335           call MPI_Finalize(IERROR)
1336           stop "Error in INIT_INT_TABLE: unmatched send/receive."
1337         endif
1338         call MPI_Comm_group(FG_COMM,fg_group,IERR)
1339 !        write (iout,*) "MPI_Comm_group ended"
1340 !        call flush(iout)
1341         call MPI_Group_incl(fg_group,ntask_cont_from+1,&
1342           itask_cont_from(0),CONT_FROM_GROUP,IERR)
1343         call MPI_Group_incl(fg_group,ntask_cont_to+1,itask_cont_to(0),&
1344           CONT_TO_GROUP,IERR)
1345         do i=1,nat_sent
1346           ii=iat_sent(i)
1347           iaux=4*(ielend(ii)-ielstart(ii)+1)
1348           call MPI_Group_translate_ranks(fg_group,iaux,&
1349             iint_sent(1,ielstart(ii),i),CONT_TO_GROUP,&
1350             iint_sent_local(1,ielstart(ii),i),IERR )
1351 !          write (iout,*) "Ranks translated i=",i
1352 !          call flush(iout)
1353         enddo
1354         iaux=4*(iturn3_end-iturn3_start+1)
1355         call MPI_Group_translate_ranks(fg_group,iaux,&
1356            iturn3_sent(1,iturn3_start),CONT_TO_GROUP,&
1357            iturn3_sent_local(1,iturn3_start),IERR)
1358         iaux=4*(iturn4_end-iturn4_start+1)
1359         call MPI_Group_translate_ranks(fg_group,iaux,&
1360            iturn4_sent(1,iturn4_start),CONT_TO_GROUP,&
1361            iturn4_sent_local(1,iturn4_start),IERR)
1362         if (lprint) then
1363         write (iout,*) "iint_sent_local"
1364         do i=1,nat_sent
1365           ii=iat_sent(i)
1366           write (iout,'(20i4)') ii,(j,(iint_sent_local(k,j,i),k=1,4),&
1367             j=ielstart(ii),ielend(ii))
1368           call flush(iout)
1369         enddo
1370         write (iout,*) "iturn3_sent_local iturn3_start",iturn3_start,&
1371           " iturn3_end",iturn3_end
1372         write (iout,'(20i4)') (i,(iturn3_sent_local(j,i),j=1,4),&
1373            i=iturn3_start,iturn3_end)
1374         write (iout,*) "iturn4_sent_local iturn4_start",iturn4_start,&
1375           " iturn4_end",iturn4_end
1376         write (iout,'(20i4)') (i,(iturn4_sent_local(j,i),j=1,4),&
1377            i=iturn4_start,iturn4_end)
1378         call flush(iout)
1379         endif
1380         call MPI_Group_free(fg_group,ierr)
1381         call MPI_Group_free(cont_from_group,ierr)
1382         call MPI_Group_free(cont_to_group,ierr)
1383         call MPI_Type_contiguous(3,MPI_DOUBLE_PRECISION,MPI_UYZ,IERROR)
1384         call MPI_Type_commit(MPI_UYZ,IERROR)
1385         call MPI_Type_contiguous(18,MPI_DOUBLE_PRECISION,MPI_UYZGRAD,&
1386           IERROR)
1387         call MPI_Type_commit(MPI_UYZGRAD,IERROR)
1388         call MPI_Type_contiguous(maxcontsshi,MPI_INTEGER,MPI_I50,IERROR)
1389         call MPI_Type_commit(MPI_I50,IERROR)
1390         call MPI_Type_contiguous(maxcontsshi,MPI_DOUBLE_PRECISION,MPI_D50,IERROR)
1391         call MPI_Type_commit(MPI_D50,IERROR)
1392
1393          impishi=maxcontsshi*3
1394 !        call MPI_Type_contiguous(impishi,MPI_DOUBLE_PRECISION, &
1395 !        MPI_SHI,IERROR)
1396 !        call MPI_Type_commit(MPI_SHI,IERROR)
1397 !        print *,MPI_SHI,"MPI_SHI",MPI_D50
1398         call MPI_Type_contiguous(2,MPI_DOUBLE_PRECISION,MPI_MU,IERROR)
1399         call MPI_Type_commit(MPI_MU,IERROR)
1400         call MPI_Type_contiguous(4,MPI_DOUBLE_PRECISION,MPI_MAT1,IERROR)
1401         call MPI_Type_commit(MPI_MAT1,IERROR)
1402         call MPI_Type_contiguous(8,MPI_DOUBLE_PRECISION,MPI_MAT2,IERROR)
1403         call MPI_Type_commit(MPI_MAT2,IERROR)
1404         call MPI_Type_contiguous(6,MPI_DOUBLE_PRECISION,MPI_THET,IERROR)
1405         call MPI_Type_commit(MPI_THET,IERROR)
1406         call MPI_Type_contiguous(9,MPI_DOUBLE_PRECISION,MPI_GAM,IERROR)
1407         call MPI_Type_commit(MPI_GAM,IERROR)
1408
1409 !el        allocate(lentyp(0:nfgtasks-1))
1410 #ifndef MATGATHER
1411 ! 9/22/08 Derived types to send matrices which appear in correlation terms
1412         do i=0,nfgtasks-1
1413           if (ivec_count(i).eq.ivec_count(0)) then
1414             lentyp(i)=0
1415           else
1416             lentyp(i)=1
1417           endif
1418         enddo
1419         do ind_typ=lentyp(0),lentyp(nfgtasks-1)
1420         if (ind_typ.eq.0) then
1421           ichunk=ivec_count(0)
1422         else
1423           ichunk=ivec_count(1)
1424         endif
1425 !        do i=1,4
1426 !          blocklengths(i)=4
1427 !        enddo
1428 !        displs(1)=0
1429 !        do i=2,4
1430 !          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
1431 !        enddo
1432 !        do i=1,4
1433 !          blocklengths(i)=blocklengths(i)*ichunk
1434 !        enddo
1435 !        write (iout,*) "blocklengths and displs"
1436 !        do i=1,4
1437 !          write (iout,*) i,blocklengths(i),displs(i)
1438 !        enddo
1439 !        call flush(iout)
1440 !        call MPI_Type_indexed(4,blocklengths(1),displs(1),
1441 !     &    MPI_DOUBLE_PRECISION,MPI_ROTAT1(ind_typ),IERROR)
1442 !        call MPI_Type_commit(MPI_ROTAT1(ind_typ),IERROR)
1443 !        write (iout,*) "MPI_ROTAT1",MPI_ROTAT1 
1444 !        do i=1,4
1445 !          blocklengths(i)=2
1446 !        enddo
1447 !        displs(1)=0
1448 !        do i=2,4
1449 !          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
1450 !        enddo
1451 !        do i=1,4
1452 !          blocklengths(i)=blocklengths(i)*ichunk
1453 !        enddo
1454 !        write (iout,*) "blocklengths and displs"
1455 !        do i=1,4
1456 !          write (iout,*) i,blocklengths(i),displs(i)
1457 !        enddo
1458 !        call flush(iout)
1459 !        call MPI_Type_indexed(4,blocklengths(1),displs(1),
1460 !     &    MPI_DOUBLE_PRECISION,MPI_ROTAT2(ind_typ),IERROR)
1461 !        call MPI_Type_commit(MPI_ROTAT2(ind_typ),IERROR)
1462 !        write (iout,*) "MPI_ROTAT2",MPI_ROTAT2 
1463         do i=1,8
1464           blocklengths(i)=2
1465         enddo
1466         displs(1)=0
1467         do i=2,8
1468           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1469         enddo
1470         do i=1,15
1471           blocklengths(i)=blocklengths(i)*ichunk
1472         enddo
1473         call MPI_Type_indexed(8,blocklengths,displs,&
1474           MPI_DOUBLE_PRECISION,MPI_PRECOMP11(ind_typ),IERROR)
1475         call MPI_Type_commit(MPI_PRECOMP11(ind_typ),IERROR)
1476         do i=1,8
1477           blocklengths(i)=4
1478         enddo
1479         displs(1)=0
1480         do i=2,8
1481           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1482         enddo
1483         do i=1,15
1484           blocklengths(i)=blocklengths(i)*ichunk
1485         enddo
1486         call MPI_Type_indexed(8,blocklengths,displs,&
1487           MPI_DOUBLE_PRECISION,MPI_PRECOMP12(ind_typ),IERROR)
1488         call MPI_Type_commit(MPI_PRECOMP12(ind_typ),IERROR)
1489         do i=1,6
1490           blocklengths(i)=4
1491         enddo
1492         displs(1)=0
1493         do i=2,6
1494           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1495         enddo
1496         do i=1,6
1497           blocklengths(i)=blocklengths(i)*ichunk
1498         enddo
1499         call MPI_Type_indexed(6,blocklengths,displs,&
1500           MPI_DOUBLE_PRECISION,MPI_PRECOMP22(ind_typ),IERROR)
1501         call MPI_Type_commit(MPI_PRECOMP22(ind_typ),IERROR)
1502         do i=1,2
1503           blocklengths(i)=8
1504         enddo
1505         displs(1)=0
1506         do i=2,2
1507           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1508         enddo
1509         do i=1,2
1510           blocklengths(i)=blocklengths(i)*ichunk
1511         enddo
1512         call MPI_Type_indexed(2,blocklengths,displs,&
1513           MPI_DOUBLE_PRECISION,MPI_PRECOMP23(ind_typ),IERROR)
1514         call MPI_Type_commit(MPI_PRECOMP23(ind_typ),IERROR)
1515         do i=1,4
1516           blocklengths(i)=1
1517         enddo
1518         displs(1)=0
1519         do i=2,4
1520           displs(i)=displs(i-1)+blocklengths(i-1)*nres !maxres
1521         enddo
1522         do i=1,4
1523           blocklengths(i)=blocklengths(i)*ichunk
1524         enddo
1525         call MPI_Type_indexed(4,blocklengths,displs,&
1526           MPI_DOUBLE_PRECISION,MPI_ROTAT_OLD(ind_typ),IERROR)
1527         call MPI_Type_commit(MPI_ROTAT_OLD(ind_typ),IERROR)
1528         enddo
1529 #endif
1530       endif
1531       iint_start=ivec_start+1
1532       iint_end=ivec_end+1
1533       do i=0,nfgtasks-1
1534           iint_count(i)=ivec_count(i)
1535           iint_displ(i)=ivec_displ(i)
1536           ivec_displ(i)=ivec_displ(i)-1
1537           iset_displ(i)=iset_displ(i)-1
1538           ithet_displ(i)=ithet_displ(i)-1
1539           iphi_displ(i)=iphi_displ(i)-1
1540           iphi1_displ(i)=iphi1_displ(i)-1
1541           ibond_displ(i)=ibond_displ(i)-1
1542       enddo
1543       if (nfgtasks.gt.1 .and. fg_rank.eq.king &
1544           .and. (me.eq.0 .or. .not. out1file)) then
1545         write (iout,*) "IVEC_DISPL, IVEC_COUNT, ISET_START, ISET_COUNT"
1546         do i=0,nfgtasks-1
1547           write (iout,*) i,ivec_displ(i),ivec_count(i),iset_displ(i),&
1548             iset_count(i)
1549         enddo
1550         write (iout,*) "iphi_start",iphi_start," iphi_end",iphi_end,&
1551           " iphi1_start",iphi1_start," iphi1_end",iphi1_end
1552         write (iout,*)"IPHI_COUNT, IPHI_DISPL, IPHI1_COUNT, IPHI1_DISPL"
1553         do i=0,nfgtasks-1
1554           write (iout,*) i,iphi_count(i),iphi_displ(i),iphi1_count(i),&
1555             iphi1_displ(i)
1556         enddo
1557         write(iout,'(i10,a,i10,a,i10,a/a,i3,a)') n_sc_int_tot,' SC-SC ',&
1558           nele_int_tot,' electrostatic and ',nscp_int_tot,&
1559           ' SC-p interactions','were distributed among',nfgtasks,&
1560           ' fine-grain processors.'
1561       endif
1562 #else
1563       loc_start=2
1564       loc_end=nres_molec(1)-1
1565       ithet_start=3 
1566       ithet_end=nres_molec(1)
1567       ithet_nucl_start=3+nres_molec(1)
1568       ithet_nucl_end=nres_molec(1)+nres_molec(2)
1569       iturn3_start=nnt
1570       iturn3_end=nct_molec(1)-3
1571       iturn4_start=nnt
1572       iturn4_end=nct_molec(1)-4
1573       iphi_start=nnt+3
1574       iphi_end=nct_molec(1)
1575       iphi1_start=4
1576       iphi1_end=nres_molec(1)
1577       iphi_nucl_start=4+nres_molec(1)
1578       iphi_nucl_end=nres_molec(1)+nres_molec(2)
1579       idihconstr_start=1
1580       idihconstr_end=ndih_constr
1581       ithetaconstr_start=1
1582       ithetaconstr_end=ntheta_constr
1583       iphid_start=iphi_start
1584       iphid_end=iphi_end-1
1585       itau_start=4
1586       itau_end=nres_molec(1)
1587       ibond_start=2
1588       ibond_end=nres_molec(1)-1
1589       ibond_nucl_start=2+nres_molec(1)
1590       ibond_nucl_end=nres_molec(2)-1
1591       ibondp_start=nnt
1592       ibondp_end=nct_molec(1)-1
1593       ibondp_nucl_start=nnt_molec(2)
1594       ibondp_nucl_end=nct_molec(2)
1595       ivec_start=1
1596       ivec_end=nres_molec(1)-1
1597       iset_start=3
1598       iset_end=nres_molec(1)+1
1599       iint_start=2
1600       iint_end=nres_molec(1)-1
1601       ilip_start=1
1602       ilip_end=nres_molec(1)
1603       itube_start=1
1604       itube_end=nres_molec(1)
1605 #endif
1606 !el       common /przechowalnia/
1607 !      deallocate(iturn3_start_all)
1608 !      deallocate(iturn3_end_all)
1609 !      deallocate(iturn4_start_all)
1610 !      deallocate(iturn4_end_all)
1611 !      deallocate(iatel_s_all)
1612 !      deallocate(iatel_e_all)
1613 !      deallocate(ielstart_all)
1614 !      deallocate(ielend_all)
1615
1616 !      deallocate(ntask_cont_from_all)
1617 !      deallocate(ntask_cont_to_all)
1618 !      deallocate(itask_cont_from_all)
1619 !      deallocate(itask_cont_to_all)
1620 !el----------
1621       return
1622       end subroutine init_int_table
1623 #ifdef MPI
1624 !-----------------------------------------------------------------------------
1625       subroutine add_int(ii,jj,itask,ntask_cont_to,itask_cont_to,flag)
1626
1627 !el      implicit none
1628 !      include "DIMENSIONS"
1629 !      include "COMMON.INTERACT"
1630 !      include "COMMON.SETUP"
1631 !      include "COMMON.IOUNITS"
1632       integer :: ii,jj,ntask_cont_to
1633       integer,dimension(4) :: itask
1634       integer :: itask_cont_to(0:nfgtasks-1)    !(0:max_fg_procs-1)
1635       logical :: flag
1636 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1637 !el       iturn4_end_all,iatel_s_all,iatel_e_all        !(0:max_fg_procs)
1638 !el      integer,dimension(nres,0:nfgtasks-1) :: ielstart_all,ielend_all        !(maxres,0:max_fg_procs-1)
1639 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1640 !el       iturn4_end_all,iatel_s_all,iatel_e_all,ielstart_all,ielend_all
1641       integer :: iproc,isent,k,l
1642 ! Determines whether to send interaction ii,jj to other processors; a given
1643 ! interaction can be sent to at most 2 processors.
1644 ! Sets flag=.true. if interaction ii,jj needs to be sent to at least 
1645 ! one processor, otherwise flag is unchanged from the input value.
1646       isent=0
1647       itask(1)=fg_rank
1648       itask(2)=fg_rank
1649       itask(3)=fg_rank
1650       itask(4)=fg_rank
1651 !      write (iout,*) "ii",ii," jj",jj
1652 ! Loop over processors to check if anybody could need interaction ii,jj
1653       do iproc=0,fg_rank-1
1654 ! Check if the interaction matches any turn3 at iproc
1655         do k=iturn3_start_all(iproc),iturn3_end_all(iproc)
1656           l=k+2
1657           if (k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1 &
1658          .or. k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1 .and. l.eq.jj-1) &
1659           then 
1660 !            write (iout,*) "turn3 to iproc",iproc," ij",ii,jj,"kl",k,l
1661 !            call flush(iout)
1662             flag=.true.
1663             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1664               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1665               isent=isent+1
1666               itask(isent)=iproc
1667               call add_task(iproc,ntask_cont_to,itask_cont_to)
1668             endif
1669           endif
1670         enddo
1671 ! Check if the interaction matches any turn4 at iproc
1672         do k=iturn4_start_all(iproc),iturn4_end_all(iproc)
1673           l=k+3
1674           if (k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1 &
1675          .or. k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1 .and. l.eq.jj-1) &
1676           then 
1677 !            write (iout,*) "turn3 to iproc",iproc," ij",ii,jj," kl",k,l
1678 !            call flush(iout)
1679             flag=.true.
1680             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1681               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1682               isent=isent+1
1683               itask(isent)=iproc
1684               call add_task(iproc,ntask_cont_to,itask_cont_to)
1685             endif
1686           endif
1687         enddo
1688         if (iatel_s_all(iproc).gt.0 .and. iatel_e_all(iproc).gt.0 .and. &
1689         iatel_s_all(iproc).le.ii-1 .and. iatel_e_all(iproc).ge.ii-1)then
1690           if (ielstart_all(ii-1,iproc).le.jj-1.and. &
1691               ielend_all(ii-1,iproc).ge.jj-1) then
1692             flag=.true.
1693             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1694               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1695               isent=isent+1
1696               itask(isent)=iproc
1697               call add_task(iproc,ntask_cont_to,itask_cont_to)
1698             endif
1699           endif
1700           if (ielstart_all(ii-1,iproc).le.jj+1.and. &
1701               ielend_all(ii-1,iproc).ge.jj+1) then
1702             flag=.true.
1703             if (iproc.ne.itask(1).and.iproc.ne.itask(2) &
1704               .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
1705               isent=isent+1
1706               itask(isent)=iproc
1707               call add_task(iproc,ntask_cont_to,itask_cont_to)
1708             endif
1709           endif
1710         endif
1711       enddo
1712       return
1713       end subroutine add_int
1714 !-----------------------------------------------------------------------------
1715       subroutine add_int_from(ii,jj,ntask_cont_from,itask_cont_from)
1716
1717 !el      use MPI_data
1718 !el      implicit none
1719 !      include "DIMENSIONS"
1720 !      include "COMMON.INTERACT"
1721 !      include "COMMON.SETUP"
1722 !      include "COMMON.IOUNITS"
1723       integer :: ii,jj,itask(2),ntask_cont_from,&
1724        itask_cont_from(0:nfgtasks-1)    !(0:max_fg_procs)
1725       logical :: flag
1726 !el      integer,dimension(0:nfgtasks) :: iturn3_start_all,iturn3_end_all,&
1727 !el       iturn4_start_all,iturn4_end_all,iatel_s_all,iatel_e_all       !(0:max_fg_procs)
1728 !el      integer,dimension(nres,0:nfgtasks-1) :: ielstart_all,ielend_all        !(maxres,0:max_fg_procs-1)
1729 !el      common /przechowalnia/ iturn3_start_all,iturn3_end_all,iturn4_start_all,&
1730 !el       iturn4_end_all,iatel_s_all,iatel_e_all,ielstart_all,ielend_all
1731       integer :: iproc,k,l
1732       do iproc=fg_rank+1,nfgtasks-1
1733         do k=iturn3_start_all(iproc),iturn3_end_all(iproc)
1734           l=k+2
1735           if (k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1.and.l.eq.jj-1 &
1736          .or. k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1) &
1737           then
1738 !            write (iout,*)"turn3 from iproc",iproc," ij",ii,jj," kl",k,l
1739             call add_task(iproc,ntask_cont_from,itask_cont_from)
1740           endif
1741         enddo 
1742         do k=iturn4_start_all(iproc),iturn4_end_all(iproc)
1743           l=k+3
1744           if (k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1.and.l.eq.jj-1 &
1745          .or. k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1) &
1746           then
1747 !            write (iout,*)"turn4 from iproc",iproc," ij",ii,jj," kl",k,l
1748             call add_task(iproc,ntask_cont_from,itask_cont_from)
1749           endif
1750         enddo 
1751         if (iatel_s_all(iproc).gt.0 .and. iatel_e_all(iproc).gt.0) then
1752           if (ii+1.ge.iatel_s_all(iproc).and.ii+1.le.iatel_e_all(iproc)) &
1753           then
1754             if (jj+1.ge.ielstart_all(ii+1,iproc).and. &
1755                 jj+1.le.ielend_all(ii+1,iproc)) then
1756               call add_task(iproc,ntask_cont_from,itask_cont_from)
1757             endif            
1758             if (jj-1.ge.ielstart_all(ii+1,iproc).and. &
1759                 jj-1.le.ielend_all(ii+1,iproc)) then
1760               call add_task(iproc,ntask_cont_from,itask_cont_from)
1761             endif
1762           endif
1763           if (ii-1.ge.iatel_s_all(iproc).and.ii-1.le.iatel_e_all(iproc)) &
1764           then
1765             if (jj-1.ge.ielstart_all(ii-1,iproc).and. &
1766                 jj-1.le.ielend_all(ii-1,iproc)) then
1767               call add_task(iproc,ntask_cont_from,itask_cont_from)
1768             endif
1769             if (jj+1.ge.ielstart_all(ii-1,iproc).and. &
1770                 jj+1.le.ielend_all(ii-1,iproc)) then
1771                call add_task(iproc,ntask_cont_from,itask_cont_from)
1772             endif
1773           endif
1774         endif
1775       enddo
1776       return
1777       end subroutine add_int_from
1778 !-----------------------------------------------------------------------------
1779       subroutine add_task(iproc,ntask_cont,itask_cont)
1780
1781 !el      use MPI_data
1782 !el      implicit none
1783 !      include "DIMENSIONS"
1784       integer :: iproc,ntask_cont,itask_cont(0:nfgtasks-1)      !(0:max_fg_procs-1)
1785       integer :: ii
1786       do ii=1,ntask_cont
1787         if (itask_cont(ii).eq.iproc) return
1788       enddo
1789       ntask_cont=ntask_cont+1
1790       itask_cont(ntask_cont)=iproc
1791       return
1792       end subroutine add_task
1793 #endif
1794 !-----------------------------------------------------------------------------
1795 #if defined MPI || defined WHAM_RUN
1796       subroutine int_partition(int_index,lower_index,upper_index,atom,&
1797        at_start,at_end,first_atom,last_atom,int_gr,jat_start,jat_end,*)
1798
1799 !      implicit real*8 (a-h,o-z)
1800 !      include 'DIMENSIONS'
1801 !      include 'COMMON.IOUNITS'
1802       integer :: int_index,lower_index,upper_index,atom,at_start,at_end,&
1803        first_atom,last_atom,int_gr,jat_start,jat_end,int_index_old
1804       logical :: lprn
1805       lprn=.false.
1806       if (lprn) write (iout,*) 'int_index=',int_index
1807       int_index_old=int_index
1808       int_index=int_index+last_atom-first_atom+1
1809       if (lprn) &
1810          write (iout,*) 'int_index=',int_index,&
1811                      ' int_index_old',int_index_old,&
1812                      ' lower_index=',lower_index,&
1813                      ' upper_index=',upper_index,&
1814                      ' atom=',atom,' first_atom=',first_atom,&
1815                      ' last_atom=',last_atom
1816       if (int_index.ge.lower_index) then
1817         int_gr=int_gr+1
1818         if (at_start.eq.0) then
1819           at_start=atom
1820           jat_start=first_atom-1+lower_index-int_index_old
1821         else
1822           jat_start=first_atom
1823         endif
1824         if (lprn) write (iout,*) 'jat_start',jat_start
1825         if (int_index.ge.upper_index) then
1826           at_end=atom
1827           jat_end=first_atom-1+upper_index-int_index_old
1828           return 1
1829         else
1830           jat_end=last_atom
1831         endif
1832         if (lprn) write (iout,*) 'jat_end',jat_end
1833       endif
1834       return
1835       end subroutine int_partition
1836 #endif
1837 !-----------------------------------------------------------------------------
1838 #ifndef CLUSTER
1839       subroutine hpb_partition
1840
1841 !      implicit real*8 (a-h,o-z)
1842 !      include 'DIMENSIONS'
1843 #ifdef MPI
1844       include 'mpif.h'
1845 #endif
1846 !      include 'COMMON.SBRIDGE'
1847 !      include 'COMMON.IOUNITS'
1848 !      include 'COMMON.SETUP'
1849 #ifdef MPI
1850       call int_bounds(nhpb,link_start,link_end)
1851       write (iout,*) 'Processor',fg_rank,' CG group',kolor,&
1852         ' absolute rank',MyRank,&
1853         ' nhpb',nhpb,' link_start=',link_start,&
1854         ' link_end',link_end
1855 #else
1856       link_start=1
1857       link_end=nhpb
1858 #endif
1859       return
1860       end subroutine hpb_partition
1861 #endif
1862 !-----------------------------------------------------------------------------
1863 ! misc.f in module io_base
1864 !-----------------------------------------------------------------------------
1865 !-----------------------------------------------------------------------------
1866 ! parmread.F
1867 !-----------------------------------------------------------------------------
1868       subroutine getenv_loc(var, val)
1869
1870       character(*) :: var, val
1871
1872 #ifdef WINIFL
1873       character(len=2000) :: line
1874 !el      external ilen
1875
1876       open (196,file='env',status='old',readonly,shared)
1877       iread=0
1878 !      write(*,*)'looking for ',var
1879 10    read(196,*,err=11,end=11)line
1880       iread=index(line,var)
1881 !      write(*,*)iread,' ',var,' ',line
1882       if (iread.eq.0) go to 10 
1883 !      write(*,*)'---> ',line
1884 11    continue
1885       if(iread.eq.0) then
1886 !       write(*,*)'CHUJ'
1887        val=''
1888       else
1889        iread=iread+ilen(var)+1
1890        read (line(iread:),*,err=12,end=12) val
1891 !       write(*,*)'OK: ',var,' = ',val
1892       endif
1893       close(196)
1894       return
1895 12    val=''
1896       close(196)
1897 #elif (defined CRAY)
1898       integer :: lennam,lenval,ierror
1899 !
1900 !        getenv using a POSIX call, useful on the T3D
1901 !        Sept 1996, comment out error check on advice of H. Pritchard
1902 !
1903       lennam = len(var)
1904       if(lennam.le.0) stop '--error calling getenv--'
1905       call pxfgetenv(var,lennam,val,lenval,ierror)
1906 !-HP- if(ierror.ne.0) stop '--error returned by pxfgetenv--'
1907 #else
1908       call getenv(var,val)
1909 #endif
1910
1911       return
1912       end subroutine getenv_loc
1913 !-----------------------------------------------------------------------------
1914 ! readrtns_CSA.F
1915 !-----------------------------------------------------------------------------
1916       subroutine setup_var
1917
1918       integer :: i,mnum
1919 !      implicit real*8 (a-h,o-z)
1920 !      include 'DIMENSIONS'
1921 !      include 'COMMON.IOUNITS'
1922 !      include 'COMMON.GEO'
1923 !      include 'COMMON.VAR'
1924 !      include 'COMMON.INTERACT'
1925 !      include 'COMMON.LOCAL'
1926 !      include 'COMMON.NAMES'
1927 !      include 'COMMON.CHAIN'
1928 !      include 'COMMON.FFIELD'
1929 !      include 'COMMON.SBRIDGE'
1930 !      include 'COMMON.HEADER'
1931 !      include 'COMMON.CONTROL'
1932 !      include 'COMMON.DBASE'
1933 !      include 'COMMON.THREAD'
1934 !      include 'COMMON.TIME1'
1935 ! Set up variable list.
1936       ntheta=nres-2
1937       nphi=nres-3
1938       nvar=ntheta+nphi
1939       nside=0
1940       do i=2,nres-1
1941       mnum=molnum(i)
1942       write(iout,*) "i",molnum(i)
1943 #ifdef WHAM_RUN
1944         if (itype(i,1).ne.10) then
1945 #else
1946         if (itype(i,1).ne.10 .and. itype(i,mnum).ne.ntyp1_molec(mnum) .and. mnum.ne.5) then
1947 #endif
1948           nside=nside+1
1949           ialph(i,1)=nvar+nside
1950           ialph(nside,2)=i
1951         endif
1952       enddo
1953       if (indphi.gt.0) then
1954         nvar=nphi
1955       else if (indback.gt.0) then
1956         nvar=nphi+ntheta
1957       else
1958         nvar=nvar+2*nside
1959       endif
1960 !d    write (iout,'(3i4)') (i,ialph(i,1),ialph(i,2),i=2,nres-1)
1961       return
1962       end subroutine setup_var
1963 !-----------------------------------------------------------------------------
1964 ! timing.F
1965 !-----------------------------------------------------------------------------
1966 ! $Date: 1994/10/05 16:41:52 $
1967 ! $Revision: 2.2 $
1968 !
1969       subroutine set_timers
1970 !
1971 !el      implicit none
1972 !el      real(kind=8) :: tcpu
1973 !      include 'COMMON.TIME1'
1974 !#ifdef MP
1975 #ifdef MPI
1976       include 'mpif.h'
1977 #endif
1978 ! Diminish the assigned time limit a little so that there is some time to
1979 ! end a batch job
1980 !     timlim=batime-150.0
1981 ! Calculate the initial time, if it is not zero (e.g. for the SUN).
1982       stime=tcpu()
1983 #if .not. defined(WHAM_RUN) && .not. defined(CLUSTER)
1984 #ifdef MPI
1985       walltime=MPI_WTIME()
1986       time_reduce=0.0d0
1987       time_allreduce=0.0d0
1988       time_bcast=0.0d0
1989       time_gather=0.0d0
1990       time_sendrecv=0.0d0
1991       time_scatter=0.0d0
1992       time_scatter_fmat=0.0d0
1993       time_scatter_ginv=0.0d0
1994       time_scatter_fmatmult=0.0d0
1995       time_scatter_ginvmult=0.0d0
1996       time_barrier_e=0.0d0
1997       time_barrier_g=0.0d0
1998       time_enecalc=0.0d0
1999       time_sumene=0.0d0
2000       time_lagrangian=0.0d0
2001       time_sumgradient=0.0d0
2002       time_intcartderiv=0.0d0
2003       time_inttocart=0.0d0
2004       time_ginvmult=0.0d0
2005       time_fricmatmult=0.0d0
2006       time_cartgrad=0.0d0
2007       time_bcastc=0.0d0
2008       time_bcast7=0.0d0
2009       time_bcastw=0.0d0
2010       time_intfcart=0.0d0
2011       time_vec=0.0d0
2012       time_mat=0.0d0
2013       time_fric=0.0d0
2014       time_stoch=0.0d0
2015       time_fricmatmult=0.0d0
2016       time_fsample=0.0d0
2017 #endif
2018 #endif
2019 !d    print *,' in SET_TIMERS stime=',stime
2020       return
2021       end subroutine set_timers
2022 !-----------------------------------------------------------------------------
2023 #ifndef CLUSTER
2024       logical function stopx(nf)
2025 ! This function returns .true. if one of the following reasons to exit SUMSL
2026 ! occurs. The "reason" code is stored in WHATSUP passed thru a COMMON block:
2027 !
2028 !... WHATSUP = 0 - go on, no reason to stop. Stopx will return .false.
2029 !...           1 - Time up in current node;
2030 !...           2 - STOP signal was received from another node because the
2031 !...               node's task was accomplished (parallel only);
2032 !...          -1 - STOP signal was received from another node because of error;
2033 !...          -2 - STOP signal was received from another node, because 
2034 !...               the node's time was up.
2035 !      implicit real*8 (a-h,o-z)
2036 !      include 'DIMENSIONS'
2037 !el#ifdef WHAM_RUN
2038 !el      use control_data, only:WhatsUp
2039 !el#endif
2040 #ifdef MP
2041 !el      use MPI_data   !include 'COMMON.INFO'
2042       include 'mpif.h'
2043 #endif
2044       integer :: nf
2045 !el      logical :: ovrtim
2046
2047 !      include 'COMMON.IOUNITS'
2048 !      include 'COMMON.TIME1'
2049       integer :: Kwita
2050
2051 !d    print *,'Processor',MyID,' NF=',nf
2052 !d      write (iout,*) "stopx: ",nf
2053 #ifndef WHAM_RUN
2054 #ifndef MPI
2055       if (ovrtim()) then
2056 ! Finish if time is up.
2057          stopx = .true.
2058          WhatsUp=1
2059 #ifdef MPL
2060       else if (mod(nf,100).eq.0) then
2061 ! Other processors might have finished. Check this every 100th function 
2062 ! evaluation.
2063 ! Master checks if any other processor has sent accepted conformation(s) to it. 
2064          if (MyID.ne.MasterID) call receive_mcm_info
2065          if (MyID.eq.MasterID) call receive_conf
2066 !d       print *,'Processor ',MyID,' is checking STOP: nf=',nf
2067          call recv_stop_sig(Kwita)
2068          if (Kwita.eq.-1) then
2069            write (iout,'(a,i4,a,i5)') 'Processor',&
2070            MyID,' has received STOP signal in STOPX; NF=',nf
2071            write (*,'(a,i4,a,i5)') 'Processor',&
2072            MyID,' has received STOP signal in STOPX; NF=',nf
2073            stopx=.true.
2074            WhatsUp=2
2075          elseif (Kwita.eq.-2) then
2076            write (iout,*) &
2077           'Processor',MyID,' received TIMEUP-STOP signal in SUMSL.'
2078            write (*,*) &
2079           'Processor',MyID,' received TIMEUP-STOP signal in SUMSL.'
2080            WhatsUp=-2
2081            stopx=.true.  
2082          else if (Kwita.eq.-3) then
2083            write (iout,*) &
2084           'Processor',MyID,' received ERROR-STOP signal in SUMSL.'
2085            write (*,*) &
2086           'Processor',MyID,' received ERROR-STOP signal in SUMSL.'
2087            WhatsUp=-1
2088            stopx=.true.
2089          else
2090            stopx=.false.
2091            WhatsUp=0
2092          endif
2093 #endif
2094       else
2095          stopx = .false.
2096          WhatsUp=0
2097       endif
2098 #else
2099       stopx=.false.
2100 !d      write (iout,*) "stopx set at .false."
2101 #endif
2102
2103 #ifdef OSF
2104 ! Check for FOUND_NAN flag
2105       if (FOUND_NAN) then
2106         write(iout,*)"   ***   stopx : Found a NaN"
2107         stopx=.true.
2108       endif
2109 #endif
2110 #else
2111       if (ovrtim()) then
2112 ! Finish if time is up.
2113          stopx = .true.
2114          WhatsUp=1
2115       else if (cutoffviol) then
2116         stopx = .true.
2117         WhatsUp=2
2118       else
2119         stopx=.false.
2120       endif
2121 #endif
2122       return
2123       end function stopx
2124 !-----------------------------------------------------------------------------
2125 #else
2126       logical function stopx(nf)
2127 !
2128 !     ..................................................................
2129 !
2130 !     *****PURPOSE...
2131 !     THIS FUNCTION MAY SERVE AS THE STOPX (ASYNCHRONOUS INTERRUPTION)
2132 !     FUNCTION FOR THE NL2SOL (NONLINEAR LEAST-SQUARES) PACKAGE AT
2133 !     THOSE INSTALLATIONS WHICH DO NOT WISH TO IMPLEMENT A
2134 !     DYNAMIC STOPX.
2135 !
2136 !     *****ALGORITHM NOTES...
2137 !     AT INSTALLATIONS WHERE THE NL2SOL SYSTEM IS USED
2138 !     INTERACTIVELY, THIS DUMMY STOPX SHOULD BE REPLACED BY A
2139 !     FUNCTION THAT RETURNS .TRUE. IF AND ONLY IF THE INTERRUPT
2140 !     (BREAK) KEY HAS BEEN PRESSED SINCE THE LAST CALL ON STOPX.
2141 !
2142 !     $$$ MODIFIED FOR USE AS  THE TIMER ROUTINE.
2143 !     $$$                              WHEN THE TIME LIMIT HAS BEEN
2144 !     $$$ REACHED     STOPX IS SET TO .TRUE  AND INITIATES (IN ITSUM)
2145 !     $$$ AND ORDERLY EXIT OUT OF SUMSL.  IF ARRAYS IV AND V ARE
2146 !     $$$ SAVED, THE SUMSL ROUTINES CAN BE RESTARTED AT THE SAME
2147 !     $$$ POINT AT WHICH THEY WERE INTERRUPTED.
2148 !
2149 !     ..................................................................
2150 !
2151 !      include 'DIMENSIONS'
2152       integer :: nf
2153 !      logical ovrtim
2154 !      include 'COMMON.IOUNITS'
2155 !      include 'COMMON.TIME1'
2156 #ifdef MPL
2157 !     include 'COMMON.INFO'
2158       integer :: Kwita
2159
2160 !d    print *,'Processor',MyID,' NF=',nf
2161 #endif
2162       if (ovrtim()) then
2163 ! Finish if time is up.
2164          stopx = .true.
2165 #ifdef MPL
2166       else if (mod(nf,100).eq.0) then
2167 ! Other processors might have finished. Check this every 100th function 
2168 ! evaluation.
2169 !d       print *,'Processor ',MyID,' is checking STOP: nf=',nf
2170          call recv_stop_sig(Kwita)
2171          if (Kwita.eq.-1) then
2172            write (iout,'(a,i4,a,i5)') 'Processor',&
2173            MyID,' has received STOP signal in STOPX; NF=',nf
2174            write (*,'(a,i4,a,i5)') 'Processor',&
2175            MyID,' has received STOP signal in STOPX; NF=',nf
2176            stopx=.true.
2177          else
2178            stopx=.false.
2179          endif
2180 #endif
2181       else
2182          stopx = .false.
2183       endif
2184       return
2185       end function stopx
2186 #endif
2187 !-----------------------------------------------------------------------------
2188       logical function ovrtim()
2189
2190 !      include 'DIMENSIONS'
2191 !      include 'COMMON.IOUNITS'
2192 !      include 'COMMON.TIME1'
2193 !el      real(kind=8) :: tcpu
2194       real(kind=8) :: curtim
2195 #ifdef MPI
2196       include "mpif.h"
2197       curtim = MPI_Wtime()-walltime
2198 #else
2199       curtim= tcpu()
2200 #endif
2201 !  curtim is the current time in seconds.
2202 !      write (iout,*) "curtim",curtim," timlim",timlim," safety",safety
2203 #ifndef WHAM_RUN
2204       if (curtim .ge. timlim - safety) then
2205         write (iout,'(a,f10.2,a,f10.2,a,f10.2,a)') &
2206         "***************** Elapsed time (",curtim,&
2207         " s) is within the safety limit (",safety,&
2208         " s) of the allocated time (",timlim," s). Terminating."
2209         ovrtim=.true.
2210       else
2211         ovrtim=.false.
2212       endif
2213 #else
2214       ovrtim=.false.
2215 #endif
2216 !elwrite (iout,*) "ovrtim",ovrtim
2217       return
2218       end function ovrtim
2219 !-----------------------------------------------------------------------------
2220       real(kind=8) function tcpu()
2221
2222 !      include 'COMMON.TIME1'
2223       real(kind=8) :: seconds
2224 #ifdef ES9000
2225 !***************************
2226 ! Next definition for EAGLE (ibm-es9000)
2227       real(kind=8) :: micseconds
2228       integer :: rcode
2229       tcpu=cputime(micseconds,rcode)
2230       tcpu=(micseconds/1.0E6) - stime
2231 !***************************
2232 #endif
2233 #ifdef SUN
2234 !***************************
2235 ! Next definitions for sun
2236       REAL(kind=8) ::  ECPU,ETIME,ETCPU
2237       real(kind=8),dimension(2) :: tarray
2238       tcpu=etime(tarray)
2239       tcpu=tarray(1)
2240 !***************************
2241 #endif
2242 #ifdef KSR
2243 !***************************
2244 ! Next definitions for ksr
2245 ! this function uses the ksr timer ALL_SECONDS from the PMON library to
2246 ! return the elapsed time in seconds
2247       tcpu= all_seconds() - stime
2248 !***************************
2249 #endif
2250 #ifdef SGI
2251 !***************************
2252 ! Next definitions for sgi
2253       real(kind=4) :: timar(2), etime
2254       seconds = etime(timar)
2255 !d    print *,'seconds=',seconds,' stime=',stime
2256 !      usrsec = timar(1)
2257 !      syssec = timar(2)
2258       tcpu=seconds - stime
2259 !***************************
2260 #endif
2261
2262 #ifdef LINUX
2263 !***************************
2264 ! Next definitions for sgi
2265       real(kind=4) :: timar(2), etime
2266       seconds = etime(timar)
2267 !d    print *,'seconds=',seconds,' stime=',stime
2268 !      usrsec = timar(1)
2269 !      syssec = timar(2)
2270       tcpu=seconds - stime
2271 !***************************
2272 #endif
2273
2274
2275 #ifdef CRAY
2276 !***************************
2277 ! Next definitions for Cray
2278 !     call date(curdat)
2279 !     curdat=curdat(1:9)
2280 !     call clock(curtim)
2281 !     curtim=curtim(1:8)
2282       cpusec = second()
2283       tcpu=cpusec - stime
2284 !***************************
2285 #endif
2286 #ifdef AIX
2287 !***************************
2288 ! Next definitions for RS6000
2289        integer(kind=4) :: i1,mclock
2290        i1 = mclock()
2291        tcpu = (i1+0.0D0)/100.0D0
2292 #endif
2293 #ifdef WINPGI
2294 !***************************
2295 ! next definitions for windows NT Digital fortran
2296        real(kind=4) :: time_real
2297        call cpu_time(time_real)
2298        tcpu = time_real
2299 #endif
2300 #ifdef WINIFL
2301 !***************************
2302 ! next definitions for windows NT Digital fortran
2303        real(kind=4) :: time_real
2304        call cpu_time(time_real)
2305        tcpu = time_real
2306 #endif
2307       tcpu = 0d0 !el
2308       return
2309       end function tcpu
2310 !-----------------------------------------------------------------------------
2311 #ifndef CLUSTER
2312       subroutine dajczas(rntime,hrtime,mintime,sectime)
2313
2314 !      include 'COMMON.IOUNITS'
2315       integer :: ihr,imn,isc
2316       real(kind=8) :: rntime,hrtime,mintime,sectime 
2317       hrtime=rntime/3600.0D0 
2318       hrtime=aint(hrtime)
2319       mintime=aint((rntime-3600.0D0*hrtime)/60.0D0)
2320       sectime=aint((rntime-3600.0D0*hrtime-60.0D0*mintime)+0.5D0)
2321       if (sectime.eq.60.0D0) then
2322         sectime=0.0D0
2323         mintime=mintime+1.0D0
2324       endif
2325       ihr=hrtime
2326       imn=mintime
2327       isc=sectime
2328       write (iout,328) ihr,imn,isc
2329   328 FORMAT(//'***** Computation time: ',I4  ,' hours ',I2  ,&
2330                ' minutes ', I2  ,' seconds *****')       
2331       return
2332       end subroutine dajczas
2333 !-----------------------------------------------------------------------------
2334       subroutine print_detailed_timing
2335
2336 !el      use MPI_data
2337 !      implicit real*8 (a-h,o-z)
2338 !      include 'DIMENSIONS'
2339 #ifdef MPI
2340       include 'mpif.h'
2341 #endif
2342 !      include 'COMMON.IOUNITS'
2343 !      include 'COMMON.TIME1'
2344 !      include 'COMMON.SETUP'
2345       real(kind=8) :: time1,time_barrier
2346       time_barrier = 0.0d0
2347 #ifdef MPI !el
2348       time1=MPI_WTIME()
2349 #endif !el
2350          write (iout,'(80(1h=)/a/(80(1h=)))') &
2351           "Details of FG communication time"
2352          write (*,'(7(a40,1pe15.5/),40(1h-)/a40,1pe15.5/80(1h=))') &
2353           "BROADCAST:",time_bcast,"REDUCE:",time_reduce,&
2354           "GATHER:",time_gather,&
2355           "SCATTER:",time_scatter,"SENDRECV:",time_sendrecv,&
2356           "BARRIER ene",time_barrier_e,&
2357           "BARRIER grad",time_barrier_g,&
2358           "TOTAL:",&
2359           time_bcast+time_reduce+time_gather+time_scatter+time_sendrecv
2360          write (*,*) fg_rank,myrank,&
2361            ': Total wall clock time',time1-walltime,' sec'
2362          write (*,*) "Processor",fg_rank,myrank,&
2363            ": BROADCAST time",time_bcast," REDUCE time",&
2364             time_reduce," GATHER time",time_gather," SCATTER time",&
2365             time_scatter,&
2366            " SCATTER fmatmult",time_scatter_fmatmult,&
2367            " SCATTER ginvmult",time_scatter_ginvmult,&
2368            " SCATTER fmat",time_scatter_fmat,&
2369            " SCATTER ginv",time_scatter_ginv,&
2370             " SENDRECV",time_sendrecv,&
2371             " BARRIER ene",time_barrier_e,&
2372             " BARRIER GRAD",time_barrier_g,&
2373             " BCAST7",time_bcast7," BCASTC",time_bcastc,&
2374             " BCASTW",time_bcastw," ALLREDUCE",time_allreduce,&
2375             " TOTAL",&
2376             time_bcast+time_reduce+time_gather+time_scatter+ &
2377             time_sendrecv+time_barrier+time_bcastc
2378 !el#endif
2379          write (*,*) "Processor",fg_rank,myrank," enecalc",time_enecalc
2380          write (*,*) "Processor",fg_rank,myrank," sumene",time_sumene
2381          write (*,*) "Processor",fg_rank,myrank," intfromcart",&
2382            time_intfcart
2383          write (*,*) "Processor",fg_rank,myrank," vecandderiv",&
2384            time_vec
2385          write (*,*) "Processor",fg_rank,myrank," setmatrices",&
2386            time_mat
2387          write (*,*) "Processor",fg_rank,myrank," ginvmult",&
2388            time_ginvmult
2389          write (*,*) "Processor",fg_rank,myrank," fricmatmult",&
2390            time_fricmatmult
2391          write (*,*) "Processor",fg_rank,myrank," inttocart",&
2392            time_inttocart
2393          write (*,*) "Processor",fg_rank,myrank," sumgradient",&
2394            time_sumgradient
2395          write (*,*) "Processor",fg_rank,myrank," intcartderiv",&
2396            time_intcartderiv
2397          if (fg_rank.eq.0) then
2398            write (*,*) "Processor",fg_rank,myrank," lagrangian",&
2399              time_lagrangian
2400            write (*,*) "Processor",fg_rank,myrank," cartgrad",&
2401              time_cartgrad
2402          endif
2403       return
2404       end subroutine print_detailed_timing
2405 #endif
2406 !-----------------------------------------------------------------------------
2407 !-----------------------------------------------------------------------------
2408       end module control