adding parameters for interaction base with protein
[unres4.git] / source / unres / REMD.f90
1       module REMD
2 !-----------------------------------------------------------------------------
3       use io_units
4       use MD_data
5       use REMD_data
6       use muca_md
7
8       implicit none
9 !-----------------------------------------------------------------------------
10 !
11 !
12 !-----------------------------------------------------------------------------
13       contains
14 !-----------------------------------------------------------------------------
15 ! lagrangian_lesyng.F
16 !-----------------------------------------------------------------------------
17       subroutine lagrangian
18 !-------------------------------------------------------------------------       
19 !  This subroutine contains the total lagrangain from which the accelerations
20 !  are obtained.  For numerical gradient checking, the derivetive of the     
21 !  lagrangian in the velocities and coordinates are calculated seperately      
22 !-------------------------------------------------------------------------
23 !       implicit real*8 (a-h,o-z)
24 !       include 'DIMENSIONS'
25       use comm_cipiszcze
26       use energy_data
27       use geometry_data, only: nres
28       use control_data    !el, only: mucadyn,lmuca
29 #ifdef MPI
30        include 'mpif.h'
31       real(kind=8) :: time00
32 #endif
33 !       include 'COMMON.VAR'
34 !       include 'COMMON.CHAIN'
35 !       include 'COMMON.DERIV'
36 !       include 'COMMON.GEO'
37 !       include 'COMMON.LOCAL'
38 !       include 'COMMON.INTERACT'
39 !       include 'COMMON.MD'
40 !       include 'COMMON.IOUNITS'
41 !       include 'COMMON.CONTROL'
42 !       include 'COMMON.MUCA'
43 !      include 'COMMON.TIME1'
44        integer ::i,j,ind,itime,mnum
45        real(kind=8) :: zapas(6*nres) !,muca_factor      !maxres6=6*maxres
46        real(kind=8) :: rs(dimen),xsolv(dimen)
47 #ifdef CHECK5DSOL
48        real(kind=8) :: rscheck(dimen),rsold(dimen)
49 #endif
50        logical :: lprn = .false.
51 !el       common /cipiszcze/ itime
52        itime = itt_comm
53
54 #ifdef TIMING
55        time00=MPI_Wtime()
56 #endif
57 #ifdef FIVEDIAG
58       if (lprn) then
59         write (iout,*) "Potential forces backbone"
60         do i=nnt,nct
61           write (iout,'(i5,3e15.5,5x,3e15.5)')i,(-gcart(j,i),j=1,3)
62         enddo
63         write (iout,*) "Potential forces sidechain"
64         do i=nnt,nct
65           mnum=molnum(i)
66           if (itype(i,1).ne.10 .and. itype(i,1).ne.ntyp1.and.mnum.eq.5)&
67             write (iout,'(i5,3e15.5,5x,3e15.5)') i,(-gxcart(j,i),j=1,3)
68         enddo
69       endif
70        do j=1,3
71          ind=1
72          do i=nnt,nct
73            mnum=molnum(i)     
74            if (itype(i,1).eq.10 .or. itype(i,1).eq.ntyp1 .or. mnum.eq.5)then
75             rs(ind)=-gcart(j,i)-gxcart(j,i)
76             ind=ind+1
77            else
78             rs(ind)=-gcart(j,i)
79             rs(ind+1)=-gxcart(j,i)
80             ind=ind+2
81            end if 
82          enddo
83 #ifdef CHECK5DSOL
84          rsold=rs 
85 #endif
86          if (lprn) then
87            write(iout,*) "RHS of the 5-diag equations system"
88            do i=1,dimen
89              write(iout,*) i,rs(i)
90            enddo
91          endif
92          
93          call FDISYS (dimen,DM,DU1,DU2,rs,xsolv)
94          if (lprn) then
95            write (iout,*) "Solution of the 5-diagonal equations system"
96            do i=1,dimen
97              write (iout,'(i5,f10.5)') i,xsolv(i)
98            enddo
99          endif
100 #ifdef CHECK5DSOL
101 ! Check the solution
102          rscheck(1)=DMorig(1)*xsolv(1)+DU1orig(1)*xsolv(2)+&
103            DU2orig(1)*xsolv(3) 
104          rscheck(2)=DU1orig(1)*xsolv(1)+DMorig(2)*xsolv(2)+&
105            DU1orig(2)*xsolv(3)+DU2orig(2)*xsolv(4)
106          
107          do i=3,dimen-2
108           rscheck(i)=DU2orig(i-2)*xsolv(i-2)+DU1orig(i-1)*&
109             xsolv(i-1)+DMorig(i)*xsolv(i)+DU1orig(i)*&
110              xsolv(i+1)+DU2orig(i)*xsolv(i+2)
111          enddo
112        rscheck(dimen-1)=DU2orig(dimen-3)*xsolv(dimen-3)+&
113          DU1orig(dimen-2)*xsolv(dimen-2)+DMorig(dimen-1)*&
114           xsolv(dimen-1)+DU1orig(dimen-1)*&
115            xsolv(dimen)
116        rscheck(dimen)=DU2orig(dimen-2)*xsolv(dimen-2)+DU1orig(dimen-1)*&
117           xsolv(dimen-1)+DMorig(dimen)*xsolv(dimen)
118          
119          do i=1,dimen
120             write(iout,*) "i",i,"rsold",rsold(i),"rscheck",rscheck(i),&
121             "ratio",rscheck(i)/rsold(i)
122            enddo
123 ! end check
124 #endif
125          ind=1
126          do i=nnt,nct
127           mnum=molnum(i)
128           if (itype(i,1).eq.10 .or. itype(i,mnum).eq.ntyp1_molec(mnum))then 
129            d_a(j,i)=xsolv(ind)
130            ind=ind+1
131           else
132            d_a(j,i)=xsolv(ind)
133            d_a(j,i+nres)=xsolv(ind+1)
134           ind=ind+2
135           end if 
136          enddo
137        enddo
138        if (lprn) then
139        do i=nnt,nct
140         write (iout,'(i3,3f10.5)') i,(d_a(j,i),j=1,3)
141        enddo
142        do i=nnt,nct
143         write (iout,'(i3,3f10.5)') i,(d_a(j,i+nres),j=1,3)
144        enddo
145        endif
146        do j=1,3
147          d_a(j,0)=d_a(j,nnt)
148        enddo
149        do i=nnt,nct
150           mnum=molnum(i)
151 !         if (itype(i,1).eq.10 .or. itype(i,1).eq.ntyp1) then
152           if (itype(i,1).eq.10 .or. itype(i,mnum).eq.ntyp1_molec(mnum))then
153            do j=1,3
154              d_a(j,i)=d_a(j,i+1)-d_a(j,i)
155            enddo
156          else 
157            do j=1,3
158              d_a(j,i+nres)=d_a(j,i+nres)-d_a(j,i)
159              d_a(j,i)=d_a(j,i+1)-d_a(j,i)
160            enddo
161        
162
163          end if
164        enddo
165
166       if (lprn) then
167         write(iout,*) 'acceleration 3D FIVEDIAG'
168         write (iout,'(i3,3f10.5,3x,3f10.5)') 0,(d_a(j,0),j=1,3)
169         do i=nnt,nct-1
170          write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_a(j,i),j=1,3)
171         enddo
172         do i=nnt,nct
173          write (iout,'(i3,3f10.5,3x,3f10.5)') &
174            i+nres,(d_a(j,i+nres),j=1,3)
175         enddo
176       endif
177 #else
178 ! Old procedure
179        do j=1,3
180          zapas(j)=-gcart(j,0)
181        enddo
182       ind=3      
183       if (lprn) then
184         write (iout,*) "Potential forces backbone"
185       endif
186       do i=nnt,nct-1
187         if (lprn) write (iout,'(i5,3e15.5,5x,3e15.5)') &
188           i,(-gcart(j,i),j=1,3)
189         do j=1,3
190           ind=ind+1
191           zapas(ind)=-gcart(j,i)
192         enddo
193       enddo
194       if (lprn) write (iout,*) "Potential forces sidechain"
195       do i=nnt,nct
196           mnum=molnum(i)
197         if (itype(i,1).ne.10 .and. itype(i,mnum).ne.ntyp1_molec(mnum)&
198           .and.mnum.ne.5) then
199           if (lprn) write (iout,'(i5,3e15.5,5x,3e15.5)') &
200              i,(-gxcart(j,i),j=1,3)
201           do j=1,3
202             ind=ind+1
203             zapas(ind)=-gxcart(j,i)
204           enddo
205         endif
206       enddo
207
208       call ginv_mult(zapas,d_a_work)
209        
210       do j=1,3
211         d_a(j,0)=d_a_work(j)
212       enddo
213       ind=3
214       do i=nnt,nct-1
215         do j=1,3
216           ind=ind+1
217           d_a(j,i)=d_a_work(ind)
218         enddo
219       enddo
220       do i=nnt,nct
221        mnum=molnum(i)
222 !        if (itype(i,1).ne.10 .and. itype(i,1).ne.ntyp1) then
223          if (itype(i,1).ne.10 .and. itype(i,mnum).ne.ntyp1_molec(mnum)&
224           .and.mnum.ne.5) then
225           do j=1,3
226             ind=ind+1
227             d_a(j,i+nres)=d_a_work(ind)
228           enddo
229         endif
230       enddo
231
232 #endif      
233       if(lmuca) then
234        imtime=imtime+1
235        if(mucadyn.gt.0) call muca_update(potE)       
236        factor=muca_factor(potE)*t_bath*Rb
237
238 !d       print *,'lmuca ',factor,potE
239        do j=1,3
240           d_a(j,0)=d_a(j,0)*factor
241        enddo
242        do i=nnt,nct-1
243          do j=1,3
244           d_a(j,i)=d_a(j,i)*factor              
245          enddo
246        enddo
247        do i=nnt,nct
248          do j=1,3
249           d_a(j,i+nres)=d_a(j,i+nres)*factor              
250          enddo
251        enddo       
252        
253       endif
254       
255       if (lprn) then
256         write(iout,*) 'acceleration 3D'
257         write (iout,'(i3,3f10.5,3x,3f10.5)') 0,(d_a(j,0),j=1,3)
258         do i=nnt,nct-1
259          write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_a(j,i),j=1,3)
260         enddo
261         do i=nnt,nct
262          write (iout,'(i3,3f10.5,3x,3f10.5)') &
263            i+nres,(d_a(j,i+nres),j=1,3)
264         enddo
265       endif
266 #ifdef TIMING
267       time_lagrangian=time_lagrangian+MPI_Wtime()-time00
268 #endif
269       return
270       end subroutine lagrangian
271 !-----------------------------------------------------------------------------
272       subroutine setup_MD_matrices
273
274       use geometry_data, only: nres,nside
275       use control_data
276       use MPI_data
277       use energy_data
278       use geometry, only:int_bounds
279       use md_calc
280 !      implicit real*8 (a-h,o-z)
281 !      include 'DIMENSIONS'
282 #ifdef MPI
283       include 'mpif.h'
284       integer :: ierror
285       real(kind=8) :: time00
286       real(kind=8) ,allocatable, dimension(:)  :: DDM,DDU1,DDU2
287 #endif
288 !      include 'COMMON.SETUP'
289 !      include 'COMMON.VAR'
290 !      include 'COMMON.CHAIN'
291 !      include 'COMMON.DERIV'
292 !      include 'COMMON.GEO'
293 !      include 'COMMON.LOCAL'
294 !      include 'COMMON.INTERACT'
295 !      include 'COMMON.MD'
296 !#ifndef LANG0
297 !      include 'COMMON.LANGEVIN'
298 !#else
299 !      include 'COMMON.LANGEVIN.lang0'
300 !#endif
301 !      include 'COMMON.IOUNITS'
302 !      include 'COMMON.TIME1'
303       logical :: lprn = .true.
304       logical :: osob
305 #ifndef FIVEDIAG
306       real(kind=8),dimension(2*nres,2*nres) :: Bmat,matmult
307 #endif
308       real(kind=8) :: dtdi
309       real(kind=8),dimension(2*nres) :: massvec,sqreig  !(maxres2) maxres2=2*maxres
310       real(kind=8) :: relfeh,eps1,eps2
311 !el      real(kind=8),dimension(:),allocatable :: Ghalf
312 !el      real(kind=8),dimension(2*nres*(2*nres+1)/2) :: Ghalf   !(mmaxres2) (mmaxres2=(maxres2*(maxres2+1)/2))
313 !el      real(kind=8),dimension(2*nres,2*nres) :: Gcopy !(maxres2,maxres2)
314 !el      real(kind=8),dimension(:,:),allocatable :: Gcopy
315       real(kind=8),dimension(8*6*nres) :: work  !(8*maxres6)
316       integer,dimension(6*nres) :: iwork        !(maxres6) maxres6=6*maxres
317 !el      common /przechowalnia/ Gcopy,Ghalf
318       real(kind=8) :: coeff,mscab
319       integer :: i,j,ind,ind1,k,l,ii,jj,m,m1,ii1,iti,nres2,ierr,nind,mark
320       real(kind=8) :: ip4
321       integer :: iz,mnum
322       relfeh=1.0d-14
323       nres2=2*nres
324
325       write (iout,*) "before FIVEDIAG"
326 #ifndef FIVEDIAG
327       write (iout,*) "ALLOCATE"
328       if(.not.allocated(Gcopy)) allocate(Gcopy(nres2,nres2)) !(maxres2,maxres2)
329       if(.not.allocated(Ghalf)) allocate(Ghalf(nres2*(nres2+1)/2)) !mmaxres2=(maxres2*(maxres+1)/2)
330 #endif
331 !
332 ! Set up the matrix of the (dC,dX)-->(C,X) transformation (A), the
333 ! inertia matrix (Gmat) and the inverse of the inertia matrix (Ginv)
334 !
335 ! Determine the number of degrees of freedom (dimen) and the number of 
336 ! sites (dimen1)
337       dimen=(nct-nnt+1)+nside
338       dimen1=(nct-nnt)+(nct-nnt+1)
339       dimen3=dimen*3
340       write (iout,*) "nnt",nnt," nct",nct," nside",nside
341 #ifdef FIVEDIAG
342        ip4=ip/4
343        DM(1)=mp/4+ip4
344        if (iabs(itype(nnt)).eq.10) then
345          DM(1)=DM(1)+msc(10)
346          ind=2
347          nind=1
348        else
349          DM(1)=DM(1)+isc(iabs(itype(nnt)))
350          DM(2)=msc(iabs(itype(nnt)))+isc(iabs(itype(nnt)))
351          ind=3
352          nind=2
353        endif      
354        do i=nnt+1,nct-1
355 !         if (iabs(itype(i,1)).eq.ntyp1) cycle
356          DM(ind)=2*ip4+mp/2
357          if (iabs(itype(i,1)).eq.10 .or. iabs(itype(i,1)).eq.ntyp1) then
358            if (iabs(itype(i,1)).eq.10) DM(ind)=DM(ind)+msc(10)
359            ind=ind+1
360          else
361            DM(ind)=DM(ind)+isc(iabs(itype(i,1)))
362            DM(ind+1)=msc(iabs(itype(i,1)))+isc(iabs(itype(i,1)))
363            ind=ind+2
364          endif 
365        enddo
366        if (nct.gt.nnt) then
367        DM(ind)=ip4+mp/4
368        if (iabs(itype(nct)).eq.10) then
369          DM(ind)=DM(ind)+msc(10)
370          nind=ind
371        else
372          DM(ind)=DM(ind)+isc(iabs(itype(nct)))
373          DM(ind+1)=msc(iabs(itype(nct)))+isc(iabs(itype(nct)))
374          nind=ind+1
375         endif
376         endif
377         
378         
379         ind=1
380         do i=nnt,nct
381         mnum=molnum(i)
382         if (iabs(itype(i,1)).ne.10 .and.iabs(itype((i))).ne.ntyp1 &
383           .and.mnum.eq.5) then
384           DU1(ind)=-isc(iabs(itype(i,1)))
385           DU1(ind+1)=0.0d0
386           ind=ind+2
387         else
388           DU1(ind)=mp/4-ip4
389           ind=ind+1
390         endif
391         enddo
392
393        ind=1
394        do i=nnt,nct-1
395        mnum=molnum(i)
396 !        if (iabs(itype(i,1)).eq.ntyp1) cycle
397         write (iout,*) "i",i," itype",itype(i,1),ntyp1
398         if (iabs(itype(i,1)).ne.10 .and. &
399           iabs(itype(i,mnum)).ne.ntyp1_molec(mnum) .and. mnum.ne.5) then
400          DU2(ind)=mp/4-ip4
401          DU2(ind+1)=0.0d0
402          ind=ind+2
403         else
404          DU2(ind)=0.0d0
405          DU2(ind+1)=0.0d0
406          ind=ind+1
407         endif
408        enddo
409        DMorig=DM
410        DU1orig=DU1
411        DU2orig=DU2
412        write (iout,*) "nind",nind," dimen",dimen
413        if (nind.ne.dimen) then
414          write (iout,*) "ERROR, dimensions differ"
415 #ifdef MPI
416          call MPI_Finalize(ierr)
417 #endif
418          stop
419        endif
420      write (iout,*) "The upper part of the five-diagonal inertia matrix"
421        do i=1,dimen
422          if (i.lt.dimen-1) then
423            write (iout,'(i3,3f10.5)') i,DM(i),DU1(i),DU2(i)
424          else if (i.eq.dimen-1) then  
425            write (iout,'(i3,3f10.5)') i,DM(i),DU1(i)
426          else
427            write (iout,'(i3,3f10.5)') i,DM(i)
428          endif 
429        enddo
430
431         call FDISYP (dimen, DM, DU1, DU2, MARK)
432
433         if (mark.eq.-1) then
434      write (iout,*) "ERROR: the inertia matrix is not positive definite"
435 #ifdef MPI
436          call MPI_Finalize(ierr)
437 #endif
438          stop
439         else if (mark.eq.0) then
440      write (iout,*) "ERROR: the inertia matrix is singular"
441 #ifdef MPI
442          call MPI_Finalize(ierr)
443 #endif
444         else if (mark.eq.1) then
445           write (iout,*) "The transformed inertia matrix"
446           do i=1,dimen
447             if (i.lt.dimen-1) then
448               write (iout,'(i3,3f10.5)') i,DM(i),DU1(i),DU2(i)
449             else if (i.eq.dimen-1) then  
450               write (iout,'(i3,3f10.5)') i,DM(i),DU1(i)
451             else
452               write (iout,'(i3,3f10.5)') i,DM(i)
453             endif 
454           enddo
455         endif
456 ! Diagonalization of the pentadiagonal matrix
457         allocate(DDU1(2*nres))
458         allocate(DDU2(2*nres))
459         allocate(DDM(2*nres))
460         do i=1,dimen-1
461           DDU1(i+1)=DU1orig(i)
462         enddo
463         do i=1,dimen-2
464           DDU2(i+2)=DU2orig(i)
465         enddo
466         DDM=DMorig
467         call quindibisect2(DDM,DDU1,DDU2,dimen,1,dimen,eps1,relfeh,eps2,iz,geigen)
468         if (lprn) then
469           write (iout,*) &
470            "Eigenvalues of the five-diagonal inertia matrix"
471           do i=1,dimen
472             write (iout,'(i5,f10.5)') i,geigen(i)
473           enddo
474         endif
475         deallocate(DDU1)
476         deallocate(DDU2)
477         deallocate(DDM)
478 #else 
479 ! Old Gmatrix
480 #ifdef MPI
481       if (nfgtasks.gt.1) then
482       time00=MPI_Wtime()
483       call MPI_Bcast(5,1,MPI_INTEGER,king,FG_COMM,IERROR)
484       time_Bcast=time_Bcast+MPI_Wtime()-time00
485       call int_bounds(dimen,igmult_start,igmult_end)
486       igmult_start=igmult_start-1
487       call MPI_Allgather(3*igmult_start,1,MPI_INTEGER,&
488           ng_start(0),1,MPI_INTEGER,FG_COMM,IERROR)
489       my_ng_count=igmult_end-igmult_start
490       call MPI_Allgather(3*my_ng_count,1,MPI_INTEGER,ng_counts(0),1,&
491           MPI_INTEGER,FG_COMM,IERROR)
492       write (iout,*) 'Processor:',fg_rank,' CG group',kolor,&
493        ' absolute rank',myrank,' igmult_start',igmult_start,&
494        ' igmult_end',igmult_end,' count',my_ng_count
495       write (iout,*) "ng_start",(ng_start(i),i=0,nfgtasks-1)
496       write (iout,*) "ng_counts",(ng_counts(i),i=0,nfgtasks-1)
497       call flush(iout)
498       else
499 #endif
500       igmult_start=1
501       igmult_end=dimen
502       my_ng_count=dimen
503 #ifdef MPI
504       endif
505 #endif
506 !      write (iout,*) "dimen",dimen," dimen1",dimen1," dimen3",dimen3
507 !  Zeroing out A and fricmat
508       do i=1,dimen
509         do j=1,dimen
510           A(i,j)=0.0D0     
511         enddo    
512       enddo
513 !  Diagonal elements of the dC part of A and the respective friction coefficients
514       ind=1
515       ind1=0
516       print *,"TUTUTUT?!",nnt,nct-1
517       do i=nnt,nct-1
518         mnum=molnum(i)
519         ind=ind+1
520         ind1=ind1+1
521         coeff=0.25d0*IP(mnum)
522         if (mnum.eq.5) mp(mnum)=msc(itype(i,mnum),mnum)
523         print *,i,coeff,mp(mnum)
524         massvec(ind1)=mp(mnum)
525         Gmat(ind,ind)=coeff
526         print *,"i",mp(mnum)
527         A(ind1,ind)=0.5d0
528       enddo
529       
530 !  Off-diagonal elements of the dC part of A 
531       k=3
532       do i=1,nct-nnt
533         do j=1,i
534           A(i,j)=1.0d0
535         enddo
536       enddo
537 !  Diagonal elements of the dX part of A and the respective friction coefficients
538       m=nct-nnt
539       m1=nct-nnt+1
540       ind=0
541       ind1=0
542       do i=1,2
543       msc(ntyp1_molec(i),i)=1.0d0
544       enddo
545       do i=nnt,nct
546         ind=ind+1
547         ii = ind+m
548         mnum=molnum(i)
549         iti=itype(i,mnum)
550         if (mnum.eq.5) then
551         mscab=0.0
552         else
553         mscab=msc(iabs(iti),mnum)
554         endif
555         massvec(ii)=mscab
556
557         if (iti.ne.10 .and. iti.ne.ntyp1_molec(mnum) .and. mnum.ne.5) then
558           ind1=ind1+1
559           ii1= ind1+m1
560           A(ii,ii1)=1.0d0
561           Gmat(ii1,ii1)=ISC(iabs(iti),mnum)
562         endif
563       enddo
564 !  Off-diagonal elements of the dX part of A
565       ind=0
566       k=nct-nnt
567       do i=nnt,nct
568         iti=itype(i,1)
569         ind=ind+1
570         do j=nnt,i
571           ii = ind
572           jj = j-nnt+1
573           A(k+ii,jj)=1.0d0
574         enddo
575       enddo
576       if (lprn) then
577         write (iout,*)
578         write (iout,*) "Vector massvec"
579         do i=1,dimen1
580           write (iout,*) i,massvec(i)
581         enddo
582         write (iout,'(//a)') "A"
583         call matout(dimen,dimen1,nres2,nres2,A)
584       endif
585
586 ! Calculate the G matrix (store in Gmat)
587       do k=1,dimen
588        do i=1,dimen
589          dtdi=0.0d0
590          do j=1,dimen1
591            dtdi=dtdi+A(j,k)*A(j,i)*massvec(j)
592          enddo
593          Gmat(k,i)=Gmat(k,i)+dtdi
594        enddo
595       enddo 
596       
597       if (lprn) then
598         write (iout,'(//a)') "Gmat"
599         call matout(dimen,dimen,nres2,nres2,Gmat)
600       endif
601       do i=1,dimen
602         do j=1,dimen
603           Ginv(i,j)=0.0d0
604           Gcopy(i,j)=Gmat(i,j)
605         enddo
606         Ginv(i,i)=1.0d0
607       enddo
608 ! Invert the G matrix
609       call MATINVERT(dimen,nres2,Gcopy,Ginv,osob)
610       if (lprn) then
611         write (iout,'(//a)') "Ginv"
612         call matout(dimen,dimen,nres2,nres2,Ginv)
613       endif
614
615       Bmat=0.0d0
616       Bmat(1,1)=1.0d0
617       j=2
618       do i=nnt,nct
619         mnum=molnum(i)
620         if ((itype(i,1).eq.10).or.(itype(i,mnum).eq.ntyp1_molec(mnum))&
621           .or.(mnum.eq.5)) then
622           Bmat(i-nnt+2,j-1)=-1
623           Bmat(i-nnt+2,j)=1
624           j=j+1
625         else
626           if (i.lt.nct) then
627             Bmat(i-nnt+2,j-1)=-1
628             Bmat(i-nnt+2,j+1)=1
629             Bmat(i-nnt+1+(nct-nnt)+1,j-1)=-1
630             Bmat(i-nnt+1+(nct-nnt)+1,j)=1
631             j=j+2
632           else
633             Bmat(i-nnt+1+(nct-nnt)+1,j-1)=-1
634             Bmat(i-nnt+1+(nct-nnt)+1,j)=1
635           endif
636         endif
637       enddo
638       write (iout,*) "j",j," dimen",dimen 
639       if (lprn) then
640         write (iout,'(//a)') "Bmat"
641         call matout(dimen,dimen,nres2,nres2,Bmat)
642       endif
643       Gcopy=0.0d0
644       do i=1,dimen
645         do j=1,dimen
646             do k=1,dimen
647                do l=1,dimen
648                  Gcopy(i,j)=Gcopy(i,j)+Bmat(k,i)*Gmat(k,l)*Bmat(l,j)
649                enddo
650             enddo
651         enddo
652       enddo
653       if (lprn) then
654         write (iout,'(//a)') "Gmat-transformed"
655         call matout(dimen,dimen,nres2,nres2,Gcopy)
656       endif
657 #ifdef MPI
658       if (nfgtasks.gt.1) then
659         myginv_ng_count=nres2*my_ng_count
660         call MPI_Allgather(nres2*igmult_start,1,MPI_INTEGER,&
661           nginv_start(0),1,MPI_INTEGER,FG_COMM,IERROR)
662         call MPI_Allgather(myginv_ng_count,1,MPI_INTEGER,&
663           nginv_counts(0),1,MPI_INTEGER,FG_COMM,IERROR)
664         write (iout,*) "nginv_start",(nginv_start(i),i=0,nfgtasks-1)
665         write (iout,*) "nginv_counts",(nginv_counts(i),i=0,nfgtasks-1)
666         call flush(iout)
667 !        call MPI_Scatterv(ginv(1,1),nginv_counts(0),
668 !     &    nginv_start(0),MPI_DOUBLE_PRECISION,ginv,
669 !     &    myginv_ng_count,MPI_DOUBLE_PRECISION,king,FG_COMM,IERR)
670 !        call MPI_Barrier(FG_COMM,IERR)
671         time00=MPI_Wtime()
672         call MPI_Scatterv(ginv(1,1),nginv_counts(0),&
673           nginv_start(0),MPI_DOUBLE_PRECISION,gcopy(1,1),&
674           myginv_ng_count,MPI_DOUBLE_PRECISION,king,FG_COMM,IERR)
675 #ifdef TIMING
676         time_scatter_ginv=time_scatter_ginv+MPI_Wtime()-time00
677 #endif
678         do i=1,dimen
679           do j=1,2*my_ng_count
680             ginv(j,i)=gcopy(i,j)
681           enddo
682         enddo
683 !        write (iout,*) "Master's chunk of ginv"
684 !        call MATOUT2(my_ng_count,dimen,maxres2,maxres2,ginv)
685       endif
686 #endif
687       if (osob) then
688         write (iout,*) "The G matrix is singular."
689         stop
690       endif
691 ! Compute G**(-1/2) and G**(1/2) 
692       ind=0
693       do i=1,dimen
694         do j=1,i
695           ind=ind+1
696           Ghalf(ind)=Gmat(i,j)
697         enddo
698       enddo
699       call gldiag(nres2,dimen,dimen,Ghalf,work,Geigen,Gvec,&
700         ierr,iwork)
701       if (lprn) then
702         write (iout,'(//a)') &
703          "Eigenvectors and eigenvalues of the G matrix"
704         call eigout(dimen,dimen,nres2,nres2,Gvec,Geigen)
705       endif
706       do i=1,dimen
707         sqreig(i)=dsqrt(Geigen(i))
708       enddo
709       do i=1,dimen
710         do j=1,dimen
711           Gsqrp(i,j)=0.0d0
712           Gsqrm(i,j)=0.0d0
713           Gcopy(i,j)=0.0d0
714           do k=1,dimen
715             Gsqrp(i,j)=Gsqrp(i,j)+Gvec(i,k)*Gvec(j,k)*sqreig(k)
716             Gsqrm(i,j)=Gsqrm(i,j)+Gvec(i,k)*Gvec(j,k)/sqreig(k)
717             Gcopy(i,j)=Gcopy(i,j)+Gvec(i,k)*Gvec(j,k)*Geigen(k)
718           enddo
719         enddo
720       enddo
721       if (lprn) then
722         write (iout,*) "Comparison of original and restored G"
723         do i=1,dimen
724           do j=1,dimen
725             write (iout,'(2i5,5f10.5)') i,j,Gmat(i,j),Gcopy(i,j),&
726               Gmat(i,j)-Gcopy(i,j),Gsqrp(i,j),Gsqrm(i,j)
727           enddo
728         enddo
729       endif
730       deallocate(Gcopy)
731 #endif
732       return
733       end subroutine setup_MD_matrices
734 !-----------------------------------------------------------------------------
735       subroutine EIGOUT(NC,NR,LM2,LM3,A,B)
736
737 !      implicit real*8 (a-h,o-z)
738 !      include 'DIMENSIONS'
739 !      include 'COMMON.IOUNITS'
740       integer :: LM2,LM3,NC,NR,KA,KC,KB,I,J,N
741       real(kind=8) :: A(LM2,LM3),B(LM2)
742       KA=1
743       KC=6
744     1 KB=MIN0(KC,NC)
745       WRITE(IOUT,600) (I,I=KA,KB)
746       WRITE(IOUT,601) (B(I),I=KA,KB)
747       WRITE(IOUT,602)
748     2 N=0
749       DO 3  I=1,NR
750       WRITE(IOUT,603) I,(A(I,J),J=KA,KB)
751       N=N+1
752       IF(N.LT.10) GO TO 3
753       WRITE(IOUT,602)
754       N=0
755     3 CONTINUE
756     4 IF (KB.EQ.NC) RETURN
757       KA=KC+1
758       KC=KC+6
759       GO TO 1
760   600 FORMAT (// 9H ROOT NO.,I4,9I11)
761   601 FORMAT (/5X,10(1PE11.4))
762   602 FORMAT (2H  )
763   603 FORMAT (I5,10F11.5)
764   604 FORMAT (1H1)
765       end subroutine EIGOUT
766 !-----------------------------------------------------------------------------
767       subroutine MATOUT(NC,NR,LM2,LM3,A)
768
769 !      implicit real*8 (a-h,o-z)
770 !      include 'DIMENSIONS'
771 !      include 'COMMON.IOUNITS'
772       integer :: LM2,LM3,NC,NR,KA,KC,KB,I,J,N
773       real(kind=8) :: A(LM2,LM3)
774       KA=1
775       KC=6
776     1 KB=MIN0(KC,NC)
777       WRITE(IOUT,600) (I,I=KA,KB)
778       WRITE(IOUT,602)
779     2 N=0
780       DO 3  I=1,NR
781       WRITE(IOUT,603) I,(A(I,J),J=KA,KB)
782       N=N+1
783       IF(N.LT.10) GO TO 3
784       WRITE(IOUT,602)
785       N=0
786     3 CONTINUE
787     4 IF (KB.EQ.NC) RETURN
788       KA=KC+1
789       KC=KC+6
790       GO TO 1
791   600 FORMAT (//5x,9I11)
792   602 FORMAT (2H  )
793   603 FORMAT (I5,10F11.3)
794   604 FORMAT (1H1)
795       end subroutine MATOUT
796 !-----------------------------------------------------------------------------
797       subroutine MATOUT1(NC,NR,LM2,LM3,A)
798
799 !      implicit real*8 (a-h,o-z)
800 !      include 'DIMENSIONS'
801 !      include 'COMMON.IOUNITS'
802       integer :: LM2,LM3,NC,NR,KA,KC,KB,I,J,N
803       real(kind=8) :: A(LM2,LM3)
804       KA=1
805       KC=21
806     1 KB=MIN0(KC,NC)
807       WRITE(IOUT,600) (I,I=KA,KB)
808       WRITE(IOUT,602)
809     2 N=0
810       DO 3  I=1,NR
811       WRITE(IOUT,603) I,(A(I,J),J=KA,KB)
812       N=N+1
813       IF(N.LT.3) GO TO 3
814       WRITE(IOUT,602)
815       N=0
816     3 CONTINUE
817     4 IF (KB.EQ.NC) RETURN
818       KA=KC+1
819       KC=KC+21
820       GO TO 1
821   600 FORMAT (//5x,7(3I5,2x))
822   602 FORMAT (2H  )
823   603 FORMAT (I5,7(3F5.1,2x))
824   604 FORMAT (1H1)
825       end subroutine MATOUT1
826 !-----------------------------------------------------------------------------
827       subroutine MATOUT2(NC,NR,LM2,LM3,A)
828
829 !      implicit real*8 (a-h,o-z)
830 !      include 'DIMENSIONS'
831 !      include 'COMMON.IOUNITS'
832       integer :: I,J,KA,KC,KB,N
833       integer :: LM2,LM3,NC,NR
834       real(kind=8) :: A(LM2,LM3)
835       KA=1
836       KC=12
837     1 KB=MIN0(KC,NC)
838       WRITE(IOUT,600) (I,I=KA,KB)
839       WRITE(IOUT,602)
840     2 N=0
841       DO 3  I=1,NR
842       WRITE(IOUT,603) I,(A(I,J),J=KA,KB)
843       N=N+1
844       IF(N.LT.3) GO TO 3
845       WRITE(IOUT,602)
846       N=0
847     3 CONTINUE
848     4 IF (KB.EQ.NC) RETURN
849       KA=KC+1
850       KC=KC+12
851       GO TO 1
852   600 FORMAT (//5x,4(3I9,2x))
853   602 FORMAT (2H  )
854   603 FORMAT (I5,4(3F9.3,2x))
855   604 FORMAT (1H1)
856       end subroutine MATOUT2
857 !-----------------------------------------------------------------------------
858       subroutine ginv_mult(z,d_a_tmp)
859
860       use geometry_data, only: nres
861       use control_data
862       use MPI_data
863 !      implicit real*8 (a-h,o-z)
864 !      include 'DIMENSIONS'
865 #ifdef MPI
866       include 'mpif.h'
867       integer :: ierr,ierror
868 #endif
869 !      include 'COMMON.SETUP'
870 !      include 'COMMON.TIME1'
871 !      include 'COMMON.MD'
872       real(kind=8),dimension(dimen3) :: z,z1,d_a_tmp
873       real(kind=8),dimension(6*nres) :: temp    !(maxres6) maxres6=6*maxres
874       real(kind=8) :: time00,time01
875       integer :: i,j,k,ind
876 #ifdef MPI
877       if (nfgtasks.gt.1) then
878         if (fg_rank.eq.0) then
879 ! The matching BROADCAST for fg processors is called in ERGASTULUM
880           time00=MPI_Wtime()
881           call MPI_Bcast(4,1,MPI_INTEGER,king,FG_COMM,IERROR)
882           time_Bcast=time_Bcast+MPI_Wtime()-time00
883 !          print *,"Processor",myrank," BROADCAST iorder in GINV_MULT"
884         endif
885 !        write (2,*) "time00",time00
886 !        write (2,*) "Before Scatterv"
887 !        call flush(2)
888 !        write (2,*) "Whole z (for FG master)"
889 !        do i=1,dimen
890 !          write (2,*) i,z(i)
891 !        enddo
892 !        call MPI_Barrier(FG_COMM,IERROR)
893         time00=MPI_Wtime()
894 !elwrite(iout,*) "do tej pory jest OK, MPI_Scatterv w ginv_mult"
895         call MPI_Scatterv(z,ng_counts(0),ng_start(0),&
896           MPI_DOUBLE_PRECISION,&
897           z1,3*my_ng_count,MPI_DOUBLE_PRECISION,king,FG_COMM,IERR)
898 !        write (2,*) "My chunk of z"
899 !        do i=1,3*my_ng_count
900 !          write (2,*) i,z(i)
901 !        enddo
902 !        write (2,*) "After SCATTERV"
903 !        call flush(2)
904 !        write (2,*) "MPI_Wtime",MPI_Wtime()
905         time_scatter=time_scatter+MPI_Wtime()-time00
906 #ifdef TIMING
907         time_scatter_ginvmult=time_scatter_ginvmult+MPI_Wtime()-time00
908 #endif
909 !        write (2,*) "time_scatter",time_scatter
910 !        write (2,*) "dimen",dimen," dimen3",dimen3," my_ng_count",
911 !     &    my_ng_count
912 !        call flush(2)
913         time01=MPI_Wtime()
914         do k=0,2
915           do i=1,dimen
916             ind=(i-1)*3+k+1
917             temp(ind)=0.0d0
918             do j=1,my_ng_count
919 !              write (2,*) "k,i,j,ind",k,i,j,ind,(j-1)*3+k+1,
920 !     &         Ginv(i,j),z((j-1)*3+k+1),
921 !     &          Ginv(i,j)*z((j-1)*3+k+1)
922 !              temp(ind)=temp(ind)+Ginv(i,j)*z((j-1)*3+k+1)
923               temp(ind)=temp(ind)+Ginv(j,i)*z1((j-1)*3+k+1)
924             enddo
925           enddo 
926         enddo
927         time_ginvmult=time_ginvmult+MPI_Wtime()-time01
928 !        write (2,*) "Before REDUCE"
929 !        call flush(2)
930 !        write (2,*) "z before reduce"
931 !        do i=1,dimen
932 !          write (2,*) i,temp(i)
933 !        enddo
934         time00=MPI_Wtime()
935         call MPI_Reduce(temp(1),d_a_tmp(1),dimen3,MPI_DOUBLE_PRECISION,&
936             MPI_SUM,king,FG_COMM,IERR)
937         time_reduce=time_reduce+MPI_Wtime()-time00
938 !        write (2,*) "After REDUCE"
939 !        call flush(2)
940       else
941 #endif
942 #ifdef TIMING
943         time01=MPI_Wtime()
944 #endif
945         do k=0,2
946           do i=1,dimen
947             ind=(i-1)*3+k+1
948             d_a_tmp(ind)=0.0d0
949             do j=1,dimen
950 !              write (2,*) "k,i,j,ind",k,i,j,ind,(j-1)*3+k+1
951 !              call flush(2)
952 !     &         Ginv(i,j),z((j-1)*3+k+1),
953 !     &          Ginv(i,j)*z((j-1)*3+k+1)
954               d_a_tmp(ind)=d_a_tmp(ind) &
955                                +Ginv(j,i)*z((j-1)*3+k+1)
956 !              d_a_tmp(ind)=d_a_tmp(ind)
957 !     &                         +Ginv(i,j)*z((j-1)*3+k+1)
958             enddo
959           enddo 
960         enddo
961 #ifdef TIMING
962         time_ginvmult=time_ginvmult+MPI_Wtime()-time01
963 #endif
964 #ifdef MPI
965       endif
966 #endif
967       return
968       end subroutine ginv_mult
969 !-----------------------------------------------------------------------------
970 #ifdef GINV_MULT
971       subroutine ginv_mult_test(z,d_a_tmp)
972
973 !      include 'DIMENSIONS'
974 !el      integer :: dimen
975 !      include 'COMMON.MD'
976       real(kind=8),dimension(dimen) :: z,d_a_tmp
977       real(kind=8),dimension(dimen/3) :: ztmp,dtmp
978       integer :: i,j,k,ind
979 !      do i=1,dimen
980 !        d_a_tmp(i)=0.0d0
981 !        do j=1,dimen
982 !          d_a_tmp(i)=d_a_tmp(i)+Ginv(i,j)*z(j)
983 !        enddo
984 !      enddo
985 !
986 !      return
987
988 !ibm* unroll(3)
989       do k=0,2
990        do j=1,dimen/3
991         ztmp(j)=z((j-1)*3+k+1)
992        enddo
993
994        call alignx(16,ztmp(1))
995        call alignx(16,dtmp(1))
996        call alignx(16,Ginv(1,1)) 
997
998        do i=1,dimen/3
999         dtmp(i)=0.0d0
1000         do j=1,dimen/3
1001            dtmp(i)=dtmp(i)+Ginv(i,j)*ztmp(j)
1002         enddo
1003        enddo
1004        do i=1,dimen/3
1005         ind=(i-1)*3+k+1
1006         d_a_tmp(ind)=dtmp(i)
1007        enddo 
1008       enddo
1009       return
1010       end subroutine ginv_mult_test
1011 #endif
1012 !-----------------------------------------------------------------------------
1013       subroutine fricmat_mult(z,d_a_tmp)
1014
1015       use geometry_data, only: nres
1016       use control_data
1017       use MPI_data
1018 !      include 'DIMENSIONS'
1019 #ifdef MPI
1020       include 'mpif.h'
1021       integer :: IERROR,ierr
1022 #endif
1023 !      include 'COMMON.MD'
1024 !      include 'COMMON.IOUNITS'
1025 !      include 'COMMON.SETUP'
1026 !      include 'COMMON.TIME1'
1027 !#ifndef LANG0
1028 !      include 'COMMON.LANGEVIN'
1029 !#else
1030 !      include 'COMMON.LANGEVIN.lang0'
1031 !#endif
1032       real(kind=8),dimension(dimen3) :: z,z1,d_a_tmp
1033       real(kind=8),dimension(6*nres) :: temp    !(maxres6) maxres6=6*maxres
1034       real(kind=8) :: time00,time01
1035       integer :: i,j,k,ind,nres2
1036       nres2=2*nres
1037 !el      if(.not.allocated(fricmat)) allocate(fricmat(nres2,nres2))
1038
1039 #ifdef MPI
1040       if (nfgtasks.gt.1) then
1041         if (fg_rank.eq.0) then
1042 ! The matching BROADCAST for fg processors is called in ERGASTULUM
1043           time00=MPI_Wtime()
1044           call MPI_Bcast(9,1,MPI_INTEGER,king,FG_COMM,IERROR)
1045           time_Bcast=time_Bcast+MPI_Wtime()-time00
1046 !          print *,"Processor",myrank," BROADCAST iorder in FRICMAT_MULT"
1047         endif
1048 !        call MPI_Barrier(FG_COMM,IERROR)
1049         time00=MPI_Wtime()
1050         call MPI_Scatterv(z,ng_counts(0),ng_start(0),&
1051           MPI_DOUBLE_PRECISION,&
1052           z1,3*my_ng_count,MPI_DOUBLE_PRECISION,king,FG_COMM,IERR)
1053 !        write (2,*) "My chunk of z"
1054 !        do i=1,3*my_ng_count
1055 !          write (2,*) i,z(i)
1056 !        enddo
1057         time_scatter=time_scatter+MPI_Wtime()-time00
1058 #ifdef TIMING
1059         time_scatter_fmatmult=time_scatter_fmatmult+MPI_Wtime()-time00
1060 #endif
1061         time01=MPI_Wtime()
1062         do k=0,2
1063           do i=1,dimen
1064             ind=(i-1)*3+k+1
1065             temp(ind)=0.0d0
1066             do j=1,my_ng_count
1067               temp(ind)=temp(ind)-fricmat(j,i)*z1((j-1)*3+k+1)
1068             enddo
1069           enddo 
1070         enddo
1071         time_fricmatmult=time_fricmatmult+MPI_Wtime()-time01
1072 !        write (2,*) "Before REDUCE"
1073 !        write (2,*) "d_a_tmp before reduce"
1074 !        do i=1,dimen3
1075 !          write (2,*) i,temp(i)
1076 !        enddo
1077 !        call flush(2)
1078         time00=MPI_Wtime()
1079         call MPI_Reduce(temp(1),d_a_tmp(1),dimen3,MPI_DOUBLE_PRECISION,&
1080             MPI_SUM,king,FG_COMM,IERR)
1081         time_reduce=time_reduce+MPI_Wtime()-time00
1082 !        write (2,*) "After REDUCE"
1083 !        call flush(2)
1084       else
1085 #endif
1086 #ifdef TIMING
1087         time01=MPI_Wtime()
1088 #endif
1089         do k=0,2
1090          do i=1,dimen
1091           ind=(i-1)*3+k+1
1092           d_a_tmp(ind)=0.0d0
1093           do j=1,dimen
1094              d_a_tmp(ind)=d_a_tmp(ind) &
1095                                  -fricmat(j,i)*z((j-1)*3+k+1)
1096           enddo
1097          enddo 
1098         enddo
1099 #ifdef TIMING
1100         time_fricmatmult=time_fricmatmult+MPI_Wtime()-time01
1101 #endif
1102 #ifdef MPI
1103       endif
1104 #endif
1105 !      write (iout,*) "Vector d_a"
1106 !      do i=1,dimen3
1107 !        write (2,*) i,d_a_tmp(i)
1108 !      enddo
1109       return
1110       end subroutine fricmat_mult
1111 !-----------------------------------------------------------------------------
1112 !-----------------------------------------------------------------------------
1113       end module REMD